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ABSTRACT 

 

A Comparative Study of Directional Connections in 

Popular U.S. and Chinese High School Mathematics Textbook Problems 

 

Shuhui Li 

 

Mathematical connection has received increasing attention and become one major goal in 

mathematics education. Two types of connections are distinguished: (a) between-concept 

connection, which cuts across two concepts; and (b) within-concept connection, which links two 

representations of one concept. For example, from the theoretical probability to experimental 

probability is a between-concept connection; generate a graph of a circle from its equation is a 

within-concept connection. Based on the directionality, unidirectional and bidirectional 

connections are discerned. Bidirectional connection portrays a pair of a typical and a reverse 

connection. The benefits of connections, especially bidirectional connections, are widely 

endorsed. However, researchers indicated that students and even teachers usually make 

unidirectional connections, and underlying reasons may be the curriculum and cognitive aspects. 

Previous studies have reported differences in learning opportunities for bidirectional connections 

in U.S. and Chinese textbook problems, but few have explored the high school level.  

This study addressed this issue by comparing the directionality of mathematical 

connections and textbook-problem features in popular U.S. (the UCSMP series) and Chinese (the 

PEP-A series) high school mathematics textbook problems. The results indicated that the 

between-concept condition and unidirectional connections dominated textbook problems. 



 

Mathematical topic, contextual feature, and visual feature were most likely to contribute to 

different conditions of connections. Overall, problems dealing with quadratic relations from 

Chinese textbooks presented a vigorous network of more unique and total between-concept 

connections with balanced typical and reverse directions than the U.S. counterparts. Problems 

from U.S. textbooks showed a denser network of (a) within-concept connections in two topics 

and (b) between-concept connections in probability and combinatorics than the Chinese 

counterparts, but still exhibited an emphasis on specific concepts, representations, and 

directionality. The study reached a generalized statement that the new-to-prior knowledge 

direction was largely overlooked in textbook problems. The results have implications for 

adopting graph theory and Social Network Analysis to visualize and evaluate mathematical 

connections and informing mathematics teachers and textbook authors to pay attention to the 

new-to-prior knowledge connection. 
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Chapter I 

INTRODUCTION 

 

Need for Study 

Fostering connections among mathematical ideas has become one major goal of 

mathematics education (National Council of Teachers of Mathematics [NCTM], 2000). 

Researchers distinguish between two types of mathematical connections: between-concept, 

which cuts across two concepts; and within-concept, which links two representations of the same 

concept (Selinski, Rasmussen, Wawro, & Zandieh, 2014). The benefits of connections are 

widely endorsed, such as cultivating deep understanding, extending mathematical topics, 

supporting error detection, and piquing interest in math (Barmby, Harries, Higgins, & Suggate, 

2009; Boaler & Humphreys, 2005; Bossé, 2003; Karp, 2002). However, students and teachers 

still struggle to make connections (Olson, 2016; Prodromou, 2012). As such, many studies 

investigated characteristics of connections to support connection-making moves. 

Directionality is one of these characteristics. Researchers use this term to describe the 

particular direction in which a mathematical connection is developed from one mathematical 

entity to another within the context (Janvier, 1987; Lesser, 2001; Marshall, Superfine, & Canty, 

2010; Woods, 1975). For example, generating a graph from an algebraic equation involves the 

reverse directionality of producing an algebraic equation from a graph (Goldin & Shteingold, 

2001; Leinhardt, Zaslavsky, & Stein, 1990); connection from the theoretical-to-experimental 

probability holds the reverse directionality of connection from the experimental-to-theoretical 

probability (Prodromou, 2012). Generally, bidirectional connections are used to portray a pair of 
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connections: (i) a typical connection and (ii) a reverse connection (Ding & Li, 2010; Jin & 

Wong, 2015; Leinhardt et al., 1990; Lesser, 2001; Prodromou, 2012). 

Bidirectional connections have several benefits, such as assisting conceptual 

understanding, having productive knowledge backward-transfer, and aiding in problem solving 

(Brenner et al., 1997; Heid, 1988; Hohensee, 2016; Knuth, 2000b; Wilson, 1994). However, both 

students and teachers often limit connection-making moves in one direction. For example, many 

students fail to move from Algebra to Arithmetic (Lee & Wheeler, 1989); even many preservice 

teachers struggle with the experimental-to-theoretical probability connection (Prodromou, 2012). 

In addition, logical analysis and empirical work suggest that a connection in a particular 

direction, such as a graph-to-equation direction, is usually more difficult than the reverse 

(Confrey & Smith, 1995; Stein & Leinhardt, 1989). These studies suggest that two aspects—the 

curriculum emphasis and cognitive obstacles—may prohibit bidirectional connections. 

Among various curriculum materials, mathematics textbooks played and continue playing 

a central role in classrooms for mathematics teaching and learning (Stein, Remillard, & Smith, 

2007). The majority of teachers regard textbooks as an authority and the primary teaching tool, 

and most students work on problems in textbooks on a daily basis (Grouws, Smith, & Sztajn, 

2004). Accordingly, textbooks may be a useful resource to analyze the directionality of 

mathematical connections. Given the growing interest in problem-solving issues, textbook 

problems receive much attention. Moreover, international comparisons of textbook problems are 

receiving increased attention. These studies can provide insights into students’ achievement 

differences in mathematics and credible outcomes of missed content or pedagogical factors in 

textbook problems, and then, in turn, they can elicit educational improvements in textbook 

problem design (Cao, 2018; Kubow & Fossum, 2007; Zhu & Fan, 2006).  
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Prior cross-national studies have reported considerable differences in students’ 

mathematical performance and standards-based U.S. and Chinese elementary or lower secondary 

school mathematics textbook problems in terms of connections and problem features. In almost 

all existing global comparative studies, Chinese students outperformed American students across 

grade levels and mathematical topics (Cai & Nie, 2007). Regarding mathematical connections in 

textbook problems, researchers reported that some standards-based U.S. elementary and middle 

school mathematics textbooks lacked learning opportunities for some reverse connections, such 

as additive inverses, multiplicative inverses, the graphical-to-symbolic connections (e.g., Chang, 

Cromley, & Tran, 2016; Ding, 2016). In contrast, the Chinese counterparts adopted bidirectional 

connections in many topics, such as addition-subtraction (Sun, 2011b), multiplication-division 

(Xin, Liu, & Zheng, 2011), and the bidirectional use of the distributive property (Ding & Li, 

2010). But the analysis was conducted mostly on elementary and middle school-level topics. 

Regarding problem features, prior textbook comparisons suggested that many standards-based 

U.S. elementary and middle school mathematics textbooks contained more single-step, real-life, 

visual problems with more exercises (e.g., Zhu & Fan, 2006). In contrast, the Chinese 

counterparts had more multi-step, purely mathematical, non-visual problems with more worked-

out examples. However, few studies have analyzed high school textbook problems (J. Wang & 

Lu, 2018), even though they have a wider range of informative data. 

In summary, a comparison of directional connections in popular U.S. and Chinese high 

school mathematics textbook problems may yield new information about the balance between 

typical and reverse within-concept and between-concept connections in textbook problems. It 

may expose relationships between the directionality of connections and problem features, and 

therefore help us to reflect beyond the context of a specific system and explore possible ways to 
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embed bidirectional connections. This can, in turn, enhance the teaching and learning of 

mathematics in the United States and China. Therefore, there is a need to explore mathematical 

connections in popular U.S. and Chinese high school mathematics textbook problems. 

Purpose for Study 

In my study, I examined mathematical connections in popular U.S. and Chinese high 

school mathematics textbook problems. There were three purposes for my research: (i) to 

compare features of problems with or without connections and examine associations between 

mathematical connections and problem features as a way to show cross-national similarities and 

differences in embedding connections; (ii) to compare and visualize the network of within-

concept and between-concept connections in textbook problems as a way to illuminate cross-

national similarities and differences in the directionality of two types of connections; and (iii) to 

provide exemplary practices and suggestions for designing textbook problems supporting 

bidirectional connections. To achieve these purposes, my study was guided by the following 

research questions: 

1. What are the similarities and differences in the feature of problems with or without 

mathematical connections from popular U.S. and Chinese high school mathematics 

textbooks?  

2. What are the similarities and differences in the directionality of mathematical 

connections embedded in problems from popular U.S. and Chinese high school 

mathematics textbooks?  

3. Which structural differences in popular U.S. and Chinese high school mathematics 

textbook problems may promote or hinder bidirectional connections?  
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Procedure for Study 

Sample Textbooks and Data Collection 

To keep comparisons neutral, I selected textbooks stressing connections with a similar 

textbook organization, in which each chapter has several sections with worked-out examples and 

exercises. In the United States, standards-based curricula view learning as developing 

understanding by constructing concept connections (Stein et al., 2007). I chose University of 

Chicago School Mathematics Project (UCSMP) Textbooks, that represent one of the largest 

projects reflecting curriculum reform (Fan & Kaeley, 2000). In China, People’s Education Press 

(PEP) Textbooks are the most widely used curricula having multiple connections (Fan & Zhu, 

2007). I specifically used PEP General High School Curriculum Standard Experimental 

Textbook Mathematics, A Version, which is the most widely circulated version (Cao, 2018).  

I first collected the students’ edition and the teachers’ edition for these two textbook 

series. The teachers’ edition includes detailed solutions to problems, which are data essential for 

identifying connections. Next, I chose two topics: (a) quadratic relations (Algebra and Geometry 

strands); and (b) probability and combinatorics (Probability, Statistics, and Discrete Mathematics 

strands)—all difficult core topics from different strands (e.g., Bulone, 2017; Leinhardt et al., 

1990). Finally, I compiled all worked-out examples, exercises, and their solutions in each section 

in their original sequence together as a single set, since every problem applies to and serves the 

same mathematical topic. 

Data Coding 

Phase 1 involved dividing collected sets into items and coding relevant features. 

Textbook problems have one or two levels of sequence numbers. The first-level numbering was 

by 1, 2, …; the second-level numbering was by (1), (2), ... in PEP-A and a, b, … in UCSMP. For 
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problems having the second-level numbering, I first divided them into basic items. For problems 

only having the first-level sequence numbering, I kept them as basic items. Then, I assigned an 

item number to basic items one by one as the new sequence number. Then, I coded each basic 

item for its (i) topic: quadratic relations, probability and combinatorics; (ii) presentational 

feature: worked-out example, exercise; (iii) contextual feature: purely mathematical, real-life; 

(iv) mathematical feature: single-step, multi-step; and (v) visual feature: visual, non-visual. 

Phase 2 was designed to identify connections. I first collected the vocabulary checklist in 

the chapter review and the textbooks’ glossary for the whole textbook to compile the Concepts 

Table. Next, I made the Representations Table: words, tables, graphs, symbolic expressions, and 

concrete/pictorial representations (Marshall et al., 2010). Because some concepts have various 

symbolic representations (e.g., quadratic functions have the standard, intercept, and vertex form), 

I expanded symbolic expressions to S1, S2, and so on. Then, I compiled all possible connections 

(from a single concept in a specific representation to another concept in a specific representation 

or to the same concept in a different representation) in a complete Connection Table and coded 

solutions of each item step by step in terms of corresponding connections found in the 

Connection Table as well as their categories: no-connection, between-concept connections only, 

within-concept connections only, and the mixed condition of both between-concept and within-

concept connections. All identified connections were compiled in a table. 

Phase 3 was drafted to recognize bidirectional connections in Phase 2 data and produce 

related digraphs and adjacency matrices. I used the NodeXL, a network analysis software 

package, to filter out bidirectional connections by the reciprocated function. All bidirectional 

connections were compiled in a table. Digraph theory, which has a long history as an analytical 

tool in applied mathematics, has been used successfully to examine the quality (e.g., strength, 
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connectivity, centrality) and the structure of connections with a vivid graphical representation 

(Selinski et al., 2014; Strom, Kemeny, Lehrer, & Forman, 2001). I thus constructed digraphs (see 

Figure 1) with: (a) vertices: concepts with representations (e.g., C1R2 stands for Concept 1 in 

Representation 2); (b) edges with number x: connections in problem item x (e.g., an edge from 

C4 to C2 with number 4 shows a connection from Concept 4 to Concept 2 in problem item 4); 

and (c) arrows: the directionality. Finally, I produced the corresponding adjacency matrix with 

one row and one column for each vertex (see Figure 1). An entry of k in row X and column Y 

indicates there are k connections from X to Y (Chartrand & Lesniak, 2005), e.g., the entry “2” in 

Row 2 and Column 1 shows that there are two connections of Concept 1 from Representation 2 

to Representation 1 (one in problem item 2 and one in problem item 5 shown in the digraph). 

 

Figure 1. A sample digraph and its corresponding adjacency matrix 

Subsequently, I invited two math teachers (one in China and one in the United States), 

who have more than 5 years of teaching experience, to recode and add missed connections to 

compile the final coding. Finally, I invited four graduate students in math education, who are 

proficient in English and Chinese, to agree or disagree with part of the final coding and 

calculated the overall percentage of agreement. The percentage of agreement and the overall 

percentage of agreement all passed 80%. The final coding reached the reliability requirement.  
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Data Analysis 

To address the first research question, I first used the word frequency cloud in NVivo, a 

qualitative data analysis software package, to generalize the difference in the usage of concepts 

and representations in textbook content. Then, I used tables and charts to compare the frequency 

of textbook problems in terms of four conditions of mathematical connections across topics, 

presentational, contextual, mathematical, and visual feature. Frequency of between-concept and 

within-concept connections was explored across topics and textbooks. Loglinear analysis was 

conducted to explore associations among textbook series, connections, and problem features. 

To address the second research question, I first used a table and chart to compare the 

frequency of unidirectional and bidirectional connections across textbooks. Then, I compared 

bidirectional within-concept connections and between-concept pairs across textbooks to check 

the integration of bidirectional connections. Next, I examined digraphs for each subtopic and 

topic. Digraphs were classified into dense, moderate, sparse, the sparsest, and aggregated 

digraphs. In moving from a digraph to its adjacency matrix, quantitative characteristics can be 

attained (Strom et al., 2001). I checked whether on-diagonal and off-diagonal block submatrices 

had symmetrical entries and similar weight, and non-zero entries in the diagonal for self-loops. I 

compared: (a) in- vs. out-connections: the number of unique connections connecting to vs. 

emanating from a vertex; (b) in- vs. out-degree: the number of connections leading to vs. out of a 

vertex; and (c) other indices related to the directionality (Smith et al., 2010; Strom et al., 2001).  

I used the above analysis to generalize similarities and differences in the directionality issue. 

To address the third research question, structural differences in textbook problems, such 

as the placement of subtopics, unique practices in each textbook series, were reviewed to explore 

their potential influence on bidirectional connections.  
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Chapter II 
 

LITERATURE REVIEW 
 

Overview 

Contemporary literature in mathematics education and psychology suggests that 

mathematical connections have received increasing attention despite being rarely defined in the 

literature (Payton, 2017). Therefore, many researchers have conceptualized and explored 

characteristics of mathematical connections. Focusing on one characteristic—directionality, prior 

studies have reported both the benefits of bidirectional connections and students’ and teachers’ 

difficulty in bidirectional connections. They indicated that two aspects—the curriculum and 

cognitive aspects—may hinder bidirectional connections. To discuss the literature on this topic,  

I have divided this chapter into five sections: (a) overview; (b) defining and conceptualizing 

mathematical connections; (c) mathematical connections in mathematics textbooks;  

(d) mathematical connections in cognitive psychology; and (e) summary. 

Defining and Conceptualizing Mathematical Connections 

What Is a Mathematical Connection? 

Mathematical connection, which is widely used and referred to in the literature, seems to 

be somewhat ambiguous and rarely defined in the literature (Payton, 2017). From a historical 

perspective, Hau (1993) analyzed definitions and synonyms for “connect” and “mathematical” in 

dictionaries and thesauri, and defined mathematical connection as “mathematical concepts or 

procedures or activities may be coupled, or tied, or linked, or attached, or conjoined to one 

another or to other concepts or procedures or activities” and “mathematical concepts, or 

procedures, or activities may be related, or correlated, or bracketed to, or identified with, or 
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equated to other concepts or procedures or activities” (p. 50). Currently, researchers usually use 

links or relationships between two entities to describe mathematical connections in practice. For 

example, Businskas (2008) defined the term as “a true relationship between two mathematical 

ideas, A and B” (p. 18). Singletary (2012) defined it as “a relationship between a mathematical 

entity and another mathematical or nonmathematical entity” (p. 10), where a mathematical entity 

is “any mathematical object from any area of curricular mathematics” (Zbiek & Conner, 2006,  

p. 92). I adopted this definition because it provides a basis for interpreting characteristics of 

mathematical connections, which have been used in other research as well (Payton, 2017). 

Mathematical connections were emphasized in reforms in mathematics education in the 

United States. Two reports, the 1923 Report of the National Committee on Mathematical 

Requirements of the Mathematical Association of America and the 1940 Report of the 

Commission on the Secondary School Curriculum of the Progressive Education Association, 

revealed the initial desire to emphasize mathematical connections to encourage integrated and 

connected curricula (Coxford, 1995). Hereafter, the “new math movement” of 1957-1970 

emphasized the interrelationships of mathematical ideas and the structure of mathematics (Begle, 

1970). After that, the National Council of Teachers of Mathematics (NCTM, 1980) responded to 

the “back to basics” movement in the 1970s and recommended “a wide repertoire of knowledge, 

not only of particular skills and concepts but also of the relationships among them” (p. 2).  

Later, mathematical connections constituted an essential component of reforms and 

standard documents in mathematics education, as illustrated in consecutive NCTM Standards 

(1989, 1991, 2000). For example, NCTM (1989) stressed “modeling connections between 

problem situations that may arise in the real world or in disciplines other than mathematics and 

their mathematical representation(s)”; and “mathematical connections between two equivalent 
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representations and between corresponding processes in each” (p. 146). Later, NCTM (2000) 

stated that mathematics is “a web of closely connected ideas,” in which ideas are linked by 

connections. Specifically, NCTM addressed connections as one process standard as follows: 

Connections. When students connect mathematical ideas, their understanding is deeper 
and more lasting. They can see mathematical connections in the rich interplay among 
mathematical topics, in contexts that relate mathematics to other subjects, and in their 
own interests and experience. Through instruction that emphasizes the interrelatedness of 
mathematical ideas, students not only learn mathematics, they also learn about the utility 
of mathematics. Mathematics is not a collection of separate strands or standards, even 
though it is often partitioned and presented in this manner. Rather, mathematics is an 
integrated field of study. (p. 64) 

Moreover, the Mathematical Association of America (MAA) proposed six common 

standards for teacher preparation, in which Standard 2 addressed connections as follows: 

Standard 2: Connecting Mathematical Ideas. 
The mathematical preparation of teachers must provide experiences in which they:  
• develop an understanding of the interrelationships within mathematics and an 

appreciation of its unity;  
• explore the connections that exist between mathematics and other disciplines; 
• apply mathematics learned in one context to the solution of problems in other 

contexts. (Leitzel, 1991, p. 3)  

In 2010, the Common Core State Standards for Mathematics (CCSS-M) was released 

(CCSSI, 2010), which was intended as the national standards in the United States. Particularly, it 

stressed connections between different problem-solving approaches, connections between a 

given problem situation and its abstraction, and connections from the Standards for 

Mathematical Practice to the Standards for Mathematical Content.  

All of the above reform movements and standards documents in the United States share 

the common belief that mathematical connection is an important, valuable, and essential aspect 

of teaching, learning, and understanding mathematics (Singletary, 2012). Consequently, many 

studies have concentrated on conceptualizing mathematical connections. Based on the nature of 
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mathematics, mathematical connections can be identified a priori and as part of a connected 

discipline, which exists independently of learners.  

Mathematical Connections: A Feature of Mathematics  

The “common theme” view. Coxford (1995) shared the “common theme” view of 

mathematical connections, which conceived mathematical connections as broad ideas or 

processes connecting multiple topics. He identified three categories: (a) unifying themes,  

(b) mathematical processes, and (c) mathematical connectors. 

Unifying theme is defined as a theme “that may be used to pay attention to the connected 

nature of mathematics” (Coxford, 1995, p. 4), such as change, data, and shape. The following 

example explains how the theme “change” connects Algebra, Geometry, Discrete Mathematics, 

and Calculus: 

For example, how is a constant rate of change related to lines and linear equations?  
What changes occur in the graph of a function when a coefficient in the equation of the 
function is changed?... How does the perimeter or area of a plane shape change when it is 
transformed using isometries, size transformations, shears, or some unspecified linear 
transformation?... Each of these questions suggests opportunities to connect mathematical 
topics by relating them through the theme of change. (pp. 4-5) 

Researchers have identified other possible themes. For example, Crowley (1995) 

suggested transformation (using multiple representations) as a unifying theme and listed 

examples showing how it connects Plane Geometry, Matrices, Compositions, Conic Sections, 

and Trigonometry. Also, Bossé (2003) identified conjunction (a logical connective ‘and’) and 

disjunction (a logical connective ‘or’) as unifying themes connecting the fields of Logic, Set 

Theory, Algebra, Number Theory, and Probability. 

Mathematical process embodies (a) representation, (b) application, (c) problem solving, 

and (d) reasoning, which exists as activities that “continue in all the mathematical work done by 
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students from kindergarten through independent learning as an adult” (Coxford, 1995, p. 7). The 

following is one example of “representation”: 

For example, upper elementary school students should develop facility in moving back 
and forth among the concrete and the pictorial models, the oral name, and the symbolic 
representation of any fraction or decimal. These connections are vital if students are to 
make sense out of later operations on numbers. (p. 7) 

Coxford (1995) advocated that the above four mathematical processes, which form a 

continuous web of emphasis, should occur regularly in mathematical instruction. Under this 

circumstance, the mathematics itself is seen as interrelated and connected. 

Mathematical connector is defined as a mathematical idea “that arises in relation to the 

study of a wide spectrum of topics” (Coxford, 1995, p. 10), such as function, matrix, algorithm, 

graph, variable, and ratio. The following shows how “graphs” work as the mathematical 

connector in the curriculum: 

Later in the curriculum, graphs are used to represent solutions to equations or 
inequalities; to represent functions and relations; to represent problem situations; to 
display data visually so that trends and tendencies can be observed; to represent patterns 
found in all strands; and, in discrete mathematics, to serve as an object of study and to 
model a variety of situations. (pp. 10-11) 

In sum, the “common theme” view stresses the nature of mathematics. However, looking 

into this view alone may leave connections at a general level (Businskas, 2008). 

Concept-to-concept links. Businskas (2008) employed concept-to-concept links to 

describe particular relationships between two fine-grain-sized concepts, which are conceived as 

mathematical connections. For example, Zazkis (2000) demonstrated some cases of concept-to-

concept links as follows: 

The mathematical connection among a factor, a divisor, and a multiple is expressed in the 
equivalence of the following three statements, for any two natural numbers A and B:  
• B is a factor of A;  
• B is a divisor of A; 
• A is a multiple of B. (p. 212) 
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Other researchers have illustrated abundant concept-to-concept links, such as fraction-

division (Weinberg, 2001), addition-subtraction (Cai & Moyer, 2008), and multiplication-

division (Xin et al., 2011). These studies indicated that concept-to-concept links might be a 

productive way to conceptualize mathematical connections in practice. 

Representational links. Two types of representational links—translations between 

representations and transformations within a representation—are conceptualized as mathematical 

connections. Lesh, Post, and Behr (1987) defined translations as “between-system mappings,” 

i.e., moving from one representation system to another. For example, Janvier (1987) presented 

potential translations among four representations of variables in Cartesian graphs in a 4*4 table 

(see Figure 2) and considered these to be mathematical connections. 

 

Figure 2. Translation processes (Janvier, 1987, p. 28) 

Subsequent researchers have also supported translations between representations. Goldin 

and Shteingold (2001) argued that translating from a graph of a circle of radius one centered at 

the origin to its an algebraic equation x2+y2 = 1 is a mathematical connection. Businskas (2008) 

showed examples of connections in terms of mappings between two representations as follows:  

In the equation, y = mx + b:  
• Characteristics of the graph of the line are equivalent to parts of the equation; 
• Slope is equivalent to m; 
• Y-intercept is equivalent to b. (p. 12) 
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Moreover, researchers have used translations between two representations to recognize and 

assess learners’ connection-making moves (e.g., Zazkis & Liljedahl, 2004).  

In addition to translations, researchers have also discussed transformations as 

mathematical connections. Lesh et al. (1987) defined transformations as “within-system 

operations,” i.e., moving within one representation system. Some mathematical ideas have 

alternative representations in one representation system. For example, the symbolic 

representations of linear equations include a standard form, a slope-intercept form, and a point-

slope form. Burkett (1998) presented an example of a mathematical connection in a problem 

requiring the transformation of the linear equation: 

Determine the y-intercept of the linear equation 2x + 3y = 6 without graphing the line…. 
First, the student algebraically changes the given equation, 2x + 3y = 6, into slope-
intercept form, y = − $

%
𝑥 + 2. This change of the given equation into the slope-intercept 

form is the transformation. (p. 11) 

In reality, translations and transformations tend to be interdependent, conjointly 

conceptualizing mathematical connections in terms of representations (Lesh et al., 1987). 

Proposed Framework for Conceiving Mathematical Connections  

Based on the nature of mathematics, the “common theme” view, concept-to-concept 

links, and representational links are used to conceptualize mathematical connections. The 

“common theme” view considers connections at a super general level. In comparison, sorting out 

connections by concepts and representations details connections in the usage of specific concepts 

and particular representations in mathematics. Integrating the concept and the representation 

perspective seems to be a productive way to conceptualize mathematical connections. Therefore, 

based on the combined perspective of concepts and representations, the proposed framework 

consists of two types: within-concept connections and between-concept connections. 
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Within-concept connection describes the mathematical connection involving two 

representations of the same concept (see Figure 3) (Selinski et al., 2014), which includes 

representations in different representation systems and alternative representations within one 

representation system. For example, generating a graph of a circle from an algebraic equation is 

a within-concept connection (Goldin & Shteingold, 2001). This category echoes the translation 

and the transformation process.  

 

Figure 3. Within-concept connections 

Between-concept connection describes the mathematical connection cutting across 

different concepts in mathematics (see Figure 4) (Selinski et al., 2014). For example, moving 

from theoretical probability to experimental probability is a between-concept connection 

(Prodromou, 2012). This category coins concept-to-concept links. 

 

Figure 4. Between-concept connections 

For the overall structure (see Figure 5), white arrows characterize within-concept 

connections and black arrows represent between-concept connections. For example, the white 



 

17 

arrow from concept 1 in representation 1 to representation 2 represents a within-concept 

connection of concept 1 from representation 1 to representation 2 (translation). The white arrow 

from concept 2 in representation 1 to itself represents a within-concept connection of concept 2 

within representation 1 (transformation). Between-concept connections cover both connections 

between two concepts in two different representations (e.g., from concept 2 in representation 3 to 

concept 3 in representation 1) and connections between two concepts in one representation (e.g., 

from concept 1 in representation 2 to concept 2 in representation 2). 

 

Figure 5. A framework of between-concept and within-concept connections 

Selinski et al. (2014) used within-concept and between-concept connections to analyze 

mathematical connections in Linear Algebra successfully and posited that this model could be 

used to analyze connections in other mathematical content. 

A New Perspective: Directionality 

In mathematics education, the directionality of connections is receiving growing attention 

due to the benefits and learners’ difficulty in bidirectional connections. The term directionality is 
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generally used to describe the particular direction in which a mathematical connection is from 

one mathematical entity to another within the context (Janvier, 1987; Lesser, 2001; Marshall  

et al., 2010; Woods, 1975). It has been discussed in the literature in terms of within-concept 

connections and between-concept connections. For example, Goldin and Shteingold (2001) 

stated that connections between two representations of the same concept are bidirectional in 

nature, thus supporting a previous study that the connection of generating a graph from an 

algebraic equation involved the reverse directionality of the connection of producing an algebraic 

equation from a graph (Leinhardt et al., 1990). For between-concept connections, Prodromou 

(2012) indicated that moving in the theoretical-to-experimental probability direction holds the 

reverse directionality of moving in the experimental-to-theoretical probability direction. 

Researchers identified two types of directionality: unidirectional and bidirectional.  

Unidirectional connections: Typical vs. reverse direction. In the introduction of the 

foundations for semantic networks, Woods (1975) used the term inverse link to denote the 

reverse of a given connection as follows: 

…by storing a sentence such as “John hit Mary” as a link named HIT from the node for 
John to the node for Mary, as in the structure…and perhaps placing an inverse link under 
Mary “Mary hit* John.” (p. 53) 

The above example characterizes a connection from vertex A to vertex B and a reverse one from 

vertex B to vertex A. Then, researchers employ typical1 and reverse connections to depict 

                                                

1 Some researchers used “regular.” The word “regular” depicts connections conforming to or governed by some 

rules or standards, which implies that the reverse may be out of the ordinary or incorrect. Comparatively, the word 

“typical” portrays connections that occur often and usually not a surprise, which implies that the reverse may rarely 

appear. This study adopts “typical” instead of “regular” to describe connections that occur often and avoid the 

conception that the reverse is incorrect. 
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unidirectional connections in mathematics (Cai & Moyer, 2008; Davydov, 1990; Hohensee, 

2014; Leinhardt et al., 1990; Lesser, 2001; Usiskin, 2018). Some logical analysis and empirical 

work have suggested that a connection in a particular direction, such as a graph-to-equation 

direction, is usually more difficult than the reverse (Confrey & Smith, 1995; Stein & Leinhardt, 

1989). It demonstrates that the difficulty levels of grasping a connection in two directions may 

also be different, thereby further strengthening the ground for examining the directionality. 

Bidirectional connections. This term is used to portray a pair of typical and reverse 

connections (Ding & Li, 2010; Ellis, 2007; Jin & Wong, 2015; Leinhardt et al., 1990; Lesser, 

2001; Prodromou, 2012). Several studies have reported the benefits of bidirectional connections.  

First, Heid (1988) reported that U.S. students using the new curriculum with bidirectional 

connections demonstrated a better conceptual understanding of covered concepts than the control 

group using traditional curriculum. Researchers also suggested that bidirectional connections 

make mathematics meaningful and build a more coherent understanding of mathematical 

concepts (Marshall et al., 2010). Also, the web of bidirectional connections allows learners to 

extend mathematical concepts (Confrey & Smith, 1995), regenerate forgotten results, make 

remembering correct results more likely, and play a major role in error detection (Schoenfeld, 

Smith, & Arcavi, 1993), thereby enhancing their conceptual understanding. Second, Hohensee 

(2014) demonstrated that U.S. students’ reasoning about their previously-learned concepts (linear 

functions) was productively influenced by newly-learned concepts (quadratic functions) in 

significant aspects. Connections from newly constructed to previously learned concepts in 

mathematics do bring significant productive backward reasoning and meaningful learning. 

Moreover, bidirectional connections not only help students form an understanding of the relative 

costs and benefits of two representations (Dufour-Janvier, Bednarz, & Belanger, 1987) but also 
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provide students the flexibility to work with a wide range of problems with the appropriate 

representation (Piez & Voxman, 1997). In sum, the benefits of bidirectional connections are 

widely endorsed. However, prior studies have shown that both students and teachers often 

limited their connection-making moves in one direction (e.g., Knuth, 2000b; Prodromou, 2012). 

Several studies reported students’ struggle in making bidirectional connections. For 

example, bidirectional Arithmetic-Algebra connections were problematic for many 7th graders 

(Herscovics & Linchevski, 1994). The Arithmetic-to-Algebra transition was difficult for many 

junior high school students in the United States (Brenner et al., 1997). Many 10th graders in 

Canada might fail in the reverse—Algebra-to-Arithmetic—connection as well (Lee & Wheeler, 

1989). In Early Algebra, Li, Ding, Capraro, and Capraro (2008) reported that many 6th graders 

in the United States had misconceptions in moving between two sides of the equal sign, whereas 

the Chinese counterparts exhibited their understanding of these connections. Similarly, Blanton 

et al. (2015) reported that before the intervention many U.S. 3rd graders showed an operational 

understanding of the equal sign. It was consistent with a previous study conducted by Stephens et 

al. (2013) indicating that many U.S. Grade 3-5 students had an operational view of the equal sign 

and exhibited difficulties in recognizing connections between underlying structures of equations. 

In contrast, Yang, Huo, and Yan (2014) reported that many Grade 3-5 students in China 

demonstrated a relational view of the equal sign. Later, Ding, Li, Hassler, and Barnett (2019) 

reported that 94% of Chinese 4th graders in the study applied the reverse direction of the 

distributive property, whereas only 6% of the U.S. counterparts could make such connections. 

One of the biggest stumbling blocks for Algebra students was translating among a variety 

of representations: algebraic expression, equation, graph, word problem, and verbal description 

(Seeley & Schielack, 2007). For example, many Beginning Algebra students in the United States 
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failed in graphical-to-algebraic and tabular-to-algebraic directions of functions (McCoy, 1994). 

In quadratic functions, many high school students in Israel preferred the equation-to-graph 

connection than the reverse connection (Zaslavsky, 1997). In linear functions, researchers 

revealed not only U.S. high school students’ over-reliance on algebraic methods in a simpler-

graphical-favored situation but also the superficial mastery of bidirectional algebraic-graphical 

connections, especially the graph-to-equation direction (Knuth, 2000a, 2000b). These findings 

were consistent with previous studies conducted with other age groups, such as Stein and 

Leinhardt (1989) with 10/11-year-olds and Markovits, Eylon, and Bruckheimer (1986) with 

14/15-year-olds. In functions, Stylianou (2011) showed that many U.S. middle school students 

had limited usage of connections that representations worked as a monitoring tool to move 

between subsequent goals and current problem-solving plans. Some secondary school students in 

Cyprus also presented a gap in moving among the tabular, graphical, symbolic, and other 

representations of functions (Elia, Panaoura, Eracleous, & Gagatsis, 2007). Later, Adu-Gyamfi 

and Bossé (2014) found that some U.S. high school students were able to connect from domain 

to co-domain but made limited reverse connections from co-domain to domain. 

Still, many U.S. students leave high school without an understanding of bidirectional 

connections among the numeric, symbolic, and graphical representations of functions (Blume & 

Heckman, 1997). In a National Assessment of Educational Progress (NAEP) study, 18% of  

17-year-olds in the United States made correct equation-to-graph connections, whereas only 5% 

generated graph-to-equation connections (Leinhardt et al., 1990). Many college students in the 

United States still had difficulties in the graphical-to-symbolic connection of a logarithmic 

function (Confrey, Millman, & Piliero, 1993). Trigueros and Martínez-Planell (2010) reported 

undergraduate students’ limited connections between various representations of two-variable 
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functions in Puerto Rico. Some first-year university students in Belgium made most errors in 

connecting two representations of decreasing functions, and the most difficult within-concept 

connection was between a formula and a graph and vice versa (De Bock, Van Dooren, & 

Verschaffel, 2015). In a large-scale survey of 34,412 Grade 8 students in China, He and Qi 

(2017) reported that students preferred the symbolic the most, and the pictorial, the linguistic, 

and the structural representation in descending order. 

For concepts in Linear Algebra, many university students in Canada struggled in moving 

within and across their abstract, algebraic, and geometric representations (Hillel, 2000). Several 

second-year university students in New Zealand missed bidirectional connections involving basis 

in Linear Algebra (Stewart & Thomas, 2008). Many U.S. undergraduate students also struggled 

with connections among the symbolic and geometric representation of three interpretations of the 

matrix equation (Larson & Zandieh, 2013) and connections from the augmented matrix to the 

linear system (Zandieh & Andrews-Larson, 2015). In Discrete Mathematics, Eizenberg and 

Zaslavsky (2004) found that some undergraduate students in Israel failed to solve combinatorics 

problems correctly and then were not able to have efficient verification strategies to detect the 

error or correct their solutions by making connections. In a recent investigation of U.S. 

postsecondary students’ understanding of combinatorics problems, Bulone (2017) found that 

many students failed in using connections to previous problems and struggled with connections 

between problems of the same type with altered contexts. 

From the above review, students’ struggles with bidirectional connections in the 

Arithmetic-Algebra transition, Early Algebra (the equal sign, equation, and basic properties of 

operation), Functions (connections between various representations), Linear Algebra (basis, 

linear system), and Discrete Mathematics (combinatorics problems) were reported.  



 

23 

Furthermore, preservice teachers showed difficulties in making or identifying 

bidirectional connections as well. For example, in a case study of one preservice secondary 

mathematics teacher in the United States, Wilson (1994) reported that this teacher had 

difficulties in making connections between functions and the real world, as well as connections 

between functions and other areas of mathematics before the intervention. Later, Lesser (2001) 

reported that some preservice secondary school teachers in the United States relied on the tabular 

and numerical representations of Simpson’s Paradox and struggled with connecting other 

representations. Some sophomore preservice teachers in Cyprus over-relied on the algebraic 

approach and struggled with bidirectional connections among different representations in 

functions (Mousoulides & Gagatsis, 2004). Zazkis and Liljedahl (2004) reported that many 

preservice elementary school teachers in Canada struggled with identifying connections between 

prime and composite numbers and connections between the factored form representation and the 

numerical representation of numbers. Later, Eli, Mohr-Schroeder, and Lee (2011) found that 

many prospective middle-grade teachers in the United States made far fewer derivational 

mathematical connections: from one concept to build upon or explain another concept. Also, 

some preservice primary school teachers in Australia failed to build experimental-to-theoretical 

probability connections (Prodromou, 2012). Olson (2016) surveyed some preservice secondary 

mathematics teachers in the United States and reported their inability to self-identify connections 

between the CCSS-M content and college-level mathematics coursework. 

Researchers have indicated that there could be two aspects influencing students’ and 

teachers’ bidirectional connection-making moves: curriculum and cognitive.  

From the curriculum aspect, limited learning opportunities for bidirectional connections 

in curriculum materials may significantly contribute to learners’ difficulties in making 
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bidirectional connections. For example, Lee and Wheeler (1989) showed that the emphasized 

curricular track in an Arithmetic-to-Algebra direction brought obstacles to bridging the 

Arithmetic and Algebra worlds bidirectionally. Moreover, most mathematical problems in 

curriculum materials were within the symbolic representation, and routine translation tasks 

required connections from the algebraic to graphical representation. Emphasized representations 

and translation tasks of the algebraic-to-graphical direction offered students limited opportunities 

to build reverse graphical-algebraic connections (Knuth, 2000b). Additionally, the distributive 

property in the reverse direction rarely appeared in U.S. textbooks (Ding & Li, 2010). It was 

consistent with U.S. students’ difficulties in using the reverse direction of the distributive 

property (Ding et al., 2019) as limited learning opportunities were provided in textbooks. 

From the cognitive aspect, Goldin and Shteingold (2001) described situations that 

children manipulated signed numbers meaningfully in one representation but not in another, thus 

indicating cognitive obstacles to moving from one familiar representation to another difficult 

representation. Also, a logical analysis showed that the graph-to-equation task covered difficult 

pattern detection while the equation-to-graph task involved a relatively straightforward series of 

steps (Leinhardt et al., 1990). These cognitive obstacles reflected empirical work that a 

connection in a particular direction, such as the graphical-to-algebraic and the Algebra-to-

Arithmetic, was usually more difficult than the reverse direction (Confrey & Smith, 1995; Knuth, 

2000b; Stein & Leinhardt, 1989). 

In summary, even though bidirectional connections bring several benefits, they may still 

be challenging for students and even teachers. The following sections review these two 

perspectives one by one to examine the status quo of the use of bidirectional connections and 

explore possible ways to support bidirectional connections.  
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Mathematical Connections in Mathematics Textbooks 

Selection of Curriculum Materials 

Mathematics textbooks, historically the main curriculum material for mathematics 

teaching and learning, still play a central role in classrooms today (Stein et al., 2007). The Third 

International Mathematics and Science Study (TIMSS) survey reported that the majority of 

mathematics teachers adopted textbooks as the main teaching tool (Beaton, 1996). Two widely 

used models validate the unique status of mathematics textbooks, which may be a proper and 

effective curriculum material to explore the directionality of mathematical connections.  

First, Stein et al. (2007) illustrated a framework of temporal phases of curriculum (see 

Figure 6)—written curriculum, intended curriculum, and enacted curriculum—in which 

textbooks belonged to the beginning phase, the written curriculum. Under this model, 

mathematics textbooks are of fundamental importance as they influence what and how topics are 

covered and presented in classrooms (Alajmi, 2012), which reflect the directionality of 

mathematical connections. This model was echoed with the statement that “what is actually 

taught in classrooms is strongly influenced by the available textbooks” (Kilpatrick, Swafford, & 

Findell, 2001, p. 36).  

 

Figure 6. Temporal phases of curriculum use (Stein et al., 2007, p. 322) 
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Second, in a tripartite model (see Figure 7), Valverde, Bianchi, Wolfe, Schmidt, and 

Houang (2002) considered textbooks as part of the potentially implemented curriculum, which is 

a significant bridge connecting the intended curriculum (intentions, aims, and goals) that is given 

at the level of a system or state and the implemented curriculum (strategies, practices, and 

activities) that is presented at the level of a classroom.  

 

Figure 7. Textbooks and the tripartite model (Valverde et al., 2002, p. 13) 

Relatively, textbooks provide not only a clearer picture of what is to be taught and 

learned in classrooms than the intended curriculum but also a more accessible way of 

documenting the long-time development of teaching and learning in a large population than the 

implemented curriculum (Li, Chen, & An, 2009). This model also sustains mathematics 

textbooks as an effective resource to explore the directionality of mathematical connections.  

Textbook-Problem Analysis 

Growing attention to textbook-problem analysis. Previous mathematics textbook 

analysis was mainly in two aspects: more in content analysis and less in problem analysis (Stein 

et al., 2007). Recently, textbook-problem analysis has received growing attention due to the 

emphasis on problem solving and the benefits of problem analysis. Problems have played a 

central role in school mathematics since antiquity (Stanic & Kilpatrick, 1989), whereas the first 
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major call for problem solving occurred in the late 1970s. Later, more researchers started to 

examine problem solving, which became a main theme at the ICME-5 in 1984 (Fan & Zhu, 

2007). The TIMSS 1999 video study technical report indicated that solving problems constituted 

80% of the lessons (Hiebert et al., 2003). Most students work on textbook problems for both in-

class exercises and homework on a daily basis (Grouws et al., 2004). Moreover, the types, forms, 

and sequence of problems offered in a textbook form a picture of how the textbook authors 

envisioned the lesson: what problems they wanted to teach students to solve and how they 

wished to attain the goal (Karp, 2015). Furthermore, textbook-problem analysis produces 

meaningful information about learning opportunities available to students and performance 

expectations for students, which may reflect the current usage and potential supports to 

bidirectional connections, guide the curriculum development, and eventually improve the 

teaching and learning of mathematics (Ding, 2016; Li, 2000; Li, Chen, & An, 2009).  

To examine the directionality of mathematical connections addressed in textbook 

problems, we need to clarify what a problem is. Fan and Zhu (2007) defined a problem as “a 

situation that requires a solution and/or decision, no matter whether the solution is readily 

available or not to the solvers” (p. 64), which is more operational in textbook-problem analysis.  

Burgeoning textbook-problem comparisons. Cross-national textbook comparisons 

have played an important role in the mathematics education field for at least the past 30 years 

(Star & Rittle-Johnson, 2016). In a survey of textbook research in mathematics education, Fan, 

Zhu, and Miao (2013) reported that the largest body of work (63%) was found on textbook 

analysis and comparison, in which analysis of textbooks from different countries are more 

frequently conducted with a focus on identifying their similarities and differences. Some 

researchers suggested that U.S. textbooks covered more topics in each grade, which implied less 
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depth of any one topic and less emphasis on a connected map of mathematics (Ginsburg, 

Leinwand, Anstrom, & Pollock, 2005). The TIMSS textbook analysis labeled U.S. curricula as 

“a mile wide and an inch deep” and showed that U.S. content standards lacked coherence and 

focus compared with those in mathematically high-achieving countries (Schmidt, Wang, & 

McKnight, 2005). Similarities and differences in the integration of mathematical connections in 

textbook problems from the United States and a mathematically high-achieving country may 

provide valuable insights in supporting bidirectional connections and guiding textbook design.  

Prior international comparisons on students’ mathematical achievements (e.g., the 2007 

and 2011 TIMSS, and the 2015 and 2018 Program for International Student Assessment [PISA]) 

showed that Chinese students outperformed their counterparts in the West, including U.S. 

students (Son & Hu, 2016; Wong, 2008). Even though it is difficult to link students’ 

mathematical performance directly to textbooks, studies exploring possible contributing factors 

to this cross-cultural difference indicated that the textbook was potentially one of the key factors 

(Li, 2000). Considering consistent good mathematical performance of Chinese students in 

international comparisons, many researchers have conducted U.S. and Chinese textbook-problem 

comparisons as a way to show similarities and differences in mathematical expectations (Li, 

2000), educational practices (Li, Chen, & An, 2009), learning opportunities (Ding, 2016), 

educational policy (J. Wang & Lu, 2018), and so on. Focusing on the integration of bidirectional 

connections, prior textbook-problem comparisons indicated substantial differences in U.S. and 

Chinese textbooks, which were illustrated as follows. 

Textbook-problem comparisons in terms of mathematical connections. Cai and his 

colleagues compared problems from U.S. and Chinese textbooks on the averaging algorithm (the 

typical and reverse application) (Cai et al., 2002); algebra concepts and representations (Cai et 



 

29 

al., 2005); and the addition-subtraction pair and the multiplication-division pair (Cai & Moyer, 

2008). They found that some standards-based elementary school mathematics textbooks in the 

United States not only rarely included the reverse use of the averaging algorithm but also  

de-emphasized algebraic symbols, which might inhibit bidirectional connections within the 

symbolic representation and prohibit the smooth Arithmetic-to-Algebra transition. It was 

consistent with a prior study conducted by Flanders (1994) that U.S. textbooks had an emphasis 

on Arithmetic (84% items) and less on Algebra or Geometry. In contrast, Cai and his colleagues 

suggested that the Chinese counterparts adopted the bidirectional use of the averaging algorithm 

with flexibility, integrated reverse operations with equation solving (the addition-subtraction pair 

and the multiplication-division pair), presented multiple worked-out examples with solutions in 

algebraic and arithmetic approaches, and promoted generalization of concrete representations. It 

corroborated another study that many problems from Chinese elementary school mathematics 

textbooks embedded bidirectional addition-subtraction connection (Zhou & Peverly, 2005).  

Later, Ding and her colleagues compared U.S. and Chinese elementary school textbook 

problems on the equal sign (Li, Ding, Capraro, & Capraro, 2008); the distributive property (the 

typical, reverse, and dual direction) (Ding & Li, 2010); the associative property in multiplication 

(Ding, Li, Capraro, & Capraro, 2012); and inverse relations (additive inverses and multiplicative 

inverses) (Ding, 2016). They indicated that many Chinese textbooks presented these topics 

bidirectionally in deliberately constructed problems stressing the underlying structural relations 

and provided multiple solutions in arithmetic and algebraic approaches. In contrast, the U.S. 

counterparts covered few solutions in the algebraic approach and failed to present these topics in 

the reverse direction of use (e.g., the distributive property in a reverse direction). Researchers 

also revealed that some U.S. elementary school mathematics textbooks lacked explicit inverse 
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relations between multiplication and division (Xin et al., 2011) and exhibited the emphasis on the 

left side operation with less than 5% of two-sided instances (Rittle-Johnson, 2013). 

Routine translation tasks in U.S. high school mathematics textbooks required connections 

of functions mostly in the equation-to-graph direction (Knuth, 2000b). In linear equations, 

Huntley and Terrell (2014) found that only one in five popular U.S. secondary school textbook 

series included many tasks of connecting linear equations symbolically with linear functions. 

Later, Chang, Cromley, and Tran (2016) examined coordination tasks of multiple representations 

(symbolic, graphical, tabular, and text) in a widely used U.S. reformed Calculus textbook. They 

found that tasks from the symbolic to graphical representation accounted for 32.8%. In contrast, 

the reverse tasks accounted for only 6.4%. Unbalanced learning opportunities for bidirectional 

symbolic-graphical connections were demonstrated. Recently, Ma and Cao (2018) reported that 

the Geometry content accounted for 25.96% of one standards-based U.S. middle school 

textbooks and 40.18% for the Chinese counterparts, which indicated the de-emphasis of Algebra-

Geometry connections in the U.S. series. 

In the multiplication principle, Lockwood, Reed, and Caughman (2017) reported that 46 

of 64 university-level Combinatorics, Discrete, and Finite Mathematics textbooks in the United 

States lacked the bridge statement connecting counting processes and set of outcomes. Tran and 

Tarr (2018) found that many association tasks of bivariate data in traditional and standards-based 

U.S. high school textbooks eliminated students’ need to decide the proper data representation, 

which might restrict bidirectional connections between two data representations. 

From the above, varied learning opportunities for connections were observed in textbook-

problem comparisons, and the analysis was conducted mostly on elementary and middle school 

levels. Comparisons of connections in high school or university-level topics were underexplored.  
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Textbook-problem comparisons in terms of problem features. Prior studies suggested 

that some features of textbook problems may influence learning opportunities for mathematical 

connections. Exploring the association between connection and problem features may produce 

valuable insights to support connection-making moves. The following textbook-problem features 

are reviewed based on their potential influence on the presence or absence of connections. 

The first feature is presentational feature. In general, there are two categories: worked-

out example (i.e., worked examples; a complete solution provided), which is designed for 

teachers’ instruction; and exercise (no solution provided), which is presented for students’ 

practice (Li, 1999). Worked-out examples play a critical role in scaffolding student 

understanding, set a model to which students can refer, promote initial skill acquisition and later 

transfer of learning, and facilitate acquisitions of problem schema (Chi & VanLehn, 2012) 

(discussed later in worked-out example effects). Exercises, i.e., to-be-solved problems, embody 

the expectation for developing students’ mathematics competencies (Li, 1999). On one hand, the 

difference in the ratio of worked-out examples to exercises included in textbooks indicated the 

difference in curricular emphasis between problem-solving processes and results (Mayer, Sims, 

& Tajika, 1995). On the other hand, studies showed that properly designed example-exercise 

pairs could be more effective than either exercises or examples only (Pashler et al., 2007). 

Previous textbook-problem comparisons indicated that U.S. and Chinese textbooks 

usually exhibited different trends in presentational feature. In addition and subtraction, Mayer et 

al. (1995) indicated that four traditional 7th-grade U.S. textbooks devoted 45% of page space to 

exercises while the Japanese counterparts used only 19% for exercises. For 8th-grade textbooks, 

Li (1999) found that the ratio of exercises to worked-out examples is about 9.1 for Chinese 

textbooks while five U.S. textbooks exhibited a higher ratio, from 19.3 to 39.3. Then, Li, Chen, 
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and An (2009) reported that 6th-grade Chinese textbooks used real-life worked-out examples 

with a clear verbal and pictorial explanation to show fraction division-multiplication 

connections, whereas the U.S. counterparts provided abundant exercises and few worked-out 

examples and one solution method without further explanation. In quadratic equations, Hong and 

Choi (2014) found that one standards-based U.S. secondary school textbook series did not 

present worked-out examples with complete solutions. Later, Ding (2016) found that two widely 

used U.S. elementary school textbooks had a much smaller portion of worked-out examples than 

the Chinese series for additive inverses (U.S.: 9.0% and 5.7%; Chinese: 24.1%). However, for 

multiplicative inverses, one U.S. series contained more worked-out examples than the Chinese 

series (U.S.: 12.0% and 6.8%; Chinese: 9.5%). It suggested that mathematical topics might 

influence presentational feature. In trigonometric functions, Fu and Zhang (2018) reported that 

one U.S. high school textbook series exhibited a lower portion of worked-out examples (13.0%) 

than the Chinese counterparts (42.5%). The above review suggested that more emphasis on 

worked-out examples might exist in Chinese textbooks than in U.S. textbooks. 

The second feature is contextual feature. The first type—purely mathematical—is the 

problem formulated with numbers, symbols, geometric figures, and other purely mathematical 

representations verbally or only with purely mathematical representations (Li, 1999). The second 

type—real-life—is the problem involving a real-life situation (Hong & Choi, 2018). Purely 

mathematical problems tend to stress abstract mathematics, whereas real-life problems tend to 

emphasize the real-world application of mathematics. When solving real-life problems, 

combining multiple representations is usually required and abundant mathematical connections 

are generated in the problem-solving process (discussed later in multiple representation section).  
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Contextual feature is widely used in textbook-problem comparisons. For example, Li 

(2000) found that most problems dealing with addition and subtraction of integers in five 7th-

grade U.S. textbooks and four Chinese textbooks are purely mathematical (87% for U.S. and 

90% for China). Similarly, Zhu and Fan (2006) reported that the majority of problems in both 

Chinese and U.S. lower secondary school textbooks were not situated in real-world situations. 

The recent reform call for real-life problems brought changes to contextual feature of 

textbook problems in the United States and China, as some researchers reported a decrease in the 

percentage of purely mathematical problems. For example, in functions, Son and Hu (2016) 

reported that the Chinese middle school textbooks used more purely mathematical problems 

(51.5%) than one standards-based U.S. textbook series (6.7%). Similarly, in statistics content of 

junior high schools, J. Wang (2017) reported that one standards-based U.S. textbook series had 

more real-life problems than the Chinese counterparts. In linear functions, Hong and Choi (2018) 

also found that one standards-based U.S. secondary school textbook series included more real-

life worked-out examples (62.5%). For problems dealing with rational numbers in 7th-grade 

standards-based U.S. and Chinese textbooks, X. Wang and Zhang (2018) reported the Chinese 

series had more purely mathematical worked-out examples (88.10%) than the U.S. counterparts 

(77.97%). However, most worked-out examples in both series were purely mathematical. A 

similar situation was reported for trigonometric functions that both U.S. and Chinese high school 

textbooks exhibited a high portion of purely mathematical problems, especially for the Chinese 

series (92.1% for China; 85.3% for U.S.) (Fu & Zhang, 2018). The above textbook-problem 

comparisons indicated that many standards-based U.S. textbooks might have more problems set 

in real-life contexts than the Chinese counterparts. Different ratios of real-life to purely 
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mathematical problems might occur in varied topics, which suggested that the fulfillment of 

reform call for real-life problems might be different in various mathematical topics. 

The third feature mathematical feature—single-step and multi-step—is a long-standing 

indicator used by researchers. The single-step problem is defined as a problem that can be solved 

by one direct step or operation; and the rest conditions, multi-step problems (Zhu & Fan, 2006). 

This feature displays the number of steps required to solve the problem, indicating whether 

textbook problems are complex or simple. On one hand, a single-step problem is solved by one 

direct operation, which may include one or no connection. Multi-step problems may embed more 

than one connection. On the other hand, multi-step problems provide more space to increase the 

variability of worked-out examples (discussed later in worked-out example effects) and decrease 

over-repetition of simple exercises, which may yield a rich network of connections. 

Striking differences in mathematical feature between U.S. and Chinese textbook 

problems were reported. For example, Stigler et al. (1986) reported that only 7% of the problems 

in addition and subtraction across four U.S. elementary school textbooks were multi-step. Then, 

Zhu and Fan (2006) found that one U.S. standards-based lower secondary school textbook series 

had more single-step problems than the Chinese counterparts. Another study conducted by Son 

and Senk (2010) also indicated that the majority of problems from one standards-based U.S. 

elementary school textbook are single-step. Similarly, in multiplication of fractions, Kar, Güler, 

Şen, and Özdemir (2018) found that the majority of problems from two widely used U.S. 

elementary school textbooks were single-step (53.7% and 80.1%, respectively).  

The fourth feature is visual feature, which indicates the usage of visual information in 

textbook problems. The visual problem is defined as the problem includes visual information like 

figures, pictures, graphs, charts, tables, diagrams, and so on; and non-visual: the rest conditions 
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(Zhu & Fan, 2006). Visual information, compared to verbal information, usually shows its 

efficiency, which may influence the presence or absence of connections (discussed later in 

efficiency of external representations section). 

Researchers reported some inconsistent results of visual feature of problems from U.S. 

and Chinese elementary and secondary school mathematics textbooks. For example, Zhu (2003) 

reported that one standards-based U.S. lower secondary school textbook series contained 

problems with more visual information in pictures, figures, or tables, than the Chinese 

counterparts. Similarly, in quadratic equations, Hong and Choi (2014) found that problems from 

a standards-based U.S. secondary school textbook series required multiple representations 

involving visual information (e.g., graphs, tables, etc.). In rational numbers, X. Wang and Zhang 

(2018) reported the Chinese 7th-grade textbooks had more worked-out examples with only 

verbal information than the U.S. counterparts. In linear functions, Hong and Choi (2018) found 

that one standards-based U.S. secondary school textbook adopted visual information (graphs or 

tables) in 23.0% of worked-out examples and 34.9% of exercises. However, for problem-posing 

tasks, Cai and Jiang (2017) reported that less than 25% of the problem-posing tasks in two 

standards-based U.S. elementary school textbooks included pictures, figures, and tables (7.70% 

and 23.75%, respectively), which was lower than that for the 2010s Chinese series (46.21%).  

Last but not least, cognitive demands were widely used by researchers with a focus on 

connections. The Task Analysis Guide developed by Stein (2000) is widely used, which consists 

of two levels: (a) high-level cognitive demand (doing mathematics and procedures with 

connections), and (b) low-level cognitive demand (memorization and procedures without 

connections). Moreover, Schmidt, Raizen, Britton, Bianchi, and Wolfe (1997) identified five 

types of cognitive demands: knowing, using routine procedures, investigating and problem 
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solving, mathematical reasoning, and communicating. Generally, problems with higher-level 

cognitive demands tend to include mathematical connections. Analysis of cognitive demands 

explicitly suggested the presence or absence of connections but lacked concepts, representations, 

and the directionality of connections. Further review of this feature is not included here. 

In sum, the above comparisons of problem features indicated that standards-based U.S. 

elementary and middle school mathematics textbooks might have more single-step, real-life, 

visual exercises with few worked-out examples, whereas the Chinese counterparts were likely to 

embed more multi-step, purely mathematical, non-visual worked-out examples with few 

exercises. Different mathematical topics might contribute to problem features. It was noticeable 

that previous textbook-problem comparisons in terms of mathematical connections and problem 

features were mainly concentrated on the elementary or middle school level. Few analyses on the 

high school level were conducted. Associations between mathematical connections and 

textbook-problem features were also underexplored. 

Focus: High school mathematics textbook-problem comparisons. J. Wang and Lu 

(2018) indicated that previous textbook problem comparisons were more on the elementary 

school level than on the high school level. Even though few studies have focused on the high 

school level, it is still of great importance for the teaching and learning of mathematics. 

First of all, there are potentially different trends between high school and elementary or 

middle school mathematics textbooks. Hong and Choi (2014) found that some textbook features 

reflected in elementary school mathematics textbooks were not reflected in secondary school 

mathematics textbooks. Similarly, problem features reflected in the elementary or middle school 

level may not be reflected in the high school level. Second, problems at the high school level are 

more complex, diversified, and challenging, compared to problems at the lower grade levels. 
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This indicates that connections addressed in problems from high school mathematics textbooks 

may be more diverse, intricate, and substantial. Also, mathematical topics may influence 

problem features and conditions of connections. Problems from high school mathematics 

textbooks may provide comprehensive data to analyze the directionality of mathematical 

connections addressed in textbooks and, in turn, lead to new insights into cross-cultural 

differences in U.S. and Chinese mathematics textbooks. Last but not least, comparisons of high 

school textbook problems may produce meaningful insights for textbook authors and publishers 

to make changes in the textbooks, and thus help students make a smooth transition from high 

school mathematics to college-level mathematics since high school mathematics textbooks tend 

to have a strong influence on this issue (Raman, 2004). The following section reviews the status 

quo of high school mathematics textbooks and related critical curriculum reforms and standards 

in the United States and China. 

High school mathematics textbooks in the United States. Historically, the United States 

has exhibited much variation in textbooks and has no national textbooks. Even available 

textbooks in the United States differ significantly, the most consistent differences are found 

between conventional-based and standards-based textbooks due to the Curriculum and 

Evaluation Standards released by NCTM (1989). Results from the Second International 

Mathematics Study (SIMS) and the Fourth National Assessment of Educational Progress 

(NAEP), academic studies in mathematics education (e.g., Fey & Good, 1985; Usiskin, 1985), 

and the burgeoning field of computer science in the 1980s all called for a revolution in the U.S. 

high school mathematics curriculum, which led to the release of the NCTM Standards in 1989. 

These Standards articulated five goals for students: “learning to value mathematics; becoming 

confident in one’s own ability; becoming a mathematical problem solver; learning to 
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communicate mathematically; learning to reason mathematically” (p. 5). These goals called for 

attention to real-world problems, calculator and computer usage, and bidirectional within-

concept connections in functions.  

To develop standards-based curriculum materials aligned with the NCTM (1989) 

Standards, the National Science Foundation (NSF) initiated systemic reform and provided 

extensive support in the late 1980s and early 1990s (Senk & Thompson, 2003). Standards-based 

curriculum materials challenge the status quo by embodying a different approach: focusing on 

the students’ active creation of important ideas and concepts. They usually begin with an 

immersive group-work task involving active exploration of new concepts in real-world 

situations; they also have a heavy balance towards the development of concepts and problem 

solving set in realistic contexts, and use a modular approach (Stein et al., 2007). On the contrary, 

conventional-based textbooks present content directly and expect teachers to explicitly teach 

students skills, concepts, applications, problem solving, and procedures. They tend to rely on 

direct applications, have a heavy balance towards procedures, and organize units and chapters 

according to topics.  

Later in 2010, the CCSS-M released eight Standards for Mathematical Practice and 

Standards for Mathematical Content for High School, which specified the mathematics that all 

students should study to be college and career ready (CCSSI, 2010). In particular, it stressed 

connections from Algebra to Functions and Modeling; from Functions to Expressions, 

Equations, Modeling, and Coordinates; from Geometry to Equations; from Statistics and 

Probability to Functions and Modeling, as well as related reverse connections. These 

bidirectional connections may appear in textbooks developed aligned to the CCSS-M. 
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High school mathematics textbooks in China. Compared with the diversity of textbooks 

in the United States, until 2000, China owned a centralized education system and adopted a 

national unified mathematics textbook (Li, Zhang, & Ma, 2009). After the founding of the 

People’s Republic of China in 1949, the Ministry of Education (MOE) published eight waves of 

curriculum standards, each following new mathematics textbooks. To avoid the drilling of “Two 

Basics” which may prohibit creativity and critical thinking, the eighth curricular reform to push 

forward the implementation of Quality-Oriented Education started in 1999 (Cui & Zhu, 2014), 

leading to dramatic changes in textbooks. The MOE began to draft the new curriculum and then 

formally published the High School Mathematics Curriculum Standards (Trial version) in 2003, 

which called for three transformations: (a) from centralization to decentralization; (b) from 

scientific discipline-centered to society construction-centered curriculum; and (c) from 

transmission-centered to inquiry-centered teaching (Zhong, 2006). The curriculum standard calls 

for developing students’ abilities to pose, analyze, and solve problems from both mathematics 

and real life. Correspondingly, textbook development is open to all publishers to decentralize the 

curriculum—similar to the U.S. situation (Hirsch, 2007). Some complicated, insignificant, and 

outdated content was deleted to provide flexibility for students’ self-directed learning and real-

world contexts. Textbooks tend to be fundamental, diversified, and optional, thereby endorsing 

conceptual understanding, basic skills, and problem solving (Li, Zhang, & Ma, 2009). 

Since 2000, standards-based textbooks have been created aligning with the MOE 2003 

Standards. By 2012, they were implemented across China, marking the completion of the 

experimental stage (L. Wang, Liu, Du, & Liu, 2017). Six series of high school mathematics 

textbooks have been officially approved (Li, Zhang, & Ma, 2009). Standards-based textbooks 

include more open-ended and real-life problems and fewer complex computations and reasoning 



 

40 

than old ones (Bao, 2004). This allows for more flexibility and adoption of a new three-course 

structure: (a) compulsory, taken by all students who want to graduate; (b) elective, only for 

students who take the China’s National College Entrance Examination; and (c) optional (J. Wang 

& Lu, 2018). Current textbooks reflect content changes in the inclusion of Calculus content and a 

special focus on Statistics and Probability. Exercises are divided into Group A and Group B in 

terms of difficulty, with Group A being fundamental and Group B applying “Two Basics,” to 

improve mathematical abilities and meet the needs of high-achievement students.  

In sum, mathematics textbooks in two countries have gone through critical curriculum 

reforms. Similar standards-based textbooks appeared, both with an emphasis on mathematical 

connections and real-life problem solving. Therefore, comparing connections in high school 

textbook problems in the United States and China may reflect the fulfillment of the call for 

mathematical connections and problem-solving requirements articulated in curriculum reforms, 

explore exemplary ways to embed bidirectional connections in textbook problems, and provide 

insights into curriculum development. 

The following section reviews the second perspective: the cognitive aspect, focusing on 

its potential influence on the presence and absence of between-concept connections and within-

concept connections, as well as the directionality of connections. 

Mathematical Connections in Cognitive Psychology 

External Representations 

Definition. Representations (i.e., representational forms/formats/modes) in different 

domains (e.g., Formal Mathematics, Cognition, and Epistemology) are defined differently. 

Hiebert and Carpenter (1992) used external and internal representation to show the structure of 

knowledge in mathematics. External representations take the form of spoken language, written 
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symbols, pictures, or physical objects, which restricts the external embodiments of students’ 

internal conceptualization (Lesh et al., 1987); internal representations are unobservable mental 

representations that show how ideas are represented inside the head. As connections between 

internal representations are assumed to be influenced and stimulated by building connections 

between corresponding external representations (Hiebert & Carpenter, 1992), this section focuses 

on external representations and their potential influence on mathematical connections.  

Researchers have suggested that external representations play a critical role in learning 

and understanding mathematics, especially in constructing mathematical connections (Ainsworth 

& Th Loizou, 2003). Two types of connections between external representations can be 

constructed: (a) between different representations of the same mathematical idea; and  

(b) between related ideas within the same representation. The first type supports within-concept 

connections, which is often based on relationships of similarity and difference. The second type 

supports between-concept connections, which are generally promoted by noticing patterns or 

regularities in the system. These two types of external connections play a role in learning 

mathematics with understanding (Hiebert & Carpenter, 1992), which backs the proposed 

framework of within-concept and between-concept connections. 

Many researchers have discussed different types of external representations. Lesh et al. 

(1987) identified five types and bidirectional connections among them (see Figure 8). They are: 

(a) real scripts (around real-world events); (b) manipulative models (like arithmetic blocks, 

fraction bars, etc.); (c) static pictures; (d) spoken language; and (e) written symbols. Other 

researchers have also indicated different categories of external representations: concretes or 

manipulatives, pictorials or diagrams, tables, graphs, symbols, numerals, written descriptions,  
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and verbal descriptions (Goldin & Shteingold, 2001; Marshall et al., 2010). In all, mathematical 

ideas can be presented in a variety of representations. These representations are important in 

their own right, and connections among them are important as well (Lesh et al., 1987). 

 

Figure 8. External representations (Lesh et al., 1987, p. 34) 

Efficiency of external representations. Informational efficiency and computational 

efficiency are used to evaluate the value of different representations (Larkin & Simon, 1987). The 

first term refers to whether all of the information in one representation is inferable from the other 

and vice versa, whereas the latter term refers to the ease and rapidity with which inferences can 

be drawn from a representation. If two representations are informationally equivalent, one 

representation can be more effective and superior than another due to its high computational 

efficiency. In the problem of a thief guessing a four-digit PIN-code (5526), different but 

informationally equivalent ways of representing the guessing process—(a) diagram, (b) text, and 

(c) arithmetic—are shown in Figure 9 (Kolloffel, Eysink, de Jong, & Wilhelm, 2009). 
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Figure 9. Three representations for the PIN-code problem (Kolloffel et al., 2009, p. 505) 

In the above example, visual representation (i.e., diagram) shows its efficiency because 

inferences can be drawn more quickly and easily, compared with verbal representation (i.e., 

text). In addition, computational efficiency also explains Knuth’s (2000a) finding that both 

students and teachers showed their over-reliance on algebraic representations. 

Furthermore, abundant studies compared learning effects of two representations: verbal 

representations (i.e., text) and visual representations (i.e., graph, diagram), and generally 

indicated that visual representation yields superior performance compared with verbal 

representation (Marcus, Cooper, & Sweller, 1996) due to the following reasons.  

First, memory capacity differs in verbal and visual information. Good memory is 

essential for the learning and understanding of mathematics and the construction of mathematical 

connections. Regarding memory for verbal information, people generally remember just its 

meaning instead of its exact wording. In terms of memory for visual information, people attend 

to and remember best those aspects that they consider meaningful (Anderson, 2005). Prior 

studies have suggested that memory for visual information often seems much better than 

memory for verbal information. In an experiment of a picture-memory task and a sentence/word-

memory task, Shepard (1967) demonstrated that memory for visual information was virtually 
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perfect compared with memory for verbal material. Many subsequent studies have also shown 

the high capacity for remembering pictures, i.e., visual information (Anderson, 2005). However, 

people do not always show good memory for visual information since memory depends critically 

on an individual’s ability to interpret that material meaningfully. Therefore, making sense of 

visual representations may be helpful for promoting connection-making moves. 

Second, visual representation is holistic in nature, whereas verbal encoding cannot be 

grasped “at one glance” (Sfard, 1991). Various aspects of a mathematical construct in the visual 

representation can be extracted by random simultaneous access. In contrast, this process should 

be processed sequentially in the verbal representation, which brings a burden to working memory 

and more cognitive loads for learners (discussed in Cognitive Load Theory later).  

Moreover, visualization makes abstract ideas more tangible and encourages learners to 

treat them as if they are real entities. This promotes students’ learning of abstract mathematical 

ideas, representations, and their connections. What is more, the effectiveness of the visual 

representation depends on the visual-indicator, the complexity of instructional materials, 

consistency and coherence of format use, and other factors (Jeung, Chandler, & Sweller, 1997; 

Murata, 2008). For example, Xing, Cai, and Shan (2014) reported that elementary school 

students in China showed better problem-solving performance in problems with informational 

pictures than that with decorative pictures and the verbal representation. More subsequent studies 

are needed to check the effective use of visual information in mathematics textbooks and its 

potential influence on learning opportunities for mathematical connections. 

Multiple representation. The term multiple representation describes the result of 

combining two or more external representations together (Van Someren, Reimann, & Boshuizen, 

1998), which is assumed to have additional benefits in learning and understanding mathematics 
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and constructing mathematical connections since different representations can complement each 

other, and one representation may constrain the interpretation of the other (Ainsworth, 2006). 

Several studies were conducted to compare the effects of single and multiple representations. For 

example, Tindall-Ford, Chandler, and Sweller (1997) reported that the dual-mode of auditory 

text and visual diagrams could result in superior learning to a single representation (e.g., visual-

only). Then, Kolloffel et al. (2009) compared the effects of five conditions—Diagram, 

Arithmetic, Text, Text+Arithmetic, and Diagram+Arithmetic—in combinatorics problems, and 

found that Text+Arithmetic representation was the most beneficial for learning. However, 

multiple representations may contain redundant information and increase the cognitive load on a 

learner’s cognitive system (illustrated later in Cognitive Load Theory).  

Solving real-life problems, which are strongly emphasized in mathematics, mostly 

require combining multiple representations. For example, in the two pizza problems: 

Show a 6th grader one-fourth of a real pizza, and then ask, “If I eat this much pizza, and 
then one-third of another pizza, how much will I have eaten altogether?” 

Show a 6th grader one-third of a real pizza, and then ask, “If I already ate one-fourth of a 
pizza, and now eat this much, how much will I have eaten altogether?” (Lesh et al., 1987, 
p. 37) 

These two problems include a real object (pizza) and a spoken word (to represent past or future 

situations), which are “pizza-word” problems. Combining two modes into a homogeneous mode 

is one difficulty students have in solving real-life problems. Moreover, solution paths also weave 

back and forth among different representations, which have abundant bidirectional connections. 

In sum, external representations may influence connections, affect the problem-solving 

process, and power the interaction between mathematical connections and problem solving. 

Appropriate usage of visual information and real-life contexts may promote connections. 
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Cognitive Load Theory (CLT) 

Definition. CLT is concerned with “the development of instructional methods that 

efficiently use people’s limited cognitive processing capacity to stimulate their ability to apply 

acquired knowledge and skills to new situations” (Paas, Tuovinen, Tabbers, & Van Gerven, 

2003, p. 63) due to limited working memory capacity. CLT adopts interactions between 

information structures and knowledge of human cognition to determine instructional methods to 

guarantee that available cognitive resources can be fully devoted to learning. The term cognitive 

load is defined as a construct demonstrating the load that performing a particular task imposes on 

the learner’s cognitive system (Paas & Van Merriënboer, 1994). Three types of cognitive load 

are distinguished: intrinsic, extraneous, and germane.  

Intrinsic load arises from element interactivity within a task, which represents the nature 

of instructional materials and cannot be directly influenced by instructional designers (Paas  

et al., 2003). The intrinsic load will be high if interactions between elements must be learned 

simultaneously. In contrast, the intrinsic load will be low if elements can be learned successively 

and do not interact (Sweller, 1994). For example,  

For a percentage change problem such as, “A discount of 10% was given for a digital 
camera with a marked price of $350. Find the price paid after the discount.”, the learner 
needs to identify relevant information in different units (10%, $350), specify key words 
such as ‘price paid,’ and construct a relation between values and variable (price paid) in 
an equation: price paid = $350–$350*10 %. Although there are only three elements  
(price paid, $350, 10%), the interaction between these elements must be considered 
simultaneously to allow understanding to occur. (Ngu, Yeung, & Tobias, 2014,  
pp. 687-688) 

This example exhibits a high intrinsic cognitive load for most novice students learning 

percentage change problems. However, an expert can process many elements as a single unit 

(e.g., $350*10%), which reduces the intrinsic load associated with the problem. 
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Extraneous load is the extra load resulting from inappropriate instructional design  

(Paas et al., 2003). Different organizations and presentations of instructional material differ in 

extraneous loads. For example, the instruction combining diagrams and texts may reduce 

extraneous loads compared with informationally equivalent materials with separated sources 

(Sweller, Chandler, Tierney, & Cooper, 1990). Also, hardly legible text, irrelevant side notes in a 

textbook, inapplicable information in a problem, and unnecessary sound effects in a presentation 

may generate extraneous loads (McCarron, 2011). Furthermore, prior studies have suggested that 

only in the case of high intrinsic loads, extraneous loads seemed to be critical and designing 

instructional material to reduce extraneous loads was shown to be highly effective (Sweller, Van 

Merrienboer, & Paas, 1998). When the intrinsic load was low, the instructional design was of 

little consequence (Sweller & Chandler, 1994). 

Germane load is relevant to processes contributing to schema acquisition controlled by 

instructional designers, such as organizing the material and relating it to prior knowledge (Paas 

et al., 2003). The process of asking students to solve a variety of problems generates germane 

load. However, the diversified worked-out examples can generate “healthy” germane load as 

they facilitate the acquisition of identical structure essence across different contexts (Paas & Van 

Merriënboer, 1994). Three types of loads are additive. Making sure that the sum of loads related 

to the instructional design is within working memory limits is essential (Paas et al., 2003).  

Worked-out example effect and example-problem pairs. Earlier CLT research focused 

on using appropriate worked-out examples to reduce the extraneous load. A large number of 

experiments and a small number of classroom studies have demonstrated the learning efficiency 

and learning outcomes of example-problem pairs, in which students study worked-out examples  
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first and then solve similar or isomorphic problems, instead of simply solving problems on their 

own (Pashler et al., 2007). For example, Sweller and Cooper (1985) conducted an early test of 

worked-out example effect by comparing differences between the conventional group (only 

exercises) and the worked-out example group (worked-out examples and exercises that had been 

carefully studied) in Algebra. They found that the worked-out example group spent less time 

studying the problem and completing the test with significantly fewer errors, which indicated 

that worked-out examples focused the learners’ attention on problem states and useful solution 

paths, thereby reducing the extraneous cognitive load caused by weak-method problem solving 

and documenting the advantage of example-problem pairs over problems. A classroom study 

conducted by Zhu and Simon (1987) showed the feasibility and effectiveness of a 3-year 

curriculum of teaching factorization from worked-out examples than from conventional 

instruction in a middle school in China. Worked-out examples play a critical role in scaffolding 

students’ understanding, set a model that students can refer to and emulate, promote initial skill 

acquisition and later transfer, and facilitate acquisitions of problem schema (Chi & VanLehn, 

2012). Trafton and Reiser (1993) tested the order of example-problem pairs: Interleaved 

Example (a source problem, e.g.,1a, 2a, as an example immediately followed by solving the 

related target problem, e.g., 1b, 2b), Interleaved Solve, Blocked Example (all source problems as 

worked-out examples followed by solving all target problems), and Blocked Solve (see Figure 

10) and found that students learned significantly more from interleaved examples and problems. 
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Figure 10. Example-problem pairs in four conditions (Trafton & Reiser, 1993, p. 8) 

In another lab experiment, Paas and Van Merriënboer (1994) showed that students who 

studied worked-out examples gained most from high-variability examples, invested less time and 

mental effort, and attained better transfer performance than students who solved problems first 

and then studied worked-out examples. It demonstrated not only the advantage of example-to-

problem sequence over problem-to-example sequence but also the benefits of high-variability in 

worked-out examples. As discussed before, high variability generates germane load. However, 

increasing variability in worked-out examples can generate “healthy” germane load as they 

facilitate the acquisition of identical structure essence across different contexts. Ngu et al. (2014) 

used multiple example-problem pairs similar to the high variability of worked-out examples that 

introduce “healthy” germane load to facilitate problem-solving and the mastery of key concepts. 

Compared to single-step simple problems, multi-step problems are more likely to increase the 

variability of both worked-out examples and exercises. 

Moreover, researchers found that worked-out examples became redundant and exercises 

proved superior when learners gained more expertise in the problem-solving domain (Kalyuga, 

Chandler, Tuovinen, & Sweller, 2001), which suggested that the relative effectiveness of either 

worked-out examples or exercises depends heavily on learners’ expertise in problem solving. 
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Therefore, the ratio of worked-out examples to exercises should be adapted to the development 

of learners’ expertise. 

In practice, most mathematics textbooks contain worked-out examples followed by 

exercise problems. Researchers indicated different usage of example-problem pairs in textbooks 

from different countries, which was discussed in presentational feature before. The practice 

guide published by the Institute of Education Sciences (IES) indicated that the U.S. curricular 

materials did not offer teachers with many interleaved example-problem pairs (Pashler et al., 

2007). What is more, explanation in worked-out examples is important since obscure examples 

without an explanation paired with exercises may lead students to incorrect conclusions or 

problem-solving paths. For instance, 

A classic example from mathematics involves showing children an example like 
3*2+5=6+5=11 and then asking them to solve 4+6*2=? Many students will give 20 as  
the answer, mistakenly adding 4 and 6 and then multiplying that by 2. (Anderson, 2005, 
p. 188) 

In this case, an explanation, like the fact of multiplication first instead of performing the first 

operation in the expression, is needed for students to solve the followed problem. Worked-out 

examples lacking necessary explanation may fail to reduce the extraneous load and hinder 

acquisitions of problem schema and mathematical connections.  

Connectivism and Social Network Analysis (SNA) 

New technology, especially the emergence of the internet, has reorganized how we  

live and communicate over the last 20 years, opening up opportunities for new forms of 

communication and knowledge formation (Goldie, 2016). Looking into principles of 

Connectivism (a theory of learning for a digital age), three of the eight principles of 

connectivism address mathematical connections directly as follows: 
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Principles of Connectivism:  
• Learning is a process of connecting specialized nodes or information sources.  
• Nurturing and maintaining connections is needed to facilitate continual learning. 
• Ability to see connections between fields, ideas, and concepts is a core skill. (Siemens, 

2004, p. 4) 

According to these principles, mathematical connections can be characterized as edges 

between certain vertices (can be concepts in mathematics), and the network of mathematical 

connections can be an interconnected world with weak or strong edges. The likelihood that a 

vertex will be connected depends on how well it is currently connected (Siemens, 2004). 

Alternations within the network, such as gaining or losing one connection, have ripple effects on 

the whole. Connectivism supports characterizing directional connections by weak or strong 

directed edges between vertices in a digraph. Moreover, it indicates that SNA can be used to 

visualize and analyze characteristics of concepts, representations, connections, and the network 

of mathematical connections. Several indices in SNA, which were used to evaluate vertices 

(concepts and representations), edges (mathematics connections), and the whole network (the 

integrated network of mathematical connections), are introduced as follows. 

From the perspective of the whole network, size and density are largely used. The size of 

a network is indexed by the number of vertices in a network, and the density of a binary network 

is defined as the sum of the edges divided by the number of possible edges (Hanneman & Riddle, 

2011). The size is important because of the limited resources and capacities that each vertex has 

for building and maintaining edges with other vertices. Consider a network containing k vertices; 

there are k*(k-1) possible unique directional edges in a binary network. The density, the 

proportion of all possible connections that are actually present, offers insights into the speed at 

which information diffuses among vertices (Hanneman & Riddle, 2011). For multigraphs or 

graphs with self-loops, the density can be higher than one. Under this circumstance, another two 
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indices—unique edges and total edges—are used to quantize the whole network of connections. 

The first index is the number of connections where multiple connections between two vertices A 

and B are counted only once; the second index is the number of connections where multiple 

connections between two vertices A and B are all counted (Smith et al., 2010). The edge with the 

larger weight (more multiple connections) seems to be stronger and likely to be more durable 

than the reverse edge between the same two vertices with a smaller weight. It shows the relative 

emphasis between the connection from vertex A to vertex B and the connection from vertex B to 

vertex A. Jin and Wong (2015) analyzed the number of incoming and outgoing connections 

between pairs of concepts, which implied the relative strength of typical and reverse connections. 

Researchers have assessed the growth of expertise by more vertices (size) and connections 

among them (unique edges and total edges), which was consistent with the previous finding that 

the structure of an expert’s knowledge is flexible and robust (Knuth, 2000b). 

Furthermore, the reciprocated connection is introduced by NodeXL to explore the 

frequent usage of bidirectional connections. If there is an edge from vertex A to vertex B and 

another edge from vertex B to vertex A, then the connections between A and B are reciprocated, 

i.e., bidirectional. The reciprocated edge ratio (the percentage of edges that have a reciprocal 

relationship)—indicates the degree of the integration of bidirectional connections. Besides, self-

loops (an edge that starts and ends in the same vertex) also exhibit the extent of the usage of 

bidirectional connections. 

Focusing on vertices, connectivity and centrality are widely used in quantifying the 

influence of the directionality issue. Connectivity is defined as the number of unique connections 

to the given particular vertex (Strom et al., 2001, p. 752). Two indices—in-connections and out-

connections—are generally employed to quantify the connectivity of the graph. In-connections 
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refers to the number of unique connections connecting to a particular vertex; out-connections 

refers to the number of unique connections emanating from a specific vertex. Strom et al. (2001) 

used in-connections and out-connections to present a schema-based view of the most central 

features of mathematical argumentation. Another widely used approach to perceiving the 

structural resources of a particular vertex’s advantage and disadvantage relative to vertices in 

their neighbors is centrality (Hanneman & Riddle, 2011). This quantifies the importance or 

influence or degree of participation of a specific vertex in a network. Different indices are used 

to portray centrality, such as in-degree, out-degree, closeness, and betweenness centrality.  

In-degree centrality, which is interpreted as a form of popularity, measures the number of 

edges directed to a vertex, i.e., summing the number of connections leading to a particular 

vertex; out-degree centrality quantifies the number of edges but self-reported, i.e., summing the 

number of connections leading out of a particular vertex (Costenbader & Valente, 2003). In an 

exploration of 8th-grade students’ understanding of algebraic concepts, Jin and Wong (2015) 

employed in-degree and out-degree to assess connections associated with individual concepts. 

They found that the concept equation had the highest out-degree and the concept unknown had 

the highest in-degree centrality. As the influence of connections may gradually dissipate and 

cease to have a noticeable effect on vertices with distance over three, the section leaves other 

centrality indices involving path issues, e.g., closeness centrality, betweenness centrality. Similar 

to the reciprocated edges ratio, the reciprocated vertex pair ratio (the percentage of vertices that 

have a reciprocal relationship) is also employed as a way to compare the integration of 

bidirectional connections. 

Adjacency matrices were also used to explore the network of mathematical connections. 

For example, Selinski et al. (2014) identified three types of matrices to capture the diversity of 
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the overall network of connections that students constructed: (a) a dense adjacency matrix (many 

between-concept and within-concept connections); (b) a sparse adjacency matrix (mainly 

between-concept and limited within-concept connections); and (c) a hub adjacency matrix 

(typically within-concept connections). They also suggested that possible chains of connections 

can be examined by the matrix A to the 3rd power, A3.  

In sum, connectivism supports using networks of vertices and directed edges to represent 

directional within-concept and between-concept connections. Some approaches from Social 

Network Analysis (SNA) may be used to evaluate mathematical connections. 

Summary 

Mathematical connections receive great attention in mathematics education and cognitive 

psychology. Based on the nature of mathematics, mathematical connections are conceived as the 

“common theme,” concept-to-concept links, and representational links. The “common theme” 

view leaves connections at a super general level. From the combined perspective of concept-to-

concept links and representational links, a framework of between-concept and within-concept 

connections is illustrated. In terms of characterizing mathematical connections, directionality is 

receiving growing attention. Two types are identified: unidirectional and bidirectional (a pair of 

typical and reverse connections). The importance and benefits of bidirectional connections are 

widely endorsed. However, students and teachers usually build unidirectional connections. Two 

aspects—curricular emphasis and cognitive obstacles—may prohibit bidirectional connections. 

From the curriculum aspect, mathematical textbooks are likely to be a productive artefact 

to examine mathematical connections and their directionality. Due to the benefits of problem 

analysis and the recent growing attention to problem-solving issues and international 

comparisons, abundant studies have focused on textbook-problem comparisons. Prior 
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comparisons of the U.S. and Chinese textbook problems have suggested many differences in  

(a) mathematical connections, and (b) textbook-problem features. This may influence learning 

opportunities for connections. But few comparisons have been conducted at the high school 

level. Furthermore, both countries have released new standards-based high school mathematics 

textbooks, with an emphasis on both mathematical connections and real-life contexts, that have 

not yet been analyzed in terms of learning opportunities for mathematical connections. 

From the cognitive aspect, external representations and Cognitive Load Theory suggest 

that well-designed interleaved examples-problem pairs with different features (purely 

mathematical or real-life contexts, visual or verbal, multi-step or single-step) may promote 

connections. Connectivism supports mathematical connections as directed edges between two 

vertices (concepts and representations), which opens up the possibility of using Social Network 

Analysis to analyze and assess mathematical connections.  

Therefore, comparing mathematical connections in high school mathematics textbook 

problems may yield insights into sustaining bidirectional connections, reflecting beyond the 

context of a specific system, providing insights into curriculum reforms and development, and 

eventually improving the teaching and learning of mathematics in the United States and China.  

  



 

56 

Chapter III 

METHODOLOGY 

 

Overview 

This chapter describes the methods and framework used to collect, code, and analyze 

mathematical connections in the textbook problems. It begins with the selection and acquisition 

of textbook problems, then moves to the data coding schema and the final coding, and finally 

presents analysis tools used to answer research questions.  

Data Collection 

Sample High School Mathematics Textbooks  

Selection criteria. To keep comparisons neutral, the first criterion in selecting textbooks 

was a similar textbook-problem organization, e.g., each chapter has a chapter review section and 

several sections with worked-out examples and exercises. The second criterion was popularity. 

Examining mathematics textbooks that students are most commonly exposed to and teachers are 

most frequently referred to contributes to a relatively meaningful image of connections. The third 

criterion was to highlight mathematical connections. The result can be different in selecting 

different textbooks. This study was not present to be general, i.e., examining the status quo of 

connections in all U.S. and Chinese textbooks. Instead, this study intentionally chose textbooks 

stressing connections to explore exemplary practices to promote bidirectional connections. 

High school mathematics textbooks in China. In the 1950s, the Ministry of Education 

(MOE) founded People’s Education Press (PEP) to study, compile, and publish national 

textbooks and curriculum standards. Until 1988, PEP served as the only official developer of 

textbooks and curriculum standards in China (Li, 2004). Then, after 2000, the Chinese Education 
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Administration approved more publishing presses to publish textbooks and furthered their efforts 

in loosening central control (Li, Zhang, & Ma, 2009). Overall, an estimate of 90 billion 

elementary and secondary school students are using the PEP series (calculated from the 

estimated market share and the total number of students from the MOE [2018] website). Five 

textbook series (around 13 versions) are currently in use, which organize problems under 

‘Examples->In-class Exercise-> Examples->In-class Exercise->…->After-class Exercises’ with 

a chapter review and a self-test. Among these versions, the most widely used and circulated 

version is still from PEP, General High School Curriculum Standard Experimental Textbook 

Mathematics, A Ver. (Cao, 2018), named PEP-A. It emphasizes real-life contexts, mathematical 

reasoning, underlying mathematical thinking and application, and connections between different 

content knowledge, which may be productive materials for probing the directionality issue. 

The PEP-A series has 20 high school mathematics textbooks. Five of them are 

compulsory textbooks designed for mandatory mathematical content. Compulsory 1 and 2 are for 

10th grade, Compulsory 3 and 4 are for 11th grade, and Compulsory 5 is for 12th grade. Another 

five are elective textbooks prepared for high school students who take the China National 

College Entrance Examination. Elective 1-1 and 1-2 are for 10th grade; Elective 2-1 and 2-2 are 

for 11th grade; and Elective 2-3 are for 12th grade. They are required by most of the provinces in 

China and are treated essentially as compulsory textbooks. To be specific, Elective 1-1 and 

Elective 1-2 are generally for students majoring in liberal arts, and the rest are for students 

majoring in science-related areas. So two pairs—(1) Elective 1-1 and 2-1, and (2) Elective 1-2 

and 2-2—share similar topics with increased mathematical demands. The study selected Elective 

2-1 and 2-2 for its broader scope of content. The remaining 10 are optional textbooks developed 

mainly for some students’ interest in particular mathematical topics (e.g., Number Theory, 
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History of Mathematics, Spherical Geometry). In terms of the compulsory essence, this study 

covered only Compulsory and Elective textbooks. 

High school mathematics textbooks in the United States. Given the diversity and 

consistent differences between conventional-based and standards-based curriculum in the United 

States, this study selected standards-based textbooks for their emphasis on connections and 

problem solving. There are only seven standards-based high school mathematics textbooks on 

the list of the most well-known U.S. curriculum materials (Stein et al., 2007). Among these, the 

University of Chicago School Mathematics Project Grade 6-12 (named UCSMP) was one of the 

largest and most progressive projects on the curriculum in the United States (Fan & Kaeley, 

2000). The UCSMP materials are CCSS-M aligned, which are used by an estimated 4.5 million 

elementary and secondary school students in the United States (UCSMP, n.d.). They stressed 

representations, a real-world orientation, and mathematical connections (Usiskin, 2018), which 

may offer rich opportunities to probe the directionality. Also, it employs a similar textbook-

problem organization of ‘Examples->Exercises,’ which has been used in numerous cross-cultural 

mathematics textbook comparisons (e.g., Cai & Jiang, 2017; Ding, 2016). These studies 

enhanced the feasibility and value of using UCSMP as a window to reveal the cross-cultural 

difference in the directionality of connections. The current UCSMP series (3rd Edition) covers 

high school-level content mainly by Advanced Algebra (Grade 9-12), Functions, Statistics, and 

Trigonometry (Grade 10-12), and Pre-calculus and Discrete Mathematics (Grade 11-12). 

Supplementary materials: Teachers’ edition. Textbooks usually have two editions: 

students’ edition and teachers’ edition (i.e., teachers’ guide, teachers’ guidebook, teachers’ 

manual) (McNeil, 1991). Focusing on textbook problems, both UCSMP and PEP-A teachers’ 

editions include (i) additional worked-out examples to accommodate students’ needs, and (ii) 
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detailed step-by-step solutions to exercises for which no solutions are provided in the students’ 

edition (Li, 2004). These books offer valuable auxiliary data for identifying mathematical 

connections in textbook problems. Moreover, studies have revealed the benefits of teachers’ 

editions to resolve possible discrepancies in coding data, e.g., in the bidirectional use of the 

distributive property (Ding & Li, 2010). Therefore, this study adopted the teachers’ edition as 

supplementary materials. In summary, Table 1 shows the background of sample textbooks. 

Table 1. Textbooks Included in the Study 
 

Country 
Textbook Publisher  

& Year Author Simplified 
Name Grade Title Supplementary 

China 10 Compulsory 1; 
Compulsory 2 

Teaching 
Guidebook 

People’s 
Education 
Press, 
2007 

Liu, Shaoxue; 
Qian, Peiling; 
Zhang, 
Jianyue; 
et al.  

PEP-A-C1; 
PEP-A-C2 

11 Compulsory 3; 
Compulsory 4; 
Elective 2-1; 
Elective 2-2 

PEP-A-C3; 
PEP-A-C4; 
PEP-A-E2.1; 
PEP-A-E2.2 

12 Compulsory 5; 
Elective 2-3 

PEP-A-C5; 
PEP-A-E2.3 

U.S. 9~12 Advanced 
Algebra 
(Volume 1 & 2) 

Teachers’ 
Edition 

McGraw-
Hill, 2010 

James 
Flanders; 
Zalman 
Usiskin; 
et al. 

UCSMP-AA 

10~12 Functions, 
Statistics, and 
Trigonometry 
(Volume 1 & 2) 

UChicago 
Solutions, 
2016 

John W. 
McConnell; 
Susan A. 
Brown; et al. 

UCSMP-FST 

11~12 Precalculus and 
Discrete 
Mathematics 
(Volume 1 & 2) 

McGraw-
Hill, 2010 

Anthony L. 
Peressini; 
Peter D. 
DeCraene;  
et al. 

UCSMP-
PDM 

 

Sample Topics and Problems 

Sample topics. It is necessary to select representative topics to keep comparisons neutral 

and meaningful as the coverage and sequence of content vary in the United States and China.  
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Quadratic relations. Functions, a particular type of relation in which no two ordered 

pairs (x, y) have the same first component x, are often considered as one of the most important 

topics in mathematics education (Burkett, 1998), with its recognized organizing power from 

middle school mathematics through more advanced topics in high school and college (Leinhardt 

et al., 1990). Quadratic functions, as the first non-linear polynomial function, is a traditional core 

topic that is essential to building the transition from linearity to non-linearity and laying the 

foundation for Pre-calculus and Calculus in the United States (Nielsen, 2015; Parent, 2015). In 

China, quadratic functions are embedded in middle school mathematics, laying the foundation 

and transition for the learning of quadratic relations in high schools. Quadratic relations address 

a broader area of non-linear polynomial equations and involve multiple connections in Algebra 

and Geometry strands, which may offer ample opportunities to investigate the directionality.  

Lastly, researchers reported students’ limited understandings of quadratics. For example, 

10th and 11th graders in Israel showed their over-reliance on the equation-to-graph direction of 

quadratic functions (Zaslavsky, 1997). Nielsen (2015) found that 65% of 20 U.S. high school 

students were able to make the connection from the quadratic equation to the graph. Even U.S. 

undergraduate students showed not much flexibility in moving between two representations of 

quadratic functions (Metcalf, 2007). Second-year university students in the United States still 

showed strong preference for the standard form, rather than the vertex form or the factor form of 

quadratic functions in the tasks of transforming quadratic functions (Vaiyavutjamai, Ellerton, & 

Clements, 2005). Few studies have focused on the more general topic, i.e., quadratic relations (a 

relation between two variables that follows: Ax2+Bxy+Cy2+Dx+Ey+F=0, where A, B, C, D, E, 

and F are real numbers and at least one of A, B, C is not zero). The literature review also 

suggested that bidirectional connections between multiple representations were difficult for 
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students and teachers, and routine tasks in textbooks were mostly in the equation-to-graph 

direction (Knuth, 2000b). Therefore, examining quadratic relations may offer a comparison of 

the current usage of mathematical connections, present possible exemplary ways to embed 

bidirectional connections in textbook problems, and in the end, help learners conquer learning 

difficulties in quadratic relations. 

Probability and combinatorics. Besides Algebra and Geometry strands, probability and 

combinatorics comprise a rich structure of mathematical principles that underlie Probability, 

Statistics, and Discrete Mathematics strands. They not only foster deep mathematical thinking 

and meaningful representations but also offer a problem-heavy field with a variety of solution 

approaches and representations with rich bidirectional connections, which lead to difficulties for 

students to identify problem structures and mathematical connections (Lockwood, 2011; 

Sriraman & English, 2004). For example, Bulone (2017) found that many U.S. postsecondary 

students struggled with connections between problems of the same type with altered contexts. 

Even novice undergraduate students enrolled in Calculus in the United States may recognize the 

first type but not the second type of combinatorics problems (Lockwood, Wasserman, & 

McGuffey, 2018). Additionally, researchers reported some Australian preservice teachers’ 

failures to move from experimental probability to theoretical probability (Prodromou, 2012). The 

effects of single and multiple representation on learning probability and combinatorics were also 

examined (Kolloffel et al., 2009). Moreover, probability and combinatorics, compared with 

quadratic relations, usually involve more problems in real-life contexts and reveal different 

mathematical structures. Furthermore, the eighth curriculum reform in China placed a special 

focus on statistics and probability, which did not get close attention for a long time, whereas  
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quadratic relations are long-standing emphasized content (Li, Zhang, and Ma, 2019). Therefore, 

examining probability and combinatorics may offer a comparison of the curricular emphasis of 

different mathematical topics and explore exemplary usage of representations to reveal practical 

implications for the teaching and learning of probability and combinatorics. 

Sample problems. The UCSMP and PEP-A series contain several chapters involving 

selected topics which are under the organization of ‘Section 1->Section 2->…->Chapter 

Review.’ For each section, the PEP-A series includes several leading words, like “Example” or 

“In-class Exercises” or “After-class Exercises” to indicate worked-out examples and exercises; 

the UCSMP series uses leading words like “Example” or “Questions” with sub-heading words—

“Covering the Ideas,” “Applying the Mathematics,” “Review,” and “Exploration”—to denote 

worked-out examples and exercises. Also, additional worked-out examples provided in the 

teachers’ edition are included as they are valuable supplementary materials. Problems in the 

projects, explorations, reading, the chapter review, and the self-test in each chapter are not 

included in the analysis as their random sequence and frequency of use are not comparable.  

Regarding selected topics, the UCSMP and PEP-A series cover seven subtopics:  

four for quadratic relations (circle, ellipse, hyperbola, and parabola) and three for probability and 

combinatorics (probability, counting problems, and binomial theorem). Therefore, I compiled all 

of the above worked-out examples, exercises, and their solutions (some in the teachers’ edition) 

in related chapters in their original sequence as a separate single set. Table 2 summarizes the 

corresponding problem sets and related chapters included in the study. 
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Table 2. Corresponding Problem Sets Included in the Study 
 

Pair Subtopic Related Chapter 
1 Circle  U.S. UCSMP-AA-Chapter 12 

China PEP-A-C2-Chapter 4; PEP-A-E2.1-Chapter 2 
2 Ellipse U.S. UCSMP-AA-Chapter 12 

China PEP-A-E2.1-Chapter 2 
3 Hyperbola U.S. UCSMP-AA-Chapter 12 

China PEP-A-E2.1-Chapter 2 
4 Parabola U.S. UCSMP-AA-Chapter 12 

China PEP-A-E2.1-Chapter 2 
5 Probability U.S. UCSMP-FST-Chapter 6 

China PEP-A-C3-Chapter 3 
6 Counting 

Problems 
U.S. UCSMP-PDM-Chapter 12 
China PEP-A-E2.3-Chapter 1 

7 Binomial 
Theorem 

U.S. UCSMP-PDM-Chapter 12 
China PEP-A-E2.3-Chapter 1 

 

Data Coding 

Designing a Schema for Coding  

Phase 1 started with dividing collected data into separate instances and then coding 

relevant features. Some problems in both series have two levels of numbering and share the first-

level numbering by 1, 2, …. They differ in the second-level numbering as PEP-A uses (1), 

(2), … and UCSMP adopts a, b, … (see Figure 11). For problems with the first-level numbering 

only, I divided data into basic items by the first-level numbering. For problems having two levels 

of numbering, I divided data into basic items by the second-level numbering. Finally, I assigned 

an item number one by one. In Figure 11, sample problems of the PEP-A series are divided into 

5 items: item 1 (for 1), item 2 (for 2(1)), item 3 (for 2(2)), item 4 (for 3(1)), and item 5 (for 3(2)); 

sample problems of the UCSMP series are divided into 8 items: item 1 (for 1), item 2 (for 2a), 

item 3 (for 2b), item 4 (for 3a), item 5 (for 3b), item 6 (for 3c), item 7 (for 4), and item 8 (for 5). 
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Figure 11. Textbook problem samples (above: PEP-A; below: UCSMP) 

Next, I coded each item for its mathematical topic: Quadratic Relations (QR); and 

Probability and Combinatorics (PC). Then, I coded each item for its presentational feature: 

Worked-out Example (WE): problems with a complete solution which are usually designed for 

teachers’ instruction and students’ reference; and Exercise (EX): problems with no solution in 

students’ edition (except for possible answers provided at the end of textbooks), which provide 

students with practice opportunities (Li, 1999). Then, I coded each item for its contextual 

feature: Purely Mathematical (PM): problems formulated with numbers, symbols, geometric 

figures, and other purely mathematical representations verbally or only with purely mathematical 

representations (Li, 1999); and Real-life (RL): real-life contexts. In Figure 11, all sample 

problems are purely mathematical exercises in quadratic relations, coded as QR, EX, and PM, 

respectively. Next, I coded each item for its mathematical feature: Single-step (S): problems that 
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can be solved by one direct step or operation; and Multi-step (M): rest conditions (Zhu & Fan, 

2006). Finally, I coded each item for its visual feature: Non-visual (N); and Visual (V) problems 

with visual information like pictures, graphs, charts, tables, diagrams, and so on (Zhu & Fan, 

2006). In Figure 11, the sample problem 3a of the UCSMP series is a single-step problem 

including visual information, coded as S and V; the sample problem 3(1) of the PEP-A series is a 

non-visual problem that cannot be solved by one direct step, coded as M and N. 

Phase 2 was designed to build the Connection Table and code each instance in Phase 1 

for corresponding connections. I first collected the vocabulary checklist in the chapter summary 

and relevant items in the glossary in the PEP-A and UCSMP series to compile the Concepts 

Table (see Appendix A). Then, I built the Representations Table: written description, numerals, 

symbolic expressions (S1: with numerical coefficients; S2: with letter coefficients), tables, 

graphs, diagrams, charts, pictures, and concrete/manipulative representations (Marshall et al., 

2010). Next, I compiled all possible connections (an ordered pair of two concepts with its 

representation from the Concepts Table and Representations Table) in the Connection Table and 

finally coded each item in terms of relevant connections in the table. All identified connections 

were compiled in a table. Each item may have zero or one or multiple connections. I coded each 

item for the presence or absence of connections into: the no-connection condition (0), the 

between-concept condition (1), the within-concept condition (2), and the mixed condition of both 

between-concept and within-concept connections (3). For instance, the connection in sample 

problem 2(1) of the PEP-A series is ellipse-to-foci, the between-concept condition, coded as 1. 

Phase 3 was designed to recognize bidirectional connections and transfer connections 

into digraphs and adjacency matrices. For connections in Phase 2, I used NodeXL to filter out 

bidirectional connections by the reciprocated function (designed to recognize reciprocated edges) 
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and sorted each connection for its directionality: Unidirectional (Uni-) and Bidirectional (Bi-). 

All bidirectional connections were compiled in a table. For each subtopic, a digraph with vertices 

and directed edges with problem item numbers showing directional connections was produced. 

Vertices denote mathematical concepts with or without representations, which are placed in a 

circle or grid. Edges with arrows and number x display connections in problem item x, in which 

arrows illustrate the directionality. I also constructed digraphs for each topic without problem 

item number x. Finally, I generated a corresponding adjacency matrix (a square matrix with one 

row and one column for each vertex). In sum, Table 3 summarizes the coding framework.  

Table 3. Textbook-Problem Analysis Coding Framework 
 

Dimension Feature Category and Coding 
Problems Mathematical topic Quadratic Relations (QR) 

Probability and Combinatorics (PC) 
Presentational feature Worked-out Example (WE) 

Exercise (EX) 
Contextual feature Purely Mathematical (PM) 

Real-life (RL) 
Mathematical feature Single-step (S) 

Multi-step (M) 
Visual feature Non-visual (N) 

Visual (V) 
Mathematical 
Connections 

Conditions of connections No-connection condition (0) 
Between-concept condition (1) 
Within-concept condition (2) 
Mixed condition (3) 

Directionality Unidirectional (Uni-) 
Bidirectional (Bi-) 

 

Prior Coding and Adjustment  

To make sure the coding framework was appropriate for the UCSMP and PEP-A series, 

prior coding (one section for each topic) was performed to check the feasibility of the model.  
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Different representations of concepts were identified in the prior coding. During this 

process, it was found that for some concepts the symbolic representation was more complex than 

assumed originally. Problems in the section on permutations contained concepts in the symbolic 

representation of original expression, or polynomial expansion, or factorial expansion. Therefore, 

the previous categorization—symbolic expression with or without numerical coefficients—might 

be insufficient to portray within-concept connections. Additionally, less than 5% of the total 

were within-concept connections in the prior coding. Also, identified within-concept connections 

were concentrated, which covered less than 10 vertices. Under this circumstance, digraphs of 

within-concept connections for each topic seemed to be more meaningful compared to fewer 

edges in smaller digraphs for each subtopic. Therefore, I made several revisions. To reflect 

different external representations, I updated the Representations Table (see Appendix A) based 

on the nature of concepts (illustrated in the Concepts Table) in textbooks. Instead of producing 

digraphs for seven subtopics and digraphs for two topics, I constructed digraphs of (a) between-

concept connections for seven subtopics (edges with problem item number x), and (b) between-

concept connections and within-concept connections, respectively, for two topics.  

Final Coding and Reliability  

To reduce my own bias and keep the final coding as neutral as possible, I recruited two 

experienced high school mathematics teachers (one in China and one in the United States), who 

had more than 5 years of teaching experience. I first explained to them the coding rubrics in 

detail, then recorded their agreement or disagreement with my coding for each item in their 

language, and finally detected missed mathematical connections. We discussed and resolved 

disputes and then generated the final coding. I invited four doctoral students (a pair of students  
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for problems of one subtopic) majoring in mathematics education, who were both proficient in 

English and Chinese. I first trained them on the coding rubrics and then asked them to agree or 

disagree with part of the final coding for the PEP-A (29 items in the subtopic probability; 45 

items in the subtopic parabola) and UCSMP series (48 items in the subtopic probability; 29 items 

in the subtopic parabola), respectively. Both the percentage of agreement (the number of ratings 

in agreement over the total number of ratings) for each feature and the overall percentage of 

agreement (an index of inter-coder reliability, calculated by the number of ratings in agreement 

by both raters over the total number of ratings) for each feature were calculated to check the 

coding reliability. The percentage of agreement for each coder and the overall percentage of 

agreement for coder pairs surpassed 80% across coding features and textbooks. The final coding 

reached the reliability requirement (see Table 4). 

Table 4. Textbook-Problem Coding Reliability 
 

Textbook Feature % of 
AG-L 

% of 
AG-X 

Overall 
(%) 

% of 
AG-S 

% of 
AG-C 

Overall 
(%) 

PEP-A 
(China) 

Presentational 100.0 100.0 100.0 100.0 100.0 100.0 
Contextual 100.0 100.0 100.0 100.0 100.0 100.0 
Mathematical 100.0 100.0 100.0 100.0 100.0 100.0 
Visual 100.0 100.0 100.0 100.0 100.0 100.0 
Connections   96.6 100.0   96.6   84.4   97.8   82.2 

UCSMP 
(U.S.) 

Presentational 100.0 100.0 100.0 100.0 100.0 100.0 
Contextual 100.0 100.0 100.0 100.0 100.0 100.0 
Mathematical 100.0 100.0 100.0 100.0 100.0 100.0 
Visual 100.0 100.0 100.0 100.0 100.0 100.0 
Connections 100.0   97.9   97.9 100.0   96.6   96.6 

Notes: % of AG stands for the percentage of agreement; Overall (%) stands for the overall percentage of agreement. 
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Data Analysis 

For Research Question 1  

1. What are the similarities and differences in the feature of problems with or without 

mathematical connections from popular U.S. and Chinese high school mathematics 

textbooks? 

I used NVivo to generate a word frequency cloud (a visualization in which the words are 

different sizes according to their frequency of use in a given text) for (a) quadratic relations, and 

(b) probability and combinatorics, in related UCSMP and PEP-A textbooks contents. Non-

mathematical concepts or representations were listed as stop words (removed from the analysis). 

The top 20 items were compared to see the general difference in the use of concepts and 

representations in two textbook series.  

Based on four conditions of mathematical connections (no-connection, between-concept, 

within-concept, and mixed), I generalized a frequency table and distribution chart of problems 

across topics and textbooks, which showed general information of textbook problems covered in 

the study and potential associations between mathematical topics and connections. To check 

potential cognitive supports of worked-out example effects, I produced a frequency table of 

problems in terms of connections across textbooks and presentational feature, as well as a chart 

of ratios of worked-out examples to exercises for problems with connections across topics. 

Considering real-world contexts, I produced a frequency table of problems in terms of 

connections across textbooks and contextual feature, as well as a chart of ratios of real-life 

context to purely mathematical for problems with connections across topics. To explore the 

potential influence of complex problems to connections, I produced a frequency table of  
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problems in terms of connections across textbooks and mathematical feature, as well as a chart of 

ratios of multi-step to single-step for problems with connections across topics. To analyze the 

potential support of visual information to connections, I produced a frequency table of problems 

in terms of connections across textbooks and visual feature, as well as a chart of ratios of visual 

to non-visual information for problems with connections across topics. To examine the frequent 

usage of within-concept and between-concept connections, I produced a frequency table of two 

types of connections across textbooks and topics. To explore potential associations between 

mathematical connections and problem features across textbooks, I used SPSS to conduct 

loglinear analysis among textbook series, conditions of mathematical connections, and five 

problem features: mathematical topic, presentational feature, contextual feature, mathematical 

feature, and visual feature. Similarities and differences are compared across countries. 

For Research Question 2  

2. What are the similarities and differences in the directionality of mathematical 

connections embedded in problems from popular U.S. and Chinese high school 

mathematics textbooks? 

First, I produced a frequency table of unidirectional and bidirectional connections and a 

chart of ratios of bidirectional to unidirectional connections in terms of types of connections and 

topics across textbooks. Then, I explored trends of frequently used bidirectional within-concept 

and between-concept connections, as well as frequently used concepts and representations 

involved in bidirectional connections, across topics and textbook series. It exhibited similarities 

and differences in the integration of bidirectional connections. 
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In a pair of digraphs depicting corresponding sets, I scrutinized: (a) size, (b) unique  

edges and total edges, (c) density of arrows, and (d) flow of edges to show similarities and 

differences in the network of connections. Based on the size and edges, dense, moderate, sparse, 

the sparsest, and aggregated digraphs were identified. The digraph analysis indicated the 

diversity, weight, sequence, and relative emphasis between typical and reverse connections 

across textbooks.  

More quantitative characteristics can be attained when moving from a digraph to its 

adjacency matrix (Strom et al., 2001). For each matrix, an entry of non-negative k in row X and 

column Y indicates there are k connections from X to Y (Chartrand & Lesniak, 2005). I first 

checked whether on-diagonal and off-diagonal block submatrices had symmetrical entries, which 

suggested the curriculum emphasis of connections in a particular direction as being strong or 

weak. Then, I analyzed the adjacency matrix by various indices (see Table 5). In-degree and out-

degree centrality, together with in-connection and out-connection connectivity, indicated the 

curriculum emphasis leading to or leading out of a specific vertex (concepts and representations). 

The further analysis of reciprocated vertex pair ratio, self-loops, bidirectional pairs, and 

reciprocated edge ratio suggested the extent of the usage of bidirectional connections and the 

curriculum emphasis on unidirectional connections. Finally, I generalized the similarities and 

differences in the directionality of mathematical connections in problems from high school 

mathematics textbooks in the United States and China. 
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Table 5. Digraph and Adjacency Matrix Analysis Dimensions 
 

Dimension Index Feature 
The 
Whole 
Network  

Size The number of vertices in a network  
Unique Edges The number of connections where multiple connections from vertex 

A to vertex B are counted only once 
Total Edges The number of connections where multiple connections from vertex 

A to vertex B are all counted 
Vertex In-degree The number of connections leading to a specific vertex 

Out-degree The number of connections leading out of a specific vertex  
In-connection The number of unique connections leading to a specific vertex 
Out-connection The number of unique connections leading out of a specific vertex  

Edge Reciprocated-
Vertex-Pair Ratio 

The percentage of vertices that have a reciprocal relationship of total 
vertices (When an edge from vertex A to vertex B is joined by 
another edge from B to A, then their connection is reciprocated) 

Reciprocated-
Edge Ratio 

The percentage of edges that have a reciprocal relationship of total 
edges 

Bidirectional Pairs The number of pairs of bidirectional connections (Except self-loops) 
Self-loops The number of edges that starts and ends in the same vertex 

  

For Research Question 3  

3. Which structural differences in popular U.S. and Chinese high school mathematics 

textbook problems may promote or hinder bidirectional connections? 

I reviewed structural differences existed in textbook problems from the UCSMP and 

PEP-A series, such as the placement of subtopics, unique practices in each textbook series. 

Correspondences between differences in textbook problem structure and differences in the 

directionality of mathematical connections were explored to unpack potential factors promoting 

or hindering bidirectional connections. 
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Chapter IV 

RESULTS 

 

Overview 

This chapter presents the results of the analysis of the data collected on selected high 

school mathematics textbooks in the United States (the UCSMP series) and China (the PEP-A 

series) for the following research questions:  

1. What are the similarities and differences in the feature of problems with or without 

mathematical connections from popular U.S. and Chinese high school mathematics 

textbooks?  

2. What are the similarities and differences in the directionality of mathematical 

connections embedded in problems from popular U.S. and Chinese high school 

mathematics textbooks?  

3. Which structural differences in popular U.S. and Chinese high school mathematics 

textbook problems may promote or hinder bidirectional connections? 

This chapter addresses the above three research questions by the following analysis. 

Word frequency clouds were developed to show a vivid image of emphasized mathematical 

concepts and representations in textbook content. Frequency of textbook problems across five 

textbook problem features (mathematical topic, presentational feature, contextual feature, 

mathematical feature, and visual feature) in terms of four conditions of connections, frequency of 

between-concept and within-concept connections across topics, and loglinear analysis among  
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textbook series, mathematical connections, and five textbook problem features were  

examined to answer the first research question. For the second research question, frequency  

of unidirectional and bidirectional connections was compared across textbooks and topics. 

Detailed comparisons of bidirectional within-concept and between-concept connections were 

conducted. Digraph and adjacency matrix analysis were used to investigate the overall 

directionality of mathematical connections in textbook problems. For the third research  

question, structural differences in U.S. and Chinese high school textbook problems were 

analyzed to explore potential factors influencing the directionality of mathematical  

connections. 

Research Question 1 

Word Frequency Clouds 

To visually show the coverage and emphasis of concepts and representations addressed in 

the overall content of textbooks of selected chapters, I conducted a word frequency cloud query 

in NVivo across topics and textbooks (see Figure 12).  



 

75 

 

 

Figure 12. Word frequency clouds (above: UCSMP; below: PEP-A) 

From Figure 12, the dominating words in the UCSMP series for quadratic relations are 

“Equation; Circle; Point; Ellipse; Graph; Hyperbola; Foci/Focus; Quadratic Relation,” and for 

probability and combinatorics the words are “Number; Probability; Counting; Event; Element; 

Outcome; Sample Space; Binomial Coefficient.” For the PEP-A series, the dominating words are 

“Circle; Point; Equation; Coordinate; Line; Quadratic Relation; Ellipse; Center,” and “Number; 

Probability; Event; Random; Trial; Counting; Permutation; Term” respectively. Based on 

differences in the size of listed words, the UCSMP series seems to have a more balanced 

distribution of mathematical concepts and representations in two topics than the PEP-A series. 

Top 20 Items 
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To compare the curricular emphasis illustrated across textbooks, the frequency and 

weighted percentage (the frequency of words relative to the frequency of total words) of the top 

20 concepts and representations are presented in Table 6 and Table 7. 

Table 6. Top 20 Items in Quadratic Relations 
 

Textbook Word Fre-
quency 

Weighted 
Percentage Textbook Word Fre-

quency 
Weighted 

Percentage 
UCSMP 
(U.S.) 

equation 598 2.50% PEP-A 
(China) 

circle 1127 4.70% 
circle 430 1.79% point 810 3.38% 
point 356 1.49% equation 808 3.37% 

ellipse 286 1.19% coordinate 425 1.77% 
graph 272 1.13% line 337 1.40% 

hyperbola 216 0.90% QR 337 1.40% 
foci/focus 201 0.84% ellipse 188 0.78% 

QR 199 0.83% center 173 0.72% 
parabola 190 0.79% graph 168 0.70% 

axis 168 0.70% STD position 153 0.64% 
center 147 0.61% hyperbola 130 0.54% 
line 126 0.53% axis 128 0.53% 

intersection 121 0.50% radius 107 0.45% 
STD form 115 0.48% intersection   89 0.37% 

 distance 113 0.47%  segment   70 0.29% 
focal constant 107 0.45% foci/focus   66 0.28% 

major axis   97 0.40% plane   62 0.26% 
vertices/vertex   96 0.39% symmetry   52 0.22% 
STD position   92 0.38% parabola   47 0.20% 

directrix   84 0.35% tangent   45 0.19% 
Notes: QR stands for quadratic relation; STD stands for standard. 
 
 

In Table 6, both the PEP-A series and UCSMP series stress circle, point, and equation 

(top 3) with less attention on graph. The PEP-A series emphasizes more quadratic relations in the 

standard position (centered at (0, 0) with its foci/focus on an axis) (top 10), whereas the UCSMP 

series stresses more the standard form of a quadratic relation (Ax2+Bxy+Cy2+Dx+Ey+F=0) than 

the standard position (0.48%>0.38%). The UCSMP series emphasizes circle, ellipse, hyperbola, 

and parabola in descending order, while the PEP-A series focuses more on circle, ellipse, and 

hyperbola, with less attention to parabola. Both series illustrate a clear focus on some attributes 
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of quadratic relations (center, foci/focus). Additionally, the PEP-A series stresses some concepts 

related to linear functions (coordinate, line, axis, segment, tangent).  

Table 7. Top 20 Items in Probability and Combinatorics 
 

Textbook Word Fre-
quency 

Weighted 
Percentage Textbook Word Fre-

quency 
Weighted 

Percentage 
UCSMP 
(U.S.) 

number 410 2.74% PEP-A 
(China) 

number 1488 5.66% 
probability 336 2.25% probability 505 1.92% 
counting 221 1.48% event 447 1.70% 

event 156 1.04% random 338 1.29% 
element 143 0.96% trial 325 1.24% 
outcome 140 0.94% counting 300 1.14% 

sample space 123 0.82% permutation 265 1.01% 
 BI coefficient 122 0.82%  term 256 0.97% 

set 120 0.80% table 225 0.86% 
symbol 118 0.79% sum 216 0.82% 

permutation 115 0.77% element 211 0.80% 
trial 111 0.74% outcome 184 0.70% 

combination 108 0.72% graph 182 0.69% 
BI theorem 106 0.71% combination 161 0.61% 

random 105 0.70% set 144 0.55% 
sum 99 0.66% RF 134 0.51% 
term 96 0.64% simulation 125 0.48% 
RF 96 0.64% BI 

expansion 
123 0.47% 

repetition 91 0.61% formula 119 0.45% 
MCP 85 0.57% union of 

events 
97 0.37% 

Notes: BI stands for binomial; RF stands for relative frequency; MCP stands for multiplication counting principle. 
 
 

In Table 7, both series highlight the numerical representation and probability (top 2). The 

UCSMP series pays extra attention to the symbolic representation (top 10), whereas the PEP-A 

series highlights the tabular and graphical representation (top 15). The UCSMP series stresses 

probability, counting, permutation, combination, and binomial theorem in descending order 

(all>0.70%), whereas the PEP-A series highlights probability, counting, permutation 

(all>1.00%), with less coverage on combination and binomial theorem (both<0.70%). Both 

series stress event, element, outcome, set, and trail.  
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Mathematical Topic 

This study classified each problem for the presence or absence of connections into: the 

no-connection condition (0), the between-concept condition (1), the within-concept condition 

(2), and the mixed condition (3). In terms of these conditions, the frequency of textbook 

problems across textbook series and topics are shown in Table 8. 

Table 8. Frequency of Problems with Different Connections Across Textbooks and Mathematical 
Topic 
 

Textbook Topic Total PC (% of subtotal) QR (% of subtotal) 

PEP-A 
(China) 

Mathematical 
Connection 

0 19 (8.1%) 0 (0.0%) 19 (4.3%) 
1 130 (55.3%) 188 (90.4%) 318 (71.8%) 
2 51 (21.7%) 4 (1.9%) 55 (12.4%) 
3 35 (14.9%) 16 (7.7%) 51 (11.5%) 

Subtotal 235 (53.0%) 208 (47.0%) 443 (100%) 

UCSMP 
(U.S.) 

Mathematical 
Connection 

0 11 (3.1%) 15 (4.6%) 26 (3.8%) 
1 223 (63.2%) 242 (73.6%) 465 (68.2%) 
2 93 (26.3%) 63 (19.1%) 156 (22.9%) 
3 26 (7.4%) 9 (2.7%) 35 (5.1%) 

Subtotal 353 (51.8%) 329 (48.2%) 682 (100%) 
Notes: PC stands for probability and combinatorics; QR stands for quadratic relations; Code 0 stands for problems 
without connection; Code 1 stands for problems with between-concept connections only; Code 2 stands for 
problems with within-concept connections only; Code 3 stands for problems with between-concept and within-
concept connections. 
 
 

As shown in Table 8, this study covered 1,125 problems in total, with a similar number 

across topics. Overall, the UCSMP series includes more problems in two topics than the PEP-A 

series (353>235 and 329>208, respectively). The between-concept connection is the most 

frequently used condition regardless of textbook series and topics, especially in problems dealing 

with quadratic relations in the PEP-A series (90.4% of subtotal, which is the highest percentage).  
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Figure 13. Distribution of conditions of mathematical connections across textbooks and topics 

Figure 13 displays the distribution of four conditions across textbooks and topics. Both 

series emphasize the between-concept condition (top 1) in two topics, especially in quadratic 

relations. Moreover, the distribution of four conditions in probability and combinatorics is more 

balanced than in quadratic relations. For probability and combinatorics, both series show the 

between-concept, the within-concept, the mixed, and the no-connection condition in descending 

order. For quadratic relations, the PEP-A series illustrates slightly more the mixed than the 

within-concept condition (2.98%>0.74%). In contrast, the UCSMP series highlights more the 

within-concept than the mixed condition (11.73%>1.68%). This indicates that two series differed 

in the usage of the mixed and the within-concept condition in quadratic relations. 

Presentational Feature 

This study used presentational feature—Worked-out Example (WE) and Exercise (EX)—

to explore worked-out example effects. Table 9 presents the frequency of problems in terms of 

connections across textbooks and presentational feature.  
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Table 9. Frequency of Problems with Different Connections Across Textbooks and  
Presentational Feature  
 

Textbook Presentational Feature Ratio (WE: EX) WE (% of subtotal) EX (% of subtotal) 

PEP-A 
(China) 

Mathematical 
Connection 

0 4 (4.5%) 15 (4.2%) 0.27 
1 70 (78.7%) 248 (70.1%) 0.28 
2 9 (10.1%) 46 (13.0%) 0.20 
3 6 (6.7%) 45 (12.7%) 0.13 

Subtotal 89 (20.1%) 354 (79.9%) 0.25 

UCSMP 
(U.S.) 

Mathematical 
Connection 

0 0 (0.0%) 26 (4.8%) 0.00 
1 102 (73.9%) 363 (66.7%) 0.28 
2 24 (17.4%) 132 (24.3%) 0.18 
3 12 (8.7%) 23 (4.2%) 0.52 

Subtotal 138 (20.2%) 544 (79.8%) 0.25 
Notes: WE stands for worked-out examples; EX stands for exercises; Code 0 stands for problems without 
connection; Code 1 stands for problems with between-concept connections only; Code 2 stands for problems with 
within-concept connections only; Code 3 stands for problems with between-concept and within-concept 
connections. 
 
 

In Table 9, both series share a similar ratio of worked-out examples to exercises, overall 

0.25. The UCSMP series shows a higher ratio for the mixed condition than the PEP-A series 

(0.52>0.13). That is, for one worked-out example of the mixed condition, there are 

approximately two exercises in the UCSMP series and around eight exercises in the PEP-A 

series. The mixed-condition problems tend to be more challenging for students than the rest 

conditions. This suggests that the UCSMP series may provide less training exercises of the 

mixed condition than the PEP-A series. This study then compared ratios of worked-out examples 

to exercises for problems with connections across textbooks and topics (see Figure 14). 
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Figure 14. Ratios of worked-out examples to exercises for problems with connections  
across textbooks and topics 
 

From Figure 14, the PEP-A series demonstrates a slightly higher ratio of worked-out 

examples to exercises in quadratic relations (0.27>0.25) and a slightly lower ratio in probability 

and combinatorics (0.23<0.28) than the UCSMP series. This suggests that presentational feature 

of problems with mathematical connections are similar across topics in both series. 

Contextual Feature 

This research adopted contextual feature—Purely Mathematical (PM) and Real-life 

(RL)—to evaluate the call for real-life problems. Table 10 shows the frequency of problems in 

terms of connections across textbooks and contextual feature.  
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Table 10. Frequency of Problems with Different Connections Across Textbooks and  
Contextual Feature  
 

Textbook Contextual Feature Ratio (RL:PM) RL (% of subtotal) PM (% of subtotal) 

PEP-A 
(China) 

Mathematical 
Connection 

0 0 (0.0%) 19 (6.9%) 0.00 
1 114 (67.5%) 204 (74.5%) 0.56 
2 23 (13.6%) 32 (11.7%) 0.72 
3 32 (18.9%) 19 (6.9%) 1.68 

Subtotal 169 (38.1%) 274 (61.9%) 0.62 

UCSMP 
(U.S.) 

Mathematical 
Connection 

0 12 (3.9%) 14 (3.7%) 0.86 
1 223 (73.4%) 242 (64.0%) 0.92 
2 48 (15.8%) 108 (28.6%) 0.44 
3 21 (6.9%) 14 (3.7%) 1.50 

Subtotal 304 (44.6%) 378 (55.4%) 0.80 
Notes: RL stands for real-life; PM stands for purely mathematical; Code 0 stands for problems without connection; 
Code 1 stands for problems with between-concept connections only; Code 2 stands for problems with within-concept 
connections only; Code 3 stands for problems with between-concept and within-concept connections. 
 
 

From Table 10, the UCSMP series shares a higher ratio of real-life context to purely 

mathematical problems than the PEP-A series (0.80>0.62). Both series have a higher ratio of 

real-life context to purely mathematical for problems of the mixed condition (1.68 and 1.50) than 

the rest conditions (all<1.00). That is, the mixed condition is often illustrated in more real-life 

than purely mathematical problems. Also, the no-connection condition happens only in purely 

mathematical problems for the PEP-A series. Overall, purely mathematical problems still 

account for a larger part than real-life problems (61.9%>38.1% for PEP-A; 55.4%>44.6% for 

UCSMP). This study then compared ratios of real-life context to purely mathematical for 

problems with mathematical connections across textbooks and topics (see Figure 15). 
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Figure 15. Ratios of real-life context to purely mathematical for problems with connections 
across textbooks and topics 

In Figure 15, striking differences of contextual feature are demonstrated across topics. 

The UCSMP series has a higher ratio of real-life context to purely mathematical problems in 

quadratic relations (0.25>0.07) and a lower ratio in probability and combinatorics (2.05<2.54) 

than the PEP-A series. Both series demonstrate an extremely lower ratio of real-life context to 

purely mathematical problems in quadratic relations than probability and combinatorics, 

especially in the PEP-A series. The analysis suggests that the reform call for real-life problems 

differs in topics, with a better fulfillment in probability and combinatorics. Overemphasizing 

purely mathematical problems at the cost of real-life context problems may influence 

connections, particularly the mixed condition. 

Mathematical Feature 

This research used Single-step (S) and Multi-step (M) to evaluate the potential influence 

of complex problems to connections. Table 11 displays the frequency of problems in terms of 

mathematical connections across textbooks and mathematical feature.  
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Table 11. Frequency of Problems with Different Connections Across Textbooks and  
Mathematical Feature 
 

Textbook Mathematical Feature Ratio (M: S) M (% of subtotal) S (% of subtotal) 

PEP-A 
(China) 

Mathematical 
Connection 

0 0 (0.0%) 19 (27.5%) 0.00 
1 292 (78.1%) 26 (37.7%) 11.23 
2 31 (8.3%) 24 (34.8%) 1.29 
3 51 (13.6%) 0 (0.0%) Undefined 

Subtotal 374 (84.4%) 69 (15.6%) 5.42 

UCSMP 
(U.S.) 

Mathematical 
Connection 

0 5 (1.1%) 21 (9.9%) 0.24 
1 344 (73.3%) 121 (56.8%) 2.84 
2 85 (18.1%) 71 (33.3%) 1.20 
3 35 (7.5%) 0 (0.0%) Undefined 

Subtotal 469 (68.8%) 213 (31.2%) 2.20 
Notes: M stands for multi-step; S stands for single-step; Code 0 stands for problems without connection; Code 1 
stands for problems with between-concept connections only; Code 2 stands for problems with within-concept 
connections only; Code 3 stands for problems with between-concept and within-concept connections. 
 

As shown in Table 11, the PEP-A series exhibits a higher ratio of multi-step to single-

step problems than the UCSMP series (5.42>2.20). Both series address the mixed condition only 

in multi-step problems. This suggests that multi-step problems can be used to promote the mixed 

condition. Additionally, the PEP-A series shows a significantly higher ratio of multi-step to 

single-step problems for problems with between-concept connections only, than the UCSMP 

series (11.23>2.84). Moreover, the ratio of multi-step to single-step problems for the no-

connection condition approaches 0, especially in the PEP-A series (0.00 for PEP-A and 0.24 for 

UCSMP). This suggests that multi-step problems tend to address more between-concept 

connections, and single-step problems tend to have no connection. Then, this study analyzed 

ratios of multi-step to single-step for problems with connections (see Figure 16).  
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Figure 16. Ratios of multi-step to single-step for problems with connections across textbooks 
and topics  

From Figure 16, the PEP-A series exhibits a higher ratio of multi-step to single-step 

problems with connections across topics (5.00 and 13.86), than the UCSMP series, which shares 

a similar ratio across topics (2.60 and 2.24). The extremely high ratio of multi-step to single-step 

problems in quadratic relations of the PEP-A series is observed (13.86). This suggests that the 

PEP-A series may have more connections than the UCSMP series in two topics.  

Visual Feature 

This study used Visual (V) and Non-visual (N) to examine the influence of visual 

information (e.g., pictures, graphs, charts, tables) to different conditions of connections.  

Table 12 shows the frequency of problems in terms of connections across textbooks and  

visual feature.  
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Table 12. Frequency of Problems with Different Connections Across Textbooks and  
Visual Feature 
 

Textbook Visual Feature Ratio (Visual: 
Non-visual) Visual (% of subtotal) Non-visual (% of subtotal) 

PEP-A 
(China) 

Mathematical 
Connection 

0 1 (0.8%) 18 (5.5%) 0.06 
1 103 (87.3%) 215 (66.2%) 0.48 
2 2 (1.7%) 53 (16.3%) 0.04 
3 12 (10.2%) 39 (12.0%) 0.31 

Subtotal 118 (26.6%) 325 (73.4%) 0.36 

UCSMP 
(U.S.) 

Mathematical 
Connection 

0 4 (2.0%) 22 (4.6%) 0.18 
1 136 (66.3%) 329 (69.0%) 0.41 
2 54 (26.3%) 102 (21.4%) 0.53 
3 11 (5.4%) 24 (5.0%) 0.46 

Subtotal 205 (30.1%) 477 (69.9%) 0.43 
Notes: Code 0 stands for problems without connection; Code 1 stands for problems with between-concept 
connections only; Code 2 stands for problems with within-concept connections only; Code 3 stands for problems 
with between-concept and within-concept connections. 
 

As can be seen from Table 12, the UCSMP series shows a higher ratio of visual to non-

visual problems than the PEP-A series (0.43>0.36), especially for problems of the within-

concept condition (0.53>0.04). This implies that the UCSMP series may have more visual 

problems with within-concept connections than the PEP-A series. Overall, the majority of 

problems are non-visual (73.4% for PEP-A and 69.9% for UCSMP). Then, this study compared 

ratios of visual to non-visual information for problems with connections (see Figure 17).  

 

Figure 17. Ratios of visual to non-visual information for problems with connections  
across textbooks and topics 
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In Figure 17, the UCSMP series displays a higher ratio of visual to non-visual 

information for problems with connections in quadratic relations (0.71>0.53) than the PEP-A 

series. Both series show a lower ratio in probability and combinatorics than quadratic relations 

(0.26<0.53<0.71). The higher ratio in quadratic relations is consistent with the analysis of word 

frequency at the beginning that the graph is in the top 10 list of concepts and representations in 

quadratic relations other than probability and combinatorics. More concepts in quadratic 

relations tend to be demonstrated with graphs than concepts in probability and combinatorics. 

This suggests that the UCSMP series may embed more within-concept connections involving the 

graphical representation in quadratic relations than the PEP-A series. 

Between-concept and Within-concept Connections 

To compare the usage of between-concept and within-concept connections, this study 

analyzed the frequency of between-concept and within-concept connections across topics and 

textbooks (see Table 13).  

Table 13. Frequency of Between-concept and Within-concept Connections Across Textbooks  
and Topics 
 

Textbook Topic MC/PB 

PC (% of subtotal) QR (% of subtotal) 

PEP-A 
(China) 

Type Between-concept 293 (76.7%) 605 (96.6%) 2.03 
Within-concept 89 (23.3%) 21 (3.4%) 0.25 
MC/PB 1.63 3.01 2.28 

UCSMP 
(U.S.) 

Type Between-concept 426 (77.6%) 423 (84.3%) 1.24 
Within-concept 123 (22.4%) 79 (15.7%) 0.30 
MC/PB 1.56 1.53 1.54 

Notes: PC stands for probability and combinatorics; QR stands for quadratic relations; MC/PB stands for the number 
of mathematical connections per problem on average. 
 
 

In Table 13, this study identified 2,059 mathematical connections, much more between-

concept than within-concept connections in two topics and two series. Overall, compared to the  
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UCSMP series, the PEP-A series includes more connections per problem overall (2.28>1.54), 

and in two topics, especially in quadratic relations (3.01>1.53). The PEP-A series presents more 

between-concept connections per problem than the UCSMP series (2.03>1.24), whereas the 

UCSMP series shows slightly more within-concept connections per problem than the PEP-A 

series (0.30>0.25). The striking difference between two series in the number of connections per 

problem in quadratic relations (3.01>1.53) is consistent with the noticeable difference in the ratio 

of multi-step to single-step problems with connections (13.86>2.24). This suggests that a multi-

step problem on average include more connections than a single-step problem. Then, this study 

compared the number of between-concept and within-concept connections per problem. 

 

Figure 18. The number of mathematical connections per problem across textbooks and topics 

In Figure 18, the number of between-concept connections per problem in two topics 

(>1.00) is much higher than that of within-concept connections (<0.50), especially for quadratic 

relations of the PEP-A series (2.91>0.10). That is, for one problem in quadratic relations of the 

PEP-A series, there is on average about three between-concept connections compared to 0.10 

within-concept connections. This indicates the PEP-A series may lack within-concept  
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connections in quadratic relations. In two topics, the UCSMP series exhibits a similar number of 

between-concept connections per problem (1.21 and 1.29) and within-concept connections per 

problem (0.35 and 0.24). In contrast, the PEP-A series shows a larger number of between-

concept per problem and a smaller number of within-concept connections per problem in 

quadratic relations than in probability and combinatorics.  

Loglinear Analysis 

The above analysis suggests that the PEP-A series and UCSMP series are similar in 

presentational feature and differ in topic, contextual, mathematical, and visual feature. Problem 

features seem to be dependent, e.g., striking differences in contextual feature between topics are 

observed. Problems of four conditions of mathematical connections in two series exhibit 

similarities and differences in problem features.  

This study aimed to find a model depicting associations between mathematical 

connections and problem features in two textbook series without substantial loss of predictive 

power of all five problem features. Also, this study tried to determine which model components, 

i.e., one-way or higher-order interactions among problem features, textbook series, and 

connections, were necessary to retain or contribute more to best account for the data. Therefore, 

this study conducted hierarchical loglinear analysis, including seven categorical variables:  

(i) mathematical connection (no-connection, between-concept only, within-concept only, or the 

mixed); (ii) textbook series (PEP-A or UCSMP); (iii) topic (probability and combinatorics or 

quadratic relations); (iv) presentational (exercise or worked-out example); (v) contextual (purely 

mathematical or real-life); (vi) mathematical (single-step or multi-step); and (vii) visual (non-

visual or visual).  
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The assumptions of the loglinear analysis with more than two variables were that there 

are no more than 20% of cells with expected frequencies less than 5, all cells must have expected 

frequencies greater than 1, and all variables are independent (Field, 2013). Analysis of cross-

tabulation results indicated that 76.56 % of cells had expected frequencies less than 5. This  

could be explained by the fact that problem features are not independent of each other. For 

example, both series have no problems with a combination of problem features of particular 

categories, e.g., single-step purely mathematical visual worked-out examples in two topics. Also, 

a combination of problem features that hindering connections also leads to many empty cells. 

For example, there are no multi-step problems in the PEP-A series without connections. 

However, since the data set is large (N=1125) and all seven variables are essential in 

understanding relationship between problem features and connections, the decrease in statistical 

power due to violations of assumptions might not result in substantial loss of predictive power  

of the model. 

The initial loglinear analysis was performed with all seven variables (see Table 14). The 

analysis suggests that removing four-way and higher-order effects will not significantly affect 

the fit of the model (p=1); removing three-way and lower interactions has a significant 

detrimental effect on the model (p<0.001). The final model retains three-way and lower 

interactions. The likelihood ratio of this model is χ$(173)=84.570, p=1.	 This indicates that some 

of the three-way interactions are significant, χ$(31)=335.642, p<0.001. 
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Table 14. K-way and Higher-order Effects Results 
 

K df Likelihood Ratio 
Chi-Square Sig. 

K-way and Higher-order 
Effectsa 

1 255 3481.191 <0.001 
2 246 1354.274 <0.001 
3 213 444.060 <0.001 
4 148 60.599 1.000 
5 73 1.441 1.000 
6 22 0.000 1.000 
7 3 0.000 1.000 

K-way Effectsb 

1 9 2126.917 <0.001 
2 33 910.214 <0.001 
3 65 383.461 <0.001 
4 75 59.157 0.910 
5 51 1.441 1.000 
6 19 0.000 1.000 
7 3 0.000 1.000 

Notes:  
a. Tests that k-way and higher-order effects are zero.  
b. Tests that k-way effects are zero. 
 
 

Based on the analysis of partial associations, statistically significant three-way and lower 

interactions in the model were identified (see Table 15). Since the study focused on exploring  

the similarities and differences between the PEP-A series and UCSMP series in embedding 

connections and problem features, further analysis was completed for the three-way interactions 

involving the Textbook Series variable (highlighted in the color purple). 
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Table 15. Partial Associations of Statistically Significant Three-way or Lower Interactions 
 

Effect Partial χ$ Sig. Effect Partial χ$ Sig. Effect Partial χ$ Sig. 
MC 1113.398 <0.001 T*C 438.920 <0.001 MC*Text*T 27.881 <0.001 

P 428.153 <0.001 M*MC 161.189 <0.001 MC*Text*C 23.566 <0.001 
M 292.682 <0.001 T*V 105.081 <0.001 MC*Text*V 19.924 <0.001 
V 210.606 <0.001 T*MC 88.847 <0.001 Text*T*C 19.857 <0.001 

Text 51.163 <0.001 C*V 71.447 <0.001 T*V*MC 17.414 0.001 
C 28.602 <0.001 C*MC 59.123 <0.001 T*C*M 15.464 <0.001 
   M*V 30.507 <0.001 T*M*MC 13.817 0.003 
   Text*M 29.782 <0.001 C*M*MC 13.013 0.005 
   Text*MC 25.229 <0.001 Text*P*V 10.543 0.001 
   Text*C 13.464 <0.001 Text*T*M 8.868 0.003 
   P*V 9.722 0.002 Text*M*V 8.414 0.004 
   V*MC 9.118 0.028 P*M*V 5.776 0.016 
   P*M 7.432 0.006    
   Text*T 5.813 0.016    

Notes: MC stands for Mathematical Connection; P stands for Presentational; M stands for Mathematical; V stands 
for Visual; Text stands for Textbook Series; C stands for Contextual; T stands for Topic. 
 
 

The following analysis examines the highlighted interactions one by one in the order of 

descending partial χ$, which reflects the contribution of effects to the model. In order to do that, 

separate loglinear analysis was performed on these interactions involving Textbook Series. 

1. Mathematical Connection * Textbook Series * Topic. The three-way loglinear analysis 

produced a final model retaining all effects. The likelihood ratio of this model is χ$(0)=0, p=1. 

This indicates that Mathematical Connection * Textbook Series * Topic is statistically 

significant, 	χ$(3)=50.194. To break down the three-way effect, Chi-square tests on connection 

and topic were performed separately for two series. The PEP-A series shows a strong statistically 

significant association between connection and topic, 	χ$(3)=75.455 and Cramer’s V=0.413, 

whereas the UCSMP series shows a weak statistically significant association, χ$(3)=14.592 and 

Cramer’s V=0.146. For the PEP-A series, the odds of problems of the within-concept condition 

are 14.14 times higher when problems deal with probability and combinatorics than quadratic 

relations; the odds of problems of the between-concept condition are 7.59 times higher when 
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problems deal with quadratic relations than probability and combinatorics. Overall, the odds of 

problems with connections are 37.57 times higher when problems deal with quadratic relations 

than probability and combinatorics in the PEP-A series, but only 0.67 in the UCSMP series. 

Therefore, this seems to reveal a fundamental difference between the two series: the PEP-A 

series is more likely to embed connections in problems dealing with quadratic relations than 

probability and combinatorics, whereas the UCSMP series is more likely to embed connections 

in problems dealing with probability and combinatorics than quadratic relations. 

There is a weak statistically significant association between textbook series and 

connection, χ$(3)=30.617 and Cramer’s V=0.165. The odds of problems of the mixed condition 

are 2.41 times higher when problems are from the PEP-A series than the UCSMP series. The 

odds of problems of the within-concept condition are 2.09 times higher when problems are from 

the UCSMP series than the PEP-A series. Therefore, this seems to reveal a fundamental 

difference between the two series: the PEP-A series is more likely to have problems of the mixed 

condition than the UCSMP series, whereas the UCSMP series is more likely to have problems of 

the within-concept condition than the PEP-A series. 

2. Mathematical Connection * Textbook Series * Contextual. The three-way loglinear 

analysis produced a final model retaining all effects. The likelihood ratio of this model is 

χ$(0)=0, p=1. This indicates that Mathematical Connection * Textbook Series * Contextual is 

statistically significant, 	χ$(3)=21.480. To break down the three-way effect, Chi-square tests on 

connection and contextual feature were performed separately for two series. The PEP-A series 

presents a moderate statistically significant association between connection and contextual 

feature, 	χ$(3)=25.822 and Cramer’s V=0.241, whereas the UCSMP series shows a weak 

statistically significant association, χ$(3)=17.585 and Cramer’s V=0.161. The odds of problems 
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of the mixed condition are 3.13 times higher when problems are real-life than purely 

mathematical in the PEP-A series, but also 1.93 in the UCSMP series. Overall, the odds of 

problems with connections are 25.87 times higher when problems are real-life than purely 

mathematical in the PEP-A series, but only 0.94 in the UCSMP series. Therefore, this seems to 

reveal a fundamental difference between the two series: the PEP-A series is more likely to 

embed connections in real-life than purely mathematical problems, whereas the UCSMP series is 

slightly more likely to include connections in purely mathematical than real-life problems. Also, 

there is a weak statistically significant association between textbook series and contextual 

feature, χ$(1)=4.551 and Cramer’s V=0.064.  

3. Mathematical Connection * Textbook Series * Visual. The three-way loglinear analysis 

produced a final model retaining all effects. The likelihood ratio of this model is χ$(0)=0, p=1. 

This shows that Mathematical Connection * Textbook Series * Visual is statistically significant, 

	χ$(3)=26.839. To break down the three-way effect, Chi-square tests on connection and visual 

feature were performed separately for two series. There is a moderate statistically significant 

association between connection and visual feature only in the PEP-A series, 	χ$(3)=24.969 and 

Cramer’s V=0.237. The odds of problems of the within-concept condition are 11.30 times higher 

when problems are non-visual than visual, which is consistent with the previous low ratio of 

visual to non-visual problems of the within-concept condition (0.04) in the PEP-A series. 

Overall, the odds of problems with connections are 6.86 times higher when problems are visual 

than non-visual in the PEP-A series, but also 2.43 in the UCSMP series. This seems to reveal that 

both series are more likely to embed connections in visual than non-visual problems. 

4. Textbook Series * Topic * Contextual. The three-way loglinear analysis produced a 

final model retaining all effects. The likelihood ratio of this model is χ$(0)=0, p=1. This shows 
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that Textbook Series * Topic * Contextual is statistically significant, 	χ$(1)=12.116. To break 

down the three-way effect, Chi-square tests on topic and contextual feature were performed 

separately for two series. There is a strong statistically significant association between topic and 

contextual feature in the PEP-A series, 	χ$(1)=164.033 and Cramer’s V=0.609; and in the 

UCSMP series, χ$(1)=154.610 and Cramer’s V=0.476. The odds of real-life problems are 26.85 

times higher when problems dealing with probability and combinatorics than quadratic relations 

in the PEP-A series, but also 8.25 in the UCSMP series. This implies that for both series, 

problems dealing with quadratic relations are more likely to be purely mathematical than real-

life, whereas problems dealing with probability and combinatorics are more likely to be real-life 

than purely mathematical, which is consistent with the previous analysis of contextual feature. 

5. Textbook Series * Presentational *Visual. The three-way loglinear analysis produced a 

final model retaining all effects. The likelihood ratio of this model is χ$(0)=0, p=1. This shows 

that Textbook Series * Presentational * Visual is statistically significant, 	χ$(1)=13.564. To break 

down the three-way effect, Chi-square tests on presentational and visual feature were conducted 

separately for two series. There is a moderate statistically significant association between 

presentational and visual feature only in the PEP-A series, 	χ$(1)=32.625 and Cramer’s V=0.271. 

The odds of worked-out examples are 3.94 times higher when problems are visual than non-

visual. This implies that worked-out examples in the PEP-A series are more likely to be visual 

than non-visual, whereas exercises are more likely to be non-visual than visual. 

6. Textbook Series * Topic * Mathematical. The three-way loglinear analysis produced a 

final model retaining all effects. The likelihood ratio of this model is χ$(0)=0, p=1. This shows 

that Textbook Series * Topic * Mathematical is statistically significant, 	χ$(1)=23.095. To break 

down the three-way effect, Chi-square tests on topic and mathematical feature were performed 
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separately for two series. There is a moderate statistically significant association between topic 

and mathematical feature only in the PEP-A series, 	χ$(1)=23.327 and Cramer’s V=0.229. The 

odds of multi-step problems are 4.23 times higher when problems deal with quadratic relations 

than probability and combinatorics. This implies that problems dealing with quadratic relations 

are more likely multi-step than single-step, whereas problems dealing with probability and 

combinatorics are more likely single-step than multi-step. Additionally, there is a weak 

statistically significant association between textbooks and mathematical feature, 	χ$(1)=35.045 

and Cramer’s V=0.176. The odds of multi-step problems are 2.46 times higher when problems 

are from the PEP-A series than the UCSMP series. This seems to reveal a fundamental difference 

that the PEP-A series is more likely to present multi-step problems than the UCSMP series. 

7. Textbook Series * Mathematical *Visual. The three-way loglinear analysis produced a 

final model retaining all effects. The likelihood ratio of this model is χ$(0)=0, p=1. This shows 

that Textbook Series * Mathematical * Visual is statistically significant, 	χ$(1)=14.039. To break 

down the three-way effect, Chi-square tests on mathematical and visual feature were performed 

separately for two series. There is a moderate statistically significant association between topic 

and mathematical feature in the PEP-A series, 	χ$(1)=26.533 and Cramer’s V=0.245; and a weak 

association in the UCSMP series, 	χ$(1)=17.216 and Cramer’s V=0.159. The odds of multi-step 

problems are 30.96 times higher when problems are visual than non-visual in the PEP-A series, 

but also 2.26 in the UCSMP series. This implies that multi-step problems are more likely to be 

visual than non-visual, while single-step problems are more likely to be non-visual than visual. 

Summary 

The word frequency analysis shows the most frequently used words in textbook content. 

In quadratic relations, both series stress circle, point, and more on the equation than graphical 



 

97 

representation. The UCSMP series highlights ellipse, hyperbola, and parabola, whereas the  

PEP-A series stresses coordinate, line, ellipse, and hyperbola. In probability and combinatorics, 

both series stress the numerical representation, probability, and more on permutation than 

combination. The UCSMP series strengthens the symbolic representation and binomial theorem, 

whereas the PEP-A series highlights the tabular and graphical representation.  

Focusing on textbook problems, the between-concept condition dominates problems 

across textbooks and topics, especially in quadratic relations and the PEP-A series. Four 

conditions are more evenly distributed in probability and combinatorics than quadratic relations. 

Both series exhibit a similar ratio of worked-out examples to exercises. For problems of the 

mixed condition, the UCSMP series provides quite fewer exercises than the PEP-A series. The 

UCSMP series exhibits a higher ratio of real-life to purely mathematical contexts than the PEP-A 

series. However, purely mathematical problems still account for a larger part in both series, 

especially in quadratic relations of the PEP-A series. Problems of the mixed condition are more 

likely to be set in real-life contexts. The PEP-A series exhibits a higher ratio of multi-step to 

single-step problems across topics than the UCSMP series, especially in quadratic relations. 

Complex multi-step problems tend to contribute to more between-concept connections in the 

PEP-A series, especially in quadratic relations. The UCSMP series shows a higher ratio of visual 

to non-visual problems than the PEP-A series, especially for problems of the within-concept 

condition. Overall, the PEP-A series exhibits more connections per problem in total and across 

topics, especially for between-concept connections in quadratic relations, than the UCSMP 

series, which addresses more within-concept connections per problem in total and in quadratic 

relations. Between-concept connections in quadratic relations and within-concept connections in 

probability and combinatorics are richer than the other topic. 
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Mathematical topic, contextual feature, and visual feature are most likely to contribute to 

the presence of four conditions of mathematical connections. The PEP-A series is more likely to 

embed connections in real-life than purely mathematical problems and problems dealing with 

quadratic relations than probability and combinatorics, whereas the UCSMP series is more likely 

to embed connections in purely mathematical than real-life problems and problems dealing with 

probability and combinatorics than quadratic relations. Both series are more likely to embed 

connections in visual than non-visual problems, have more problems of the between-concept 

condition in quadratic relations than probability and combinatorics, and include more problems 

of the within-concept condition in probability and combinatorics than quadratic relations. The 

PEP-A series is more likely to have problems of the mixed condition than the UCSMP series, 

while the UCSMP series is more likely to have problems of the within-concept condition than 

the PEP-A series. Statistically significant associations among problem features are observed. 

Problems dealing with quadratic relations are more likely to be purely mathematical than real-

life, whereas problems dealing with probability and combinatorics are more likely to be real-life 

than purely mathematical. Multi-step problems are more likely to be visual than non-visual, 

while single-step problems are more likely to be non-visual than visual. For the PEP-A series, 

problems dealing with quadratic relations are more likely to be multi-step than single-step, 

whereas problems dealing with probability and combinatorics are more likely to be single-step 

than multi-step. Worked-out examples are more likely to be visual than non-visual, while 

exercises are more likely to be non-visual than visual.  
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Research Question 2 

Unidirectional and Bidirectional Connections 

This study classified the directionality into two types—Unidirectional (Uni-) and 

Bidirectional (Bi-)—and analyzed their frequency for problems with different types of 

connections and topics across textbooks (see Table 16).  

Table 16. Frequency of Unidirectional and Bidirectional Connections Across Textbooks in 
Terms of Types of Connections and Mathematical Topics 
 

Textbook Type Topic Total  BCC WCC PC QR 
PEP-A 
(China) 

Directi-
onality 

Bi 299 (33.3%) 1 (0.9%) 23 (6.0%) 277 (44.2%) 300 (29.8%) 
Uni 599 (66.7%) 109 (99.1%) 359 (94.0%) 349 (55.8%) 708 (70.2%) 

Ratio (Bi: Uni) 0.50 0.01 0.06 0.79 0.42 
UCSMP 
(U.S.) 

Directi-
onality 

Bi 272 (32.0%) 38 (18.8%) 85 (15.5%) 225 (44.8%) 310 (29.5%) 
Uni 577 (68.0%) 164 (81.2%) 464 (84.5%) 277 (55.2%) 741 (70.5%) 

Ratio (Bi: Uni) 0.47 0.23 0.18 0.81 0.42 
Notes:  
a. BCC stands for between-concept connections; WCC stands for within-concept connections; PC stands for 
probability and combinatorics; QR stands for quadratic relations; Bi stands for bidirectional; Uni stands for 
unidirectional. 
b. The percentage of subtotal appears in parentheses after frequency. 
 
 

In Table 16, both series exhibit a similar ratio of bidirectional to unidirectional 

connections, overall 0.42. The majority of connections (more than 70%) are unidirectional. Both 

series show a similar ratio of bidirectional to unidirectional between-concept connections (0.50 

for PEP-A and 0.47 for UCSMP). Additionally, a higher ratio of bidirectional to unidirectional 

connections is observed in quadratic relations than probability and combinatorics (0.79>0.06 for 

PEP-A and 0.81>0.18 for UCSMP). It is noted that the ratio of bidirectional to unidirectional 

within-concept connections is extremely low in the PEP-A series (0.01), which indicates that the 

PEP-A series may lack learning opportunities for bidirectional within-concept connections. 
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Then, this study compared ratios of bidirectional to unidirectional connections combining types 

and topics across textbooks (see Figure 19). 

 

Figure 19. Ratios of bidirectional to unidirectional connections across textbooks 

In Figure 19, the UCSMP series exhibits a higher ratio of bidirectional to unidirectional 

for two types of connections in two topics than the PEP-A series, especially for within-concept 

connections in quadratic relations (0.44>0.00). Both series show a higher ratio of bidirectional to 

unidirectional between-concept connections in quadratic relations than the rest of the three 

groups. This suggests that problems dealing with quadratic relations show a richer network of 

bidirectional between-concept connections than problems dealing with probability and 

combinatorics.  

Next, the analysis moved to an in-depth comparison of bidirectional connections. 

Integration of Bidirectional Connections 

The study compared bidirectional within-concept connections first and then bidirectional 

between-concept pairs. Table 17 summarizes bidirectional within-concept connections across 

topics and textbooks. Self-loops are highlighted in the color purple. 
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Table 17. Bidirectional Within-concept Connections 
 

No. Textbook Topic Source Vertex Target Vertex Weight 
1 UCSMP PC Permutation (n, r); S Permutation (n, r); S2 3 
2 UCSMP PC Permutation (n, r); S2 Permutation (n, r); S 1 
3 UCSMP PC Combination (n, r); S Combination (n, r); W1 1 
4 UCSMP PC Combination (n, r); W1 Combination (n, r); S 1 
5 UCSMP PC (x + y)n; S (x + y)n; S3 6 
6 UCSMP PC (x + y)n; S3 (x + y)n; S 1 
7 UCSMP PC n factorial; S n factorial; S 1 
1 UCSMP QR Exterior of a circle; G Exterior of a circle; S1 1 
2 UCSMP QR Exterior of a circle; S1 Exterior of a circle; G 1 
3 UCSMP QR Interior of a circle; W Interior of a circle; S1 1 
4 UCSMP QR Interior of a circle; S1 Interior of a circle; W 1 
5 UCSMP QR Ellipse; W Ellipse; G 1 
6 UCSMP QR Ellipse; G Ellipse; W 1 
7 UCSMP QR Ellipse; W Ellipse; S 1 
8 UCSMP QR Ellipse; S Ellipse; W 2 
9 UCSMP QR Circle; S1 Circle; W 1 

10 UCSMP QR Circle; W Circle; S1 2 
11 UCSMP QR Ellipse; G Ellipse; S1 3 
12 UCSMP QR Ellipse; S1 Ellipse; G 6 
13 UCSMP QR Ellipse; S Ellipse; S 1 
14 UCSMP QR Parabola; W Parabola; W 1 
15 UCSMP QR Quadratic relation; S Quadratic relation; S 1 
1 PEP-A PC n factorial; S n factorial; S 1 

Notes: PC stands for probability and combinatorics; QR stands for quadratic relations; S stands for the symbolic 
representation; W stands for the written description; G stands for the graphical representation. 
 
 

Both the PEP-A and UCSMP series share one self-loop of n factorial from and to the 

symbolic representation. Except for this self-loop, all the rest of bidirectional within-concept 

connections are in the UCSMP series. Overall, the UCSMP series highlights connections of 

ellipse from the standard symbolic to graphical representation than the reverse (6 typical vs. 3 

reverse). The symbolic representation is dominating all bidirectional within-concept connections 

(20 in 23 unique edges, 36 in 39 total edges). Ellipse, circle, and the nth power of the binomial  

(x + y) are core concepts for bidirectional within-concept connections in the UCSMP series. 

Table 18 and Table 19 list bidirectional between-concept connections across textbooks in 

two topics, respectively. Same pairs across textbooks are highlighted in the same color. 
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Table 18. Bidirectional Between-concept Connections (Probability and Combinatorics) 
 

Note: MCP stands for Multiplication Counting Principle. 
 
 

In Table 18, bidirectional between-concept pairs in probability and combinatorics are all 

different across textbooks. Overall, the UCSMP series includes more distinct bidirectional 

between-concept pairs than the PEP-A series (10>4). Both series emphasize bidirectional pairs 

ending in probability or multiplication counting principle. For example, the PEP-A series stresses 

connections from event to probability (5 typical vs. 1 reverse); from combination (n, r) to 

probability (7 typical vs. 1 reverse); and from more than one combination to multiplication 

counting principle (5 typical vs. 1 reverse). The UCSMP series highlights connections from 

relative frequency to probability (13 typical vs. 1 reverse); from union of events to probability 

(11 typical vs. 1 reverse); from overlapping events to probability (6 typical vs. 1 reverse); and 

from independent events to multiplication counting principle (3 typical vs. 1 reverse). 

Additionally, the UCSMP series exhibits the emphasis on connections from the nth power of the 

binomial (x + y) to binomial coefficient (12 typical vs. 2 reverse).  
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Table 19. Bidirectional Between-concept Connections (Quadratic Relations) 

 
Notes: QR stands for quadratic relation; Axis of symm. stands for axis of symmetry. 
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In Table 19, both series share nine bidirectional between-concept pairs in quadratic 

relations. Overall, the PEP-A series employs more distinct pairs (30>26) with more balanced 

typical and reverse directions than the UCSMP series. For example, the PEP-A series covers 

connections from circle to center (18 typical and 22 reverse); from circle to radius (16 typical 

and 15 reverse); from circle to a point on the circle (11 typical and 10 reverse); from ellipse to 2a 

(3 typical and 4 reverse); and from parabola to a point on the parabola (6 typical and 6 reverse) 

in a balanced way. In comparison, the UCSMP series highlights more on connections from 

center to circle (13 typical vs. 5 reverse); from radius to circle (13 typical vs. 6 reverse); from 

circle to a point on the circle (6 typical vs. 1 reverse); from semicircle to a point on the 

semicircle (8 typical vs. 1 reverse); from ellipse to x-intercept (9 typical vs. 1 reverse); from 

ellipse to y-intercept (8 typical vs. 1 reverse); and from parabola to a point on the parabola  

(3 typical vs. 1 reverse), than the reverse direction. 

Additionally, both series include more connections from ellipse to foci (8 typical vs.  

3 reverse for PEP-A; 6 typical vs. 2 reverse for UCSMP); from hyperbola to vertices (4 typical 

vs. 1 reverse for PEP-A; 6 typical vs. 1 reverse for UCSMP); and from parabola to focus  

(13 typical vs. 4 reverse for PEP-A; 10 typical vs. 6 reverse for UCSMP), than reverse 

connections. What is more, both series embed connections between hyperbola and foci in a 

balanced way (8 typical and 6 reverse for PEP-A; 7 typical and 9 reverse for UCSMP). It is 

surprising that both series stress connections from ellipse or parabola to foci/focus, but integrate 

hyperbola-to-foci and foci-to-hyperbola connections in a balanced way.  

Next, the study moved to the analysis of the overall network of mathematical connections 

by digraphs and adjacency matrices. 
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Digraph Analysis for Subtopics 

This study then compared digraphs for between-concept connections in seven subtopics. 

Based on the number of vertices and edges (unique edges and total edges), dense, moderate, 

sparse, the sparsest, and aggregated digraphs are demonstrated. The following results follow the 

decreasing order of density, from dense to moderate, sparse, and the sparsest one. The special 

case of the aggregated digraph is analyzed at the end. 

Dense digraphs. Digraphs for the subtopic circle of both series are cases of dense 

digraphs, which includes more than 35 vertices, 60 unique edges, and 120 total edges. Figure 20 

and Figure 21 illustrate the digraphs for between-concept connections in the subtopic circle for 

the PEP-A series and UCSMP series, respectively. 

In Figure 20 and Figure 21, the PEP-A series presents a denser digraph with a similar 

number of vertices (48 and 49) but more unique edges (96>78) and total edges (240>175) than 

the UCSMP series. In looking at arrows to a specific vertex, connections ending in circle, center, 

and radius are emphasized in both series. Additionally, the PEP-A series stresses connections 

ending in line. Following the edges label (the item number indicating the sequence of textbook 

problems), both series start with connections between circle and its attributes (radius, center, 

etc.). Then, the PEP-A series addresses connections between circle and line or point (chord, 

perpendicular bisector, midpoint, a point on the circle, etc.), and finally between circle and 

ellipse or hyperbola. In contrast, the UCSMP series stresses connections between special circles 

(semicircle, interior circle, exterior circle, inner circle, outer circle) and their attributes, and 

finally between circle and line or unit circle or parabola or ellipse. 
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Figure 20. Digraphs for the subtopic circle (PEP-A) 
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Figure 21. Digraphs for the subtopic circle (UCSMP) 
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Digraphs for the subtopic ellipse (see Appendix B for full-size digraphs) for both series 

also belong to dense digraphs. Overall, the PEP-A series shows a denser network with more 

vertices (46>38), unique edges (71>66), and total edges (135>128) than the UCSMP series. For 

the density of arrows, the PEP-A series emphasizes bidirectional pairs involving ellipse, whereas 

the UCSMP series highlights connections starting from ellipse. This is consistent with the 

previous analysis that the UCSMP series integrates bidirectional pairs with an emphasis on 

connections starting from ellipse, e.g., from ellipse to x-intercept (9 typical vs. 1 reverse); from 

ellipse to y-intercept (8 typical vs. 1 reverse); and from ellipse to foci (6 typical vs. 2 reverse). 

Following the label of edges, the PEP-A series starts with connections between ellipse and its 

attributes, then between ellipse and line or point, and finally between ellipse and circle or 

hyperbola. The UCSMP series starts with connections from ellipse to its attributes, then between 

ellipse and circle, and finally between ellipse and line or hyperbola. This is consistent with the 

previous analysis that line is in the list of top 5 mathematical concepts and representations in the 

content of quadratic relations of the PEP-A series, but not in the UCSMP series. 

Moderate and sparse digraphs. The density of moderate digraphs is between dense and 

sparse digraphs, in which sparse digraphs address less than 30 vertices, 40 unique edges, and  

100 total edges. Figure 22 presents the digraphs for between-concept connections in the subtopic 

parabola for the PEP-A (a moderate digraph) and UCSMP series (a sparse digraph). 
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Figure 22. Digraphs for the subtopic parabola (above: PEP-A; below: UCSMP) 
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In Figure 22, for the subtopic parabola, the PEP-A series covers more vertices (32>20), 

distinct edges (56>33), and total edges (128>72) than the UCSMP series. Overall, the PEP-A 

series shows a moderate network, and the UCSMP series shows a sparse network due to fewer 

vertices and edges. For the density of arrows, both series embed connections involving parabola 

and a point on the parabola. Additionally, the PEP-A series stresses connections ending in line, 

angle, and slope, whereas the UCSMP series emphasizes connections involving directrix or 

vertex and connections ending in focus. Following the edges label, the PEP-A series starts with 

connections between parabola and its attributes, then between parabola and line or slope or 

intersection, and finally between parabola and triangle-related concepts. In comparison, the 

UCSMP series starts with connections between parabola and its attributes, then between 

attributes of parabola, and finally between parabola and line or circle. 

Digraphs for the subtopic hyperbola (see Appendix B for full-size digraphs) for the  

PEP-A series is a moderate digraph, whereas for the UCSMP series is a sparse digraph. The 

PEP-A series includes more vertices (42>24), distinct edges (51>30), and total edges (110>82) 

than the UCSMP series. For the density of arrows, both series address abundant connections 

involving hyperbola, especially the PEP-A series. Following the edges label, both series begin 

with connections between hyperbola and its attributes, then between hyperbola and line or 

intersection point, and finally the PEP-A series has connections between hyperbola and circle or 

ellipse whereas the UCSMP series has connections between hyperbola and ellipse. 

Sparse and the sparsest digraphs. There is an extreme sparse digraph which covers less 

than 10 vertices, 10 unique edges, and 40 total edges. Figure 23 shows the digraphs for between-

concept connections in the subtopic binomial theorem for the PEP-A (the sparsest digraph) and 

UCSMP series (a sparse digraph). 
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Figure 23. Digraphs for the subtopic binomial theorem (above: PEP-A; below: UCSMP) 
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In Figure 23, for the subtopic binomial theorem, the digraph for the PEP-A series is the 

sparsest of all digraphs. The sparse digraph for the UCSMP series shows more vertices (18>7), 

distinct edges (25>6), and total edges (77>30) than the PEP-A series. By the density of arrows, 

the PEP-A series stresses connections starting from the nth power of the binomial (x + y). The 

UCSMP series emphasizes connections ending in binomial coefficient. For the label of edges, 

the PEP-A series starts with connections from the nth power of the binomial (x + y) to binomial 

coefficient or term, then connections from term to binomial coefficient, and finally connections 

from the nth power of the binomial (x + y) to the sum of binomial coefficients. The UCSMP 

series starts with connections from the nth power of the binomial (x + y) to binomial coefficient 

and connections from term to exponent, then between Pascal’s triangles and combinations, and 

finally connections from binomial experiment to binomial coefficient or binomial probability. 

Digraphs for the subtopic counting problems (see Appendix B for full-size digraphs) are 

sparse digraphs. The UCSMP series includes more vertices (28>21) and distinct edges (28>21) 

but fewer total edges (71<77) than the PEP-A series. This indicates that connections in the PEP-

A series are more likely with heavy weights. Considering the density of arrows, both series stress 

connections ending in multiplication counting principle. The PEP-A series shows extra attention 

to connections ending in probability. Following the edges label, the PEP-A series starts with 

connections from counting problems to probability, then between event and two basic counting 

principles, and finally from counting problems to multiplication counting principle. In 

comparison, the UCSMP series starts with connections between set theory-related concepts and 

counting problems, then between event and multiplication counting principle, and finally 

between counting problems and multiplication counting principle. 
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Special: Aggregated digraphs. Digraphs for the subtopic probability are cases for 

aggregated digraphs, which include a moderate number of vertices and unique edges but a huge 

number of total edges. That is, the digraph contains few distinct edges but edges with large 

weights. The average weight of a unique edge is 4.0 or above. Figure 24 and Figure 25 present 

digraphs for between-concept connections in the subtopic probability for the PEP-A series and 

UCSMP series, respectively. 

 

Figure 24. Digraphs for the subtopic probability (PEP-A) 
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Figure 25. Digraphs for the subtopic probability (UCSMP) 

In Figure 24 and Figure 25, for the subtopic probability, the UCSMP series includes a 

similar number of concepts (32 and 35) with more unique edges (67>53) and total edges 

(298>209) than the PEP-A series. Overall, the UCSMP series presents a more aggregated 

digraph of edges with heavy weights than the PEP-A series. The average weight of a unique edge 

is 4.4 for the UCSMP series and 4.0 for the PEP-A series. For the density of arrows, both series 

highlight connections involving probability, connections starting from event, and connections 

ending in frequency. The PEP-A series also stresses connections involving relative frequency 

and connections ending in geometric models of probability, whereas the UCSMP series 
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highlights connections ending in outcome in the event. Following the edges label, the PEP-A 

series starts with connections between probability and trial or frequency or relative frequency, 

then between probability and event or counting problems, and finally between concepts in 

geometric models of probability. Connections between concepts in geometric models of 

probability involve the usage of tables and graphs. This is consistent with the previous word 

frequency analysis that the tabular and graphical representations are stressed in the content of 

probability and combinatorics of the PEP-A series, but not in the UCSMP series. In contrast, the 

UCSMP series starts with connections between probability and event or outcome, then between 

probability and simulation-related concepts or event, and finally between probability and 

counting problems or binomial experiments. 

Digraph Analysis for Topics 

This study then analyzed digraphs for two topics across textbooks. Figure 26 presents the 

thumbnail of digraphs for within-concept connections in quadratic relations for two series (see 

Appendix B for full-size digraphs).  

 

Figure 26. Digraphs for quadratic relations, within-concept connections (left: PEP-A; right: 
UCSMP) 
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From Figure 26, for problems dealing with quadratic relations, the UCSMP series shows 

a denser digraph of within-concept connections with more vertices (51>12), unique edges 

(44>8), and total edges (79>21) than the PEP-A series. The UCSMP series has unidirectional 

and bidirectional connections for four subtopics: (a) circle, semicircle, interior or exterior of a 

circle; (b) ellipse, exterior of an ellipse, and superellipse; (c) hyperbola, interior or exterior  

of a hyperbola, and line-hyperbola systems; and (d) parabola, exterior of a parabola, and line-

parabola systems, as well as self-loops. It is noticeable that the symbolic representation is  

largely involved and the direction from the symbolic to graphical representation is stressed in  

the whole network. However, the PEP-A series addresses only unidirectional within-concept 

connections of point, circle, ellipse, and parabola, mostly in the direction from the symbolic to 

graphical representation. For between-concept connections (see Appendix B for full-size 

digraphs), the PEP-A series presents a denser digraph for between-concept connections with 

more vertices (101>94), unique edges (244>187), and total edges (605>423) than the UCSMP 

series. Both series place ellipse and circle as two central concepts, and address hyperbola and 

parabola in descending order. It is consistent with previous digraph analysis for subtopics  

ellipse and circle are dense digraphs in both series, and digraphs for subtopics hyperbola and 

parabola are moderate (PEP-A) and sparse (UCSMP). The PEP-A series exhibits extra attention 

to line. 

Problems dealing with probability and combinatorics exhibit different trends of between-

concept and within-concept connections (see Appendix B for full-size digraphs). Overall, the 

digraph of between-concept connections for probability and combinatorics is sparser than that  

for quadratic relations, which is consistent with previous digraph analysis for subtopics. The  
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UCSMP series presents a denser digraph of both between-concept and within-concept 

connections with more vertices (63>50; 46>27), unique edges (115>69; 36>18), and total edges 

(426>293; 123>89) than the PEP-A series. Probability is the central topic for embedding 

between-concept connections in both series. The PEP-A series shows extra attention to 

multiplication counting principle, whereas the UCSMP series highlights trial and binomial 

coefficient. For within-concept connections, both series address one self-loop of the symbolic 

representation of n factorial, which is the only bidirectional within-concept connection in the 

PEP-A series. The UCSMP series addresses unidirectional and bidirectional connections for  

four types of counting problems: stings with repetition, unordered symbols with repetition, 

permutations, and combinations, mostly in the direction from the written description to the 

numerical or the symbolic representation or between two different written descriptions. 

Additionally, the UCSMP series covers within-concept connections for concepts in probability 

and binomial theorem. In contrast, the PEP-A series addresses only unidirectional connections 

for three types of counting problems (except unordered symbols with repetition).  

Adjacency Matrix Analysis for Topics 

This study then used corresponding adjacency matrix analysis to further explore the 

directionality of connections from a quantitative perspective. Figure 27 shows the adjacency 

matrix of within-concept connections in quadratic relations for the PEP-A series and UCSMP 

series, respectively (see Appendix C for full-size adjacency matrices). 
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Figure 27. Adjacency matrices for quadratic relations, within-concept connections (above: PEP-
A; below: UCSMP) 
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In Figure 27, for quadratic relations, the UCSMP series exhibits a larger 51*51 matrix 

than the PEP-A series (12*12). Looking at the on-diagonal block submatrices (highlighted in the 

pink color), the UCSMP series includes a more even distribution of entries in the submatrices 

than the PEP-A series, which covers large entries mostly in the left-down part of the submatrices. 

This suggests that within-concept connections are largely unidirectional in the PEP-A series, and 

more bidirectional pairs appear in the UCSMP series. For the diagonal, the PEP-A series has no 

non-zero entry, and the UCSMP series has three non-zero entries (highlighted in the purple 

color): (a) ellipse within the symbolic representation, (b) quadratic relation within the symbolic 

representation, and (c) parabola within the written description.  

Looking at each vertex for the in-degree or out-degree centrality, in the PEP-A series, 

circle and parabola in the graphical representation (8; 6) are the top vertices, which have the 

most connections leading to. Circle in the standard symbolic form for a quadratic equation and 

parabola in the standard symbolic form (6; 6) are the top vertices, which have the most 

connections leading out of. This indicates that most within-concept connections in the  

PEP-A series may be circle or parabola from the symbolic to graphical representation. In the 

UCSMP series, circle, ellipse, and hyperbola in the graphical representation (8; 8; 8) are the top 

vertices, which have the most within-concept connections leading to. Circle, hyperbola, and 

ellipse in the standard symbolic representation (16; 9; 7) are the top vertices, which have the 

most within-concept connections leading out of. Similarly, several within-concept connections in 

the UCSMP series may be circle, ellipse, and hyperbola from the symbolic to graphical 

representation. For in-connection and out-connection, most vertices in both series share values of 

0 to 3, except for the out-connection of circle in the standard symbolic representation (4) in the 

UCSMP series. 
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Then, the adjacency matrix of within-concept connections in probability and 

combinatorics for the PEP-A and UCSMP series (see Appendix C for full-size adjacency 

matrices) are compared. The UCSMP series is a larger 46*46 matrix than the PEP-A series 

(27*27). Looking at the on-diagonal block submatrices (highlighted in the yellow color), the 

UCSMP series shows a more even distribution of entries than the PEP-A series, which has large 

entries mostly in the left-down part of the submatrices. This suggests that the UCSMP series 

embeds more bidirectional connections than the PEP-A series. For the diagonal, both series share 

one entry (highlighted in the purple color): one self-loop of n factorial within the symbolic 

representation. 

Looking at the in-degree and out-degree of each vertex, in the PEP-A series, combination 

(n, r), permutation (n, r), permutation (n, n) in the numerical representation, and the nth power of 

the binomial (x + y) in the binomial expansion symbolic representation (35; 11; 10; 10) are the 

top vertices, which have the most connections leading to. Combination (n, r), permutation (n, r), 

permutation (n, n) in the written description (real-world context), and the nth power of the 

binomial (x + y) in the original symbolic expression (36; 12; 10; 10) are the top vertices, which 

have the most connections leading out of. This indicates that several within-concept connections 

in the PEP-A series are combinations or permutations from the written description (real-world 

context) to the numerical representation, and connections of the nth power of the binomial  

(x + y) within the symbolic representation. In the UCSMP series, the top four vertices for the  

in-degree centrality are combination (n, r), permutation (n, r), string with repetition, and 

permutation in the numerical representation (21; 16; 12; 12). The top four vertices for the out-

degree centrality are the written description (real-world) of string with repetition, combination 

(n, r), permutation, and permutation (n, n) (16; 14; 14; 12). Similarly, the UCSMP series 
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emphasizes unidirectional connections of different counting problems from the written 

description (real-world context) to the numerical representation. For in-connection and out-

connection, each vertex has a value of 0 to 3, except for the out-connection of combination (n, r) 

in the symbolic representation (4) in the UCSMP series. Table 20 lists the indices calculated 

from adjacency matrices for within-concept connections. 

Table 20. Adjacency Matrices Indices for Within-concept Connections 
 

Textbook & Topic Reciprocated 
Vertex Pair Ratio Self-loop Bidirectional 

Pair 
Reciprocated 
Edge Ratio 

PEP-A-QR 0 0 0 0 
UCSMP-QR 0.1714 3 6 0.2927 
PEP-A-PC 0 1 0 0 
UCSMP-PC 0.0938 1 3 0.1714 

Notes: QR stands for quadratic relations; PC stands for probability and combinatorics. 
 
 

As shown in Table 20, except for one self-loop in probability and combinatorics, there 

are no bidirectional within-concept connections in the PEP-A series. The UCSMP series exhibits 

a low number of bidirectional within-concept connections, especially in probability and 

combinatorics. Ratios for reciprocated vertex pair and edge are still low. This indicates that most 

within-concept connections in probability and combinatorics are still unidirectional. 

Then, the analysis moves to between-concept connections. For quadratic relations, the 

corresponding adjacency matrix for the PEP-A series is 101*101, which is larger than the 94*94 

matrix for the UCSMP series (see Appendix C for full-size adjacency matrices). Looking at the 

non-zero entries (highlighted in the light blue color) above and below the diagonal, the PEP-A 

series has more symmetrical entries than the UCSMP series. Particular rows and columns have 

more non-zero entries than other rows or columns. This reveals that particular concepts are 

dominating the network of connections in quadratic relations. 
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For in-degree and out-degree centrality of vertices, in the PEP-A series, circle (64:53), 

ellipse (51:38), hyperbola (46:36), line (42:16), center (39:28), radius (35:19), and parabola 

(28:37) are the top vertices, which have more than 30 connections leading to or leading out of.  

In the UCSMP series, circle (46:38), ellipse (21:61), hyperbola (25:32), radius (22:19), and 

parabola (13:25) are the top vertices, which have more than 20 connections leading to or leading 

out of. It reveals that circle is a central concept involved in abundant connections for both series. 

Connections leading to line are stronger in the PEP-A series and connections leading out of 

ellipse are stronger in the UCSMP series, than the reverse direction.  

For in-connection and out-connection connectivity, the PEP-A series stresses ellipse 

(21:15), line (20:8), hyperbola (19:9), circle (12:6), and center (12:6) as the top vertices, which 

have more than 10 distinct connections leading to or leading out of. Even though circle is 

involved in more connections than ellipse, line, and hyperbola, the diversity of connections 

involving circle is limited. This indicates that connections involving circle may have large 

weights. What is more, ellipse, hyperbola, and line frequently appear as the starting or ending 

vertex of distinct between-concept connections in the PEP-A series. In particular, there are more 

distinct connections leading to line than leading out of line. In comparison, the UCSMP series 

stresses circle (14:15) and ellipse (9:21), which have more than 10 distinct between-connections 

leading to or leading out of. This reveals that many distinct connections in the UCSMP series 

may involve circle or start from ellipse. 

For probability and combinatorics, the matrix for the PEP-A series is 50*50, which is 

smaller than the 63*63 matrix for the UCSMP series (see Appendix C for full-size adjacency 

matrices). These matrices are smaller than that for quadratic relations, which is consistent with 

previous digraph analysis that digraphs for subtopics in quadratic relations are denser than 
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digraphs for probability and combinatorics. Comparing the non-zero entries (highlighted in the 

grey color) above-diagonal and below-diagonal, the UCSMP series includes more entries in the 

symmetrical position than the PEP-A series. It suggests that the UCSMP series embeds more 

bidirectional connections in probability and combinatorics than the PEP-A series. Also, both 

series have many large entries. It indicates that the weights of particular connections are large. 

For in-degree and out-degree centrality, probability (65:7), frequency (48:26), event 

(1:42), geometric models of probability (35:0), multiplication counting principle (34:1), and 

relative frequency (31:30) are the top vertices in the PEP-A series, which have more than  

30 between-concept connections leading to or leading out of. In the UCSMP series, probability 

(77:38), event (1:71), trial (34:21), and outcome (32:17) are the top vertices, which have more 

than 30 between-concept connections leading to or leading out of. This indicates that both series 

emphasize between-concept connections starting from event or ending in probability. The PEP-A 

series includes several connections ending in geometric models of probability and multiplication 

counting principle, as well as many bidirectional connections between frequency and relative 

frequency. The UCSMP series contains many connections involving trial and outcome. For  

in-connection and out-connection connectivity, both series stress probability (15:7 for PEP-A; 

10:14 for UCSMP), event (1:11 for PEP-A; 1:8 for UCSMP), and multiplication counting 

principle (7:1 for PEP-A; 7:3 for UCSMP) as the top vertices, which have the most distinct 

between-concept connections leading to or leading out of. This indicates that probability is the 

core concept as the starting or ending vertex of many distinct connections. Additionally, both 

series show many distinct connections starting from event and ending in multiplication counting 

principle. Compared to connectivity values of vertices in quadratic relations, concepts in 

probability and combinatorics have smaller in-connection and out-connection values, which 
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suggests the limited diversity of unique connections in probability and combinatorics. It is 

consistent with the previous analysis that the digraph for probability is aggregated. Table 21 

summarizes the indices calculated from adjacency matrices for between-concept connections. 

Table 21. Adjacency Matrices Indices for Between-concept Connections 
 

Textbook & Topic Reciprocated 
Vertex Pair Ratio 

Bidirectional 
Pairs 

Reciprocated 
Edge Ratio 

PEP-A (Quadratic Relations) 0.1402 30 0.2459 
UCSMP (Quadratic Relations) 0.1615 26 0.2781 
PEP-A (Probability and Combinatorics) 0.0615 4 0.1159 
UCSMP (Probability and Combinatorics) 0.0952 10 0.1739 

 

As shown in Table 21, the PEP-A series embeds more bidirectional between-concept 

pairs than the UCSMP series (30>26) in quadratic relations, whereas the UCSMP series shows a 

higher reciprocated vertex pair ratio (0.0952>0.0615; 0.1615>0.1402) and reciprocated edge 

ratio (0.1739>0.1159; 0.2781>0.2459) than the PEP-A series in two topics. Both series exhibit 

richer bidirectional between-concept connections in problems dealing with quadratic relations 

than problems dealing with probability and combinatorics. 

Summary 

Similarities and differences in the directionality of mathematical connections appeared in 

problems from popular U.S. and Chinese high school mathematics textbooks. Still, unidirectional 

connections account for a large part in both series. The UCSMP series shows a higher ratio of 

bidirectional to unidirectional connections than the PEP-A series across topics, especially for 

within-concept connections. More bidirectional connections are identified in quadratic relations 

and between-concept connections. For bidirectional pairs, the UCSMP series integrates more 

unique bidirectional within-concept connections in two topics than the PEP-A series, but shows  
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more typical than reverse connections. Connections involving specific concepts, such as ellipse, 

circle, and the nth power of the binomial (x + y), as well as more connections starting from the 

symbolic representation than the reverse direction are observed. For bidirectional between-

concept pairs, both series stress connections ending in probability or multiplication counting 

principle. In quadratic relations, the PEP-A series embeds more distinct bidirectional between-

concept pairs with more balanced typical and reverse directions than the UCSMP series. In 

probability and combinatorics, the UCSMP series integrates more distinct bidirectional between-

concept pairs than the PEP-A series, but still in an unbalanced way. 

Consider the network of between-concept connections for each subtopic, both series 

stress more on circle, ellipse (dense digraph), and probability (aggregated digraph) than the rest 

subtopics. Overall, the PEP-A series shows a denser digraph of between-concept connections for 

four subtopics of quadratic relations than the UCSMP series. In contrast, the UCSMP series 

presents denser digraphs of between-concept connections for three subtopics of probability and 

combinatorics than the PEP-A series. The density of arrows indicates that the PEP-A series 

highlights connections ending in line, angle, slope, whereas the UCSMP series stresses 

connections starting from ellipse and ending in focus, the number of outcomes in the event, and 

binomial coefficient. The flow of connections suggests that the PEP-A series shows extra 

attention to connections between subtopics of quadratic relations and point or line, whereas  

the UCSMP series stresses more on connections between subtopics of quadratic relations. The 

PEP-A series highlights connections between concepts in geometric models of probability, 

whereas the UCSMP series pays attention to connections between probability and binomial 

theorem or binomial experiment. 



 

126 

The network of between-concept and within-concept connections for each topic follows 

the trends exhibited in digraphs for seven subtopics. From the digraph analysis and the adjacency 

matrix analysis, the UCSMP series demonstrates a better condition in more distinct and total 

unidirectional and bidirectional within-concept connections in two topics than the PEP-A series 

(limited and almost unidirectional except for one self-loop). Both series stress within-concept 

connections of the symbolic-to-graphical representation of quadratic relations and the written 

description-to-numerical representation of counting problems, and share one same self-loop. The 

PEP-A series shows a denser network of between-concept connections in quadratic relations with 

balanced typical and reverse directions than the UCSMP series. In probability and combinatorics, 

the UCSMP series presents more distinct and total between-concept connections than the PEP-A 

series, but in unbalanced typical and reverse directions. Both series highlight connections 

involving circle, probability, and connections starting from event. Additionally, the PEP-A series 

stresses connections leading to line or geometric models of probability, whereas the UCSMP 

series stresses connections involving trial and outcome, and leading out of ellipse. 

Research Question 3 

The Placement of Mathematical Subtopics 

Similarities and differences in the placement of subtopics may influence the directionality 

of mathematical connections. 

For probability and combinatorics, both series follow the order of probability, counting 

problems (first permutation and then combination), and binomial theorem. Previous analysis 

indicated that both series stress probability (aggregated digraph) the most, then counting 

problems (sparse digraph), and the binomial theorem (sparsest digraph) the least. More 

connections in permutation than combination are also identified. This consistency supports the 
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conjecture that the emphasized direction is consistent with the sequence of subtopics in 

textbooks. Emphasized connections are mostly involved with concepts that appeared early in the 

sequence. Consider the underlying reasons, textbooks tend to extend prior knowledge to new 

concepts when presenting a new concept. Prior concepts are enhanced several times when 

introducing new knowledge. Concurrently, textbook problems follow a similar trend. It explains 

why the direction of strong connections (edges with large weight) is consistent with the direction 

that the curricular proceed. 

By contrast, in quadratic relations, two series have different placement of subtopics. The 

PEP-A series addresses circle in one chapter for Grade 10 and places ellipse, hyperbola, and 

parabola in another chapter for Grade 11. Due to the similar number of pages of one chapter, 

circle is the most emphasized subtopic in the PEP-A series. On the contrary, the UCSMP series 

places all subtopics in the order of parabola, circle, ellipse, and hyperbola in one chapter. Four 

subtopics are more equally emphasized in the UCSMP series. For both series, linear functions 

and quadratic relations are two topics placed far away in both textbooks. By the connection 

analysis, the PEP-A series exhibits more attention to connections involving the subtopic circle 

with large weights. The UCSMP series emphasizes more on connections between quadratic 

relations-related subtopics, whereas the PEP-A series stresses more on connections between 

quadratic relations-related subtopics and linear functions-related subtopics. The separation of 

subtopics in two chapters or textbooks or grade levels may weaken bidirectional connections 

between these subtopics. For example, the UCSMP series shows limited connections between 

linear function-related concepts and quadratic relations-related concepts. In comparison, the 

PEP-A series still pays attention to the transition from linear functions to quadratic relations, as 

well as connections from quadratic relations to linear functions, even though they are placed far 
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away in the curriculum. Son and Hu (2016) indicated that Chinese secondary school mathematics 

textbooks tended to give coherence in the organization of concepts across the curriculum. The 

culture of emphasizing the coherence of curriculum contributes to more connections between 

concepts that are placed far away. This indicates that the coherence and connectivity of the 

whole curriculum can be strengthened by providing more bidirectional connections between the 

prior and new knowledge that connected in nature.  

What is more, both series proceed in the algebraic-to-graphical direction for quadratic 

relations. At the same time, both series include few within-concept connections from the 

graphical to symbolic representation. This is consistent with previous studies that emphasized the 

curricular track, such as in Arithmetic-to-Algebra (Flanders, 1994; Lee & Wheeler, 1989) and in 

algebraic-to-graphical (Knuth, 2000b), which might lead to an emphasis on connections in a 

particular direction and thus hinder bidirectional connections.  

In sum, all the above supports the conjecture that the placement of subtopics may 

contribute to the relative strength of typical and reverse connections. The mathematical concepts 

and representations that appeared early in the curriculum seem to be stressed more than ones 

appearing later, which contributes to unbalanced typical and reverse connections. This suggests 

that connections from new concepts and representations to old ones could be strengthened to 

support bidirectional connections. Even though some subtopics may be placed far apart in the 

whole curriculum, intentional bidirectional connections between these subtopics are viable to 

enhance the connectivity of mathematics textbooks and the whole curriculum. 
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Unique Practices in the PEP-A Series 

The PEP-A series owns two specific practices that may influence learning opportunities 

for bidirectional connections. The first practice is interleaved example-exercise pairs. In an 

examination of approaches and practices in developing mathematics textbooks in China, Li, 

Zhang, and Ma (2019) suggested that the major design principle in selecting and arranging 

textbook problems is to match exercises with given worked-out examples. For each subtopic,  

the PEP-A series places all textbook problems in the layout: Interleaved Set 1 (worked-out 

examples-to-in-class exercises), Interleaved Set 2, …, After-class exercises (set A and set B). For 

example, for the subtopic ellipse (see Figure 28), the PEP-A series addresses example 1, 2, and 

3, then a set of in-class exercises, next example 4, 5, and 6, then a set of in-class exercises, and 

finally the after-class exercise set A and set B.  

 

Figure 28. Layout of textbook problems for the subtopic ellipse (PEP-A) 

In contrast, the UCSMP series owns the layout of example-to-exercise. For example (see Figure 

29), the UCSMP series follows the order of example 1, 2, and 3, and finally, a set of exercises. 
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Figure 29. Layout of textbook problems for the subtopic ellipse (UCSMP) 

As discussed before, interleaved examples and exercises may help students attain better 

transfer performance. Even though ratios of worked-out examples to exercises are similar across 

topics and textbooks, as indicated before, the interleaved example-exercise pairs in the PEP-A 

series may provide students with more cognitive support in attaining connections than the 

UCSMP series.  

The second practice is an indigenous practice, called Bianshi problems (where Bian 

stands for “changing” and shi means “form” in Chinese, can be translated as “variation” in 

English) (Sun, 2011a). Bianshi problems are defined as a group of mathematical isomorphic 

problems by changing the conditions, conclusions, or deduction process of the example problem, 

which facilitates connections by adding proper variations, discerning and comparing the 
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invariant essence, and prompting representational transitions step by step (Sun, 2011b; Sun, 

Wong, & Lam, 2005). For example, Table 22 illustrates an example of Bianshi problems. 

Table 22. An Example of Bianshi Problems in Factorization of Polynomial (Sun et al., 2005) 
 

Level 1: Given: x2+5x+6= (x + m) (x + n); m + n=5, m * n=6. 
Bianshi: Find the possible value of a and b that the polynomial can be factored. 
Level 2 x2+ax+6 
Level 3 x2+5x+b 
Level 4 x2+ax+b 
Level 5 x3+ax+b 
Level 6 xn+ax+b 

 

Prior studies have suggested that Bianshi problems might provide cognitive supports for 

connections. Bianshi emphasizes “general relationship” rather than “one-thing-at-the-time” 

design (Sun, 2011b). The “one-thing-at-the-time” design may miss the chance of discerning 

critical aspects between two or more topics. While in “general relationship” design, connections 

are created in comparing the invariant feature since comparisons seem to be the pre-condition to 

perceive the structure, dependencies, and relations (Sun, 2011a, 2011b). Bianshi problems not 

only draw learners into a “space of relations,” but also may work as an exemplar to increase 

variability in worked-out examples, exercises, and example-exercise pairs.  

Researchers have indicated that Chinese elementary school mathematics textbooks utilize 

Bianshi problems to support bidirectional connections in numerous topics, such as addition and 

subtraction (Sun, 2011b), the distributive property (Ding & Li, 2010), and multiplication and 

division (Xin et al., 2011). This study suggested that the Chinese high school mathematics 

textbook series, the PEP-A series, also adopts Bianshi problems to support bidirectional 

between-concept connections in quadratic relations. For example, Figure 30 shows a Bianshi 

problem sample in which step-by-step variations promote bidirectional connections.  
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Figure 30. Bianshi problem sample and solutions (PEP-A-E2.1, p. 42) 

As can be seen from Figure 30, exercise 2(1) involves connections from a, b, and foci on 

x-axis to ellipse; exercise 2(2) covers one more connection from a and c to b, then from a, b, and 

foci on y-axis to ellipse; and exercise 2(3) is a problem with multiple solutions, which is more 

complex than the previous two problems. In the last exercise, the first step is to get a and b 

calculated from (a+b) and c. The second step is to consider whether the foci of ellipse is on the  

x-axis and y-axis and then apply the appropriate formula. Exercise 2(3) relies on the knowledge 

students gain from the first two exercises 2(1) and 2(2). The sample Bianshi problem contains 

flexible bidirectional connections among ellipse, a, b, c, foci on x-axis, and y-axis (see Table 23). 

Table 23. Flexible Uses of Connections in Bianshi Problem Sample  
 

Exercise Given Information (Source) Need to Know (Target) 
2 (1) a, b, Foci on x-axis Standard equation of the ellipse 
2 (2) a, c, Foci on y-axis b, Standard equation of the ellipse 

2 (3) a+b, c a, b, Foci on x-axis, Foci on y-axis,  
Standard equation of the ellipse 

 

The Bianshi practice brings step-by-step variation, which makes problems more complex 

with more concepts. At the same time, the step-by-step variation provides proper cognitive 

supports to solve multi-step problems. Students gradually build diverse bidirectional connections 

in the problem-solving process. Overall, 82.26% of Bianshi problems dealing with quadratic 

relations include bidirectional between-concept connections. It supports the conjecture that 

Bianshi problems may promote diverse bidirectional between-concept connections.  
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Unique Practices in the UCSMP Series 

The UCSMP series owns two particular practices that may influence learning 

opportunities for bidirectional connections. 

The first practice is four different sections in the exercises: (a) covering the ideas  

(40%~ 50% of total), (b) applying the mathematics (20%~30% of total), (c) review (15%~25% 

of total), and (d) exploration (less than 5% of total) (see Figure 29). The first part, covering the 

ideas, usually contains more single-step problems with repetition. The second part, applying the 

mathematics, emphasizes real-life context problems. The third part, review, includes questions 

related either to previous content in the same chapter or to earlier chapters. Only problems 

related to quadratic relations and probability and combinatorics are included in this study.  

Several previous studies reported that many U.S. elementary school and middle school 

mathematics textbooks had a great deal of repetition (e.g., Alajmi, 2012; Pickle, 2012). This 

study identified consistent results that the UCSMP series exhibits many single-step problems 

without much variation, especially in the first section of exercises. For example, Figure 31 

presents sample exercises for the subtopic ellipse in the UCSMP series.  

 

Figure 31. Sample exercises in the subtopic ellipse (from UCSMP-AA, p. 821)  
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All these single-step exercises in Figure 31 include only unidirectional connections from 

ellipse to its attribute (e.g., focal constant, foci, x-intercept, y-intercept). By the connection 

analysis, this study reported that the UCSMP series stressed connections starting from ellipse, 

such as from ellipse to x-intercept (9 typical vs. 1 reverse); from ellipse to y-intercept (8 typical 

vs. 1 reverse); and from ellipse to foci (6 typical vs. 2 reverse). Also, the in-degree and out-

degree analysis showed that the UCSMP series had 21 connections leading to ellipse and  

61 connections leading out of ellipse. This supports the conjecture that repetition of simple 

single-step problems may shift the balance of typical and reverse connections.  

Additionally, the second part stresses the real-world application of mathematics. For  

the problem feature analysis, the UCSMP series exhibits a higher ratio of real-life to purely 

mathematical problems than the PEP-A series. This suggests that a separate section for real-life 

applications may be helpful to fulfill the reform call for real-life context problems. Furthermore, 

the third part includes a set of problems involving prior knowledge only, which may increase the 

weights of connections involving prior concepts and representations. If the review section 

addresses prior knowledge, new knowledge, as well as connections from the new to prior 

concepts and representations, a network of connections in balanced typical and reverse directions 

may be presented to learners. 

Consider the underlying reasons for the high degree of repetition in the UCSMP series, 

the intentions of textbook authors, as well as the cultural differences between the United States 

and China, may explain them. In an informal talk with Professor Zalman Usiskin, the former 

overall director of UCSMP, he indicated that their team intended to include such repetition to 

provide students with more opportunities to practice because students in the United States have 

fewer opportunities to practice, compared to students in China. High school students in China 
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generally have more opportunities for repetition by multiple rounds of exam-based reviews in 

school and classes in afterschool learning centers, like Kumon and Mathnasium. Even so, 

embedding too much repetition may shift the balance of typical and reverse connections in 

textbook problems. 

The second practice is the explicit objective: representations. The UCSMP series  

has been known for the SPUR (skills, properties, uses, and representations) approach to 

understanding. The representation dimension focuses on the ability to use concrete materials and 

models, or graphs and other pictorial representations. From Figure 32, bidirectional connections 

between the graphical and symbolic representation of quadratic relations are explicitly stressed. 

By the connection analysis, the UCSMP series demonstrates more unidirectional and 

bidirectional within-concept connections in quadratic relations than the PEP-A series. This 

supports the conjecture that the explicit objective of representations in textbooks may promote 

the diversity of within-concept connections. The former overall director of UCSMP indicated 

that they wanted the readers to make connections between representations (Usiskin, 2018). 

 

Figure 32. Summary of objectives of representations (from UCSMP-AA-T, p. 796B) 

Summary 

The placement of mathematical subtopics may contribute to the relative strength of 

typical or reverse connections. The PEP-A series tends to adopt the setting of interleaved 

example-problem pairs and Bianshi problems to enhance learning opportunities for bidirectional 
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connections. Excessive repetition in the UCSMP series may shift the balance of typical and 

reverse connections. Moreover, the explicit objective of incorporating representations in the 

UCSMP series may increase the diversity of bidirectional within-concept connections.  
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Chapter V 

CONCLUSIONS 

 

Summary 

Mathematical connection has been a major goal in mathematics education. Researchers 

have categorized two types: between-concept connections (cutting across two concepts) and 

within-concept connections (linking two representations of one concept). Based on directionality, 

unidirectional and bidirectional connections (a pair of a typical connection and a reverse 

connection) are recognized. The benefits of bidirectional connections are widely endorsed. 

However, prior studies have reported learners’ struggles in making bidirectional connections, 

and indicated that some curriculum materials and cognitive obstacles of reverse connections 

might hinder bidirectional connection-making moves.  

From the curriculum aspect, prior cross-national studies reported that some U.S. 

elementary and middle school mathematics textbooks lack learning opportunities for particular 

reverse connections, such as multiplication-division connections, while the Chinese counterparts 

include such reverse connections. Also, researchers have previously addressed differences in 

textbook-problem features. Standards-based U.S. elementary and middle school textbooks tend 

to have a higher ratio of exercises to worked-out examples and highlight real-life, single-step, 

visual problems, whereas the Chinese counterparts tend to show a higher ratio of worked-out 

examples to exercises and emphasize purely mathematical, multi-step, non-visual problems. 

However, few studies have explored high school textbook problems. From the cognitive aspect, 

reverse connections may bring certain cognitive obstacles. External representations and 

Cognitive Load Theory have suggested that well-designed interleaved example-exercise pairs 
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with particular problem features might promote mathematical connections. However, few studies 

have provided evidence on the potential cognitive supports in various problem features. 

Therefore, this study compared the directionality of mathematical connections in 

problems from popular U.S. and Chinese high school mathematics textbooks. It aimed to 

illuminate cross-national similarities and differences in embedding mathematical connections in 

textbook problems, as well as examine the relationship between mathematical connections and 

textbook-problem features, and thus provide suggestions for developing textbook problems with 

learning opportunities for balanced typical and reverse connections. 

This study selected popular high school mathematics textbooks stressing connections 

with similar textbook problem structures, PEP-A for China and UCSMP for the United States. It 

focused on (a) quadratic relations and (b) probability and combinatorics, which were identified 

as challenging core topics in which students had difficulties in making bidirectional connections. 

The results indicated that mathematical topic, contextual feature, and visual feature most likely 

influence the four conditions of connections. The PEP-A series presented a vigorous network of 

more unique and total between-concept connections, as well as more bidirectional pairs with 

balanced typical and reverse directions than the UCSMP series in problems dealing with 

quadratic relations. The UCSMP series showed a denser network of between-concept 

connections in probability and combinatorics, as well as within-concept connections in two 

topics than the PEP-A series, but in unbalanced typical and reverse directions. The placement of 

subtopics, interleaved example-exercise pairs, Bianshi problems, repetition, and the explicit 

objective of representation may influence the directionality of mathematical connections. 
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Conclusions 

For Research Question 1  

The word frequency analysis indicated that both series highlighted circle, probability, 

more on permutation and less on combination, the numerical representation in probability and 

combinatorics, more on the equation representation and less on the graphical representation in 

quadratic relations. In quadratic relations, the PEP-A series exhibited extra attention to line and 

less attention to parabola. In probability and combinatorics, the PEP-A series highlighted the 

tabular representation and the graphical representation, whereas the UCSMP series showed a 

focus on binomial theorem and the symbolic representation.  

This study examined more than 1,000 textbook problems, with a larger number of 

problems in the UCSMP series than in the PEP-A series, and slightly more in probability and 

combinatorics than in quadratic relations. The between-concept condition dominated problems 

across textbooks and topics, especially in quadratic relations. The loglinear analysis showed that 

the Mathematical Connection * Textbook Series * Topic interaction was statistically significant. 

A strong statistically significant association between connection and topic in the PEP-A series 

and a weak association in the UCSMP series were observed. Problems of the between-concept 

condition were more likely in quadratic relations than probability and combinatorics. Problems 

of the within-concept condition were more likely in probability and combinatorics than quadratic 

relations. Overall, the PEP-A series was more likely to embed connections in problems dealing 

with quadratic relations than the other topic, whereas the UCSMP series was more likely to have 

connections in problems dealing with probability and combinatorics than the other topic. 

Both the PEP-A and UCSMP series showed a similar presentational feature. Previous 

studies have shown that compared to the Chinese series, two widely used U.S. elementary school 
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textbooks had a much smaller portion of worked-out examples for additive inverses (U.S.: 9.0% 

and 5.7%; Chinese: 24.1%) while more worked-out examples for multiplicative inverses (U.S.: 

12.0% and 6.8%; Chinese: 9.5%) (Ding, 2016). For problems dealing with trigonometric 

functions, one U.S. high school textbook series exhibited a lower portion of worked-out 

examples (13.0%) than the Chinese counterparts (42.5%) (Fu & Zhang, 2018). For problems 

dealing with quadratic relations and probability and combinatorics, this study indicated that both 

series showed a similar portion of worked-out examples, around 20%. This suggests that 

presentational feature may differ in mathematical topics. Furthermore, the UCSMP series 

provided fewer exercises on average for problems of the mixed condition than the PEP-A series. 

Particularly, the PEP-A series exhibited a moderate statistically significant association between 

presentational and visual features. Worked-out examples were more likely to be visual than non-

visual in the PEP-A series. 

Considering the real-life problem orientation, the UCSMP series had a higher ratio of 

real-life to purely mathematical problems than the PEP-A series. This was consistent with 

previous studies showing that U.S. secondary school textbooks tended to have more real-life 

problems than the Chinese counterparts (e.g., J. Wang, 2017; X. Wang & Zhang, 2018). 

However, the majority of problems in both series were still purely mathematical. Furthermore, 

the fulfillment of the reform call for real-life problems differed in topics. Both series exhibited a 

strong statistically significant association between topic and contextual feature. Problems dealing 

with quadratic relations were more likely to be purely mathematical than real-life, whereas 

problems dealing with probability and combinatorics were more likely to be real-life than purely 

mathematical. What is more, the Mathematical Connection * Textbook Series * Contextual 

interaction was statistically significant. A moderate statistically significant association between 
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connection and contextual feature was observed in the PEP-A series and a weak statistically 

significant association in the UCSMP series. Overall, the PEP-A series was more likely to embed 

connections in real-life than purely mathematical problems, whereas the UCSMP series was 

slightly more likely to address connections in purely mathematical than real-life problems. 

For mathematical feature, the PEP-A series showed an extremely higher ratio of multi-

step to single-step problems than the UCSMP series, especially in quadratic relations. This 

finding was consistent with a previous study showing that UCSMP textbooks (Grades 7 and 8) 

had a larger portion of single-step problems than PEP textbooks (62.9% for UCSMP and 52.1% 

for PEP) (Zhu & Fan, 2006). In a study on two widely used U.S. elementary school textbooks, 

Kar et al. (2018) showed that the majority of problems were single-step (53.7% and 80.1%, 

respectively). In contrast, this study indicated that the majority of high school textbook problems 

in both series were multi-step. This suggests that mathematical feature may differ in grade levels. 

Additionally, the ratio of the between-concept condition was much higher than the rest three 

conditions. Furthermore, the PEP-A series exhibited a moderate statistically significant 

association between mathematical feature and (a) topic and (b) visual feature. Multi-step 

problems in the PEP-A series were more likely to be visual than non-visual problems, dealing 

with quadratic relations than probability and combinatorics. 

For visual feature, the UCSMP series exhibited a higher ratio of visual to non-visual 

problems than the PEP-A series. This was consistent with a previous study conducted by Hong 

and Choi (2018) that the UCSMP textbooks used visual information (graphs, tables, etc.) in 

23.0% of worked-out examples and 34.9% of exercises, as well as another previous comparison 

on U.S. and Chinese middle school mathematics textbook problems (Zhu, 2003). The ratio of 

visual to non-visual problems of the within-concept condition was particularly low in the PEP-A 
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series and high in the UCSMP series. Problems dealing with quadratic relations included more 

visual information than problems dealing with probability and combinatorics in both series. 

What is more, the Mathematical Connection * Textbook Series * Visual interaction was 

statistically significant. A moderate statistically significant association between connection and 

visual feature was observed in the PEP-A series. The PEP-A series was more likely to embed 

within-concept connections in non-visual than visual problems. Overall, problems with 

connections in both series were more likely to be visual than non-visual. 

This study identified more than 2,000 mathematical connections, mostly between-concept 

connections, especially in quadratic relations. The PEP-A series showed more connections per 

problem in total and across topics than the UCSMP series, especially for between-concept 

connections in quadratic relations. The UCSMP series had more within-concept connections per 

problem in total and in quadratic relations than the PEP-A series. Overall, between-concept 

connections in quadratic relations and within-concept connections in probability and 

combinatorics were richer than the other topic in both series. There was a weak statistically 

significant association between connection and textbook series. In terms of four conditions of 

connections, the PEP-A series was more likely to have problems of the mixed condition than the 

UCSMP series, whereas the UCSMP series was more likely to have problems of the within-

concept condition than the PEP-A series. 

For Research Question 2  

Different trends in the directionality of mathematical connections in popular U.S. and 

Chinese high school mathematics textbook problems were observed. Overall, more than 70% of 

connections were unidirectional. The UCSMP series showed a higher ratio of bidirectional to 

unidirectional for two types of connections in two topics than the PEP-A series. The ratio was 
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higher for between-concept than within-concept connections, as well as in quadratic relations 

than probability and combinatorics. This indicates that most bidirectional connections may 

appear as between-concept connections or in quadratic relations. 

For the integration of bidirectional connections, almost all bidirectional within-concept 

connections were in the UCSMP series, except for one self-loop in the PEP-A series. The 

symbolic representation was dominating, especially in the direction starting from the symbolic 

representation. Additionally, bidirectional within-concept connections concentrated on certain 

concepts, such as circle, ellipse, and the nth power of the binomial (x + y). Different trends were 

observed for bidirectional between-concept connections. In probability and combinatorics, the 

UCSMP series embedded more bidirectional pairs than the PEP-A series, but in unbalanced 

typical and reverse directions. Both series stressed connections ending in probability or 

multiplication counting principle. In quadratic relations, the PEP-A series employed more 

distinct bidirectional between-concept connections in a balanced way (the number of typical 

connections was similar to the number of reverse connections) than the UCSMP series. For 

example, in the UCSMP series, circle-to-center, circle-to-radius, x intercept-to-ellipse, foci-to-

ellipse, and focus-to-parabola were weaker than the reverse direction.  

Based on digraphs for between-concept connections for seven subtopics, both series 

presented dense digraphs for the subtopics circle and ellipse, and aggregated digraphs for the 

subtopic probability. All the rest of the digraphs for subtopics were sparse in the UCSMP series. 

The PEP-A series showed moderate digraphs for the subtopics hyperbola and parabola, a sparse 

digraph for the subtopic counting problems, and the sparsest digraph for the subtopic binomial 

theorem. Overall, the PEP-A series presented denser digraphs with more vertices and rich 

connections in quadratic relations-related subtopics than the UCSMP series, whereas the 
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UCSMP series showed denser digraphs in probability and combinatorics-related subtopics than 

the PEP-A series. The curriculum emphasis on circle, ellipse, and probability was evidenced 

again as the digraphs for these subtopics were denser than others. For the density of arrows, the 

PEP-A series had some aggregated connections ending in line, angle, and slope. The UCSMP 

series showed aggregated connections starting from ellipse and aggregated connections ending in 

focus, the number of outcomes in the event, and binomial coefficient. Following the flow of 

connections in quadratic relations, both series started with connections between subtopics and 

their attributes and ended with connections among these subtopics. The PEP-A series stressed 

connections between subtopics and line or point, whereas the UCSMP series emphasized 

connections among special circles, ellipse-circle, hyperbola-line or point, and among attributes of 

parabola. It implied that the UCSMP series stressed connections between quadratic relations-

related concepts, whereas the PEP-A series highlighted connections between quadratic relations-

related and linear function-related concepts. For probability and combinatorics, the PEP-A series 

stressed connections between concepts in geometric models of probability, whereas the UCSMP 

series stressed connections between probability and binomial theorem or binomial experiment. 

Considering the digraph and adjacency matrix for each topic, the UCSMP series showed 

a stronger network of within-concept connections with more concepts and representations, as 

well as more unique and total unidirectional and bidirectional connections in two topics than the 

PEP-A series. Compared to the UCSMP series, the PEP-A series addressed fewer within-concept 

connections that were almost all unidirectional except for one self-loop. Both series stressed 

some unidirectional connections with heavy weights, such as counting problems from the written 

description of a real-world context to numerical representation, and quadratic relations from the 

symbolic to graphical representation. For between-concept connections, the PEP-A series 
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presented a more balanced and stronger network of between-concept connections in quadratic 

relations with more concepts, connections (unique and total), and balanced bidirectional pairs 

(typical and reverse) than the UCSMP series. Circle was the central concept for both series to 

embed total between-concept connections in and out of. But connections involving circle had 

large weights due to their limited diversity in the PEP-A series. Ellipse and hyperbola were the 

central concepts to embed distinct connections for both series. The PEP-A series showed extra 

attention to connections leading to line, whereas the UCSMP series showed extra attention to 

connections involving special circles and connections leading to ellipse. More bidirectional pairs 

in quadratic relations appeared in the PEP-A series than the UCSMP series. The ratio of 

bidirectional to unidirectional connections, the reciprocated vertex pair, and the reciprocated 

edge in the PEP-A series were slightly lower than that in the UCSMP series. For probability and 

combinatorics, the UCSMP series showed a stronger network of between-concept connections 

with more concepts, as well as more unique and total unidirectional and bidirectional 

connections than the PEP-A series, but still in unbalanced typical and reverse directions. 

Probability was the core concept as the starting or ending vertex of many distinct and total 

connections. Both series also stressed distinct and total between-concept connections leading out 

of event. The PEP-A series paid extra attention to connections leading in geometric models of 

probability and bidirectional connections between frequency and relative frequency. The 

UCSMP series stressed connections involving outcome and trial. Overall, concepts in probability 

and combinatorics have smaller connectivity values than that in quadratic relations. This not only 

indicated the limited diversity of connections in probability and combinatorics, but also 

coincided with the digraph analysis for seven subtopics in which the subtopic probability showed 

aggregated digraphs. 
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Overall, the UCSMP series presented a more extensive network of within-concept 

connections as well as between-concept connections in problems dealing with probability and 

combinatorics than the PEP-A series. However, the UCSMP series usually shifted the balance of 

typical and reverse connections. In contrast, the PEP-A series presented a stronger and balanced 

network of between-concept connections in problems dealing with quadratic relations.  

For Research Question 3  

Different placement of subtopics might be an underlying reason for the relative strength 

of typical and reverse connections. Concepts and representations that were taught early in the 

curriculum sequence tended to be overemphasized in the network of connections than those that 

were introduced later. For probability and combinatorics, both series followed the order of 

probability, counting problems, and binomial theorem. By the connection analysis, both series 

stressed probability (aggregated digraph) the most, then counting problems (sparse digraph), and 

the binomial theorem (sparse and the sparsest digraph) the least. The consistency supported the 

conjecture that the emphasized direction was consistent with the sequence of subtopics in 

textbooks. For quadratic relations, the PEP-A series addressed circle in one chapter and placed 

ellipse, hyperbola, and parabola in another chapter, whereas the UCSMP series placed all 

subtopics in one chapter in the order of parabola, circle, ellipse, and hyperbola. Both series 

placed linear functions and quadratic relations far apart. By the connection analysis, the PEP-A 

series stressed connections involving the subtopic circle with larger weights and highlighted 

connections between quadratic relations-related subtopics and linear functions-related subtopics, 

whereas the UCSMP series stressed more connections between quadratic relations-related 

subtopics. This suggested that the separation of subtopics may weaken bidirectional connections 

between these subtopics. Furthermore, intentional connections between concepts that were 
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placed far away may strengthen bidirectional connections and the connectivity of curriculum. 

Additionally, both series proceeded in the algebraic-to-graphical direction and embedded few 

within-concept connections of quadratic relations from the graphical to symbolic representation 

in textbook problems, which was consistent with many previous studies (e.g., Knuth, 2000b). 

Although both series had similar presentational features, the PEP-A series adopted 

carefully designed interleaved example-problem pairs, whereas the UCSMP series followed the 

layout of worked-out example-to-exercise. The PEP-A series might provide more cognitive 

support in making connections. Previous studies have suggested that Chinese elementary school 

textbooks utilize Bianshi problems to support bidirectional connections in numerous topics (e.g., 

Ding & Li, 2010; Sun, 2011b). This study found that the majority of Bianshi problems in the 

PEP-A series promoted bidirectional between-concept connections in quadratic relations. It was 

consistent with the connection analysis that the PEP-A series presented a dense network of 

between-concept connections in quadratic relations with balanced typical and reverse 

connections than the UCSMP series. The UCSMP series presented a degree of repetition of 

simple single-step problems, which might shift the balance between typical and reverse 

connections. The UCSMP series also used the explicit objective of representations to promote 

bidirectional within-concept connections. It was consistent with the connection analysis that the 

UCSMP series presented a denser network of within-concept connections than the PEP-A series. 

Theoretical Contributions 

Mathematical Connections and Directionality 

Previous studies of mathematical connections suggested that some standards-based U.S. 

elementary and middle school mathematics textbooks lacked learning opportunities for some 

reverse connections compared to their Chinese counterparts (e.g., Cai & Moyer, 2008; Ding, 
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2016). It was consistent with part of my result that the standards-based U.S. high school 

mathematics textbook problems in this study exhibited unbalanced learning opportunities for 

typical and reverse between-concept connections in quadratic relations, whereas the Chinese 

counterparts showed balanced typical and reverse connections. However, for problems dealing 

with probability and combinatorics, the standards-based U.S. high school mathematics textbook 

problems exhibited more learning opportunities for unidirectional and bidirectional between-

concept connections than the Chinese counterparts, but still in unbalanced typical and reverse 

directions. Furthermore, differences between the overall network of between-concept 

connections in two topics of the Chinese series may be explained by the differences in time and 

attention given to two topics. Statistics and probability were not required content until the late 

1990s, and their practical applications were largely ignored before the eighth curriculum reform 

in China (Li, Zhang, and Ma, 2019). In contrast, quadratic relations are long-standing 

emphasized content. Problems dealing with quadratic relations have gone through several 

revisions and improvements in past curriculum reforms. During this process, intentional 

bidirectional connections between concepts belonging to quadratic relations or topics that were 

placed far away in the curriculum sequence but connected in nature were adopted. 

Additionally, previous studies on U.S. high school mathematics textbooks conducted by 

Knuth (2000b) and a U.S. university-level Calculus textbook conducted by Chang, Cromley, and 

Tran (2016) indicated that most tasks in textbooks were in the symbolic-to-graphical direction. It 

was consistent with this study that current popular U.S. and Chinese high school textbook 

problems in this study still lacked learning opportunities for connections moving from the 

graphical to symbolic representation of quadratic relations. Over the past 30 years, researchers 

have reported students’ difficulties in graphical-to-algebraic/symbolic connections or over-
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reliance on the algebraic/symbolic methods in graphical-favored situations worldwide, such as in 

the United States (e.g., Blume &Heckman, 1997; Confrey, Millman, & Piliero, 1993; Knuth, 

2000b; Larson & Zandieh, 2013; Leinhardt et al., 1990; McCoy, 1994; Trigueros & Martínez-

Planell, 2010); China (He & Qi, 2017); Israel (Zaslavsky, 1997); Canada (Hillel, 2000); Cyprus 

(Elia et al., 2007); and Belgium (De Bock, Van Dooren, & Verschaffel, 2015). The consistency 

between students’ difficulties and the lack of learning opportunities offered in textbook problems 

for graphical-to-symbolic connections supported the conjecture that limited learning 

opportunities in textbook problems might contribute to students’ difficulties in making 

bidirectional connections. This leads to some practical implications that a sparse network of 

connections, i.e., the lack of learning opportunities for particular connections in textbook 

problems, may hinder learners’ connection-making moves and thus influence their learning 

progress in mathematics. Also, this study supplemented previous studies that standards-based 

U.S. high school mathematics textbook problems embedded more unidirectional and 

bidirectional within-concept connections than the Chinese counterparts, especially in quadratic 

relations, but still in an unbalanced way. 

Furthermore, previous studies on the directionality have usually focused on one particular 

bidirectional pair (e.g., Cai & Moyer, 2008; Prodromou, 2012). This study supplemented 

previous studies by examining more than 50 bidirectional pairs and the network of connections 

and reaching a more generalized conjecture about the directionality. The stressed directionality 

was consistent with the prior-to-new knowledge direction. Connections from new to prior 

knowledge were largely overlooked, except for between-concept connections in the quadratic 

relations of Chinese textbooks. Repetition of single-step problems may shift the balance of 

typical and reverse connections. 
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Textbook-Problem Features 

Previous studies of textbook-problem features have suggested that standards-based U.S. 

elementary and middle school mathematics textbooks usually have more real-life, single-step, 

visual problems than the Chinese counterparts (e.g., J. Wang, 2017; Zhu, 2003; Zhu & Fan, 

2006). My study supported this finding by showing that the PEP-A series had more purely 

mathematical, multi-step, non-visual problems than the UCSMP series. Additionally, my study 

suggested that the fulfillment of the reform call for real-life problems differed in topics. Both 

series showed a strong statistically significant association between topic and contextual feature. 

Problems dealing with quadratic relations were largely set in purely mathematical than real-life 

contexts, whereas problems dealing with probability and combinatorics were more likely to be 

real-life than purely mathematical. What is more, there was a statistically significant association 

between textbook series and mathematical feature. Multi-step problems were more largely 

employed in the PEP-A series than the UCSMP series.  

However, for presentational feature, previous studies have indicated that many standards-

based U.S. mathematics textbooks included more exercises than worked-out examples, compared 

to their Chinese counterparts (e.g., Ding, 2016; Fu & Zhang, 2018; Li, Chen, & An, 2009). My 

study reported that the PEP-A series and the UCSMP series had a similar ratio of worked-out 

examples to exercises, which differed from the results of previous studies. On one hand, this 

could indicate that the presentational feature reflected in textbook problems of the elementary or 

lower secondary school level might not exist at the high school level. It also supports the finding 

by Hong and Choi (2014) that some of the characteristics of elementary school mathematics 

textbooks were not reflected in the analysis of secondary school mathematics textbooks. On the 

other hand, this could suggest that problems dealing with different topics showed varied 
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presentational feature. Ding’s (2016) study supported the finding that U.S. textbooks have a 

smaller portion of worked-out examples in additive inverses, but a larger portion of worked-out 

examples in multiplicative inverses than the Chinese counterparts. What is more, my study 

supplemented previous studies by showing a statistically significant association between 

presentational and visual feature in the PEP-A series. Worked-out examples were more likely to 

be visual than non-visual, whereas exercises were more likely to be non-visual than visual.  

Previous studies have indicated that curriculum and cognitive aspects may influence 

connection-making moves (e.g., Goldin & Shteingold, 2001; Knuth, 2000b). My study also 

supplemented previous studies by demonstrating that mathematical topic, contextual feature, and 

visual feature had a statistically significant association with mathematical connections and 

textbook series. Problems of the between-concept condition were more likely to deal with 

quadratic relations than probability and combinatorics. This was consistent with the finding that 

the network of between-concept connections in quadratic relations was denser than that in 

probability and combinatorics. This suggests that the strength of the network of connections of a 

specific topic might be related to the nature of mathematics itself. This leads to some practical 

implications that the richness of the network of connections for different topics is associated with 

its own nature, which may have an upper limit. 

New Methodology 

The new methodology proposed in my study not only broadens the scope of 

mathematical connection analysis, but also opens up the possibility of adopting new and efficient 

analytical tools to visualize, evaluate, and generalize features of connections. It supplements 

previous studies by combining concept, representation, connection, and, importantly, the whole 

network of connections and the directionality to visualize and assess connections. My study 
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suggests that the new methodology is a theoretical contribution to the current analysis of 

mathematical connections, which has several practical implications. 

Regarding the scope of the connection analysis, previous analysis has usually focused on 

a specific connection or concept or representation, e.g., graph-equation (Knuth, 2000b), fraction-

division (Weinberg, 2001), addition-subtraction (Cai & Moyer, 2008), multiplication-division 

(Xin et al., 2011), theoretical-experimental probability (Prodromou, 2012), Simpson’s Paradox 

(Lesser, 2001), the averaging algorithm (Cai, Lo, & Watanabe, 2002), the distributive property 

(Ding & Li, 2010), and two-variable functions (Trigueros & Martínez-Planell, 2010). However, 

merely analyzing concepts or representations may lose the other critical aspect and miss the 

structural characteristics of the network. Missing one connection/concept/representation would 

influence the rest of the connected components in the whole network. Therefore, my study not 

only examined a particular concept or representation or connection, but also evaluated the 

structure of the network and directionality. For example, the digraph and adjacency matrix 

analysis examined the network of connections in three dimensions: (a) the network (the digraph 

of varied density), (b) concepts and representations (vertices), and (c) connections and its 

directionality (directed edges). It broadened the scope of the current analysis of connections. 

Regarding the analytical tools used in previous studies, in general, researchers have 

counted the number or percentage of particular connections/concepts/representations or listed 

exemplary examples (e.g., Cai et al., 2005; Ding, 2016). In my study, several indices from Social 

Network Analysis (SNA), e.g., size, unique/total edges, in/out-degree, in/out-connection, 

reciprocated vertex/edge pair ratio, and self-loops, were used successfully to characterize the 

directionality and the network of connections. Directionality is a vital feature of connections. 

The strength of directionality, i.e., the relative strength of typical and reverse connections, 
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demonstrated a new perspective to evaluate the quality of connections. The proposed digraph and 

adjacency matrix analysis in this study was a successful attempt at visualizing and evaluating the 

structure of within-concept and between-concept connections from both qualitative and 

quantitative aspects. It produced meaningful insights into the flexibility, strength, connectivity, 

and extensiveness of the network to support bidirectional connections. My study not only 

validated that SNA could be used successfully to explore the quality of connections, but also to 

open up the possibility of adopting other useful tools from SNA to visualize and examine the 

quality of mathematical connections.  

Additionally, the new methodology had several practical implications. For the new 

learning theory for a digital age, Downes (2007) stated that connectivism is the thesis that 

“knowledge is distributed across a network of connections, and therefore that learning consists of 

the ability to construct and traverse those networks” (n.p.), which implied a relationship between 

the network of mathematical connections and the learning of mathematics. To be specific, 

diverse networks of connections can influence the learning of mathematics, and in reverse, the 

learning of mathematics can be assessed by the connection network that learners construct and 

traverse. Researchers have assessed learners’ understanding of mathematics by mathematical 

connections they construct. For example, Selinski et al. (2014) used the adjacency matrix to 

analyze connections that students made within and between concepts in Linear Algebra, and 

showed the usefulness of comparing differences in the structure of connections that students 

made as a way to examining their understanding. Jin and Wong (2015) investigated the number 

of incoming and outgoing connections (a) within individual concepts, (b) between pairs of 

concepts, and (c) all constructed by the whole class to evaluate the conceptual understanding of a 

class of 8th graders. They captured a gap in students’ understanding of equations and functions. 
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My study indicated that the assessment of students’ learning progress could be more 

comprehensive by adding the analysis of the network of connections they generated and the 

directionality. From this point of view, the new analysis may yield valuable insights into  

(a) learners’ difficulties in understanding concepts, representations, and connections; (b) gaps 

between the relative strength of typical and reverse connections; (c) a vivid demonstration of the 

knowledge network; and (d) the structural hole and flexibility of making within-concept and 

between-concept connections across the whole network. This leads to some practical conclusions 

that adopting the proposed framework to analyze the network of connections learners make can 

produce valuable information to improve the teaching and learning of mathematics. 

Recommendations and Limitations 

Recommendations 

The following are recommended for mathematics teachers and textbook authors to 

provide balanced learning opportunities for typical and reverse connections.  

For the direction in which the curricula proceed and the reverse direction, it seems viable 

for teachers and textbook authors to consider new-to-prior knowledge and prior-to-new 

knowledge connections at the same time, especially the new-to-prior knowledge connection. 

When two connected subtopics are split into two chapters or textbooks, teachers and textbook 

authors are urged to pay special attention to bidirectional connections between them. 

Connections articulated in the Common Core State Standards for Mathematics and learning 

trajectory maps are helpful in identifying subtopics or concepts being connected in nature. 

For external representations, current popular U.S. and Chinese high school mathematics 

textbook problems in this study showed the emphasis on the symbolic and numerical 

representation. Particular emphasis is recommended for having tasks leading out of the graphical 
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representation and leading to the symbolic representation in classroom instruction and textbooks. 

Clearly, it seems viable for teachers and textbook authors to consider increasing the diversity  

of representations used in instruction and textbook problems to provide various learning 

opportunities for rich and balanced typical and reverse connections.  

Digital interactive software can be used to embed multiple representations in textbook 

problems to support within-concept connections, such as interactive exercises and electronic 

textbooks. For example, several e-exercise platforms were developed and used in many countries 

for all levels (Gueudet, 2006). On one hand, the technology can be utilized to enhance the 

diversity of representations, e.g., the tabular representation (Gueudet, 2008), the graphical 

representation (Gueudet, Pepin, Restrepo, Sabra, & Trouche, 2018), and so on. Dynamic 

representations and animated help in the feedback section can integrate various representations, 

which embed rich learning opportunities for traversing the network of distinct representations 

and thus support the grasp of within-concept connections. On the other hand, these platforms can 

adjust the exercises to meet the needs of different students and embed variations of the same 

exercise. Similar exercises or the same exercise with different values, together with animated 

help that embeds multiple representations, can be arranged if students give an incorrect response 

and have difficulties in making connections. For high-achieving students, drill exercises can be 

avoided for the same type of problems if they produce a consistently correct answer. More multi-

step problems can be assigned to them to help students construct stronger and richer connections. 

In addition, e-textbooks afford dynamic representations which can display change of 

representations over time, transformations of graphical figures, and the like (Usiskin, 2018). 

More distinct within-concept connections may be available in e-textbooks. 
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For problem features supporting or hindering mathematical connections, teachers and 

textbook authors are encouraged to be cautious with the over-repetition of single-step exercises 

and the over-reliance on purely mathematical contexts with non-visual information. This may 

lead to connections in a particular direction with heavy weights and limited within-concept 

connections. Unbalanced opportunities for typical and reverse connections may hinder students 

from grasping bidirectional connections. Mathematics teachers are recommended to select 

textbook problems with balanced learning opportunities for typical and reverse connections.  

Limitations 

First, the word frequency analysis approach overemphasized some single-word concepts 

and representations in textbook content. For example, the single-word concept “event” is  

over-counted as it also appears in other multi-word concepts, such as overlapping events, 

complementary events, independent events, and mutually exclusive events. Therefore, the word 

frequency of the top 20 terms was not accurate due to some overemphasized single-word terms. 

Second, the classification of external representations also had limitations. The categories 

for the symbolic representation are different for two topics. For example, for probability and 

combinatorics, the symbolic representation (listed in textbooks) is divided into: original, 

polynomial, factorial, and binomial expansion; for quadratic relations, the symbolic 

representation is split into: standard form for a circle/ellipse/hyperbola/parabola, standard form 

for a quadratic relation, and other forms. It is hard to reach a common conclusion on whether 

these categories are enough or whether the classification is necessary.  

Third, the coding of mathematical connections was not entirely objective. Due to the 

limitation of time, the pre-coded connection list was provided to experienced mathematics 

teachers as the basis to recode and compile the final coding. The pre-coded list created bias. 
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Even though graduate students majoring in mathematics education conducted an inter-rater 

reliability check, some disagreements still existed. More coders from diversified fields, e.g., 

mathematicians and textbook authors, may improve the reliability and validity of the coding 

since the final coding significantly influences the results. 

Finally, the violation of assumptions for the loglinear analysis was a limitation. Problem 

features were not independent of each other. As the data set was large and variables were all 

essential, this study accepted the decrease in statistical power due to violations as it might not 

result in substantial loss of predictive power of the model. 

Future Research  

First, this study indicated that mathematical topic, contextual feature, and visual feature 

supported four conditions of mathematical connections. Future research can further determine 

the appropriate ratio of (a) real-life context to purely mathematical and (b) visual to non-visual 

problems, such that the real-life context and visual support in textbook problems can benefit the 

development of bidirectional connections. Also, cognitive load analysis of problems with 

connections in the weak direction, as well as an analysis of efficiency of underrepresented 

representation involved in within-concept connections, can be conducted to (a) understand 

students’ difficulties in grasping particular connections and (b) find possible ways to enhance 

students’ learning of the weaker direction. To improve the limited usage of meaningful visual 

information, new technology, such as dynamic geometry software (e.g., GeoGebra, Geometry 

Sketchpad, SketchUp), graphing technology (e.g., graphing calculators, Desmos), simulation 

software (e.g., Fathom, Flash), statistics software (e.g., Excel-Spreadsheet, Fathom), VR/AR-

based apps, interactive whiteboard, and online learning systems, can be used to embed more 
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graphical support to promote connection-making moves. Future studies may be done on the 

development of e-exercises embedding more visual information. 

Second, the analytical framework proposed to evaluate mathematical connections can be 

valuable in many other studies. Previous studies on mathematical connections may miss the 

fundamental structure of the network of connections. Therefore, it is recommended that 

examining concepts, representations, connections, and the whole network altogether may 

produce a complete, meaningful, and comprehensive analysis. For example, it can be used to 

assess mathematical connections in (a) other mathematical topics, (b) textbooks or curriculum 

standards in other countries, and (c) e-textbooks. Different trends of the directionality exist in 

two topics and two textbook series in this study. Using the framework to examine connections  

in other topics may provide a full image of the directionality issue. Exploring connections in 

textbooks or curriculum standards of other countries may unpack associations among the nature 

of mathematics, connections, and textbooks or curriculum standards in different cultural and 

social contexts. The development of technology has opened up opportunities for the progress of 

e-textbooks, and new theoretical frameworks are needed to analyze e-textbooks (Gueudet et al., 

2018). Currently, researchers use connectivity at the macro and micro levels to examine  

e-textbooks. Instead of merely counting connections, future studies can adopt more ideas from 

SNA to analyze the overall connectivity in e-textbooks. The digital affordance makes the 

connection analysis quicker and easier. 

Finally, the methodology used in my study can be extended to examine the network  

of mathematical connections that learners construct as a way to assess their conceptual 

understanding. Future studies can use this innovative method to visualize the network of 

mathematical connections and evaluate the progress of learners’ conceptual understanding. 
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Appendix A 

Tables 

1. The Concepts and Related Representations Table 

The following tables present the concepts in (a) probability and combinatorics and (b) quadratic 

relations. 

The Concepts and Related Representations Table (Probability and Combinatorics) 

# Concepts Representations Synonyms 

1 Experiment W W1 W2 W3 N S S1 S2 S3 D G P   

2 Outcome                           

3 Sample space                           

4 Event                           

5 Number of outcomes 
in the sample space 

                        N(S) 

6 Number of outcomes 
in the event 

                        N(E) 

7 Probability                           
8 Predicted probability                           

9 Fair                         Unbiased 

10 Biased                           

11 Randomly                         At random 

12 Empty set                         Null set 

13 Set                           

14 Subset                           

15 Equally likely                           

16 Frequency                           

17 Relative frequency                           

18 Union of events                         Union of sets 

19 Mutually exclusive 
events 

                        Disjoint sets 

20 Overlapping events                         Intersection of 
sets 

21 Complementary 
events 

                        Complement 
of E; Not E 

22 Addition Counting 
Principle 

                          

23 Independent events                           

24 Dependent events                           

25 Certain event                           

26 Impossible event                           
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27 Random event                           

28 Elementary event                           

29 String                         Ordered 
symbols 

30 Length of a string                           

31 String with repetition                         String with 
replacement 

32 More than one string 
with repetition 

                        More than one 
string with 
replacement 

33 Permutation                         String without 
replacement;  
String without 
repetition; 
Arrangement 

34 More than one 
permutation 

                        More than one 
string without 
repetition 

35 Multiplication 
Counting Principle 

                          

36 Permutations of n 
elements taken r at a 
time 

                        P (n, r) 

37 Permutations of n 
elements taken n at a 
time 

                        P (n, n) 

38 n factorial                         n! 

39 Products of 
consecutive integers 

                          

40 Derangement                           

41 Simulation                            

42 Random number                         Random digit 

43 Trial                           

44 The number of trials                           

45 Monte Carlo method                           

46 Estimated 
outcome/probability/
number of 
trials/number of 
outcomes 

                          

47 Expected count of an 
outcome 

                          

48 Expected count of an 
event 

                          

49 Observed count of an 
outcome 

                          

50 Law of Large 
Numbers 

                          

51 Possibility tree                           
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52 Branch point                         Node 

53 Leaves                           

54 Principle of 
Mathematical 
Induction 

                          

55 Combination                         Unordered 
symbols 
without 
repetition; 
Unordered 
symbols 
without 
replacement 

56 Combination of n 
elements taken r at a 
time 

                        C (n, r) 

57 Combination of n 
elements taken n at a 
time 

                        C (n, n) 

58 Unordered symbols 
with repetition 

                        Unordered 
symbols with 
replacement 

59 Pascal's Triangle                           

60 Row                         Row of 
Pascal's 
Triangle 

61 Binomial coefficients                           

62 The nth power of the 
binomial x + y 

                        (x + y)n 

63 Exponent                           

64 Term                         The nth 
element/term 

65 Binomial experiment                           

66 Binomial probability                           

67 The sum of binomial 
coefficients 

                        Sum (binomial 
coefficients) 

68 The sum of the 
squares of terms 

                          

69 The number of 0s                           

70 Probability theory                           

71 Classical models of 
probability 

                          

72 Geometric models of 
probability 

                          

73 Circle                           

74 Square                           

75 π                           

76 Area                           
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77 Length of time                           

78 Complex number                           

79 Normal number                           

 
 

The Concepts and Related Representations Table (Quadratic Relations) 
# Concepts Representations Synonyms 
1 Point W N S S1 S2 G T D P P 
2 Midpoint                     
3 Trisection point                     
4 Quarter point                     
5 Point on the line                     
6 Point on the perpendicular 

bisector 
                    

7 Point on the circle                     
8 Point on the semicircle                     
9 Point on the parabola                     
10 Point on the ellipse                     
11 Point on the hyperbola                     
12 Point on the x-axis                     
13 Point on the quadratic relation                     
14 Point outside the quadratic 

relation 
                    

15 Origin                   O 
16 Lattice point                     
17 Reflection point                     
18 Reflection                     
19 Angle                     
20 Line                     
21 Slope                     
22 Intercept                     
23 Median                     
24 Perpendicular                     
25 Perpendicular bisector                     
26 Perpendicular diagonal                     
27 Perpendicular segment                     
28 Right triangle                     
29 Hypotenuse                     
30 Equilateral triangle                     
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31 Isosceles triangle                     
32 Isosceles trapezoid                     
33 Chord                     
34 Distance from the chord to the 

center 
                    

35 Distance from the chord to the 
point on the circle 

                    

36 Tangent point                     
37 Tangent line                     
38 Tangent circle                     
39 Parabola                     
40 Focus                   F 
41 Vertex                      
42 Directrix                     
43 Direction                   Open up or 

open down 
44 Distance between the focus and 

the directrix 
                  p 

45 Distance between the focus and 
the vertex 

                  p/2 

46 Coefficients of x in the standard 
equation for a parabola 

                  2p 

47 Distance between a point on the 
parabola and the directrix 

                  d 

48 Distance between a point on the 
parabola and the focus 

                  PF 

49 Openness degree                     
50 Axis of symmetry                     
51 Circle                     
52 Radius                     
53 Diameter                     
54 Center                     
55 Concentric                     
56 Epicenter                     
57 Circumstance                      
58 Area                     
59 Speed                     
60 Length of time                     
61 Interior of a circle                     
62 Exterior of a circle                     
63 Semicircle                   Half-circle 
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64 Circumcircle                     
65 Inner circle                     
66 Outer circle                     
67 Ellipse                     
68 x-intercept                   The x-

coordinate of 
the point at 
which a graph 
crosses the x-
axis 

69 y-intercept                   The y-
coordinate of 
the point at 
which a graph 
crosses the y-
axis 

70 Range                     
71 Foci                   (c, 0) & (-c, 0); 

or (0, c) & (0, -
c); F1 & F2 

72 Foci on x-axis                     
73 Foci on y-axis                     
74 Distance between two foci                   F1F2; 2c 
75 Distance between a point on the 

ellipse and the left focus 
                  PF1 

76 Distance between a point on the 
ellipse and the right focus 

                  PF2 

77 Major axis                   A1A2 
78 Minor axis                   B1B2 
79 2a                   Length of the 

major axis; 
a>b 

80 2b                   Length of the 
minor axis; 
a>b 

81 Focal constant                   PF1+PF2; The 
constant sum 
of the 
distances from 
any point P on 
an ellipse to 
the foci 

82 Semimajor axis                     
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83 Semiminor axis                     
84 a                   Length of the 

semimajor 
axis; a>b 

85 b                   Length of the 
semiminor 
axis; a>b 

86 Center                    
87 Interior of an ellipse                     
88 Exterior of an ellipse                     
89 Superellipse                     
90 Shape of ellipse                     
91 Shape of superellipse                     
92 Scale change                   Sa,b; A 

horizontal 
scale change 
of magnitude a 
and a vertical 
change of 
magnitude b 
maps (x, y) 
onto (ax, by) 

93 Translation                   Ta,b; A 
transformation 
for all x and y 
that maps (x, 
y) onto (x+a, 
y+b) 

94 Eccentricity                   e; c/a 
95 Hyperbola                     
96 Focal constant                   2a; The 

absolute value 
of the 
difference of 
the distances 
from a point 
on a hyperbola 
to the two foci 
of the 
hyperbola 

97 Foci                   (c, 0) & (-c, 0); 
or (0, c) & (0, -
c); F1 & F2 
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98 Vertices                   A1 & A2; (-a, 
0) & (a, 0) 

99 Vertices on x-axis                     
100 Vertices on y-axis                     
101 Distance between a point on the 

hyperbola and the left focus 
                  PF1 

102 Distance between a point on the 
hyperbola and the right focus 

                  PF2 

103 Real axis                   2a 
104 Imaginary axis                   2b 
105 Semi-real axis                   a 
106 Semi-imaginary axis                   b 
107 Length                     
108 Volume                     
109 Perimeter                     
110 Asymptote                     
111 Perpendicular asymptotes                     
112 Rectangular hyperbola                   Equilateral 

hyperbola 
113 Exterior of a hyperbola                     
114 Interior of a hyperbola                     
115 Quadratic relation                     
116 Coefficients of a quadratic 

relation 
                    

117 Shape of a quadratic relation                     
118 Line; Line                     
119 Line; Parabola                     
120 Tangent line; Circle                     
121 Quadratic-linear system                     
122 Line; Hyperbola                     
123 Line; Ellipse                     
124 Line; Circle                     
125 Quadratic-quadratic system                     
126 Circle; Circle                     
127 Circle; Circle; Circle                     
128 Ellipse; Hyperbola                     
129 Hyperbola; Hyperbola                     
130 Circle; Parabola                     
131 Parabola; Parabola                     
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132 Absolute-value function                     
133 Function                     
134 Non-function                     
135 No intersection                     
136 One intersection                     
137 Two intersections                     
138 Four intersections                     
139 Exterior of a parabola                     
140 Center on x-axis                     
141 Center on y-axis                     
142 Maximum                     
143 Minimum                     
144 Maximum point                     
145 Minimum point                     
146 Square                     
147 Exponent                     
148 Code                     
149 Unit circle                     
150 Transformation                     
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2. The Representations Table 

The following tables show the representations in (a) probability and combinatorics and 

(b) quadratic relations. 

The Representations Table (Probability and Combinatorics) 
Representations Coding and Explanation 
Written Description W: Situations except W1, W2, W3 

W1: In real-world context without mathematical feature 
W2: With mathematical feature 
W3: List of outcomes 

Numerals N 
Symbolic Expressions S: Original symbolic expression 

S1: Polynomial expansion 
S2: Factorial expansion 
S3: Binomial expansion 

Diagrams D 
Pictures P 
Tables T 
Graphs G 

 
The Representations Table (Quadratic Relations) 
Representations Coding and Explanation 
Written Description W 
Numerals N 
Symbolic Expressions S: Other forms except S1 and S2 

S1: Standard form for a circle/ellipse/hyperbola/parabola 
S2: Standard form for a quadratic equation: 
Ax2+Bxy+Cx2+Dx+Ey+F=0 

Diagrams D 
Pictures P 
Tables T 
Graphs G 
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Appendix B 

Digraphs  

1. Digraphs for Subtopics 

The following digraph is for the subtopic circle for the PEP-A series. 
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The following digraph is for the subtopic circle for the UCSMP series. 
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The following digraph is for the subtopic ellipse for the PEP-A series. 
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The following digraph is for the subtopic ellipse for the UCSMP series. 
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The following digraph is for the subtopic hyperbola for the PEP-A series. 
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The following digraph is for the subtopic hyperbola for the UCSMP series. 
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The following digraph is for the subtopic parabola for the PEP-A series. 
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The following digraph is for the subtopic parabola for the UCSMP series. 
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The following digraph is for the subtopic probability for the PEP-A series. 
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The following digraph is for the subtopic probability for the UCSMP series. 
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The following digraph is for the subtopic counting problems for the PEP-A series. 

 

  



 

196 

The following digraph is for the subtopic counting problems for the UCSMP series. 
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The following digraph is for the subtopic binomial theorem for the PEP-A series. 
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The following digraph is for the subtopic binomial theorem for the UCSMP series. 
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2. Digraphs for Topics 

The following digraph is for quadratic relations (between-concept connections) for the 

PEP-A series. 
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The following digraph is for quadratic relations (between-concept connections) for the 

UCSMP series. 
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The following digraph is for quadratic relations (within-concept connections) for the 

PEP-A series. 
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The following digraph is for quadratic relations (within-concept connections) for the 

UCSMP series. 
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The following digraph is for probability and combinatorics (between-concept 

connections) for the PEP-A series. 
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The following digraph is for probability and combinatorics (between-concept 

connections) for the UCSMP series. 
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The following digraph is for probability and combinatorics (within-concept connections) 

for the PEP-A series. 
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The following digraph is for probability and combinatorics (within-concept connections) 

for the UCSMP series. 
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Appendix C 

Adjacency Matrices  

1. Adjacency Matrix for Within-concept Connections 

The following digraph is for probability and combinatorics (within-concept connections) 

for the PEP-A series. 

 

Notes: X1: Probability; W. X2: Probability; W1. X3: Random event; W. X4: Random event; W1. X5: String with 
repetition; N. X6: String with repetition; W1. X7: Permutation (n, n); N. X8: Permutation (n, n); S2. X9: 
Permutation (n, n); W1. X10: Permutation (n, n); W2. X11: Permutation (n, r); N. X12: Permutation (n, r); S. X13: 
Permutation (n, r); S2. X14: Permutation (n, r); W. X15: Permutation (n, r); W1. X16: Permutation (n, r); W3. X17: 
Combination (n, r); N. X18: Combination (n, r); S. X19: Combination (n, r); S2. X20: Combination (n, r); W1. X21: 
Combination (n, r); W3. X22: n factorial; S. X23: Pascal's Triangle; D. X24: Pascal's Triangle; W. X25: (x + y)n; S. 
X26: (x + y)n; S1. X27: (x + y)n; S3.  
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The following digraph is for probability and combinatorics (within-concept connections) 

for the UCSMP series. 

 

Notes: Y1: Outcome; G. Y2: Outcome; W. Y3: Overlapping events; D. Y4: Overlapping events; S. Y5: Empty set; 
W. Y6: Empty set; W1. Y7: Relative frequency; G. Y8: Relative frequency; N. Y9: Unordered symbols w/ rep.; N. 
Y10: Unordered symbols w/ rep.; W1. Y11: Unordered symbols w/ rep.; W2. Y12: String with rep.; N. Y13: String 
with rep.; S. Y14: String with rep.; W. Y15: String with rep.; W1. Y16: String with rep.; W2. Y17: Permutation; N. 
Y18: Permutation; W. Y19: Permutation; W1. Y20: Permutation; W2. Y21: Permutation (n, n); N. Y22: Permutation 
(n, n); W1. Y23: Permutation (n, r); N. Y24: Permutation (n, r); S. Y25: Permutation (n, r); S2. Y26: Permutation (n, 
r); W1. Y27: Combination; W1. Y28: Combination; W2. Y29: Combination (n, n); N. Y30: Combination (n, n); S. 
Y31: Combination (n, n); W1. Y32: Combination (n, r); N. Y33: Combination (n, r); S. Y34: Combination (n, r); S2. 
Y35: Combination (n, r); W. Y36: Combination (n, r); W1. Y37: Combination (n, r); W2. Y38: Combination (n, r); 
W3. Y39: n factorial; N. Y40: n factorial; S. Y41: Pascal's Triangle; D. Y42: Pascal's Triangle; W. Y43: Sum 
(binomial coefficients); N. Y44: Sum (binomial coefficients); S. Y45: (x + y)n; S. Y46: (x + y)n; S3.   
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The following digraph is for quadratic relations (within-concept connections) for the 

PEP-A series. 
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The following digraph is for quadratic relations (within-concept connections) for the 

UCSMP series. 

 

Notes: Z1: Circle; G. Z2: Circle; S. Z3: Circle; S1. Z4: Circle; S2. Z5: Circle; W. Z6: Ext. of a circle; G. Z7: Ext. of 
a circle; S1. Z8: Ext. of a circle; W. Z9: Int. of a circle; G. Z10: Int. of a circle; S1. Z11: Int. of a circle; W. Z12: 
Semicircle; G. Z13: Semicircle; S. Z14: Ellipse; G. Z15: Ellipse; S. Z16: Ellipse; S1. Z17: Ellipse; W. Z18: Ext. of 
an ellipse; S1. Z19: Ext. of an ellipse; W. Z20: Superellipse; G. Z21: Superellipse; S1. Z22: Hyperbola; G. Z23: 
Hyperbola; S. Z24: Hyperbola; S1. Z25: Hyperbola; S2. Z26: Hyperbola; W. Z27: Ext. of a hyperbola; G. Z28: Ext. 
of a hyperbola; S. Z29: Int. of a hyperbola; G. Z30: Int. of a hyperbola; S. Z31: Line; Hyperbola; G. Z32: Line; 
Hyperbola; S. Z33: Line; Hyperbola; S1. Z34: Line; Hyperbola; W. Z35: Line; Parabola; G. Z36: Line; Parabola; 
S1. Z37: Parabola; G. Z38: Parabola; S1. Z39: Parabola; S2. Z40: Parabola; W. Z41: Ext. of a parabola; G. Z42: 
Ext.of a parabola; S1. Z43: Quadratic relation; S. Z44: Quadratic relation; S1. Z45: Quadratic relation; S2. Z46: 
Quadratic-quadratic system; S1. Z47: Quadratic-quadratic system; W. Z48: Rectangle; G. Z49: Rectangle; W. Z50: 
Two intersections; G. Z51: Two intersections; N.  
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2. Adjacency Matrix for Between-concept Connections 

The following digraph is for probability and combinatorics (between-concept 

connections) for the PEP-A series. 

 

Notes: A1: (x + y)n; A2: Addition Counting Principle; A3: Area; A4: Binomial coefficient; A5: Certain event; A6: 
Circle; A7: Combination of n elements taken r at a time; A8: Complementary events; A9: Divisible; A10: 
Elementary event; A11: Equally likely; A12: Estimated number of outcomes; A13: Event; A14: Experiment; A15: 
Fair; A16: Frequency; A17: Function; A18: Geometric models of probability; A19: Impossible event; A20: 
Independent events; A21: Length of a string; A22: Length of time; A23: More than one combination; A24: More 
than one permutation; A25: Multiplication Counting Principle; A26: Mutually exclusive events; A27: Not 
complementary event; A28: Number of outcomes in the event; A29: Number of trials; A30: Observed number of 
outcomes; A31: Outcome; A32: Overlapping events; A33: Pascal's Triangle; A34: Permutation; A35: Permutation 
(n, n); A36: Permutation (n, r); A37: Permutation; Combination; A38: π; A39: Probability; A40: Random event; 
A41: Random number; A42: Relative frequency; A43: Simulation; A44: Square; A45: String; A46: String with 
repetition; A47: Term; A48: Sum (binomial coefficients); A49: Trial; A50: Union of events.   

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39 A40 A41 A42 A43 A44 A45 A46 A47 A48 A49 A50 Out-degree Out-
Connection

A1 0 0 0 9 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 4 0 0 21 4

A2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 1

A4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1

A6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

A7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 7 1

A8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 4 3

A9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 7 1

A11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 1

A12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

A13 0 0 0 0 1 0 0 10 0 0 0 0 0 0 0 2 0 16 1 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 5 1 0 2 0 0 0 0 0 0 0 0 42 11

A14 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2

A15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 25 0 0 0 0 0 0 0 0 26 2

A17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1

A20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 1

A21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1

A23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1

A24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1

A25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

A26 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 16 2

A27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 2

A29 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

A30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

A32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

A34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1

A35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 5 1

A36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1

A37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

A38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A39 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 7

A40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1

A41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 1

A42 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0 0 0 0 0 0 0 0 0 0 0 30 4

A43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 1

A44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

A45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1

A46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 11 2

A47 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 1

A48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 6 2

A50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 2

In-
degr
ee

0 13 2 17 1 0 1 10 2 1 1 3 1 0 2 48 1 35 1 0 1 0 1 0 34 3 1 1 0 1 2 1 0 0 0 0 0 2 65 1 0 31 0 0 0 0 6 4 0 0 293

In-
Con
necti
on

0 1 1 2 1 0 1 1 1 1 1 3 1 0 2 6 1 5 1 0 1 0 1 0 7 2 1 1 0 1 2 1 0 0 0 0 0 2 15 1 0 3 0 0 0 0 1 1 0 0 69
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The following digraph is for probability and combinatorics (between-concept 

connections) for the UCSMP series. 

 

Notes: B1: (x + y)n; B2: Addition Counting Principle; B3: Biased; B4: Binomial coefficient; B5: Binomial 
experiment; B6: Binomial probability; B7: Branch point; B8: Combination; B9: Combination (n, r); B10: 
Complementary events; B11: Complex number; B12: Counting problem; B13: Divisible; B14: Equally likely; B15: 
Estimated number of outcomes; B16: Event; B17: Expected count of an event; B18: Expected count of an outcome; 
B19: Experiment; B20: Exponent; B21: Fair; B22: Frequency; B23: Independent events; B24: Leaves; B25: More 
than one combination; B26: More than one permutation; B27: More than one string with repetition; B28: 
Multiplication Counting Principle; B29: Mutually exclusive events; B30: Normal number; B31: Number of 
outcomes in the sample space; B32: Number of outcomes in the event; B33: Number of trials; B34: Observed count 
of an outcome; B35: Outcome; B36: Overlapping events; B37: Pascal's Triangle; B38: Permutation; B39: 
Permutation (n, n); B40: Permutation (n, r); B41: Permutation; Combination; B42: Possibility tree; B43: Predicted 
probability; B44: Principle of Mathematical Induction; B45: Probability; B46: Products of consecutive integers; 
B47: Proportion; B48: Random number; B49: Relative frequency; B50: Row; B51: Sample space; B52: Set; B53: 
Simulation; B54: String; B55: String with repetition; B56: Subset; B57: Term; B58: The number of 0s; B59: Sum 
(binomial coefficients); B60: The sum of the squares of terms; B61: Trial; B62: Union of events; B63: n factorial.  

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B52 B53 B54 B55 B56 B57 B58 B59 B60 B61 B62 B63 Out-degree Out-
Connection

B1 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 20 4

B2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

B3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B4 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2

B5 2 0 0 7 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 4 0 0 0 0 29 6

B6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

B8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 3 3

B9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 2

B10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 2

B11 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1

B12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 6 3

B15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B16 0 0 0 0 0 0 0 0 0 15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 10 7 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 71 8

B17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1

B20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 1

B23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1

B24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1

B26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 1

B27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

B28 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3

B29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1

B30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

B32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

B33 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

B34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1

B35 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 17 5

B36 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 3

B37 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

B38 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 2

B39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

B40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

B42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 1

B43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2

B45 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 6 9 0 0 1 6 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 7 1 0 38 14

B46 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 3

B47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B48 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 11 0 0 21 5

B49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 4

B50 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3 3

B51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 2

B52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 20 3

B54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 3

B56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B57 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 2

B58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B59 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2

B60 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

B61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 12 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 4

B62 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 4

B63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 2

In-
degr
ee

6 8 2 27 0 13 0 4 2 15 0 1 2 4 11 1 6 19 0 11 2 24 1 11 0 0 0 24 4 2 3 10 1 0 32 10 2 0 2 2 0 10 1 0 77 0 1 0 17 0 0 1 2 1 2 1 1 1 5 1 34 7 2 426

In-
Con
necti
on

4 2 2 5 0 1 0 4 1 1 0 1 1 3 2 1 1 3 0 2 2 5 1 2 0 0 0 7 3 2 1 8 1 0 5 3 2 0 2 2 0 2 1 0 10 0 1 0 3 0 0 1 2 1 1 1 1 1 2 1 4 2 1 115
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The following digraph is for quadratic relations (between-concept connections) for the 

PEP-A series. 

 

Notes: C1: 2a; C2: 2b; C3: 2c; C4: 2p; C5: Point; C6: Point on the circle; C7: Point on the ellipse; C8: Point on the 
hyperbola; C9: Point on the line; C10: Point on the parabola; C11: Point on the quadratic relation; C12: Point on the 
x-axis; C13: Point on the y-axis; C14: Point outside the quadratic relation; C15: Angle; C16: Area; C17: Asymptote; 
C18: Axis of symmetry; C19: Center; C20: Center on x-axis; C21: Center on y-axis; C22: Chord; C23: Circle; C24: 
Circle; Circle; C25: Circumcircle; C26: Congruent triangles; C27: Diameter; C28: Directrix; C29: Distance from the 
chord to the center; C30: Distance from the chord to the point on the circle; C31: Ellipse; C32: Ellipse; Hyperbola; 
C33: Equilateral triangle; C34: Exterior of a circle; C35: Focal constant; C36: Foci; C37: Foci on x-axis; C38: Foci 
on y-axis; C39: Focus; C40: Hyperbola; C41: Hypotenuse; C42: Intercept; C43: Interior of a circle; C44: Isosceles 
trapezoid; C45: Isosceles triangle; C46: Length of time; C47: Line; C48: Line; Circle; C49: Line; Ellipse; C50: Line; 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 C35 C36 C37 C38 C39 C40 C41 C42 C43 C44 C45 C46 C47 C48 C49 C50 C51 C52 C53 C54 C55 C56 C57 C58 C59 C60 C61 C62 C63 C64 C65 C66 C67 C68 C69 C70 C71 C72 C73 C74 C75 C76 C77 C78 C79 C80 C81 C82 C83 C84 C85 C86 C87 C88 C89 C90 C91 C92 C93 C94 C95 C96 C97 C98 C99 C10
0

C10
1

Out-degree Out-
Connection

C1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 3

C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2
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C77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2

C79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 4

C81 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1

C82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2

C83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 2

C84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

C85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3

C86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

C87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 5

C88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 1

C89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

C90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

C91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 2

C92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

C93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2

C94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1

C95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2

C96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 2

C97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

C98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

C99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

C10
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C10
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In-
degr
ee

17 7 1 0 0 13 4 0 4 12 1 2 0 1 8 0 4 1 39 0 0 3 64 0 5 3 1 10 4 1 51 0 0 4 4 17 0 0 13 46 0 2 3 0 0 0 42 0 0 0 0 0 3 3 7 4 4 14 4 0 3 4 10 28 1 0 5 7 0 0 6 0 35 2 0 2 2 4 2 13 0 0 1 0 1 0 19 0 4 0 5 0 2 0 5 10 0 0 0 4 4 605

In-
Con
necti
on

6 2 1 0 0 3 4 0 4 4 1 2 0 1 7 0 1 1 12 0 0 2 12 0 2 3 1 1 4 1 21 0 0 1 2 3 0 0 1 19 0 2 1 0 0 0 20 0 0 0 0 0 3 2 6 4 3 5 1 0 1 3 8 9 1 0 5 3 0 0 4 0 10 1 0 2 2 2 1 6 0 0 1 0 1 0 5 0 1 0 2 0 1 0 2 2 0 0 0 1 1 244



 

214 

Hyperbola; C51: Line; Line; C52: Line; Parabola; C53: Maximum; C54: Median; C55: Midpoint; C56: Minimum; 
C57: No intersection; C58: One intersection; C59: Openness degree; C60: Origin; C61: PF; C62: PF1; C63: PF2; 
C64: Parabola; C65: Parallel line; C66: Perimeter; C67: Perpendicular; C68: Perpendicular bisector; C69: 
Perpendicular diagonal; C70: Perpendicular segment; C71: Quadratic relation; C72: Quarter point; C73: Radius; 
C74: Range; C75: Rectangle; C76: Rectangular hyperbola; C77: Reflection point; C78: Right triangle; C79: Shape 
of ellipse; C80: Slope; C81: Speed; C82: Tangent circle; C83: Tangent line; C84: Tangent line; Circle; C85: Tangent 
point; C86: Trisection point; C87: Two intersections; C88: Vertex; C89: Vertices; C90: Vertices on x-axis; C91: a; 
C92: a+b; C93: b; C94: c; C95: d; C96: e; C97: p; C98: p/2; C99: x-axis; C100: x-intercept; C101: y-intercept. 
 

The following digraph is for quadratic relations (between-concept connections) for the 

UCSMP series. 

 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31 D32 D33 D34 D35 D36 D37 D38 D39 D40 D41 D42 D43 D44 D45 D46 D47 D48 D49 D50 D51 D52 D53 D54 D55 D56 D57 D58 D59 D60 D61 D62 D63 D64 D65 D66 D67 D68 D69 D70 D71 D72 D73 D74 D75 D76 D77 D78 D79 D80 D81 D82 D83 D84 D85 D86 D87 D88 D89 D90 D91 D92 D93 D94 Out-degree Out-
Connection

D1 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2

D2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1

D3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1

D4 0 0 0 0 0 1 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 7

D5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D6 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 5

D7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2

D10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 3

D12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2

D13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 4

D15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 3

D18 0 0 0 0 4 6 0 2 0 0 0 0 0 1 0 0 5 0 0 0 0 1 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 38 15

D19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 0 0 0 0 0 0 0 0 0 0 0 7 4

D20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2

D21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 2

D22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 10 4

D27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D28 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 9 4

D29 2 2 1 0 0 0 0 0 0 0 0 0 0 4 0 2 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 3 1 0 9 8 61 21

D30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 5 3

D31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1

D32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D34 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 14 4

D35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 15 6

D36 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 13 6

D37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D39 0 0 0 0 0 0 0 0 1 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 32 5

D40 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1

D41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1

D44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

D45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 2

D46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D48 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 5 3

D49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 8 3

D50 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 8 5

D51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D59 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1

D60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D62 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 8 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 25 5

D63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1

D66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3 3

D67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 6 3

D68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 3

D69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D72 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 2

D73 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 9 2

D74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1

D77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 4 4

D79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2

D80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D82 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2

D83 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2

D84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 2

D85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2

D86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 2

D89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 2

D91 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

D94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

In-
degr
ee

2 4 2 2 4 7 2 8 1 4 8 8 0 13 14 6 8 46 0 0 0 1 0 0 0 0 2 13 21 1 1 0 5 12 13 14 5 0 25 3 3 1 0 0 0 1 0 2 0 0 3 1 1 3 5 0 11 1 3 0 0 13 0 0 0 0 1 22 4 2 0 6 7 1 1 3 0 0 0 0 1 2 19 0 5 8 3 5 4 3 4 0 10 9 423

In-
Con
necti
on

1 3 2 2 1 2 1 5 1 4 5 1 0 6 2 5 4 14 0 0 0 1 0 0 0 0 1 5 9 1 1 0 2 6 2 3 3 0 8 1 2 1 0 0 0 1 0 2 0 0 3 1 1 3 4 0 8 1 1 0 0 3 0 0 0 0 1 8 2 1 0 3 3 1 1 2 0 0 0 0 1 1 8 0 3 3 3 2 2 1 4 0 2 2 187
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Notes: D1: 2a; D2: 2b; D3: 2c; D4: Point; D5: Point not on the circle; D6: Point on the circle; D7: Point on the 
directrix; D8: Point on the ellipse; D9: Point on the hyperbola; D10: Point on the line; D11: Point on the parabola; 
D12: Point on the semicircle; D13: Absolute-value function; D14: Area; D15: Asymptote; D16: Axis of symmetry; 
D17: Center; D18: Circle; D19: Circle; Circle; D20: Circle; Circle; Circle; D21: Circle; Parabola; D22: 
Circumcircle; D23: Code; D24: Coefficients of quadratic relations; D25: Concentric; D26: Diameter; D27: 
Direction; D28: Directrix; D29: Ellipse; D30: Ellipse; Hyperbola; D31: Epicenter; D32: Exponent; D33: Exterior of 
a circle; D34: Focal constant; D35: Foci; D36: Focus; D37: Four intersections; D38: Function; D39: Hyperbola; 
D40: Inner circle; D41: Interior of a circle; D42: Interior of an ellipse; D43: Lattice point; D44: Length; D45: 
Length of time; D46: Line; D47: Line; Circle; D48: Line; Ellipse; D49: Line; Hyperbola; D50: Line; Parabola; D51: 
Major axis; D52: Maximum point; D53: Minimum; D54: Minor axis; D55: No intersection; D56: Non-function; 
D57: One intersection; D58: Openness Degree; D59: Outer circle; D60: PF1; D61: PF2; D62: Parabola; D63: 
Parabola; Parabola; D64: Perimeter; D65: Perpendicular asymptotes; D66: Quadratic-linear system; D67: Quadratic-
quadratic system; D68: Radius; D69: Range; D70: Rectangular hyperbola; D71: Right triangle; D72: Scale change; 
D73: Semicircle; D74: Shape of quadratic relations; D75: Shape of superellipse; D76: Speed; D77: Square; D78: 
Superellipse; D79: Tangent line; D80: Tangent line; Circle; D81: Tangent point; D82: Translation; D83: Two 
intersections; D84: Unit circle; D85: Vertex; D86: Vertices; D87: Volume; D88: a; D89: b; D90: c; D91: e; D92: p; 
D93: x-intercept; D94: y-intercept. 


