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Abstract

Continuous-Time and Distributionally Robust Mean-Variance Models

Lin Chen

This thesis contains three works in both continuous-time and distributionally

robust mean-variance Markowitz models. In the first work, we study naive

strategies in the continuous-time mean-variance model. We propose a new type of

agent to approximate the dynamic of the naive agent by partitioning the time line

into numerous small equal length time intervals. Then, we prove that, the wealth

process of the proposed agent converges to that of the naive agent and derive the

explicit formula for the limiting wealth process and its corresponding portfolio

process. In the end, we compare the naive strategies with two equilibrium strategies

in the Black-Scholes market.

The second work contributes to the mean-variance model by considering its

distributionally robust counterpart, where the region of distributional uncertainty is

around the empirical measure and the discrepancy between probability measures is

dictated by the Wasserstein distance. We reduce this problem to an empirical

variance minimization problem with an additional regularization term. Moreover,

we extend the recently developed inference methodology to our setting in order to

select the size of the distributional uncertainty as well as the associated robust

target return rate in a data-driven way. Finally, we report extensive backtesting

results on the S&P 500 that compares the performance of our model with those of

several well-known models, including the Fama–French model and the



Black–Litterman model.

In the last part, we develop a distributionally robust model based on the

Sharpe ratio optimization problem. We transform the problem into an equivalent

convex optimization problem that can be solved numerically. In this model, we do

not need to choose the target return parameter, which has to be decided by

subjective judgement in previous distributionally robust mean-variance models. As

a result, the distributionally robust Sharpe ratio model is completely data-driven.

We also provide guidance on the choice of ambiguity set size by using a much

simpler scheme than that employed in the second work. In the end, we compare the

performance of this model to that of the second work and some other well-known

models on S&P500.
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Chapter 1

Introduction

1.1 The Classical Single-Period Mean-Variance

Markowitz Model

The Mean-Variance (MV) Markowitz model for portfolio selection formulated in

Markowitz (1952) and Markowitz (1959) is one of the best-known classical results

in financial economics. It tries to minimize the risk of the terminal portfolio wealth

subject to archiving a prescribed return target in a single-period investment. In the

MV model, the return of a portfolio is quantified by the expectation of the random

portfolio return, and the risk is measured by the statistical variance of the random

portfolio return. The MV model is widely used in the financial industry and has

provided a fundamental basis for classical financial theory. One of its important

consequences, the mutual fund theorem, contributes to the Capital Asset Pricing

Model (CAPM, see Sharpe (1964), Lintner (1965), and Mossin (1966)), which has

had a profound impact on the pricing of assets.

Since the emergence of the MV model, a vast number of extensions have been

created on this topic. There are two major fields among them. The first consists of

attempts to generalize the single-period MV model to its multi-period and continuous-

time versions. This extension has generated an interesting problem, called time-

1
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inconsistency, which will be elaborated in Section 1.2. Another direction is to robustify

the single-period MV model. The gold of this extension is to overcome the MV model’s

sensitivity to parameter estimation. The robust MV literature is discussed in Section

1.3.

This thesis contributes to both of these areas of exploration, particularly, in study-

ing naive agents under the continuous-time MV model and in building distributionally

robust MV and Sharpe-ratio models. The following two sections provide a review of

the related literature in these two fields.

1.2 Multi-Period and Continuous-Time MV Mod-

els and Time-Inconsistency

The problem of multi-period portfolio selection has been extensively studied, e.g.,

Hakansson (1971), Elton and Gruber (1974a), Elton and Gruber (1974b) and Samuel-

son (1969). In additions, Chen et al. (1971) examined the difficulties in finding optimal

solutions for a multi-period MV model. To be more precise, authors showed that,

in order to obtain the optimal solutions for a n-asset and t-period MV problem, we

need to solve (2n− 2)t−1 quadratic programming problems, which is computationally

expensive. Li and Ng (2000) introduced an embedding technique and successfully

derived the analytical optimal portfolio policy and mean-variance efficient frontier for

a multi-period MV model. Yin and Zhou (2004) studied discrete-time MV models

in a market with regime switching. On the other hand, exploiting the embedding

technique and linear-quadratic (LQ) framework control theory, Zhou and Li (2000)

solved the continuous-time MV problem with deterministic diffusion coefficients. A

more general problem was solved by Lim and Zhou (2002), where the underlying dy-

namic processes have random drift and diffusion coefficients. Continuous-Time MV

model under no bankruptcy constraint was studied in Bielecki et al. (2005a). Dai

et al. (2010) studied a continuous-time MV model with transaction costs, and Jin
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and Zhou (2015) explored the problem under ambiguity.

In both multi-period and continuous-time MV models, there arises the issue

of time-inconsistency. Multi-period and continuous-time MV problems are time-

inconsistent in the sense that the Bellman Optimality Principle does not hold. This

is due to the fact that, in the objective function, the variance does not satisfy the

so-called tower rule. As a consequence, the standard dynamic programming approach

can not be directly applied. In the absence of time-consistency, an “optimal” strat-

egy derived at a given moment is generally not optimal when evaluated at the next

moment; hence, there is no such things as a “dynamic optimal strategy” good for

the entire horizon, as is the case with a time-consistency model. Therefore, in the

time-inconsistent situation, instead of trying to find the optimal strategy, researchers

concentrate on describing the behaviors of different agents. Economists, starting from

Strotz (1956), have described the behaviors of three types of individuals in a time-

inconsistent situation. Type 1, the naive agent, always greedily chooses the optimal

strategy under his current preference and known information, without realizing that

his preference will constantly change in the future. Type 2 is the precommitted agent,

who optimizes only once at the initial time and then commits to the resulting strategy

during the whole time horizon. Type 3, the sophisticated agent, is aware of the fact

that his “future selves” will change his current strategy and chooses the best current

action, taking future disobedience as a constraint. The resulting strategy is called an

equilibrium, from which no incarnations of the agent at different times have incentive

to deviate.

Both precommitted agents and sophisticated agents have been studied in the

context of MV models. For the former, Richardson (1989) was probably the first

to study precommitted agents in a continuous-time MV model. Zhou and Li (2000)

developed an embedding technique to change the originally time-inconsistent MV

problem into a stochastic LQ control problem and derived explicit expression for the

precommitted optimal portfolio. Further studies and improvements have been put



CHAPTER 1. INTRODUCTION 4

forward by Lim and Zhou (2002), Bielecki et al. (2005a), and Xia (2005). With respect

to sophisticated agents, the game theoretical approach to time-inconsistency for MV

models was first studied in Basak and Chabakauri (2010). Bjork and Murgoci (2010)

considered a more general class of objective functions. Bjork et al. (2014) studied

the equilibrium MV strategy with a state-dependent risk aversion parameter. He

and Jiang (2017) investigated the equilibrium strategy (which they designated as the

“myopic” strategy) in a model in which they set the target return to be proportional

to the agent’s current wealth.

Compared with the rich literature on precommitted and sophisticated agents,

there are far fewer works that study the behavior of naive agents, especially in the

context of continuous-time MV model. In a discrete-time MV model, to investigate

the behavior of naive agent, we only need to find the optimal precommitted strategy

in each period. However, in a continuous-time MV model, the number of periods is

infinite and the time line is continuous. Therefore, the method applied in a discrete-

time MV model is not useful in the continuous-time MV model. Part of this thesis is

devoted to solving this problem.

1.3 Robust MV Models

The classical one-period Markowitz mean–variance model involves choosing a port-

folio weighting vector φ ∈ Rd (by convention, all of the vectors in this thesis are

columns) among d stocks to maximize the risk-adjusted expected return. The precise

formulation can be given as1

min
φ∈Rd

{
φ>VarP∗ (R)φ : φ>1 = 1, φ>EP∗ (R) = ρ

}
, (1.1)

where R is the d-dimensional vector of random returns of the stocks; P∗ is the prob-

ability measure underlying the distribution of R; EP∗ and VarP∗ are ,respectively,

1There are several mathematically equivalent formulations of the original mean–variance model.
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the expectation and variance under P∗; and ρ is the targeted expected return of the

portfolio.

It is well-known that this model has a major drawback when applied in practice.

On one hand, its solutions are very sensitive to the underlying parameters, namely the

mean and the covariance matrix of the stocks (see Michaud (1989) and Chopra and

Ziemba (1993)). On the other hand, EP∗ [R] and VarP∗ [R] are unknown in practice,

so one has to resort to the empirical versions of the mean and the covariance matrix

instead, which are usually significantly deviated from the true ones (especially the

mean, due to the notorious “mean-blur” problem).

This problem motivates the development of a “robust” formulation of the Markowitz

model to reduce the effects of errors brought by estimating EP∗ [R] and VarP∗ [R]. There

are two main techniques to robustify the MV model: the robust estimators method

and robust optimization.

The robust estimators method seeks to reduce the estimation error brought by

empirical estimators (sample mean and sample covariance). The sample mean and

sample covariance matrix are the maximum likelihood estimators (MLE) for EP∗ [R]

and VarP∗ [R] based on normally distributed returns. However, it is well-known that, in

financial markets, stock returns do not follow the normal distribution, which strongly

influences the efficiency of empirical estimators. Therefore, the purpose of the robust

estimator technique is to design estimators that will be stable even when the empir-

ical distribution deviates from the normal distribution. The pioneering work in this

regard was done by Huber (1964) and Hampel (1964). Based on their theories, numer-

ous methods have been developed to improve the estimators under the MV model.

Perret-Gentil and Victoria-Feser (2005) showed that the use of statistically robust

estimators instead of empirical estimators is highly beneficial for the stability proper-

ties of MV optimal portfolios under heavy tail distributions. Welsch and Zhou (2007)

investigated several robust statistical approaches (e.g., FAST-MCD) and penalization

to increase the stability of the MV portfolio. DeMiguel and Nogales (2009) proposed
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a one-step framework where the MV portfolio optimization and robust estimation are

performed in a single step.

The robust optimization technique attempts to solve the sensitivity problem by

introducing uncertainty (ambiguity) sets to incorporate the possible estimation er-

rors. More specifically, it assumes that the true parameters are within a pre-defined

uncertainty set. Then, the robust optimization model generates optimal solutions by

optimizing the worst-case performance over the uncertainty set. The framework was

first introduced in Ben-Tal and Nemirovski (1999) for linear programming and in Ben-

Tal and Nemirovski (1998) for general convex programming. Based on their work,

Goldfarb and Iyengar (2003) built a robust factor model to overcome the parameter

sensitivity in MV. Tütüncü and Koenig (2004) developed a robust MV optimization

model whose uncertainty set includes the most likely realizations of the input param-

eters. Garlappi et al. (2007) formulated a “multi-prior” robust model in which they

incorporate both parameter uncertainty and model uncertainty. Lu (2011) considered

a robust maximum risk-adjusted return (RMRAR) based on the same factor model

as that of Goldfarb and Iyengar (2003). They showed that they could outperform

Goldfarb and Iyengar (2003) by combining RMRAR and their joint uncertainty set.

Ye et al. (2012) introduced joint uncertainty regions over both the mean vector and

the covariance matrix of returns to reduce the conservatism brought by separable un-

certainty sets. All the works referred to in the preceding paragraph belong to classical

robust optimization, in which the uncertainty sets are typically conic bounded convex

sets. Another line of research is distributionally robust optimization (DRO).

The key difference between DRO and classical robust optimization is that, in

DRO models, the uncertainty set consists of a set of probability distributions. The

history of DRO dates back to the 1950s. Scarf (1958) was the first to study a single-

product newsvendor problem in order to maximize the worst-case expected profit,

where the worst-case expecation is taken over all the demand probability distributions

with only mean and variance known. This approach has been further developed by
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Zackova (1966), Dupacova (1987), Lagoa and Barmish (2002), Shapiro and Kleywegt

(2002), and Shapiro and Ahmed (2004). More recently, Chen et al. (2007) introduced

directional deviations as a way to characterize a family of distributions. Chen and

Sim (2009) applied the result of Chen et al. (2007) to build a goal-driven optimization

model. Delage and Ye (2010) studied a distributionally robust stochastic program in

which they constructed ambiguity regions involving means and covariance matrices

of the return vector.

Like the classical approach, DRO and its theoretical extensions have been widely

used in the field of portfolio selection. In particular, researchers have considered all the

possible distributions of returns as the ambiguity set and formulated distributionally

robust models to minimize the worst case portfolio risk. Two methods have typically

been used to construct the ambiguity set, the moment-based method and the statistical

distance-based method. The Moment-based technique considers distributions whose

moments (such as mean vector and covariance matrix) satisfy certain conditions (such

as being bounded). Lobo and Boyd (2000) was among the first to provide a worst-

case robust analysis with respect to second-order moment uncertainty within the

Markowitz framework. El Ghaoui et al. (2003) built a robust portfolio selection

model for worst case Value-at-Risk (VaR) where only the bounds of means and the

covariance matrices of the returns are known. Popescu (2007) derived robust solutions

to certain stochastic optimization problems, based on mean-covariance information

about the distributions underlying the uncertain vector of returns. Natarajan and

Sim (2010) considered a robust expected utility model in which no restriction (e.g.,

normality) was added on return distributions. Wozabal (2012) considered a robust

portfolio model with risk constraints based on expected short-fall, resulting in an

optimization problem that requires solving multiple convex problems. Zymler et al.

(2013) developed a robust joint chance constraints model assuming only the first and

second-order moments and support of the uncertain parameters are given.

The statistical-distance based method constructs the ambiguity set by consid-
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ering distributions that are within a certain distance from a nominal distribution

(usually empirical distribution or normal distribution), where the distance is a care-

fully chosen statistical distance. Popular choices for the statistical distance include

the φ-divergence (Bayraksan and Love (2015), Wang et al. (2016)), the Prokhorov

metric (Erdogan and Iyengar (2006)), the Kullback-Leibler divergence (Jiang and

Guan (2016)), and the Wasserstein distance. Glasserman and Xu (2014) built a ro-

bust apporach to quantify model risk and bound the impact of model error using the

KL-divergence, where they also characterized the worst case probability measures.

A Wasserstein distance is the optimal value for a specific optimal transport prob-

lem. The notion was first formulated by Monge (1781) and its theory developed by

Kantorovich (1942). It has been widely used in the study of distributionally robust op-

timization (DRO) problems. Pflug and Wozabal (2007) presented a Markowitz model

with distributional robustness based on the Wasserstein distance. Duality results for

Wasserstein DRO formulations in which the probability model appears linearly in the

objective function have been studied in Zhao and Guan (2018), Esfahani and Kuhn

(2018), and Gao and Kleywegt (2016). A general duality result (with conditions that

match the standard assumptions of the general optimal transport theory) is given

in Blanchet and Murthy (2019). Esfahani and Kuhn (2018) provide representations

for the worst-case expectations in a Wasserstein-based ambiguity set centered at the

empirical measure, and then apply their results to portfolio selection using different

risk measures, leading to models that differ from the Markowitz model.

Chapters 3 and 4 of this thesis use the Wasserstein distance, owing to several

advantages. The first advantage is its tractability. DRO problems with Wasserstein

ambiguity sets can often be reformulated as finite convex programs (see Gao and Kley-

wegt (2016) and Zhao and Guan (2018)), which can in practice usually be quickly

solved in numerically. Second, the Wasserstein distance does not require two proba-

bility distributions to have the same support set. This means that the ambiguity set

will include many possible distributions, even when we use the empirical distribution
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as the nominal distribution. Third, it has been shown (see Blanchet et al. (2016)) that

the Wasserstein ambiguity sets have a close connection with the use of regularization

in some classical machine learning models, which motivated us to find the connection

between a distributionally robust mean-variance (DRMV) model and the regularized

MV model.

1.4 Main Contributions of This Thesis

Despite enormous efforts to develop the Markowitz model in its continuous-time

and robust versions, many interesting research problems remain. On one hand, this

thesis develops a general methodology to study the naive agent in continuous-time MV

portfolio selection, which can also be applied in other time-inconsistent models such

Yarri’s dual theory (see Yaari (1987)) and Lope’s SP/A theory (see Lopes (1987)). On

the other hand, this thesis contributes to the robust MV model by developing a dis-

tributionally robust MV (DRMV) model with the Wasserstein distance. We show its

tractability and develop an approach to decide the size of the ambiguity set. We also

apply DRMV to the real U.S. market and find that it outperforms a number of well-

known strategies (e.g., Fama-French and Black-Litterman). In addition, we develop

a distributionally robust Sharpe ratio (DRSR) model. The remainder of this section

describes the three core problems of this thesis and highlights our contributions.

1.4.1 Naive Strategies in a Continuous-Time MV Model

As mentioned previously, to investigate the behavior of naive agents in the discrete-

time multi-period MV model, we need only to find the precommitted strategy in each

time period. In a continuous-time MV model, the notion of a “time period” does

not apply because the time is continuous. The naive agent in the continuous-time

MV model constantly changes his strategy, which makes it difficult to analyze his

behavior directly. Motivated by the multi-period case, we propose a new type of
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agent who behaves in a manner “in between” that of the precommitted agent and

the naive agent. The behavior of the new agent will approximte that of the naive one

and, under some conditions, converge to the naive strategy.

In Chapter 2 we propose a new type of agents so called “2n-committed agent”,

who discretizes the whole time horizon into 2n equal length time intervals, and we

obtain the precommitted strategies for each interval using the same approach as in

Zhou and Li (2000). Then, the 2n-committed agent implements the precommited

strategy in each time interval, where the initial wealth of every time interval is set

to be the terminal wealth of the previous interval. This construction leads to a

continuous wealth process that approximates the wealth process of the naive agent

as n increases. Then, by letting n → ∞, we prove that the previously obtained

wealth process converges weakly, and we derive explicit expressions for the limiting

wealth process and the corresponding portfolio process. This derived portfolio process

necessarily chooses optimal strategy at any time in line with the agent’s preference

at that point of time generating a naive strategy. Pendersen and Peskir (2017) also

considered the naive agent (referred to in their paper as “dynamic optimality”) in

a continuous-time MV model with a one-dimensional Black-Scholes market. They

conjectured the analytical formula for a naive agent from that of a precommited

agent without showing how they derived it. This method may not work under a

more general setting (e.g., one with more than one risky asset) or with some other

time-inconsistent problems. In contrast, our approach may be used for a much more

general setting.

We make two main contributions in this chapter. First, we derive the analytical

formulae for the naive agent in an MV model under a very general setting. Then, we

explore the relationship between the naive strategies and two equilibrium strategies,

those of Bjork et al. (2014) and He and Jiang (2017), in the Black-Scholes market,

where there’s only one risky asset and one risk-free asset. We find that naive strategies

are indeed more risk-seeking than equilibrium strategies. To be more precise, naive
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strategies tend to allocate more weight to the risky asset than equilibrium strategies.

This may be due to the fact that, the sophisticated agents take future disobedience

into consideration, while the naive agent only cares about the current state.

More importantly, we develop a general methodology, the “2n-committed agent”

approach, to study the behavior of the naive agent. This approach has three main

steps. The first step is discretization, in which we discretize the time line into many

small time periods and obtain the precommitted strategy in each period. By past-

ing all the precommitted strategies together, we construct the dynamic for the 2n-

committed agent. The second step is boundedness. Here, we prove the sequence of

wealth processes of the 2n-committed agent are uniformly bounded by a carefully

constructed integrable function. The last step is convergence. Here, we derive the

limiting process and prove that the sequence of wealth processces weakly converge to

the limiting process. This 2n-committed agent approach is not specially designed for

use with a continuous-time MV model. In fact, our methodology can be applied to

many other problems, including the general stochastic linear quadratic (LQ) control

problem (see Chen and Zhou (2020)).

1.4.2 A Distributionally Robust Mean-Variance Model

In Chapter 3, we are interested in studying a distributionally robust mean–

variance (DRMV) model, given by

min
φ∈Fδ,ᾱ(n)

max
P∈Uδ(Pn)

{
φ>VarP (R)φ

}
, (1.2)

where Pn is the empirical probability derived from historical information on the sample

size n, Uδ(Pn) is the ambiguity set, Fδ,ᾱ (n) is the feasible region of portfolios, and

EP[R] and VarP (R) denote, respectively, the mean and the covariance matrix under

P.

Intuitively, formulation (1.2) introduces an artificial adversary P (whose problem
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is that of the inner maximization) as a tool to account for the impact of the model

uncertainty around the empirical distribution. There are two key parameters, δ and

ᾱ, in this formulation, and they need to be chosen carefully. The parameter δ can

be interpreted as the power given to the adversary: The larger the value of δ, the

more power is given. If δ is too large relative to the evidence (i.e., the size of n), then

the portfolio selection will tend to be unnecessarily conservative. On the other hand,

ᾱ can be regarded as the lowest acceptable target return given the ambiguity set.

Naturally, the choice of ᾱ should be based on the original target ρ given in (1); but

one also needs to take into account the size of the distributional uncertainty, δ. Using

ᾱ = ρ will tend to generate portfolios that are too aggressive; it is more sensible to

choose ᾱ < ρ in a way such that ρ− ᾱ is naturally informed by δ.

Chapter 3 offers three main contributions. First, we show that (1.2) is equivalent

to an (explicitly formulated) non-robust minimization problem in terms of the em-

pirical probability measure in which a proper penalty term or “regularization term”

is added to the objective function. The explicit regularization term that is derived

from (1.2) is given in Theorem 2 below. This connects (and contrasts) to the directly

introduced use of regularization in variance minimization techniques that is widely

employed both in the machine learning literature and in practice to, among other

things, address the issue of overfitting. Our result shows that our robust strategies

are able to enhance out-of-sample performance with basically the same level of com-

putational tractability as the standard mean-variance selection. Note that the results

of Gao and Kleywegt (2016), Zhao and Guan (2018), and Esfahani and Kuhn (2018),

all of whom studied the duality and tractability for Wasserstein DRO, can not be

applied directly to our setting. The key reason is that, the object function in the

DRO formulation used by these authors appears to be linear in probability measure,

whereas in (1.2), it is quadratic.

Our second main contribution provides guidance regarding the choice of the size

of the ambiguity set, δ, as well as that of the worst mean return target, ᾱ. This
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is accomplished by adapting and extending the robust Wasserstein profile inference

(RWPI) framework, recently introduced and developed by Blanchet et al. (2016), to

our setting in a data-driven way that combines optimization principles and basic sta-

tistical theory under suitable mixing conditions on historical data. We also note that

the work of Esfahani and Kuhn (2018) provided guidance in choosing the uncertainty

size, δ. However, this choice of the uncertainty size deteriorates substantially with an

increase in the dimension of the underlying portfolio. Thus, as we will elaborate, we

employ an approach similar to that proposed in Blanchet et al. (2016), which must

be adapted and extended to our setting.

The last contribution empirically compares the performance of our DRMV strate-

gies with those of several well-known and well-practiced models, including the classical

Markowitz model, the Fama–French model and the Black–Litterman model. We also

compare our strategies with those of another robust model, the one put forward by

Goldfarb and Iyengar (2003), in which robustness is based on vector/matrix distance.

All these models (including ours) are static, single-period ones, whereas in practice,

a stock market is highly dynamic. In our empirical experiments, we implement these

models in a rolling horizon fashion in order to account for the market dynamics.

Finally, we include in our comparison dynamically optimal strategies based on the

well-calibrated, non-robust model presented in Cui et al. (2012). The experiments are

carried out on the S&P 500 for the backtesting period 2000-2017, with the prior ten

years as the training period. Our experiments show that DRMV compares favorably

against all other models in achieving no worse (far better against most models) average

returns and much lower variabilities. This result, we believe, constitutes important

insight that we can draw from this research and that merits further investigation.
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1.4.3 A Distributionally Robust Sharpe Ratio Model

In Chapter 4 we study a distributionally robust Sharpe-Ratio (DRSR) model,

given by

min
φ∈F(n)

max
P∈Uδ(Pn)

{√
φ>VarP (R)φ

φ>EP[R]

}
, (1.3)

where Pn is the empirical probability derived from historical information of the sample

size n, Uδ(Pn) is the ambiguity set, and F(n) is the feasible region. EP[R] and VarP (R)

denote, respectively, the mean and the covariance matrix under P.

Note that, instead of maximizing the Sharpe ratio, in (1.3) we choose to optimize

the inverse of the Sharpe ratio, which makes it more convenient to derive the tractabil-

ity of this problem. This is further elaborated in Section 4.2. The inner maximization

part represents the worst case Sharpe ratio inverse and the outer minimization part

wants to choose the best portfolio φ to optimize the worst case performance. Com-

pared with DRMV, the objective function in (1.3) is much more complicated. In

DRMV, the objective function is just a quadratic function of P, while that of DRSR

involves the ratio of two functions. However, there is no target return parameter in

DRSR. Due to this fact, we are able to make the DRSR a completely data driven

model.

Chapter 4 offers three main contributions. First, we show that (1.3) can be trans-

formed into an equivalent tractable convex optimization problem. We first prove that

(1.3) is equivalent to an (explicitly formulated) non-robust minimization problem in

terms of the empirical probability measure in Theorem 4. Then, we further transform

the problem into a convex optimization problem by taking the square of the objec-

tive function. In the end, we can achieve a tractable convex optimization problem

as stated in corollary 11. One thing to be noted is that the tractability result from

DRMV can not be applied directly here. The objective function in the inner max-

imization problem of (1.3) is more complicated than that of (1.2), which leads to a

much more complex derivation procedure.
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Our second main contribution provides guidance regarding the choice of the size

of the ambiguity set, δ. We follow a similar process that employed in Chapter 3 and

derive a more elegant RWP function. The simple form of the RWP function in DRSR

is due to the fact that DRSR has no target return equality constraint.

The last contribution empirically compares the performance of our DRSR strate-

gies with those of several well-known and well-practiced models, including the classical

Sharpe ratio model, the classical Markowitz model, the DRMV model, the Fama–

French model, and the Black–Litterman model. All of these models (including ours)

are static, single-period ones whereas in practice, stock markets are highly dynamic.

In our empirical experiments, we implement them in the same environment as that

used in Chapter 3. Our experiments show that DRSR does generate an improve-

ment over the classcial Sharpe ratio model, specifically with respect to realizing more

stable average returns. When adding no short-selling constraints, all of the strate-

gies perform better and DRSR outperforms most strategies (except DRMV and the

equal weights strategy) by showing lower variabilities. However, we observe that the

performance of DRSR is worse than that of DRMV and equally weighted strategies,

in both short-selling allowed and no short-selling scenarios. One of the important

reasons may be Sharpe ratio criterion will be very unstable when the portfolio return

is close to 0. As discussed in Chapter 4, this leads to a very aggressive constraint in

the dual form of (4.4).

1.5 Organization of the Thesis

The organization of the rest of this thesis is as follows. In Chapter 2 we study

strategies of naive agents in a continuous-time MV model. In Section 2.1 we formulate

the continuous-time MV portfolio selection model. In Section 2.2 we introduce the

so-called 2n-committed strategy, in which the agent is committed only in a small

interval of length 2−n, study its limiting behavior, and derive the limiting strategy as
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a naive strategy. In Section 2.3 we compare the naive agent strategy derived in this

chapter with certain equilibrium strategies in the Black-Scholes market. Section 2.4

concludes the chapter.

Chapter 3 is devoted to DRMV. In Section 3.1 we formulate the DRMV model

and present necessary preliminaries. Section 3.2 demonstrates the tractability of the

DRMV model after a series of transformations, and Section 3.3 studies the choices

of distributional uncertainty size and the worst return level. Then, in Section 3.4,

we report the empirical performance of our strategies against those of several other

models. Concluding remarks are given in Section 3.5.

In the last chapter, we study DRSR. In Section 4.1 we formulate the DRSR

model. Section 4.2 demonstrates the tractability of the DRSR model and Section

4.3 studies the choice of distributional uncertainty size. In Section 4.4 we report

the empirical performance of our strategies against those of several other models.

Concluding remarks are given in Section 4.5.



Chapter 2

Naive Strategies in a

Continuous-Time Mean-Variance

Model

2.1 Problem Formulation

In this section we formulate the continuous-time market and review the continuous-

time MV model with deterministic coefficients.

2.1.1 Continuous-Time Market

Throughout this chapter (Ω,F ,P, {Ft}t≥0) is a fixed filtered complete proba-

bility space on which a standard {Ft}t≥0-adapted m-dimensional Brownian motion

W (t) ≡ (W 1(t), ...,Wm(t))> is defined.

Notation. We make the following additional notation:

M> is the transpose of any vector or matrix M ;

17
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L2([0, T ];X) is the Hilbert space of X-valued integrable functions on [0, T ] en-

dowed with the norm (
∫ T

0
||f(t)||2Xdt)1/2 for a given Hilbert space X. We denote

by L2
F([0, T ];Rm) the set of all Rm-valued, {Ft}t≥0 adapted stochastic processes f(t)

such that E[
∫ T

0
||f(t)||2dt] < +∞. Here, || · || denotes the L2 norm in Euclidean space.

We define a continuous-time financial market following Karatzas and Shreve (1998).

In the market there are m+ 1 assets being traded continuously. One of the assets is

a bank account whose price process S0(t) is subject to the following equation:

dS0(t) = r(t)S0(t)dt, t ∈ [0, T ]; S0(0) = s0 > 0, (2.1)

where the interest rate function r(·) is deterministic. The other m assets are stocks

whose price processes Si(t), i = 1, ...,m satisfy the following stochastic differential

equation (SDE):

dSi(t) = Si(t)[bi(t)dt+
m∑
j=1

σij(t)dW
j(t)], t ∈ [0, T ];Si(0) = si > 0, (2.2)

where b(·) and σij(·), the appreciation and volatility rates, respectively, are scalar-

valued and deterministic.

Set the excess rate of return process as

B(t) := (b1(t)− r(t), ..., bm(t)− r(t))>

and define the volatility matrix process as σ(t) := (σij(t))m×m.

Consider an agent, with initial endowment x0 > 0 and an investment horizon

[0, T ], whose total wealth at time t ≥ 0 is denoted by x(t). Assume that the trading

of shares takes place continuously in a self-financing fashion and that there are no
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transaction costs. Then x(·) satisfies (see e.g., Karatzas and Shreve (1998))

dx(t) = [r(t)x(t) +B>(t)π(t)]dt+ π(t)>σ(t)dW (t), t ∈ [0, T ];x(0) = x0, (2.3)

where πi(t), i = 1, 2, ...,m, denotes the total market value of the agent’s wealth in

the i-th asset at time t. The process π(·) ≡ (π1(·), ..., πm(·))> is called a portfolio if

π(·) ∈ L2
F([0, T ];Rm), and it is Ft-progressively measurable.

Throughout this chapter, we need to impose several technical assumptions.

A1) r(t), B(t) and σ(t) are uniformly bounded ∀t ∈ [0, T ].

A2) σ(t)σ(t)> ≥ δI, ∀t ∈ [0, T ] for some δ > 0. This is the so-called non-

degeneracy condition.

2.1.2 Continuous-Time Mean-Variance Model

The mean-variance portfolio optimization problem is

min
{π(·) is a portfolio}

Var(X(T )) (2.4)

subject to


E[X(T )] = x0f(0, T ),

(x(·), π(·)) satisfy (2.3),

(2.5)

where f(t, s), 0 ≤ t ≤ s ≤ T is a deterministic function satisfying f(t, t) = 1,∀t ∈

[0, T ]. f(t, s) can be regarded as the target growth rate in the time interval [t, s]. We

add an assumption on f(t, s):

A3) f ∈ C1([0, T ]× [0, T ]), f(t, s) > e
∫ s
t r(v)dv, ∀ 0 ≤ t ≤ s ≤ T .

This assumption is reasonable since e
∫ s
t r(v)dv is the risk-free growth rate in [t, s].

In order to solve the constrained optimization problem (2.4) - (2.5), we first apply

the Lagrange multiplier method to transform (2.4) into a form equivalent equivalent

to the following:

min
{π(·) is a portfolio}

Var(X(T ))− 1

µ
E[X(T )],
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which turns out to be the same as problem (2.11) in Zhou and Li (2000). It follows

from Theorem 4.1 and equations (5.12) and (6.1) in Zhou and Li (2000) that the

optimal portfolio with respect to the problem (2.4) - (2.5) is

π̄(t,X(t)) = [σ(t)σ(t)>]−1B(t)>(γ̄e−
∫ T
t r(t)ds −X(t)), (2.6)

and the corresponding wealth process satisfies


dX(t) = {(r(t)− ρ(t))X(t) + γ̄e−

∫ T
t r(s)dsρ(t)}dt

+B(t)(σ(t)σ(t)>)−1σ(t)(γ̄, e−
∫ T
t r(s)ds −X(t))dW (t),

X(0) = x0

(2.7)

where

ρ(t) = B(t)[σ(t)σ(t)>]−1B(t)>, γ̄ =
λ̄

2µ
, λ̄ = e

∫ T
0 ρ(t)dt + 2µx0e

∫ T
0 r(t)dt.

In the above solutions, there is still one unknown variable: µ. We need to solve

this µ by using the expectation constraint E[X(T )] = x0f(0, T ) in (2.5). By taking

the expectation on (2.7) and the time to be T , we obtain a linear ODE

dE[X(T )] = (r(t)− ρ(t))E[X(T )] + γ̄e−
∫ T
t r(s)dsρ(t).

Solving this linear ODE, we obtain

E[X(T )] = e
∫ T
0 r(t)−ρ(t)dtx0 + (1− e−

∫ T
0 ρ(t)dt)γ̄.

The expectation constraint yields

E[X(T )] = e
∫ T
0 r(t)−ρ(t)dtx0 + (1− e−

∫ T
0 ρ(t)dt)γ̄(µ) = x0f(0, T ).
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Note that deciding the value of µ is equivalent to deciding the value of γ̄. Thus, it

suffices to get

γ̄ =
f(0, T )− e

∫ T
0 r(t)−ρ(t)dt

1− e−
∫ T
0 ρ(t)dt

x0.

Remark. In order for the above to be true (i.e., in order for theorem 4.1 of Zhou

and Li (2000) to be applied here), we require µ > 0, which is equivalent to

γ̄ − x0e
∫ T
0 r(t)dt =

f(0, T )− e
∫ T
0 r(t)dt

1− e−
∫ T
0 ρ(t)dt

x0 > 0.

This holds because of our Assumption A3). If the above inequality is not satisfied,

it means that f(0, T ) ≤ e
∫ T
0 r(t)dt. Recall that e

∫ T
0 r(t)dt indicates the risk-free growth

rate. If f(0, T ) ≤ e
∫ T
0 r(t)dt, the optimal choice is to put the entire investment into

the risk-free asset, which will achieve the target return and yield 0 portfolio variance.

Therefore, the above inequality also guarantees that the continuous-time MV model

is non-trivial.

2.2 Strategies of a Naive Agent

In this section we discuss the time-inconsistency property of the problem (2.4)-

(2.5) and introduce a naive agent facing time-inconsistency.

2.2.1 Time-Inconsistency and the Naive Agent

As discussed in the previous section, at time 0, we solve problem (2.4)-(2.5) to

obtain the precommitted optimal portfolio and the corresponding wealth processes,

now denoted repectively by π∗(s,X∗(s; 0); 0) and X∗(s; 0), s ∈ [0, T ]. Here, the no-

tation ; 0 in π∗(s,X∗(s; 0); 0) and X∗(s; 0) means they are the precommitted optimal

portfolio and wealth processes of the continuous-time MV problem whose starting

time is 0.

We retain this portfolio until time t ∈ (0, T ), where t is a fixed value. At time t,
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we observe our current wealth X∗(t; 0). Now, we re-solve the optimization problem

(2.4) - (2.5) based on the information until time t. To be more precise, we consider

the following problem:

min
{π(·) is a portfolio}

Var(X(T )|Ft) (2.8)

subject to E[X(T )|Ft] = X∗(t; 0)f(t, T ).

Note that, conditional on the information until time t, X∗(t; 0) is a deterministic

constant. Thus, problem (2.8) is mathematically the same as problem (2.4), and

we can use the same approach in Section 2.1.1 to solve problem (2.8) and obtain a

new optimal portfolio and wealth processes, denoted by π∗(s,X∗(s; t); t) and X∗(s; t),

s ∈ [t, T ], respectively. As before, we use notation ; t in π∗(s,X∗(s; t); t) and X∗(s; t)

to denote the portfolio and wealth process are obtained for the problem starting at

time t. The expression for π∗(s,X∗(s; t); t) is as follows:

π∗(s,X∗(s; t); t) = [σ(s)σ(s)>]−1B(s)>(γ∗(t)X∗(t; 0)e−
∫ T
s r(v)dv −X∗(s; t)), (2.9)

and X∗(s; t) solves the SDE


dX∗(s; t) = {(r(s)− ρ(s))X∗(s; t) + γ∗(t)X∗(t; 0)e−

∫ T
s r(v)dvρ(s)}ds

+B(s)(σ(s)σ(s)>)−1σ(s)(γ∗(t)X∗(t; 0)e−
∫ T
s r(v)dv −X∗(s; t))dW (s),

X∗(t; t) = X∗(t; 0),

(2.10)

where

γ∗(t) :=
f(t, T )− e

∫ T
t r(v)−ρ(v)dv

1− e−
∫ T
t ρ(v)dv

.

From the above expressions, it is clear that, in general, for s ∈ (t, T ]:

X∗(s; 0) 6= X∗(s; t) (2.11)
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Figure 2.1: This graph shows two sample paths of wealth processes. The blue dashed
line represents the wealth process corresponding to the optimal portfolio obtained
at time 0. The red line is the wealth process corresponding to the optimal portfolio
obtained at time t.

and

π(s,X∗(s; 0); 0) 6= π(s,X∗(s; t); t). (2.12)

Figure 2.1 illustrates (2.11).

From (2.11) and (2.12), it follows that the optimal wealth and portfolio processes

are always changing over time, which is in sharp contrast to the classical dynamic

optimization problem. This property is called time-inconsistency.

Recall that a naive agent is one who always chooses the optimal strategy under

current information. Therefore, precommitted strategies obtained in (2.6) and (2.7)

will not be taken by a naive agent due to time-inconsistency. Our objective in the

remainder of this chapter is to derive the explicit expressions of the wealth process

and portfolio process for the naive agent, and to compare them with certain other

equilibrium strategies derived in the literature. In the following section, we introduce

a methodology to approximate the behavior of the naive agent.
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Figure 2.2: This figure shows one sample path of wealth process Xn(s). Each different
color shows the wealth process corresponding to the optimal portfolio obtained at time
tk, k = 0, 1, ..., 2n − 1. The process is continuous.

2.2.2 2n-committed Agent

Since the naive agent changes her strategy continuously in time, it is difficult to

derive the strategy directly. Thus, we first introduce an auxiliary agent, designated

the 2n-committed agent, to approximate the behavior of the naive agent.

The 2n-committed agent is one who behaves “in between” the precommitted agent

and the naive one. To be more precise, the “2n-committed agent” will partition the

time horizon [0, T ] into 2n equal-length intervals, and the partitioning points are

denoted as {tk}2n

k=0, where tk = kT
2n

. This agent first solves problem (2.4)-(2.5) at

time 0 to obtain the optimal portfolio π(s,X∗(s; 0); 0). He keeps this portfolio until

time t1, when he resolves problem (2.8) (where t = t1) to obtain optimal portfolio

π(s,X∗(s; t1); t1). He commits to π(s,X∗(s; t1); t1) until t2. He repeats this pattern

until time T . Figure 2.2 illustrates this agent’s wealth process under this strategy.

As a result, we obtain 2n wealth processes {X∗(s; tk), s ∈ [tk, tk+1]}2n−1
k=0 . By (2.10),
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the SDE satisfied by X∗(s; tk), s ∈ [tk, tk+1] (0 ≤ k ≤ 2n − 1) is as follows:


dX∗(s; tk) = {(r(s)− ρ(s))X∗(s; tk) + γ∗(t)X∗(tk; tk−1)e−

∫ T
s r(v)dvρ(s)}ds

+B(s)(σ(s)σ(s)>)−1σ(s)(γ∗(t)X∗(tk; tk−1)e−
∫ T
s r(v)dv −X∗(s; tk))dW (s), s ∈ [tk, tk+1],

X∗(tk; tk) = X∗(tk; tk−1),

(2.13)

where X∗(t0; t−1) is defined as x0. By pasting X∗(s; tk), 0 ≤ k ≤ 2n − 1, we define

Xn(s) :=



X∗(s; 0), 0 ≤ s ≤ t1,

X∗(s; t1), t1 ≤ s ≤ t2,

...

X∗(s; t2n−1), t2n−1 ≤ s ≤ T ,

(2.14)

which is the wealth process of the 2n-committed agent; see Figure 2.2. Obviously,

this process is adapted and continuous in [0, T ] and, by following Proposition 1, we

know Xn(·) ∈ L2
F([0, T ],R).

Proposition 1 If assumptions A1), A2) and A3) are satisfied, then

||Xn||2 := E[

∫ T

0

X2
n(s)ds] <∞, ∀n.

Moreover, ||Xn||2 is uniformly bounded in n.

Proof The main idea of the proof is to find a deterministic process Y 2(·) to bound

E[
∫ T

0
X2
n(s)ds].

Xn(·) has 2n parts. It suffices to find Y 2(·) such that

E[X2
∗ (s; tk)] ≤ Y 2(s), s ∈ [tk, tk+1],

where tk = kT
2n

.
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The following Lemma 1 gives such Y 2(·) explicitly.

Lemma 1 Let Y 2(·) satisfying the following ODE


dY 2(s) = {R∗ + (γ∗)2e−2

∫ T
s r(v)dvρ(s)}Y 2(s)ds,

Y 2(0) = x2
0,

(2.15)

where

R∗ := max
0≤s≤T

{|2r(s)− ρ(s)|}, γ∗ = max
0≤s≤T

{γ∗(s)}.

Then, we have, for every k = 0, 1, ..., 2n − 1,

E[X2
∗ (s; tk)] ≤ Y 2(s), s ∈ [tk, tk+1].

Proof By the uniform boundedness of B(t) and the assumption that σ(t)σ(t)> ≥ δI

for δ > 0, we obtain max
t∈[0,T ]

ρ(t) = max
t∈[0,T ]

B(t)[σ(t)σ(t)>]−1B(t)> < ∞. Together with

the uniform boundedness of r(), it is clear that R∗ <∞. Recall that

γ∗(t) :=
f(t, T )− e

∫ T
t r(v)−ρ(v)dv

1− e
∫ T
t ρ(v)dv

,

which is continuous in t ∈ [0, T ). By L’Hospital’s rule and the uniform boundedness

of r(t) and ρ(t), we have

γ∗(t)→
∂f
∂t

(t, T )|t=T + ρ(T )− r(T )

ρ(T )
<∞, as t→ T .

Define γ∗(T ) :=
∂f
∂t

(t,T )|t=T+ρ(T )−r(T )

ρ(T )
. Then, γ∗(·) is continuous on [0, T ] with γ∗(T ) <

∞.

We use X∗(s; t, xt), s ∈ [t, T ], to denote the process satisfying SDE (2.10) with

the initial value xt at t, where xt is an integrable Ft-measurable random variable. For

t = tk, k = 0, 1, ..., 2n − 1 and s ∈ [tk, tk+1], we consider E[X2
∗ (s; t, xt)|Ft]. By taking
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the conditional expectation on both sides of the SDE for X2
∗ (s; t, xt), we obtain the

ODE
dE[X2

∗ (s; t, xt)|Ft] = {(2r(s)− ρ(s))E[X2
∗ (s; t, xt)|Ft] + (γ∗(t))2e−2

∫ T
s r(v)dvx2

tρ(s)}ds,

E[X2(t; t, xt)|Ft] = x2
t .

(2.16)

Consider a new stochastic process Z(s; t, xt) satisfying the ODE:


dZ(s; t, xt) = {R∗Z(s; t, xt) + (γ∗(t))2e−2

∫ T
s r(v)dvx2

tρ(s)}ds,

Z(t; t, xt) = x2
t .

(2.17)

Denote H(s) := (γ∗(t))2e−2
∫ T
s r(v)dvρ(s) > 0. By solving (2.16) and (2.17), we can

obtain ∀s ∈ [t, T ] and ω ∈ Ω,

Z(s; t, xt)(ω)− E[X2
∗ (s; t, xt)|Ft](ω) =

∫ s

t

[eR
∗(s−v) − e

∫ s
v (2r(l)−ρ(l))dl]H(v)(ω)x2

t (ω)dv

+ [eR
∗(s−t) − e

∫ s
t (2r(l)−ρ(l))dl]x2

t (ω).

(2.18)

By the definition of R∗ we obtain |2r(l) − ρ(l)| ≤ R∗, l ∈ [0, T ]. Therefore, we

conclude ∀ω ∈ Ω

E[X2
∗ (s; t, xt)|Ft](ω) ≤ Z(s; t, xt)(ω). (2.19)

Now, we construct the stochastic process Y 2(s; t, xt) that follows:


dY 2(s; t, xt) = {R∗ + (γ∗)2e−2

∫ T
s r(v)dvρ(s)}Y 2(s; t)ds,

Y 2(t; t, xt) = x2
t .

(2.20)

From (2.17) it is easy to see that ∀ω ∈ Ω, Z(s; t, xt)(ω) is an increasing function
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in s; thus, Z(s; t, xt)(ω) ≥ x2
t (ω). Then, we get

dZ(s; t, xt)

ds
(ω) = R∗Z(s; t, xt)(ω) + (γ∗(t))2e−2

∫ T
s r(v)dvx2

t (ω)ρ(s)

≤ {R∗ + (γ∗(t))2e−2
∫ T
s r(v)dvρ(s)}Z(s; t, xt)(ω)

≤ {R∗ + (γ∗)2e−2
∫ T
s r(v)dvρ(s)}Z(s; t, xt)(ω).

(2.21)

It follows from the Grownwell inequality that ∀s ∈ [t, T ], ∀ω ∈ Ω,

Z(s; t, xt)(ω) ≤ Y 2(s; t, xt)(ω). (2.22)

To finish the proof of this lemma we use mathematical induction. When k = 0,

s ∈ [0, t1], it follows from (2.19) and (2.22) that

E[X2
∗ (s; 0)] = E[E[X2(s; 0, x0)|F0]] ≤ E[Z(s; 0, x0)] ≤ E[Y 2(s; 0, x0)] = Y 2(s).

(2.23)

Now, assume that when k = m− 1, the following holds:

E[X2
∗ (s; tm−1)] ≤ Y 2(s), (2.24)

where the initial value of X∗(s; tm) is X∗(tm; tm−1). By (2.19) and (2.22) we obtain

E[X2
∗ (s; tm)] = E[E[X2

∗ (s; tm, X∗(tm; tm−1))|Ftm ]]

≤ E[Z(s; tm, X∗(tm; tm−1))]

≤ E[Y 2(s; tm, X∗(tm; tm−1))],

(2.25)

where the initial value of E[Y 2(s; tm, X∗(tm; tm−1))] is E[X2
∗ (tm; tm−1)]. By (2.24) we

obtain E[X2
∗ (tm; tm−1)] ≤ Y 2(tm). Note that when s ∈ [tm, tm+1], E[Y 2(s; tm, X∗(tm; tm−1))]

and Y 2(s) satisfy the same ODE. Combined with (2.25), we conclude that, for
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s ∈ [tm, tm+1],

E[X2
∗ (s; tm)] ≤ E[Y 2(s; tm, X∗(tm; tm−1))] ≤ Y 2(s). (2.26)

Now, we continue proving Proposition 1.

By Lemma 1, we have,

||Xn||2 : = E[

∫ T

0

X2
n(s)ds]

= E[
2n∑
k=1

∫ k
2n
T

k−1
2n

T

X2
∗ (s;

k − 1

2n
T )ds]

=
2n∑
k=1

∫ tk

tk−1

E[X2
∗ (s; tk−1)]ds

=
2n∑
k=1

∫ tk

tk−1

Y 2(s)ds

=

∫ T

0

Y 2(s)ds <∞.

(2.27)

In the above, expectation, summation, and integration operators are interchangeable

because of Tonelli’s theorem.

This 2n-committed agent behaves in a manner in between that of the precommit-

ted agent and the naive one. The behavior is closer to the latter when n becomes

larger. Due to Proposition 1, the sequence {Xn}∞n=1 is uniformly bounded in the space

L2
F([0, T ];R), and thus it is weakly compact. By the property of the Hilbert space

there exists a weakly convergent subsequence (also denoted as {Xn}∞n=1 without loss

of generality) and a process X ∈ L2
F([0, T ];R) such that

Xn → X, weakly in L2
F([0, T ];R).

A natural question is: What is the limiting wealth process X when n→∞? We have

the following theorem to answer this question.
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th

Theorem 1 If assumptions A1), A2) and A3) ares satisfied, the limiting wealth

process X satisfies the following SDE:


dX(t) = [(r(t)− ρ(t)) + e−

∫ T
t r(v)dvρ(t)γ∗(t)]X(t)dt

+[B(t)(σ(t)σ(t)>)−1σ(t)e−
∫ T
t r(v)dvγ∗(t)−B(t)(σ(t)σ(t)>)−1σ(t)]X(t)dW (t),

X(0) = x0,

(2.28)

where

γ∗(t) :=
f(t, T )− e

∫ T
t r(v)−ρ(v)dv

1− e
∫ T
t ρ(v)dv

.

Furthermore, the following feedback portfolio

π(t,X(t)) = [σ(t)σ(t)>]−1B(t)>(γ∗(t)e−
∫ T
t r(s)ds − 1)X(t)

generates X as its wealth process.

Proof To simplify the notation in the rest of the proof we use the following notation



A(s) := (r(s)− ρ(s)),

C(s) := e−
∫ T
s r(v)dvρ(s),

D(s) := B(s)(σ(s)σ(s)>)−1σ(s)e−
∫ T
s r(v)dv,

F (s) := B(s)(σ(s)σ(s)>)−1σ(s),

(2.29)

with which we rewrite the SDE of wealth process as


dX∗(s; tk) = {A(s)X∗(s; tk) + γ∗(tk)C(s)X∗(tk; tk−1)}ds

+γ∗(tk)D(s)X∗(tk; tk−1)− F (s)X∗(s; tk)dW (s),

X∗(tk; tk) = X∗(tk; tk−1).

(2.30)
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Due to the boundedness assumptions A1) and A2), A(·) and C(·) are uniformly

bounded. We denote their maximum value over [0, T ] as A∗ and C∗, respectively.

Since D(t) and F (t) are vectors, ∀t ∈ [0, T ], we define D∗ := max
t∈[0,T ]

||D(t)||2 and

F ∗ := max
t∈[0,T ]

||F (t)||2.

In order to prove Theorem 1, we need the following lemma.

Lemma 2 Let X∗(t0; t0) = x0 and assume that assumptions A1), A2) and A3)

hold. Then, we have

lim
n→∞

max
k∈{0,...,2n−1},s∈[tk,tk+1]

E[Xn(s)−Xn(tk)]
2 = 0.

Proof We can bound the term E[Xn(s)−Xn(tk)]
2 as follows:

E[(Xn(s)−Xn(tk))
2] = E[(X∗(s; tk)−X∗(tk, tk−1))2]

= E[(

∫ s

tk

A(t)X∗(t; tk) + γ∗(tk)C(t)X∗(tk; tk−1)dt+

∫ s

tk

γ∗(tk)D(t)X∗(tk; tk−1)− F (t)X∗(t; tk)dW (t))2]

≤ 2E[(

∫ s

tk

A(t)X∗(t; tk) + γ∗(tk)C(t)X∗(tk; tk−1)dt)2]

+ 2E[(

∫ s

tk

γ∗(tk)D(t)X∗(tk; tk−1)− F (t)X∗(t; tk)dW (t))2].

(2.31)

Next, we bound the two terms on the right side of last inequality. For the first term

we have

E[(

∫ s

tk

A(t)X∗(t; tk) + γ∗(tk)C(t)X∗(tk; tk−1)dt)2]

≤
∫ s

tk

E[(A(t)X∗(t; tk) + γ∗(tk)C(t)X∗(tk; tk−1))2]dt

≤
∫ s

tk

2E[(A(t)X∗(t; tk))
2] + 2E[(γ∗(tk)C(t)X∗(tk; tk−1))2]dt

≤
∫ s

tk

2A∗E[X∗(t; tk)
2] + 2γ∗C∗E[X∗(tk; tk−1)2]dt

≤
∫ s

tk

(2A∗ + 2γ∗C∗)Y 2(T )dt = (2A∗ + 2γ∗C∗)(s− tk)Y 2(T ),

(2.32)

where the last inequality in (2.32) was by Lemma 1 and the fact that Y 2(s), s ∈ [0, T ],
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is increasing in s.

By Ito’s isometry, for the second term we have

E[(

∫ s

tk

γ∗(tk)D(t)X∗(tk; tk−1)− F (t)X∗(t; tk)dW (t))2]

=

∫ s

tk

E||γ∗(tk)D(t)X∗(tk; tk−1)− F (t)X∗(t; tk)||2dt

≤
∫ s

tk

2γ∗D∗E(X∗(tk; tk−1))2 + 2F ∗E(X∗(t; tk))
2dt

≤ (2γ∗D∗ + 2F ∗)(s− tk)Y 2(T ),

(2.33)

Combining the above, we obtain

E[(Xn(s)−Xn(tk))
2] ≤ 4(s− tk)(A∗ + γ∗C∗ + γ∗D∗ + F ∗)Y 2(T ). (2.34)

Note that the above inequality holds for any n. Thus,

max
k∈{0,...,2n−1},s∈[tk,tk+1]

E[Xn(s)−Xn(tk)]
2 ≤ 4T

2n
(A∗ + γ∗C∗ + γ∗D∗ + F ∗)Y 2(T )→ 0

as n→∞.

By Mazur’s lemma, for each integer n ≥ 1, there exists positive integer N(n)

and a convex combination Vn :=
∑N(n)

k=n a
n
kXk, where

∑N(n)
k=n a

n
k = 1 and all ank are

non-negative, such that

Vn → X, strongly in L2
F([0, T ];R). (2.35)

By the definition of Vn, it satisfies the SDE


dVn(t) = [A(t)Vn(t) + C(t)(γ∗X)n,N(n)(t)]dt+ [D(t)(γ∗X)n,N(n)(t)− F (t)Vn(t)]dW (t),

Vn(0) = x0,

(2.36)
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where

(γ∗X)n,N(n)(t) :=

N(n)∑
k=n

ank [γ∗(mt,k)Xk(mt,k)], mt,k := max{N
2k
T |N ∈ N, t ≥ N

2k
T}.

Now consider
dZ(t) = [A(t)X(t) + C(t)γ∗(t)X(t)]dt+ [D(t)γ∗(t)X(t)− F (t)X(t)]dW (t),

Z(0) = x0.

(2.37)

We now prove that

lim
n→∞

∫ T

0

E[(Z(t)− Vn(t))2]dt = 0.

To this end, we first analyze Z(t)− Vn(t). We have

Z(t)− Vn(t) =

∫ t

0

A(u)(Vn(u)−X(u)) + C(u)[γ∗(u)X(u)− (γ∗X)n,N(n)(u)]du

+

∫ t

0

D(u)[γ∗(u)X(u)− (γ∗X)n,N(n)(u)]− F (u)(Vn(u)−X(u))dW (u)

:= Q1,n(t) +Q2,n(t),

(2.38)

where

Q1,n(t) :=

∫ t

0

A(u)(Vn(u)−X(u)) + C(u)[γ∗(u)X(u)− (γ∗X)n,N(n)(u)]du,

Q2,n(t) :=

∫ t

0

D(u)[γ∗(u)X(u)− (γ∗X)n,N(n)(u)]− F (u)(Vn(u)−X(u))dW (u).

As a result,

∫ T

0

E[(Z(t)− Vn(t))2]dt =

∫ T

0

E[(Q1,n(t) +Q2,n(t))2]dt

≤ 2

∫ T

0

E[Q2
1,n(t) +Q2

2,n(t)]dt

= 2

∫ T

0

E[Q2
1,n(t)]dt+ 2

∫ T

0

E[Q2
2,n(t)]dt.

(2.39)
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The above inequality shows that the L2 norm of Z(t)− Vn(t) can be bounded by the

sum of L2 norms of Q2
1,n(t) and Q2

2,n(t). Next, we analyze E[Q2
1,n(t)] and E[Q2

2,n(t)],

respectively. By the definition of Q1,n(t) and Jensen’s inequality, we obtain

E[Q2
1,n(t)] = E[(

∫ t

0

A(u)(Vn(u)−X(u)) + C(u)[γ∗(u)X(u)− (γ∗X)n,N(n)(u)]du)2]

≤ E[

∫ t

0

{A(u)(Vn(u)−X(u)) + C(u)[γ∗(u)X(u)− (γ∗X)n,N(n)(u)]}2du]

≤ 2E[

∫ t

0

A(u)2(Vn(u)−X(u))2 + C(u)2[γ∗(u)X(u)− (γ∗X)n,N(n)(u)]2du]

≤ 2{(A∗)2

∫ t

0

E[(Vn(u)−X(u))2]du+ (C∗)2

∫ t

0

E[γ∗(u)X(u)− (γ∗X)n,N(n)(u)]2]du.

(2.40)

By the strong convergence of Vn, the first term converges to 0 as n → ∞. For the

second term,

∫ t

0

E[γ∗(u)X(u)− (γ∗X)n,N(n)(u)]2]du

=

∫ t

0

E[γ∗(u)X(u)− γ∗(u)Vn(u) + γ∗(u)Vn(u)− (γ∗X)n,N(n)(u)]2du

≤ 2

∫ t

0

E[γ∗(u)X(u)− γ∗(u)Vn(u)]2 + E[γ∗(u)Vn(u)− (γ∗X)n,N(n)(u)]2du

≤ 2(γ∗)2

∫ t

0

E[X(u)− Vn(u)]2 + 2

∫ t

0

E[

N(n)∑
k=n

αnk(γ∗(u)Xk(u)− γ∗(mu,k)Xk(mu,k))]
2du.

(2.41)
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Now,

∫ t

0

E[

N(n)∑
k=n

αnk(γ∗(u)Xk(u)− γ∗(mu,k)Xk(mu,k))]
2du

=

∫ t

0

E[

N(n)∑
k=n

αnk(γ∗(u)Xk(u)− γ∗(mu,k)Xk(u) + γ∗(mu,k)Xk(u)− γ∗(mu,k)Xk(mu,k))]
2du

=

∫ t

0

E[

N(n)∑
k=n

αnk(γ∗(u)− γ∗(mu,k))Xk(u) + αnkγ
∗(mu,k)(Xk(u)−Xk(mu,k))]

2du

≤ 2

∫ t

0

E[

N(n)∑
k=n

αnk(γ∗(u)− γ∗(mu,k))Xk(u)]2 + E[

N(n)∑
k=n

αnkγ
∗(mu,k)(Xk(u)−Xk(mu,k))]

2du

≤ 2

∫ t

0

N(n)∑
k=n

αnkE[(γ∗(u)− γ∗(mu,k))Xk(u)]2 +

N(n)∑
k=n

αnkE[γ∗(mu,k)(Xk(u)−Xk(mu,k))]
2du,

(2.42)

where the last inequality is by the definition of a convex function. Because γ∗(·) is

continuous in [0, T ], it is uniformly continuous. There exists a sequence of {δn}∞n=1

( lim
n→∞

δn = 0) such that if x, y ∈ [0, T ], |x − y| ≤ 1
2n
T , then |γ∗(x) − γ∗(y)| ≤ δn.

Therefore, we are able to bound the right hand side of (2.42) as follows:

∫ t

0

E[

N(n)∑
k=n

αnk(γ∗(u)Xk(u)− γ∗(mu,k)Xk(mu,k))]
2du

≤ 2

∫ t

0

N(n)∑
k=n

αnkE[(γ∗(u)− γ∗(mu,k))Xk(u)]2 +

N(n)∑
k=n

αnkE[γ∗(mu,k)(Xk(u)−Xk(mu,k))]
2du

≤ 2

∫ t

0

δ2
n max
n≤k≤N(n)

E[|Xk(u)|2] + (γ∗)2 max
n≤k≤N(n)

E[|Xk(u)−Xk(mu,k)|2]du

≤ 2

∫ t

0

δ2
nY

2(u) + (γ∗)2 4T

2n
(A∗ + γ∗C∗ + γ∗D∗ + F ∗)Y 2(T )du

≤ 2[δ2
n + (γ∗)2 4T

2n
(A∗ + γ∗C∗ + γ∗D∗ + F ∗)]TY 2(T ),

(2.43)

where the third inequality is by Proposition 1 and Lemma 2. As a result

lim
n→∞

∫ t

0

E[

N(n)∑
k=n

αnk(γ∗(u)Xk(u)− γ∗(mu,k)Xk(mu,k))]
2du = 0. (2.44)
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By equations (2.41) and (2.44) we obtain

lim
n→∞

∫ t

0

E[γ∗(u)X(u)− (γ∗X)n,N(n)(u)]2]du = 0. (2.45)

Thus, by noting Vn → X in L2
F([0, T ];R), it follows from (2.40) and (2.45) that

lim
n→∞

E[Q2
1,n(t)] = 0. (2.46)

Note that the bound of E[Q2
1,n(t)] above does not depend on t, which implies that

the convergence of E[Q2
1,n(t)] is uniform in t ∈ [0, T ]. Thus, the limit and the integral

operator can be interchanged due to the dominated convergence theorem:

lim
n→∞

∫ T

0

E[Q2
1,n(t)]dt =

∫ T

0

lim
n→∞

E[Q2
1,n(t)]dt = 0. (2.47)

We now analyze the second term in (2.39),
∫ T

0
E[Q2

2,n(t)]dt. We have

E[Q2
2,n(t)] = E[

∫ t

0

D(u)[γ∗(u)X(u)− γ∗Xn,N(n)(u)]− F (u)(Vn(u)−X(u))dW (u)]2

≤ 2E[

∫ t

0

D(u)[γ∗(u)X(u)− γ∗Xn,N(n)(u)]dW (u)]2

+ 2E[

∫ t

0

F (u)(Vn(u)−X(u))dW (u)]2

= 2

∫ t

0

D2(u)E[γ∗(u)X(u)− γ∗Xn,N(n)(u)]2du+ 2

∫ t

0

F 2(u)E[(Vn(u)−X(u))2]du

≤ 2(D∗)2

∫ t

0

E[γ∗(u)X(u)− γ∗Xn,N(n)(u)]2du+ 2(F ∗)2

∫ t

0

E[(Vn(u)−X(u))2]du,

(2.48)

where the second equality is due to Ito’s isometry and Tonelli’s theorem. Using a

similar argument to that employed in the analysis of E[Q2
1,n(t)], from the equation

(2.45) and the strong convergence of Vn(·), we obtain

lim
n→∞

E[Q2
2,n(t)] = 0, (2.49)
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where the convergence is uniform in t ∈ [0, T ]. Thus, by the dominated convergence

theorem, we deduce

lim
n→∞

∫ T

0

E[Q2
n(t)2]dt =

∫ T

0

lim
n→∞

E[Q2
n(t)2]dt = 0. (2.50)

By plugging equations (2.47) and (2.49) into (2.39) we obtain

lim
n→∞

∫ T

0

E[(Z(t)− Vn(t))2]dt ≤ 2 lim
n→∞

∫ T

0

E[Q2
1,n(t)]dt+ 2 lim

n→∞

∫ T

0

E[Q2
2,n(t)]dt = 0.

(2.51)

Thus, Z(t)(ω) = X(t)(ω) except on a zero measure set in the space of [0, T ]×Ω. So,

X satisfies the same SDE as Z. Specifically, its SDE is

dX(t) = [A(t)X(t) + C(t)γ∗(t)X(t)]dt+ [D(t)γ∗(t)X(t)− F (t)X(t)]dW (t)

= [(r(t)− ρ(t))X(t) + e−
∫ T
t r(v)dvρ(t)γ∗(t)X(t)]dt

+ [B(t)(σ(t)σ(t)>)−1σ(t)e−
∫ T
t r(v)dvγ∗(t)X(t)−B(t)(σ(t)σ(t)>)−1σ(t)X(t)]dW (t)

= [(r(t)− ρ(t)) + e−
∫ T
t r(v)dvρ(t)γ∗(t)]X(t)dt

+ [B(t)(σ(t)σ(t)>)−1σ(t)e−
∫ T
t r(v)dvγ∗(t)−B(t)(σ(t)σ(t)>)−1σ(t)]X(t)dW (t).

(2.52)

Thus, we obtain


dX(t) = [(r(t)− ρ(t)) + e−

∫ T
t r(v)dvρ(t)γ∗(t)]X(t)dt

+[B(t)(σ(t)σ(t)>)−1σ(t)e−
∫ T
t r(v)dvγ∗(t)−B(t)(σ(t)σ(t)>)−1σ(t)]X(t)dW (t),

X(0) = x0,

(2.53)

where

γ∗(t) :=
f(t, T )− e

∫ T
t r(v)−ρ(v)dv

1− e
∫ T
t ρ(v)dv

.

The corresponding portfolio process is

π(t,X(t)) = [σ(t)σ(t)>]−1B(t)>(γ∗(t)e−
∫ T
t r(s)ds − 1)X(t).
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The proof is complete.

2.3 Comparison between the Naive Strategy and

Two Equilibrium Strategies

In the MV literature, two equilibrium strategies have been developed. These

are the state-dependent equilibrium strategy put forward by Bjork et al. (2014) and

the myopic strategy developed by He and Jiang (2017). We refer to these as state-

dependent strategy and myopic strategy, respectively, through rest of the chapter for

simplicity. In this section, we compare the portfolio allocation of the naive agent with

those of the two equilibrium strategies, in a Black-Scholes market.

2.3.1 State-dependent and Myopic Strategies

Let us first review the two equilibrium strategies. At a fixed time t ∈ [0, T ], Bjork

et al. (2014) consider the following problem:

max
π

E[X(T )|Ft]−
γ(xt)

2
Var(X(T )|Ft),

subject to


dX(s) = [r(s)X(s) +B>(s)π(s)]ds+ π(s)>σ(s)dW (s),

Xt = xt,

(2.54)

where xt is the wealth at time t. In the objective function, there is a risk-aversion

term γ(xt) that depends on the current state xt. For this reason, this model is called

the state-dependent model. In this model, Bjork et al. (2014) consider the reward

functional

J(t, xt, π) = E[X(T )|Ft]−
γ(xt)

2
Var(X(T )|Ft).
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Next, we give the formal definition of the state-dependent equilibrium strategy. Given

a portfolio π̂, construct a portfolio πh by

πh(s) =


π, for t ≤ s < t+ h,

π̂(s), for t+ h ≤ s ≤ T ,

(2.55)

where π ∈ Rm, h > 0. We say that π̂ is a state-dependent equilibrium strategy if

lim
h→0

inf
J(t, xt, π̂)− J(t, xt, πh)

h
≥ 0, (2.56)

for all π ∈ Rm.

On the other hand, He and Jiang (2017) consider the following problem:

min
u

Var(X(T )|Ft)

s.t


dX(s) = [r(s)X(s) +B>(s)π(s)]ds+ π(s)>σ(s)dW (s),

X(t) = xt,

E[X(T )|Ft] ≥ L(t, xt),

(2.57)

where L(t, xt) indicates the target for the expected wealth when the start time is t and

the initial wealth is xt. This is a more general constraint than the expected wealth

constraint in model (2.8). Specifically, if we pick L(t, xt) = xtf(t, T ), then problem

(2.57) is the same as (2.8). He and Jiang (2017) denote the wealth process with

portfolio π as Xπ. Assume that there exists h1 ∈ (0, T − t) such that E[Xπh(T )|Ft] ≥

L(t, xt), ∀h ∈ (0, h1), where πh is constructed in the same manner as in (2.55). We

say that the portfolio π̂ is a myopic equilibrium strategy if E[X π̂(T )|Ft] ≥ L(t, xt)

and there exists h2 ∈ (0, h1) such that

Var(Xπε(T )|Ft)− Var(X π̂(T )|Ft) ≥ 0, ∀ε ∈ (0, h2). (2.58)
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The difference between the problems (2.54) and (2.57) is that the former uses

a weighting coefficient γ(xt)/2 in its objective function while the latter uses L(t, x)

in its constraint. The two problems are related in view of the Lagrange multiplier

approach. Essentially, if we choose γ(xt) and L(t, x) carefully, the precommitted

optimal portfolios for the two problems are the same. This is further explained in the

following proposition.

Proposition 2 If the equation

1

γ(xt)
e
∫ T
t ρ(z)dz + xte

∫ T
t r(z)dz =

L(t, xt)− e
∫ T
t [r(z)−ρ(z)]dzxt

1− e−
∫ T
t ρ(z)dz

(2.59)

holds, the precommitted strategies for (2.54) and (2.57) are the same.

Proof By (2.6), the precommitted strategy of (2.54) is

π̄psd(s,X(s)) = [σ(s)σ(s)>]−1B(s)>(γ̄sde
−

∫ T
s r(v)dv −X(s)), s ∈ [t, T ], (2.60)

where

γ̄sd =
1

γ(xt)
e
∫ T
t ρ(v)dv + e

∫ T
t r(v)dvxt.

By (2.6) and the end of Section 2.1.2, the precommitted strategy of (2.57) is

π̄pm(s,X(s)) = [σ(s)σ(s)>]−1B(s)>(γ̄me
−

∫ T
s r(v)dv −X(s)), s ∈ [t, T ], (2.61)

where

γ̄m =
L(t, xt)− e

∫ T
t r(v)−ρ(v)dvxt

1− e−
∫ T
t ρ(v)dv

.

It is clear that, if (2.59) is satiesfied, we have γ̄sd = γ̄m, which leads to π̄psd = ¯πpm.

By Proposition 2, if γ(xt) and L(t, xt) satisfy (2.59), then we obtain the same

precommitted solutions from the two problems. However, the equilibrium strategies
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of the two problems are different; see He and Jiang (2017).

Denote the optimal portfolios of problem (2.54) and (2.57) as πsd(t, x) and πm(t, x),

respectively, and denote the portfolio of the naive agent as πna(t, x).

We now compare the above three strategies by considering the problem, for sim-

plicity, in a Black-Scholes market. Specifically, there is a risk-free asset and only one

risky asset in the market. Then, we calculate the allocations in the risky asset and

in the risk-free asset, respectively, obtained based on the three strategies. Because

there is only one risky asset, the portfolios deriving from all the three strategies are

just scalars, which can easily be compared.

We carry out the comparisons for two commonly used cases. In Section 2.3.2, we

choose γ(x) in problem (2.54) to be γ
x
, which is the case examined by Bjork et al.

(2014). Section 2.3.3 study the case in which L(t, x) = xek(T−t). In each subsection,

we choose L(t, x) and γ(xt) to satisfy equation (2.59) so as to be consistent in their

respective precommitted solutions.

2.3.2 The case γ(x) = γ
x

By choosing γ(x) = γ
x
, we can calculate L(t, x) using equation (2.59) to obtain

L(t, xt) = xt

[
1

γ
(e(T−t)ρ − 1 + γe(T−t)r)

]
. (2.62)

For the case of γt = γ
x
, by Theorem 4.6 in Bjork et al. (2014), the equilibrium

portfolio of problem (2.54) is given by

πsd(t,X(t)) = csd(t)X(t), (2.63)

where csd(t) is

csd(t) =
α− r
γσ2

{e−
∫ T
t [r+(α−r)c(s)+σ2c2(s)]ds + γe−

∫ T
t σ2c2(s)ds − γ}. (2.64)
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In order to obtain the naive strategy, we need to choose f(t, T ) in problem (2.8)

such that it is consistent with problems (2.54) and (2.57). It follows from (2.62) that

the corresponding f(t, T ) in (2.8) is

f(t, T ) =
1

γ
(e(T−t)ρ − 1 + γe(T−t)r).

It is easy to check that this f(t, T ) satisfies Assumption A3). By Theorem 1, the

portfolio of the naive agent is

π(t,X(t)) = [σ(t)σ(t)>]−1B(t)>(γ∗(t)e−
∫ T
t r(s)ds − 1)X(t),

where

γ∗(t) =
e
∫ T
t ρ(v)dv

γ
+ e

∫ T
t r(v)dv.

So, the portfolio is given by

πna(t,X(t)) =
α− r
σ2

(
e

(α−r)2−rσ2

σ2 (T−t)

γ
)X(t) = cna(t)X(t), (2.65)

where we denote cna(t) = α−r
σ2 ( e

(α−r)2−rσ2

σ2 (T−t)

γ
).

Finally, by (2.62), we should set L(t, xt) in problem (2.57) to be

L(t, xt) = xt[
1

γ
(e(T−t)ρ − 1 + γe(T−t)r)].

By Section 4.3 in He and Jiang (2017), the corresponding equilibrium portfolio is

πm(t,X(t)) = − 1

α− r
[

(r − ρ)e(T−t)ρ − r
e(T−t)ρ − 1 + γe(T−t)r ]X(t)

= cm(t)X(t),

(2.66)

where cm(t) = − 1
α−r [

(r−ρ)e(T−t)ρ−r
e(T−t)ρ−1+γe(T−t)r

]. Next, we show that the naive strategy allocates

more weight to the risky asset than the two equilibrium strategies by the following
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proposition.

Proposition 3 In the Black-Scholes market, we have

csd(t) < cna(t), cm(t) < cna(t)

for any γ > 0.

Proof We first prove csd(t) < cna(t). We consider three cases: ρ = (α−r)2

σ2 > r, ρ < r,

and ρ = r.

If ρ = (α−r)2

σ2 > r, then cna(t) is decreasing in t and c(t) is increasing in t. Thus,

cna(t) ≥ cna(T ) =
α− r
σ2

= csd(T ) ≥ csd(t), ∀t ∈ [0, T ].

If ρ = (α−r)2

σ2 < r, then c(t) ≥ 0, ∀t ∈ [0, T ]. Then

csd(t) =
α− r
γσ2

{e−
∫ T
t [r+(α−r)c(s)+σ2c2(s)]ds + γe−

∫ T
t σ2c2(s)ds − γ}

≤ α− r
γσ2

{e−
∫ T
t [r+(α−r)c(s)+σ2c2(s)]ds + γ − γ}

=
α− r
γσ2

{e−
∫ T
t [r+(α−r)c(s)+σ2c2(s)]ds}

≤ α− r
γσ2

{e−r(T−t)}

≤ α− r
γσ2

{e−r(T−t)+ρ(T−t)} = cna(t), ∀t ∈ [0, T ].

(2.67)

Next, we prove cm(t) < cna(t). The risky asset weight for the myopic strategy is

cm(t) = − 1

α− r
[

(r − ρ)e(T−t)ρ − r
e(T−t)ρ − 1 + γe(T−t)r ]. (2.68)
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Because ρ ≥ 0, we have

cna(t)− cm(t) =
1

β
[ρ(
e(ρ−r)(T−t)

γ
) +

(r − ρ)e(T−t)ρ − r
e(T−t)ρ − 1 + γe(T−t)r ]

=
1

β
[

ρe(2ρ−r)(T−t)

γ
− ρe(ρ−r)(T−t)

γ
+ ρeρ(T−t) + (r − ρ)e(T−t)ρ − r

e(T−t)ρ − 1 + γe(T−t)r ]

=
1

β
[

ρe(2ρ−r)(T−t)

γ
− ρe(ρ−r)(T−t)

γ
+ re(T−t)ρ − r

e(T−t)ρ − 1 + γe(T−t)r ] ≥ 0.

(2.69)

The proof is complete.

2.3.3 The case L(t, x) = xek(T−t)

In this case, the parameter k should be greater than the risk-free rate r, otherwise,

problem (2.57) is trivial. Specifically, if k ≤ r, the optimal portfolio is putting all

of one’s money in the bank account. We can calculate γ(x) using equation (2.59) to

obtain

γ(xt) =
1

xt

e(T−t)ρ − 1

e(T−t)k − e(T−t)r . (2.70)

Let φ(t) := e(T−t)ρ−1
e(T−t)k−e(T−t)r . By Bjork et al. (2014), the equilibrium portfolio is given

by

π′sd(t,X(t)) = c′sd(t)X(t), (2.71)

where c′sd(t) is given as follows:

c′sd(t) =
β

φ(t)σ2
{e−

∫ T
t [r+(α−r)c(s)+σ2c2(s)]ds + φ(t)e−

∫ T
t σ2c2(s)ds − φ(t)}. (2.72)

By the definition of L(t, x), it is easy to obtain the corresponding f(t, T ) in (2.5)

as

f(t, T ) = ek(T−t),
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which satisfies Assumption A3). Thus, by Theorem 1, the naive portfolio is

π(t,X(t)) = [σ(t)σ(t)>]−1B(t)>(γ∗(t)e−
∫ T
t r(s)ds − 1)X(t),

where

γ∗(t) =
ek(T−t) − e(r−ρ)(T−t)

1− e−ρ(T−t) .

Therefore, the portfolio for the naive agent is given by

π′na(t,X(t)) =
ρ

β
(
e(k−r)(T−t) − 1

1− e−ρ(T−t) )X(t) = c′na(t)X(t), (2.73)

where c′na(t) := ρ
β
( e

(k−r)(T−t)−1
1−e−ρ(T−t) ). Finally, by Section 4.3 of He and Jiang (2017), the

corresponding equilibrium portfolio is

π′m(t,X(t)) =
1

β
(k − r)X(t) = c′m(t)X(t), (2.74)

where c′m(t) := 1
β
(k−r). Next, we show that the naive strategy allocates more weight

to the risky asset than the two equilibrium strategies by the following proposition.

Proposition 4 In the Black-Scholes market, we have

c′sd(t) < c′na(t), c
′
m(t) < c′na(t)

for any γ > 0.

Proof We divide the proof into two parts. In the first part, we prove that c′sd(t) <

c′na(t). The portfolio coefficient for the naive strategy is given by

c′na(t) =
ρ

β
(
e(k−r)(T−t) − 1

1− e−ρ(T−t) ). (2.75)
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The coefficient for the state-dependent strategy is

c′sd(t) =
β

φ(t)σ2
{e−

∫ T
t [r+(α−r)c′sd(s)+σ2(c′sd)2(s)]ds + φ(t)e−

∫ T
t σ2(c′sd)2(s)ds − φ(t)}, (2.76)

where φ(t) := e(T−t)ρ−1
e(T−t)k−e(T−t)r . Note that c′(t) ≥ 0 always holds. Due to the fact that

k > r, we have

c′sd(t) =
β

φ(t)σ2
{e−

∫ T
t [r+(α−r)c(s)+σ2c2(s)]ds + φ(t)e−

∫ T
t σ2c2(s)ds − φ(t)}

=
β

φ(t)σ2
{e−

∫ T
t [r+(α−r)c(s)+σ2c2(s)]ds}

≤ β

φ(t)σ2
{e−r(T−t)}

=
(e(T−t)(k−r) − 1)β

(e(T−t)ρ − 1)σ2

=
(e(T−t)(k−r) − 1)ρ

(e(T−t)ρ − 1)β

≤ ρ

β

e(T−t)(k−r) − 1

1− e−(T−t)ρ = cna(t), ∀t ∈ [0, T ].

(2.77)

In the second part, we prove that cm(t) < cna(t). Because ρ ≥ 0, we have

cna(t)− cm(t) =
1

β
[
ρe(k−r)(T−t) − ρ− (k − r) + (k − r)e−ρ(T−t)

1− e−ρ(T−t) ]

=
1

β
[
ρe(k−r)(T−t) + (k − r)e−ρ(T−t) − ρ− (k − r)

1− e−ρ(T−t) ] ≥ 0.

(2.78)

The proof is complete.

2.4 Conclusions

We consider a naive agent in a continuous-time mean-variance model. By par-

titioning the time line into 2n parts of equal length, we are able to construct the

portfolio and wealth processes for the 2n-committed agent using the precommitted

strategy of each time interval. Next, we use the behavior of the 2n-committed agent

to approximate that of the naive agent. Under some boundedness assumptions, we
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are able to prove that the wealth process of the 2n-committed agent will converge to

a limiting process as n→∞, where this limiting process is the wealth process for the

naive agent. We also derive the wealth and portfolio processes explicitly. After that,

we compare the derived naive strategy to the two equilibrium strategies developed by

Bjork et al. (2014) and by He and Jiang (2017). We derive the allocations of all three

agents in the Black-Scholes market, where there is only one risky asset and one risk-

free asset. We prove that the naive agent will allocate more weight to the risky-asset

than that of the two equilibrium strategies. These comparisons show that the agent

in the naive strategy tends to be more “greedy” than the equilibrium strategies.



Chapter 3

A Distributionally Robust

Mean-Variance Model

3.1 Model Formulation

In this section, we formulate a distributionally robust Markowitz (DRM) model

while reviewing some useful concepts.

Let P(Rd×Rd) be the space of all Borel probability measures supported on Rd×Rd.

A given element π ∈ P(Rd × Rd) can be assumed to be the joint distribution of a

random vector (U, V ), where U ∈ Rd and V ∈ Rd. We use πU and πV to denote the

marginal distributions of U and V under π. In particular, πU (A) = π
(
A× Rd

)
and

πV (A) = π
(
Rd × A

)
for every Borel set A ⊂ Rd.

We start with a “cost” function c : Rd × Rd → [0,∞], which we assume to be

lower semicontinuous and such that c (u, u) = 0 for any u ∈ Rd. For a given such

cost function c, we introduce Dc (·, ·) representing some “discrepancy” between two

probability measures, as follows:

Dc(P,Q) := inf{Eπ[c(U, V )] : π ∈ P(Rd × Rd), πU = P, πV = Q}, (3.1)

where P and Q are two probability measures supported on Rd. This can be interpreted

48
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as the optimal (minimal) transportation cost (also known as the optimal transport

discrepancy or the Wasserstein discrepancy) of moving the mass from P into the mass

of Q under a cost c (x, y) per unit of mass transported from x to y.

If for a given p > 0, c1/p (·, ·) is a metric, then so is D
1/p
c (·, ·); see Villani (2003).

Such a metric D
1/p
c (·, ·) is known as a Wasserstein distance of the order p. Most of

the times in this chapter, we choose the following cost function

c(u, v) = ||u− v||2q, (3.2)

where q ≥ 1 is fixed (which leads to a Wasserstein distance of the order 2).1

Recall that R is the d-dimensional vector of the random returns of d stocks. Let

Pn be the empirical probability measure on Rd with a sample size n, i.e.,

Pn(dx) =
1

n

n∑
i=1

δRi(dx),

where Ri (i = 1, 2, ..., n) are realizations of R and δRi(·) is the indicator function.

Define the ambiguity set as

Uδ(Pn) = {P : Dc(P,Pn) ≤ δ}

and the feasible region of portfolios as

Fδ,ᾱ (n) = {φ ∈ Rd : φ>1 = 1, min
P∈Uδ(Pn)

[EP
(
φ>R

)
] ≥ ᾱ}.

The first constraint in the feasible region Fδ,ᾱ(n) is the budget constraint, and the

second constraint represents the worst case target for our portfolios when the un-

derlying probability measure is selected from the ambiguity set Uδ(Pn). The DRMV

1Different cost functions can be used, resulting in different regularization penalties, we discuss
this at the end of Section 3.2 and in Section 3.5.
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model is formulated as follows:

min
φ∈Fδ,ᾱ(n)

max
P∈Uδ(Pn)

{
φ>VarP (R)φ

}
. (3.3)

The inner maximization part of (3.3) represents the worst case portfolio variance.

The objective of the DRMV model is to choose a portfolio φ ∈ Fδ,ᾱ (n) that achieves

the optimal worst case value in (3.3).

3.2 Transformations, Duality, and Regularization

Problem (3.3) appears, in principle, very complex. First of all, the inner maxi-

mization problem is over a set of probability measures, which renders it an infinite

dimensional optimization problem. Second, it is not clear whether the outer mini-

mization problem, while finite dimensional, is convex. Therefore (3.3) at its outset

seems computationally insurmountable. In this section, we reformulate (3.3), through

a series of transformations and a duality argument, as an equivalent problem that is

computationally tractable.

The first step is to show that the feasible region over φ in the outer minimization

part can be explicitly evaluated. This is given in the following proposition:

Proposition 5 For c(u, v) = ||u− v||2q, q ≥ 1, we have

min
P∈Uδ(Pn)

EP(φ>R) = EPn(φ>R)−
√
δ||φ||p, (3.4)

where p satisfies 1/p+ 1/q = 1.

Proof We consider the following problem:

min
P∈Dc(P,Pn)≤δ

φ>EP[R] (3.5)
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or, equivalently,

− max
P∈Dc(P,Pn)≤δ

EP[(−φ)>R]. (3.6)

By checking Slater’s condition and using Proposition 4 of Blanchet et al. (2016), we

obtain the dual problem:

max
P∈Dc(P,Pn)≤δ

EP[(−φ)>R] = inf
λ≥0

[
λδ +

1

n

n∑
i=1

Φλ(Ri)

]
(3.7)

where

Φλ(Ri) = sup
u
{h(u)− λc(u,Ri)}

= sup
u
{(−φ>)u− λ||u−Ri||2q}

= sup
∆
{(−φ>)(∆ +Ri)− λ||∆||2q}

= sup
∆
{(−φ>)∆− λ||∆||2q} − φ>Ri

= sup
∆
{||φ||p||∆||q − λ||∆||2q} − φ>Ri

=
||φ||2p
4λ
− φ>Ri.

Thus, (3.7) becomes

max
P∈Dc(P,Pn)≤δ

EP[(−φ)>R] = inf
λ≥0

{
λδ +

1

n

n∑
i=1

[
||φ||2p
4λ
− φ>Ri]

}

= inf
λ≥0

{
λδ +

||φ||2p
4λ
− φ>EPn [R]

}
=
√
δ||φ||p − φ>EPn [R]

or

min
P∈Dc(P,Pn)≤δ

φ>EP[R] = φ>EPn [R]−
√
δ||φ||p. (3.8)
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Therefore, the feasible region can be rewritten as

Fδ,ᾱ (n) = {φ ∈ Rd : φ>1 = 1,EPn(φ>R) ≥ ᾱ +
√
δ||φ||p},

which can now be seen as clearly convex. Note that, using the same approach in the

proof of Proposition 5, we can prove

max
P∈Uδ(Pn)

EP(φ>R) = EPn(φ>R) +
√
δ||φ||p. (3.9)

Although it is difficult to characterize the worst case probability distribution, equa-

tions (3.4) and (3.9) have given us an intuitive sense about what effects it will bring

in our model. To be more specific, under the worst case probability distribution, the

portfolio return will deviate from the its empirical estimation with the size of
√
δ||φ||p.

Next, by fixing EP(φ>R) = α ≥ ᾱ in the inner maximization part of problem

(3.3), we obtain the following equivalent formulation

min
φ∈Fδ,ᾱ

{
max
α≥ᾱ

[
max

P∈Uδ(Pn),EP(φ>R)=α
{φ>EP

(
RR>

)
φ} − α2

]}
. (3.10)

Introducing EP(φ>R) = α is useful because the inner-most maximization problem in

the above is now linear in P. So, let us concentrate on the problem

max
P∈Uδ(Pn),EP(φ>R)=α

φ>EP(RR>)φ. (3.11)

The following proposition solves this problem in terms of a general cost function c.

Proposition 6 For any cost function c that is lower semicontinuous and non-negative,

the optimal value function of problem (3.11) is given by

inf
λ1≥0,λ2

[
1

n

n∑
i=1

Φ(Ri) + λ1δ + λ2α

]
, (3.12)
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where

Φ(Ri) := sup
u

[
(φ>u)2 − λ1c(u,Ri)− λ2φ

>u
]
.

Proof The proof is based on a duality argument. Introduce a slack random variable

S ≡ v, where v is a deterministic number. Then, we can recast problem (3.11) as

max{EP[(U>φ)2] : Eπ[c(U,R) + S] = δ, πR = Pn, π(S = v) = 1, (3.13)

Eπ[U>φ] = α, π ∈ P(Rm ×Rm ×R+)}. (3.14)

Define

Ω := {(u, r, s) : c(u, r) <∞, s ≥ 0, r ∈ {R1, ..., Rn}}

and let

f (u, r, s) =



1r=R1(u, r, s)

...

1r=Rn(u, r, s)

φ>u

1s=v(u, r, s)

c(u, r) + s


and q =



1
n

...

1
n

α

1

δ


. (3.15)

Thus, (3.13) can be written as

max{Eπ[(U>φ)2] : Eπ[f(U,R, S)] = q, π ∈ PΩ}. (3.16)

Let f0 = 1Ω, f̃ = (f0, f), q̃ = (1, q), Qf̃ := {
∫
f̃(x)dµ(x) : µ ∈ M+

Ω} where M+
Ω

denotes the set of non-negative measures on Ω. If φ 6= 0, then it is easy to see that

q̃ lies in the interior of Qf̃ . By Proposition 6 in Blanchet et al. (2016), the optimal
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value of problem (3.16) equals that of its dual problem, i.e.,

max{Eπ[(U>φ)2] : Eπ[f(U,R, S)] = q, π ∈ PΩ} (3.17)

= inf
a=(a0,...,an+3)∈A

{a0 +
1

n

n∑
i=1

ai + αan+1 + an+2 + δan+3},

where

A :={a = (a0, ..., an+3) ∈ Rn+4 : a0 +
1

n

n∑
i=1

ai1r=Ri(u, r, s) + an+1φ
>u

+an+21s=v(u, r, s) + an+3[c(u, r) + s] ≥ (φ>u)2,∀(u, r, s) ∈ Ω}.

From the definition of A, replacing r = Ri, we obtain that the inequality

a0 + ai + an+2 ≥ sup
(u,s)∈Ω

{(φ>u)2 − an+3[c(u,Ri) + s]− an+1φ
>u} (3.18)

holds for each i ∈ {1, ..., n}. It follows directly that

sup
(u,s)∈Ω

{(φ>u)2 − an+3[c(u,Ri) + s]− an+1φ
>u} (3.19)

=


+∞, if an+3 < 0

sup
u
{(φ>u)2 − an+3c(u,Ri)− an+1φ

>u}, if an+3 ≥ 0.

(3.20)

Thus, the dual problem can be expressed as

inf{a0+
1

n

n∑
i=1

ai+αan+1+an+2+δan+3 : an+3 ≥ 0, a0+ai+an+2 ≥ sup
u
{(φ>u)2−an+3c(u,Ri)−an+1φ

>u}},

(3.21)

which can be transformed into

inf
an+3≥0

{ 1

n

n∑
i=1

Φ(Ri) + αan+1 + δan+3}, (3.22)



CHAPTER 3. A DRMV MODEL 55

with

Φ(Ri) := sup
u
{(φ>u)2 − an+3c(u,Ri)− an+1φ

>u}.

Using λ1 to replace an+3 and λ2 to replace an+1, the dual problem becomes

inf
λ1≥0
{ 1

n

n∑
i=1

Φ(Ri) + λ2α + λ1δ}, (3.23)

where

Φ(Ri) := sup
u
{(φ>u)2 − λ1c(u,Ri)− λ2φ

>u}.

Thanks to this proposition, we are able to reduce the inner (infinite dimensional)

optimization problem in (3.3) to a two-dimensional optimization problem in terms

of λ1 and λ2, which can be further simplified if the cost function c has additional

structure. We make this statement precise in the case of a quadratic lq cost.

Proposition 7 Let c(u, v) = ||u − v||2q with q ≥ 1 and 1/p + 1/q = 1. If (α −

φ>EPn [R])2 − δ||φ||2p ≤ 0, then the value of (3.11) is equal to

h(α, φ) :=EPn
[
(φ>R)2

]
+ 2(α− φ>EPn [R])φ>EPn [R] + δ||φ||2p

+ 2
√
δ||φ||2p − (α− φ>EPn [R])2

√
φ>VarPn (R)φ.
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Proof Writing ∆ := u−Ri, we have

Φ(Ri) = sup
u
{(φ>u)2 − λ1c(u,Ri)− λ2φ

>u}

= sup
u
{(φ>u)2 − λ1||u−Ri||2q − λ2φ

>u}

= sup
∆
{(φ>(∆ +Ri))

2 − λ1||∆||2q − λ2φ
>(Ri + ∆)}

= sup
∆
{(φ>Ri)

2 + (φ>∆)2 + 2(φ>Ri)(φ
>∆)− λ1||∆||2q − λ2φ

>(Ri + ∆)}

= (φ>Ri)
2 − λ2φ

>Ri + sup
∆
{(φ>∆)2 + 2(φ>Ri)(φ

>∆)− λ1||∆||2q − λ2φ
>∆}

= (φ>Ri)
2 − λ2φ

>Ri + sup
∆
{(||φ||2p − λ1)||∆||2q + |2(R>i φ)− λ2|(||φ||p||∆||q)}.

We consider four cases: 1) ||φ||2p > λ1, Φ(Ri) = +∞; 2) ||φ||2p = λ1, 2R>i φ 6= λ2,

Φ(Ri) = +∞; 3) ||φ||2p = λ1, 2R>i φ = λ2, Φ(Ri) = 0; 4) ||φ||2p < λ1, Φ(Ri) =

(φ>Ri)
2 − λ2φ

>Ri +
(2R>i φ−λ2)2||φ||2p

4(λ1−||φ||2p)
.

For the first three cases, the value of 1
n

n∑
i=1

Φ(Ri) is +∞. Hence, only the fourth

case is non-trivial. In this case, problem (3.12) is transformed into

inf
λ1≥0,λ2

[
1

n

n∑
i=1

Φ(Ri) + λ2α + λ1δ]

= inf
λ1≥||φ||2p,λ2

{
1

n

n∑
i=1

[
(φ>Ri)

2 − λ2φ
>Ri +

(2R>i φ− λ2)2||φ||2p
4(λ1 − ||φ||2p)

]
+ λ2α + λ1δ

}
.

(3.24)

Define

H =
1

n

n∑
i=1

(φ>Ri

)2 − λ2φ
>Ri +

(
2R>i φ− λ2

)2 ‖φ‖2
p

4
(
λ1 − ‖φ‖2

p

)
+ λ2α + λ1δ.

Taking a partial derivative with respect to λ2 and setting it to be 0, we get

∂H

∂λ2

= α− 1

n

n∑
i=1

[
φ>Ri +

(2φ>Ri − λ2)||φ||2p
2(λ1 − ||φ||2p)

]
= 0,
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which implies (note that φ>1 = 1 guarantees that ||φ||2p > 0)

λ2 = 2α− 2C
λ1

||φ||2p
, (3.25)

where C := α− φ>EPn [R]. Moreover, λ2 is optimal because

∂2H

∂λ2
2

=
||φ||2p

2(λ1 − ||φ||2p)
> 0. (3.26)

We plug (3.25) into (3.24) and obtain

inf
λ1≥0,λ2

[
1

n

n∑
i=1

Φ(Ri) + λ2α + λ1δ

]

=
1

n

n∑
i=1

(φ>Ri)
2 + inf

λ1≥||φ||2p,λ2

{
1

n

n∑
i=1

[
−λ2φ

>Ri +
(2R>i φ− λ2)2||φ||2p

4(λ1 − ||φ||2p)

]
+ λ2α + λ1δ

}

=
1

n

n∑
i=1

(φ>Ri)
2 + inf

λ1≥||φ||2p,λ2

{
1

n

n∑
i=1

[
(2R>i φ− λ2)2||φ||2p

4(λ1 − ||φ||2p)

]
+ λ2C + λ1δ

}

=
1

n

n∑
i=1

(φ>Ri)
2 + inf

λ1≥||φ||2p

{
1

n

n∑
i=1

[
(2R>i φ− 2α + 2C λ1

||φ||2p
)2||φ||2p

4(λ1 − ||φ||2p)

]
+ (2α− 2C

λ1

||φ||2p
)C + λ1δ

}
.

Writing λ1 = κ+ ||φ||2p, we have

inf
λ1≥0,λ2

[
1

n

n∑
i=1

Φ(Ri) + λ2α + λ1δ

]

=
1

n

n∑
i=1

(φ>Ri)
2 + inf

κ≥0

 1

n

n∑
i=1

(R>i φ− α + C
k+|φ||2p
||φ||2p

)2N

κ

+ (2α− 2C
κ+ ||φ||2p
||φ||2p

)C + (κ+ ||φ||2p)δ


=

1

n

n∑
i=1

(φ>Ri)
2 + inf

κ≥0
{ C2

1

||φ||2p
k + 2||φ||2p(φ>W̄ − α + C) +

1

n

n∑
i=1

(R>i φ− α + C)2||φ||2p
κ

+ 2αC − 2C2 + κ(δ − 2C2

||φ||2p
) + ||φ||2pδ}

=
1

n

n∑
i=1

(φ>Ri)
2 + 2αC − 2C2 + |φ||2pδ + inf

κ≥0

{
1

n

n∑
i=1

(R>i φ− EPn [R]φ)2||φ||2p
κ

+ κ(δ − C2

||φ||2p
)

}
.

If δ−C2/||φ||2p < 0, then the optimal value of the above problem is −∞, which means
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that the primal problem (3.11) is not feasible. If δ − C2/||φ||2p ≥ 0, then

1

n

n∑
i=1

(φ>Ri)
2 + 2αC − 2C2 + |φ||2pδ + inf

κ≥0

{
1

n

n∑
i=1

(R>i φ− EPn [R]φ)2||φ||2p
κ

+ κ(δ − C2

||φ||2p
)

}

=
1

n

n∑
i=1

(φ>Ri)
2 + 2(α− φ>EPn [R])φ>EPn [R] + δ||φ||2p

+ 2
√
δ||φ||2p − (α− φ>EPn [R])2

√√√√ 1

n
φ>

n∑
i=1

(Ri − EPn [R])(Ri − EPn [R])>φ

=
1

n

n∑
i=1

(φ>Ri)
2 + 2(α− φ>EPn [R])φ>EPn [R] + δ||φ||2p

+ 2
√
δ||φ||2p − (α− φ>EPn [R])2

√
φ>VarPn [R]φ.

Thus, problem (3.11) can be written as

min
φ

1

n

n∑
i=1

(φ>Ri)
2 + 2(α− φ>EPn [R])φ>EPn [R] + δ||φ||2p

+ 2
√
δ||φ||2p − (α− φ>EPn [R])2

√
φ>VarPn [R]φ,

subject to 1>φ = 1 and (α− φ>EPn [R])2 − δ||φ||2p ≤ 0.

The condition (α − φ>EPn [R])2 − δ||φ||2p ≤ 0 ensures that (3.11) is feasible, fail-

ing which the optimal value h(α, φ) = −∞. Proposition 7 ultimately leads to the

following main result of the chapter, one that transforms (3.3) into a non-robust

portfolio selection problem in terms of the empirical measure Pn, with an additional

“regularization” term.

Theorem 2 The primal formulation given in (3.3) is equivalent to the following dual

problem

min
φ∈Fδ,ᾱ(n)

(√
φ>VarPn (R)φ+

√
δ||φ||p

)2

, (3.27)

in the sense that the two problems have the same optimal solutions and optimal value.
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Proof Note that

h(α, φ)− α2

= EPn
[
(φ>R)2

]
+ 2(α− φ>EPn [R])φ>EPn [R]− α2 + δ||φ||2p

+ 2
√
δ||φ||2p − (α− φ>EPn [R])2

√
φ>VarPn (R)φ

= EPn
[
(φ>R)2

]
+ 2αφ>EPn [R]− (φ>EPn [R])2 − α2 − (φ>EPn [R])2 + δ||φ||2p

+ 2
√
δ||φ||2p − (α− φ>EPn [R])2

√
φ>VarPn (R)φ

= φ>VarPn (R)φ+ {δ||φ||2p − (α− φ>EPn [R])2}

+ 2
√
δ||φ||2p − (α− φ>EPn [R])2

√
φ>VarPn (R)φ

=
(√

φ>VarPn (R)φ+
√
δ||φ||2p − (α− φ>EPn [R])2

)2

.

Therefore, it follows from Proposition 7 that

max
α≥ᾱ,(α−φ>EPn [R])2−δ||φ||2p≤0

[
h(α, φ)− α2

]
=
(√

φ>VarPn (R)φ+
√
δ||φ||p

)2

,

with the optimal αopt = φ>EPn [R] ≥ ᾱ. This concludes the proof.

It is not difficult to verify that the mapping φ →
√
φ>VarPn (R)φ +

√
δ||φ||p is

convex, and we have shown that the feasible region Fδ,ᾱ (n) is convex. So (3.2) and

therefore (3.3) are both convex optimization problems. As such, they are tractable

optimization problems.

Problem (3.2) has an additional term,
√
δ||φ||p, in its objective function. In the

asset management industry, fund managers using a mean–variance portfolio selection

model often add a “penalty” or “regularization” term – in the form of k||φ||, where

||·|| is an appropriately chosen norm - in order to enhance the sparsity of the vector as

a way to include fewer stocks in the portfolio and to address the issue of overfitting.2

2In practice, it is not desirable to include, in the case of S&P 500 stocks, for example, all of the
500 stocks in one’s portfolio, even though one of the key implications of the mean–variance model
is diversification. From a practical perspective, including too many stocks is costly and prone to
mismanagement. Therefore, adding a proper regularization term not only reduces overfitting, it also
helps to achieve a balance between diversification and manageability.
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Here, we provide interpretability of this regularization technique (which is based on

experience or heuristics) by means of a well-established robustification idea, backed

by precise rationality principles; see for example Delage et al. (2019). Moreover,

the parameter δ, which reflects the level of regularization, will also be endogenously

informed by data, as we show in the next section.

As indicated earlier, it should be noted that Theorem 2 does not follow directly

from any of the strong duality results mentioned in Section 1.4.2. This is because

the portfolio variance in the objective function (3.3) is not a linear function of the

probability measure. A related work, Gao et al. (2017), proves only an asymptotic

equivalence to regularization. On the other hand, we have obtained the exact equiv-

alence between (3.3) and the regularized optimization problem given in Theorem 2.

To conclude this section, we note that while the cost function is chosen as c(u, v) =

||u − v||2q in the study as presented here, our result (Theorem 2) actually holds for

any cost function of the form c(u, v) = ||u − v||2 where || · || is any given norm with

a suitable dual. To be more precise, define the dual norm as ||x||∗ = sup
||z||=1

|x>z|.

Then, the primal distributionally robust model under this alternative cost function

is equivalent to the following dual problem:

min
φ∈Fδ,ᾱ(n)

(√
φ>VarPn (R)φ+

√
δ||φ||∗

)2

,

where the feasible region is modified as

Fδ,ᾱ (n) = {φ ∈ Rd : φ>1 = 1,EPn(φ>R) ≥ ᾱ +
√
δ||φ||∗}.

For example, consider a norm as ||x|| = (xTΣx)1/2 where Σ is a strictly positive

definite matrix. Then ||x||∗ = (xTΣ−1x)1/2. Interested readers may refer to Blanchet

and Kang (2017) for discussion of some other interesting norms.



CHAPTER 3. A DRMV MODEL 61

3.3 Choice of Model Parameters

There are two key parameters, δ and ᾱ, in the formulation (3.3), the choice of

which is not only curious in theory, but also crucial in practical implementation and for

the success of our algorithm. The idea is that the choice of these parameters should be

informed by the data (i.e., in a data-driven way) based on some statistical principles,

rather than being arbitrarily exogenous. Specifically, we define the distributional

uncertainty region just large enough that the correct optimal portfolio (the one that

we would apply if the underlying distribution was known) becomes a plausible choice

with a sufficiently high confidence level. Once this is determined, we then determine

the feasible set of portfolios just large enough that the correct optimal portfolio is

feasible with adequately high confidence.

We need to impose several technical/statistical assumptions.

A1) The underlying return time series (Rk : k ≥ 0) is a stationary, ergodic process

satisfying EP∗ (||Rk||42) <∞ for each k ≥ 0. Moreover, for each measurable g (·) such

that |g (x)| ≤ c(1 + ‖x‖2
2) for some c > 0, the limit

Υg := lim
n→∞

VarP∗

(
n−1/2

n∑
k=1

g (Rk)

)

exists and the central limit theorem holds:

n1/2 [EPn (g (R))− EP∗ (g (R))]⇒ N (0,Υg) ,

where (and henceforth) “⇒” denotes weak convergence.

A2) For any matrix Λ ∈ Rd×d and any vector ζ ∈ Rd such that either Λ 6= 0 or

ζ 6= 0,

P∗ (‖ΛR + ζ‖2 > 0) > 0.
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A3) The classical model (1.1) has a unique solution φ∗. Moreover, VarP∗
[
EP∗

(
R>
)
R
]
>

0.

Assumption A1) is standard for most time series models (after removing season-

ality). Assumption A2) holds, assuming, for example, that R has a density. Assump-

tion A3) is a technical assumption that can be relaxed, but then the evaluation of

the optimal choice of δ would become more cumbersome, as we explain below.

3.3.1 Choice of δ

The choice of the uncertainty size δ is crucial. If δ is too large, then there is too

much model ambiguity and the available data becomes less relevant. In this case, the

resulting optimal portfolio will tend to consist merely of equal allocations. If δ is too

small, then the effect of robustification will be negligible. Therefore, the choice of δ

should not be exogenously specified; rather, it should be endogenously informed by

the data.

Theorem 2 actually suggests an appropriate order of δ = δn (here, n is the size of

the available return time series data) in terms of n. Because the differences between

the optimal standard deviation obtained by solving (1.1) and that obtained by solving

the empirical version of (1.1) are of the order O
(
n−1/2

)
, it follows from Theorem 2

that any choice of δn in the order of o (n−1) would be too small. Hence, an “optimal”

order of δn should be of the order O (n−1).

In order to choose an appropriate δn, we follow here the idea behind the robust

Wasserstein profile inference (RWPI) approach introduced in Blanchet et al. (2016).

Intuitively, δ should be chosen such that the set Uδ(Pn) = {P : Dc(P,Pn) ≤ δ}

contains all of the probability measures that constitute plausible variations of the

data represented by Pn. Denote by Q (P) the classical Markowitz portfolio selection
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problem with target return ρ assuming that P is the underlying model:

min
1>φ=1

φ>EP[RR>]φ (3.28)

subject to φ>EP[R] = ρ,

and denote by φP a solution toQ (P) and by ΦP the set of all such solutions. According

to Assumption A3), we have ΦP∗ = {φ∗} for some portfolio φ∗. Therefore, there exist

(unique) Lagrange multipliers λ∗1 and λ∗2 such that

2EP∗(RR
>)φ∗ − λ∗1EP∗ [R]− λ∗21 = 0, (3.29)

(φ∗)>EP∗ [R]− ρ = 0.

Now, when δ is suitably chosen so that Uδ(Pn) constitutes the models that are

plausible variations of Pn, any φP with P ∈ Uδ(Pn) is a plausible estimate of φ∗. This

intuition motivates the definition of the following set:

Λδ(Pn) = ∪P∈Uδ(Pn)ΦP,

which corresponds to all the plausible estimates of φ∗. As a result, Λδ(Pn) is a natural

confidence region for φ∗ and, therefore, δ should be chosen as the smallest number δ∗n

such that φ∗ belongs to this region with a given confidence level. Namely,

δ∗n = min{δ > 0 : P∗ (φ∗ ∈ Λδ(Pn)) ≥ 1− δ0},

where 1− δ0 is a user-defined confidence level (typically 95%).

However, by mere definition, it is difficult to compute δ∗n. We now provide a

simpler representation for δ∗n via an auxiliary function called the robust Wasserstein

profile (RWP) function. To this end, first observe that any φ ∈ Λδ (Pn) if and only if
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there exist P ∈ Uδ(Pn) and λ1, λ2 ∈ (−∞,∞) such that

2EP(RR>)φ− λ1EP[R]− λ21 = 0,

φTEP(R)− ρ = 0.

From these two equations, multiplying the first equation by φ, substituting the ex-

pression in the second equation, and noting that φ · 1 = 1, we obtain

λ2 = 2 (φ)> EP(RR>)φ− λ1ρ.

We now define the following RWP function:

R̄n(φ, λ1,Σ, µ) := inf

Dc(P,Pn) :


2Σφ− λ1µ =

(
2 (φ)>Σφ− λ1µ · φ

)
1

µ = EP[R],Σ = EP(RR>)

 ,

for (φ, λ1,Σ, µ) ∈ Rd × R × Sd×d+ × Rd where Sd×d+ is the set of all the symmetric

positive semidefinite matrices, and we convent that inf ∅ := +∞. Moreover, define

R̄∗n(φ∗) := inf
Σ∈Sd×d+ ,µ∈Rd,λ1∈R

R̄n(φ∗, λ1,Σ, µ).

It follows directly from the definitions that

φ∗ ∈ Λδ (Pn) =⇒ R̄∗n(φ∗) ≤ δ, (3.30)

while for any given ε > 0

R̄∗n(φ∗) ≤ δ + ε =⇒ φ∗ ∈ Λδ (Pn) . (3.31)

Let us define

δ̃∗n = inf{δ > 0 : P∗(R̄∗n(φ∗) ≤ δ) ≥ 1− δ0}.
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It follows from (3.30) and (3.31) that δ̃∗n ≤ δ∗n ≤ δ̃∗n + ε. As ε > 0 is arbitrary, we

obtain

δ∗n = δ̃∗n = inf{δ : P∗(R̄∗n(φ∗) ≤ δ) ≥ 1− δ0}.

In other words, δ∗n is the quantile corresponding to the 1− δ0 percentile of the distri-

bution of R̄∗n(φ∗).3

Still, even under A3), the statistic R̄∗n(φ∗) is somewhat cumbersome to work with,

as it is derived from solving a minimization problem in terms of the mean and variance.

So, instead, we define an alternative statistic involving only the empirical mean and

variance while producing an upper bound of δ = δn, which still preserves the target

rate of convergence to zero as n → ∞ (which, as we have argued, should be of the

order O (n−1)).

Denote Σn = EPn
(
RR>

)
and let λ∗1 be the Lagrange multiplier in (3.29). Set

µn = ρ1 + 2
(
Σnφ

∗ − φ∗TΣnφ
∗1
)
/λ∗1. (3.32)

Define

Rn(Σn, µn) := R̄n(φ∗, λ∗1,Σn, µn).

It is clear that

Rn(Σn, µn) ≥ R̄∗n(φ∗).

Therefore,

Rn(Σn, µn) ≤ δ =⇒ R̄∗n(φ∗) ≤ δ

and, consequently,

δ̄∗n = inf{δ ≥ 0 : P∗ (Rn(Σn, µn) ≤ δ) ≥ 1− δ0} ≥ δ∗n. (3.33)

3Herein the analysis is under Assumption A3). If ΦP∗ contained more than just one element,
then there would be several possible options to formulate an optimization problem for choosing δ.
For example, we might choose δ as the smallest uncertainty size such that ΦP∗ ⊂ Λδ (Pn) with
probability 1− δ0, in which case we would need to study supφ∗∈ΦP∗

R̄∗n(φ∗).
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Moreover, because of the choice of Σn and µn, we have

Rn(Σn, µn) = inf{Dc(P,Pn) : EP[RR>] = Σn,EP[R] = µn}.

The next result shows δ̄∗n = O (n−1) as n→∞.

Theorem 3 Assume that A1) and A2) hold and write µ∗ = EP∗ (R) and Σ∗ =

EP∗
(
RR>

)
. Define g (x) = x+ 2

(
xx> · φ∗ − φ∗Txx>φ∗1

)
/λ∗1. Then,

nRn(Σn, µn)⇒ L0 := sup
λ̄∈Rd

(
λ̄>Z − inf

Λ̄∈Rd×d
EP∗ [

∥∥Λ̄R + λ̄
∥∥2

p
]

)

where Z ∼ N (0,Υg). Moreover, if p = 2, then

L0 =
‖Z‖2

2

4
(
1− ‖µ∗‖4

2 /µ
>
∗ Σ∗µ∗

) .
Proof Define

h0 (R,Σ) = RR> − Σ and h1 (R, µ) = R− µ.

Then, by Proposition 1 of Blanchet et al. (2016), we have that for any given µ and Σ

Rn(Σ, µ) = sup
Λ∈Rd×d,λ∈Rd

{
−EPn [ sup

u∈Rd
{Tr (Λh0(u,Σ)) + λ>h1 (u, µ)− ||u−R||2q}]

}
.

Observe that

sup
u∈Rd
{Tr (Λh0(u,Σ)) + λ>h1 (u, µ)− ||u−R||2q}

= sup
∆∈Rd
{Tr (Λh0(∆ +R,Σ)) + λ>h1 (∆ +R, µ)− ||∆||2q}

= sup
∆∈Rd
{Tr (Λ [h0(∆ +R,Σ)− h0(R,Σ)]) + λ>∆− ||∆||2q}

+ Tr(Λh0(R,Σ)) + λ>h1 (R, µ) .
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Moreover, let us write

Tr (Λ [h0(∆ +R,Σ)− h0(R,Σ)]) =

∫ 1

0

d

dt
Tr (Λh0 (R + t∆)) dt.

However,

d

dt
Tr (Λh0 (R + t∆)) = 2Tr

(
Λ (R + t∆) ∆>

)
= 2Tr

(
ΛR∆>

)
+ 2t∆>Λ∆.

Furthermore,

EPn [Tr(Λh0(R,Σ))]|Σ=Σn
= 0. (3.34)

So, we deduce

Rn(Σn, µ)

= sup
λ∈Rd
{−EPn [λ> (R− µ)]+

sup
Λ∈Rd×d

(−EPn [sup
∆
{2Tr

(
ΛR∆>

)
+ ∆>Λ∆ + λ>∆− ||∆||2q}])}.

Introduce the scaling ∆ = ∆̄/n1/2 and λ̄ = λn1/2 and Λ̄ = Λn1/2. Then, we obtain

nRn(Σn, µn)

= sup
λ̄∈Rd
{−n−1/2

n∑
i=1

λ̄> (Ri − µn) +

sup
Λ̄∈Rd×d

(−EPn [sup
∆̄

{2Tr
(
Λ̄R∆̄>

)
+ ∆̄>Λ̄∆̄/n1/2 + λ̄>∆̄− ||∆̄||2q}])}.

In the proof of Proposition 3 in Blanchet et al. (2016), under Assumption A2), a

technique is introduced to show that ∆̄ and λ̄ can be restricted to compact sets with

high probability, and therefore the term ∆̄>Λ̄∆̄/n1/2 is asymptotically negligible. On
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the other hand,

sup
∆
{2Tr

(
∆̄>Λ̄R

)
+ ∆̄>λ̄− ||∆̄||2q}

= sup
∆
{2
∥∥Λ̄R + λ̄

∥∥
p

∥∥∆̄
∥∥
q
− ||∆̄||2q} =

∥∥Λ̄R + λ̄
∥∥2

p
.

Therefore, if

n−1/2

n∑
i=1

(Ri − µn)⇒ −Z

for some Z (to be characterized momentarily), then we conclude that

Rn(Σn, µn)⇒ L0 = sup
λ̄∈Rd
{λ̄>Z − inf

Λ̄∈Rd×d
EP∗ [

∥∥Λ̄R + λ̄
∥∥2

p
]}.

If p = 2, then we have

EP∗ [
∥∥Λ̄R + λ̄

∥∥2

2
] =

∑
i

EP∗
(
Λ̄i· ·R + λ̄i

)2
.

So, taking the derivative with respect to the i-th row, Λ̄i·, of the matrix Λ̄, Λ̄i·, we

obtain

∇Λ̄i·EP∗ [
∥∥Λ̄R + λ̄

∥∥2

2
] = 2EP∗

((
R>Λ̄i· + λ̄i

)
R
)

= 2EP∗
(
R>Λ̄i·R

)
+ 2λ̄iEP∗ (R) = 0.

(3.35)

Writing

µ∗ = EP∗ (R) and Σ∗ = EP∗
(
RR>

)
,

and then multiplying (3.35) by Λ̄>i· , we obtain

Λ̄>i·Σ∗Λ̄i· = −λ̄iΛ̄>i·µ∗.

To solve this equation, take

Λ̄i· = aiµ∗,
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leading to

aiµ
>
∗ Σ∗µ∗ = −λ̄i ‖µ∗‖2

2 ,

or

ai = −λ̄i ‖µ∗‖2
2 /µ

>
∗ Σ∗µ∗.

Therefore,

EP∗
(
Λ̄i·R + λ̄i

)2
= Λ̄>i·Σ∗Λ̄i· + 2λ̄iΛ̄

>
i·µ∗ + λ̄2

i

= λ̄2
i + λ̄iΛ̄

>
i·µ∗ = λ̄2

i

(
1− ‖µ∗‖4

2 /µ
>
∗ Σ∗µ∗

)
.

Observe that ‖µ∗‖4
2 /µ

>
∗ Σ∗µ∗ < 1 if and only if

Tr
(
EP∗

(
RR>

)
EP∗ (R)EP∗

(
R>
))
> Tr

(
EP∗ (R)EP∗

(
R>
)
EP∗ (R)EP∗

(
R>
))
,

which in turn holds if and only if

Tr
(
EP∗

(
R>
) [

EP∗
(
RR>

)
− EP∗ (R)EP∗

(
R>
)]

EP∗ (R)
)

= VarP∗
(
EP∗

(
R>
)
R
)
> 0.

It follows from A3) that VarP∗
(
EP∗

(
R>
)
R
)
> 0. Hence,

L0 = sup
λ̄∈Rd
{λ̄>Z − inf

Λ̄∈Rd×d
EP∗ [

∥∥Λ̄R + λ̄
∥∥2

2
]}

= sup
λ̄∈Rd
{λ̄>Z −

∥∥λ̄∥∥2

2

(
1− ‖µ∗‖4

2 /µ
>
∗ Σ∗µ∗

)
}

=
‖Z‖2

2

4
(
1− ‖µ∗‖4

2 /µ
>
∗ Σ∗µ∗

) .
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It remains to identify Z. Observe that

µn = ρ1 + 2
(
Σnφ

∗ − φ∗TΣnφ
∗1
)
/λ∗1

= ρ1 + 2
(
Σ∗φ

∗ − φ∗TΣ∗φ
∗1
)
/λ∗1

+ 2
(
Hnφ

∗ − φ∗THnφ
∗1
)
/λ∗1

= µ∗ + 2
(
Hnφ

∗ − φ∗THnφ
∗1
)
/λ∗1,

where Hn := Σn − Σ∗. By A1) we have

n−1/2

n∑
i=1

(Ri − µ∗)⇒ Z0 ∼ N(0,Υg1),

n1/2Hn ⇒ Y ∼ N(0,Υg2).

Thus,

n−1/2

n∑
i=1

λ̄> (Ri − µ∗) + 2n1/2λ̄>
(
Hnφ

∗ − φ∗THnφ
∗1
)
/λ∗1

⇒ λ̄>Z = λ̄> (Z0 + Z1) ,

where

Z1 := 2
(
Y φ∗ − φ∗TY φ∗1

)
/λ∗1.

Note that L0 has an explicit expression when p = 2. When p 6= 2, using the

inequalities that ||x||2p ≥ ||x||22 if p < 2 and d( 1
2
− 1
p

)||x||2p ≥ ||x||22 if p > 2, we can find a

stochastic upper bound of L0 that can be explicitly expressed. In that case, we can

obtain δ̄∗n in exactly the same way; namely, first compute the 1 − δ0 quantile of L0

and then let δ̄∗n be such a quantile multiplied by 1/n. The distribution of L0 can be

calibrated using a natural plug-in estimator, leading to an asymptotically equivalent

estimator of δ̄∗n. The validity of this type of (plug-in) approach is explained in the
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following section in the context of choosing ᾱ, but the principle applies directly to

the setting of L0 as well. Simply put, whenever an asymptotic limiting distribution

depends continuously on various parameters and consistent estimators are available

for those parameters, then consistent plug-in estimators can be safely used and still

preserve exactly the same asymptotic distributions. The details of this approach are

investigated in Proposition 2 of Blanchet et al. (2019), and the performance of such

plug-in estimators is tested empirically in Section 3.4 of this chapter.

3.3.2 Choice of ᾱ

Once δ has been chosen, the next step is to choose ᾱ. The idea is to select ᾱ just

large enough to make sure that we do not rule out the inclusion φ∗ ∈ Fδ,ᾱ (n), with

a given confidence level chosen by the user, where φ∗ is the optimal solution to (1.1).

It is equivalent to choosing υ0 where

ᾱ = ρ−
√
δ ‖φ∗‖p υ0.

Therefore, it follows from Proposition 5 that φ∗ ∈ Fδ,ᾱ (n) if and only if

(φ∗)> EPn (R)−
√
δ ‖φ∗‖p ≥ ρ−

√
δ ‖φ∗‖p υ0.

However, ρ = (φ∗)> EP∗ (R); so the previous inequality holds if and only if

(φ∗)> [EPn (R)− EP∗ (R)] ≥ ‖φ∗‖p
√
δ (1− υ0) . (3.36)

Hence, we can choose
√
δ (1− υ0) < 0 sufficiently negative so that the previous in-

equality holds with a specified confidence level. We hope to choose a v0 such that φ∗

will satisfy (3.36) with confidence level 1− ε. This can be achieved asymptotically by

a central limit theorem, as the following result indicates.

Proposition 8 Suppose that A1) and A3) hold and let {φ∗n}
∞
n=1 be any consistent
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sequence of estimators of φ∗ in the sense that φ∗n → φ∗ in probability as n → ∞.

Then,

n1/2

{
(φ∗n)> [EPn (R)− EP∗ (R)]

‖φ∗n‖p

}
⇒ N (0,Υφ∗)

as n→∞, where

Υφ∗ := lim
n→∞

VarP∗

(
n−1/2

n∑
k=1

(φ∗)>Rk/ ‖φ∗‖p

)
.

Proof Note that

n1/2

{
(φ∗n)> [EPn (R)− EP∗ (R)]

‖φ∗n‖p

}
= n1/2

{
(φ∗n − φ∗)

> [EPn (R)− EP∗ (R)]

‖φ∗n‖p

}

+ n1/2

{
(φ∗)> [EPn (R)− EP∗ (R)]

‖φ∗‖p
·
‖φ∗‖p
‖φ∗n‖p

}
.

By the standard central limit theorem and the fact that φ∗n → φ∗ in probability, we

conclude that

n1/2

{
(φ∗n)> [EPn (R)− EP∗ (R)]

‖φ∗n‖p
− (φ∗)> [EPn (R)− EP∗ (R)]

‖φ∗‖p

}
⇒ 0

as n→∞. However, again by the central limit theorem, we have

n1/2

{
(φ∗)> [EPn (R)− EP∗ (R)]

‖φ∗‖p

}
⇒ N (0,Υφ∗) ,

which yields the desired result.

Using the previous result we can estimate v0 asymptotically. Let φn denote the

optimal solution of problem Q(Pn). We know that φn converges to φ∗ in probability.

So, we choose a v0 such that the following inequality will hold with confidence level

1− ε,
1

||φn||p
(φn)> [EPn(R)− EP∗(R)] ≥

√
δ(1− v0). (3.37)

According to Proposition 8, the left-hand side of (3.37) is approximately normally



CHAPTER 3. A DRMV MODEL 73

distributed, and thus we can choose its 1 − ε quantile and consequently decide the

value of v0 > 1.

We now present a simple “menu” for estimating δ and ᾱ.

1. Choose the target return rate ρ.

2. Collect return data {Ri}ni=1.

3. Use the sample mean µn = EPn (R) and the sample second-moment matrix

Σn = EPn
(
RR>

)
to approximate µ∗ and Σ∗, respectively, appearing in Theorem

3.

4. Use the solution φn, which is the solution to problem Q(Pn) (see (3.28)), to

approximate φ∗ in Theorem 3.

5. Apply Theorem 3 and (3.33) to determine δ = δ̄∗ with the 95% confidence level.

6. Choose v0 based on the 95% quantile according to (3.37) and Proposition 8,

and consequently obtain ᾱ.

3.4 Empirical Performance and Comparisons

In this section we report the results of our backtesting experiments on S&P 500

constituents in order to compare the performance of our DRMV portfolios with

those of the portfolios based on the following models: classical (non-robust) single-

period Markowitz, continuous-time Markowitz, Fama–French, Black–Litterman, ro-

bust Goldfarb–Iyengar, and an equally weighted portfolio. The first four models are

well-known and have been widely used in practice, and the fifth is an alternative ro-

bust model not based on distributional uncertainty. The equally weighted strategy is

actually an extreme outcome of the DRMV model when the uncertainty size δ =∞.
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3.4.1 Experiment Design and Data Preparation

We backtested for the period January 2000–December 2016 with the training

(estimation) period being January 1991–December 1999 (i.e., the previous 10 years).4

All the stock monthly price data had been obtained from the database of Wharton

Business School. At the beginning of 2000, we randomly chose 100 stocks from the

constituents of the S&P 500 that had at least ten years’ histroical price data available.5

The basic period is set to be one year in all the single-period models involved, with

target annual mean return rate fixed at ρ = 10%. Then, we used the training period

to estimate the out-of-sample parameters, namely the mean and the variance, in order

to construct the optimal strategies of the various models tested.

DRMV model

Let us first describe in detail the construction of the DRMV strategy for the

selected 100 stocks. We generated this 17-year long strategy in an (overlapping)

rolling horizon fashion, with each horizon being a month. Specifically, on the first

trading day of January 2000, we solved our DRMV model to obtain a portfolio,

denoted as φR. In doing so, we set p = q = 2 and ρ = 10%, and obtained the

parameters δ and ᾱ using the menu presented at the end of Section 3.3. We then

substituted δ and ᾱ in the optimization problem described in Theorem 2 to obtain

φR.

We kept φR until only the first trading day of February 2000. At that point we

4We chose the period 2000–2016 for our backtestings for a reason: the market was overall very
volatile during this period, experiencing two major crashes: the dot com bubble burst and the
subprime financial crisis, followed by a long bull run. We were particularly interested to see how
“robust” our DRMV strategies would have been when sailing through such a bumpy journey.

5In theory, we should have included all the constituents of S&P 500 in our portfolios. However,
that would be computationally inefficient and practically (almost) infeasible for most of the models
under testing (e.g., the original Markowitz model). Therefore, it is desirable to choose a small subset
of stocks based on which to apply various models. This “stock selection” is ultimately an important
part of the overall portfolio management. In this chapter, however, we aim to test the performance
of “stock allocation” (namely, to allocate wealth among the stocks that have been already selected
in order to achieve the best risk-adjusted return) of these models. That is why we randomly selected
a small subset of stocks in order to focus on the part of the stock allocation. On the other hand, the
requirement that the selected stocks have at least ten years’ price data is due to the length of the
training period.
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re-estimated the parameters δ and ᾱ using the immediate previous ten-year (namely,

February 1991 – January 2000) price data and re-solved the DRMV model, and

generated a new portfolio φR for February 2000, the second month in our backtesting

period. We repeated the same steps for all of the subsequent months.

If at the beginning of a month, some stocks in our portfolio had been removed from

the S&P 500 during the previous month, we also removed them from our portfolio,

replace them by the same number of stocks that were randomly picked from the S&P

500 (yet having at least ten years’ historical data), and then re-balanced based on our

DRMV model. We still denoted by φR the overall portfolio for the 17-year period and

kept track of the wealth process that had been updated at the end of each month.

In what follows we describe the implementations of the other models, mentioned

at the beginning of this section, under comparison. Except for the continuous-time

Markowitz model, all of the rest are single-period models, so we applied the same

monthly rolling horizon approach to build the respective strategies. Moreover, for

these single-period models, whenever stocks were dropped from the S&P 500, we

replaced them with exactly the same set of stocks as in the DRMV model, so as to

maintain consistency across models. The case of the continuous-time model is slightly

more complicated, and we explain below how we dealt with the issues it raised.

Single-Period Markovitz Model

For the single-period Markovitz model, we consider the following problem:

min
φ:1>φ=1,EPn [φ>R]=ρ

VarPn(φ>R), (3.38)

where ρ is the targeted expected return of the portfolio. We used the sample mean

and sample covariance matrix of the previous ten-year return data to estimate EPn [R]

and VarPn [R] in each month. Then we generated the optimal portfolio for the single-

period Markowitz model, φM , by setting ρ = 10% and solving problem (3.38), on
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exactly the same rolling horizon basis as for the DRMV model.

Continuous-Time Markovitz Model

The continuous-time Markowitz mean-variance model is based on Cui et al. (2012),

in which portfolios were constructed on risky stocks only. This setting is consis-

tent with ours.6 It is assumed that the stock price process follows correlated time-

inhomogeneous Black-Scholes dynamics. Let {X (t) : t ∈ [0, T ]} be the wealth process

(also called an admissible wealth process) under any given admissible portfolio. The

mean–variance problem is

Minimize Var(X(T )) (3.39)

subject to

{X (t) : t ∈ [0, T ]} is admissible , X(0) = x0, E[X(T )] = z,

where z is a given parameter representing the expected payoff at the end of the

investment horizon, T . An optimal strategy is given explicitly in Theorem 1.1 of Cui

et al. (2012), which provides the portfolio at each given time t ∈ [0, T ] as a function

of the wealth, a couple of auxiliary feedback processes, and gives estimates (at time

t) of the (time-inhomogeneous) diffusion and drift coefficients.

In theory, a continuous-time model requires continuous rebalancing of all the

times. Naturally, this is not possible (indeed, not necessary) in practice, nor was

it attempted in our empirical implementation. In our experiments, we set T = 1

(year) and z = 1.1x0 corresponding to an annual expected return ρ = 10%, and we

rebalance only monthly (instead of continuously). The one-year period is consistent

with the other models under comparison. Therefore, on the first trading day in

January of 2000, we estimated all the necessary parameters/coefficients based on the

previous ten-year data and then applied the explicit formula for the optimal portfolio,

6There is an extensive literature on continuous-time Markowitz models; however, to our best
knowledge all of the other existing models include a risk-free asset.
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denoted as φC , given by Theorem 1.1 in Cui et al. (2012). On the first trading day

of February 2000, we applied the same formula but with updated estimates of the

parameters/coefficients based on the immediate previous ten-year data. In this way,

we have constructed a strategy for the whole year of 2000. For all of the subsequent

years, we repeat the same procedure to generate a 17-year long strategy φC and the

corresponding wealth process.

It is important to note that this model does not have an explicit no-bankruptcy

constraint (i.e., it does not rule out the possibility that the wealth process may go

negative during [0, T ]). Indeed, as we will see in the discussions below, this model led

to bankruptcy in all of our numerical experiments for portfolios of 100 stocks.7 Once

a bankruptcy occurred, we considered it “game over” and retained the zero wealth

until December 2016.8

Fama–French model and Black–Litterman model

Both the Fama–French model and the Black–Litterman model were developed to

address the mean-blur problem, namely, the fact that compared with variance, it is

much more difficult to estimate within a workable accuracy the expected returns of

stocks based purely on sample means. These models estimate the stock returns by

their respective methods while keeping the sample covariance matrix and feed them

into the classical Markowitz model to obtain the corresponding strategies.

In implementing the Fama–French model, we first downloaded the monthly data of

the three factors (i.e., Rm-Rf, SMB, and HML)9 from Kenneth French’s personal web-

7We have also tested for portfolios with 20 stocks and observed bankruptcy in more than half
of our experiments. On the other hand, although the other six single-period models have no ex-
plicit no-bankruptcy constraint either, a total of only two instances of bankruptcy occurred in our
experiments.

8Bielecki et al. (2005b) solved a continuous-time mean–variance model with the no-bankruptcy
constraint. However, there is a risk-free asset in that model. To have a fair comparison with the
other models, in which there is no risk-free account available, it is proper to choose the model of
Cui et al. (2012) in our experiments. We are not aware of a work on a continuous-time Markowitz
model without a risk-free asset and with a bankruptcy prohibition.

9We assume that the factors have been processed according to the available papers (Fama and
French (1992) and Fama and French (1993)).
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site.10 Then, on the first trading day of each month during January 2000–December

2016, for each stock, we used its immediate prior ten-year history returns to fit the

three-factor Fama–French model. Next, we plugged in the factors data available on

that day to obtain an estimate of the stock’s return for the month. We used these

estimates for all of the randomly chosen 100 stocks as the mean vector and solved

the single-period classical Markowitz model with ρ = 10%. The generated portfolio

was denoted as φF . This process was then repeated in the subsequent months on a

rolling horizon basis.

For the Black–Litterman model, on the first trading day of each month during

January 2000–December 2016, we calculated the implied returns of all the S&P 500

constituent stocks having at least ten years’ historical data, using the following for-

mula:

Rimplied = λΣφmarket,

where λ = 3.07, Σ was the sample covariance matrix of the previous ten years’ returns

of these stocks and φmarket was the corresponding market portfolio (i.e., φmarket is a

vector whose components add up to 1 and are proportional to the capitalizations of

the S&P 500 constituents having at least ten years’ historical data) based on the

closing prices of the previous trading day; see Idzorek (2002).11 Then, we picked from

Rimplied the implied returns of the 100 stocks that had been randomly chosen. We

inputted these returns and the sample covariance matrix into the classical Markovitz

model with ρ = 10% to obtain the portfolio φB. This process was repeated for the

subsequent months on a rolling horizon fashion.

Goldfarb–Iyengar Robust Model

Goldfarb and Iyengar (2003) consider the following robust Markovitz problem

10http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
11Here we include only those having at least ten years’ historical data to be consistent with the

other models.
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with a factor model for the return rate:

Minimize φ max
V∈Sv , D∈Sd

Var[r>φ]

subject to min
µ∈Sm

E[r>φ] ≥ ρ

1>φ = 1,

where

r = µ+ V>f + ε, ε ∼ N(0,D),

Sv = {V : V = V0 +W, ||Wi||g ≤ ρi, i = 1, ..., n}

with Wi being the ith column of W and ||w||g =
√
w>Gw for some positive definite

matrix G,

Sd = {D : D = diag(d), di ∈ [dmini , dmaxi ], i = 1, ..., n},

Sv = {V : V = V0 +W, ||Wi||g ≤ λi, i = 1, ..., n},

and

Sm = {µ : µ = µ0 + ξ, |ξi| ≤ γi, i = 1, ..., n}.

So the uncertainty set of this model is based on vector/matrix distance, as opposed

to our uncertainty set, which is defined through the Wasserstein distance between

probability measures.

In implementing this model, we followed the instructions in Section 7.2 of Goldfarb

and Iyengar (2003). Specifically, we calculated the ten years’ sample returns r of the

chosen 100 stocks. Then we used the top five principal components of r, together

with the return data of DJA, NDX, SPC, RUT, and TYX, to be the factor vector f .

By choosing the confidence threshold ω to be 95%, we estimated µ0, V0, σ2
i , γi, G,

and λi. With the target annual return ρ = 10% and plugging in all of the parameters

from the above steps, we used SeDuMi to solve the SOCP formulation (problem (32)
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Figure 3.1: This graph presents the wealth processes of all portfolios (including
continuous-time Markowitz) and the S&P 500 from January 2000 to December 2016.
All of the portfolios except S&P 500 consist of 100 stocks, and the averages are calcu-
lated over 100 numerical experiments. The x-axis indicates the time in months (from
1 to 204) and the y-axis indicates the portfolio wealth. Initial wealth is set at 1.

in Goldfarb and Iyengar (2003)) to obtain the portfolio φG for each month on a rolling

horizon basis, starting from January 2000.

3.4.2 Comparisons

Assume that the initial wealth at the start of the backtesting period (i.e., January

2000) is 1. For each randomly selected set of 100 stocks, we generate the wealth

process for the period 2000-2016 under each of the six models as described in the

previous subsection, as well as that under the equal weighting. Then, we repeat the

experiments on 100 such sets of 100 stocks and obtain the average realized wealth

process for each model. These processes, along with that of the S&P500 (normalized

to start from 1 at the start of the testing period), are plotted in Figure 3.1.

Graphically, Figure 3.1 is “corrupted” because of the extreme behavior of the

continuous-time Markowitz model. Its average performance went “through the roof”

initially and then quickly dived to zero (all of the 100 experiments ended in bankruptcy).
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So, the continuous-time Markowitz can be considered an extremely volatile model.

This may be explained as follows. The dynamic strategies incorporate considerable

feedback effects, which are computed assuming the underlying model is correct. As

such, model misspecifications are compounded precisely due to feedback effects. The

inclusion of feedback in the optimal dynamic policy, in outputs that are close to

typical realizations of the underlying assumed model, result in highly profitable port-

folios. On the other hand, even moderate discrepancies from the underlying model

dynamics can lead to relatively poor performance. As a consequence, the dynamic

model exhibits significantly higher variability than its static-rolling-horizon robust

counterpart.

In order to be able to visualize the comparisons among other portfolios, it is

necessary to remove the continuous-time Markowitz from Figure 3.1, resulting in

Figure 3.2. It is evident that all of the six models except the Black–Litterman (almost)

uniformly and substantially outperform S&P500 for the 17-year backtesting period.

In terms of the final realized wealth, of the six models, DRMV and equal-weighting

dominate over the other three models by a substantial margin. Specifically, Fama–

French and Single-period Markowitz lag behind, while Goldfarb–Iyengar stands in

between.

The average performance of DRMV and the equal-weighting model are close, al-

though the former outperforms the latter most of the time. This is no surprise, as the

latter can be regarded as an extreme case of the distributionally robust model when

the uncertainty size δ = ∞, whereas the former has a nearly “optimal” choice of δ

informed by the data. We can study more closely the variability of the performance

and the overall return–risk efficiency of the two models by examining their histograms

of annualized returns (i.e., the distributions of the annualized returns of the 100 ex-

periments) and those of the Sharpe ratios. These data are plotted in Figures 3.3

and 3.4, respectively. Equal-weighting is more concentrated than DRMV, although

the difference is not that significant. This indicates that both strategies have stable
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Figure 3.2: This graph presents the wealth processes of all portfolios (excluding
continuous-time Markowitz) and of the S&P 500 from January 2000 to December
2016. All of the portfolios except the S&P 500 consist of 100 stocks, and the aver-
ages are calculated over 100 numerical experiments. The x-axis indicates the time in
months (from 1 to 204) and the y-axis indicates the portfolio wealth. Initial wealth
is set to be 1.

performance, although equal-weighting appears to be slightly more stable. On the

other hand, DRMV outperforms equal-weighting significantly in terms of Sharpe ra-

tio. We can also compare the histograms of kurtosis for the two models; see Figure

3.5. There is no statistically significant differences between the two: most return dis-

tributions under both strategies are platykurtic (i.e., the kurtosis values are less than

3), implying that there are fewer extreme outliers than the standard normal. Overall,

we can conclude that both DRMV and equal-weighting are robust and stable, the

latter is slightly more so, but the former is markedly superior to the latter in terms

of return–risk efficiency.

Similarly, we compare the two histograms for DRMV and Fama–French; see Fig-

ures 3.6– 3.8. DRMV has a much more concentrated return histogram indicating a

significantly more robust performance, a much more right-shifted Sharpe ratio his-

togram, and a much more left-shifted kurtosis histogram, implying significantly fewer

extreme returns. We can therefore conclude that DRMV compares favorably with



CHAPTER 3. A DRMV MODEL 83

Figure 3.3: This graph presents the histograms of the annualized returns of the 100
different experiments on the DRMV (blue) and equal-weighting (orange) portfolios.
The x-axis represents the annualized returns and the y-axis represents the number of
returns.

Figure 3.4: This graph presents the histograms of the Sharpe ratio of the 100 different
experiments on the DRMV (blue) and equal-weighting (orange) portfolios. The x-axis
represents the Sharpe ratio and the y-axis represents the number of Sharpe ratios.
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Figure 3.5: This graph presents the histograms of the kurtosises of the 100 different
experiments on the DRMV (blue) and equal-weighting (orange) portfolios. The x-axis
represents the kurtosis and the y-axis represents the number of kurtosises.

Fama–French in all of the key metrics reported. However, it is interesting to note

that DRMV utilizes only the price data, whereas Fama–French requires additional

fundamental information on the companies concerned.

As for the robust portfolio model developed by Goldfarb and Iyengar (2003), we

note that it has a reasonably concentrated return histogram (Figure 3.9), indicating

robustness. However, DRMV’s returns are not only more concentrated, but also

distributed more to the right than Goldfarb–Iyengar’s. Together with the Sharpe

ratio histogram (Figure 3.10), the kurtosis histogram (Figure 3.11), and the average

wealth comparison (Figure 3.2), this clearly demonstrates that our uncertainty set

formulation based on Wasserstein distance is a significant improvement over the one

using the matrix/vector distance.

Finally, we provide comparisons between the histograms for DRMV and single-

period Markowitz, as well as between DRMV and Black–Litterman; see Figures 3.12–

3.17. Clearly, DRMV has far superior performance in all metrics.
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Figure 3.6: This graph presents the histograms of the annualized returns of the 100
different experiments on DRMV (blue) and Fama-French (orange) portfolios. The
x-axis represents the annualized returns and the y-axis represents the numbers of
returns.

Figure 3.7: This graph presents the histograms of the Sharpe ratio of the 100 different
experiments on the DRMV (blue) and Fama-French (orange) portfolios. The x-axis
represents the Sharpe ratio and the y-axis represents the number of Sharpe ratios.
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Figure 3.8: This graph presents the histograms of the kurtosises of the 100 different
experiments on the DRMV (blue) and Fama-French (orange) portfolios. The x-axis
represents the kurtosis and the y-axis represents the number of kurtosises.

3.4.3 Discussion

In this subsection we offer discussions of a variety of issues related to our empirical

experiments.

Other values of the Wasserstein order

In all of the previously reported experiments, we set the order of the Wasserstein

distance to be p = 2. We have also tried different values of p, notably when p = 1 (and

hence q = ∞), and found that the impact on the performance of the corresponding

portfolios is minimal. As an example, Figure 3.18 shows a comparison of the average

wealth processes under p = 1 and p = 2 for portfolios of d = 100 stocks.
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Figure 3.9: This graph presents the histograms of the annualized returns of the 100
different experiments on the DRMV (blue) and Goldfarb–Iyengar (orange) portfolios.
There are two experiments in which Goldfarb-Iyengar went into bankruptcy, which
are not included in this histogram. The x-axis represents the annualized returns and
the y-axis represents the number of returns.
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Figure 3.10: This graph presents the histograms of the Sharpe ratios of the 100
different experiments on the DRMV (blue) and Goldfarb–Iyengar (orange) portfolios.
The x-axis represents the Sharpe ratios and the y-axis represents the number of
Sharpe ratios.

Figure 3.11: This graph presents the histograms of the kurtosises of the 100 different
experiments on the DRMV (blue) and Goldfarb–Iyengar (orange) portfolios. The
x-axis represents the kurtosis and the y-axis represents the number of kurtosises.
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Figure 3.12: This graph presents the histograms of the annualized returns of the
100 different experiments on the DRMV (blue) and single-period Markowitz (orange)
portfolios. The x-axis represents the annualized returns and the y-axis represents the
number of returns.

Different targeted returns

We have also tested different (plausible/reasonable) values of the targeted return

ρ = 5%, 15%, 20% in addition to ρ = 10%, and found that DRMV maintains the same

outperformance with respect to other models and, indeed, some other models perform

less well under higher targets. Figure 3.19 plots DRMV’s average wealth processes

under these four values of ρ when d = 100.12 It is evident that the average performance

is very robust with different ρ’s, although the 10% strategy slightly outperforms the

others (which was the reason why we chose ρ = 10% for our main experiments). This,

in turn, suggests that the choice of a specific value of ρ is unimportant for DRMV so

long as it is in the reasonable range of [5%, 20%], thereby releasing us from the need

to tune or calibrate of this parameter.

12The plots under ρ = 5%, 15%, 20% are almost identical so one could probably see only two plots
in Figure 3.19.
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Figure 3.13: This graph presents the histograms of the Sharpe ratios of the 100
different experiments on the DRMV (blue) and single-period Markowitz (orange)
portfolios. The x-axis represents the Sharpe ratios and the y-axis represents the
number of Sharpe ratios.

Figure 3.14: This graph presents the histograms of the kurtosises of the 100 different
experiments on the DRMV (blue) and single-period Markowitz (orange) portfolios.
The x-axis represents the kurtosis and the y-axis represents the number of kurtosises.
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Figure 3.15: This graph presents the histograms of the annualized returns of the 100
different experiments on the DRMV (blue) and Black–Litterman (orange) portfolios.
The x-axis represents the annualized returns and the y-axis represents the number of
returns.

Turnover rates and transactions costs

Fabozzi et al. (2007) observe empirically that robust portfolios have low turnover

rates. We reexamine this with our distributionally robust strategies. Figure 3.20

presents the histogram of the turnover rates (including buy and sell) with 100 exper-

iments for d = 100 stocks.

Clearly, our result reconciles with the finding of Fabozzi et al. (2007). Indeed,

most of the monthly turnover rates are lower than 5%, which is considered to be very

good and reasonable in practice. If we take the average monthly turnover rate to

be 5% (definitely an upper bound for the average), then the annual turnover rate is

around 60%. Now, assuming that the proportional transaction cost is 0.02%, then

each year the transaction cost is around 60%× 0.02% = 0.012%, which is very small

and ignorable.
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Figure 3.16: This graph presents the histograms of the Sharpe ratios of the 100
different experiments on the DRMV (blue) and Black–Litterman (orange) portfolios.
The x-axis represents the Sharpe ratios and the y-axis represents the number of
Sharpe ratios.

Figure 3.17: This graph presents the histograms of the kurtosises of the 100 different
experiments on the DRMV (blue) and Black–Litterman (orange) portfolios. The
x-axis represents the kurtosis and the y-axis represents the number of kurtosises.
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Figure 3.18: This graph presents the portfolio average wealth processes of DRMV
(p = 2) and DRMV-p1 (p = 1) from January 2000 to December 2016. The averages
are calculated over 100 numerical experiments. The x-axis indicates the time and the
y-axis indicates the portfolio wealth. Initial wealth is set at 1.

Figure 3.19: This graph presents DRMV’s average wealth processes from January
2000 to December 2016 with different values of ρ. The averages are calculated over
100 numerical experiments. The x-axis indicates the time and the y-axis indicates
the portfolio wealth. Initial wealth is set at 1.
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Figure 3.20: This graph presents the histogram of the DRMV monthly turnover
rates of 100 experiments. The x-axis represents the turnover rate (%) and the y-axis
represents the numbers of turnover rates.

Shrinkage estimators

In all of the experiments reported so far, sample covariance was used for the

single-period Markovitz model as well as for the Fama–French and Black–Litterman

models. We tested using the shrinkage covariance matrices for these three models.

We used the shrinkage estimator of Ollila and Raninen (2018):

Σα,β = βΣn + αIn, (3.40)

where Σn is the sample covariance matrix and In is the n × n identity matrix. The

parameters α and β are estimated by the following:

α̂ = (1− β̂)η̂, β̂ =
(γ̂ − 1)

(γ̂ − 1) + κ̂(2γ̂ + d)/n+ (γ̂ + d)/(n− 1)
,

where d is the number of stocks, η̂ = tr(Σn)
d

, γ̂ = nd
n−1

[tr(Σ2
sgn) − 1

n
] with Σsgn =
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Figure 3.21: This graph presents portfolios’ average wealth processes using shrinkage
estimators from January 2000 to December 2016. All the portfolios except S&P 500
consist of 100 stocks and the averages are calculated over 100 numerical experiments.
The x-axis indicates the time in months (from 1 to 204) and the y-axis indicates the
portfolio wealth. Initial wealth is set to be 1.
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The three models, single-period Markowitz, Fama–French, and Black–Litterman

all improved with the shrinkage estimators. Figure 3.21 presents the comparison of

the average wealth processes among these three models, DRMV, and the S&P 500.

Notably, the Black–Litterman model now outperforms the S&P 500 most of the time,

as opposed to its underperformance without shrinkage (see Figure 3.2). However,

DRMV still dominates all the three models. Histograms of return distributions and

Sharpe ratio distributions show the superiority of DRMV over the other models,

similar to the case without shrinkage.13

13As these histograms are similar, we do not present them here.
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3.5 Concluding Remarks

We have provided a data-driven distributionally robust theory for Markowitz’s

mean–variance portfolio selection. The robust model can be solved via a non-robust

one based on the empirical probability measure with an additional regularization

term. The size of the distributional uncertainty region is not exogenously given;

rather, it is informed by the return data in a scheme that we have developed in this

chapter.

Our results may be generalized in several directions. We have chosen the lq norm

in defining our Wasserstein distance due to its popularity in regularization, but other

transportation costs can be used. For example, one may consider the type of trans-

portation cost related to adaptive regularization which has been studied by Blanchet

et al. (2017), or the one related to industry cluster, as in Blanchet and Kang (2017).

Another significant direction is a dynamic (discrete-time or continuous-time) version

of the DRMV model.



Chapter 4

A Distributionally Robust Sharpe

Ratio Model

4.1 Model Formulation

In this section, we formulate our distributionally robust Sharpe ratio (DRSR)

model while reviewing some useful concepts.

The background setting in this chapter is similar to that of Chapter 3. For the

readers’ convenience, we first revisit the related notations and definitions. Let P(Rd×

Rd) be the space of all Borel probability measures supported on Rd × Rd. A given

element π ∈ P(Rd × Rd) can be assumed to be the joint distribution of a random

vector (U, V ), where U ∈ Rd and V ∈ Rd. We use πU and πV to denote the marginal

distributions of U and V under π. In particular, πU (A) = π
(
A× Rd

)
and πV (A) =

π
(
Rd × A

)
for every Borel set A ⊂ Rd.

We start with a “cost” function c : Rd × Rd → [0,∞], which we assume to be

lower semicontinuous and such that c (u, u) = 0 for any u ∈ Rd. For a given such

cost function c, we introduce Dc (·, ·) to represent some “discrepancy” between two

probability measures as follows:

Dc(P,Q) := inf{Eπ[c(U, V )] : π ∈ P(Rd × Rd), πU = P, πV = Q}, (4.1)

97
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where P and Q are two probability measures supported on Rd. This can be interpreted

as the optimal (minimal) transportation cost (also known as the optimal transport

discrepancy or the Wasserstein discrepancy) of moving the mass from P into the mass

of Q under a cost c (x, y) per unit of mass transported from x to y.

If for a given p > 0, c1/p (·, ·) is a metric, then so is D
1/p
c (·, ·); see Villani (2003).

Such a metric D
1/p
c (·, ·) is known as a Wasserstein distance of the order p. For the

most part in this chapter, we choose the cost function

c(u, v) = ||u− v||2q (4.2)

where q ≥ 1 is fixed, which leads to a Wasserstein distance of the order 2.

Recall that R is the d-dimensional vector of random returns of the d stocks. Let

Pn be the empirical probability measure on Rd with a sample size n, i.e.,

Pn(dx) =
1

n

n∑
i=1

δRi(dx),

where Ri (i = 1, 2, ..., n) are realizations of R and δRi(·) is the indicator function. Let

us first review the formulation for the classical Sharpe ratio portfolio selection model.

It is formulated as

min
φ∈F

{√
φ>VarP∗ (R)φ

φ>EP∗ [R]
: φ>1 = 1

}
, (4.3)

whereR is the d-dimensional vector of random returns of the stocks; P∗ is the probabil-

ity measure underlying the distribution of R; EP∗ and VarP∗ are respectively the expec-

tation and variance under P∗; and the feasible region is F = {φ : φ ∈ Rd, φ>EP∗ [R] >

0}. Note that the objective function in (4.3) is the inverse of the portfolio Sharpe

ratio and that the problem is an equivalent formulation of the Sharpe ratio maxi-

mization problem. The formulation (4.3) will be more convenient for us to drive the

tractability of DRSR, which is formulated later in this section. We have a positive

return constraint in the feasible region because we want to focus solely on the port-
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folios whose returns are positive. If the portfolio return is negative, it is not ideal to

maximize the Sharpe ratio since this boils down to maximizing the portfolio variance,

which is certainly not reasonable.

Define the ambiguity set as

Uδ(Pn) = {P : Dc(P,Pn) ≤ δ}

and the feasible region of portfolios as

F(n) = {φ : φ>1 = 1, φ>EPn [R] > 0}.

The DRSR is formulated as follows:

min
φ∈F(n)

max
P∈Uδ(Pn)

{√
φ>VarP (R)φ

φ>EP[R]

}
. (4.4)

The inner maximization part represents the inverse of the worst case Sharpe ratio.

The objective is to choose a portfolio φ ∈ F (n) that achieves the optimal worst case

value in (4.4).

Here, it is important to emphasize that, in the definition of the feasible region,

there is no ambiguity set involved. Specifically, the target constraint in F(n) is

φ>EPn [R] > 0 instead of min
P∈Uδ(Pn)

φ>EPn [R] > 0. This is due to the fact that if for

some portfolio φ, min
P∈Uδ(Pn)

φ>EPn [R] ≤ 0, the optimal value of the inner maximization

part in (4.4) will be +∞, which means that this φ cannot be the optimal solution

for (4.4) and will be eliminated directly. Also, if the empirical portfolio return is

positive, the optimal value of the inner maximization problem (4.4) will never be

negative. Note that, there is no target return ρ in the formulation of (4.4), which is

different from that of the DRMV. In DRSR, we do not need to worry about what the

optimal choice of target return should be, it is decided automatically by the data.
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4.2 Transformations and Tractability

Problem (4.4) appears to be complicated. Similar to (3.3) in Chapter 3, the inner

maximization problem of (4.4) is over a set of probability measures, which means that

it is an infinite dimensional optimization problem. Also, it is not clear whether the

outer minimization problem, while finite dimensional, is convex. In this section, we

reformulate (4.4) such that it becomes computationally tractable.

First, by fixing EP(φ>R) = α > 0 in the inner maximization part of problem (4.4)

we obtain the following equivalent formulation:

min
φ:φ>1=1,

φ>EPn [R]>0

max
P:P∈Uδ(Pn),

φ>EP[R]=α,
α:α>0

√
VarP(φ>R)

α
. (4.5)

Note that, with respect to the inner maximization problem, we only consider α > 0.

This is due to the constraint φ>EPn [R] > 0 in the outer minimization problem. To be

more precise, this constraint means that there is at least one probability measure (e.g.,

Pn) in the ambiguity set Uδ(Pn), such that φ>EP[R] > 0. Any probability measure

satisfying φ>EP[R] ≤ 0 is not a candidate for the optimal solution. Therefore, we can

skip the case of α ≤ 0. Then, the inner maximization problem (4.5) is equivalent to

the following problem:

max
α:α>0

max
P:P∈Uδ(Pn),

φ>EP[R]=α

√
VarP(φ>R)

α
. (4.6)

In the above problem, we first optimize over P. This can be done by means of the

following proposition, which is based on Proposition 7 in Chapter 3.

Proposition 9 The formulation given in (4.6) is equivalent to

max
α∈H(δ,n)

1

α
(
√
φ>VarPn(R)φ+

√
δ||φ||2p − (α− φ>EPn [R])2), (4.7)

where H(δ, n) := {α : α > 0, δ||φ||2p− (α−φ>EPn [R])2 ≥ 0}, in the sense that the two
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problems have the same optimal solution and optimal value.

Proof Formulation (4.6) is equivalent to

max
α:α>0

max
P:P∈Uδ(Pn),

φ>EP[R]=α

√
φ>EP[RR>]φ− α2

α
. (4.8)

By Proposition 7 in Chapter 3, we know that (4.6) is equivalent to

max
α∈H(δ,n)

√
h(α, φ)− α2

α
, (4.9)

where

h(α, φ) :=EPn
[
(φ>R)2

]
+ 2(α− φ>EPn [R])φ>EPn [R] + δ||φ||2p

+ 2
√
δ||φ||2p − (α− φ>EPn [R])2

√
φ>VarPn (R)φ.

However,

h(α, φ)− α2

= EPn
[
(φ>R)2

]
+ 2(α− φ>EPn [R])φ>EPn [R]− α2 + δ||φ||2p

+ 2
√
δ||φ||2p − (α− φ>EPn [R])2

√
φ>VarPn (R)φ

= φ>VarPn (R)φ+ {δ||φ||2p − (α− φ>EPn [R])2}

+ 2
√
δ||φ||2p − (α− φ>EPn [R])2

√
φ>VarPn (R)φ

=
(√

φ>VarPn (R)φ+
√
δ||φ||2p − (α− φ>EPn [R])2

)2

.

As a result, (4.9) is equivalent to (4.7).

With the help of Proposition 9, we are able to solve the inner maximization

problem in (4.4). This is given in the following theorem:

Theorem 4 The primal formulation given in (4.4) is equivalent to the following dual
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problem

min
φ∈Fδ(n)

√
φ>VarPn(R)φ

√
φ>EPn [RR>]φ− δ||φ||2p + φ>EPn [R]

√
δ||φ||p

φ>EPn [R]
√
φ>EPn [RR>]φ− δ||φ||2p −

√
φ>VarPn(R)φ

√
δ||φ||p

(4.10)

in the sense that the two problems have the same optimal solutions and optimal value,

where the feasible region F(n) is modified as

Fδ(n) = {φ : φ>EPn [R] >
√
δ||φ||p, φ>1 = 1}. (4.11)

Proof Due to the constraint φ>EPn [R] > 0, problem (4.4) is equivalent to the

following problem:

min
φ:φ>1=1,φ>EPn [R]>0

max
P∈Uδ(Pn)

{√
φ>VarP(R)φ

φ>EP[R]

}
. (4.12)

We can transform (4.12) into the following problem:

min
φ:φ>1=1,

φ>EPn [R]>0

max
P:P∈Uδ(Pn,α),

α:α>0

√
VarP(φ>R)

α
. (4.13)

By propostion 9, the above formulation is equivalent to the following problem:

min
φ

max
α∈H(δ,n)

1

α
(
√
φ>VarPn(R)φ+

√
δ||φ||2p − (α− φ>EPn [R])2), (4.14)

where H(δ, n) := {α : α > 0, δ||φ||2p − (α− φ>EPn [R])2 ≥ 0}.

Define

g(α) =
1

α
(
√
φ>VarPn(R)φ+ f(α)),

where

f(α) =
√
δ||φ||2p − (α− φ>EPn [R])2.

Solving (4.14) is equivalent to finding the optimal value for g(α). First, let us
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consider the derivatives of f(α):

f ′(α) = −α− φ
>EPn [R]

f(α)
, (4.15)

f ′′(α) = − 1

f(α)
+
α− φ>EPn [R]

f(α)2
f ′(α)

= − 1

f(α)
− (α− φ>EPn [R])2

f(α)3
< 0.

(4.16)

With the help of (4.15) and (4.16), we are able to calculate g′(α):

g′(α) = −
√
φ>VarPn(R)φ

α2
− (α− φ>EPn [R])

αf(α)
− f(α)

α2

= − 1

α2f(α)
[
√
φ>VarPn(R)φf(α) + α(α− φ>EPn [R]) + f(α)2]

= − 1

α2f(α)
[
√
φ>VarPn(R)φf(α) + φ>EPn [R](α− φ>EPn [R]) + δ||φ||2p].

(4.17)

By (4.16) we know that f(α) is a concave function in α; Hence, so is
√
φ>VarPn(R)φf(α)+

φ>EPn [R](α − φ>EPn [R]). In problem (4.14), the range of α is postive and satisfies

the following inequalities:

φ>EPn [R]−
√
δ||φ||p ≤ α ≤ φ>EPn [R] +

√
δ||φ||p. (4.18)

Define α1 = φ>EPn [R]−
√
δ||φ||p, α2 = φ>EPn [R] +

√
δ||φ||p. Then, we obtain:

g′(α1) = −
δ||φ||2p −

√
δ||φ||pφ>EPn [R]

α2f(α)
, g′(α2) = −

δ||φ||2p +
√
δ||φ||pφ>EPn [R]

α2f(α)
.

Next, we discuss two cases according to the relationship between
√
δ||φ||p and

φ>EPn [R].

Case 1: φ>EPn [R] >
√
δ||φ||p. In this case, 0 < α1 ≤ α ≤ α2, g′(α1) ≥ 0 and

g′(α2) ≤ 0. Therefore, the optimal α∗ is in [α1, α2]. By the concavity of g′(α), there

is a unique α∗ such that g′(α∗) = 0.

Case 2: 0 < φ>EPn [R] ≤
√
δ||φ||p. In this case, α1 ≤ 0 ≤ α ≤ α2 and the feasible
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region of α is 0 ≤ α ≤ α2. Therefore, g(α∗) ≥ g(0) =∞.

Only the first case will occur because the outer optimization problem in (4.12)

is minimization over φ. Thus, the optimal solution φ will be such that φ>EPn [R] >
√
δ||φ||p. Because

√
δ||φ||p > 0, the feasible region for φ can be replaced by {φ :

φ>1 = 1, φ>EPn [R] >
√
δ||φ||p}.

Now, we need only to find the root α∗ of the following equation:

√
φ>VarPn(R)φf(α) + φ>EPn [R](α− φ>EPn [R]) + δ||φ||2p = 0. (4.19)

First, let us simplify the notation. Denote c :=
√
φ>VarPn(R)φ, b := φ>EPn [R],

d := δ||φ||2p. Thus, equation (4.19) is:

cf(α) + b(α− b) + d = 0, (4.20)

which is equivalent to:

cf(α) = −b(α− b)− d.

By taking the squares of the two sides, we obtain:

c2f 2(α) = b2(α− b)2 + d2 + 2bd(α− b).

By plugging in the definition of f(α), we get:

c2(d− (α− b)2) = b2(α− b)2 + d2 + 2bd(α− b),

which is equivalent to

(c2 + b2)(α− b)2 + 2bd(α− b) + d2 − c2d = 0.

The left hand side of the above is a quadratic equation in α. The corresponding
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discriminant ∆ is:

∆ = 4b2d2 − 4(c2 + b2)(d2 − c2d)

= 4(b2c2d+ c4d− c2d2)

= 4c2d(b2 + c2 − d) > 0,

(4.21)

as b2 > d due to φ>EPn [R] >
√
δ||φ||p. Then we obtain

α∗ − b =
−2bd±

√
∆

2(c2 + b2)

=
−bd± c

√
d
√
b2 + c2 − d

(c2 + b2)
.

(4.22)

We have two roots for the above quadratic equation, and we need to decide which

is the correct α∗. Note that α∗ satisfies

cf(α∗) = −b(α∗ − b)− d, (4.23)

and

−b(α∗ − b)− d =
b2d∓ cb

√
d
√
b2 + c2 − d− dc2 − db2

(c2 + b2)

=
∓cb
√
d
√
b2 + c2 − d− dc2

(c2 + b2)
.

(4.24)

By (4.23), we know that −b(α − b) − d = cf(α) > 0. Also, all of c, b, and d are

positive. This means that we should only choose the positive sign in (4.24). As a

result, α∗ should satisfy the following equation:

α∗ − b =
−bd− c

√
d
√
b2 + c2 − d

(c2 + b2)
, (4.25)

or

α∗ =
b(b2 + c2 − d)− c

√
d
√
b2 + c2 − d

(c2 + b2)
. (4.26)
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Then, we plug α∗ into g(α) to obtain:

g(α∗) =
1

α∗
(
√
φ>VarPn(R)φ+

√
δ||φ||2p − (α∗ − φ>EPn [R])2)

=
1

α∗
(c+ f(α∗))

=
1

α∗
(c− b(α∗ − b) + d

c
)

=
1

α∗
(c− cd− b

√
d
√
b2 + c2 − d

c2 + b2
)

=
1

α∗

(
c(b2 + c2 − d) + b

√
d
√
b2 + c2 − d

c2 + b2

)
.

(4.27)

By defining e :=
√
b2 + c2 − d =

√
(φ>EPn [R])2 + φ>VarPn(R)φ− δ||φ||2p =

√
φ>EPn [RR>]φ− δ||φ||2p,

we obtain α∗ = be2−c
√
de

c2+b2
and

g(α∗) =
1

α∗

(
c(b2 + c2 − d) + b

√
d
√
b2 + c2 − d

c2 + b2

)

=
1

α∗
(
ce2 + b

√
de

c2 + b2
)

=
ce2 + b

√
de

be2 − c
√
de

=
ce+ b

√
d

be− c
√
d
.

(4.28)

Thus, the original problem (4.14) becomes

min
φ:φ>EPn [R]>

√
δ||φ||p

√
φ>VarPn(R)φ

√
φ>EPn [RR>]φ− δ||φ||2p + φ>EPn [R]

√
δ||φ||p

φ>EPn [R]
√
φ>EPn [RR>]φ− δ||φ||2p −

√
φ>VarPn(R)φ

√
δ||φ||p

.

The proof is complete.

Note that one constraint of the feasible region has been changed from φ>EPn [R] >

0 to φ>EPn [R] >
√
δ||φ||p. Due to Proposition 5 in Chapter 3, when P ∈ Uδ(Pn),

φ>EP[R] can take any value in the interval [φ>EPn [R]−
√
δ||φ||p, φ>EPn [R]+

√
δ||φ||p].

If φ>EPn ≤
√
δ||φ||p, φ>EP[R] can be 0, which means that the optimal value of the

inner maximization problem is +∞. Therefore, the outer minimization problem will
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never consider such a φ. For this reason, we can modify the feasible region to (4.11).

The above theorem is not a trivial application of the results presented in Gao and

Kleywegt (2016) or in Chapter 3. First of all, problem (4.4) is not linear in probability

measure P. Second, the DRSR model involves a ratio of terms that are functions of the

probability measure P. This makes the derivation of Theorem 4 much more difficult

than that of DRMV. Also, the objective function of the dual form (4.10) is no longer

a simple regularized term of the sample variance in DRMV. Although δ still plays an

important role in the problem, its effect becomes much more complicated and can no

longer be described simply as “regularization” or a “penalty”.

Theorem 4 transforms problem (4.4) into an equivalent finite dimensional mini-

mization problem. However, there is still one unsolved problem: the objective func-

tion of (4.10) may not be convex. This means that the resulting minimization problem

may still be tractable. However, we can prove that the square of the objective func-

tion is convex. To simplify the notation, define the objective function of (4.10) as

G(φ), i.e.,:

G(φ) =

√
φ>VarPn(R)φ

√
φ>EPn [RR>]φ− δ||φ||2p + φ>EPn [R]

√
δ||φ||p

φ>EPn [R]
√
φ>EPn [RR>]φ− δ||φ||2p −

√
φ>VarPn(R)φ

√
δ||φ||p

. (4.29)

Proposition 10 G2(φ) is convex in φ ∈ Fδ(n).

Proof We first prove two lemmas.

Lemma 3 Consider the following two problems:

max
P∈Uδ(Pn)

{√
φ>VarP(R)φ

φ>EP[R]

}
(4.30)

and

max
P∈Uδ(Pn)

{
φ>VarP(R)φ

(φ>EP[R])2

}
. (4.31)

When φ ∈ Fδ(n) = {φ : φ>EPn [R] >
√
δ||φ||p}, the two problems have the same
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optimal solution P∗.

Proof Note that the objective function of (4.31) is the square of that of (4.30).

In order to prove that they have the same optimal solution, it suffices to show that

∀P ∈ Uδ(Pn),

√
φ>VarP(R)φ

φ>EP[R]
> 0.

By Proposition 5 in Chapter 3, we know:

min
P∈Uδ(Pn)

EP[φ>R] = φ>EPn [R]−
√
δ||φ||p.

Therefore, when φ ∈ Fδ(n), min
P∈Uδ(Pn)

EP[φ>R] > 0. This means that ∀P ∈ Uδ(Pn),
√
φ>VarP(R)φ

φ>EP[R]
> 0. The proof is complete.

Lemma 4 ∀P ∈ Uδ(Pn), W (φ) := φ>VarP(R)φ
(φ>EP[R])2 is a convex function of φ.

Proof For notational simplicity, we define Σ := VarP(R) and µ := EPn(R). The

Hessian matrix of W (φ) is

∂2W (φ)

∂φ2
=

2

(φ>µ)4
[(φ>µ)2Σ− 2(φ>µ)(Σφ)µ> + 3(φ>Σφ)(µµ>)]. (4.32)

Next, ∀x ∈ Rd,

x>
∂2W (φ)

∂φ2
x =

2

(φ>µ)4
[(φ>µ)2(x>Σx)− 2(φ>µ)(x>Σφ)(µ>x) + 3(φ>Σφ)(µ>x)2]

=
2

(φ>µ)4
[(φ>µ)2(x>Σx)− 2(φ>µ)(x>Σφ)(µ>x) + (φ>Σφ)(µ>x)2 + 2(φ>Σφ)(µ>x)2].

(4.33)

Consider

(φ>µ)2(x>Σx)− 2(φ>µ)(x>Σφ)(µ>x) + (φ>Σφ)(µ>x)2

≥ 2|(φ>µ)(
√
φ>Σφ

√
x>Σx)(µ>x)| − 2(φ>µ)(x>Σφ)(µ>x)

≥ 2|(φ>µ)(
√
φ>Σφ

√
x>Σx)(µ>x)| − 2|(φ>µ)(x>Σφ)(µ>x)|

= 2||(φ>µ)(µ>x)|(|
√
φ>Σφ

√
x>Σx| − |x>Σφ|) ≥ 0,

(4.34)
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where the last inequality holds because of Cauchy-Schwarz’s inequality. Therefore,

(4.33) becomes

x>
∂2W (φ)

∂φ2
x =

2

(φ>µ)4
[(φ>µ)2(x>Σx)− 2(φ>µ)(x>Σφ)(µ>x)

+ (φ>Σφ)(µ>x)2 + 2(φ>Σφ)(µ>x)2]

≥ 2(φ>Σφ)(µ>x)2 ≥ 0.

(4.35)

Thus, W (φ) is convex in φ.

From the proof of Theorem 4, we know that when φ ∈ Fδ(n) = {φ : φ>EPn [R] >
√
δ||φ||p}, the following equation holds:

G(φ) = max
P∈Uδ(Pn)

{√
φ>VarP(R)φ

φ>EP[R]

}
. (4.36)

By Lemma 3, when φ ∈ Fδ(n),

G2(φ) = max
P∈Uδ(Pn)

{
φ>VarP(R)φ

(φ>EP[R])2

}
. (4.37)

It follows from Lemma 4 that φ>VarP(R)φ
(φ>EP[R])2 is convex. Then, G2(·) is the maximum

of a set of convex functions, which is also convex.

With Theorem 4 and Proposition 10, we are able to transform problem (4.4) into

an equivalent tractable problem.

Corollary 11 The primal formulation given in (4.4) is equivalent to the following

problem

min
φ∈Fδ(n)

G2(φ), (4.38)

where

G(φ) =

√
φ>VarPnφ

√
φ>EPn [RR>]φ− δ||φ||2p + φ>EPn [R]

√
δ||φ||p

φ>EPn [R]
√
φ>EPn [RR>]φ− δ||φ||2p −

√
φ>VarPnφ

√
δ||φ||p

(4.39)
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and

Fδ(n) = {φ : φ>EPn [R] ≥
√
δ||φ||p, φ>1 = 1}, (4.40)

in the sense that the two problems have the same optimal solution and optimal value.

It is clear that the feasible region Fδ(n) is convex. So (4.38) is a convex optimization

problem, and thus it is tractable.

4.3 Choice of Model Parameter δ

There is only one undefined parameter δ in DRSR, which is different from DRMV

in Chapter 3 in that there is no equality constraint for expected portfolio return in

the Sharpe ratio optimization problem (4.3). The requirement for expected return

has been incorporated into the optimization of the Sharpe ratio. Thanks to this

formulation, we do not need to specify the target return, which makes the model

more data driven.

The choice of δ is not only curious in theory, but also crucial in practical imple-

mentation and for the success of our algorithm. Similar to Chapter 3, the idea is that

the choice of this parameter should be informed by the data (i.e., in a data-driven

way) based on some statistical principles, rather than being arbitrarily exogenous.

Specifically, we define the distributional uncertainty region just large enough that the

correct optimal portfolio (the one that we would apply if the underlying distribution

were known) becomes a plausible choice with a sufficiently high confidence level. We

use the same RWPI approach as in Chapter 3 to find the value of δ, however, in this

case the RWP function and its asymptotic distribution become more elegant, which

is further elaborated in remainder of this section.

Before deciding how to choose δ, we need to impose several statistical assumptions.

A1) The underlying return time series (Rk : k ≥ 0) is a stationary, ergodic process

satisfying EP∗ (||Rk||42) <∞ for each k ≥ 0. Moreover, for each measurable g (·) such
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that |g (x)| ≤ c(1 + ‖x‖2
2) for some c > 0, the limit

Υg := lim
n→∞

VarP∗

(
n−1/2

n∑
k=1

g (Rk)

)

exists and the central limit theorem holds:

n1/2 [EPn (g (R))− EP∗ (g (R))]⇒ N (0,Υg) ,

where (and henceforth) “⇒” denotes weak convergence.

A2) For any matrix Λ ∈ Rd×d and any vector ζ ∈ Rd such that either Λ 6= 0 or

ζ 6= 0,

P∗ (‖ΛR + ζ‖2 > 0) > 0.

A3) For the empirical probability measure Pn and the true probability measure

P∗, we have 1>EPn [RR>]−1EPn [R] > 0, 1>EP∗ [RR
>]−1EP∗ [R] > 0.

The first two assumptions are the same as those with respect to DRMV in Chapter

3. Assumption A3), however, is different. If Assumption A3) does not hold, the

classical and empirical Sharpe Ratio portfolio selection problem will not have any

finite optimal solution. To be more precise, if 1>EP∗ [RR
>]−1EP∗ [R] ≤ 0, the optimal

portfolio φ∗ will satisfy EP∗ [φ
>
∗ R] =∞, which means that φ∗ is not a finite solution. In

practice, it is impossible to implement such a portfolio. Further details are provided

in the proof of Proposition 12.

As stated in Chapter 3, the “optimal” order of δn should be O(n−1). In order

to choose an appropriate δn, we follow here the idea behind the RWPI approach

presented in Chapter 3. Intuitively, δ should be chosen such that the set Uδ(Pn) = {P :

Dc(P,Pn) ≤ δ} contains all of the probability measures that are plausible variations
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of the data represented by Pn. Denote by Q (P) the Sharpe ratio portfolio selection

problem assuming that P is the underlying true probability measure:

min
φ:1>φ=1,EP[φ>R]>0

√
VarP(φ>R)

EP[φ>R]
, (4.41)

by φP a solution to Q (P) and by ΦP the set of all such solutions. Note that above

problem will always be feasible.

Now, when δ is suitably chosen so that Uδ(Pn) constitutes the models that are

plausible variations of Pn, any φP with P ∈ Uδ(Pn) is a plausible estimate of φ∗. This

intuition motivates the definition of the following set:

Λδ(Pn) = ∪P∈Uδ(Pn)ΦP,

which corresponds to all of the plausible estimates of φ∗. As a result, Λδ(Pn) is a

natural confidence region for φ∗ and, therefore, δ should be chosen as the smallest

number δ∗n such that φ∗ belongs to this region with a given confidence level. Namely,

δ∗n = min{δ > 0 : P∗ (φ∗ ∈ Λδ(Pn)) ≥ 1− δ0},

where 1− δ0 is a user-defined confidence level (typically 95%).

However, by mere definition, it is difficult to compute δ∗n. We now provide a

simpler representation for δ∗n via the robust Wasserstein profile (RWP) function.

Before introducing the formal definition of this function, we characterize the con-

dition that φ∗ ∈ Λδ(Pn).

Proposition 12 If Assumption A3) is satisfied, then φ∗ ∈ Λδ (Pn) if and only if

there exist P ∈ Uδ(Pn) and a positive constant c such that

EP[RR>φ∗ − cR] = 0.
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Proof We first study the conditions for any given φ to be a solution to problem

Q(P).

We transform (4.41) into

min
φ,α:φ>1=1,EP[φ>R]=α,α>0

√
VarP(φ>R)

α
. (4.42)

Due to Lemma 3, the solution of (4.42) is the same as the following problem:

min
φ,α:φ>1=1,EP[φ>R]=α,α>0

φ>EP(RR>)φ

α2
. (4.43)

The Lagrangian is

J(φ, λ1, λ2) =
φ>EP(RR>)φ

α2
− λ1(EP[R]>φ− α)− λ2(φ>1− 1). (4.44)

It follows from ∂J
∂φ

= 0 that

2EP(RR>)φ

α2
− λ1EP[R]− λ21 = 0. (4.45)

Solving for φ, we obtain

φ =
α2

2
EP(RR>)−1[λ1EP[R] + λ21]. (4.46)

For notational simplicity, denote a := EP[R]>EP(RR>)−1EP[R], b := EP[R]>EP(RR>)−11,

c := 1>EP(RR>)−11. Then, λ1 and λ2 can be solved as:

λ1 = [
c− 1

α
b

ac− b2
]
2

α
, λ2 = [

b− 1
α
a

b2 − ac
]
2

α
.
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Plugging in the original problem, we get:

φ>EP[RR>]φ

α2
=
α2

4
[λ2

1a+ 2λ1λ2b+ λ2
2c]

=
a(c− 1

α
b)2

(ac− b2)2
−

2(c− 1
α
b)(b− 1

α
a)b

(ac− b2)2
+

(b− 1
α
a)2c

(ac− b2)2

=
1

(ac− b2)2
[(c− 1

α
b)(ac− b2) + (b− 1

α
a)(

b2 − ac
α

)]

=
1

(ac− b2)
[(c− 1

α
b)− (

b

α
− 1

α2
a)]

=
1

(ac− b2)
[c+

a

α2
− 2b

α
].

(4.47)

If the following constraint is satisfied:

b = EP[R]>EP(RR>)−11 > 0, (4.48)

then the optimal α∗ = a
b

and the optimal value of (4.47) is:

φ>EP[RR>]φ

α2
=

1

(ac− b2)
[c+

a

α2
− 2b

α
]

=
1

(ac− b2)
[c+

b2

a
− 2b2

a
]

=
1

(ac− b2)
[c− b2

a
]

=
1

a
.

(4.49)

Thus, in order for φ to be the optimal solution of Q(P), P should satisfy (4.48)

and (4.49). Then, we obtain

E2
P[φ>R]

φ>EP(RR>)φ
= a = EP[R]>EP(RR>)−1EP[R]. (4.50)

Therefore,

(φ>EP[R])2 = (EP[R]>EP(RR>)−1EP[R])(φ>EP(RR>)φ). (4.51)
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By letting φ̃ := EP(RR>)
1
2φ, µ̃ := EP(RR>)−

1
2EP[R], we obtain:

(φ̃>µ̃)2 = ||µ̃||22||φ̃||22. (4.52)

By Cauchy-Schwarz’s inequality, for any constant c,

φ̃ = cµ̃,

i.e.,

EP(RR>)
1
2φ = cEP(RR>)−

1
2EP[R].

Hence,

EP(RR>)φ = cEP[R]. (4.53)

From the above discussion, if a probability measure P satisfies EP[R]>EP(RR>)−11 >

0, then the solutions ΦP for Q(P) must be finite. Therefore, by Assumption A3), φ∗

is finite.

Now, if b = EP[R]>EP(RR>)−11 ≤ 0, then it follows from (4.48) that the optimal

α∗ =∞, which is impossible for any fixed finite φ. Thus, φ∗ will never be in the set

ΦP. So this case can be ignored in our discussion.

In conclusion, in order to make φ∗ be one of the optimal solutions for Q(P), the

probability measure P has to satisfy:


EP[R]>EP(RR>)−11 > 0

∃c ∈ R, EP(RR>)φ∗ = cEP[R].

(4.54)

A simple transformation on (4.53) yields

1 = 1>φ∗ = c(1>EP[RR>]−1EP[R]) = cb. (4.55)

Therefore, b = 1
c

and b > 0 is equivalent to c > 0. Then, conditions (4.54) can be
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simplified as

∃c ∈ R+, EP(RR>)φ∗ = cEP[R]. (4.56)

Thus, φ ∈ Λδ (Pn) if and only if there exist P ∈ Uδ(Pn) and a constant c > 0 such

that

EP[RR>φ∗ − cR] = 0.

Proposition 12 gives us an equivalent condition to present φ∗ ∈ Λδ(Pn). Then, we

can define the RWP function as follows:

R̄n(φ, c) := inf{Dc(P,Pn) : EP[RR>φ− cR] = 0}. (4.57)

Note that, in the definition of R̄n(φ, c), when P is fixed, c is uniquely decided.

Specifically, c = c(P) = 1
1>EP[RR>]−1EP[R]

. This is due to the fact that all of the feasible

solution φ in problem (4.41) have to satisfy the budget constraint: φ>1 = 1. However,

we choose not to define a RWP function as R̃n(φ) = R̄n(φ, c(P)). This is because

if we plug c = c(P) = 1
1>EP[RR>]−1EP[R]

into equation (4.57), the equation will be no

longer be linear in P. It would then be very difficult to find an explicit expression

for the RWP function in this case. In the remaining part of this section, we further

explain how this RWP function helps us to find an upper bound for δ∗n.

We first introduce some notations. Define Σn := EPn [RR>], µn := EPn [R], cn :=

1
1>Σ−1

n µn
and φn := cnΣ−1

n µn. Parallelly, we define Σ∗ := EP∗ [RR
>], µ∗ := EP∗ [R],

c∗ := 1
1>Σ−1

∗ µn
and φ∗ := c∗Σ

−1
∗ µ∗.

It is not difficult to verify that φn and φ∗ are the optimal solution of problems

Q(Pn) and Q(P∗), respectively. By definition (4.57) and Proposition 12, we conclude

that

R̄n(φ∗, c∗) ≤ δ =⇒ φ∗ ∈ Λδ(Pn). (4.58)
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Note that, by Assumption A3), both cn and c∗ are positive. Thus, Proposition 12

can be applied to (4.58). Just as in Chapter 3, we would like to know what the

asymptotic distribution of nR̄n(φ∗, c∗) will be.

Theorem 5 Assume that A1) and A2) hold and define g(x) = xx>φ∗− c∗x. Then,

nRn(φ∗, c∗)⇒ L0 := sup
λ̄∈Rr
{λ̄>Z − 1

4
EP∗||(R>φ∗ − c∗)λ̄+ (λ̄>R)φ∗||2p},

where Z ∼ N (0,Υg). Moreover, if p = 2, then

L0 = Z>A−1Z,

where A := EP∗{[(R>φ∗ − c∗)I + φ∗R
>]>[(R>φ∗ − c∗)I + φ∗R

>]}.

Proof By proposition 1 of Blanchet et al. (2016), R̄n(φ, c) can be expressed as

R̄n(φ, c) = sup
λ∈Rr
{−EPn [ sup

u∈Rm
{λ>(uu>φ− cu)− ||u−Ri||2q}]}. (4.59)

Applying similar techniques to those used in Chapter 3, we obtain

R̄n(φ, c) = sup
λ∈Rr
{−EPn [ sup

u∈Rm
{λ>(uu>φ− cu)− ||u−R||2q}]}

= sup
λ∈Rr
{−EPn [ sup

∆∈Rm
{λ>((R + ∆)(R + ∆)>φ− c(R + ∆))− ||∆||2q}]}

= sup
λ∈Rr
{−EPn [λ>(RR>φ− cR)]−

EPn [ sup
∆∈Rm

{(R>φλ> + λ>Rφ> − cλ>)∆−∆>λφ>∆− ||∆||2q}]}.

(4.60)

Introduce the scaling ∆ = ∆̄/n1/2 and λ̄ = λn1/2. Then, we obtain

nR̄n(φ, c) = sup
λ̄∈Rr
{−n1/2EPn [λ̄>(RR>φ− cR)]−

EPn [ sup
∆̄∈Rm

{(R>i φλ̄> + λ̄>Riφ
> − cλ̄>)∆̄− ∆̄>λ̄φ>∆̄/n1/2 − ||∆̄||2q}]}.
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In the proof of Proposition 3 in Blanchet et al. (2016), under Assumption A2), a

technique is introduced to show that ∆̄ and λ̄ can be restricted to compact sets with

high probability, and therefore the term ∆̄>λ̄φ>∆̄/n1/2 is asymptotically negligible

for each fixed φ. Then, we obtain:

sup
∆̄∈Rm

{(R>φλ̄> + λ̄>Rφ> − cλ̄>)∆̄− ||∆̄||2q}

= sup
∆̄∈Rm

{||R>φλ̄+ λ̄>Rφ− cλ̄||p||∆̄||q − ||∆̄||2q}

=
1

4
||(R>φ)λ̄+ (λ̄>R)φ− cλ̄||2p

=
1

4
||(R>φ− c)λ̄+ (λ̄>R)φ||2p.

Therefore, if

−n1/2EPn [(RR>φ− cR)]⇒ −Z

for some Z (to be characterized momentarily), then we conclude

nR̄n(φ, c)⇒ L0 = sup
λ̄∈Rr
{λ̄>Z − 1

4
EP∗||(R>φ− c)λ̄+ (λ̄>R)φ||2p}. (4.61)

If p = 2, then we have

EP∗||(R>φ− c)λ̄+ (λ̄>R)φ||22 = EP∗ ||[(R>φ− c)I + φR>]λ̄||22

= λ̄>Aλ̄,

(4.62)

where

A := EP∗{[(R>φ− c)I + φR>]>[(R>φ− c)I + φR>]}. (4.63)

Therefore, it is easy to find that

L0 = Z>A−1Z. (4.64)
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The next problem is to find the distribution of Z. To this end,

√
nEPn [RR>φ∗ − c∗R] =

√
nEPn [RR>]φ∗ −

√
nc∗EPn [R]

=
√
n[EPn [RR>]− EP ∗ [RR>]]φ∗ −

√
nc∗[EPn [R]− EP ∗ [R]]

⇒ Z := X − Y,
(4.65)

where X is the asymptotic distribution of
√
n[EPn [RR>]−EP ∗ [RR>]]φ∗ and Y is the

asymptotic distribution of
√
nc∗[EPn [R]−EP ∗ [R]]. By Assumption A1), we know that

both X and Y are multivariate normal distribution and Z is also normally distributed

with mean 0. Thus, the distribution of Z>A−1Z equals a linear combination of

independent chi-square distributions whose coeffcients are the eigenvalue of matrix

(Σ
1/2
Z )>A−1Σ

1/2
Z , where ΣZ is the covariance matrix of Z.

Note that L0 has an explicit expression when p = 2. When p 6= 2, using the

inequalities that ||x||2p ≥ ||x||22 if p < 2 and d( 1
2
− 1
p

)||x||2p ≥ ||x||22 if p > 2, we can find

a stochastic upper bound of L0 that can be explicitly expressed. In this case we can

obtain δ̄∗n in exactly the same way: namely, first compute the 1 − δ0 quantile of L0

and then let δ̄∗n be such a quantile multipled by 1/n. The distribution of L0 can be

calibrated using a natural plug-in estimator, leading to an asymptotically equivalent

estimator of δ̄∗n. The validity of this type of (plug-in) approach is explained in the

following section in a slightly different setting, but the principle applies directly to

the setting of L0. This approach is tested empirically in Section 4.4.

We now present a simple “menu” for estimating δ.

1. Collect return data {Ri}ni=1.

2. Use the sample mean µn = EPn (R) and the sample second-moment matrix

Σn = EPn
(
RR>

)
to approximate µ∗ and Σ∗, respectively, appearing in Theorem

5.

3. Use the solution φn, which is the solution to problem Q(Pn) (see (4.41)), to

approximate φ∗ in Theorem 3.
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4. Apply Theorem 5 to determine δ = δ̄∗ with the 95% confidence level.

4.4 Empirical Performance and Comparisons

In this section we report the results of our backtesting experiments on the S&P

500 constituents that compare the performance of our DRSR portfolios with those

of the portfolios based on the following models: classical (non-robust) Sharpe ra-

tio optimization, Fama-French, Black-Litterman, classical single-period Markowitz,

DRMV and an equally weighted portfolio. The first four models are well-known and

have been widely used in practice and the fifth one is the distributional robust model

based on a Markowitz model, as is developed in Chapter 3 of the present thesis. The

equally weighted strategy is actually an extreme outcome of the DRMV model when

the uncertainty size δ =∞. We implement our experiments in the same environment

as in Chapter 3 (Section 3.4), with some necessary adjustments.

4.4.1 Experiment Design and Data Preparation

We backtested for the period January 2000–December 2016 with the training

(estimation) period being January 1991–December 1999 (i.e., the previous ten years).

All of the stock monthly price data were obtained from the database of Wharton

Business School. At the beginning of 2000, we randomly chose 100 stocks from the

constituents of the S&P 500 that have at least ten years’ histroical price data available.

The basic period is set to be one year in all of the single-period models involved with

target annual mean return rate fixed at ρ = 10%1. Then, we used the training period

to estimate the out-of-sample parameters, namely the mean and the variance, to

construct the optimal strategies of the various models tested. The classical single-

period Markowitz model and the DRMV model are described in detail in Chapter

3.

1In this experiment, only the classical Markowitz model and DRMV need to specify the target
return parameter ρ. Here, we follow Section 3.4 in choosing ρ = 10%.
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DRSR model

Let us first describe the construction of the DRSR strategy for the selected 100

stocks. We generated this 17-year long strategy in an (overlapping) rolling horizon

fashion, with each horizon being one month. Specifically, on the first trading day of

January 2000, we solved our DRSR model to obtain a portfolio, denoted as φR. In

doing so, we set p = q = 2 and obtained the parameter δ using the menu presented at

the end of Section 4.3. We then substituted δ in the optimization problem described in

Theorem 4 to obtain φR. We retained φR only until the first trading day of February

2000. At that point we re-estimated the parameter δ using the immediate previous

ten-year (namely February 1991 – January 2000) price data, re-solved the DRSR

model, and generated a new portfolio φR for February 2000, the second month in our

backtesting period. We repeated the same steps for all of the subsequent months.

If at the beginning of a month some stocks in our portfolio had been removed from

the S&P 500 during the previous month, then we removed them from our portfolio,

replaced them with the same number of stocks that were randomly chosen from the

S&P 500 (yet having at least 10 years’ historical data), and then re-balanced based

on our DRSR model. We still denoted by φR the overall portfolio for the 17-year

period and kept track of the wealth process that had been updated at the end of each

month.

In what follows we describe the implementation of the other models, mentioned

at the beginning of this section, under comparison. Since all of the models are single-

period, we applied the same monthly rolling horizon approach to build the respective

strategies. Moreover, whenever stocks were dropped from S&P 500, we replaced

them with exactly the same set of stocks as in the DRSR model so as to maintain

consistency across the various models.
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Classical Sharpe ratio model

For the classical Sharpe ratio optimization model, for each period (month) we used

the sample mean and sample covariance matrix of the immediate previous ten-year

return data to estimate the corresponding parameters in problem Q(Pn). Then, we

considered the following problem:

min
φ:1>φ=1,EPn [φ>R]>0

√
VarPn(φ>R)

EPn [φ>R]
. (4.66)

We generated the optimal portfolio of this model, φCSR, by solving the above problem,

on exactly the same rolling horizon basis as for the DRSR model.

Fama-French model and Black-Litterman model under Sharpe ratio

Both the Fama–French model and the Black–Litterman model were developed

to address the mean-blur problem: namely, the fact that compared with variance,

it is much more difficult to estimate with workable accuracy the expected returns

of stocks based purely on sample means. These models estimate the stock returns

by their respective methods while keeping the sample covariance matrix and feed

them into the classical Sharpe ratio optimization model to obtain the corresponding

strategies.

Note that in Chapter 3 we studied the Fama-French and Black-Litterman models

and compared them with the DRMV model. However, therein we fed the estimates

of the mean vector of stock returns into the MV model (1.1), while here the estimates

are to be used in the Sharpe ratio model (4.3). Clearly, it is fair to also compare

DRSR with the other models under the Sharpe ratio setting.

In implementing the Fama–French model, we first downloaded the monthly data

of the three factors (i.e., Rm-Rf, SMB, and HML)2 from Kenneth French’s personal

2We assume that the factors have been processed according to the available papers (Fama and
French (1992) and Fama and French (1993)).
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website.3 Then, on the first trading day of each month during the period January

2000–December 2016, for each stock, we used its immediate prior ten-year history

returns to fit the three-factor Fama–French model. Next, we plugged in the factors

data available on that day to obtain an estimate of the stock’s return for the month.

We used these estimates for all of the randomly chosen 100 stocks as the plugged mean

vector in problem (4.3), and we used the sample covariance matrix as the estimator

of VarP∗(R). Next, by solving problem (4.3) with the above estimators, we obtained

the portfolio denoted as φFSR. This process was then repeated for the subsequent

months on a rolling horizon basis.

For the Black–Litterman model, on the first trading day of each month during

the period January 2000–December 2016 we calculated the implied returns of all of

the S&P 500 constituent stocks having at least ten years’ historical data using the

following formula:

Rimplied = λΣφmarket,

where λ = 3.07, Σ was the sample covariance matrix of the previous ten years’ returns

of these stocks and φmarket was the corresponding market portfolio (i.e., φmarket is a

vector whose components add up to 1 and are proportional to the capitalizations of

the S&P 500 constituents having at least ten years’ historical data) at the closing

prices of the previous trading day; see Idzorek (2002).4 Then, we picked from Rimplied

the implied returns of the 100 stocks that had been randomly chosen. We inputted

these returns and the sample covariance matrix into the Sharpe ratio optimization

model (4.3) to obtain the portfolio φBSR. This process was repeated for subsequent

months on a rolling horizon fashion.

3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
4Here, we include only those having at least ten years’ historical data to be consistent with the

other models.
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Figure 4.1: This graph presents the wealth processes of all portfolios (allow short-
selling) and of the S&P 500 from January 2000 to December 2016. All of the portfolios
except the S&P 500 consist of 100 stocks, and the averages are calculated over 100
numerical experiments. The x-axis indicates the time in months (from 1 to 204) and
the y-axis indicates the portfolio wealth. Initial wealth is set at 1.

4.4.2 Comparisons

Assume that the initial wealth at the start of the backtesting period (i.e., January

2000) is 1. For each randomly selected set of 100 stocks, we generate the wealth

process for the period 2000-2016 under each of the five models, as described in the

previous subsection, as well as that under the equal weighting. Then, we repeat the

experiments on 100 such sets of 100 stocks and obtain the average realized wealth

process for each model. These processes, along with that of the S&P500 (normalized

to start from 1 at the start of the testing period), are plotted in Figure 4.1.

From Figure 4.1, we can observe the extremely volatile behavior of the classical

Sharpe ratio model and the Fama-French model. In order to visualize the comparison

among other portfolios, it is necessary to remove the wealth curves of these two

models, resulting in Figure 4.2. DRSR shows a much more stable performance than

its non-robust counterpart. Also, in terms of final realized wealth, DRSR outperforms

the single-period Markovitz model, the Black-Litterman model, and the S&P 500.



CHAPTER 4. A DRSR MODEL 125

Figure 4.2: This graph presents the wealth processes of all portfolios (allow short-
selling and without classical Sharpe ratio and Fama-French model) and of the S&P
500 from January 2000 to December 2016. All the portfolios except the S&P 500
consist of 100 stocks, and the averages are calculated over 100 numerical experiments.
The x-axis indicates the time in months (from 1 to 204) and the y-axis indicates the
portfolio wealth. Initial wealth is set at 1.

Thus, from Figure 4.1 and Figure 4.2, we can conclude that DRSR represents a

significant improvement on the classical Sharpe ratio model.

However, DRSR is still worse than the equally weighted and DRMV portfolios.

This is due to the fact that the classical Sharpe ratio optimization model (4.3) becomes

very unstable when the expected portfolio return is close to 0. In order to avoid this

disadvantage, DRSR adds a constraint to the portfolio, which is that φ>EPn [R] >
√
δ||φ||p in the feasible region (4.11). This is a very aggressive constraint on portfolio

return in practice. Specifically, using the optimal portfolio φR of the DRSR model to

compute
√
δ||φR||2, we usually observe that the obtained value is higher than 30%,

which means that φ>REPn [R] > 30%. This is a very aggressive target for portfolio

return in practice. Due to this requirement, the performance of DRSR is not very

good, although it is much more robust than the classical Sharpe ratio model.

In the above discussion, all of the portfolios allow short-selling. If we do not al-
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low short-selling, their performance becomes much more stable. This result is shown

in Figure 4.3. With no short-selling, almost all of the portfolios have better per-

formances. In terms of final realized wealth, DRMV and equal-weight outperform

the other portfolios, and the rest of the portfolios have similar performance except

Black-Litterman.

We can study more closely the variability of the performance and the overall

return-risk efficiency of these models by examining their histograms of annualized

returns (i.e., the distributions of the annualized returns of the 100 experiments) and

those of their Sharpe ratios. These data are plotted in Figure 4.4 - 4.15.

We first compare DRSR with the classical Sharpe ratio model; see Figures 4.4

and 4.5. In both histograms, DRSR is more concentrated than the classical Sharpe

ratio model, which shows that DRSR is more stable. Similar things happen when we

compare DRSR with Fama-French (Figures 4.10 and 4.11). This again illustrates that,

while DRSR has similar average performance to Fama-French, DRSR outperforms

Fama-French in terms of variability. As for the Black-Litterman model, see Figures

4.8 and 4.9, DRSR wins in both average performance and robustness.

When it comes to the single-period Markovitz model, things are different. Al-

though DRSR is more concentrated in both annualized returns and Sharpe ratios, the

average Sharpe ratio of the Markovitz model is slightly higher than that of DRSR. It

is interesting that, in order to optimize the Sharpe ratio, the Markovitz model may

be a better choice than the Sharpe ratio optimization model. Again, one important

reason may be owing to the unstable property of the Sharpe ratio when portfolio

return is close to 0, which does not exist in the MV model.

Finally, we compare DRSR with DRMV and equally weighted portfolios; see Fig-

ure 4.12 to Figure 4.15. Both the equally weighted and the DRMV portfolios have

superior performance to DRSR, which suggests that Sharpe ratio may not be a proper

criterion for portfolio selection problems.
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Figure 4.3: This graph presents the wealth processes of all portfolios (NOT allowing
short-selling) and of the S&P 500 from January 2000 to December 2016. All the
portfolios except S&P 500 consist of 100 stocks, and the averages are calculated over
100 numerical experiments. The x-axis indicates the time in months (from 1 to 204)
and the y-axis indicates the portfolio wealth. Initial wealth is set at 1.

Figure 4.4: This graph presents the histograms of the annualized returns of the
100 different experiments on the DRSR (blue) and classical Sharpe ratio (orange)
portfolios. The x-axis represents the annualized return and the y-axis represents the
number of returns.
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Figure 4.5: This graph presents the histograms of the Sharpe ratio of the 100 different
experiments on the DRSR (blue) and classical Sharpe ratio (orange) portfolios. The
x-axis represents the Sharpe ratio and the y-axis represents the number of Sharpe
ratios.

4.5 Concluding Remarks

We have formulated a data-driven distributionally robust model for a Sharpe ratio

optimization problem. Based a similar approach to that employed in Chapter 3, the

newly developed model can be equivalently transformed into a convex optimization

problem that is tractable. Unlike the elegant penalized formulation of DRMV’s ob-

jective function, the objective function of DRSR is much more complicated. However,

in DRSR, we do not need to select the target return ρ, which makes our solution com-

pletely data-driven. Moreover, the RWP function to determine δ is more concise. In

the numerical experiment, DRSR does show significant improvements over the clas-

sical Sharpe ratio model, as well as over some famous models like Fama-French and

Black-Litterman. Nevertheless, DRSR performed worse than the equally weighted

and DRMV strategies in both return and stability. The reason lies in the formulation

of the Sharpe ratio and further research is needed to modify it so as to overcome its
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Figure 4.6: This graph presents the histograms of the annualized returns of the
100 different experiments on the DRSR (blue) and single-period Markovitz (orange)
portfolios. The x-axis represents the annualized return and the y-axis represents the
number of returns.

volatile behavior when portfolio return is close to 0.
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Figure 4.7: This graph presents the histograms of the Sharpe ratio of the 100 different
experiments on the DRSR (blue) and single-period Markovitz (orange) portfolios. The
x-axis represents the Sharpe ratio and the y-axis represents the number of Sharpe
ratios.
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Figure 4.8: This graph presents the histograms of the annualized returns of the 100
different experiments on the DRSR (blue) and Black-Litterman (orange) portfolios.
The x-axis represents the annualized return and the y-axis represents the number of
returns.

Figure 4.9: This graph presents the histograms of the Sharpe ratio of the 100 different
experiments on the DRSR (blue) and Black-Litterman (orange) portfolios. The x-axis
represents the Sharpe ratio and the y-axis represents the number of Sharpe ratios.



CHAPTER 4. A DRSR MODEL 132

Figure 4.10: This graph presents the histograms of the annualized returns of the
100 different experiments on the DRSR (blue) and Fama-French (orange) portfolios.
The x-axis represents the annualized return and the y-axis represents the number of
returns.

Figure 4.11: This graph presents the histograms of the Sharpe ratio of the 100 different
experiments on the DRSR (blue) and Fama-French (orange) portfolios. The x-axis
represents the Sharpe ratio and the y-axis represents the number of Sharpe ratios.
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Figure 4.12: This graph presents the histograms of the annualized returns of the 100
different experiments on the DRSR (blue) and DRMV (orange) portfolios. The x-axis
represents the annualized return and the y-axis represents the number of returns.

Figure 4.13: This graph presents the histograms of the Sharpe ratio of the 100 dif-
ferent experiments on the DRSR (blue) and DRMV (orange) portfolios. The x-axis
represents the Sharpe ratio and the y-axis represents the number of Sharpe ratios.
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Figure 4.14: This graph presents the histograms of the annualized returns of the 100
different experiments on the DRSR (blue) and equal-weighting (orange) portfolios.
The x-axis represents the annualized return and the y-axis represents the number of
returns.

Figure 4.15: This graph presents the histograms of the Sharpe ratio of the 100 different
experiments on the DRSR (blue) and equal-weighting (orange) portfolios. The x-axis
represents the Sharpe ratio and the y-axis represents the number of Sharpe ratios.
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