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ABSTRACT

Essays in Applied Macroeconomics

Jungsik (Jay) Hyun

This dissertation combines micro-level empirical analyses and general equilibrium struc-

tural analyses to study shock propagation mechanisms and business cycles dynamics, with a

particular emphasis on the role played by firms. In the first chapter, we study how regional

shocks spill over across U.S. local markets through intra-firm market networks and explore how

such spillovers reshape household welfare across regions. We link data on barcode-region-level

prices and quantities with producer-level information to exploit variation in firms’ initial

exposure to differential drops in local house prices in the 2007-09 recession. We show that a

firm’s local sales decrease in response to not only direct negative local demand shock but also

indirect negative local demand shocks originating in its other markets. Intra-firm cross-market

spillover effects arise mainly from product creation and destruction, whereas direct local shock

operates through the sales of continuing products. Spillover effects occur because (i) firms

replace products that have higher value—sales per product, unit price, and organic sales

share—with lower-value ones in response to negative demand shocks, and (ii) such product

replacements are synchronized across many markets within each firm. Counterfactual analysis

using an estimated multi-region model with endogenous quality adjustments shows that our

channel works as a novel inter-regional shock transmission mechanism and generates an implicit

regional redistribution effect. Such effect is economically sizable and is comparable to the size

of transfer policies implemented during the Great Recession.

In the second chapter, we investigate a role of supply chain network in transmitting

housing market disruptions during the Great Recession. We build up a unique micro-level

data that combines local housing market condition, firms’ sales in each local market, and

firm-level supply chain network information. Exploiting firm-specific demand shock stemming

from cross-market variation in house price changes and an initial difference in firms’ local

sales, we find that such shock not only affects downstream firms but also transmits to their



suppliers. The estimated supplier-level elasticity is quantitatively large, reflecting larger role of

downstream firms with higher elasticity in the network structure. To quantify such propagation

at the aggregate level, we build up a parsimonious network model calibrated to match the

micro-level data. Our counterfactual analysis shows that approximately 18% of the observed

drop in the aggregate output can be attributed to the propagating role of the supply chain

network.

In the third chapter, we study the business cycle with a Translog production function.

We empirically identify a complementarity between labor and energy that leads to procyclical

returns to scale, which is not compatible with the tightly parameterized production function

commonly used in the literature (Cobb-Douglas and CES). Therefore, we propose a flexible

Translog production function that not only features complementarity-induced procyclical

returns to scale but is also consistent with a balanced growth path. A simple calibrated

business cycle model with the proposed production function generates strikingly data-consistent

dynamics following demand shocks without relying on either nominal rigidities or countercyclical

markups.
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Chapter 1

Spillovers and Redistribution through Intra-Firm Networks:

The Product Replacement Channel

Jungsik (Jay) Hyun1

1.1 Introduction

How do regional shocks spill over and affect other regions in the economy? What are

the distributional consequences across regions of such a spillover? These long-standing

questions in the macroeconomics and international trade literature have been extensively

studied in an effort to understand the source of business cycle comovements and the

relationship between export dynamics and domestic performance (Backus et al. (1992);

Kose and Yi (2006); Vannoorenberghe (2012)). Yet, such questions have become equally

relevant in within-country contexts, especially during and in the aftermath of the Great

Recession. As the crisis involved a large differential collapse in local housing markets

followed by wide disparities in regional economic activity within the United States,

seminal papers, such as Mian et al. (2013) and Mian and Sufi (2014), established a

large effect of change in local housing market conditions on local consumption and

non-tradable employment in those periods exploiting regional variation in the housing

net worth shock. The effect of such regional shocks, however, may not be restricted to

1This is a collaborated project with Ryan Kim, my former colleague at Columbia University who now joined

Johns Hopkins SAIS.
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local markets of origination, given that the economy is highly connected across regions

through various linkages. Regional shocks could spill over and propagate through various

regional linkages and potentially reshape household welfare across regions. Given the

importance of such spillovers, previous studies have identified numerous channels that

could generate the regional shock spillovers, such as trade, supply chain, and financial

networks.

What is particularly not well understood in the literature is the role of spatial

networks created by multi-market firms—producers selling their products in multiple

counties and states who play an important role in US economic activities.2 Because

these firms could make their product supply decisions at the firm-level, the appearance

of a negative demand shock in one market can cause them to change their product

supply decision in another market. Three outcomes are possible. First, when firms

face a negative demand shock and cannot sell their products in one market, they might

sell their products in the other market to keep up their firm-level sales. In this case, a

decrease in demand and sales in one market leads to an increase in sales in the other

market. Second, if firms that face a negative demand shock in one market have trouble

financing at the firm-level due to the low cash flow, the increase in financial cost might

force these firms to decrease their supply of goods in the other market. Third, it is

possible that firms make their decision entirely at the local level and do not spill over

the regional shock, as standard international macro and trade models with constant

marginal costs predicts (e.g., Backus et al. (1992); Melitz (2003)). In these models,

exogenous foreign demand shocks that affect export demand of an exporting company

do not affect its domestic sales.

This paper investigates whether and how regional shocks spill over across counties

and states through intra-firm spatial networks of multi-market firms, and explores how

the identified mechanism reshapes household welfare across local markets. We construct

2Based on the calculation from the ACNielsen Retail Scanner database, about 80% of consumer goods

producers sell their products in multiple states, and these multi-state firms accounted for more than 99% of

total consumer goods expenditures in 2007 (Figure A.1 in Appendix A.2).
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a detailed micro data that combines barcode-region-level prices and quantities from

ACNielsen Retail Scanner database with various producer-level information from GS1

data and the National Establishment Time-Series (NETS) database. Our combined

dataset contains information on barcode-level product prices and quantities sold in each

county produced by public and private firms and their establishment-level information

in the United States. For example, if Coca-Cola generates sales in Manhattan (New

York County) and Brooklyn (Kings County), we observe prices and quantities sold in

Manhattan and Brooklyn separately for each barcode level product (e.g., cherry-flavored

500ml diet coke) produced by Coca-Cola as well as Coca-Cola’s establishment location,

primary industry code, and many other firm-specific characteristics. To generate the

variation in local consumer demand condition, we follow the seminal work of Mian et al.

(2013) and rely on a sudden differential collapse in local house prices during the Great

Recession to generate a sharp differential drop in local consumer demand. To do this,

we supplement our dataset with 2007-2009 county- and state-level house prices from the

Zillow database.

Armed with the detailed micro-level data, and exploiting the sharp differential

drop in local house prices and variation in firms’ initial exposure to these local markets,

we show that a firm’s local sales decrease in response to not only the direct negative

local demand shock but also the intra-firm spillover shock, which measures the average

indirect negative local demand shock originating in the firm’s other markets. A firm’s

county-level sales growth decreases by 3.5%p when it faces a 10%p average decline in

house price growth in other counties connected through its market network, while it

only decreases by 0.6%p due to the same percentage points drop of direct county house

price growth. This result suggests that the firm-level decision, which is largely affected

by overall demand conditions in other markets, is more important in explaining a drop

in local sales during this period than the direct local demand condition.3

3This is intuitive since firms in our sample sell in many markets on average, and the measure of spillover

shock captures the average local demand shock a firm face in its all other markets. For example, the median

firm in our sample sells in 155 counties, and in looking at the local sales growth for this particular firm, we

measure the spillover shock by measuring the average local demand shock this firm faces in the all other 154
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To confirm our intra-firm spillover results we conduct a number of robustness

checks. We present Placebo tests that demonstrate that the connection to other

markets through the intra-firm market network is crucial in generating the spillover

effects, not other markets in general. Also, we explicitly address concerns related to

the possibility of common or geographically clustered regional shocks as well as the

possibility of alternative channels. To list some of them, we show (i) that our spillover

results are robust to including county-by-industry fixed effects, which absorb both the

aggregate shock and any county and/or sectoral shocks, (ii) that the results are robust to

constructing the spillover shocks by excluding nearby counties, and (iv) that our results

are not driven by house price directly affecting production through establishments by

measuring the spillover shocks excluding counties with establishments. We also (iv)

address the endogeneity of house prices by using instrumental variables for local house

price changes, and (v) show that our results are not driven by retailers through which

firms sell products.

Behind responses of local firm sales to direct and spillover shocks, there exists a

stark asymmetry: intra-firm cross-market spillover effects arise mainly from product

creation and destruction, whereas direct local shock operates through the sales of

continuing products. We show that the identified spillover effects occur because firms

replace products that have higher value—sales per product, unit price, and organic sales

share—with lower-value ones in response to negative demand shocks, and within each

firm, such product replacements are synchronized across many markets including those

that did not face a direct shock. Therefore, downgrading of products occur even in local

markets that are not directly affected by the shocks, which results in a decline of local

sales in those markets.

Our result indicates that the non-localized firm-level decision, which is affected by

the firm’s overall demand conditions from many markets, plays an important role in

generating within-firm spillovers across local markets. We provide two additional pieces

of supporting evidence by investigating heterogeneous treatment effects. First, we show

markets.
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that the identified spillover effects become stronger as firms become more financially

constrained, which is consistent with Berman et al. (2015) and Giroud and Mueller

(2019). Second, the within-firm spillover effects become stronger as the spillover shock

better proxies the firm level average demand shock.

The final part of our paper discusses the aggregate implications of our findings. We

develop a stylized multi-region model with endogenous quality adjustments by firms

that reflect product replacements. Our model interprets the replacement of high-valued

products with low-valued products as quality downgrading because this replacement is

associated with a decrease of sales in the market not directly hit by negative demand

shock, and at the barcode level, changes in product attribute that directly affect product

quality should involve product replacements.4 In the model, firms that face a negative

demand shock decrease their product quality due to (i) the scale effects that reflect

lower fixed costs associated with production at the lower quality level and (ii) the

nonhomothetic preferences that make consumers who face negative demand shock switch

their consumption toward lower quality goods. In this downgrading process, such firms

choose the uniform product quality across many markets, including markets that did

not experience direct local demand shocks. This generates the intra-firm spillover effect,

as in our empirical analysis.

We estimate the model’s key parameters and match broad features in the data to

perform counterfactual analysis. We show that the identified intra-firm cross-market

spillover effect works a novel inter-regional shock transmission mechanism and generates

substantial distributional consequences across regions. We measure the state level

quality-adjusted real consumption (per capita), which measures regional welfare, by

leveraging our estimated model. We compare the measured regional welfare growth in

the benchmark economy (characterized by the uniform quality adjustment) with the

4Conditional on direct local demand (or alternatively, without direct local negative demand shock), if unit

price decline at the extensive margin purely reflects a decrease in markup for a new product relative to the

exiting product (without noticeable quality differences), then one should observe an increase in sales (and not

decrease in sales) because the price elasticity of demand is typically larger than unity (see, e.g., Broda and

Weinstein (2010)).

5



one measured under the counterfactual economy where firms choose market-specific

product quality and, thus, do not spill over regional shock through the intra-firm network.

The standard deviation of the quality-adjusted real consumption growth across states

in consumer packaged goods sectors increases by about 29% in our counterfactual

analysis relative to our benchmark economy. A back-of-the-envelop calculation shows

that this corresponds to a one-time $400 per-household transfer (tax) on a state that

experienced below-average (above-average) house price growth. This is comparable

to the tax rebate checks authorized by the US Congress in 2008 (Economic Stimulus

Act of 2008), which were also one-time payments that ranged from $300 to $1200

per qualifying household. Therefore, the magnitude of redistribution induced by our

identified channel is economically meaningful and compares in size to transfer policies.

This highlights the important role that intra-firm spillover through uniform product

replacements plays in mitigating the quality-adjusted regional consumption inequality.

We then compare the cross-sectional dispersion of the state level welfare (in terms of

level). In the counterfactual economy with market-specific quality adjustments the

standard deviation of the measured quality-adjusted regional consumption is nearly

twice that of the benchmark economy.

These results indicate that the identified intra-firm spillover through uniform

product replacements serves as an implicit redistributive (or risk-sharing) mechanism

across regions. Firms that introduce uniform product quality across many markets

take into account the average demand conditions in all of their markets. Thus regions

that were hit by severe negative demand shocks face relatively higher quality than

the counterfactual economy due to the existence of regions that were hit by moderate

demand shocks and firms that sell in both regions. In contrast, regions that were hit by

moderate demand shocks enjoy relatively lower product quality due to the existence

of regions hit by severe negative demand shocks. This mitigates the quality-adjusted

regional consumption inequality.5

5In fact, we get similar implication under the model with the scale effect and homothetic preferences instead

of nonhomothetic preferences. This is because nonhomothetic preferences generate lower welfare for both high
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Literature Review

Our paper contributes to several strands of the literature. A growing literature studies

how shocks transmit throughout the economy and discuss its macroeconomic implications.

This literature focuses on various types of linkages, including trade and supply chain

networks (Backus et al. (1992); Frankel and Rose (1998); Kose and Yi (2006); di Giovanni

and Levchenko (2010); Acemoglu et al. (2012, 2016); Barrot and Sauvagnat (2016);

Carvalho et al. (2016); Stumpner (2019); Caliendo et al. (2018); Adao et al. (2018a);

Auerbach et al. (2019)), labor market integration (House et al. (2018)), financial networks

(Cetorelli and Goldberg (2012); Acemoglu et al. (2015); Gilje et al. (2016); Cortés and

Strahan (2017); Baskaya et al. (2017); Mitchener and Richardson (2019)), and social

networks (Bailey et al. (2018)). Our paper adds to this literature by showing whether

and through what mechanism regional shocks spill over across regions through intra-firm

networks created by multi-market firms. It also demonstrates that the identified channel

substantially reshapes household welfare across local markets.

Only a few recent papers have investigated various types of intra-firm spatial

networks. At the international level, Cravino and Levchenko (2017) show how multi-

nationals that operate in multiple countries could explain international business cycle

comovement, while Berman et al. (2015), Ahn and McQuoid (2017), Almunia et al.

(2018), and Erbahar (2019) study how exporters transmit shock across countries.6 In

demand and low demand regions due to the uniform product quality that is “less appealing” in both regions (i.e.,

generate “level effect”), but do not affect “dispersion” of welfare across regions that affects regional consumption

inequality.

6The direction of spillover at the international level is somewhat mixed. Berman et al. (2015) and Erbahar

(2019) show a positive association between firm-level exports and domestic sales, while Ahn and McQuoid

(2017) and Almunia et al. (2018) show the opposite result. One notable difference between Berman et al. (2015)

and Almunia et al. (2018) is that the former investigates the effect of exogenous export demand change on

domestic sales while the latter looks at the effect of exogenous domestic sales change on export dynamics. If a

firm’s export sales is relatively larger than domestic sales, the exogenous export demand shock can be viewed as

(proxy of) firm-level demand shock while the exogenous domestic demand shock can be viewed as local shock in

firm’s perspective. Consistent with this perspective, we show that the better the spillover shock proxies the

firm-level demand shock, the positive spillover effect becomes stronger (see Section 1.4.4).
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contrast, our paper considers firms that sell in multiple local markets within the United

States.

At the domestic level, Giroud and Mueller (2019) show that non-tradable estab-

lishment employment is sensitive to consumer demand shocks in other regions in which

the parent firm operates establishments. Our paper complements their paper in three

important dimensions. First, while they find evidence of spillover for the non-tradable

sectors, our firms mainly consist of consumer packaged good producers classified as

tradable goods firms. Second, the nature of the network is different because our spatial

networks are based firms’ markets (i.e., where they sell their products), which are largely

decoupled with their establishment locations.7 Third, we emphasize the role of uniform

product replacements across many markets by each firm as the key mechanism behind

the spillover.

Contemporaneous work by Gilbert (2017) emphasizes synchronized product entry

decision by retailers. In contrast, we emphasize the role played by producers and show

that the identified spillover effect exists even after we control for common retailers

through which households purchase products (Table A.4), and that the role of retailers

behind the extensive margin response is limited relative to the role played by producers

(Table OA.1 in Online Appendix B). In addition, while Gilbert (2017) focuses on

descriptive correlations, we exploit differential collapse in local housing markets in the

2007-09 recession to generate exogenous variation that allows us to identify the spillover

effects, and provide an extensive set of robustness checks that rule out alternative

explanations.

Our paper also contributes to the literature that studies the housing market

collapse during the Great Recession. Previous studies focused on its implications for

consumer spendings (Mian et al. (2013); Stroebel and Vavra (2019); Kaplan et al. (2016)),

employments (Mian and Sufi (2014); Giroud and Mueller (2017)), and regional business

7The distinction between multi-market firms and multi-establishment firms has also been drawn in studies

of international trade since exporters (multi-market firms) and multinationals (multi-establishment firms) have

different incentives to trade. See, for example, Antràs and Yeaple (2014). In our sample, an average of less than

5% of the regions in which a firm sells its products also have the firm’s establishments.
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cycles (Beraja et al. (2019); Giroud and Mueller (2018)). We contribute to the literature

by showing that local demand shocks affect firms’ product creation and destruction

decisions, which, in turn, affect the consumption and welfare of households in other

regions. To the best of our knowledge, this channel has not been studied previously in

the literature.

Furthermore, our paper contributes to the literature that studies variety and quality

adjustments, product turnover, and innovation by firms in the context of economic

growth, business cycles, and the measurement of costs of livings and inequality (Broda

and Weinstein (2010); Schmitt-Grohé and Uribe (2012); Hottman et al. (2016); Jaimovich

et al. (2019); Dingel (2017); Anderson et al. (2017); Argente et al. (2018); Jaravel (2018);

Anderson et al. (2018)). We contribute to the literature by showing that product turnover

and quality adjustment decisions made at the firm level generate inter-dependency across

regions, generating spillover effects.8

The implications of our work are relevant to the literature that studies how local

shocks are smoothed out within a country and to what extent risks are shared across

regions through various channels. The literature typically has focused on either the role

of credit markets for risk sharing (e.g., Asdrubali et al. (1996); Lustig and Nieuwerburgh

(2005, 2010)) or the role of monetary and fiscal union where multiple regions face common

policy instruments (Hurst et al. (2016)). Our paper contributes to the literature by

providing a novel mechanism that generates redistributive (or risk-sharing) effect across

regions that works through firms’ decisions about product replacements and associated

product quality choice.

The rest of this paper is structured as follows. Section 2.2 describes the data

and summary statistics, Section 2.3 explains the empirical strategy and construction

8Another related literature is industrial organization studies that document uniform pricing behavior by

retailers (see, for example, DellaVigna and Gentzkow (2017), Cavallo (2018)). While these papers emphasize

the role of pricing decisions by retailers (typically at the high frequency level (e.g., weekly) for continuing

products for some duration of a time period), we focus on the role of producers’ decisions play in product

creation/destruction and associated choice of product quality. In Section 1.4.3, we show that our results are not

driven by retailers.
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of variables, and Section 1.4 presents the main spillover and decomposition results.

In Section 1.5, we discuss the mechanism that underlies our results: the channel of

uniform product replacements from high- to low-value products. Section 1.6 develops

the multi-region model with endogenous quality adjustment by firms and discusses the

distributional implications. Section 3.6 concludes.

1.2 Data and Summary Statistics

Our dataset combines barcode-level prices and quantities sold in each county produced

by public and private firms from the ACNielsen Retail Scanner database and various

firm- and its establishment-level information obtained from the GS1 database and the

National Establishment Time-Series (NETS) database. This allows us to construct a

firm’s county-specific sales and its connection to other counties where the firm generates

sales, together with various firm-level information including its primary industry code,

establishment location, and credit ratings. To measure local demand shocks, we leverage

the large differential collapse in local housing markets during the Great Recession

and supplement our dataset with county- and state-level house prices in 2007-09 from

the Zillow database. Correspondingly, our sample period is 2007 to 2009. A detailed

discussion of each dataset and merging procedure can be found in Online Appendix A.

The barcode-level price and quantity information in each county comes from the

ACNielsen Retail Scanner database, which was made available by the Kilts Marketing

Data Center at the University of Chicago Booth School of Business.9 The data contain

approximately 2.6 million barcode-level product prices and quantities recorded weekly

from about 35,000 participating grocery, drug, mass merchandise, convenience, and

liquor stores in all U.S. markets. A barcode, a unique universal product code (UPC)

9Researcher(s) own analyses calculated (or derived) based in part on data from The Nielsen Company (US),

LLC and marketing databases provided through the Nielsen Datasets at the Kilts Center for Marketing Data

Center at The University of Chicago Booth School of Business. The conclusions drawn from the Nielsen data

are those of the researcher(s) and do not reflect the views of Nielsen. Nielsen is not responsible for, had no role

in, and was not involved in analyzing and preparing the results reported herein.
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assigned to each product, is used to scan and store product information. Participating

retail stores use the point-of-sale systems that record information whenever product

barcodes are scanned during purchases. The data begin in 2006 and end in 2015, covering

the period of the Great Recession and the housing market collapse. It mainly includes

consumer packaged goods, such as food, nonfood grocery items, health and beauty aids,

and general merchandise. According to Nielsen, the Retail Scanner covers more than

half the total sales volume of US grocery and drug stores and more than 30 percent of

all US mass merchandiser sales volume.

There are two notable advantages to using the ACNielsen Retail Scanner database

when studying multi-market firm behavior. First, the database records product sales at

the barcode-level, which is likely to be the most granular scale at which the product

can be defined. This feature allows us to decompose a firm’s local sales growth coming

through the intensive margin from continuously existing products and the extensive

margin from product creation and destruction. Using a broader product category

classification (as definition of product) would not allow us to identify the extensive

margin effect emphasized in this paper.10 Second, use of the database results in fewer

measurement error problems. For example, compared to similar data that rely on

consumer surveys (Homescan Panel database), the ACNielsen Retail Scanner data

directly record expenditures when consumers purchase and scan products at stores.

Thus, our data do not suffer from household non-response and misreporting, which is

common problem in survey data used in economic research (Meyer et al. 2015). Also,

unlike most firm-level international trade and balance sheet data that infer regional

(domestic) sales by subtracting other regional (international) sales from total firm sales,

Nielsen collects sales information independently across each region. This feature prevents

the mechanical regional sales correlation problem raised in Berman et al. (2015) when

10For example, we can define “product” using the broader “product group” categories in the ACNielsen data

(instead of barcode level), and decompose local sales growth into the intensive and extensive margin. As shown

in Table OA.2 in Online Appendix B, the spillover effect is entirely driven by the intensive margin from product

group categories existed in both pre- and post- shock periods instead of the entry and exit of the product group

categories.
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we conduct the structural regression exercise described in Section 1.6.

We integrate the prices and quantities of each product with its producer information

using the GS1 US Data Hub and the National Establishment Time-Series (NETS). GS1

is the only official source of barcodes in the United States and issues barcodes to

producers.11 Their data record the company name and address for each barcode-level

product, and we use this information to link barcode-level product information to various

producer-level information from the NETS data.12 NETS is the U.S. establishment-level

longitudinal database made available by Walls & Associates. The original source of

the data is Dun and Bradstreet (D&B) archival data, which is collected primarily for

marketing and credit scoring. The data allows us to identify each firm’s establishment

location, primary industry code defined at the SIC 4-digit level, and D&B credit and

payment rating during the 1990-2014 time period. We use this information to compare

firms that operate in the same primary industry, to analyze heterogeneous treatment

effects to investigate the mechanism that lies behind the spillover results, and to address

concerns related to supply-side or collateral channel. See, e.g., Neumark et al. (2011),

Barnatchez et al. (2017), Rossi-Hansberg et al. (2018), and Asquith et al. (2019) for a

more detailed discussion on the NETS data.13

We supplement our combined database with house price indexes at the county-level

from the Zillow database, the housing supply elasticity established by Saiz (2010), and

the “nonlocal mortgage lending shock” constructed by García (2018) to capture the local

market demand condition.14 To explore the role played by financial friction in spillovers,

11GS1 provides a business with up to 10 barcodes for a $250 initial membership fee and a $50 annual fee.

Firms that purchase larger quantities of barcodes enjoys significant discounts in the cost per barcode (see

http://www.gs1us.org/get-started/im-new-to-gs1-us).

12We use the Reclink2 command available in Stata to merge the GS1 database and the NETS database. A

detailed description of the merging process is presented in Online Appendix A.

13According to Barnatchez et al. (2017), the NETS dataset is useful for studying cross-sectional business

activities, but its value is more limited in studies of business dynamics. Thus, we only use a cross-sectional

pre-recession “snapshot” of information in our analysis and abstain from using the data’s dynamic perspective.

14We thank Daniel García for sharing his dataset.
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Table 1.1: Summary Statistics

Variable Obs Mean Std. Dev. P10 P50 P90

Panel A: County-firm variables

∆̃HPrf,07−09 (other) 840681 -.169 .042 -.209 -.170 -.122

∆̃Salerf,07−09 840681 -.041 .799 -1.176 .017 .942

∆̃Salecontinuerf,07−09 840681 -.061 .543 -.702 -.037 .534

∆̃Salereplacerf,07−09 840681 .021 .53 -.528 0 .571

Salesrf,07 (in thousand dollar) 840681 65.423 739.854 .107 2.346 70.288

Salesexistrf,07 (in thousand dollar) 840681 56.524 631.472 .061 1.639 58.916

Salesexitrf,07 (in thousand dollar) 840681 8.899 129.795 0 .197 8.684

Salesrf,09 (in thousand dollar) 840681 68.068 768.49 .071 2.347 74.756

Salesexistrf,09 (in thousand dollar) 840681 52.375 528.692 .037 1.475 56.332

Salesenterrf,09 (in thousand dollar) 840681 15.693 283.807 0 .216 14.266

# of UPCs in 2007 840681 34.18 106.989 1 9 70

Panel B: Firm variables

∆̃HPf,07−09 4171 -.161 .087 -.269 -.156 -.067

Salef,07 (in million dollar) 4171 15.586 147.974 .005 .278 14.677

# of UPCs in 2007 4171 54.239 231.783 2 12 110

# of counties in 2007 4171 513.243 669.991 10 155 1655

# of product groups in 2007 4171 2.701 3.421 1 2 6

Panel C: County variables

∆̃HPr,07−09 991 -.092 .138 -.258 -.079 .044

Saler,07 (in million dollar) 991 55.499 131.941 .524 15.849 143.861

# of UPCs in 2007 991 28995.06 15382.66 7994 28730 49854

# of firms in 2007 991 848.316 353.868 341 876 1306

Note. All the sales and house price variables are defined in Section 3. ∆̃Saletotalrf,07−09 is the county-firm sales

growth in 2007-09, ∆̃Salereplace
rf,07−09 is the county-firm sales growth arising from product replacements in 2007-09,

and ∆̃Salecontinue
rf,07−09 is the county-firm sales growth arising from continuing products in 2007-09. Salerf,07 is

the total county-firm sales in 2007, Saleexist
rf,07 is the 2007 sales of products existed in both 2007 and 2009, and

Saleexit
rf,07 is the 2007 sales of products existed in 2007 but exited in 2009. Salerf,09 is the total sales in 2009,

Saleexist
rf,09 is the 2009 sales of products existed in both 2007 and 2009, and Saleenter

rf,09 is sales of products newly

entered in 2009. ∆̃HPr,07−09 is the county-level house price growth between 2007 and 2009, ∆̃HPf,07−09 is the

firm-level exposure of house price growth, which is defined as 2007 sales share weighted average of ∆̃HPr,07−09

across counties where the firm generates sales, and ∆̃HPrf,07−09 (other) is the spillover shock defined as the

initial sales-weighted ∆̃HPr,07−09 in the other counties where the firm generates sales. Firm variables are

measured using information from all regions, including those without house price information.
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we further augment our data with the industry-level “external financial dependence

index” from Rajan and Zingales (1998).

We report the summary statistics of the final sample used in the regression analyses

in Table 1.1. Our combined dataset consists of 4171 number of firms and covers 991 US

counties from 2007 to 2009.15 Three features of the data are worth highlighting. First,

most of the firms in our sample sell many products in many counties. For example,

the average firm in our sample sells 54 products across 513 counties. This feature of

our sample, together with the large variation in county-level house price growth, allows

us to study spillover effects across counties through intra-firm networks: there is large

variation across firms in their initial exposure to different counties, and these counties

were differentially hit by local shocks. Second, there is extreme firm heterogeneity, as

Hottman et al. (2016) have documented. A firm in the 90th percentile of the distribution

has about 3000 times more sales, produces about 55 times more products, and sells in

about 160 times more counties than a firm in the 10th percentile of the distribution.

In the empirical analysis, we control for these firm-characteristics. Lastly, many firms

sell their products in each county. On average, 848 firms sell their products in each

county, and even in a county in the 10th percentile of the distribution, 341 firms sell

their products. As discussed in more details in Section 1.3.4, this aspect suggests that

it is unlikely that an individual firm could affect local economic conditions, due to its

small share in each county.

1.3 Empirical Strategy

This section presents the empirical framework we use to identify the spillover effects of

regional shocks through intra-firm networks. We start by discussing key variables, and

then we present empirical specifications. At the end of this section, we briefly discuss

potential threats to identification and how we address those concerns. We use the terms

15As discussed in more details in Online Appendix A, our final combined sample covers about 40% of total

sales in the Nielsen data. We show the robustness of our results using the full Nielsen sample as well as the

Homescan Panel database in Table OA.3 in Online Appendix B and Table A.9 in Appendix A.1, respectively.
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“(local) market” and “region” interchangeably. Our baseline definition of the local market

is the county, but we also present results that use state for the sake of robustness.

1.3.1 Dependent Variables

Let Salerf,t denote firm f ’s sales in region r at time t. We measure the region-firm-specific

sales growth in 2007-09 as

∆̃Salerf ≡
Salerf,09 − Salerf,07

Salerf
(1.3.1)

where Salerf ≡ 1
2
(Salerf,07 + Salerf,09) is a simple average sales of firm f in region r in

2007 and 2009. This growth rate, which is a second-order approximation of the log

difference growth rate around 0, follows previous papers that measure the employment

growth at the establishment-level (e.g., Davis et al. 1996). This growth rate definition

provides a symmetric measure around 0 and is bounded between -2 and 2. These

features help limit the influence of outliers without arbitrarily winsorizing extreme

observations.16,17

Given the prevalence of multi-product firms, we investigate the role that product

creation and destruction of these firms play in shock spillovers. Following Broda and

Weinstein (2010), we decompose the sales growth defined in equation (1.3.1) into two

margins: the intensive margin associated with products that exist in both pre- and

post-shock periods, and the extensive margin associated with product creation and

destruction (i.e., net creation) :

∆̃Salerf = ∆̃Salecontinue
rf + ∆̃Salereplace

rf (1.3.2)

where ∆̃Salecontinue
rf ≡ Salecontinue

rf,09 −Salecontinue
rf,07

Salerf
and ∆̃Salereplace

rf ≡ Saleenter
rf,09−Saleexit

rf,07

Salerf
. Salecontinue

rf,t

is the region-firm-time-specific sales from products that continuously existed in region

16Another important benefit of using this growth rate is that it can accommodate both the entry and exit of

firms at the local market level. Table A.12 in Appendix A.1 shows the result that accommodates these margins.

17The qualitative results are robust to using the more conventional definition of the sales growth in which

the denominator equals 2007 sales. See Table OA.5 in Online Appendix B.
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r throughout 2007-09, Saleexit
rf,07 is the sales from products that existed in region r in

2007 but exited in 2009, and Saleenter
rf,09 is the sales from products that did not exist in

region r in 2007 but entered in 2009. Note that we use the following identity for the

decomposition of the sales growth: Salerf,07 = Salecontinue
rf,07 + Saleexit

rf,07 and Salerf,09 =

Salecontinue
rf,09 + Saleenter

rf,09. The products that entered or exited region r account for less

than one-fourth of total sales in 2007 and 2009. Despite their relatively small fraction in

total sales, these extensive margins in firm’s local sales cause most of the spillover effect.

To understand whether the spillover effect is coming from the intensive or the

extensive margins response (or both), we regress each of two margins on the spillover

shock. We also regress each margin on the direct local shock to similarly decompose the

direct effect.

1.3.2 The Spillover Shock

As discussed in more details in the following section, our main goal is to investigate

whether a firm’s local sales growth is affected by indirect regional shocks originating in

the firm’s other markets, conditional on direct local demand. To this end we define the

region-firm-specific spillover shock as the average regional demand shock a firm faces

from its other markets, weighted by its initial sales share in those markets. The method

of construction is similar to the one proposed by Giroud and Mueller (2019)—who

consider within-firm multi-establishment networks in the nontradable sector—weighted

by initial employment share.

Following Mian et al. (2013), we leverage the large differential drop in local house

prices during the Great Recession to measure local consumer demand shock. Let HPr,t

denote the house price index in region r at time t. Consistent with the measure of sales

growth, we define the region-specific house price growth in 2007-09 as

∆̃HPr ≡
HPr,09 − HPr,07

HPr
(1.3.3)

where HPr is a simple average of the housing price indexes in region r in 2007 and 2009.

Given the region-specific house price growth, we take the weighted average of this

growth measure across regions r′ within a firm f , excluding the particular region r, to
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measure firm f ’s (indirect) spillover shock for region r:

∆̃HPrf (other) ≡
∑
r′ 6=r

ωr′f × ∆̃HPr′ (1.3.4)

where ωr′f is the initial sales share defined as Saler′f,07∑
r′ 6=r Saler′f,07

. The weight ωr′f is a firm

f ’s initial sales share in region r′, where shares are measured excluding the region r.

The weight measures the importance of each region by a firm, reflecting the idea that

firms are more likely to be exposed to the change in housing price in a region r′ if they

initially sold more in region r′ relative to other regions.

1.3.3 Empirical Specification

Our goal is to investigate whether and how a multi-market firm’s local sales respond to

local demand shocks that originate in the firm’s other local markets. To achieve this

goal, we estimate the following equation:

∆̃Saleirf = βi0 + βi1∆̃HPr + βi2∆̃HPrf (other) + Controlsrf + εirf (1.3.5)

where i = {(all), continue, replace}. ∆̃Saleirf indicates region-firm level sales growth

measured by all products (i.e., ∆̃Salerf ) that arise from continuously existing products

(the intensive margin) and from the net creation of products (the extensive margin),

respectively. ∆̃HPr, which is our measure of direct local demand shock, is the region-

level house price growth, while ∆̃HPrf (other) is the average house price growth in

the firm’s other markets, measuring the spillover shock. Controlsrf is the vector of

control variables that include SIC 4-digit sector fixed effects and various region-firm

control variables.18 Standard errors are double clustered at the state and sector level

and regressions are weighted by initial region-firm level sales.19

18These include — (region controls) pre-recession percentage white, median household income, percentage

owner-occupied, percentage with less than high school diploma, percentage with only a high school diploma,

unemployment rate, poverty rate, percentage urban, and employment share in a county for 2-digit industries —

and — (region-firm controls) log of initial county-firm specific sales, log of initial firm-level sales, log of firm’s

initial number of local markets, log of firm’s initial number of product groups.

19In Table A.10 in Appendix A.1, we report standard errors accounting for the shift-share correlation

structure as in Adao et al. (2018b). The standard errors are more or less similar.
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Our coefficient of interest is βi2, which measures the spillover effect on various

margins of the firm’s local sales. Specifically, β2 is the elasticity of the firm’s local sales

growth with respect to the average local demand shock that originates in the firm’s

other markets, conditional on direct local demand. A priori, β2 can have any sign. If

negative local demand shocks in other regions reduce (increase) the firm’s local sales,

then the sign of β2 should be positive (negative). The other coefficient, βi1, measures

the effect of direct local house price growth on various margins of firm’s local sales. As

β1 captures the conventional effect emphasized in Mian et al. (2013) at the region-firm

level, we expect β1 to be positive. Finally, it is worth emphasizing that the effect of any

nation-wide shock, including the effect of a common aggregate decline in house prices in

all regions, is absorbed by the constant term βi0. That is, our estimation of βi2 exploits a

differential drop in house prices across regions, not the common aggregate component.

1.3.4 Discussion of the Identification Assumption

The main identifying assumption for the consistent estimation of βi2 is that any confound-

ing factor that affects the firms’ local sales growth is not correlated with house price

growth in the firm’s other markets. This assumption can be violated if, for example, a

particular firm is very influential in a local market that it can influence house prices in

that market. But such reverse causality is not a major concern since even the largest

firm in a typical county has a sales share less than 5%.20

However, there remain challenges that may threat our identification, and these can

be classified into three broad categories: (i) sorting (selection) into particular markets

by firms; (ii) common or clustered regional shocks; and (iii) other channels. We briefly

discuss how we overcome such challenges.

20Even this number if plausibly overestimated because there could be firms selling in those markets that are

not captured by ACNielsen Retail Scanner database.
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Table 1.2: Balance Checks

Firm-level Avg. ∆̃HP

Variable Coefficient Std. Error P-Value

Log of Firm Sales -1.101 1.531 0.472

Log of Num. Market -0.581 0.917 0.527

Log of Num. Prod.Group 1.404 0.971 0.148

Log of Local Sales (Avg.) -0.520 1.169 0.656

Log of Local Sales-per-UPC (Avg.) 0.513 0.852 0.547

Log of (100-Paydex) -0.177 0.147 0.229

Log of Num. Establishments 1.477 2.168 0.496

Note. This table reports coefficients from regressing firm-level initial characteristics on the firm-level average

∆̃HP (averaged across counties) and sector fixed effects (at the SIC 4-digit). The sample includes 4,171 firm

level observations.

1.3.4.1 Sorting into Particular Markets by Firms

To identify the spillover effect, it is important to compare local market performances of

plausibly similar firms that differ only in their exposure to housing market conditions in

other markets. If one firm systematically established its major markets in regions that

experienced relatively higher house price growth compared to the other firm, and if such

behavior is correlated with firm characteristics that affect firms’ local performances,

then the spillover effect we find might actually be a result of such differences in firm

characteristics.

In Table 1.2, we provide a support that this is not a major concern by performing

balance test. Specifically, we regress a number of firm-level initial characteristics on

the within-firm average of the house price growth across counties (i.e., the firm-specific

average shock) and the sector fixed effects.21 As we can be seen from the table, we

21All our analyses will include SIC 4-digit sector fixed effects.
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do not find a systematic correlation between a firm’s average shock and its initial

characteristics. This implies that firms that were exposed on average to adverse local

housing market conditions during the Great Recession are not systematically different

from those exposed to relatively favorable local housing market conditions.22

1.3.4.2 Common or Clustered Regional Shocks

The Great Recession was a period of large aggregate shocks that affected the entire

economy. Also, it is well known that different industries were differentially affected

during the crisis.23 All our regressions include sector fixed effects, which take care of

aggregate and/or sectoral shocks. Moreover, our most conservative specification includes

county-by-sector fixed effects (instead of directly controlling county-level observables),

which take care of not only sectoral shocks but also potential county-sector-specific

shocks. County-by-sector fixed effects allow us to effectively compare the local sales

growth of firms within the same county among firms in the same industry.

Yet another evident identification threat is the possibility of geographically clustered

shocks that simultaneously affect multiple regions in which firms are selling. For example,

if a firm had been selling in geographically clustered markets, and if such markets are

hit by clustered shocks correlated with house prices, this will lead to a fall in house

prices and sales jointly. In this case, such clustered shocks could explain the positive

relationship between a firm’s local sales growth, ∆̃Salerf , and the house price growth in

its other markets, ∆̃HPrf (other). To address these concerns, in Section 1.4, we show

the robustness of our result by constructing the spillover shocks by excluding nearby

counties and considering only geographically distant counties.

22Borusyak et al. (2018) proposes balance checks at the shock level (i.e., in our case, at the county level). In

Table OA.6 in Online Appendix, we present the regional shock level balance checks following Borusyak et al.

(2018). None of the county-specific averages of initial firm characteristics are significantly correlated with the

county level house price growth at the conventional level.

23Apart from the well-known construction bust, there is a substantial variation in employment drop in

2007-09 even within nondurable goods manufacturing sector from -25% (Textile mills) to 1% (Petroleum and

coal products). See Barker (2011).
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1.3.4.3 Other Channels

Finally, it is possible that our estimate of βi2 is confounded by alternative channels

or factors other than the spillover of local demand shocks. Such factors include the

possibility that house prices could directly affect production facilities (i.e., supply-side

or collateral channel), the endogeneity of house prices, common retailer through which

households purchase products, and clientele effects. To address these concerns, we

provide a number of Placebo tests and robustness analyses in Section 1.4.

1.4 Main Empirical Results

We show that a multi-market firm’s local sales decrease in response to both direct

negative local demand shock and the intra-firm spillover shock, which measures the

average indirect local demand shock originating in its other markets. By decomposing

a firm’s local sales growth into the extensive and intensive margins, we show that the

response of local sales to the spillover shock can be fully attributed to the extensive

margin response associated with product creation and destruction, while the direct local

shock affects local sales solely through the intensive margin from continuing products.

1.4.1 Regional Spillover

We start by presenting the bin scatter plots that visualize the regression in equation

(1.3.5). The left panel in Figure 1.1 plots a firm’s local sales growth against the direct

local demand shock, while the right panel plots it against the spillover shock. As can

be seen from the positive slopes in both the left and right panels of the figure, a firm’s

local sales growth is positively associated with both the direct and the spillover shock.

Table 1.3 presents the formal regression results of equation (1.3.5), in which we

measure a firm’s local sales growth by including both continuing and replaced products.

Column (1) shows that a firm’s local sales growth positively respond to both the direct

local shock—∆̃HP(07−09)(%)—and the indirect spillover shock—∆̃HP(07−09)(%) (other)—

that originates in its other markets. Both coefficients are positive and statistically
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Figure 1.1: Local Sales Growth against

(i) Direct Local Shock (Left) & (ii) Spillover Shock (Right) (All Residualized)

Note. These figures show bin scatter plots (20 bins based on ventiles) depicting the relationship between

(residualized) county-firm level sales growth, ∆̃Sale(07−09), against (i) (residualized) county-level house price

growth, ∆̃HP(07−09) (left panel), and (ii) (residualized) initial sales-weighted house price growth between 2007

and 2009 in the other counties where the firm generates sales, ∆̃HP07−09 (other) (right panel). Residualized

variables are constructed using regression corresponding to Column (1) of Table 1.3 using Frisch-Waugh theorem.

The reported slop coefficients are based on simple linear regression using 20 bins.

significant. Importantly, the estimated elasticity of local sales with respect to the

spillover shock, 0.35, turns out to be six times larger than that of the direct local shock.

This is intuitive if one recalls that a typical firm sells in more than a hundred of counties.

Thus, the spillover shock proxies the (leave-county-out) firm-specific demand shock that

arises from the rest of a firm’s other counties.

In Column (2), we show the estimation result of equation (1.3.5) in which we include

sector-by-county fixed effects instead of directly controlling county-level observables.

We obtain a highly significant positive coefficient of 0.40. This indicates that a 10%p

decline in a firm’s average local demand shock in the other markets reduces its local

sales growth by 4%p.

Prior research shows that a decline in regional house prices during the Great

Recession caused a drop in local consumer demand (e.g., Mian et al. (2013)). However,
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Table 1.3: The Effect of the Direct and the Spillover Shocks on Firm’s Local Sales Growth

(1) (2) (3) (4) (5)

∆̃Sale(07−09)

County-Firm State-Firm

∆̃HP(07−09) 0.059**

(0.028)

∆̃HP(07−09) (other) 0.345*** 0.398*** 0.303***

(0.110) (0.105) (0.113)

∆̃HP(07−09) (other, exclude-plant) 0.384***

(0.091)

∆̃HP(07−09) (other, out-of-state) 0.335***

(0.088)

Sector FE X - - - -

Region Controls X - - - -

Region-Firm Controls X X X X X

Sector x Region FE - X X X X

R2 0.201 0.392 0.398 0.393 0.357

Observations 840681 840681 821503 838812 83610

Note. ∆̃Sale(07−09) is the county-firm specific sales growth between 2007 and 2009, ∆̃HP(07−09) is the county-

level house price growth between 2007 and 2009, and ∆̃HP(07−09) (other) is the initial sales-weighted house

price growth between 2007 and 2009 in the other counties where the firm generates sales. ∆̃HP(07−09) (other,

exclude-plant) is the initial sales-weighted house price growth between 2007 and 2009 in the other counties

where the firm generates sales and the firm has no establishments. ∆̃HP(07−09) (other, out-of-state) is the initial

sales-weighted house price growth between 2007 and 2009 in other counties located in other states. Sectors are

defined based on SIC 4-digit. Region controls include pre-recession percentage white, median household income,

percentage owner-occupied, percentage with less than high school diploma, percentage with only a high school

diploma, unemployment rate, poverty rate, percentage urban, and employment share in a county for 2-digit

industries. Region-Firm controls include log of initial county-firm specific sales, log of initial firm-level sales,

log of firm’s initial number of local markets, log of firm’s initial number of product groups. All regressions are

weighted by county-firm specific initial sales. Standard errors are double clustered at the state and sector level.

*, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.
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changes in regional house prices could have affected a firm’s local sales by directly

affecting production rather than through consumer demand. One example is the

“collateral channel”. Changes in regional house prices could affect a firm’s collateral

value, which, in turn, could affect production. Also, regional house prices could be

correlated with regional productivity shocks, which again could directly affect production.

Under these supply-side channels, intra-firm networks still matter, and not because they

spill over local demand shocks, but because they spill over local “supply-side” shocks.

In Column (3), we provide direct evidence consistent with the local consumer demand

channel. Specifically, we construct the spillover shock by excluding counties in which the

firm’s establishments are located. Thus, regional house prices can only affect a firm’s

local demand and not the collateral value or productivity of its establishments.24 The

estimated coefficient is 0.38, which is highly statistically significant.

Another challenge to identifying the spillover effect is the possibility of geographically

clustered regional shocks. Think about a firm that sells products in geographically close

regions—for example Manhattan (New York County) and Brooklyn (Kings County),

both of which are located in the state of New York. In this case, we might find that in

one county the firm’s local sales has a strong positive response to house price growth in

the other county. This could occur not because of the spillover effect but because of

clustered regional shocks that affect the New York area in general. Our estimate of the

spillover effect could be confounded by such underlying common shocks if they generate

positive comovement in house prices in New York area.

We address these concerns in two ways: (i) we exclude nearby counties when we

construct the spillover shocks and show that the result is robust; and (ii) we repeat the

analysis by defining the local market at the state-level. Column (4) shows the result

when the spillover shock is measured only by considering counties located outside the

state. We find a robust spillover effect under this specification. In Table A.1 in Appendix

24Formally, we measure the region-firm specific spillover shock by only including the firm’s “other counties”

where it (i) generates sales by selling its products and (ii) does not have establishments. We re-normalize the

leave-out initial sales weights so that they sum up to one.
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A.1, we construct the spillover shocks by excluding nearby counties within a radius of

up to 150 miles. The results are robust to these alternative specifications.

In Column (5), we estimate equation (1.3.5) by defining the state as the unit of

the local market. By defining the local market at the state-level, we aggregate regional

demand shocks within each state (including any clustered regional shock that jointly

affects counties within each state) and treat them as a state-level demand shock. We

obtain a highly significant positive coefficient of 0.30. This result also indicates that our

spillover effect is not particularly driven by firms who sell in multiple counties located

within a single state.

Importantly, what matters for the spillover is the connection to other markets

through the intra-firm market networks and not other markets in general. Table A.2 in

Appendix A.1 presents Placebo tests that demonstrate the point. Instead of constructing

the spillover shock using the true intra-firm networks, we construct Placebo spillover

shocks using various Placebo networks. In Column (1) to Column (3) we construct

Placebo spillover shocks using alternative weighting schemes (instead of a firm’s initial

sales share in those markets). As can be seen from the table, we cannot reproduce the

spillover effect if we use alternative Placebo weighting schemes, such as equal weights,

county level population weights, and county level median household income weights.

In Column (4), we generate random intra-firm networks by randomizing each firm’s

intra-firm market networks.25 Again, such random intra-firm networks do not generate

the spillover effect. These results indicate that to successfully identify spillover effects

we must (i) consider markets in which firms generated sales during the initial period and

(ii) properly measure initial exposure across these markets through initial sales shares.

Finally, Column (5) shows that spillover effects cannot be reproduced by identifying a

firm’s networks on the basis of the location of its establishments.26

25To be more specific, for each county-firm observation, we replace the firm’s other connected counties (i.e.,

r′’s with ωr′f > 0) with randomly selected counties. We then construct the placebo spillover shock based on

such random network and estimate equation (1.3.5). We repeat this process 800 times and report the average

coefficients and standard errors, respectively.

26This is consistent with Giroud and Mueller (2019) for tradable industry firms.
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To summarize, Table 1.3 provides strong evidence that regional shocks spill over

through intra-firm networks and affect local performance of firms in other regions. We

further confirm our result by conducting a number of robustness checks in Section 1.4.3.

1.4.2 Decomposition

We now decompose local sales growth into two components : those comming from

common products that exist in both initial and end periods in the local market (the

intensive margin); and those from the net creation of products (the extensive margin

through product replacement). Our results show that the extensive margin significantly

reacts to the shocks that hit other markets, while the direct local shock only affects the

intensive margin.

We first estimate equation (1.3.5) by replacing ∆̃Salerf with ∆̃Salereplace
rf and

∆̃Salecontinue
rf , respectively. Columns (1)-(3) in Table 1.4 show the results. Notice

that our definitions of ∆̃Salereplace
rf and ∆̃Salecontinue

rf make the estimated coefficients in

Column (1) identical to the sum of coefficients in Columns (2) and (3).27

As can be seen in Column (2), net creation does not respond to the direct local

shock. Instead, it strongly (and positively) responds to the spillover shock with an

estimated coefficient of 0.32. In contrast, sales growth that arises from common products

significantly and positively responds to the direct local shock, but it does not significantly

respond to the spillover shock. Columns (4)-(6) repeat the analyses using equation

(1.3.5). The results are similar. A 1%p decline in the spillover shock reduces the extensive

margin by 0.42%p, and largely for this reason local sales respond to the spillover shock.

In Table A.3 in Appendix A.1, we repeat the analysis at the state-firm level.

The decomposition results in this section point out that product replacements

in local markets is the principal factor through which shock spillover occurs through

intra-firm networks. In Section 1.5, we investigate why a firm’s product replacements in

a local market responds to the spillover shock that originates in its other markets and

27We present the result decomposing ∆̃Salereplace
rf into creation and destruction in Table A.15 in Appendix

A.1.
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Table 1.4: Decomposition of Sales Growth: The Extensive vs. Intensive Margins

(1) (2) (3)

∆̃Sale(07−09) ∆̃Salereplace
(07−09) ∆̃Salecontinue

(07−09)

∆̃HP(07−09) 0.059∗∗ 0.009 0.051∗∗

(0.028) (0.014) (0.024)

∆̃HP(07−09) (other) 0.345∗∗∗ 0.320∗∗∗ 0.025

(0.110) (0.093) (0.067)

Sector FE X X X

Region Controls X X X

Region-Firm Controls X X X

R2 0.201 0.284 0.223

Observations 840681 840681 840681

(4) (5) (6)

∆̃Sale(07−09) ∆̃Salereplace
(07−09) ∆̃Salecontinue

(07−09)

∆̃HP(07−09) (other) 0.398∗∗∗ 0.419∗∗∗ -0.021

(0.105) (0.102) (0.045)

Region-Firm Controls X X X

Sector x Region FE X X X

R2 0.392 0.408 0.427

Observations 840681 840681 840681

Note. ∆̃Sale(07−09) is the county-firm specific sales growth between 2007 and 2009, ∆̃Salereplace
(07−09) is the county-

firm specific sales growth between 2007 and 2009 arising from product replacements, ∆̃Salecontinue
(07−09) is the

county-firm specific sales growth between 2007 and 2009 arising from continuing products, ∆̃HP(07−09) is the

county-level house price growth between 2007 and 2009, and ∆̃HP(07−09) (other) is the initial sales-weighted

house price growth between 2007 and 2009 in the other counties where the firm generates sales. Sectors are

defined based on SIC 4-digit. Region controls include pre-recession percentage white, median household income,

percentage owner-occupied, percentage with less than high school diploma, percentage with only a high school

diploma, unemployment rate, poverty rate, percentage urban, and employment share in a county for 2-digit

industries. Region-Firm controls include log of initial county-firm specific sales, log of initial firm-level sales,

log of firm’s initial number of local markets, log of firm’s initial number of product groups. All regressions are

weighted by county-firm specific initial sales. Standard errors (in parentheses) are double clustered at the state

and sector level. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.
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why such response results in decrease of local sales.

1.4.3 Robustness

Before we move on to the investigation of the mechanism behind our findings, in this

section, we show the robustness of our results by addressing potential concerns that

may confound our findings. First, we show that our spillover results are not driven

by retailers through which firms sell products. Second, we use instrumental variable

regression to show that the potential endogeneity of house prices does not affect our

result. Third, to ensure that our results are not confounded by firms catering to different

types of customers or markets, we perform additional robustness checks by controlling

conditions in other markets. Fourth, we repeat our analyses using ACNielsen Homescan

Panel data and show that using 2004 sales share to construct our shock and, additionally,

controlling lagged-dependent variables (i.e., pre-trends in local sales) does not change

our results. Finally, at the end of section, we briefly summarize further the robustness

results we performed, such as accommodating local market entry/exit and allowing

product group dimensions. We present all of the tables in this section in the Appendix.

1.4.3.1 Retailer Effects

One potential concern is that our spillover results may have been driven by retailers

through which firms sell products. For example, lower sales growth in Coca-Cola of

New York county relative to that of Pepsi might reflect the differential performance

of retailers selling Coca-Cola’s products relative to those selling Pepsi’s products. To

address this, we show the robustness of our results in Table A.4 by comparing the

local sales growth of firms within the same retailer. Specifically, we add the retailer

margin and construct county-firm (i.e., producer)-retailer level sales growth and run the

regression by including sector×county×retailer fixed effects.28 Thus, any county-retailer

specific trend in local sales within SIC 4-digit producer sector will be absorbed by

28We define retailer using “parent code” in Nielsen Retail Scanner data.
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such fixed effects. Column (1) shows the result. our coefficient is 0.53, which is highly

statistically significant.

However, it is still possible that, for example, the lower sales growth of Coca-Cola

in a particular retailer in New York county relative to that of Pepsi could occur if that

retailer faces larger Coca-Cola specific negative shocks from its stores in other regions.

Thus, in Column (2), we include the “average producer-specific demand shock” a retailer

faces through its stores in other regions (where the producer’s products are sold).29 It

turns out that change in county-firm-retailer specific sales is mainly driven by firm-level

spillover shock and not the retailer-firm specific spillover shock. In Columns (3) and (4)

we show the corresponding decomposition results.

1.4.3.2 Endogeneity of House Prices and IV Regression

Notice that the spillover shock we construct has the Bartik-type property. Thus,

the spillover shock can be viewed as exogenous at the firm-level even if local house

price change is not purely exogenous at the local market level. However, we also

check the robustness of our result by instrumenting the spillover shock with similarly

constructed instrumental variables that leverage widely-use instruments for house prices:

(i) housing supply elasticity (Saiz (2010)) and (ii) nonlocal mortgage lending shocks

(García (2018)).30

Table A.5 and Table A.6 in Appendix A.1 present the results using these two

instruments. All of the results are robust to these specifications.

29Specifically, we run the following regression:

∆̃Salerfs = β0 + β2∆̃HPrf (other) + β3∆̃HPrfs (other) + Controlsrfs + εrfs

where r indicates region (i.e., county), f indicates firm (i.e., producer), and s indicates retailer. Here,

∆̃HPrfs (other) ≡
∑
r′ 6=r ωr′fs × ∆̃HPr′ where ωr′fs ≡

Saler′fs,07∑
r′ 6=r Saler′fs,07

. ∆̃HPrfs (other) captures the average

producer f -specific demand shock that retailer s faces through its stores in other regions (where the producer

f ’s products are sold).

30Specifically, we replace ∆̃HPr′ in (1.3.4) with the county-level housing supply elasticity or nonlocal

mortgage lending shocks.

29



1.4.3.3 Clientele Effects and Common Largest Market

It is also possible that the differential response of the local sales of two firms may arise

not because of the differential local demand shocks they face in their other markets but

because they cater to different types of customers. Different demographic segments of

the population might have been affected differently during the Great Recession, and

in such case, our spillover effect can be confounded by such clientele effects. In Table

A.7, we account for clientele effects by including average demographic conditions in the

firm’s other markets. The results are robust to such specification.

In Table A.8 in Appendix A.1, we also show that our results are not driven by

comparing the local sales of two firms that have their major markets concentrated in

different regions in the US (e.g., east coast vs. west coast).31 Although such variation is

one of the sources of differential demand shocks across firms (which we utilize), we show

the robustness of our results by comparing firms that share a common largest market

(defined at the census division level). The results are robust under the specification with

sector-by-largest market fixed effects.

1.4.3.4 Using Lagged-initial Sales and Controlling Lagged-dependent Variables

We also repeat our analyses using ACNielsen Homescan Panel data and show that using

the 2004 sales share to construct the spillover shock and additionally, controlling lagged-

dependent variables (i.e., pre-trends in local sales) does not change our results. The

ACNielsen Homescan Panel dataset is constructed by Nielsen from a demographically

representatitve sample of approximately 33,000 households in the United States.32 We

31For example, some unobserved characteristics of firms might have led one firm to have its major markets

located in, for example, the west coast side of the United States and the other to have its major markets located

in the east coast.

32In this exercise, we use the entire ACNielsen Homescan Panel data without relying on the NETS data

to minimize any distortion in the representativeness of the households through which the data are collected.

This exercise also adds the external validity of our analyses because the ACNielsen Retail Scanner dataset and

Hoemscan Panel dataset are collected by different entities (i.e., stores versus households, respectively).
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collapse the data into state-firm level and perform the analyses.33

Columns (1)-(3) of Table A.9 repeats Columns (4)-(6) in Table 1.4, where the

spillover shocks are constructed using firms’ 2004 sales share across local markets.34

We get similar results. In Columns (4)-(6), we additionally control lagged-dependent

variables. The results barely changes.

1.4.3.5 Additional Robustness Analyses

As discussed in Adao et al. (2018b) and Borusyak et al. (2018), it is important to

consider the presence of correlated errors in shift-share research design. In Table A.10

in the Appendix, we report standard errors that account for the shift-share correlation

structure as in Adao et al. (2018b). The estimated standard errors are more or less

similar, and we find statistically significant spillover effects at the conventional level.

In Table A.11, we allow the product group dimension, which is a broad prod-

uct category classification provided by ACNielsen.35 By performing analyses at the

county-firm-product group level, we can additionally include product group-by-county

fixed effects. As can be seen in Table A.11, the results are robust to this alternative

specification.

Table A.12 shows the result when a firms’ local market entry and exit are taken

into account. As the table shows, we find robust results.

33The ACNielsen Homescan Panel sample is demographically representative not only at the national level but

also within subnational regions such as 9 census regions and 52 “scantrack markets” defined by Nielsen. Ideally,

we would like to perform the analyses at the scantrack market-firm level, but as we do not have well-defined

house price information at the scantrack market level, we perform the analyses at the state-firm level.

34All control variables are based on year 2004. Also, to compare plausibly similar firms, we group companies

by their three largest product groups and classify them as operating in the same sector. To be more specific, if

two firms share the same three largest product groups, we classify them as operating in the same sector. If a

firm only sell products categorized into a single product group, we group these firms separately to those having

two or more product groups.

35Product group is a broad categorization of products provided by ACNielsen. Examples of product groups

are “Baby food”, “Beer”, “Cosmetics”, “Glassware”, “Laundry supplies”, “Paper products”, etc.
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1.4.4 The Heterogeneous Treatment Effect

Our result indicates that in generating within-firm spillovers across regions, the firm-level

factor plays a dominant role through product replacement rather than direct local market

conditions. We provide two pieces of supporting evidence that emphasize the role of the

firm-level factor behind our findings. First, we show that the identified spillover effects

become stronger as firms become more financially constrained. Second, the within-firm

spillover effects become stronger as the spillover shock better proxies the firm-level

average demand shock.

We measure financial constraint using the initial paydex score provided by the

NETS data.36 For the robustness, we also use the financial constraint measure proposed

by Rajan and Zingales (1998) (Table A.14 in Appendix A.1).

To gauge whether the spillover shocks proxy the firm level average demand shock,

we measure the within-firm local sales shares (i.e., Salerf∑
r Salerf

). If the within-firm local

market share is sufficiently small, this means that the spillover shock arising from the

other markets captures the bulk of the demand shocks the firm faces in the overall

markets. In such cases, the spillover shock can be interpreted as the firm-level average

demand shock (i.e., “global shock” from the firm’s perspective).

Table A.13 in Appendix A.1 summarizes the result. As can be seen in the first

row, more financially constrained firms (i.e., higher ln(100-paydex)) experience stronger

spillover. Notably, such interaction mainly works through the product replacement

channel.

The second row shows that if a firm’s local market has a smaller within-firm market

share, the spillover effect becomes stronger. Specifically, we consider a dummy variable

that has value one if the firm’s local sales share is above the median of the distribution

across all observations. We get significant negative coefficients for both the overall

36Paydex, a term used by Dun and Bradstreet, is a numerical score granted to businesses as a credit score for

the promptness of their payments to creditors. Use of the Paydex score for commercial organizations resembles

the use of the FICO score for individuals. A higher score indicates better financial conditions, and so we use

ln(100-paydex) to measure degrees of financial constraint.
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sales growth (Column (1)) and the extensive margin of sales growth from product

replacements (Column (2)), which indicates that if the local sales share is sufficiently

high (low), we will obtain a weaker (stronger) spillover effect.

1.5 Mechanism: Uniform Product Replacements from High- to

Low-Valued Products

Our result suggests that product replacement within a firm in a local market is strongly

affected by the overall demand conditions the firm faces in its other markets. Importantly,

the result implies that newly introduced products in the local market generate lower

sales than destroyed products, conditional on local demand. In this section, we explore

the mechanism that underlies our findings.

We show that the within-firm spillover effect across regions occurs because firms

respond to negative demand shocks by replacing products uniformly across many markets,

and in doing so, they replace high-valued products with low-valued products.37 Thus, a

region that is not directly hit by the shock also experiences a replacement of products

from high- to low-valued products, resulting in a decline of local sales.

1.5.1 Uniform Replacement of Products across Multiple Markets

We start with descriptive statistics that show simultaneous product replacements across

multiple markets, and then we formally show that the spillover effect is essentially driven

by products replaced in multiple markets rather than in the local market only.

(1) When products exit or enter local markets, they do so in multiple mar-

kets uniformly.

37We formalize why negative demand shocks result in replacement from high- to low-value products through

the lens of the model in Section 1.6. We argue that this reflects a downgrading of product quality that results

from scale effect and nonhomothetic preferences. If production at the lower quality level requires lower fixed

costs, firms find it optimal to downgrade product quality if they face lower demand shocks. Alternatively, if

preferences are nonhomothetic, negative demand shock induces households to switch from high-quality goods to

low-quality goods, in which case firms find it profitable to downgrade product quality.

33



Table 1.5: Product Creation and Destruction Patterns

1. Local Market at the County level

(A) Product Destruction
Exits (>50%) of Mkt Exits (>90%) of Mkt

0.90 0.65

(B) Product Creation
Enters (>50%) of Mkt Enters (>90%) of Mkt

0.80 0.31

2. Local Market at the State level

(A) Product Destruction
Exits (>50%) of Mkt Exits (>90%) of Mkt

0.87 0.56

(B) Product Creation
Enters (>50%) of Mkt Enters (>90%) of Mkt

0.90 0.82

Note. Panel (A) calculates the share of value lost by the destruction of products that is attributed to the

products that exited more than 50% (90%) of their initially sold markets in 2007. Panel (B) calculates the

share of value generated by the creation of products that is attributed to the products that entered more than

50% (90%) of the firm’s overall markets in 2009.

In Table 1.5, we investigate whether product creation and destruction involve the

entry and exit of products in a majority of each firm’s markets. Specifically, Panel

(A) of Table 1.5 calculates the share of value lost by the destruction of products that

is attributed to the products that exited more than 50% (90%) of their initially sold

markets. As can be seen in Panel (A) of Table 1.5-1, about 90% of the value lost by

product destruction arises from products that exit more than half of their initially sold

counties. Even if we restrict products to those that exited more than 90% of initially

sold counties, these products account for 65% of product destruction. As indicated in

Panel (B). the product creation patterns are similar. About 80% of the value generated

by product creation can be attributed to products that entered more than half of the

firm’s overall markets.
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Table 1.6: Extensive Margin Decomposition (County-level)

(1) (2) (3)

∆̃Salereplace
(07−09) ∆̃Salereplace, multi

(07−09) ∆̃Salereplace, local
(07−09)

∆̃HP(07−09) (other) 0.419∗∗∗ 0.418∗∗∗ 0.000

(0.102) (0.101) (0.000)

Region-Firm Controls X X X

Sector x Region FE X X X

R2 0.408 0.408 0.216

Observations 840681 840681 840681

∆̃Salereplace
(07−09) is the county-firm specific sales growth between 2007 and 2009 arising from product replacements,

∆̃Salereplace, multi
(07−09) is the county-firm specific sales growth between 2007 and 2009 arising from products replaced

in multiple counties, and ∆̃Salereplace, local
(07−09) is the county-firm specific sales growth between 2007 and 2009 arising

from products only replaced in the county. ∆̃HP(07−09) (other) is the initial sales-weighted house price growth

between 2007 and 2009 in the other counties where the firm generates sales. Sectors are defined based on SIC

4-digit. Region-Firm controls include log of initial county-firm specific sales, log of initial firm-level sales, log

of firm’s initial number of local markets, log of firm’s initial number of product groups. All regressions are

weighted by county-firm specific initial sales. Standard errors are double clustered at the state and sector level.

*, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.

Table 1.5-2 repeats the analysis by defining the local market at the state level.

Again, in the case of both product creation and destruction, about 90% of value created

(destructed) can be attributed to products entering (exiting) uniformly across more than

half of the firm’s markets.

(2) The response of the extensive margin to the spillover shock is entirely

attributed to the products replaced in multiple markets.

To investigate whether the extensive margin response to the spillover shock comes

from products replaced in multiple markets, we decompose ∆̃Salereplace
rf into two com-

ponents: (i) ∆̃Salereplace, multi
rf , which captures local sales growth coming from products

replaced in multiple markets; and (ii) ∆̃Salereplace, local
rf , which captures local sales growth
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that comes from products replaced in the county only.38

Columns (2) and (3) in Table 1.6 show the results from separate regressions that

replace ∆̃Salereplace
rf with ∆̃Salereplace, multi

rf and ∆̃Salereplace, local
rf as a dependent variable.

Essentially all of the spillover effect comes from the response of ∆̃Salereplace, multi
rf , while

the response of ∆̃Salereplace, local
rf is negligible and statistically insignificant. We repeat

the analysis by defining the local market at the state-level in Table A.18 in Appendix

A.1, in which we get similar results.

To summarize, we confirm that firms replace their products in multple markets

simultaneously, and that the extensive margin response of local sales to the spillover

shock comes from products replaced in multiple markets. These evidences suggest that

multi-market firms make non-localized decision when they introduce or destroy products,

taking into account overall demand conditions from multiple markets.

1.5.2 Replacement from High- to Low-Valued Products

We first document that our result is not driven by a simple reduction in the number

of varieties available in the local market. In fact, the number of products supplied

does not respond to the spillover shocks. Instead, the “value difference” between newly

entering products and exiting ones drives the reduction in local sales growth in response

to the spillover shocks. The result is robust under various measures of values, including

sales-per-product, unit price, and organic product turnover rates.

(1) The net number of varieties does not respond to the spillover shock.

We first investigate whether the extensive margin response of local sales comes from

a simple reduction in the number of varieties supplied in local markets. We measure the

region-firm level net entry in 2007-09 as follows:

Net Entryrf ≡ Entryrf − Exitrf (1.5.1)

38By construction, ∆̃Salereplace
rf = ∆̃Salereplace, multi

rf + ∆̃Salereplace, local
rf holds.
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Table 1.7: Response of the Net Number of Varieties

(1) (2)

Net Entry(07−09) Net Entry(07−09)

∆̃HP(07−09) (other) -0.041 -0.059

(0.138) (0.166)

Region-Firm Controls X X

Sector x Region FE X X

Restriction - Entry & Exit> 0

R2 0.351 0.400

Observations 840681 461672

Note. Net Entry(07−09) is constructed as in equation (1.5.1). ∆̃HP07−09 (other) is the initial sales-weighted

house price growth between 2007 and 2009 in the other counties where the firm generates sales. Sectors are

defined based on SIC 4-digit. Region-Firm controls include log of initial county-firm specific sales, log of

initial firm-level sales, log of firm’s initial number of local markets, log of firm’s initial number of product

groups. All regressions are weighted by county-firm specific initial sales. Standard errors (in parentheses) are

double clustered at the state and sector level. *, **, and *** denote significance at the 10%, 5%, and 1% level,

respectively.

where Entryrf ≡
Num.UPCenter

rf,09

Num.UPCrf
is the number of different products (i.e., varieties) that

did not exist in region r in 2007 but newly entered in 2009, and Exitrf ≡
Num.UPCexit

rf,07

Num.UPCrf
is

the number of different products that existed in region r in 2007 but no longer existed

in 2009. All measures are normalized by Num.UPCrf , which is a simple average of the

total number of varieties of firm f in region r in 2007 and 2009.

Table 1.7 summarizes the result. Column (1) shows that the net entry remains

unaffected by the spillover shock, as indicated by near-zero coefficient. In Column (2),

we restrict the sample to local markets that experienced both positive entry and exit

of varieties (i.e., Entryrf > 0 and Exitrf > 0). Again, the response of net entry is not

distinguishable from zero, indicating that the number of products entering is more or

less similar to the number of products exiting. This shows that our spillover effects are
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Table 1.8: Replacement from High- to Low-value products at the Extensive Margin

(1) (2) (3) (4)

∆̃Sale-per-UPCreplace
(07−09) ∆̃Pricereplace

(07−09) ∆̃Price (Avg. Adj.)replace
(07−09) ∆̃Organicreplace

(07−09)

∆̃HP(07−09) (other) 1.017∗∗ 0.310∗∗∗ 0.344∗∗ 17.973∗∗

(0.435) (0.065) (0.128) (8.893)

Region-Firm Controls X X X X

Sector x Region FE X X X X

R2 0.397 0.417 0.428 0.622

Observations 461672 461672 461672 2603

Note. The dependent variables measure the value difference between the newly entering products and exiting

products calculated by (1.5.2). Column (1)-(3) defines local market at the county level, while Column (4) defines

local market at the state level. ∆̃HP07−09 (other) is the initial sales-weighted house price growth between

2007 and 2009 in the other regions where the firm generates sales. Sectors are defined based on SIC 4-digit.

Region-Firm controls include log of initial region-firm specific sales, log of initial firm-level sales, log of firm’s

initial number of local markets, log of firm’s initial number of product groups. All regressions are weighted by

region-firm specific initial sales. Standard errors (in parentheses) are double clustered at the state and sector

level. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.

not driven by simple reductions in the number of varieties supplied in the local market.

(2) Firms respond to the negative spillover shock by replacing high-valued

products with low-valued ones.

The fact that the net number of varieties does not respond to the spillover shock

suggests that the “value differences” between newly entering products and exiting ones

drive the reduction of local sales in response to the spillover shocks. To confirm this we

investigate whether a firm replace high-valued products with low-valued ones in a local

market in response to the spillover shock originating in its other markets.

Specifically, for a given measure of the region-firm specific value index vrf—e.g.,

sales-per-product, unit price, and organic sales share — we measure the value difference
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between newly entering products and exiting products as

∆̃vrf ≡
venter
rf,09 − vexit

rf,07

vrf
(1.5.2)

where vrf ≡ 1
2
(vexit
rf,07 + venter

rf,09).

Table 1.8 shows the result. Column (1) shows that in response to the negative

spillover shock, a firm destroys products that generate higher sales-per-product and

introduces those that generate lower sales-per-product. Colunm (2) shows that the

average unit price of newly entering products is lower than the price of exiting products.

In Column (3) and Column (4), we use unit prices adjusted for product group average

and organic product turnover rates, which are a proxy for product quality.39

It is worth emphasizing that the replacement from high- to low-valued products

in a local market occurs in response to the shocks that originate in other markets (i.e.,

the spillover shock), conditional on the direct local demand. That is, such replacement

occurs in the local market that did not face direct local shock. At the same time a firm’s

local sales decrease in the local market due to such product replacement (in the absence

of the direct local shock). This means that even though the newly entered products have

lower price on average, they generate relatively lower sales than the exited products

in the local market that did not face direct local shock. In Section 1.6, we show that

this pattern can be justified by assuming that product replacements in response to the

negative shocks are associated with downgrading of product quality.

1.6 The Model

This section presents a multi-region model with endogenous quality adjustments by

firms that reflect product replacements in our empirical analyses. Building on Faber

39In Appendix A.3 we discuss in detail how we construct these value measures. In Table A.16 and Table

A.17 in Appendix A.1, we use an alternative definition of price indexes, which includes applying different

weighting schemes and adjusting for package sizes, to check the robustness of the result. In Table OA.8 in

Online Appendix B, we also confirm that the results are robust at a more disaggregated level by conducting the

analysis at the county-firm-product group level with product group fixed effects.
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and Fally (2017), we explicitly extend their setup to a multi-region framework while

we employ a number of simplifications for tractability. Individuals within each market

share a common market-specific income level, and regional demand shocks are modeled

as exogenous change in this income. On the demand side of the model, individuals

enjoy utility from both quantity and quality from product bundles produced by a

continuum of firms, and we allow nonhomothetic preferences so that consumers with

different income can have different product quality evaluations. On the production side,

monopolistic competitive firms optimally choose the quality of their products and prices,

and production at different quality level incurs different production costs.

1.6.1 Demand

We consider a static economy with R markets indexed by r ∈ R ≡ {1, 2, ..., R}.40 Each

market is populated by a continuum of mass Lr of individuals, each of whom is endowed

with exogenous income Ir and dividends from production sector Dr.41 We denote the

total income of an individual in market r by yr ≡ Ir + Dr. The economy consists of

two broad sectors : consumer packaged goods (CPG) and an outside sector.42 Like

Handbury (2013) and Faber and Fally (2017), we consider a two-tier utility in which the

upper-tier depends on utility from CPG shopping U and the consumption of an outside

good z that will be our numeriare. We assume the constant elasticity of substitution

(CES) upper-tier utility given by

Vr =
[
(1− α)(zr)

η−1
η + α(Ur)

η−1
η

] η
η−1 (1.6.1)

40We use the term “market” and “region” interchangeably.

41Under the labor market structure described below, wage rate is equal to one. Thus, Ir can be interpreted

as exogenous labor endowments, as in Fajgelbaum et al. (2011). Dividends are specified below following our

description of the production sector.

42Consumer packaged goods (CPG) can be viewed as goods available in stores and supermarkets.
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where η > 1.43 By defining the share of total income yr allocated to CPG expenditures

as Θr, one can easily show that

Θr =
αη

αη + (1− α)η (Pr)η−1
≡ Θ(Pr) (1.6.2)

where Pr is the CPG consumption bundle price index, which is defined below.44 Note

that for a given yr, increase of Pr decreases CPG expenditure share. We define total

CPG expenditures as

sr ≡ Θryr (1.6.3)

We assume the following CES utility, Ur, for the CPG consumption :

Ur =

[∫
f∈Gr

(qrfζrf )
σ−1
σ df

] σ
σ−1

(1.6.4)

where f deonotes a firm (i.e., CPG producer), Gr denotes the set of firms selling in

market r, qrf is the quantity of product bundle produced by firm f that is consumed by

an individual in market r, ζrf refers to the perceived quality (or appeal, taste) of firm

f ’s product bundle in market r, and σ refers to the elasticity of substitution between

product bundles.45 Following Faber and Fally (2017), we assume that the perceived

quality log ζrf depends on an intrinsic quality choice log φf by firm f and a multiplicative

term γr :

log ζrf ≡ γr log φf (1.6.5)

We introduce nonhomotheticity in the preferences by allowing γr to increase with income:

γr ≡ γ(Ir) with γ′(·) ≥ 0. We impose a simple log-linear functional form in γ(·) :

log γr ≡ δ1 + δ2 log Ir (1.6.6)

43We set up the model with the flexible CES upper-tier utility so that aggregate regional CPG expenditures

can vary even under a fixed yr, mainly through change in Pr. The limiting case, η → 1, implies the Cobb-Douglas

upper-tier utility.

44Derivation can be found in Online Appendix C.1.

45In Online Appendix C.2, we show that such utility function can be derived from the aggregation of

discrete-choice preferences across many agents choosing only one firm’s product bundle.
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where δ2 ≥ 0.

Important assumption we make here is that firm f ’s choice of intrinsic product

quality, φf , does not vary across markets and thus do not have market subscript r.

This assumption reflects the synchronized product replacement pattern discussed in

Section 1.5.1.46 We assume that change in the quality of a product bundle involves the

replacement of products in the bundle. That is, the quality of product bundle changes

due to the exiting of original products and the entry of new products.47

Individuals solve for their optimal CPG consumption bundle by maximizing (1.6.4)

subject to budget constraints given by∫
f∈Gr

prfqrfdf ≤ Θryr ≡ sr (1.6.7)

where prf is the price index of firm f ’s product bundle in market r.

By defining individual expenditures on firm f ’s product bundle in market r as

srf ≡ prfqrf (1.6.8)

the optimality implies

srf =

(
ζrf
prf

)σ−1

∫
f∈Gr

(
ζrf
prf

)σ−1

df
sr

= (ζrf )
σ−1

(
prf
Pr

)1−σ

sr (1.6.9)

where the (quality adjusted) CPG price index is given by

Pr ≡
[∫

f∈Gr
(prf )

1−σ(ζrf )
σ−1df

] 1
1−σ

(1.6.10)

46In Online Appendix D, we extend the model by allowing firms to optimally choose whether to uniformly

adjust quality of their products and replace them in all their markets (the uniform quality strategy) or adjust

quality of products market-specifically (the market-specific quality strategy). We show that firms optimally

choose the uniform quality strategy if (i) the fixed costs associated with market-specific quality adjustment are

sufficiently high or (ii) they sell in sufficiently many markets that they find it less profitable to pay recurring

market-specific fixed costs.

47Thus, our interpretation of “change in the quality of product bundle” is different from “change in product

appeal within-UPC ” (e.g., Hottman et al. (2016)) in the sense that we are considering change in the quality of

a product bundle that arises from the entry and exiting of UPCs that comprise the product bundle.
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with sr = PrUr.

One can easily see how the nonhomothetic preferences provide an incentive for firms

to downgrade product quality when they face negative demand shocks. From (1.6.9),

log

(
srf
srf ′

)
= (σ − 1)

[
γr log

(
φf
φf ′

)
− log

(
prf
prf ′

)]
(1.6.11)

If firm f has a higher product quality then firm f ′ (i.e., log
(
φf
φf ′

)
> 0), then the negative

demand shock in market r, which lowers γr ≡ γ(Ir), shifts consumer expenditures from

firm f to firm f ′. Thus, firm f finds it optimal to lower product quality to appeal to

those consumers.

1.6.2 Outside Good Production and Labor Market

We assume that a unit of outside good is produced with a unit of labor input. The labor

market is perfectly competitive and is not separated across CPG production and the

outside good production. This implies that the cost of labor (wage) equals unity.

1.6.3 CPG Production: Environments

In the economy, there is a continuum measure of N firms that produce differentiated

CPG bundles. Each firm simultaneously chooses optimal quality and prices subject to

monopolistic competition. We abstract a firm’s entry and exit decision to be consistent

with our empirical analysis, which only considers existing firms in both pre- and post-

shock periods.48 When we bring the model to the data, we map the set of active firms

in the model directly to those in the data.

1.6.3.1 Market Network

We start by defining a firm’s market network, which we define as the set of markets in

which a firm sells its product. Consistent with our empirical analysis, we assume that

each firm’s market network is given and fixed—an assumption that reflects the historical

48We also calibrate the model so that all firms enjoy non-negative profit in the equilibrium.

43



persistence of firm markets (Bronnenberg et al. (2009, 2012)). We bring each firm’s

market network directly from the data. We index the market network by k, and when

we have to indicate a particular firm f ’s market network, we use notation kf . The total

measure of firms with market network k is denoted by Nk.

1.6.3.2 Cost Structures

There are two different costs: variable costs and fixed costs (both measured in terms of

labor). Following Faber and Fally (2017), we allow the marginal and the fixed costs of

production to increase in the quality of the good being produced (for a given amount

of quantity). The latter captures potential overhead costs such as design, R&D, and

marketing, which do not directly depend on the quantities being produced but do affect

product quality. In turn, variable costs depend on the level of quality of the production

and the entrepreneur’s productivity, as in Melitz (2003).

Following Faber and Fally (2017), we assume the marginal cost of production of a

firm f with productivity af as

mc(φf ; af ) ≡
c(φf )

af
(1.6.12)

where

c(φ) = φξ (1.6.13)

The parameter ξ captures the elasticity of the cost increase to the level of quality.

The total fixed costs are given by f(φf ) + f0, where f(φf ) is the part of fixed costs

that directly depends on quality. We assume a simple log-linear parametrization given

by

f(φ) = bβφ
1
β (1.6.14)

with β > 0.

1.6.4 CPG Production: Price and Quality Choice

We now characterize a firm’s optimal quality and prices. Although firms choose a

uniform product quality that applies to all their markets, we allow them to choose
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market-specific prices.

Firm f optimally chooses the intrinsic quality of product (i.e., product attribute)

φf which applies uniformly across its markets, and market-specific price prf .

By combining (1.6.8), (1.6.9) and (1.6.5), we have firm f ’s sales and quantity sold

in market r given by

Srf ≡ srfLr

= φ
(σ−1)γr
f

(
prf
Pr

)1−σ

Sr (1.6.15)

and

Qrf ≡ qrfLr

= φ
(σ−1)γr
f p−σrf P

σ−1
r Sr (1.6.16)

where Sr ≡ srLr denotes the total CPG expenditures in market r.

The quality and price setting problem by firm f can be formally written as follows:

max
φf ,{prf}r∈kf

πf =
∑
r∈kf

(prf −mc(φf ; af ))Qrf − f(φf )− f0 (1.6.17)

subject to the demand condition in (1.6.16).

As shown in Appendix A.4, the optimal price is

prf =

(
φξf
af

)(
σ

σ − 1

)
(≡ mc(φf ; af )× µ) (1.6.18)

and the optimal quality is

φf =

∑
r∈kf

Srf

(
1

b

γr − ξ
µ

)β (1.6.19)

where µ ≡
(

σ
σ−1

)
indicates the markup.

By combining (1.6.17), (1.6.14), and (1.6.19), we can derive the optimal profit as

πf =
∑
r∈kf

1

σ
[1− β(σ − 1)(γr − 1)]Srf − f0 (1.6.20)
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The expression of firm f ’s local sales, Srf , is derived using (1.6.15), (1.6.18) and

(1.6.19) as

Srf =

∑
r∈kf

Srf

(
1

b

γr − ξ
µ

)β(σ−1)(γr−ξ) [
µ

af

]1−σ

P σ−1
r Sr (1.6.21)

The optimal price of firm f ’s local price is

prf =

∑
r∈kf

Srf

(
1

b

γr − ξ
µ

)βξ [ µ
af

]
(1.6.22)

We can prove that under sufficiently small β > 0, the equilibrium is unique.

Proposition 1. (Uniqueness of the Optimal Price and Quality)

If β > 0 is small enough that β(σ − 1)(γr − ξ) < 1, then the optimal price and

quality is uniquely determined.

Proof. The Proof can be found in Online Appendix C.3.

In Online Appendix C.4, we also show that under the condition in Proposition 1,

the equilibrium quality φf , local sales Srf , and profit πf increase monotonically with

firm productivity af .

1.6.5 Local Price Index

Let Mr ≡ {k ∈ 2R : r ∈ k} denote the collection of market networks that contain

market r. Then the equilibrium CPG price in market r is expressed as

Pr =

[∫
f∈Gr

[
φ
−(γr−ξ)
f

(
µ

af

)]1−σ

df

] 1
1−σ

(1.6.23)

1.6.6 Profits and Dividends

Because we do not allow the entry and exit of CPG producers, there are aggregate

profits in the economy:

Π ≡
∫
f

πfdf (1.6.24)
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We assume that the aggregate profits are rebated to the consumers as dividends. For

the sake of simplicity, we assume that individuals receive dividends that are proportional

to their exogenous income endowments. Thus, an individual in market r receives

dividend Dr given by

Dr ≡
Ir∑

r∈R IrLr
Π (1.6.25)

which implies

yr = Ir +Dr = Ir

(
1 +

Π∑
r∈R IrLr

)
(1.6.26)

1.6.7 Bridging the Empirics and the Theory: Structural Equation of Mar-

ket Interdependency

The model delivers a structural equation that shows within-firm market interdependency.

This equation allows us to structurally interpret our reduced-form empirical analyses.

The magnitude of the spillover is determined by four structural parameters that govern

the elasticity of market share and the elasticity of fixed costs with respect to the change

in product quality. The relationship is derived by expressing the equation (1.6.21) in

terms of growth rates. We present the result here and provide the derivation in Appendix

A.4.3.

By denoting the initial value of a variable x as x0 and defining growth rate by

x̂ ≡ log x/x0, the equation (1.6.21) implies

Ŝrf = Υr,0

∑
r∈kf

[
ωrf,0Ŝrf + θrf,0γ̂r

]
+ (σ − 1)âf + (logXf,0)Υr,0Υ̂r + Âr (1.6.27)

where ωrf,0 ≡ Srf,0(γr,0−ξ)∑
r′∈kf

Sr′f,0(γr′,0−ξ)
,49 θrf,0 ≡ Srf,0γr,0∑

r′∈kf
Sr′f,0(γr′,0−ξ)

,Xf,0 ≡
∑

r∈kf Srf,0

(
1
b

γr,0−ξ
µ

)
,

Ar ≡ (Pr)
σ−1Sr, and Υr,0 is defined by

Υr,0 = β︸︷︷︸
Inverse-elasticity of

fixed cost w.r.t φ

× (σ − 1)(γr,0 − ξ)︸ ︷︷ ︸
Elasticity of

market share w.r.t φ

(1.6.28)

49Note that if γr,0 = γ0 for all r ∈ R, ωrf,0 =
Srf,0∑

r′∈kf
Sr′f,0

becomes the initial sales weight.
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Equation (1.6.27) shows that even if the shock does not directly hit market r, the

shocks that hit other markets r′ 6= r could generate spillovers to market r through the

firm’s internal market network. The key mechanism is uniform quality adjustments

across multiple markets. Note that a firm’s local sales growth is related to both its

average sales growth in all its market,
∑

r∈kf ωrf,0Ŝrf , and to the term
∑

r∈kf θrf,0γ̂r

with the same coefficient Υr,0. These two terms capture different channels in the

model that induce quality adjustments when firms face demand shocks. The first term∑
r∈kf ωrf,0Ŝrf shows the role played by the scale effect. Lower sales that are induced by

negative demand shocks cause firms to lower product quality so that they could avoid

high fixed costs associated with production at the high quality level. The second term∑
r∈kf θrf,0γ̂r captures the role of the nonhomothetic preferences. Negative demand

shocks make consumers switch their consumption toward lower quality products, which

induce firms to downgrade product quality to appeal to those consumers.

Υr,0 summarizes how structural parameters determine the magnitude of spillovers.

A higher β implies a lower elasticity of fixed cost with respect to intrinsic quality change.

This implies a lower sensitivity of the cost-side of quality change, which precipitates a

more sensitive quality change to the shock. This generates stronger spillover.

A higher (σ− 1)(γr,0 − ξ) captures a higher elasticity of market shares with respect

to intrinsic quality change.50 As clear from (1.6.9), (σ − 1) captures how the market

shares respond to change in a households’ perceived quality ζrf,0 conditional on prices.

In turn, (γr,0 − ξ) reflects the trade off that arises from changing intrinsic product

quality: (i) it increases households’ perceived quality, which increases the market share;

and (ii) it increases price, which decreases the market share. Specifically, γr,0 captures

the elasticity of perceived quality ζrf ≡ (φf)
γr,0 with respect to a change in intrinsic

quality, while ξ reflects the elasticity of the marginal cost mc(φf ; af ) ≡ φξf
af

which passes

through to the price. In sum, a higher (σ − 1)(γr,0 − ξ) implies a higher sensitivity of

the revenue-side of quality change, which causes firms to lower their intrinsic quality

50This can be seen from (1.6.21), in which market share in r is Srf
Sr

= φ
(σ−1)(γr−ξ)
f

[
µ
af

]1−σ
(Pr)

σ−1. Thus

the elasticity of market share with respect to quality change is (σ − 1)(γr − ξ).
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more sensitively to the same magnitude of negative demand shock.

The estimation of Υr,0 requires recovering
∑

r∈kf θrf,0γ̂r and properly instrumenting∑
r∈kf

[
ωrf,0Ŝrf + θrf,0γ̂r

]
. We revisit this in Section 1.6.9.1, which provides details of

our structural estimation procedure.

1.6.8 Partial Equilibrium Responses to the Exogenous Demand Shocks

What happens to a local market that did not face a direct shock if other markets linked

through intra-firm networks are hit by demand shocks? Given the lack of analytical

solutions, the full general equilibrium effects must be calculated numerically. Yet, we

can derive the partial equilibrium responses of optimal quality, local sales, the local

CPG price index, local CPG expenditures, and local welfare to change in income level

in other markets. They are partial equilibrium responses in the sense that we shut

down several general equilibrium adjustments, including the effect through a change in

dividends. Thus, we treat yr as exogenous during the partial equilibrium analysis.

Theorem 2. (Exogenous Change in Local Income and Response of Quality and Local

Sales)

Let r ∈ kf . Suppose (i) β is sufficiently small that β(σ − 1)(γr − ξ) < 1 and (ii)

Pr, Dr are fixed. Then, ∂ log φf
∂ log yr

> 0 and ∂ logSrf
∂ log yr

> 0.

The results also hold by if we relax (ii) by allowing Pr to vary with yr, as long as

such variations are sufficiently small.

Proof. The proof can be found in Online Appendix C.5.

Theorem 3. (Change in Quality and Response of Local Sales)

Let r ∈ kf . Suppose (i) yr is fixed (i.e., there is no direct local shock) and (ii) Pr is

fixed. Then, ∂ logSrf
∂ log φf

> 0.

Proof. The proof can be found in Online Appendix C.5.

Theorem 4. (Change in Quality and Response of Local CPG Prices, CPG Expenditures,

and Welfare)
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Let r ∈ kf . Suppose yr is fixed (i.e., there is no direct local shock). Then, ∂ logPr
∂ log φf

< 0,
∂ logSr
∂ log φf

> 0, ∂ logUr
∂ log φf

> 0, and ∂ log Vr
∂ log φf

> 0.

Proof. The proof can be found in Online Appendix C.5.

Suppose a negative income shock hits market r′ ∈ kf . Theorem 2 implies that

this will induce a firm that is selling in market r′ to downgrade quality and experience

lower sales in market r′. In turn, Theorem 3 implies that such quality downgrading

will result in lower sales in market r(6= r′) ∈ kf , which is not directly hit by the income

shock. This is consistent with our empirical findings in Section 1.5.2 regarding regional

spillovers that transpire through downgrading of products (i.e., replacement from high-

to low-valued products). For example, a firm’s local sales and local price in market

r(6= r′) will both decrease because of the lower quality, which is the result of the shock

that hit market r′.

Finally, Theorem 4 shed lights on the distributional consequences of the intra-firm

spillover across regions. The theorem implies that quality downgrading (induced by a

negative income shock in market r′) increases the “quality-adjusted” CPG price index

in market r, which, in turn, reduces the “quality-adjusted” real CPG consumption and

the overall welfare in market r. That is, our model implies that a market not directly

hit by negative shock also experiences welfare loss through the quality downgrading by

multi-market firms. But the flip side of the coin of this argument is that market r′ (who

faced the direct shock) will benefit from the existence of market r. Market r can be

viewed as a market that is hit by zero shock (which is more favorable than the negative

shock), and this will alleviate the quality downgrading in market r′. Thus, market r and

market r′ share the burden of the negative shock that hit market r′, which generates a

redistributive effect.

In Appendix A.5, we present the counterfactual economy in which all firms choose

market-specific quality. Unlike the uniform quality choice, the market-specific quality

choice generates independence across markets. The independence across markets under

market-specific quality choice is summarized by Proposition 7 in Appendix A.5.
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1.6.9 Counterfactual Analysis

To discuss the aggregate implications of our findings, we first structurally estimate the

key parameters in the model and match broad features in the data and then perform a

counterfactual analysis. We compare the benchmark economy, in which all firms adjust

product quality uniformly across their markets with the counterfactual economy, in

which all firms market-specifically adjust product quality.

We show that the identified intra-firm cross-market spillover effect generates sub-

stantial distributional consequences across regions. We calculate the state level quality-

adjusted real consumption (per capita), which measures the regional welfare. We first

compare the measured regional welfare growth with the one measured under the counter-

factual economy. We then turn to the cross-sectional dispersion of the state level welfare

in terms of level. We show that the channel we identified serves as a redistributive (or

risk-sharing) mechanism across regions and substantially mitigates the quality-adjusted

regional consumption inequality (in terms of both growth and level).

Not all parameters are estimated. Some of the parameters are calibrated using

the values in the existing literature, while others are directly matched with the data.

We start with those parameters, and then describe how we estimate the rest of the

parameters.

1.6.9.1 Calibration

In this exercise, we define the local market at the state-level. This allows us to exactly

match firm-level spatial networks across states using the data while substantially reducing

computational burden. We include both single-market firms and multi-market firms in

our analysis, which yields a total of 5186 firms that at most sell in 49 states.51 Each

firm’s market network kf (i.e., intra-firm network) is directly obtained from the data.52

51The states included in our exercise can be found in Table A.23 in Appendix A.1.

52As some firms share the same market network (e.g., if firm A and firm B both sell in New York and

California, they have the same market network kA = kB = {New York, California}), there are 2775 unique

market networks in total.
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Because we are not considering firm-level entry and exit, productivity heterogeneity

plays a minor role in our model. Thus, in the numerical exercise, we do not introduce

productivity heterogeneity and instead assume af = 1 for all firms.53 For the initial Ir

in the model, we use the 2007 state level average income obtained from the American

Community Survey data. For the Lr, we use the 2007 state level population (in

thousands). Since we introduced Lr to reflect the relative size of population across

states, we abstract cross-state migration or population growth by assuming fixed Lr

across time.

For the exogenous local demand shock, Îr, we use state level house price growth

multiplied by 0.23 as a proxy for exogenous demand shock. 0.23 is the consumption

elasticity with respect to the house price shock reported by Berger et al. (2018).54,55

For the elasticity of substitution parameter η in the upper-tier utility, we impose the

limiting case η → 1 which implies the Cobb-Douglas upper-tier utility function. Using

a larger η at the end only strengthens the implication that we find (i.e., it generates

stronger mitigation of regional consumption and welfare inequality). We set the CPG

53Although we do not allow productivity heterogeneity, we do (approximately) match the pooled distribution of

the state-firm level sales in the following way. Note that in the model, the state level CPG expenditure Sr is equal

to the aggregate state level CPG producers’ sales, Sr =
∑
f∈Gr Srf . Also, recall that Sr ≡ srLr = ΘryrLr =

ΘrIr
(

1 + Π∑
r∈R IrLr

)
Lr. Thus, we have IrLr =

∑
f∈Gr Srf

Θr

(
1+ Π∑

r∈R IrLr

) . Because we will use Cobb-Douglas upper-

tier utility in the numerical exercise, Θr = α, we have (IrLr) =
∑
f∈Gr Srf ×

[
α
(

1 + Π∑
r∈R Ir

)]−1

. It turns

out that under our choice of the initial Ir (using the state level average income from ACS data), (IrLr) and Sr

are highly correlated with the correlation coefficient 0.93. Thus, given (IrLr) ∝ Sr, we are matching the pooled

distribution of the “average state-firm level sales” (averaged across firms within a state). More formally, we are

matching the distribution of
∑
f∈Gr Srf
Nr

across markets, where Nr is the number of firms in market r.

54One caveat is that the elasticity reported by Berger et al. (2018) measures aggregate consumption elasticity

with respect to the aggregate house price shock, which can differ from regional elasticity. For our purposes, this

number itself plays a minor role because we use this elasticity to simply re-scale house price growth into income

growth, which in our model, translates into expenditure growth.

55Alternatively, we can use the change in state level average income between 2007 and 2009 as the measure

of Îr. This choice does not change any of our implications. We decided to use house price growth measure

(multiplied by the consumption elasticity w.r.t. house price shock) to be more consistent with our reduced-form

analyses.
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expenditure share parameter α to 0.20, which is close to the United States counterpart.56

Finally, we bring the elasticity of substitution σ from Faber and Fally (2017), which

is σ = 2.2. One caveat is that the estimate in Faber and Fally (2017) is the elasticity of

substitution across firms within a product module.57 Thus, we interpret the elasticity of

substitution across firms in our model as proxying the average of the within-module

elasticity of substitution across firms.58

1.6.9.2 Estimation

The remaining key parameters we need to estimate are β, ξ, δ1 and δ2 in γ(·). The

first equation we use is the expression of Υr,0 in (1.6.28), which can be recovered by

estimating the structural equation (1.6.27).

The second equation is derived from (1.6.22). Following steps similar to those used

in the derivation of (1.6.27), we obtain

p̂rf = βξ
∑
r∈kf

[
ωrf,0Ŝrf + θrf,0γ̂r

]
− âf (1.6.29)

If we can estimate the coefficient of the above structural equation, we will recover βξ.

The challenge of estimating Υr,0 and βξ in (1.6.27) and (1.6.29), respectively, lies

in the fact that γr,0 and γ̂r are not observed. Thus, we must first estimate γr,0 and γ̂r

and then subsequently estimate Υr,0 and βξ.

(1) Estimation of γr,0 and γ̂r

56This number is calculated based on the BLS report—Consumer Expenditures in 2007. We categorize the

following major categories as CPG expenditures: Food, Alcoholic beverages, Apparel and services, Personal

care products and services, Tobacco products and smoking supplies.

57The product module is a granular categorization of each barcode (product) provided by ACNielsen. There

are approximately 1,000 product modules. An example of a product module is “Multi-Vitamins”.

58In Online Appendix, we also provide the result using σ = 3.9 reported by Hottman et al. (2016). However,

their method relies more heavily on their own supply-side structure, which differs from our model, and thus we

prefer the value σ = 2.2.
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We start with the empirical counterpart of equation (1.6.9) aggregated at the

state-firm-year level Srft = (ζrft)
σ−1
(
prft
Prt

)1−σ
Srt, where r indicates state, f indicates

firm, and t indicates year.59 By taking the log of both sides of the above equation and

using the assumption log ζrft = γrt log φft, we get

logSrft = (1− σ) log prft + (σ − 1)γrt log φft + (1− σ) logPrt + logSrt (1.6.30)

To filter out state-specific components, we calculate the difference of the above

equation between the reference firm F , which we define as the largest firm in the sample,

and the other firms f . This yields ∆′ logSrft = (1− σ)∆′ log prft + (σ − 1)γrt∆
′ log φft,

where ∆′xrft ≡ xrF t − xrft. By rearranging terms, we arrive at

Ξrft = γrt∆
′ log φft

where Ξrft ≡ 1
(σ−1)

[∆′ logSrft − (1− σ)∆′ log prft]. Under the calibration of σ = 2.2,

we can directly measure Ξrft. The model predicts that the larger the firm size, the

greater the product quality, implying γrt∆′ log φft > 0. This turns out to hold in the

data. By taking the log of both sides, we obtain

log Ξrft = log γrt + log (∆′ log φft) (1.6.31)

We pool 2007 and 2009 observations and regress log Ξrft on state-by-year and firm-by-year

fixed effects, where the former absorbs log γrt and the latter absorbs log (∆′ log φft).

With the measured log γrt in hand, we obtain the “predicted” log γrt, which we

denote log γpredictrt , by first regressing log γrt on log Irt to estimate δ1 and δ2 in the

equation (1.6.6) and then calculating log γpredictrt = δ̂1 + δ̂2 log Ir. This allows us to filter

out noise contained in γrt and establish a monotone relationship between log Ir and

log γr, as in the model.60

Table A.19 in Appendix A.1 summarizes the result: we use either the log of

state level average income or the log of state level house price as a measure of log Irt.

59Recall that (1.6.9) is expressed in per individual units. Thus, we define state-firm level sales as Srf = srfLr

and state level sales as Sr = ErLr.

60Such noise may reflect pure measurement errors as well as variations that arise from demographic

heterogeneity.
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Broadly, we find a strong positive association between log γrt and log Irt across different

specifications, although directly measuring log Irt using state level average income yields

a much clearer association. This may indicate that income (rather than house price per

se) is the primary factor that determines the degree of nonhomotheticity.

We use the simplest specification in Column (1) as our benchmark, which is a

pooled regression across state and year with year fixed effects. The predicted log γpredictrt

obtained from specification Column (1) serves as our measure of log γrt.61 This also

implies δ2 = 0.166 in (1.6.6).

(2) Estimation of β and ξ

With the γr,0 and γ̂r in hand, we can estimate Υ0 and βξ by estimating (1.6.27)

and (1.6.29), respectively, where Υ0 ≡ β(σ− 1)(γ0− ξ) can be interpreted as the average

estimate of Υr,0 across states obtained by running a state-firm level regression. Below

we discuss in detail our IV strategy to obtain a consistent estimate of Υ0 and βξ, but

first explain how we recover β and ξ using the consistent estimates of Υ0 and βξ.

Once we obtain consistent estimates of Υ0 ≡ β(σ− 1)(γ0− ξ) and βξ, we can easily

recover ξ using the relationship

ξ =
σ − 1

κ+ σ − 1
γ0 (1.6.32)

obtained by rearranging
(

Υ0

βξ
≡
)
κ = β(σ−1)(γ0−ξ)

βξ
. Since we have values for κ, σ and γ0

(which is the average γr,0 across states), we can recover ξ. Then, β is recovered using

β = βξ
ξ
.62

61Note that in the counterfactual analysis, we use 0.23 × ∆̃HPr as a proxy of exogenous demand shock

(Îr), while the predicted log γpredictrt is calculated by regressing log γrt on the log of state level average income

(instead of the log of state level house price). This does not pose a problem in our estimation of the structural

parameters (e.g., β and ξ) because we instrument
∑
r′∈kf

[
ωr′f,0Ŝr′f + θr′f,0γ̂r′

]
using the spillover shock

∆̃HPrf (other), which is constructed by the house price growth.

62Note that the calculation of the independent variable
∑
r′∈kf

[
ωr′f,0Ŝr′f + θr′f,0γ̂r′

]
requires knowledge

of ξ because of θrf,0 ≡
Srf,0γr,0∑

r′∈kf
Sr′f,0(γr′,0−ξ)

. Thus, in practice, we start with a guess value of ξ, measure∑
r′∈kf

[
ωr′f,0Ŝr′f + θr′f,0γ̂r′

]
and run the regression, and then check if (1.6.32) returns the same value of ξ.
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We now discuss how we estimate Υ0 and βξ. A consistent estimate of Υ0 can

be obtained by running a fixed effect regression that is similar to the one used in the

reduced-form analysis (1.3.5). The difference is that instead of directly regressing a

firm’s local sales growth on the spillover shock, we regress a firm’s local sales growth on∑
r′∈kf

[
ωr′f,0Ŝr′f + θr′f,0γ̂r′

]
instrumented by the spillover shock.

Specifically, the state fixed effects that take care of Âr (and the common component

in (logXf,0)Υr,0Υ̂r), while adding various state-firm level controls and industry fixed

effects allows us to compare plausibly similar companies, at least partially taking care of

(σ−1)âf +(logXf,0)Υr,0Υ̂r. Most importantly, instrumenting
∑

r∈kf

[
ωrf,0Ŝrf + θrf,0γ̂r

]
using the spillover shock, which measures the leave-out average demand shocks that

arise in other markets, allows us to further avoid potential endogeneity associated with

unobserved error terms.63

Table A.20 in Appendix A.1 presents the result. In Column (1), we simply regress a

firm’s local sales growth on
∑

r∈kf

[
ωrf,0Ŝrf + θrf,0γ̂r

]
with state and sector fixed effects.

We get a coefficient of 0.996, indicating that local sales growth is highly correlated across

regions within a firm. In Column (2), we instrument
∑

r∈kf

[
ωrf,0Ŝrf + θrf,0γ̂r

]
with the

spillover shock, where the estimated coefficient is Υ0 = 0.618.

We can estimate βξ using a similar strategy. We regress a firm’s local price index

on
∑

r∈kf

[
ωrf,0Ŝrf + θrf,0γ̂r

]
instrumented by the spillover shock. Column (3) of Table

A.20 reports an OLS estimate of βξ, and Column (4) reports the IV estimate. Our

estimate is βξ = 0.317.64

63Our various robustness analyses in Section 1.4.3 make us confident that the spillover shock is not sys-

tematically correlated with direct local market factors as well as supply-side factors such as productivity (i.e.,

âf ).

64In Table A.22 in Appendix A.1, we show the estimation result under the assumption that γrt = γ for all r and

t. This implies homogeneous utility function across regions with homothetic preferences. Under this assumption,

(1.6.27) and (1.6.29) become Ŝrf = Υ
(∑

r∈kf
ωrf,0Ŝrf

)
+ (σ− 1)âf + Âr and p̂rf = βξ

(∑
r∈kf

ωrf,0Ŝrf
)
− âf ,

respectively, where Υ ≡ β(σ − 1)(γ − ξ) and ωrf,0 ≡
Srf,0∑
r′∈S

r′f,0
is the initial sales weight. The point estimates

of Υ and βξ (as well as the precision) are very similar to those in Table A.20 reflecting small variations in(∑
r∈kf

θrf,0γ̂r
)
relative to

(∑
r∈kf

ωrf,0Ŝrf
)
(i.e., the ratio of standard deviations of these variables across

firms is .5:100, which partially reflects the fact that γ̂r does not vary across firms while Ŝrf varies across firms).
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Table 1.9: Parameter Values

Parameter Value Description Source

Υ0 0.62 Elasticity of Local Sales wrt (∆̃Sale+ ∆̃γ) (avg) Own Estimation

β × ξ 0.32 Elasticity of Local Price wrt (∆̃Sale+ ∆̃γ) (avg) Own Estimation

σ 2.20 EoS across Firm’s Product Bundle Faber & Fally (2017)

ξ 0.39 Elasticity of Marginal Cost wrt Quality Derived from Own Estimation

β 0.81 Elasticity of Fixed Cost wrt Quality Derived from Own Estimation

γ0 1.03 Elasticity of Perceived Quality wrt Quality Own Estimation

δ2 0.17 Elasticity of γ wrt Income Own Estimation

b (benchmark) 1 Fixed Cost Parameter Normalize

b (counterfactual) 0.04 Fixed Cost Parameter Matched s.t. Avg. Quality Equal Benchmark

η 1 EoS across CPG and Outside Goods Cobb-Douglas

α 0.20 CPG Share Parameter Matched so that CPG share equals 0.20 under η

We summarize the resulting parameter values in Table 1.9. In Table A.21 in

Appendix A.1, we show that the estimated model can successfully replicate the elasticity

of firm’s local sales growth with respect to both the direct local shock and the spillover

shock. We show this by estimating equation 1.3.5 at the state-firm level using the model

generated data (i.e., generated by feeding in the observed house price growth as the

state-level exogenous shock in the model).

1.6.9.3 Implication: Regional Redistribution

By leveraging the estimated model, we calculate state level quality-adjusted real con-

sumption (per capita), which measures regional welfare. We first compare the measured

regional welfare growth with the one measured under the counterfactual economy. Next

we turn to the cross-sectional dispersion of the state level welfare (in terms of level). We

show that the channel we identified serves as a redistributive (or risk-sharing) mechanism

across regions, thus substantially mitigating the quality-adjusted regional consumption

inequality in terms of both growth and level.

This implies that the nonhomotheticity plays a limited role under our estimation.
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We start by investigating the dispersion of the quality-adjusted regional consumption

growth, which measures regional welfare growth. We use two measures, (i) quality-

adjusted real CPG consumption per capita Ur (i.e., “CPG welfare”); and (ii) real

(composite) consumption per capita, aggregating CPG goods and the outside good Vr

(i.e., “overall welfare”). The results are summarized in Table 1.10. For the purpose of

brevity, we only present four states and the summary statistics across all states. Results

for all states can be found in Table A.23 in Appendix A.1.

The first measure captures the welfare effect that arises through CPG consumption,

which is the principal focus of our empirical and theoretical analyses. Yet, households

can switch their consumption to other types of goods if they find CPG less appealing

because of the quality change. The overall effects that incorporate such substitutions

are captured by V̂r. We view our measure of V̂r as the lower-bound of the welfare effect

because we are assuming that our channel exists only in CPG consumption. In reality,

a similar mechanism could exist in other types of consumption. Also, we would like to

emphasize that our assumption of the Cobb-Douglas upper-tier utility is a conservative

choice, and that introduction of a larger elasticity of substitution between CPG and the

outside good will strengthen our implication. Like V̂r, which serves as the lower-bound,

we view Ûr as the upper-bound of the welfare effect.

We first focus on CPG welfare Ûr. States that experienced increase of local house

prices such as Iowa (IA) and South Dakota (SD) experienced a large decline of CPG

welfare due to spillovers from states that were hit by large housing market disruptions.

For example, the benchmark economy implies that Iowa experienced a 1.40% loss of

CPG welfare, while under the counterfactual economy, it could have experienced a 0.17%

increase of CPG welfare. This shows that regions not directly hit by negative shocks can

also experience a decline of welfare due to uniform quality downgrading by multi-market

firms.

While states that have been less affected by negative shocks experience deterioration

of welfare due to spillovers from severely hit states, the opposite holds for states that

went through severe negative shocks. For example, Arizona (AZ) experienced a 13.67%
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Table 1.10: Regional Redistribution across States

State ĤP r(%) Îr(%) Ûr(%) V̂r(%) Pop. Weight (%)

Benchmark Counterfactual Abs. Diff. Benchmark Counterfactual Abs. Diff.

IA 0.18 0.04 -1.40 0.17 1.57 -0.20 0.12 0.32 1.00

SD 0.72 0.16 -1.26 0.38 1.64 -0.07 0.26 0.33 0.27

...
...

...
...

...
...

...
...

...
...

AZ -38.13 -8.77 -13.67 -15.40 1.72 -9.73 -10.09 0.36 2.12

CA -33.11 -7.61 -11.70 -13.40 1.71 -8.40 -8.76 0.36 12.20

(All States)

Mean -16.60 -3.82 -6.65 -6.61 0.97 -4.34 -4.34 0.20 Sum: 100

St.Dev 12.97 2.98 4.03 5.21 3.20 3.44

Note. ĤP r(%) is the state-level house price growth. Îr(%) is the exogenous regional income growth which is

calculated as ĤP r(%)× 0.23. Benchmark indicates the model with uniform quality choice in Section 1.6, and

counterfactual indicates the model with market-specific quality choice in Appendix A.5. Ûr(%) is the welfare

growth from CPG expenditures (“CPG welfare”), and V̂r(%) is the welfare growth from both CPG and outside

good expenditures (“overall welfare”). Summary statistics are weighted by population.

decline of CPG welfare under the benchmark economy, but under the counterfactual

economy it would have fared worse, with a 15.40% loss of CPG welfare. similarly,

California (CA) experienced a 11.70% decline of CPG welfare under the benchmark

economy, while it could have experienced a 13.40% loss of welfare in the counterfactual

economy. This means that states that were hit by severe negative shocks benefit from

regions that were less hit because multi-market firms downgrade product quality less

under the benchmark than they do under the counterfactual economy.

On average, the absolute difference in CPG welfare growth between the benchmark

and the counterfactual economy is given by 0.97 percentage points. That the average

decline of CPG welfare in the benchmark economy is 6.65% implies that shutting down

our channel generates an additional 15% welfare increase (decrease) in regions that have

been hit by below-average (above-average) exogenous income growth.

The dispersion of welfare growth across states can be summarized by the standard
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Figure 1.2: Regional Redistribution across States: Benchmark (Up) vs. Counterfactual

(Down)

Note. This figure plots the state-level CPG welfare growth, Ûr(%), in the benchmark and the counterfactual

economies. Benchmark indicates the model with uniform quality choice in Section 1.6, and counterfactual

indicates the model with market-specific quality choice in Appendix A.5.

deviation of welfare growth across states. Under the benchmark economy with our

channel, the standard deviation is 4.03, while in the counterfactual economy it is 5.21.

Thus, the result implies that the standard deviation of the welfare growth across states

increases by 29% in the counterfactual economy.
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To quantify the dollar amount effect, we do a simple back-of-the-envelop calculation.

Specifically, we reduce the dispersion of regional shocks across states up to the point

that the standard deviation of welfare growth across states equals that of the benchmark.

On average this requires 2.5 percentage point decrease (increase) of house price growth

in states that experienced above-average (below-average) house price growth, or 0.58

percentage point (=2.5 percentage point×0.23) decrease (increase) of exogenous income

growth in corresponding states. Since the cross-state average of the median household

income in 2007 was approximately $69000, the dollar transfer is $400 ≈ $69000× 0.0058.

This indicates that the redistribution effect generated by intra-firm spillovers through

uniform quality adjustments correspond to a one-time $400 per-household transfer (tax)

on a state that experienced below-average (above-average) house price growth. This is

comparable to the tax rebate checks authorized by the US Congress in 2008 (Economic

Stimulus Act of 2008), which were also one-time payments that ranged from $300 to

$1200 per qualifying household. Therefore, the magnitude of redistribution induced

by our identified channel is economically meaningful and compares in size to transfer

policies. This highlights the important role that the intra-firm network and the spillover

through it plays in alleviating the regional consumption inequality.

In Figure 1.2, we visualize the state-level CPG welfare growth in the benchmark

economy (upper panel) and the counterfactual economy (lower panel). We confirm that

the benchmark economy features more equalized welfare growth across states than the

counterfactual economy.

Even if we take into account potential substitution to the outside good, we still

find non-negligible welfare consequences. Iowa (IA) and South Dakota (SD) could have

experienced an overall welfare increase under the counterfactual economy, but they

experienced a decline of welfare due to our channel. For example, Iowa (IA) experienced

a 0.20% loss of overall welfare in the benchmark, while it could have experienced a

0.12% increase of welfare under the counterfactual economy.

In contrast, Arizona (AZ) and California (CA) could have experienced an overall

welfare loss of 10.09% and 8.76%, respectively, yet they actually experienced smaller
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welfare declines of 9.73% and 8.40%, respectively. The average absolute difference in

welfare growth between the two economies is given by 0.20 percentage points. The

average decline of overall welfare in the benchmark economy is 4.34%, which implies

that shutting down our channel generates an additional 5% increase (decrease) of overall

welfare in regions that experienced below-average (above-average) exogenous income

growth. Finally, the standard deviation of the overall welfare growth across states

increases by 8% if we move from the benchmark (3.20) to the counterfactual economy

(3.44).

We now compare the cross-sectional dispersion of the state level welfare, which is

measured by the quality-adjusted regional consumption per capita (in terms of level).

Again, we use two measures, (i) quality-adjusted real CPG consumption per capita Ur

(i.e., “CPG welfare”) and (ii) real (composite) consumption per capita, aggregating CPG

goods and the outside good Vr (i.e., “overall welfare”).

Figure 1.3 shows the scatter plot of regional CPG welfare between the benchmark

and the counterfactual. We calculate the deviation of regional CPG welfare from its

cross-sectional average. The upper panel plots the 2007 snap shot and the lower panel

shows that of 2009. In both years, the observations associated with lower welfare (relative

to the cross-sectional average) lie below the 45-degree line, while those associated with

higher welfare lie above the 45-degree line. This indicates that the counterfactual

economy generates a larger dispersion of welfare across states, implying a larger quality-

adjusted regional consumption inequality. In both years, the counterfactual economy

produces a standard deviation of regional welfare distribution that is almost two times

that of the benchmark. In Figure A.2 in Appendix A.2, we show the result using the

overall welfare Vr. Similar patterns hold, with the counterfactual economy generating

10% larger standard deviation compared to that of the benchmark.

In summary, the multi-market firms’ product replacement decision, which involves

uniform quality adjustments, mitigates the regional quality-adjusted consumption and

welfare inequality in terms of both growth and level. These results indicate that

the identified intra-firm spillover through uniform quality adjustments serves as a
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Figure 1.3: Cross-sectional Dispersion of Regional CPG Welfare

Note. ∆′Ur,t ≡ (Ur,t − Avg.Ur,t)/Avg.Ur,t measures the cross-sectional dispersion of CPG welfare at time t.

The size of the circle reflects population weights. The mean, Avg.Ur,t, and the reported standard deviations are

weighted by state level population.
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redistributive (or risk-sharing) mechanism across regions. Given that firms introduce

uniform product quality across markets and that they take into account average demand

conditions in all their markets to decide product quality choice, regions with higher

demand face relatively lower product quality compared to the counterfactual economy

because of regions that have lower demand. In contrast, regions with lower demand

enjoy relatively higher product quality due to the regions that have higher demand.

This mitigates the quality-adjusted regional consumption inequality.65

1.7 Conclusion

In this paper, we study whether and how intra-firm spatial networks created by multi-

market firms spill over regional shocks across US local markets. We show that a firm’s

local sales decrease in response to not only the direct negative local demand shock

but also the indirect negative local demand shocks that affect its other markets. In

particular, the intra-firm spillover effect is mostly attributed to the extensive margin

response of local sales that arises from the product creation and destruction. As the

key mechanism behind the spillover, we emphasize the role of synchronized product

replacements across multiple markets by each firm wherein high-valued products are

replaced with lower-valued products in response to the negative shocks. Through

65In fact, the scale effects and the nonhomothetic preferences generate different welfare implications, although

they both provide incentives for firms to downgrade product quality when they face negative demand shocks.

Under the homothetic preferences, uniform quality adjustments indeed mitigate quality-adjusted regional

consumption inequality because regions with higher demand face lower product quality than the counterfactual

economy, while regions with lower demand enjoy relatively higher product quality. But under the nonhomothetic

preferences both high demand and low demand regions can experience decreases of welfare because both regions

face unfavorable product quality. That is, higher demand regions would like to have higher product quality as

in the counterfactual economy, while lower demand regions would like to have lower product quality because

they are poor. Thus, both regions experience additional level effects that lower the welfare. However, such

level effects do not change the main implications of the model for two reasons. First, quality-adjusted regional

consumption inequality is mainly related to the “dispersion” of those measures across regions, and the role

played by level effects is small. Second, our estimation result assigns a dominant role to the scale effects, and

the role of the nonhomothetic preferences turns out to be limited.
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the lens of a multi-region model with endogenous quality adjustments by firms that

reflect product replacements, We show that the identified intra-firm spillover serves

as a redistributive mechanism across local markets and substantially mitigates the

quality-adjusted regional consumption inequality.
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Chapter 2

Propagation of Housing Market Disruptions during the

Great Recession: Supply Chain Network Channel

Jungsik (Jay) Hyun1

2.1 Introduction

Among many hypotheses that explain a large drop in aggregate consumption expenditure

and employment in the Great Recession, a prominent explanation is a fall in consumer

demand arising from a collapse in the housing market. Using cross-region variation, the

set of influential papers such as Mian et al. (2013) and Mian and Sufi (2014) establish

that a decrease in housing net worth leads to a fall in consumption expenditure and

non-tradable sector employment.

What seems underexplored in this study is the role of the firm-level supply chain

network. Depending on the firm-level network structure, the effect of housing market

disruptions on aggregate dynamics changes dramatically. On the one hand, the firm-

level supply chain network could propagate and amplify the shock. A fall in household

expenditure would lower firms’ sales and their intermediate goods demand, which could

further decrease intermediate goods suppliers’ sales. An industry-level network study (in

1This is a collaborated project with Ryan Kim, my former colleague at Columbia University who now joined

Johns Hopkins SAIS.
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a different context) reveals about six times larger effect of demand-side shocks on value

added growth when they factor in upstream propagation (Acemoglu et al. (2016)).2 On

the other hand, the effect through the firm-level network could be different from the

industry-level propagation. If intermediate goods suppliers facing a troubled customer

can easily find alternative customers to supply their products, such shock would be

absorbed in the economy. Even if the suppliers cannot find alternative customers, if

either a share of firms that are deeply involved in supply-chain relationship is small in

the economy or such firms are insensitive to the shock, the propagation might have a

negligible effect at the aggregate level.

Exploiting a unique micro-level data, we take the first step to investigate the role

of firm-level supply chain network in propagating the housing market disruptions during

the Great Recession. We combine county-level housing market condition from the Zillow

database, firms’ sales in each county from the Nielsen Retail Scanner and GS1 database,

and firm-level supply chain network information from the Compustat Segment and

FactSet Revere database. Our combined dataset contains detailed information on firms’

supply chain network and their sales in each local market, as well as local housing market

condition during the Great Recession. For example, if households at New York County

purchase Coke, we observe New York County housing market condition, Coca-Cola’s

sales generated from New York County and information on upstream suppliers that

Coca-Cola deals with. To the best of our knowledge, this is the first paper that combines

firm-location-specific sales with firm-level supply chain network information.

Armed with the detailed micro-level data, we find that the housing market disruption

propagates through the inter-firm network by exploiting the difference in firms’ initial

sales across regions and local variation in house prices. As a first step, we measure a

firm-specific demand shock by taking an initial sales-weighted average across county-

level house price changes within each firm. Using this shock, we show that decrease of

household expenditure driven by housing market disruption lowers downstream firm sales,

2Using industry-level data, Acemoglu et al. (2016) explore upstream propagation of two different demand

shocks: imports from China and federal government spending.
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confirming the results in Mian et al. (2013) and Kaplan et al. (2016) at the firm-level.3

To analyze the propagation, we further utilize initial inter-firm network information to

construct the indirect exposure of the demand shock to upstream suppliers through

downstream firms. We find that such exposure decreases upstream suppliers’ sales

growth and employment.

The propagation we find features a larger average indirect effect on upstream

suppliers compared to the average direct effect on downstream firms. This reflects

heterogeneous response of downstream firms to the shock and its interaction with

the network structure. We provide an evidence of downstream-level heterogeneity of

elasticity to the shock, and further show that firms with higher elasticity have larger

role in the network structure. This interaction results in large supplier-level elasticity to

the transmitted shock.4

We conduct numerous robustness analyses to confirm our empirical findings are

driven by indirect spillover through the supply chain network. By further combining

our database with the National Establishment Time-Series (NETS) establishment-level

database, we show that our propagation result is not driven by the shocks that directly

affect upstream suppliers’ establishments located in the same counties. In addition to our

main measure of household expenditure shock, we additionally used the housing supply

elasticity originated from Saiz (2010) and used in Mian et al. (2013) to corroborate our

results. Finally, we perform the Placebo analysis and show that the Placebo network

cannot generate the propagation result we find.

To quantify the empirical findings at the aggregate level, we integrate our micro-

3Note that this result relies on the fact that firms are region-specific. If firms’ initial sales are uniform across

regions or firms can easily sell to other regions when they face a negative local demand shock, the firm-specific

demand shock we measured might not have any effect on sales at the firm-level. The historical persistence of

market shares across firms are well documented in the previous literature (?, ?), and we confirm this persistence

with our data in Appendix B.1

4There is an interesting question of why firms having more supply chain relationships are also more sensitive

to the shock. In our companion paper (Hyun and Kim (2019)), we suggest disproportionate role of multi-market

firms in the network structure. Section 2.4.1 also provides a brief discussion on this question.
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level empirical evidence into a parsimonious network model to find that the firm-level

network channel can explain about 18% of the aggregate output fluctuation during

the Great Recession. While our empirical analyses reveal that there is propagation, it

is unclear how large the effect will be at the aggregate level as there is a substantial

heterogeneity across firms in terms of firm size and network degree. We incorporate this

perspective by calibrating to match the share of firms along with other variables in our

micro-level data, such as network structure and firm-specific demand shock.

Literature Review

This paper contributes to several strands of literature. First, our work is closely related

to the literature that has exploited regional variation of housing market conditions to

highlight mechanisms behind the large economic drop during the Great Recession.5

Mian et al. (2013) and Mian and Sufi (2014) have exploited regional variation of local

housing market conditions to investigate the extent to which household leverage has

contributed to the Great Recession. They document that local housing market bust

led to significant decline in the local economic activities such as consumption and

nontradable employment during the Great Recession. Stroebel and Vavra (2019) show a

causal response of firms’ price-setting and households shopping behavior to the housing

market induced local demand shocks. We contribute to this literature by showing that

decline of household expenditure induced by housing market bust not only affected

directly exposed firms but also indirectly affected suppliers through firm-to-firm linkages.

Recent papers also started to pointed out that implication derived using local

variation can be different from that at the aggregate level due to possible general

equilibrium forces. Beraja et al. (2019) show that the local and aggregate elasticities to

the same type of shocks are quantitatively different, and thus propose a semi-structural

methodology that combines regional and aggregate data within a model. Adao et al.

5There is also a strand of empirical works that has assessed the differential effect on labor market outcomes

stemming from differential shock exposure across local labor markets in the context of Chinese import competition

(see for example, Autor et al. (2013))
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(2018a) measure the impact of economic shocks on local labor markets in the presence

of rich spatial links across markets relying on a structural general equilibrium model.

Our paper contributes to this literature by providing a direct reduced-form evidence of

firm-to-firm spillover of housing market disruption that could not be properly captured

by regional variation analysis.

Another important literature that our paper contributes is the growing literature

focusing on the role of production network. Papers in this literature suggest input-output

linkages as an important channel that propagates microeconomic shocks generating

macroeconomic fluctuations. Acemoglu et al. (2012) show that under sufficient asym-

metry of the network structure, intersectoral input-output linkages lead to aggregate

fluctuations of microeconomic shocks. Acemoglu et al. (2016) theoretically show that

supply-side shocks mainly propagate to the downstream, whereas demand-side shocks

propagate to the upstream. They further provide empirical support to their argument

using U.S. sectoral input-output matrix. In contrast to their work, our paper provides

firm-level evidence of upstream propagation of firm-specific demand shocks, and further

investigate aggregate-level implication. Recent papers also started to utilize firm-level

network datasets, which have advantage in terms of identification compared to using

sector-level data. Using the Compustat Segment dataset, Barrot and Sauvagnat (2016)

show the evidence of firm-level propagation of idiosyncratic shocks generated by natural

disasters in the location where a company’s headquarter is located. They show that

input-specificity is important determinant of degree of shock propagation. Carvalho et al.

(2016) use the Great East Japan Earthquake as the source of shocks to show propagation

effect through supply chain network. However, precisely because these papers exploit

natural disasters hitting headquarters of companies, the nature of shocks they utilize

are supply-side driven. Hence, whether or not supply chain networks propagate or serve

as buffer to demand-side shocks at the firm-level still remains an open question. Up

to our knowledge, this paper is the first to provide firm-level evidence of upstream

propagation of demand shocks arising from local housing markets.6 Regarding the recent

6Related to our paper focusing on the Great Recession period, there are also interesting recent works that
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development of this literature, Carvalho (2014) provides excellent review.

Finally, there are recent papers providing evidence of regional spillover of local

demand shocks. ? shows that interstate trade generated the regional propagation of

local consumer demand shocks during the Great Recession. Giroud and Mueller (2019)

shows that firms’ internal network generated the regional spillover of local housing

market shocks. Instead, our paper focuses on inter-firm linkages through supply chain

network as a potential source of local demand shock propagation.

The paper is organized as follows. Section 2.2 describes the datasets we use in

the analysis. Section 2.3 provides detailed explanation of our empirical strategy and

construction of variables. Section 2.4 provides the main empirical results. Section 2.5

contains additional robustness analysis. In Section 2.6, we provide a parsimonious

network model and perform a counterfactual analysis to derive aggregate implications.

Section 3.6 concludes. All tables and figures are at the end of the paper.

2.2 Data

2.2.1 Scanner Data

To construct firm-specific demand shock stemming from local housing market conditions,

we first need to construct a measure that captures firm’s relative exposure to different

regions. We measure such exposure using firms’ initial sales in each local market

constructed using Nielsen retail scanner data.7

Nielsen retail scanner data consists of weekly pricing, volume, and store merchan-

dising conditions generated by participating retail store point-of-sale systems in all US

markets. Data are included from approximately 35,000 participating grocery, drug,

investigate credit shock spillover through supply chain. See, for example, Agca et al. (2017) and Costello (2017).

7Researcher(s) own analyses calculated (or derived) based in part on data from The Nielsen Company (US),

LLC and marketing databases provided through the Nielsen Datasets at the Kilts Center for Marketing Data

Center at The University of Chicago Booth School of Business. The conclusions drawn from the Nielsen data

are those of the researcher(s) and do not reflect the views of Nielsen. Nielsen is not responsible for, had no role

in, and was not involved in analyzing and preparing the results reported herein.
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mass merchandiser, and other stores. Products from all Nielsen-tracked categories are

included in the data, such as food, non-food grocery items, health and beauty aids, and

select general merchandise. The years of coverage are 2006-2015.

However, Nielsen retail scanner data does not directly provide the information of

producers of products. We bring producer information from GS1, the single official

source of barcodes (i.e. Universal Product Code (UPC)) in the United States. These

producers form our downstream companies.

2.2.2 Supply Chain Data

Our supply chain information comes from two sources : (i) FactSet Revere and (ii)

Compustat Segment. Previous literature mostly used Compustat Segment as the only

source of supply chain information (e.g. Barrot and Sauvagnat (2016)). FactSet Revere,

however, provides richer network information relative to Compustat Segment, and thus

we believe we are able to capture network effect more precisely compared to the previous

empirical literature.8

FactSet Revere was built to uncover business relationship interconnections among

companies globally. FactSet analysts systematically collect companies’ relationship

information from primary public sources such as SEC 10-K annual filings, investor

presentations, and press releases, and classify them through four normalized relationship

types: (i) customers, (ii) suppliers, (iii) competitors, and (iv) strategic partners. We

mainly use relationship information categorized as “customers” or “suppliers”.9

Company information is fully reviewed annually, and changes based on corporate

actions are monitored daily. Thus it provides detailed and up-to-date dataset providing

information on inter-company relationships.

8FactSet Revere is also used in a recent paper by Taschereau-Dumouchel (2017), in a different context with

our paper, to evaluate the importance of the firms’ decisions to operate in shaping the production network.

9According to the data manual, category “customers” includes two subcategories (i) disclosed customers and

(ii) out-licensing. Category “suppliers” includes (i) disclosed suppliers, (ii) distribution, (iii) manufacturing, (iv)

in-licensing, (v) marketing. We also verified robustness of our analysis restricting the relationship to “disclosed

customers” and “disclosed suppliers”.
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According to the data manual, FactSet Revere supply chain relationships database

covers more than 23,000 publicly traded companies around the world, comprising

over 325,000 business relationships,10 with historical data going back as far as 2003.

Importantly, FactSet Revere database also includes private firms and less important

relationships, which allows us to better capture the complete picture of network structure

in the economy. Finally, linkage weight between supplier and customer is disclosed,

whenever available, which is measured by percentage of supplier’s revenue arising from

relationship with that customer.

We first link FactSet Revere relationship database company ID and Compustat

Fundamentals company ID (gvkey), using information on Ticker symbol, company name,

and company address. As FactSet companies include both listed and unlisted companies,

only subset of FactSet companies are linked to Compustat Fundamentals companies. So

our initial universe of companies include firms appearing either in FactSet Revere supply

chain relationship database or Compustat Fundamentals (or both). We then augment

FactSet Revere supply chain information with Compustat Segment based relationship

data provided by Barrot and Sauvagnat (2016), which provides Compustat Fundamental

company IDs for both customer and suppliers.11 Specifically, two companies that either

appear in FactSet Revere or Compustat Fundamentals (or both) are supplier-customer

if either FactSet Revere or Compustat Segment (or both) records that they have such

relationship. We then restrict the universe of companies to those who have at least one

record of supply chain relationship using our augmented supply chain data.

As a final step, we merge companies in Nielsen-GS1 merged data with downstream

companies (customers) in our augmented supply chain data to get our final sample

of downstream companies, and for the upstream companies (suppliers) we restrict

our sample to listed companies that appear in Compustat Fundamentals. We restrict

upstream companies to listed ones since we rely on Compustat Fundamentals to obtain

10Coverage status is given as of February 2017.

11We thank Jean-Noël Barrot for publicly sharing the Compustat Segment customer-supplier linkage file

through his homepage.
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basic firm-level variables such as sales and employment. We want to emphasize that,

although our upstream level analysis is restricted to listed companies, we include both

unlisted and listed companies at the downstream level. As we are mainly interested in

upstream propagation of household expenditure shock through supply chain network, it

is crucial to capture well the downstream-level exposure to local demand conditions. Our

augmented supply chain data combined with Nielsen-GS1 data serves this purpose well

as it allows us to include both unlisted and listed companies at the downstream-level.

2.2.3 Other Data

We also use some other datasets in our analysis. We obtain house price indices at the

county-level from Zillow database. As well documented in Giroud and Mueller (2019),

changes in house prices from 2006 to 2009 based on Zillow are highly correlated with

the “housing net worth shock” (∆ Housing Net Worth, 2006-2009) in Mian et al. (2013);

Mian and Sufi (2014). The county-level house price growth measure is matched with

retail store location information from Nielsen database. Our final sample covers 985

counties, which covers 70% of total US population (based on 2007).

In robustness section, we additionally use establishment location information of

firms obtained from the National Establishment Time-Series (NETS) dataset. NETS

consists of establishment-level longitudinal microdata covering, in principle, the universe

of U.S. businesses.12 See Neumark et al. (2011) and Barnatchez et al. (2017) for detailed

discussion on NETS.

2.3 Empirical Strategy

The main idea is to see whether a supplier who deals with downstream firms that are

“more” exposed to household expenditure shocks is relatively more affected compared to

12As well documented in Barnatchez et al. (2017), NETS dataset is useful for studying cross-sectional

business activity in high detail, although there are some limitations for studying business dynamics. Thus, we

only bring cross-sectional pre-recession establishment location information for the analysis, abstaining from

using dynamic perspective of the data.
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a plausibly similar supplier whose downstream firms are “less” exposed to such shocks.

As our main focus is to investigate the upstream propagation of household expenditure

shocks arising from the housing market disruption, our empirical analysis involves two

types of firms: downstream firms and their suppliers (upstream firms). We refer to firms

included in Nielsen sample who directly sell products to households as “downstream

firm” or simply “firm”, and their suppliers as “upstream firm” or simply “supplier”.13

2.3.1 Direct Effect of Housing Market Disruption to Downstream Firms

We first investigate whether the household expenditure shocks directly affect downstream

firms. The downstream-level specification is given by

∆SaleDi = α1 + β1∆HPD
i + γ1X

D
i + εi (2.3.1)

where i indicates downstream firms, ∆SaleDi is the sales growth rate of downstream

firm i from 2007 to 2009, ∆HPD
i indicates the average household expenditure shock

faced by the downstream firm i, XD
i is the vector of various firm-level controls including

fixed effects. The superscript “D”stands for “downstream” to indicate that the variables

are in downstream firm-level. Firm-specific demand shock ∆HPD
i is constructed as a

weighted average of county-level house price change between 2006 and 2009, weighted

by the firm’s pre-recession county-level sales. We explain construction of variables in

detail in Section 2.3.3.

The coefficient of interest is β1 that captures elasticity of sales growth with respect

to firm-specific demand shock, both measured in percentage growth term.14 Positive

β1 indicates that firms that were initially more exposed to regions that went through

larger drop in house price growth during the Great Recession have experienced larger

drop in sales growth as well. This means that household expenditure shocks have direct

13We abstain from using the terminology “customer” to indicates downstream firm as it can be confused

with households.

14Interpretation goes as follows: 1pp increase (decrease) of average house price growth rate faced by a firm

increases (decreases) its sales growth rate by β1pp.
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consequence on downstream firms, confirming Mian et al. (2013) and Kaplan et al.

(2016) at the firm-level.

2.3.2 Upstream Propagation of Firm-specific Demand Shocks to Suppliers

Our main empirical specification of upstream propagation is given by

∆SaleUj = α2 + β2∆HPU
j + γ2X

U
j + εj (2.3.2)

where j indicates suppliers, ∆SaleUj is the sales growth rate of supplier j from 2007 to

2009, ∆HPU
j is the average of downstream firm-specific demand shocks faced by the

supplier j, XU
j is the vector of various firm-level controls including fixed effects. The

superscript “U ” stands for “upstream” to indicate that the variables are in supplier level.

Construction of variables are explained in detail in Section 2.3.3.

We call ∆HPU
j a supplier-specific demand shock. Note that the supplier-specific

demand shock originates from regions where the downstream firms (of the supplier) sell

products to households. Thus, if we get a positive coefficient β2, this can be interpreted

as a transmission of shocks from the downstream to the upstream.

2.3.3 Construction of Variables

We start with product-location level sales Sp,i,r,l,t. This indicates sales of a product p

produced by a downstream firm i generated at a retail store r in location l at time

t. We use county as our baseline location and year as time index. Sp,i,r,l,t is directly

constructed from Nielsen Retail Scanner dataset by summing up weekly sales of each

product in each retail store in a given year. We link product information in Nielsen

with its producer information using GS1 data and thus could identify company that

produced each product.

With Sp,i,r,l,t at hand, we construct firm-county specific sales in a given year by

summing up sales of all products produced by the firm arising from all retail stores
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(covered by Nielsen) in the county in that year:

Si,l,t ≡
∑
p∈Pi

∑
r∈Rl

Sp,i,r,l,t (2.3.3)

where Pi indicates set of products produced by firm i and Rl indicates set of retailer

stores located in county l. We could further move on to construct firm-level sales in a

given year by calculating

Si,t ≡
∑
l

Si,l,t (2.3.4)

We calculate growth rate of sales using (2.3.4). Throughout the analysis, we use

growth rates in the form suggested by Davis et al. (1996): for any variable X, the growth

rate between t1 and t2 is defined as ∆X ≡ 2
(
Xt2−Xt1
Xt1+Xt2

)
. That is, the denominator

is calculated by the average of the beginning and end period levels, rather than the

beginning period level. Davis et al. (1996) recommend using this growth rate because

it has a number of attractive properties such as symmetry around 0 and boundedness

between -2 and 2.15 Thus, sales growth of the downstream firm i from 2007 to 2009 is

defined by

∆SaleDi = 2

(
Si,09 − Si,07

Si,07 + Si,09

)
(2.3.5)

Now, we move on to construct (downstream) firm-specific demand shock: ∆HPD
i .

This is calculated as a weighted average of county-level house price change weighted by

firm’s initial sales on each county:

∆HPD
i ≡

∑
l

ωi,l ×∆HPl (2.3.6)

The weight is given by ωi,l ≡
(
Si.l,07

Si,07

)
, and ∆HPl ≡ 2

(
HPl,09−HPl,06

HPl,06+HPl,09

)
is the house price

change in county l calculated using the Zillow database. The rationale behind the

construction is that each firm is more exposed to household expenditure shocks in

15This measure also lends itself to aggregation, and less susceptible to the bias arising from the effects of

regression to the mean. We use this measure mainly because of its symmetric property around 0. Our results

are robust to using the growth rate defined by ∆X ≡
(
Xt2−Xt1
Xt1

)
.
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counties where its initial sales are large, and thus puts larger weights on house price

changes in those counties.

Finally, we construct firm-specific demographic controls by calculating weighted

average of county-level variables related to pre-recession demographic properties. Here

again, we average across counties with weights corresponding to firm’s initial county-level

sales.16 Firm-specific demographic controls capture average demographic properties

faced by each company, which may affect demand conditions of households.

After constructing downstream firm-specific variables, we bring supply chain data

combined with Compustat Fundamentals to construct supplier-specific variables.17

Supplier j’s sales growth is defined as in (2.3.5), where we use Compustat sales in 2007

and 2009 in place of Sj,07 and Sj,09, respectively. We construct supplier-specific demand

shock as weighted average of its downstream firm-specific demand shocks:

∆HPU
j ≡

∑
i∈Ij

λj,i ×∆HPD
i (2.3.7)

where Ij indicates set of downstream firms of supplier j, and λj,i is the linkage weight.18

Note that the supplier-specific demand shock originates from regions where downstream

16These include median household income and education level (defined by percentage with less than high

school diploma).

17Recall that we are only using Compustat variables to get informations of the suppliers. Thus, only the

suppliers are restricted to listed firms.

18Not all links have linkage weight information defined by percentage of supplier’s revenue arising from

linkage with a particular downstream company. Approximately 10% of all linkages have this information. Thus,

following the previous literature using firm-level supply chain network data (e.g. Barrot and Sauvagnat (2016)),

we use uniform weight across multiple downstream companies as our benchmark. We confirmed robustness of

our result using three alternative weighting schemes. First, we used downstream firms’ initial sales as weights,

under the premise that relationship with large firms will be more important to suppliers compared to that with

small firms. Second, whenever we have information on percentage of supplier’s revenue arising from linkage

with a particular downstream company, we used that as linkage weight, while for the remaining missing cases,

we assigned uniform weight. Finally, we consider linkage weight constructed based on the assumption that each

downstream firm puts equal weights across suppliers. The results are robust to these alternative specifications,

reflecting the fact that around half of suppliers are connected to a single customer (making linkage weight

irrelevant for these firms). The result can be found in Table B.8 in the Appendix B.1.
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Table 2.1: Share of the Largest Firm in Each County

variable N mean sd p10 p50 p90

MaxShare 985 .0519 .0257 .0323 .0444 .0816

Note. This table shows the summary statistics of the share of the largest firm in each county in terms of sales:

MaxSharel =
maxi[Si,l,07]∑

i Si,l,07
, where l indicates a county and Si,l,07 is firm i’s 2007 sales in county l. We have 985

counties in our samples after combining county-level house price growth measure.

firms sell products to the households. Thus if supplier sale growth is affected by supplier-

specific demand shock, this can be interpreted as the evidence of upstream propagation

of household expenditure shocks through firm-to-firm linkages. Similarly, we construct

supplier-specific demographic controls which capture average demographic properties

faced by downstream firms of a given supplier.

In robustness section, we instrument firm-specific demand shock and supplier-

specific demand shock using firm-specific and supplier-specific housing supply elasticities

(Saiz (2010)), respectively, to tackle potential endogeneity of house price change. These

instruments are constructed in similar procedure as in contruction of firm-specific and

supplier-specific demand shocks.

2.3.4 Discussion on the Identification

Local house price change, which we use as a measure of local demand shock, is obviously

endogenous to local economic conditions. However, we argue that by transforming local

house price changes into firm-level, endogeneity concerns arising in cross-region variation

analyses largely become irrelevant. The main reason is that the firm-specific demand

shock we use features the Bartik-type property as each firm’s role in a particular regions

is negligible.

Suppose that there is an omitted local factor that jointly affects housing market

and consumption in particular county. That is, one might be concerned that both the

changes in house price growth and consumption growth at the county-level are driven
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by the county’s more exposure to “recession-prone” industries (see Mian et al. (2013) for

detailed discussion). However, as long as local house price change positively comoves

with local demand conditions, and as long as each firm’s influence on a particular

county is negligible, we can interpret our firm-specific house price change as firm-specific

“demand” shock. The only caveat is that firm-specific demand shock may not have

been entirely driven by local housing market condition per se.19 Table 2.1 shows a

summary statistics of the share of the largest firm (“maximum share”) in each county in

terms of sales.20 The mean and median is 5.2% and 4.4%, respectively, with more than

90% of counties in our sample having maximum share less than 9%. Note that these

ratios are calculated solely based on Nielsen sales. Thus, these numbers are plausibly

overestimated, implying the “actual” role of each firm in a particular county will be even

smaller. This verifies that each firm’s role in a particular county is negligible.

Also, precisely because of this small role of each firm in each county, our firm-specific

demand shock barely suffers from the reverse causality concern: firm’s characteristic

reversely affecting a particular county, generating comovement of local house price

change and firm’s sales growth. So we can interpret our firm-specific demand shocks as

shocks arising from local demand conditions, not the opposite direction.

2.4 Main Results

This section provides the main empirical results. We show that household expenditure

shocks affect downstream firms and propagate to their suppliers. More importantly,

we show that there is a substantial heterogeneity across downstream firms in terms of

elasticity of sales growth to the shock, and that downstream firms that are important in

the network structure tend to have larger elasticity to the demand shock. Therefore, our

estimated supplier-level elasticity turns out to be quantitatively large, reflecting larger

19We show the robustness of our result using the housing supply elasticity (Saiz (2010)) as an instrument in

Section 2.5.2.

20Formally, maximum share is defined by MaxSharel =
maxi[Si,l,07]∑

i Si,l,07
, where l indicates a county and Si,l,07

is firm i’s 2007 sales in county l.
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Table 2.2: Direct Effect of Demand Shocks to Downstream Firms

(1) (2) (3) (4) (5)
∆Sale (%) ∆Sale (%) ∆Sale (%) ∆Sale (%) ∆Sale (%)

∆HP (%) 0.297∗∗∗ 0.338∗∗∗ 0.314∗∗∗ 0.338∗∗∗ 0.459∗∗

(0.048) (0.052) (0.042) (0.049) (0.180)
Firm Controls - X - X X

Sector FE - - X X X

Sample Full Full Full Full Matched
Sales Share 100% 100% 100% 100% 39%
R2 0.003 0.054 0.065 0.109 0.193
Observations 18128 18128 18128 18128 1758

Note. Sectors are defined based on product groups in Nielsen Retail Scanner dataset. Firm controls include

log of initial sales and firm-specific demographic controls. Firm-specific demographic controls are weighted

average of county-level pre-recession variables averaged across counties with weights corresponding to firm’s

initial county-level sales (see Section 2.3.3 for details). The “full sample” indicates Nielsen-GS1 sample, and the

“matched sample” indicates Nielsen-GS1-Factset merged sample, where we do not restrict firms to have supply

chain relationship in 2007. “Sales Share” indicates ratio of total sales between the specified sample and the

Nielsen-GS1 sample. All standard errors are clustered at the sector level.

role of downstream firms with high elasticity in the network structure. All the summary

statistics can be found in the Appendix B.1.

2.4.1 Downstream-level Analysis

Table 2.2 shows the regression result of (2.3.1), using sample firms in the Nielsen-GS1

dataset. Column (1) shows the result without including firm-level controls and sector

fixed effect.21 There is a significant positive correlation between firm-specific demand

shocks and firms’ sales growth with estimated coefficient 0.29. In Column (2) and

Column (3), we either include firm-level controls such as log of initial sales and firm-

21We define sector of the downstream firms based on product groups in Nielsen Retail Scanner dataset.

Examples of product groups are “Baby food”, “Beer”, “Cosmetics”, “Glassware, Tableware”, “Laundry supplies”,

“Snacks”, “Paper products”, etc. If a firm has multiple product groups, we assign product group with the largest

sales share (in 2007) as its sector.
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Table 2.3: Direct Effect of Demand Shocks to Downstream Firms depending on Sample

(1) (2) (3)
∆Sale (%) ∆Sale (%) ∆Sale (%)

∆HP (%) 0.459∗∗ 0.673∗∗ 1.151∗∗

(0.180) (0.313) (0.546)
Firm Controls X X X

Sector FE X X X

Network Weighted - X

Sample Matched Restrict Restrict
Sales Share 39% 22% -
R2 0.193 0.260 0.364
Observations 1758 469 5399

Note. Sectors are defined based on product groups in Nielsen Retail Scanner dataset. Firm controls include

log of initial sales and firm-specific demographic controls. Firm-specific demographic controls are weighted

average of county-level pre-recession variables averaged across counties with weights corresponding to firm’s

initial county-level sales (see Section 2.3.3 for details). The “matched sample” indicates Nielsen-GS1-Factset

merged sample, where we do not restrict firms to have supply chain relationship in 2007, and the “restricted

sample” indicates Nielsen-GS1-Network dataset where we require firms to have supply chain relationship in

2007. “Sales Share” indicates ratio of total sales between the specified sample and the Nielsen-GS1 sample. All

standard errors are clustered at the sector level.

specific demographic controls (described in Section 2.3.3), or sector fixed effect. In

both specifications, the coefficients only slightly increases and remain highly statistically

significant. In Column (4), we include both firm-level controls and sector fixed effect.

The estimated coefficient (i.e. elasticity of sales growth with respect to the shock) is

given by 0.34, and is highly significant. This implies 1pp drop of average house price

change faced by a downstream firm leads to 0.34pp drop of its sales growth.

In Column (5), we run the same regression using the matched sample between

Nielsen-GS1 dataset and Factset Revere dataset. Approximately 10% of Nielsen-GS1

firms are matched with firms in the Factset Revere dataset (regardless of whether they

have network connections in 2007 or not). The matched sample accounts for 39% of

total sales in Nielsen-GS1 sample. When restricting our sample to the matched sample,

we get slightly higher elasticity of 4.6.
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Not all firms in the matched sample are reported to have network connection in

2007. Table 2.3 shows the regression result further restricting the sample firms to those

who have suppliers in 2007 (i.e. those who are appearing in our Nielsen-GS1-Network

dataset). These firms are directly connected to suppliers in our upstream-level regression.

Although the number of downstream firms in such sample reduces quite substantially,

our restricted sample still accounts for 22% of total sales in 2007 (calculated based on

the Nielsen-GS1 data), and 56% of total sales in 2007 in the matched sample. Column

(1) repeats the main regression result in the matched sample (Column (5) in Table

2.2). Column (2) shows the result using the restricted sample that have suppliers. The

estimated elasticity is now 0.67, which is larger than 0.46 in the matched sample and

0.34 in the full sample.

Notice that not all firms in the Nielsen-GS1 dataset as well as those in the matched

data have reported network connection in 2007. This is because not all firms who sell

products to the households are involved in supply chain relationship, or if involved,

such relationship is negligible inside the network structure to be captured by the data.

Therefore, we will interpret any un-captured network relationship using our data (if

exists) as “unimportant” relationship, in the sense that either the firm is not involved in

supply chain relationship, or if involved, such relationship is negligible to be captured

by the data.22

Results in Table 2.3 shed lights on the possibility of interaction between downstream

firm heterogeneity in terms of sensitivity to the demand shock and the network structure.

It indicates that firms that are “important” in the network structure tend to be more

sensitive to the shock. This is again confirmed by looking at Column (3), where we

repeat the analysis imposing frequency weight proportional to the number of suppliers

each downstream firm has. That is, if a firm has 5 suppliers, we assume there are 5

22Of course, this partially reflects the fact that our network data does not cover the universe of supply chain

relationship in the United States. However, even if our network data covered the universe such relationship,

firms that are not involved in supply chain relationship will not appear in the network dataset. In this sense, we

can interpret Nielsen-GS1 firms not appearing in the network data as firms not important inside the network

structure.
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Table 2.4: Upstream Propagation

(1) (2) (3) (4)
∆Sale (%) ∆Sale (%) ∆Sale (%) ∆Emp (%)

∆HP (%) 0.383∗∗ 0.618∗∗∗ 0.619∗∗∗ 0.518∗∗

(0.169) (0.209) (0.199) (0.199)
Firm Controls - X X X

Sector FE X X X X

Network FE - - X X

R2 0.188 0.214 0.219 0.198
Observations 659 659 659 627

Note. Sectors are defined based on NAICS 4-digit code. Firm controls include log of initial sales (log of

initial employment in Columns (5)-(6)), initial short-term liquidity, log of average downstream firms’ sales, and

supplier-specific demographic controls. Supplier-specific demographic controls are weighted average of firm-

specific demographic controls weighted based on linkage weights, and capture average demographic properties

faced by a given supplier’s downstream companies (see Section 2.3.3 for details). All standard errors are

clustered at the sector level.

duplicates of the firm in the economy and run the same regression. We obtain even

greater elasticity of 1.15, reflecting the fact that those with more suppliers tend to be

more sensitive to the shock.23 We will further discuss the potential driving factor behind

this result in Section 2.4.3.

2.4.2 Upstream Propagation

We now move on to the upstream-level analysis and show that demand shocks propagate

to suppliers. Table 2.4 shows the regression result of (2.3.2), where in the last column

we replace sales with employment. All four columns include sector fixed effect defined

by NAICS 4-digit code. Column (1) shows the result without including supplier-level

controls (except sector fixed effect). We find a significant positive correlation between

supplier-specific demand shocks and suppliers’ sales growth with estimated coefficient

23These results are not driven by the fact that we are restricting suppliers to the listed firms. The results

are similar even if we do not restrict suppliers to listed ones.
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0.38. Column (2) shows our benchmark result adding full set of supplier-level controls.24

Adding controls strengthen our propagation results with larger and highly significant

elasticity of 0.62. This implies 1pp drop of average house price change indirectly leads

to 0.62pp drop of supplier’s sales growth through firm-to-firm linkage with downstream

firms. In Column (3) we additionally control the number of downstream firms each

supplier has. Specifically, we divide supplier sample into quintiles based on the number

of downstream firms, and include this categorical variable as fixed effect. The estimated

elasticity to the shock barely changes, reflecting the fact that our results are not driven

by difference in the number of downstream firms. Columns (4) repeats the analysis

using employment instead of sales. We get statistically significant positive coefficient of

0.52, showing that household expenditure shocks not only affect suppliers in terms of

sales, but also affect employment through their effect on the downstream companies.

These results clearly show the existence of strong upstream propagation through

supply chain network. In Table B.8 in the Appendix B.1, we show the robustness of our

results using various linkage weighting schemes for shock construction in (2.3.7), and

also consider more disaggregated sector definition.

2.4.3 Downstream Firm Heterogeneity and the Network Structure: Why

Suppliers have Large Elasticity to the Transmitted Shock?

The supplier-level elasticity 0.62 to the transmitted shock turns out to be larger than the

average downstream-level elasticity to the direct shock ranging from 0.34-0.46 obtained

using the full Nielsen-GS1 sample or the matched sample (Table 2.2). This reflects

the fact that relatively more sensitive downstream firms tend to have larger role in

the network structure as can be verified in Columns (2) and (3) of Table 2.3. That

is, those who have network connection have relatively larger elasticity to the direct

shock, and among such firms, those with larger number of suppliers tend to have even

higher elasticity to the shock. Column (2) in Table 2.5 formally shows this by including

24Supplier-level controls include log of initial sales (log of initial employment in Columns (5)-(6)), initial

short-term liquidity, log of average downstream firms’ sales, and supplier-specific demographic controls.
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Table 2.5: What Make Firms More Sensitive to Shocks?

(1) (2) (3) (4)
∆Sale (%) ∆Sale (%) ∆Sale (%) ∆Sale (%)

∆HP (%) 0.334∗∗∗ 0.331∗∗∗ 0.367∗∗ 0.436∗∗∗

(0.050) (0.050) (0.146) (0.150)

Num. Supplier 0.000 0.007 0.007 0.006
(0.001) (0.004) (0.004) (0.005)

Num. Supplier × ∆HP 0.039∗ 0.038∗ 0.036
(0.022) (0.023) (0.023)

I(Mult.Mkt Firm) × ∆HP 0.211∗∗ 0.196∗∗

(0.095) (0.093)

Log(Sale) 07 × ∆HP -0.016 -0.025
(0.015) (0.016)

Num. County × ∆HP 0.0009∗∗

(0.000)
Firm Controls X X X X

Num. Local Mkt Controls X X X X

Sector FE X X X X

R2 0.112 0.112 0.112 0.112
Sample Full Full Full Full
Observations 18128 18128 18128 18128

Note. Sectors are defined based on product groups in Nielsen Retail Scanner dataset. Firm controls include

log of initial sales and firm-specific demographic controls. Firm-specific demographic controls are weighted

average of county-level pre-recession variables averaged across counties with weights corresponding to firm’s

initial county-level sales (see Section 2.3.3 for details). All columns additionally control the number of counties

firm generates sales and the multi-market indicator. All standard errors are clustered at the sector level.
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interaction between the number of suppliers and the firm-specific demand shock.

However, it turns out that it is not the number of suppliers itself that induces

higher elasticity of downstream firms involved in supply chain relationship. Instead,

We argue that this reflects disproportionately large role of multi-market firms inside

the network structure. In our companion paper (Hyun and Kim (2019)), we document

a positive regional spillover occurring in the economy through multi-market firms.25

That is, local demand shocks spillover to distant regions through multi-market firms’

market-linkage, where negative regional demand shock not only reduces sales in the

region of the shock origin, but also reduces sales in distant regions.26 This interesting

finding helps us understand why multi-market firms should have higher elasticity to the

shock: in the presence of positive regional spillover, a firm’s regional sales complement

each other, inducing firm-level sales to react more sensitively to the amount of average

demand shock. And it turns out that multi-market firms (i.e. more sensitive firms) have

larger role inside the network structure as well.

Columns (3) and (4) in Table 2.5 shows that multi-market firms are indeed more

sensitive to the shocks.27. In Column (3), we add two interaction terms with firm-specific

demand shock: one interacted with multi-market indicator, and the other with log of

initial sales. Consistent with the regional spillover story, we get a statistically significant

positive coefficient in front of interaction between multi-market indicator and the shock,

meaning that multi-market firms have larger elasticity to the shock. In Column (4), we

additionally introduce interaction between firm-specific demand shock and the number

25In the paper, we document (1) local demand shocks spillover to distant regions through multi-market firms’

market-linkage, where negative local shocks not only reduce sales in the origin of shocks but also reduce sales in

distant regions, (2) the spillover in sales is fully attributed to the net creation of products, not the existing

products, highlighting the role of multi-market firms’ product innovation or quality choosing decision.

26Recent papers in the Trade literature investigated similar type of spillovers in the context of international

trade. The empirical evidences are mixed: Berman et al. (2015) show a positive causal effect of changes in

firm-level exports on firm-level domestic sales, while Almunia et al. (2018) show the opposite causal relationship

between demand-driven changes in domestic sales and export flows.

27We define multi-market firm as a firm that generates sales from more than 5 counties (1st quartile of firms’

number-of-local-markets distribution)
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of counties firm generates sales. We get positive and statistically significant coefficients

in both multi-market indicator×shock interaction and the number of counties×shock

interaction terms. These results strongly suggest that the number of local markets is a

key factor determining firm-level sensitivity to the shock, with having multiple markets

inducing larger sensitivity to the demand shock.

Table B.7 confirms that downstream firms that have supply chain relationship

indeed have relatively larger number of local markets. The 1st quartile of the number of

local markets in the full sample is 5 (i.e. 25% of downstream firms generate sales in less

than 5 counties), while this number is 46 in the restricted sample.

In sum, supplier-level elasticity to the transmitted shock is large in magnitude,

reflecting the fact that multi-market downstream firms tend to be more important in the

network structure. This has an important implication since small number of influential

firms selling in many regions are not only more sensitive to the direct negative demand

shock but also has disproportionately large role in the network structure, potentially

influencing many upstream suppliers generating non-trivial aggregate effect.

2.5 Robustness Analysis

In this section, we conduct numerous robustness analyses to confirm our empirical

findings are driven by indirect spillover through the supply chain network. We first

show that our propagation result is not driven by shocks that directly affect upstream

suppliers’ establishments located in the same counties of the shocks’ origin. Also, we

show that our results are robust to instrumenting local house price change with the

housing supply elasticity (Saiz (2010)). Finally, we perform the Placebo analysis and

show that the Placebo network cannot generate the propagation result we find in our

empirical analysis
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Table 2.6: Robustness (Excluding Regions with Establishments)

- Upstream-level Regression

(1) (2) (3)
∆Sale (%) ∆Sale (%) ∆Sale (%)

∆HP (%) 0.628∗∗ 0.520∗∗

(0.247) (0.233)

∆HP (Exclude) (%) 0.457∗∗

(0.206)
IV - - X

First-stage F stat - - 1026.5
Firm Controls X X X

Sector FE X X X

Network FE X X X

R2 0.216 0.213 0.216
Observations 457 457 457

Note. Column (1) provides upstream-level regression based on Nielsen-GS1-Network-NETS dataset using the

original shock constructed by not excluding regions with establishments. Column (2) shows the regression using

the shock constructed by excluding the regions where supplier has establishments. Column (3) instruments the

original shock using excluded shock. Sectors are defined based on NAICS 4-digit code. Firm controls include

log of initial sales, initial short-term liquidity, log of average downstream firms’ sales, and supplier-specific

demographic controls. All standard errors are clustered at the sector level.

2.5.1 Excluding Regions with Establishments

One potential concern is that the local house price change, which we use as measure of

local household expenditure shock, may affect production of suppliers directly through

facilities located in the same regions where the shocks are originating. For example,

local house price change can be correlated with regional productivity, or may affect

financial condition of firms located in such region.

To tackle this concern, we further combine our dataset with the National Establish-

ment Time-Series dataset (NETS), from which we bring pre-recession establishments

location information of each supplier. We construct a supplier-specific demand shock by

leaving out regions where the supplier has establishments. Thus, the shock is constructed
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purely based on the regions where the supplier’s downstream firms generate sales and

the supplier does not have establishments.

Column (1) in Table 2.6 repeats the main upstream-level regression using suppli-

ers matched with the NETS data, where we use the original supplier-specific shock

constructed by not excluding regions with establishments. We get similar result as in

our main upstream-level analysis. Column (2) shows the regression using the shock

constructed by excluding the regions where supplier has establishments. We get esti-

mated coefficient of 0.46, which is slightly smaller but highly significant. Column (3)

instruments the original shock using excluded shock, and we get estimated coefficient of

0.52. Thus, we conclude that the propagation result is not driven by shocks directly

affecting suppliers through establishments located in the shock origin.

2.5.2 IV specification: Housing Supply Elasticity

Our firm-specific and supplier-specific demand shocks, which are constructed using

local house price change, can be endogenous to local economic conditions. However,

as we argued in Section 2.3.4, the Bartik-type feature of our shocks largely relieves

endogeneity concerns typically arising in regional variation analyses. Still, we verify the

robustness of our results by instrumenting firm-specific (and supplier-specific) demand

shocks by corresponding firm-specific (and supplier-specific) housing supply elasticity

(Saiz (2010)).28 Unfortunately, the Saiz instrument is not provided for all counties, so

we restrict counties to those Saiz instruments are available.29

Table 2.7 shows the regression result of (2.3.2), instrumenting firm-specific demand

shock with firm-specific Saiz instrument. Columns (1) and (3) show the result without

using Saiz instrument for respective sample. Interestingly, even restricting the counties

28Construction of firm-specific and supplier-specific housing supply elasticities follow the same procedure as

in construction of firm-specific and supplier-specific demand shocks.

29Nearly half of the counties included in our main analysis in Section 2.4 are dropped if we restrict counties

to those with Saiz instruments. This can be potentially problematic especially for our regression, since capturing

all demands arising from every region is crucial for constructing firm-specific demand shock. Thus, our result in

this section should be interpreted with caution.
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Table 2.7: Robustness (IV) - Downstream-level Regression

(1) (2) (3) (4)
∆Sale (%) ∆Sale (%) ∆Sale (%) ∆Sale (%)

∆HP (%) 0.347∗∗∗ 0.889∗∗∗ 0.429∗∗ 0.952∗

(0.046) (0.104) (0.170) (0.497)
IV - X - X

First-stage F stat - 1668 - 95.4
Firm Controls X X X X

Sector FE X X X X

Sample Full Full Matched Matched
R2 0.101 0.093 0.183 0.179
Observations 17519 17519 1738 1738

Note. Sectors are defined based on product groups in Nielsen Retail Scanner dataset. Firm controls include

log of initial sales and firm-specific demographic controls. Firm-specific demographic controls are weighted

average of county-level pre-recession variables averaged across counties with weights corresponding to firm’s

initial county-level sales (see Section 2.3.3 for details). Firm-specific Saiz instrument, is constructed by the same

procedure as firm-specific demand shock and demographic controls. The “full sample” indicates Nielsen-GS1

sample, and the “matched sample” indicates Nielsen-GS1-Factset merged sample, where we do not restrict firms

to have supply chain relationship in 2007. All standard errors are clustered at the sector level.

to those with Saiz instrument, the estimated coefficients are stable compared to Table

2.2. Columns (2) and (4) show the IV regression result. The estimated coefficients

increases to 0.89 for the full sample, and 0.95 for the matched sample. This may reflect

potential measurement error of the shocks, or may come from the fact that the “demand

shock” at the firm-level may not have been totally induced by local housing market.30

We interpret the coefficient as the follows: if we get rid of measurement errors and

restrict the source of local expenditure shock to that arising purely from local housing

market, then the estimated elasticities become larger with values 0.89-0.95.

Table 2.8 shows the regression result of (2.3.2), instrumenting supplier-specific

demand shock with supplier-specific Saiz instrument. Column (1) shows the result

30Still, this does not change the fact that we are capturing firm-specific “demand” shock arising from local

markets. See the discussion in Section 2.3.4.
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Table 2.8: Robustness (IV) - Upstream Propagation

(1) (2)
∆Sale (%) ∆Sale (%)

∆HP (%) 0.700∗∗∗ 1.182∗∗∗

(0.228) (0.428)
IV - X

First-stage F stat - 16.3
Firm Controls X X

Sector FE X X

Network FE X X

R2 0.236 0.230
Observations 612 612

Note. Sectors are defined based on NAICS 4-digit code. Firm controls include log of initial sales, initial

short-term liquidity, and supplier-specific demographic controls. Supplier-specific demographic controls are

weighted average of firm-specific demographic controls weighted based on linkage weights, and capture average

demographic properties faced by a given supplier’s downstream companies (see Section 2.3.3 for details).

Supplier-specific Saiz instrument is constructed by the same procedure as supplier-specific demand shock and

demographic controls. All standard errors are clustered at the sector level.

without instrument, and Column (2) shows the IV result. Again, IV regression generates

larger supplier-level elasticity to the shock with estimated coefficient 1.18.

Throughout the analyses, we conclude that our benchmark results in Section 2.4

are at best underestimating the true effect of local expenditure shock purely arising

from local housing market.

2.5.3 Placebo Test

To further guarantee that our results are capturing network spillover, we perform Placebo

test by constructing counterfactual network. Specifically, we randomize connections

across downstream and upstream firms, and run the regression in (2.3.2).31 We repeat the

31While performing the Placebo test, we restricted suppliers to those appearing in our main upstream analysis

(Section 2.4.2), and downstream firms to those having connections to these suppliers. Then we construct a

counterfactual network by randomizing network connections across these downstream and upstream firms.
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Table 2.9: Placebo Test - Randomizing Connection

(1) (2)
∆Sale (%) ∆Sale (%)

∆HP (%) (Randomized) -0.015
(0.221)

∆HP (%) (Randomized within Sector) -0.022
(0.193)

Firm Controls Yes Yes
Sector FE Yes Yes
R2 0.201 0.201
Observations 659 659

Note. Coefficients, standard errors, R2, and F stat are average of 500 Placebo Regressions. Sectors are defined

based on NAICS 4-digit code. Firm controls include log of initial sales, initial short-term liquidity, and supplier-

specific demographic controls. Supplier-specific demographic controls are weighted average of firm-specific

demographic controls weighted based on linkage weights, and capture average demographic properties faced by

a given supplier’s downstream companies (see Section 2.3.3 for details). All standard errors are clustered at the

sector level.

process for 500 times and report the average coefficients and standard errors, respectively,

based on the 500 Placebo regressions in Table 2.9. Column (1) shows that the elasticity

of supplier’s sales growth with respect to the Placebo supplier-specific demand shock is

negligible and statistically insignificant.

In Column (2), we additionally perform more demanding Placebo regression. We

consider counterfactual network constructed based on randomizing connections across

the downstream and upstream firms, where the randomization is performed within

supplier sector. That is, for each supplier sector, we collect downstream firms that have

at least one connection with suppliers in such sector. Then, among these upstream and

downstream firms, we randomize connection. This is more conservative in the sense

that each upstream firm is randomly assigned with downstream firms that have true

connection with some other suppliers in the same sector. That is, the counterfactual

network can be thought as a “plausible” network at the sector level. Again, we do not

find any evidence of upstream propagation under this counterfactual network.
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2.6 Network Model and Counterfactual Analysis

In this section, we incorporate our micro-level data with parsimonious network model to

assess the importance of supply chain network in propagating housing market disruption

during the Great Recession. The goal is to perform counterfactual analysis. Specifically,

we would like to evaluate how much observed decline of the output can be attributed to

the network propagation of housing market disruption, by considering counterfactual

economy without such propagation channel.

As our propagation occurs purely through firm-to-firm linkage, we abstain from

introducing explicit regional markets and regional demand shocks at the household level.

Instead, we assume that a representative household consumes ND different products

produced by ND downstream companies, respectively, and introduce exogenous demand

shocks directly to these firms. Then, the structure we impose can be readily mapped to

that in Acemoglu et al. (2016), who introduce firm-specific supply shock and firm-specific

demand in a static general equilibrium network model. Thus, our structure could be

thought as a special case of Acemoglu et al. (2016), with network structure calibrated

using our firm-level data. We will repeat the model structure in this section as an

illustration, but the detail can be found in Acemoglu et al. (2016).

2.6.1 Production and Network Structure

We start with a static perfectly competitive economy with N firms, where S denotes the

set of all firms. Each firm i ∈ S has a Cobb-Douglas production technology given by

yi = ezil
αli
i ΠN

j=1x
aij
ij (2.6.1)

xij denotes the quantity of goods produced by firm j used as inputs by firm i, li is labor,

and zi is a Hicks-neutral productivity shock (representing both technology and other

factors affecting productivity). We impose αli > 0 and aij ≥ 0 for all i, j, where aij = 0

implying j’s product not being used in i’s production. Also we assume constant returns
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to scale:

αli +
N∑
j=1

aij = 1 (2.6.2)

and following Barrot and Sauvagnat (2016), assign equal weight across suppliers in the

input-output matrix when a firm uses multiple firms’ products as factor inputs.32

Among N firms, there are ND number of downstream firms who directly sell

products to the households. We assume only the downstream firms directly sell products

to the households. Without loss of generality, we index i = 1, 2, ..., ND as downstream

firms and denote the set of downstream firms as SD. The set of the rest of the firms

(who do not sell products directly to the households) is denoted as SU ≡ S\SD.

As discussed in the beginning, we will not explicitly introduce regional markets and

regional demand shocks at the household level, but instead introduce exogenous demand

shocks directly to the downstream firms. Specifically, we introduce exogenous demand

shock Hi in the form of (downstream) firm-specific government spending (representing

household expenditure shocks directly affecting downstream product demand in general,

including those arising from housing market disruption). We will use the terminology ex-

ogenous demand shock and government spending shock interchangeably. By assumption,

only the downstream firms are hit by such shocks, and the market clearing condition for

each firm i is given by

yi = ci +
N∑
j=1

xji +Hi (2.6.3)

Our assumption implies if i ∈ SD,
∑N

j=1 xji = 0, and if i ∈ SU , ci = Hi = 0.

2.6.2 Households

A representative household has a utility function given by

U(c1, c2, ..., cN , l) ≡ γ(l)ΠN
i=1c

βi
i (2.6.4)

32That is, if a firm i has n suppliers (i.e. there are n elements in {j : xij > 0}), then aij =
1−αli
n

for all

j ∈ {j : xij > 0}.
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where βi ∈ [0, 1] designates the weight of good i with
∑N

i=1 βi = 1, and γ(l) is a decreasing

(differentiable) function capturing the disutility of labor supply. Our assumption that only

the downstream firms produce products that are directly consumed by the households

implies βi = 0 if i ∈ SU .

The government imposes a lump-sum tax, T , to finance its purchases (which is the

source of exogenous demand). Denoting the price of the output of firm i by pi, this

implies

T =
N∑
i=1

piHi (2.6.5)

where Hi = 0 if i ∈ SU .

Hence, the representative household’s budget constraint is given by

N∑
i=1

pici + T = wl (2.6.6)

where ci = 0 if i ∈ SU .

2.6.3 Upstream Propagation of Demand Shock

The derivation of equilibrium can be found in the Appendix B.3. We assume w = 1 and

also shut down the productivity shock, z = 0.

Define ỹi ≡ piyi, c̃i ≡ pici, and H̃i ≡ piHi. Notet that these variables are all in real

term as we are imposing w = 1. Define Ṽi ≡ c̃i + H̃i. Then it turns out that

ỹ = (I − AT )−1(c̃+ H̃)

= (I − AT )−1(Ṽ ) (2.6.7)

where

A =


a11 a12 · · · a1N

a21 a22 · · · a2N

...
... . . . ...

aN1 aN2 · · · aNN
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Table 2.10: Calibration Strategy: Benchmark

parameter meaning value source

w wage 1 Numeraire

λ labor disutility 2 lss = 0.33

αli
labor share (have suppliers) 0.45 Acemoglu et al. (2012)

labor share (not have suppliers) 1 Use only labor

κ shock normalizing factor 0.41 ∆
(∑N

i=1 Ṽi

)
= −5%

and for x ∈ {y, c,H, V }, x̃ is defined as x̃ ≡ (x̃1, ..., x̃N )T . Note that
∑N

i=1 ỹi and
∑N

i=1 Ṽi

indicate real gross output and real value added, respectively.

Equation (2.6.7) shows the upstream propagating nature of the demand shock. An

exogenous demand shock hitting a downstream firm i ∈ SD will not only affect firm i’s

output ỹi, but will also affect firm j’s output ỹj (where j ∈ SU) as long as firm j ∈ SU
is connected to firm i ∈ SD through the input-output structure reflected in (I − AT )−1.

2.6.4 Calibration

We define the steady state of the economy as Hi = zi = 0 for all i. For a given variable x,

we denote its steady state as xss. The structural parameters are calibrated following the

existing literature. We summarize our calibration strategy for the benchmark economy

that exhibit input-output linkages in Table 2.10, and that for the counterfactual in Table

2.11. We will clarify how we define counterfactual later in detail.

We directly map several components in the model using our micro-level data.

First, to better represent the United States economy, our downstream firms include all

Nielsen-GS1 firms, regardless of whether they have network connection or not. Those

who do not have network connection will simply use labor as the only factor input. In

addition, we not only bring suppliers who are directly connected to the downstream

firms (i.e. Nielsen-GS1 firms) but also bring suppliers of suppliers and etc. This allows

us to capture more complete structure of the network in the economy. At the end, we
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Table 2.11: Calibration Strategy: Counterfactual

parameter meaning value source

w wage 1 Numeraire

λ labor disutility 2 lss = 0.33

αli labor share 1 Use only labor

κ shock normalizing factor 0.41 Same value as in Benchmark

have 18128 downstream firms among which 479 firms have direct linkage to suppliers,

and 2782 upstream firms with direct or indirect linkages.33

To calibrate the household’s weight on each good, β ≡ (β1, ..., βN), we use down-

stream firms’ initial sales (normalized to sum up to one) as the weight. This is consistent

with what is predicted by the model (see equation (B.3.7) in the Appendix B.3). As we

assume only downstream firms sell products to the households, βi = 0 if i ∈ SU .

Finally, we directly map downstream firm-specific demand shocks in the data to

the model’s downstream firm-specific exogenous demand shock. Define

∆H̃i ≡ 2

(
H̃i

ỹssi + (ỹssi + H̃i)

)
(2.6.8)

where we assume zero shock at the steady state: H̃ss
i = 0 for all i. We assume

∆H̃i ∝ ∆HPD
i (Data) for i ∈ SD, and ∆H̃i = 0 if i ∈ SU . That is, firm i’s increase of

exogenous demand relative to its steady state output is proportional to the observed firm

i’s demand shock (where the growth rate is defined in the spirit of Davis et al. (1996)).

Formally, we assume ∆H̃i = ∆HPD
i (Data)× κ, where κ is a normalizing factor chosen

so that the model’s value added growth under the benchmark matches -5%, which is

the observed output growth between 2007-2009 in the aggregate data (measured by real

GDP per capita).

33The slight difference of the numbers of firms compared to those in our empirical analyses comes from the

fact that we are including companies that were dropped during the fixed effect regressions (i.e. in fixed effect

regressions, some sectors include a single firm which is dropped during the regression due to singularity.)
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2.6.5 Counterfactual Analysis

The counterfactual analysis is performed in the following way. Ideally, we want to sever

the network connection while not changing all other components. However, if we sever

linkages between downstream firms and the upstream firms (which implies imposing

αli = 1 for all i ∈ S), then firms in SU face zero demand and get excluded from the

economy. That is, a large number of firms in the economy will be mechanically dropped.

Therefore, in our counterfactual analysis, while severing firm-to-firm linkages, we

additionally assume that firms in SU now sell products directly to the households with

sales proportional to those in the benchmark economy. That is, the household’s weight

on each good, β ≡ (β1, ..., βN), is modified so that it equals the vector of steady state

sales of all firms, ỹss, in the benchmark economy (again, normalized to sum up to one).

Thus across two economies, each firm’s relative size (measured by firm sales over the

total gross output) at the steady state is identical.

Our objective is to compare the growth rates of the real value added (from its

steady state value) across the benchmark and the counterfactual. As in our empirics,

we define growth rate as in Davis et al. (1996): ∆x ≡ 2
(
x−xss
xss+x

)
.

2.6.6 Results and Interpretation

Table 2.12 shows the results from the counterfactual analysis. In the benchmark economy

with the firm-to-firm linkages, the output growth (captured by the value added growth)

is matched to be -5%, which corresponds the observed aggregate output growth (real

GDP per capita) between 2007-2009 (again calculated based on Davis et al. (1996)). In

the counterfactual economy, the output growth becomes -4.1%, which is substantially

smaller in magnitude. This shows that approximately 18% of observed output growth

can be explained by the supply chain network linkages under demand shocks.

This result is striking if one takes into account that only around 500 firms among

18000 have either direct or indirect network linkages with suppliers. However, these

500 firms are not only “important” in the network structure (in the sense that they are

involved in supply chain relationship), but also turn out to be relatively large, accounting
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Table 2.12: Counterfactual Analysis

Symbol Benchmark Counterfactual Description

lss 0.33 0.33 Labor (steady state)∑N
i=1 Ṽ

ss
i 0.33 0.33 Value Added (steady state)(∑N

i=1 H̃i

)
/
(∑N

i=1 ỹ
ss
i

)
-6% -6%

Average Demand Shock

faced by firms(∑N
i=1 H̃i

)
-2.4% -2.0% Total Demand Shock

∆
(∑N

i=1 Ṽi

)
-5% -4.1% Value Added Growth

∆l -5% -4.1% Labor Growth

Note. Note that w = 1 and thus all expressions above are in real terms. Value added of firm i, Ṽi, is defined by

Ṽi ≡ pici + piHi = c̃i + H̃i. All growth rates are calculated based on Davis et al. (1996): ∆x ≡ 2
(
x−xss
xss+x

)
.

24% of value added in the benchmark economy. This means that small number of large

firms that are important in the network structure could play quantitatively large role at

the aggregate level.

Also, note that quantitatively larger drop of output growth in the benchmark

economy is a direct consequence of larger total demand shock it faces (-2.4%) relative to

that of the counterfactual (-2.0%). That is, even though the average size of demand shock

each firm faces,
(∑N

i=1 H̃i

)
/
(∑N

i=1 ỹ
ss
i

)
, are identical between the two economy, supply

chain network magnifies total demand shock in the benchmark economy. This implies

that amplification through supply chain network essentially works through introducing

“additional” shocks to (upstream) firms that otherwise would not have experience if

there were no firm-to-firm linkages.

2.7 Conclusion

We showed that housing market disruption during the Great Recession transmitted

upstream through supply chain network generating quantitatively large effect at the

aggregate level. Using a unique micro-level data, we provided direct evidence that
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household expenditure shock not only affected downstream firms but also transmitted

to their suppliers with quantitatively large elasticity at the supplier-level. We showed

that large supplier-level elasticity reflects heterogeneous response of downstream firms

to the shock and its interaction with the network structure, with downstream firms

having higher elasticity tend to have larger role in the network structure. To assess the

importance of such propagation, we built a parsimonious network model calibrated to

match the micro-level data, and showed that approximately 18% of the observed drop

in the aggregate output can be attributed to the propagating role of the supply chain

network. Our counterfactual analysis highlights the role of small number of “important

firms” in the network structure in generating sizable aggregate effect.
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Chapter 3

Business Cycles with Input Complementarity

Jungsik (Jay) Hyun1

3.1 Introduction

Standard business cycle models make strong a priori structural assumptions about the

supply side or the shape of the production function. The most widely used production

function in macroeconomics models is the Cobb-Douglas production function. Despite its

convenient tractable features, this production function imposes an excessively restrictive

structure on how firms substitute their inputs (elasticity of substitution), the productivity

of each input (marginal product of input) and the productivity of all inputs together

(returns to scale). This production function was often justified with the Kaldor (1957)

growth facts, but the recent decline of the labor share (Karabarbounis and Neiman

2014) calls this justification into question. Many researchers acknowledge this limitation

and have started to adopt a more general Constant Elasticity of Substitution (CES)

production function, but even this production function has important limiting properties:

one single constant parameter governs the elasticity of substitution among inputs and

returns to scale are assumed to be constant and fixed over time.

1This is a collaborated project with Ryan Kim, my former colleague at Columbia University who now joined

Johns Hopkins SAIS.
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We first empirically assess the plausibility of these restrictions by imposing and

estimating a flexible Translog production function (Christensen et al. 1973, 1975).

Compared to a CES, this function is another generalization of a Cobb-Douglas production

function but allows more flexibility in input substitution, the marginal product of input,

and returns to scale. The most important drawback of this production function, however,

is that there are too many parameters to estimate with the limited variation in the

data, precisely due to its flexible structure.2 Instead of estimating all parameters in the

production function, we utilize the first-order condition of firms for a particular input

to estimate part of the production function to avoid this problem. We choose energy

input to mitigate concerns related to the estimation and use panel data techniques with

detailed industry-level data to recover the efficiency of energy input.

Through our estimation, we find a strong complementarity between energy and labor

that leads to procyclical time-varying returns to scale, which goes beyond conventional

production functions. The idea of time-varying returns to scale sounds striking yet

simple. It reflects the idea that in boom periods, when firms employ more of each input,

there are synergies among these inputs that lead to larger aggregate returns to scale

compared to the periods of recession. A flexible Translog production function allows

this complementarity-induced change in returns to scale, especially between labor and

energy, as we identified in our framework. Note that the complementarity we found is

very different from what is in the Leontief production function, which restricts returns

to scale to be constant and invariant.

To integrate our empirical analysis into the business cycle model, we propose a

normalized Translog production function that reflects the complementarity-induced

procyclical returns to scale we find in the data, and, at the same time, being compatible

with the balanced growth path. To capture the essence of the empirical analysis in

the model, we only allow one additional parameter in the conventional Cobb-Douglas

production function. This single parameter, which is mapped from our empirical analysis,

2It is also difficult to calibrate parameters given that there is no previous work that integrates an aggregate

Translog production function into the business cycle model.
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governs both the degree of complementarity between energy and labor and the cyclicality

of returns to scale. To avoid making firms choose their own returns to scale, we introduce

these factors as externalities for individual firms’ optimization conditions, similar to

what has been done in the previous literature that assumes increasing returns to scale.3

Armed with our new production function, we find that a simple business cycle model

that relies on neither nominal rigidity nor countercyclical markup can generate strikingly

consistent aggregate variable dynamics caused by demand shock.4 It is well-known

that a standard neoclassical model without nominal rigidity or countercyclical markups

generates countercyclical real wages, capital, investment, and labor productivity with

respect to demand shock (e.g., government spending shock), which is inconsistent with

the business cycle dynamics if one believes a demand shock is a main source of business

cycle fluctuation. Instead of incorporating markup countercyclicality, for which there is

mixed empirical evidence,5 we rely on complementarity-induced procyclical returns to

scale to generate strong fluctuation in input demand caused by demand shock. This

fluctuation in input demand leads to a favorable dynamic in aggregate variables with

respect to all standard demand shocks, including changes in government spending, taste,

and impatience.

3The assumption that individual firms take returns to scale of the economy as a given makes our model

similar to internal increasing returns to scale models with monopolistic competition. See Benhabib and Farmer

(1994) for a detailed explanation of internal and external increasing returns to scale.

4We assume monopolistic competition without nominal rigidity or countercyclical markup (Blanchard and

Kiyotaki (1987); Benhabib and Farmer (1994)), similar to what has been done in the increasing returns to scale

literature. Our results do not change if we make a perfect competition assumption with mild decreasing returns

to scale at the steady state. Either monopolistic competition or decreasing returns to scale (at the steady state)

is needed to make our model internally consistent. We assume only a negligible degree of price-cost markup

(2%) in our model, so our benchmark monopolistic competitive economy with a normalized Translog technology

can be interpreted as an “approximated” perfect competitive economy, and is thus directly comparable to a

standard RBC model with a conventional Cobb-Douglas technology.

5The countercyclicality of markup plays a central role in New Keynesian models. Some papers find that the

markups are countercyclical (e.g., Rotemberg and Woodford (1991, 1992); Christiano et al. (2005); Smets and

Wouters (2007); Ravn et al. (2006); Bils et al. (2014)) while others find that markups are procycylical (e.g.,

Nekarda and Ramey (2013); Hall (2013); Kim (2016); Stroebel and Vavra (2019)).
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To the best of our knowledge, this is the first paper to investigate the role of

time-varying returns to scale in a business cycle framework. Our paper contributes to a

growing literature that generalizes a conventional Cobb-Douglas production function

(Antras (2004); Chrinko (2008); Karabarbounis and Neiman (2014); Oberfield and Raval

(2014); Raval (2015); Atalay (2017); Koh and Santaeulàlia-Llopis (2017)). Most of this

literature rejects a Cobb-Douglas production functional form assumption and finds

complementarity among inputs.6 Our empirical analysis complements this literature

by generalizing a Cobb-Douglas production function and finds complementarity among

inputs. One key difference is that we use a Translog production function that allows

time-varying returns to scale. To the best of our knowledge, we are the first to build up

a dynamic stochastic general equilibrium (DSGE) model with a Translog production

function.

Our modeling techniques and results are closely related to the literature that

incorporates increasing returns to scale in business cycle analysis (Benhabib and Farmer

(1994, 1996); Schmitt-Grohé (2000); Benhabib and Wen (2004)). One of the biggest

challenge in this literature is the weak empirical support (Basu and Fernald (1997, 2001);

Basu and Kimball (1997)). Our empirical analysis and theoretical model do not violate

the returns to scale results in Basu and Fernald (1997) as our production function

features constant returns to scale on average (i.e. at the steady state), and is fully

consistent with Basu and Kimball (1997) emphasis on the role of capital utilization since

one interpretation of the energy input is a capital utilization.7 The main conclusion is

similar to that of Bai et al. (2012), who integrate product-market search friction into

standard neoclassical model and generate plausible business cycle dynamics with respect

to demand shocks.

The remainder of this paper is structured as follows. Section 3.2 discusses the

empirical analysis, data, and results. Section 3.3 presents the normalized Translog

6One notable exception is Karabarbounis and Neiman (2014), who find that labor and capital are substitute;

however, in estimating their parameters, they study long-term trends rather than business cycle movements.

7Energy or electricity is often used as a proxy for capital utilization. See, e.g., Burnside et al. (1995).
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production function used in our business cycle models and illustrates the key mechanisms.

Section 3.4 presents a simple neoclassical model with our proposed production function

and shows the business cycle dynamic following demand shocks. Section 3.6 concludes.

3.2 Empirical Analysis

In this section, we estimate production function coefficients under the Translog pro-

duction functional form assumption. We first present the data we use to estimate

parameters, followed by our framework to recover the parameters and our estimated

results.

3.2.1 Data

This paper uses annual six-digit North American Industry Classification System (NAICS)

industry-level data from the NBER-CES Manufacturing Industries Database. This

database records detailed information on 473 manufacturing industries from 1958 to

2009. The information is compiled from the Annual Survey of Manufacturers and the

Census of Manufacturers. The variables in this database include gross output (value of

shipment), value added, and 5-factor inputs (production worker, non-production worker,

capital, material, and energy) for each industry over time. These data also records

deflators for output, material, energy, investment, and wage bills for production workers

and total employees. We report our summary statistics in Appendix B.1, and a more

detailed explanation of this database can be found in Bartelsman et al. (2000).

The biggest advantage of these data over the aggregate data is that they allow us

to exploit both time-series and cross-sectional variation, along with corresponding panel

data techniques, to estimate production function parameters. This feature is especially

important to estimate a Translog production function, which has excessive parameters

to estimate. These data covers more than 50 years with five different disaggregated

inputs, suitable for studying business cycle dynamics than are more detailed micro-level

data with shorter time spans.
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3.2.2 Empirical Framework

Estimating the production function with a Translog production is a key challenge for this

project. Because of its flexible structure, there is an excessive number of parameters to

estimate in this production function. For example, for the five input variables available

in our data, we must estimate five parameters with a Cobb-Douglas production function

and, six parameters with a CES production, but twenty parameters with a Translog

production function. Even with our detailed industry-level data for many years, it

is difficult to consistently estimate all twenty parameters in the Translog production

function.

To overcome this challenge, we exploit a firm’s first order condition to estimate key

parameters that we can consistently estimate rather than estimating a full Translog

production function.8 Firms’ optimization conditions deliver the relationship between

the marginal product of a particular input and its price. Using this relationship, one can

allow the flexible form for the efficiency of this input to estimate parameters using the

limited variation in the data. The remainder of this section discusses how we implement

this approach.

For simplicity, consider a following Translog production function with only two

inputs, labor and capital:

ln(Y ) = ln(A) + βl ln(L) + βk ln(K)︸ ︷︷ ︸
Cobb-Douglas

+ βkl ln(L) ln(K) + βll ln(L) ln(L) + βkk ln(K) ln(K)︸ ︷︷ ︸
second-order terms

(3.2.1)

where Y is output, A is productivity, L is labor, and K is capital. The first part of the

production function is an entirely conventional Cobb-Douglas function. One can view

this function as a first-order approximation of a general production function. A Translog

8The other way to proceed is either to reduce the number of inputs or to impose more structure on the

production function. Reducing the number of inputs would worsen the problem of identification, as we are

likely to omit the important variables that could be correlated with our regressors. Imposing more structure on

the production function is inconsistent with our original motivation to relax the heavy parameterization of the

production function.
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production function is a simple extension, allowing both first- and second-order terms.

Thus, a Translog production function can be thought of as a second-order approximation

of a general production function. One can see that assuming βlk = 0, βll = 0, βkk = 0

recovers a Cobb-Douglas production function.

One can rewrite the above production function with five different inputs available

in our data:

ln(Y ) = ln(A) +
5∑
i=1

βi ln(V i)︸ ︷︷ ︸
Cobb-Douglas

+
5∑
i=1

∑
j≤i

βij ln(V i) ln(V j)︸ ︷︷ ︸
second-order terms

(3.2.2)

where V i is one of five different inputs indexed by i (production worker, non-production

worker, capital, material, and energy).

The simplest way to recover the parameters in the above equation is to run a

regression based on equation (3.2.2), treating productivity as a residual. This approach,

however, has two key problems. First, there are too many parameters to estimate, which

is extremely demanding in terms of the variation in the data. Second, flexible inputs

are likely to be correlated with productivity, generating inconsistent estimates of the

parameters.9

To avoid the two concerns listed above, we exploit a firm’s first-order condition.

Without loss of generality, all firms choose a particular input V 1 to solve the following

cost-minimization problem with a Translog production function:

min
V 1

W 1V 1 +
5∑
i=2

W iV i

s.t. ln(Y ) = ln(A) +
5∑
i=1

βi ln(V i) +
5∑
i=1

∑
j≤i

βij ln(V i) ln(V j)

whereW i is the nominal price of input V i. The problem is written such that we suppress

the expression that does not have a particular input V 1 for the cost function. Forming

9Despite these problems, we still run a regression based on equation (3.2.2) with various methods, including

demeaning and Olley and Pakes (1996). Our results are generally consistent with our main results that use

first-order condition. The results are available upon request.
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a Lagrangian, taking derivatives with respect to V 1, and dividing both sides by output

price yields the following first order condition:

W 1

P︸︷︷︸
real input price

=
1

µ

[
β1 + 2β11 ln(V 1) +

5∑
i=2

βi1 ln(V i)

]
Y

V 1︸ ︷︷ ︸
marginal product of input

(3.2.3)

where µ is a wedge between real input price and the marginal product of input. Note

that assuming βi1 = 0 for all i = 1, ..., 5 recovers the conventional first-order condition

under the Cobb-Douglas production function. From now on, we simplify the notation

by using the β′11 ≡ 2β11 and β′1i ≡ β1i for all i = 2, ..., 5.

By multiplying V 1

Y
on both sides and rearranging terms, we get the following

expression:

s1 =

[
β1 +

∑5
i=1 β

′
i1 ln(V i)

]
µ

(3.2.4)

where s1 ≡ W 1V 1

PY
. The left-hand side is the input share out of total sales, and the

right-hand side is the efficiency of input V 1 divided by the wedge, µ. The term[
β1 +

∑5
i=1 β

′
i1 ln(V i)

]
is an output elasticity with respect to input V 1, which is a

unit-free measure of the marginal product of input.

In the next section, we utilize equation (3.2.4) to estimate parameters associated

with the Translog production function. Our goal is to estimate β′i1 for all i to better

understand substitutability and complementarity among inputs.

3.2.3 Estimation

To take the equation (3.2.4) to the data, we allow input share (s1), wedge (µ), and all

inputs (V i) to vary across industry and time:

s1
jt =

[
β1 +

∑5
i=1 β

′
i1 ln(V i

jt)
]

µjt

where j is industry and t is time. To make the above equation linear in parameters,

we log-linearize the above equation around the steady state to recover the following
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equation:

ŝ1
jt =

5∑
i=1

{
β′i1
µs1

}
V̂ i
jt − µ̂jt (3.2.5)

where x̂ denotes the log-deviation from the steady-state value of variable x, and µs1 =

β1 +
∑5

i=1 βi1 ln(V i). We assumed that the steady-state values of µ and s1 do not depend

on the industry. The empirical counterpart of the above equation we use is the following:

s̈1
jt =

5∑
i=1

δi1V̈
i
jt − µ̈jt (3.2.6)

where ẍjt = lnxjt − 1
J

∑J
j=1 lnxjt for variable x. We exploit the panel data to detrend

each variable by subtracting the time-specific component across the industry.

Because s1
jt and V i

jt are observed in the data, we can use the above equation to

run a regression. The idea of estimating parameters βi1 is to regress ŝ1
jt on all five

inputs V̂ i
jt and to treat wedges µ̂jt as residual based on equation (3.2.6). Based on the

above equation, we can identify δi1 ≡ βi1
µs1

and recover βi1 by calibrating µs1. Given that

minimizing with respect to each input delivers equation (3.2.6) for each input, we can,

in principle, run a regression for five different equations that corresponds to five different

input shares.

There are two crucial problems, however, with running a regression based on the

above equation. First, the wedge might contain components that are possibly correlated

with the inputs we allow in the equation above, generating the confounding relationship.

For example, the wedge term may reflect adjustment costs or price-cost markup, which

are possibly correlated with the input variables. Second, since the left-hand side variable

has input V 1 in s1, there is a mechanical correlation between the left-hand side variable

and the right-hand side variable. This will induce the estimated coefficient to be positive

mechanically.

To address the first concern about the confounding relationship, we only choose

energy input as a choice variable (V 1) and estimate using just this particular input. The

utilization of energy input is less likely to suffer from concerns such as adjustment cost

and monopsony. In addition, we demean our variable across time within industry to get
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rid of any industry-specific component in our variables that could potentially correlate

with the wedge component. The demeaning leads to the following empirical model:

....
s 1
jt =

5∑
i=1

δi1
....
V

i
jt −

....
µ jt (3.2.7)

where ....x jt = ẍjt−
(

1
T

∑T
t=1 ẍjt

)
for variable x. Finally, we use lagged double-demeaned

input prices as instrumental variables to generate plausibly exogenous variation across

inputs that are unlikely to be correlated with the remaining wedges,
....
µ jt. Our instru-

mental variable strategy also addresses the second concern, as it will generate variation

that does not lead to a mechanical correlation of variables.

It is useful to discuss identification with equation (3.2.7) to understand what

variation in the data identifies βi1. Ideally, we need random variation in inputs that

affect the share of energy. For example, if the share of energy input increases with

an exogenous increase in labor input, we interpret this relationship as an increase in

energy efficiency due to the labor input under the Translog production functional form

assumption. In this case, energy and labor input are complements, and the coefficient

βi1 captures this complementarity. The exogenous variation in inputs stem from lagged

input prices, and with demeaning, we only need to assume that last year’s idiosyncratic

input prices affect this year’s input share through this year’s idiosyncratic input usage,

not through this year’s idiosyncratic wedge to identify the parameters of interest.

3.2.4 Estimation Results

Table 3.1 presents the estimated parameters based on equation (3.2.7), highlighting

the complementarity between energy and production worker. Based on column (1),

we find that energy input follows the law of diminishing returns and that most other

inputs, especially production workers, are complements to energy. First, the coefficient

in front of energy, β1, is negative. This states that energy input becomes less efficient

as a firm uses more energy, thereby capturing the law of diminishing returns to energy.

Second, coefficients in front of inputs other than non-production workers are positive,

implying that energy becomes more efficient as a firm uses more of these inputs. This
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Table 3.1: Elasticity (θejt) estimation based on equation (3.2.7)

Dependent Variable: ....s ejt

IV (
....
W

k
j,t−1,

....
W

k
j,t−2) OLS

(1) (2) (3) (4) (5)

energy −0.56∗∗ −0.4∗∗ −0.4∗∗ 0.85∗∗∗ 0.85∗∗∗

(0.23) (0.16) (0.16) (0.03) (0.03)

material 0.17 0.32∗∗ 0.29∗ −0.41∗∗∗ −0.42∗∗∗

(- energy) (0.22) (0.15) (0.16) (0.03) (0.03)

labor (p) 1.69∗∗∗ 1.41∗∗∗ 1.33∗∗∗ −0.33∗∗∗ −0.33∗∗∗

(0.45) (0.31) (0.29) (0.03) (0.03)

labor (np) −0.59∗ −0.45∗ -0.39 −0.12∗∗∗ −0.12∗∗∗

(0.33) (0.26) (0.26) (0.02) (0.02)

capital 0.51 −0.03

(0.44) (0.02)

output price -0.03

(lagged) (0.1)

obs 23,220 23,220 23,220 24,166 24,166

J-test 6.04 6.76 8.73

(p-value) (0.3) (0.34) (0.19)

Note. The regression result based on equation (3.2.7): ....s ejt =
∑K
k=1 βk

....
V
k
jt −

....
µ jt. Columns (1), (2) and (3)

show the regression result with instrumental variables, and (4) and (5) show the OLS result. Five different

inputs are used in this regression: energy, material that excludes energy, non-production worker, production

worker, and capital. All inputs and lagged input prices are logged and then double-demeaned across industries

and across time. Standard errors in parentheses are clustered on the NAICS industry code. J-test refers to

Hansen’s J-statistics for overidentifying restriction. *, **, and *** indicate significance at the 0.1, 0.05, and

0.01 levels, respectively.
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states that these inputs are complements to energy. In particular, the coefficient in

front of production worker is economically and statistically significant, implying that

it is a strong complement to energy input.10 Non-production worker is a substitute

since the coefficient of a non-production worker is negative, but the result is marginally

statistically significant with a t-statistics of 1.79.

Controlling the lagged output price does not change the result as shown in column

(3). In particular, the coefficient in front of the lagged output price is negligible and not

statistically significant, implying that potential persistency in wedges is unlikely to cause

inconsistency in our estimates.11 Columns (1) and (4) include capital in the regression,

whereas (2) and (5) exclude capital; however, the estimated coefficient of capital is

neither economically nor statistically significant. Finally, notice that all coefficients

are statistically significant except the capital input coefficient. This result implies that

we reject constant θejt, or a Cobb-Douglas production functional form assumption with

respect to energy input.

3.2.5 Returns to Scale Cyclicality

The estimated coefficients inform us about the returns to scale of the United States

production. Formally, returns to scale with our production function is defined as follows:

γ(V 1
jt, ..., V

5
jt) ≡

∂ ln(Y (λV 1
jt, ..., λV

5
jt))

∂ ln(λ)

∣∣∣∣∣
λ=1

=
5∑

k=1

[
βk +

5∑
i=1

βik ln(V i
jt)

]

where γ(V 1
jt, ..., V

5
jt) measures the percentage increase in output from one percent increase

in all inputs.12 Under the conventional Cobb-Douglas production function, γjt is constant

10If we only allow labor input instead of both production worker and non-production worker, we still find

that labor input is a strong complement to energy input.

11We treat lagged output price as a control in our regression, but making the lagged output price endogenous

and using lagged input prices as instruments does not change the result.

12Consistent with the previous section, we redefined 2βkk as βkk for notational simplicity.
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across industry j and time t and equal to
∑5

k=1 βk. In this case, γ > 1 refers to increasing

returns to scale, γ = 1 refers to constant returns to scale, and γ < 1 refers to decreasing

returns to scale. Once we allow a more flexible production function such as a Translog

production function, γjt need not be constant and depends on inputs.

The insight from Hall (1990) and Basu and Fernald (1997) allows our parameter

estimates to inform on the cyclicality of returns to scale. Suppose we derive equation

(3.2.4) for all five inputs: skjt =
[βk+

∑5
i=1 βik ln(V ijt)]
µjt

for all k. Rearranging the equation

and summing up across k, we have γjt ≡
∑5

k=1

[
βk +

∑5
i=1 βik ln(V i

jt)
]

= µjt
∑

k s
k
jt.13

Because
∑

k s
k
jt is observed in the data and ln(µjt) can be recovered as a residual from

our main regression, we can assess the cyclicality of returns to scale parameter.14 Table

?? presents the regression result based on ∆l̂n(γjt) = λj + λt + γ1∆ ln(vshipjt) + εjt.

Column (1) presents regression results based on γjt recovered from markups esti-

mated in the previous section. The coefficient is positive, and it is both economically

and statistically significant, implying that returns to scale is strongly procyclical.

13We are assuming that the wedge µjt does not depend on particular factor inputs k. This is a common

assumption in macroeconomic literature and consistent with canonical DSGE models without adjustment costs.

If we introduce factor-specific adjustment cost, the formula becomes

γjt ≡
5∑
k=1

[
βk +

5∑
i=1

βik ln(V ijt)

]

= µjt
∑
k

(
skjt + φkjt

)
where now µjt is the common component of wedge and φkjt is the factor-specific component of wedge. As

discussed before, energy input (k = 1) is less likely to suffer from concerns such as adjustment cost, and thus we

can still recover the common wedge µjt from a residual of our main regression under the assumption of φ1
jt = 0.

Therefore, as long as φkjt for k ≥ 2 has tendancy to be procyclical (or at least acyclical), our procyclical returns

to scale result will be strengthened. This turns out to be the case for the labor input adjustment as discussed

in Rotemberg and Woodford (1999).

14We can only assess cyclicality γjt and cannot recover γjt parameters because wedges (or residuals) are

only identified up to constant.
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Table 3.2: Returns to Scale Cyclicality

(1) (2) NR (2013) (3) BKM (2014) (4) (5)

̂ln(γjt)

ln(θjt) 1st order poly constant constant constant CES

V 1
jt energy labor material energy energy

∆ ln(vshipjt) 1.08 0.29 −0.11 0.40 0.31

[1.01, 1.14] [0.26, 0.31] [-0.13, -0.10] [0.36, 0.43] [0.28, 0.33]

industry FE Yes Yes Yes Yes Yes

year FE Yes Yes Yes Yes Yes

R2 .3238 .3157 .1629 .1813 .2021

obs 23,693 23,694 23,694 23,694 23,694

ργ,y 0.49 0.49 −0.35 0.26 0.24

[0.46, 0.51] [0.47, 0.52] [-0.38, -0.32] [0.24, 0.29] [0.22, 0.27]

Note. The regression result based on the following equation: ∆ ̂ln(γjt) = λj + λt + γ1∆ ln(vshipjt) + εjt.

Column (1) shows the regression result based on γjt constructed from the estimated wedges. Column (2)

recovers γjt by assuming that the wedges are equal to the inverse labor shares as in Nekarda and Ramey

(2013). Column (3) recovers γjt by assuming that the wedges are equal to the inverse material share as

in Bils et al. (2014). Column (4) shows the result based on the wedges equal to the inverse energy shares

assumption and column (5) shows the result based on the estimated wedge with a CES production function

assumption. The wedges based on the CES production function are estimated using constrained regression and

double-demeaning techniques with lagged double-demeaned input prices as instruments. The 95% confidence

intervals are constructed with the standard errors that are cluster bootstrapped based on the industry with

5000 repetitions. ργ,y = Corr(∆ ̂ln(γjt),∆ ln(vshipjt)) is reported separately.
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3.3 Normalized Translog Production Function

This section proposes a production function, the normalized Translog production function,

that captures the key insight in our empirical analyses. The proposed production

function exhibits input complementarity that leads to procyclical returns to scale as in

our empirical analyses in the short run, fSR, while it collapses into the conventional

constant returns to scale in the long run, fLR.15

Reflecting the important role of energy input in our empirical analysis, we explicitly

consider energy as third factor input in addition to capital service and labor. We denote

capital service, labor, and energy inputs as Ks, L, and E, respectively, where we use

subscript “ss” to indicate steady state of those variables. The productivity is denoted

by εa, where we normalize its steady state level to unity (εass = 1). We use lowercase

letters to indicate variables normalized by their steady state values : kst ≡
Ks
t

Ks
ss
, lt ≡ Lt

Lss
,

et ≡ Et
Ess

.

Our production technology is defined by

Short-run : Yt = fSR (kst , lt, et; Φt) · fLR (Ks
ss, Lss, Ess; Φ)

Long-run : Yss = fLR (Ks
ss, Lss, Ess; Φ)

(3.3.1)

where

fSR (kst , lt, et; Φt) ≡ εat · (kst )αk · l
αl+βellog ẽt
t · eαe+βellog l̃t

t

(
=

Yt
Yss
≡ yt

)
fLR(Kss, Lss, Ess; Φ) ≡ (Ks

ss)
αkLαlssE

αe
ss

(3.3.2)

with

Φt ≡ [αk, αl + βellog ẽt, αe + βellog l̃t]
′

Φ ≡ [αk, αl, αe]
′

(3.3.3)

Here, l̃t and ẽt indicate cross-sectional average of lt and et, respectively, which individual

firms take as given.

15Distinguishing short-run and long-run production functions could also be found in Cantore et al. (2015)

and Koh and Santaeulàlia-Llopis (2017) in the context of CES technology.
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As in Cantore et al. (2015), the short-run production function, fSR, is expressed as a

deviation from the long-run (i.e. steady state) production function, fLR. In the function,

Φt is a vector of endogenous parameters that governs potentially time-varying short-run

returns to scale of the economy. We say “endogenous" parameters because the time-

varying components are endogenously determined in equilibrium, although individual

firms take these values as given.16 Φ is a vector of strictly exogenous parameters that

govern (time-invariant) long-run returns to scale of the economy.17

In the equilibrium, l̃t = lt and ẽt = et hold. If we evaluate Φt at the steady-state

(or, at the long-run horizon), we have Φss = Φ since log ẽss = log
(
Ẽss
Ess

)
= 0 and

log l̃ss = log
(
L̃ss
Lss

)
= 0.

By unifying the short-run and long-run production functions, we get the following

expression:

Yt = εat [(Ks
t )
αkLαlt E

αe
t ] ·

( Lt
Lss

)βellog
(
Ẽt
Ess

)(
Et
Ess

)βellog
(
L̃t
Lss

) (3.3.4)

3.3.1 Properties of the Normalized Translog Production Function

In this section, we discuss properties of the normalized translog production function.

(i) The complementarity between energy input and labor input is reflected by

a single parameter βel > 0. If βel > 0, our model features complementarity-induced

procyclical returns to scale in the short-run, provided that the dynamics of log ẽt and

log l̃t are procyclical.

(ii) If we evaluate the production function (3.3.1) in the equilibrium (i.e., if we

impose et = ẽt and lt = l̃t), then the short-run production function has the Translog

16Because the time-varying components in Φt are endogenously determined in equilibrium, the terminology

“parameter" can be somewhat misleading. Still, we call it a (endogenous) parameter because it characterizes

returns to scale of the economy individual firms take as exogenous. The long-run value of Φt, Φ, is a vector of

strictly exogenous parameters in the sense that it consists only of deep structural parameters. We will discuss

these properties in more detail in Section 3.3.1.

17We assume constant returns to scale in the long-run.
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expression (which is why we call it normalized “Translog") :

log yt = log εat + αk log kst + αl log lt + αe log et + βel · 2log(lt) log(et)

(iii) The bracket term in the right hand side of (3.3.4) consists of variables normalized

by their steady state values (which is why we call the production function as “normalized"

Translog). This is the result of defining the short-run production function, as a deviation

from the long-run production function. This kind of normalization can be also found in

Koh and Santaeulàlia-Llopis (2017), who also distinguish between the short-run and

long-run production functions to allow time-varying CES parameter in the short run.

As in that paper, the normalization of inputs with their steady state counterparts makes

the production function collapse into a conventional Cobb-Douglas at the steady state.

There are two important advantages to doing so. First, it facilitates the calculation

of the steady state of the economy, as the steady state is identical to that of the model

without complementarity-induced procyclical returns to scale. This also makes our

model directly and easily comparable to the version without procyclical returns to scale,

since the steady state is identical across two models.

Second, and more importantly, such normalization makes the model compatible

with balanced-growth path.18 In this sense, the normalization implies that the input

complementarity we introduce (and the resulting procyclical returns to scale) is a

short-run characteristic that does not affect the long-run growth of the economy.

(iv) Despite procyclical returns to scale, the production function becomes scale-free

up to the first order because log-linearizing the production function yields exactly iden-

tical form as the log-linearized Cobb-Douglas production function. To see this, consider

the equilibrium where we have Ẽt = Et and L̃t = Lt. The first-order approximation of

our production function is given by

Ŷt = ε̂at + αkK̂
s
t + αlL̂t + αeÊt

where for arbitrary variable X, X̂t ≡ log Xt
Xss
≡ log xt.

18Although we do not consider growth explicitly in the model in Section 3.4, it is straightforward to

incorporate growth into the model.
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Hence, the procyclicality of returns to scale does not generate any additional

fluctuation of output by itself and behaves exactly the same as conventional Cobb-

Douglas up to the first order. All the interesting dynamics arise through the first-order

condition of the firm. This scale-free characteristic is one of the distinguishing features

of the model with normalize Translog production function compared to the models with

conventional increasing returns to scale.

(v) The short-run and long-run returns to scale of the economy is given by

Short-Run Returns to Scale (RTSt) = αk + αl + αe + βel

[
log ẽt + log l̃t

]
Long-Run Returns to Scale (RTSss) = αk + αl + αe = 1

(3.3.5)

Reflected by the cross-sectional average variables ẽt and l̃t, individual firms take the

returns to scale of the economy as given.

This assumption reflects the idea that the returns to scale is more of an economy-

or industry-wide characteristic than a firm-specific characteristic. Hence, a single firm’s

change of input does not affect the returns to scale, but when all firms jointly increase

(decrease) labor and energy inputs, then the returns to scale parameter changes toward

IRS (DRS).

Also, this assumption is technically required to guarantee that firms’ optimizing

behavior is well-characterized by the first-order conditions. If an individual firm can

internalize the change in returns to scale of the economy, then by choosing larger amount

of labor and energy inputs, each firm can make the returns to scale it faces arbitrarily

large. This induces firms to choose infinite amount of labor and energy inputs. By

assuming individual firms do not internalize the change in returns to scale, this issue no

longer arises.19

19This assumption makes our model similar to an internal increasing returns to scale (IRS) model. In

contrast to an external IRS mode, an internal IRS model requires some degree of market power of individual

firms. Following Benhabib and Farmer (1994), we also assume a monopolistic competitive model, but with a

negligible amount of constant markup (2% markup). Hence, our model can be considered an “approximation”

of a perfect competitive model.
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3.3.2 Business Cycle Implications: Intuition of the Mechanism

Before building up a business cycle model with our proposed production function to derive

macroeconomic implications, we illustrate the key predictions of the model and provide

intuition behind them in this section. An important feature of the complementarity-

induced procyclicality of returns to scale is that it generates procyclical dynamics

of real wage under positive demand shock without relying on nominal rigidities or

countercyclical markups. Canonical neoclassical business cycle models have difficulties

in generating such behavior. Also, our proposed production function generates strong

cyclical movement of input demand, inducing amplification of shocks.

In Figure 3.1, we shows how both traditional countercyclical markup and complementarity-

induced procyclical returns to scale explain an increase in wage and labor when firms

face a positive demand shock. As a benchmark, Figure 3.1a shows the labor market

under the standard RBC model with constant returns to scale technology. Because

the production function only depends on labor, capital, and productivity, the marginal

product of labor only depends on labor, capital and productivity. When firms experience

a positive demand shock, they can only adjust labor input since the capital input is a

predetermined variable and productivity is not correlated with positive demand shock.

In other words, they cannot shift the labor demand schedule. Only the labor supply

schedule shifts to the right which results in increased employment.20 However, this effect

leads to a decrease in wages and an increase in labor input because of a positive demand

shock, which cannot be reconciled with empirical evidence.21

Markup countercyclicality has been proposed to reconcile this seemingly contradic-

tory prediction as in Figure 3.1b. In models with nominal price rigidity, for example,

20The labor supply shifts to the right with respect to demand shock for various reasons (Rotemberg and

Woodford 1991). For example, the labor supply can shift to the right because of an increase in the marginal

utility of wealth resulting from an increase in government spending.

21Real wage procyclicality with respect to demand change follows the argument in Rotemberg and Woodford

(1991, 1992). There is evidence of weakly countercyclical real wages conditional on government spending

(Nekarda and Ramey 2011), but we are not aware of any paper that finds strong countercyclical real wages

conditional on demand change predicted by conventional models with a perfectly competitive market.
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Figure 3.1: Labor Market: Input Complementarity vs. Markup Countercyclicality
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(c) Complementarity-induced

Procyclical RTS

Note. Y-axis is real wage and x-axis is labor. The figures show how the labor market reacts to positive demand

shock (a) in a standard RBC model with constant returns to scale, (b) in a model with markup countercyclicality

with constant returns to scale, and (c) in a model with complementarity-driven procyclical returns to scale.
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markups fall when firms face positive demand shocks because of rigid prices and increases

in marginal cost. The decrease in markups allows the labor demand schedule to shift to

the right, capturing both the increase in labor and the increase in wages (or constant

wages) at the equilibrium.

Input complementarity that induces procyclical returns to scale, however, can also

shift the labor demand schedule when firms face positive demand shock as shown in

Figure 3.1c. Suppose we allow other flexible inputs such as energy, which has strong

complementarity with the labor input, in the production function. In that situation, the

marginal product of labor depends not only on labor, capital, and productivity but also

on energy. Now consider a positive demand shock. First, this shifts the labor supply

schedule as in a standard RBC model, which increases labor input (movement along the

labor demand curve). This initial increase of labor increases the marginal productivity of

energy, which induces firms to hire more energy. This increase of energy input increases

the marginal productivity of labor, which eventually shifts the labor demand schedule

(shift of the labor demand curve). This interaction between energy input and labor

input is strong enough to make real wages increase when complementarity between these

two inputs generates the procyclicality of returns to scale.22 This also generates larger

movements of equilibrium labor, which induces amplification of the shock.23

22We emphasize complementarity-induced “procyclical returns to scale” because neither the complementarity

itself nor allowing capital utilization is sufficient to generate procyclical real wage with respect to demand shock.

For example, a model with capital utilization (or energy input as in our specification) with constant returns

to scale cannot generate procyclical returns to scale (regardless of using Cobb-Douglas or more general CES

production function). Only under very restrictive environments, such as inelastic labor supply or utility function

without negative wealth effects, could potentially generate procyclical real wage dynamics under pre-specified

cases. This is why we propose a flexible production function that is not restricted to constant returns to scale

such as the widely used CES production function. In the Appendix C.3.2, we compare the impulse response of

the normalized Translog, Cobb-Douglas with energy input, and Cobb-Douglas with capital utilization (without

energy input).

23Such amplification is not a result of introducing energy input. It comes from interaction between energ

and labor inputs induced by strong complementarity. This will be clear in our numerical exercise in Section 3.4.
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3.4 The Model with Input Complementarity

In this section, we present a simple dynamic stochastic general equilibrium model with

the normalized Translog production function. We make three deviations from the

canonical real business cycle models: (i) we use the normalized Translog production

function that generates complementarity-induced procyclical returns to scale ; (ii) we

explicitly consider energy as an input and allow complementarity with labor to reflect

our empirical findings ; (iii) we cast the model in a monopolistic competitive framework

(as in conventional internal increasing returns to scale model) in which final goods firms

aggregate differentiated intermediate goods and sell them to households.24

In Figure 3.2, we plot the time series of labor and energy inputs in the United

States. There is a strong positive comovements of these variables. Positive comovement

of labor and energy, combined with our complementarity parameter βel > 0 will induce

procyclical returns to scale under the normalized Translog production function.

3.4.1 Households

The economy is populated by a large number of identical infinitely lived households.

The representative household chooses sequence of consumption Ct, labor supplied Lt,

investment It, capital stock Kt, and borrowing Bt to solve

max
Ct,Lt,It,Kt,Bt

E0

∞∑
t=0

βtU(Ct, Lt)

subject to the following budget constraint

Ct + It +
Bt

Rt

+ Tt = Rk
tKt−1 +Bt−1 +WtLt + Πt + Πe

t

24Since the returns to scale is procyclical, the production function could feature increasing returns to scale

(in the boom periods). Thus, as in internal increasing returns to scale model, we need to have some mild degree

of markups to make the model well-defined. Alternatively, we could cast the model in perfect competition with

additional assumption that the production function features decreasing returns to scale at the steady state.

Then as long as the returns to scale parameter (which is determined endogenously) has value less than one, the

model is well-defined.
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Figure 3.2: Positive Comovement of Labor and Energy (HP filtered

Note. Data source : FRED and US Energy Information Administration. Labor is measured by log of hours

per captia, and energy input is measured by log of total energy consumed by the industrial sector (measured

in Btu) divided by population. We plot the HP filtered variables at the quarterly level. Y axis represents a

percent deviation from the trend defined by the HP filter.
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and the law of motion of capital

Kt = It + (1− δ)Kt−1 (3.4.1)

where R is a (gross) risk-free rate, Rk is real rental rate of capital, W is real wages, T is

tax paid by the household in terms of consumption units, Π is the dividend paid to the

households by the intermediate goods firms, and Πe is the dividend paid by the energy

firms. We assume UC,t > 0, UCC,t ≤ 0, UL,t ≤ 0, ULL,t ≤ 0.

The FOCs are given by

UC(Ct, Lt) = βEt
[
UC(Ct+1, Lt+1)

{
Rk
t+1 + 1− δ

}]
(3.4.2)

Wt = −UL(Ct, Lt)

UC(Ct, Lt)
(3.4.3)

UC(Ct, Lt) = βRtEt [UC(Ct+1, Lt+1)] (3.4.4)

3.4.2 Final Goods Producers

The final goods producers purchase differentiated intermediate goods products and

aggregate them using the Dixit-Stiglitz CES technology. We assume that the final goods

sector is perfectlyd competitive. Each final goods producer solves

max
Yt,Yit

Yt −
∫ 1

0

PitYitdi

subject to

Yt =

[∫ 1

0

Y λ
it di

]1/λ

where Yt, Yit are the final and intermediate goods, respectively, and P i
t is intermediate

goods price. λ is the inverse of markup.

The optimality implies

Yit = Yt · P 1/(λ−1)
it (3.4.5)

125



3.4.3 Intermediate Goods Producers

We assume a monopolistic competitive intermediate goods sector. The intermediate

goods producers have technology characterized by the normalized Translog production

function characterized by (3.3.1) and (3.3.4):

Yit = εat [(Ks
it)
αkLαlit E

αe
it ] ·

(Lit
Lss

)βellog
(
Ẽt
Ess

)(
Eit
Ess

)βellog
(
L̃t
Lss

) (3.4.6)

Here, Yit is intermediate goods output, Ks
it is capital services used in production, Lit

is labor input, and Eit is energy input. L̃t and Ẽt are the aggregate labor and energy,

which individual firms take as given. In the equilibrium, L̃t = Lt and Ẽt = Et hold.

Total factor productivity εat follows

log εat = ρa log εat−1 + ηat , η
a
t ∼ N(0, σ2

a) (3.4.7)

Each intermediate goods producer’s periodic profit is given by

Πit = PitYit −WtLit −Rk
tK

s
it − P e

t Eit (3.4.8)

where Wt, Rk
t , and P e

t are the aggregate real wage, the real rental rate of capital, and

real energy price, respectively. Note that because there is no price rigidity, we are using

the final good as a numeraire.

Each intermediate goods producer maximizes (3.4.8) subject to the demand for its

output (3.4.5) and the technology (3.4.6). The FOCs, after dropping subscript i’s, are

given by

λ
Yt
Lt

[
αl +

{
βel log

(
Et
Ess

)}]
= Wt (3.4.9)

λ
Yt
Ks
t

αk = Rk
t (3.4.10)

λ
Yt
Et

[
αe +

{
βel log

(
Lt
Lss

)}]
= P e

t (3.4.11)

Although we explicitly introduce energy as a factor inputy, we abstract from

modeling the energy sector separately, following Rotemberg and Woodford (1996). In

other words, there are no resource costs associated with energy production. As in
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Rotemberg and Woodford (1996), energy is freely available at no cost to the oligopolistic

firms that sell it, and the exogenous variations in P e
t represent variations in the degree

to which they succeed in colluding to keep the price of energy where they want it (here

taken as given rather than modeled). Thus, the intermediate goods producers pay P e
t

to get energy input Et(i), and

Πe
t ≡ P e

t

∫ 1

0

Eitdi = P e
t Et

directly becomes the profit of (implicit) energy firms. These profits are distributed to

the shareholders, who are representative households in our model. We assume that

energy price follows an exogenous process

logP e
t = (1− ρe) logP e

ss + ρe logP e
t−1 + ηet , η

e
t ∼ N(0, σ2

e) (3.4.12)

In the Appendix C.2, we provide a model with the energy producing sector and make

the energy price endogenous.25 The results are robust to this alternative specification.

3.4.4 Government

The government budget constraint is given by

Gt +Bt−1 = Tt +
Bt

Rt

(3.4.13)

where Gt is government spending, Tt is lump-sum taxes (or subsidies). We define gt = Gt
Yss

,

where Yss is the steady-state value of output, and assume gt follows an exogenous process

log gt = (1− ρg) log gss + ρg log gt−1 + ηgt , η
g
t ∼ N(0, σ2

g) (3.4.14)

In the model, the government spending shock will be the source of exogenous

demand shock. Yet, the implications hold to other types of demand shocks such as

preference shock affecting marginal utility of consumption or shock on discount factor.

25See Kilian (2008) for discussion on energy price endogeneity.
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3.4.5 Resource Constraints

The market clearing of capital implies Ks
t = Kt−1. Additionally, the social resource

constraint can be written as

Yt = Ct +Kt − (1− δ)Kt−1 +Gt

The full description of the equilibrium conditions can be found in Appendix C.1.

3.4.6 Functional Form

To simulate the model, we impose the following functional form of the utility function,

which is widely used in the literature.

U(C,L) =
1

1− σc
C1−σc − ψ L

1+σl

1 + σl
(3.4.15)

3.4.7 Calibration

Following the existing literature, we calibrate the model by setting the time interval as

a quarter. We set the discount factor β = 0.99 and the degree of relative risk aversion

σ = 1. We let the labor share αl = 0.7, the capital share αk = 0.24, and the energy

share αe = 0.06, which are within the range of widely used values in the literature.26

Additionally, we set the steady state government spending to output ratio as g = 0.2,

which is consistent with post-war U.S. data. The parameter governing labor disutility ψ

is calibrated so that the steady state of L matches 1/3, which means that people work

approximately one-third of the time. We calibrate 1/φ = 3.31, which is the average

Frisch elasticity used in the RBC literature (Chetty et al. (2013)).

To calibrate the input complementarity parameter between labor and energy, βel,

we bring the value from our micro-estimate. The first order condition with respect to

energy input can be written as follows:

λ
Yt
Et

[
αe + βel log

(
Lt
Lss

)]
= P e

t

26Depending on the data source and the definition of value added, the energy share varies from 0.04 to 0.08.

We use an average of these values.
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Defining the energy share as Θe
t ≡

P et Et
Yt

and log-linearizing the above equation yields:

Θ̂e
t = β̃elL̂t (3.4.16)

where β̃el ≡ βel/αe. Note that the equation (3.4.16) is the theoretical counterpart

of equations (3.2.5) and (3.2.7) in our empirical analysis. Thus, our micro-estimate

β̃el = 1.69 implies βel = 0.10, given the energy share αe = 0.06.

Recall that individual firms take the returns to scale of the economy as given. This

means that under boom (bust) periods, individual firms face increasing (decreasing)

returns to scale as long as labor and energy inputs are procyclical and βel > 0. As

individual firms face increasing returns to scale in periods outside the steady state

(especially during the boom), this requires positive markups as in typical internal

increasing returns to scale model with monopolistic competition. We impose minimal

degree of markup that makes the model well-defined, given the historical fluctuation of

labor and energy which in turn affects the returns to scale defined by (3.3.5). As can be

seen in Figure 3.2, the observed fluctuation of energy and labor inputs around long-run

trend in the United States economy is in general less than 10%.27 Thus, by combining

βel = 0.10 and the expression of returns to scale RTSt in (3.3.5), we get the maximal

returns to scale plausible in the US economy as RTSt = 1 + 0.10× (0.10 + 0.10) = 1.02.

Thus, 2% of markup is sufficient to make our model well-defined, which implies 1/λ =

1.02. Quantitatively, this makes no difference in a perfect competitive model. Thus

we can interpret our calibrated model as an approximation of a perfect competitive

economy, making the model directly comparable with standard RBC models.

We summarize our calibration strategy in Table 3.3.

3.5 Dynamics of the Economy

In this section, we compare our benchmark model that has the normalized Translog tech-

nology with the counterfactual model that has Cobb-Douglas production function (with

27Note that inputs going below the trend poses no problem since it induces decreasing returns to scale.
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Table 3.3: Calibration Strategy

parameter meaning value

αk capital share 0.24

αl labor share 0.70

αe energy share 0.06

λ inverse of markup 1/λ = 1.02

β discount factor 0.99

σc intertemporal elasticity 1

δ depreciation of capital 0.025

ψ labor disutility Lss = 1/3

P ess energy price Ess = 1

energy input for fair comparison). These are done by setting βel = 0.10 (benchmark) ver-

sus βel = 0 (counterfactual). We assume a 2% markup in the benchmark model with the

normalized Translog, while we assume perfect competition in the counterfactual model

with the Cobb-Douglas function. Hence, the model with Cobb-Douglas is identical to the

standard RBC model except that firms use energy as a factor input.28 Quantitatively,

2% markup (in the benchmark model) is nearly indistinguishable from zero markups

(i.e., perfect competition), so this model can be regarded as an approximation of a

perfect competitive economy.

Below, we present the impulse response of selected variable. The results for all

variables can be found in Appendix C.3.

28Under the Cobb-Douglas production function, whether firms use energy as a factor input has minor effect

on the model’s performance. Thus, it is not the inclusion of energy input per se that is important but the

existence of complementarity-induced procyclical returns to scale that is crucial. In Appendix C.3 we also

include impulse responses of the standard RBC model without energy input.
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Figure 3.3: Procyclicality: Increase in government spending by 1 %

Note. Y-axis represents a percent deviation from steady state. The solid black lines represent the model with

a normalized Translog production function. The red Dashed lines represent the model with a Cobb-Douglas

production function.
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3.5.1 Procyclical Wage, Capital, Investment with respect to the Govern-

ment Spending Shock

We begin our analysis by investigating the impulse response of key variables following

the government spending shock.29 Figure 3.3 shows the dynamics of real wageW , capital

stock K, and investment I after a 1% increase in government spending. The solid black

lines depict the dynamics of these variables under the normalized Translog production

function. We find a procyclical real wage, capital, and investment, which is consistent

with the data.

In contrast, the red dashed lines depict the responses of these variables in the

model with the Cobb-Douglas production function. Under conventional Cobb-Douglas

technology, demand shock generates countercyclical movement of these variables. Coun-

tercyclicality of these variables with respect to the demand shocks are well-known feature

of canonical real business cycle models as documented in Romer (2006). Introducing the

normalized Translog production function successfully generates data-consistent dynamics

with respect to the demand shock without relying on countercyclical markup or nominal

rigidity.

3.5.2 Strong Amplification

Complementarity-induced procyclical returns to scale generate strong amplification with

respect to both supply and demand shocks. This is because the interaction between

energy and labor does not depend on a particular type of shock: any shock that induces

firms to increase factor inputs generate interactions between energy and labor, which

turn into strong propagation.

Figure 3.4 and Figure 3.5 show the impulse response of output, consumption, labor,

investment, capital, and energy with respect to a 1% positive productivity shock and a

1% positive government spending shock, respectively. Again, solid black lines depict

29We only considered a government spending shock here, but the implication holds generally under other

types of demand shocks, such as preference shock affecting marginal utility of consumption or shock on discount

factor.
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Figure 3.4: Amplification: Increase in productivity by 1 %

Note. Y-axis represents a percent deviation from steady state. The solid black lines represent the model with

a normalized Translog production function. The red Dashed lines represent the model with a Cobb-Douglas

production function.
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Figure 3.5: Amplification: Increase in government spending by 1 %

Note. Y-axis represents a percent deviation from steady state. The solid black lines represent the model with

a normalized Translog production function. The red Dashed lines represent the model with a Cobb-Douglas

production function.
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dynamics of the model with normalized Translog, and the red dashed lines depict the

model with Cobb-Douglas. In both shocks, the model with a normalized Translog

generates stronger amplification than the model with the Cobb-Douglas function. In

this sense, complementarity-induced procyclical returns to scale can be thought as

having a similar role as capital utilization. However, as can be seen in Figure C.5

and Figure C.6 in the Appendix C.3.2, the amplification effect is much stronger under

complementarity-induced procyclical returns to scale since our production function is

not restricted to constant returns to scale.

3.5.3 Using Micro-consistent Frisch Elasticity

Our proposed production function provides new insight on the micro versus macro

Frisch elasticity debate. Conventionally, the macroeconomic literature has used a large

Frisch elasticity to match labor market moments observed in aggregate data. However,

this approach has been criticized by several papers, which argue that micro-evidence

indicates much lower Frisch elasticity compared to the conventional values used in the

macroeconomic literature (see, e.g., Chetty (2012); Chetty et al. (2013)).

Complementarity-induced procyclical returns to scale has potential to reconcile

such debate by generating large movement in labor demand even under a small Frisch

elasticity. This movement generates larger fluctuation of labor even with micro-consistent

value of Frisch elasticity in equilibrium.

Figure 3.6 illustrates this point. We use 0.86 as the micro-consistent Frisch elasticity

reported by Chetty et al. (2013) and use 3.31 as the macro-consistent Frisch elasticity

which is also reported in Chetty et al. (2013) as an average value used in the RBC

literature. We assume a 1% positive productivity shock and compare the responses

of output and labor in three different models : (i) a model with normalized Translog

with a micro-consistent Frisch elasticity of 0.86 (blue solid lines); (ii) a model with

Cobb-Douglas with a micro-consistent Frisch elasticity of 0.86 (green dashed lines); and

(iii) a model with Cobb-Douglas with a macro-consistent Frisch elasticity of 3.31 (red

dotted-dashed lines).
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Figure 3.6: Frisch elasticity: Increase in productivity by 1 %

Note. Y-axis represents a percent deviation from steady state. Blue solid lines represent the model with a

normalized Translog with micro-consistent Frisch elasticity of 0.86. Green dashed lines represent the model

with a Cobb-Douglas with micro-consistent Frisch elasticity of 0.86. Red dotted-dashed lines represent the

model with a Cobb-Douglas with macro-consistent Frisch elasticity of 3.31.

By comparing the blue solid lines and the red dotted-dashed lines, one can verify

that the behavior of the model with normalized Translog with micro-consistent Frisch

elasticity closely mimics the model with Cobb-Douglas with macro-consistent Frisch

elasticity. Considering the parsimonious structure of the model, we find this as an

interesting result.

3.5.4 Indeterminancy and Possibility of Multiple Equilibria

Finally, under certain parametrization, our simple model induces indeterminancy. Under

the benchmark calibration in Table 3.3 with Frisch elasticity of 3.31, the threshold for
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the indetermiancy is given by β̄el = 0.12.30 Although βel = 0.12 is slightly larger than

our benchmark value of βel = 0.10, it is quite surprising that our simple model could

closely mimick desirable features of the increasing returns to scale models. Importantly,

our empirical analysis and theoretical model do not violate the returns to scale results

in Basu and Fernald (1997) as our production function features constant returns to scale

on average (i.e. at the steady state), and is fully consistent with Basu and Kimball

(1997), which emphasizes the role of capital utilization if one interprets energy as a

capital utilization.

3.6 Conclusion

In this paper, we studied the business cycle with a Translog production function, featuring

complementarity-induced procyclical returns to scale. Through our empirical study, we

identified a complementarity between labor and energy that leads to procyclical returns

to scale, which is not compatible with the tightly parametrized production functions

commonly used in the literature. Reflecting our empirical analysis, we introduced

the normalized Translog production function and showed that a simple calibrated

business cycle model with the proposed production function generates strikingly data-

consistent dynamics following demand shock without relying on either nominal rigidities

or countercyclical markups: (i) procyclical real wage, investment, and capital with

respect to demand-side shock, (ii) stronger amplification effect with respect to both

supply-side and demand-side shocks than the model without complementarity, (iii)

sizable labor fluctuation under calibration based on micro-consistent Frisch elasticity

that is comparable to that generated by conventional neoclassical model with macro-

consistent Frisch elasticity, and (iv) indeterminancy under certain parametrization. We

believe our study underscores the insight of the increasing returns to scale literature,

while reconciling empirical challenge it faces.

30The parameter region of βel that generates indeterminancy, however, is not monotonic. Under the

benchmark calibration, the region is given by βel ∈ [0.12, 0.22]. Note, however, that βel larger than 0.22 is way

beyond the reasonable parameter range under our micro-estimate.
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A.1 Additional Tables

Table A.1: Excluding Nearby Regions

(1) (2) (3) (4)

∆̃Sale(07−09) ∆̃Sale(07−09) ∆̃Sale(07−09) ∆̃Sale(07−09)

∆̃HP(07−09) (other, out-of-state) 0.335∗∗∗

(0.088)

∆̃HP(07−09) (other, ≥50mi) 0.400∗∗∗

(0.080)

∆̃HP(07−09) (other, ≥100mi) 0.396∗∗∗

(0.077)

∆̃HP(07−09) (other, ≥150mi) 0.359∗∗∗

(0.080)

Region-Firm Controls X X X X

Sector x Region FE X X X X

R2 0.393 0.394 0.395 0.395

Observations 838812 840235 839548 838641

Note. ∆̃Sale(07−09) is the county-firm specific sales growth between 2007 and 2009, ∆̃HP(07−09) (other, out-

of-state) is the initial sales-weighted house price growth between 2007 and 2009 in the other counties where

the firm generates sales, where we exclude “other counties” that are located in the same state (by assigning

zero weights on them and re-normalizing the remaining weights to one), ∆̃HP(07−09) (other, ≥“N”mi) is the

initial sales-weighted house price growth between 2007 and 2009 in the other counties where the firm generates

sales, where we exclude “other counties” within “N” mile radius around the county (by assigning zero weights on

them and re-normalizing the remaining weights to one). Region-Firm controls include log of initial county-firm

specific sales, log of initial firm-level sales, log of firm’s initial number of local markets, log of firm’s initial

number of product groups. All regressions are weighted by county-firm specific initial sales. Standard errors are

double clustered at the state and sector level. *, **, and *** denote significance at the 10%, 5%, and 1% level,

respectively.
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Table A.2: Placebo Tests

(1) (2) (3) (4) (5)

∆̃Sale(07−09) ∆̃Sale(07−09) ∆̃Sale(07−09) ∆̃Sale(07−09) ∆̃Sale(07−09)

∆̃HP(07−09) (other, equal weight) 0.126

(0.209)

∆̃HP(07−09) (other, pop. weight) 0.027

(0.176)

∆̃HP(07−09) (other, income weight) 0.107

(0.182)

∆̃HP(07−09) (other, random network) -0.006

(0.379)

∆̃HP(07−09) (other, estab. network) -0.052

(0.112)

Region-Firm Controls X X X X X

Sector x Region FE X X X X X

R2 0.391 0.391 0.391 0.392 0.391

Observations 840681 840681 840681 840681 840681

Note. ∆̃Sale(07−09) is the county-firm specific sales growth between 2007 and 2009. ∆̃HP(07−09) (other, equal

weight) is the placebo spillover shock measured by calculating the equal-weighted house price growth between

2007 and 2009 in the other counties where the firm generates sales. ∆̃HP(07−09) (other, pop weight) and

∆̃HP(07−09) (other, income weight) are similarly constructed placebo spillover shocks, where we use county-level

population (measured by total number of households) and median household income as weights, respectively.

∆̃HP(07−09) (other, random network) is the placebo spillover shock measured by considering randomly generated

intra-firm networks. ∆̃HP(07−09) (other, estab. network) is the placebo spillover shock measured by calculating

the initial employment-weighted house price growth between 2007 and 2009 in the other counties where the firm

has establishments. Region-Firm controls include log of initial county-firm specific sales, log of initial firm-level

sales, log of firm’s initial number of local markets, log of firm’s initial number of product groups. All regressions

are weighted by county-firm specific initial sales. Standard errors are double clustered at the state and sector

level. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.
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Table A.3: Decomposition of Sales Growth (State level)

(1) (2) (3)

∆̃Sale(07−09) ∆̃Salereplace(07−09) ∆̃Salecontinue(07−09)

∆̃HP(07−09) (other) 0.303∗∗ 0.376∗∗∗ -0.074

(0.113) (0.085) (0.058)

Region-Firm Controls X X X

Sector x Region FE X X X

R2 0.357 0.449 0.426

Observations 83610 83610 83610

Note. ∆̃Sale(07−09) is the state-firm specific sales growth between 2007 and 2009, ∆̃Salereplace
(07−09) is the state-firm

specific sales growth between 2007 and 2009 arising from product replacements, ∆̃Salecontinue
(07−09) is the state-firm

specific sales growth between 2007 and 2009 arising from continuing products, ∆̃HP(07−09) is the state-level

house price growth between 2007 and 2009, and ∆̃HP(07−09) (other) is the initial sales-weighted house price

growth between 2007 and 2009 in the other states where the firm generates sales. Sectors are defined based on

SIC 4-digit. Region-Firm controls include log of initial state-firm specific sales, log of initial firm-level sales,

log of firm’s initial number of local markets, log of firm’s initial number of product groups. All regressions are

weighted by state-firm specific initial sales. Standard errors (in parentheses) are double clustered at the state

and sector level. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.
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Table A.4: Allowing Retailer Dimension: County-Firm (Producer)-Retailer level

(1) (2) (3) (4)

∆̃Sale(07−09) ∆̃Sale(07−09) ∆̃Salereplace(07−09) ∆̃Salecontinue(07−09)

∆̃HP(07−09) (firm, other) 0.533∗∗∗ 0.520∗∗∗ 0.537∗∗∗ -0.017

(0.007) (0.022) (0.022) (0.041)

∆̃HP(07−09) (firm-retailer, other) 0.071 0.055 0.016

(0.130) (0.142) (0.071)

Region-Firm Controls X X X X

Sector x Region x Retailer FE X X X X

R2 0.506 0.506 0.451 0.515

Observations 1691268 1691268 1691268 1691268

Note. ∆̃Sale(07−09) is the county-firm-retailer specific sales growth between 2007 and 2009, ∆̃Salereplace
(07−09)

is the county-firm-retailer specific sales growth between 2007 and 2009 arising from product replacements,

∆̃Salecontinue
(07−09) is the county-firm-retailer specific sales growth between 2007 and 2009 arising from continuing

products, ∆̃HP(07−09) (other) is the initial sales-weighted house price growth between 2007 and 2009 in the other

counties where the firm generates sales, and ∆̃HP(07−09) (firm-retailer, other) is the initial “county-firm-retailer

specific sales”-weighted house price growth between 2007 and 2009 in the other counties where retailer generates

sales by selling the firm’s products. Sectors are defined based on SIC 4-digit. Region-Firm controls include log

of initial county-firm-retailer specific sales, log of initial firm-level sales, log of firm’s initial number of local

markets, log of firm’s initial number of product groups. All regressions are weighted by county-firm-retailer

specific initial sales. Standard errors (in parentheses) are three-way clustered at the state, sector, and retailer

level. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.
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Table A.5: Saiz (2010) Housing Supply Elasticity IV Regression

(1) (2) (3) (4)

∆̃Sale(07−09) ∆̃Sale(07−09) ∆̃Salereplace(07−09) ∆̃Salecontinue(07−09)

∆̃HP(07−09) (other) 0.417∗∗∗ 0.601∗∗∗ 0.398∗∗ 0.203

(0.127) (0.139) (0.188) (0.206)

IV - X X X

First-stage F stat - 541.2 541.2 541.2

Region-Firm Controls X X X X

Sector x Region FE X X X X

R2 0.402 0.036 0.044 0.008

Observations 448604 448604 448604 448604

Note. This table presents variants of the specification in Columns (4)-(6) of Table 1.4 by instrumenting

∆̃HP(07−09) (other) using similarly constructed IV. All regressions are weighted by county-firm specific initial

sales. Standard errors (parentheses) are three-way clustered at state, sector, and “other state” level, where

“other state” indicates state containing each county-firm observation’s largest other county. *, **, and ***

denote significance at the 10%, 5%, and 1% level, respectively.

Table A.6: García (2018) Nonlocal Mortgage Lending Shock IV Regression

(1) (2) (3) (4)

∆̃Sale(07−09) ∆̃Sale(07−09) ∆̃Salereplace(07−09) ∆̃Salecontinue(07−09)

∆̃HP(07−09) (other) 0.389∗∗∗ 0.408∗∗ 0.401∗∗ 0.007

(0.106) (0.199) (0.194) (0.070)

IV - X X X

First-stage F stat - 540.5 540.5 540.5

Region-Firm Controls X X X X

Sector x Region FE X X X X

R2 0.398 0.037 0.044 -0.000

Observations 658607 658607 658607 658607

Note. This table presents variants of the specification in Columns (4)-(6) of Table 1.4 by instrumenting

∆̃HP(07−09) (other) using similarly constructed IV. All regressions are weighted by county-firm specific initial

sales. Standard errors (parentheses) are three-way clustered at state, sector, and “other state” level, where

“other state” indicates state containing each county-firm observation’s largest other county. *, **, and ***

denote significance at the 10%, 5%, and 1% level, respectively.
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Table A.7: Control Firms’ Customer Types

(1) (2) (3)

∆̃Sale(07−09) ∆̃Salereplace(07−09) ∆̃Salecontinue(07−09)

∆̃HP(07−09) (other) 0.637∗∗ 0.598∗∗∗ 0.039

(0.258) (0.150) (0.244)

Income (other) -0.004 0.002 -0.006∗

(0.003) (0.002) (0.003)

Educ (other) -0.016∗∗∗ -0.001 -0.015∗∗∗

(0.005) (0.004) (0.002)

White (other) -0.003 0.003 -0.006

(0.006) (0.003) (0.003)

Owner (other) 0.005 -0.007∗∗ 0.012∗∗

(0.004) (0.003) (0.005)

Region-Firm Controls X X X

Sector x Region FE X X X

R2 0.395 0.409 0.429

Observations 840681 840681 840681

Note. This table presents a variant of the specification in Columns (4)-(6) of Table 1.4 with additional

demographic controls constructed in a similar way as in ∆̃HP(07−09) (other). These include pre-recession median

household income, percentage with high school diploma or less, percentage white, and percentage owner-occupied.

All regressions are weighted by county-firm specific initial sales. Standard errors (in parentheses) are double

clustered at the state and sector level. *, **, and *** denote significance at the 10%, 5%, and 1% level,

respectively.

A-7



Table A.8: Control Largest Market

(1) (2) (3)

∆̃Sale(07−09) ∆̃Salereplace(07−09) ∆̃Salecontinue(07−09)

∆̃HP(07−09) (other) 0.423∗∗∗ 0.349∗∗∗ 0.073

(0.121) (0.070) (0.114)

Region-Firm Controls X X X

Sector x Region FE X X X

Sector x Largest.Mkt FE X X X

R2 0.502 0.521 0.500

Observations 840681 840681 840681

Note. This table presents variants of the specification in Columns (4)-(6) of Table 1.4, where we add Sector-by-

Largest Market fixed effects. We define a firm’s largest market as the census division that has largest within-firm

sales share. All regressions are weighted by county-firm specific initial sales. Standard errors (parentheses) are

double clustered at state and sector level. *, **, and *** denote significance at the 10%, 5%, and 1% level,

respectively.
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Table A.9: Homescan Panel (State-level): Controlling Lagged-dependent Variables

(1) (2) (3) (4) (5) (6)

∆̃Sale(07−09) ∆̃Salereplace
(07−09) ∆̃Salecontinue

(07−09) ∆̃Sale(07−09) ∆̃Salereplace
(07−09) ∆̃Salecontinue

(07−09)

∆̃HP(07−09) (other) 0.325∗ 0.246∗∗ 0.079 0.311∗ 0.238∗∗ 0.080

(0.188) (0.110) (0.168) (0.173) (0.105) (0.169)

∆̃Sale(04−06) 0.086∗∗∗

(0.009)

∆̃Salereplace
(04−06) 0.100∗∗∗

(0.010)

∆̃Salecontinue
(04−06) -0.007

(0.011)

Region-Firm Controls X X X X X X

Sector x Region FE X X X X X X

R2 0.427 0.419 0.389 0.432 0.426 0.389

Observations 161537 161537 161537 161537 161537 161537

Note. We constructed state-firm level observations using ACNielsen Homescan Panel database. ∆̃Sale(07−09)

is the state-firm specific sales growth between 2007 and 2009, ∆̃Salereplace
(07−09) is the state-firm specific sales

growth between 2007 and 2009 arising from product replacements, ∆̃Salecontinue
(07−09) is the state-firm specific sales

growth between 2007 and 2009 arising from continuing products. ∆̃Sale04−06, ∆̃Salereplace
04−06 , and ∆̃Salecontinue

04−06

are corresponding growth rates between 2004 and 2006. ∆̃HP(07−09) (other) is the lagged-initial sales-weighted

house price growth between 2007 and 2009 in the other states where the firm generates sales. The weights are

constructed using 2004 state-firm specific sales. We group companies by their three largest product groups and

classify them operating in the same sector. Region-Firm controls include log of 2004 state-firm specific sales,

log of 2004 firm-level sales, log of the 2004 number of local markets a firm has, and log of the 2004 number of

product groups a firm has. All regressions are weighted by state-firm specific initial sales. Standard errors (in

parentheses) are double clustered at the state and sector level. *, **, and *** denote significance at the 10%,

5%, and 1% level, respectively.
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Table A.10: Using Shift-Share Robust Standard Error

County-level

(1) (2) (3)

∆̃Sale(07−09) ∆̃Salereplace(07−09) ∆̃Salecontinue(07−09)

∆̃HP(07−09) (other) 0.398∗∗ 0.419∗∗∗ -0.021

(0.169) (0.087) (0.129)

Region-Firm Controls X X X

Sector x Region FE X X X

R2 0.392 0.408 0.427

Observations 840681 840681 840681

State-level

(4) (5) (6)

∆̃Sale(07−09) ∆̃Salereplace(07−09) ∆̃Salecontinue(07−09)

∆̃HP(07−09) (other) 0.303∗∗∗ 0.376∗∗∗ -0.074

(0.112) (0.081) (0.069)

Region-Firm Controls X X X

Sector x Region FE X X X

R2 0.357 0.449 0.426

Observations 83610 83610 83610

Note. This table repeats Columns (4)-(6) of Table 1.4 under alternative definitions of markets (county and state)

using shift-share robust standard error proposed by Adao et al. (2018b). *, **, and *** denote significance at

the 10%, 5%, and 1% level, respectively.
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Table A.11: County-Firm-Product Group level Regression:

County-Firm level Spillover Shock

(1) (2) (3)

∆̃Sale(07−09) ∆̃Salereplace(07−09) ∆̃Salecontinue(07−09)

∆̃HP(07−09) (other, firm) 0.173∗∗ 0.306∗∗∗ -0.133

(0.070) (0.033) (0.099)

Region-Firm Controls X X X

Sector x Region FE X X X

Prod.Group x Region FE X X X

R2 0.420 0.485 0.475

Observations 1592287 1592287 1592287

Note. ∆̃Sale(07−09) is the county-firm-product group specific sales growth between 2007 and 2009, ∆̃Salereplace
(07−09)

is the county-firm-product group specific sales growth between 2007 and 2009 arising from product replacements,

∆̃Salecontinue
(07−09) is the county-firm-product group specific sales growth between 2007 and 2009 arising from

continuing products, ∆̃HP(07−09) (other, firm) is the initial “county-firm specific sales”-weighted house price

growth between 2007 and 2009 in the other counties where the firm generates sales (i.e., same shock as in the

main county-firm level analyses). Sectors are defined based on SIC 4-digit. Region-Firm controls include log of

initial county-firm-product group specific sales, log of initial firm-level sales, log of firm’s initial number of local

markets, log of firm’s initial number of product groups. All regressions are weighted by county-firm-product

group specific initial sales. Standard errors (in parentheses) are clustered at the state and sector level. *, **,

and *** denote significance at the 10%, 5%, and 1% level, respectively.
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Table A.12: Accommodating Firms’ Local Market Entry/Exit

(1) (2) (3)

∆̃Sale(07−09) ∆̃Salereplace(07−09) ∆̃Salecontinue(07−09)

∆̃HP(07−09) (other) 0.446∗∗∗ 0.486∗∗∗ -0.040

(0.113) (0.124) (0.070)

Region-Firm Controls X X X

Sector x Region FE X X X

R2 0.434 0.434 0.442

Observations 1455914 1455914 1455914

Note. ∆̃Sale(07−09) is the county-firm specific sales growth between 2007 and 2009, ∆̃Salereplace
(07−09) is the county-

firm specific sales growth between 2007 and 2009 arising from product replacements, ∆̃Salecontinue
(07−09) is the

county-firm specific sales growth between 2007 and 2009 arising from continuing products, and ∆̃HP(07−09)

(other) is the initial sales-weighted house price growth between 2007 and 2009 in the other counties where the

firm generates sales. While constructing each growth rate, we accommodate firms’ local market entry and

exit by assigning 2 (entry) and -2 (exit), respectively. Sectors are defined based on SIC 4-digit. Region-Firm

controls include log of initial county-firm specific sales, log of initial firm-level sales, log of firm’s initial number

of local markets, log of firm’s initial number of product groups. All regressions are weighted by county-firm

specific average sales (across 2007 and 2009) to avoid assigning zero weight on newly entered local market in

2009. Standard errors (in parentheses) are double clustered at the state and sector level. *, **, and *** denote

significance at the 10%, 5%, and 1% level, respectively.
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Table A.13: The Heterogeneous Treatment Effects

(1) (2) (3)

∆̃Sale(07−09) ∆̃Salereplace
(07−09) ∆̃Salecontinue

(07−09)

∆̃HP(07−09) (other) x ln(100-paydex) 2.143∗ 2.692∗∗∗ -0.549

(1.195) (0.868) (2.055)

∆̃HP(07−09) (other) x I(Local Sales Share>P(50)) -0.524∗∗∗ -0.590∗∗∗ 0.066

(0.169) (0.115) (0.205)

∆̃HP(07−09) (other) -6.150 -7.845∗∗ 1.695

(3.953) (3.006) (6.930)

ln(100-paydex) 0.209 0.484∗∗∗ -0.275

(0.220) (0.129) (0.336)

I(Local Sales Share>P(50)) -0.126∗∗∗ -0.126∗∗∗ -0.000

(0.036) (0.022) (0.039)

Region-Firm Controls X X X

Sector x Region FE X X X

Market County County County

R2 0.376 0.410 0.402

Observations 771840 771840 771840

A-13



Table A.14: Interaction with Financial Constraint (Rajan and Zingales (1998))

(1) (2) (3)

∆̃Sale(07−09) ∆̃Salereplace(07−09) ∆̃Salecontinue(07−09)

∆̃HP(07−09) (other) x RZ 5.325 4.503∗∗ 0.821

(3.449) (2.015) (2.932)

∆̃HP(07−09) (other) -0.422 -0.237 -0.185

(0.543) (0.288) (0.456)

Region-Firm Controls X X X

Sector x Region FE X X X

Market State State State

R2 0.326 0.458 0.404

Observations 51856 51856 51856
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Table A.15: Creation and Destruction

(1) (2)

Creation(07−09) Destruction(07−09)

∆̃HP(07−09) (other) 0.145∗∗∗ -0.273∗∗∗

(0.044) (0.079)

Region-Firm Controls X X

Sector x Region FE X X

R2 0.572 0.437

Observations 840681 840681

Note. Creation(07−09) is the county-firm specific sales generated by products that didn’t exist in region r in

2007 but existed in 2009 (i.e.,
Salesenter

rf,09

Salesrf
), and Destruction(07−09) is the county-firm specific sales generated by

products that existed in region r in 2007 but no longer exist in 2009 (i.e.,
Saleexit

rf,07

Salerf
). ∆̃Salereplace

(07−09) in Column (5)

of Table 1.4 is identical to Creation(07−09)-Destruction(07−09). ∆̃HP(07−09) (other) is the initial sales-weighted

house price growth between 2007 and 2009 in the other counties where the firm generates sales. Sectors are

defined based on SIC 4-digit. Region-Firm controls include log of initial county-firm specific sales, log of

initial firm-level sales, log of firm’s initial number of local markets, log of firm’s initial number of product

groups. All regressions are weighted by county-firm specific initial sales. Standard errors (in parentheses) are

double clustered at the state and sector level. *, **, and *** denote significance at the 10%, 5%, and 1% level,

respectively.
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Table A.16: Price Response at the Extensive Margin

(1) (2) (3)

∆̃Pricereplace
(07−09) ∆̃Pricereplace

(07−09) ∆̃Pricereplace
(07−09)

∆̃HP(07−09) (other) 0.310∗∗∗ 0.456∗∗∗ 0.165∗∗∗

(0.065) (0.142) (0.048)

Region-Firm Controls X X X

Sector x Region FE X X X

Index Equal Weight Sales Weight Size Adj.

R2 0.417 0.397 0.420

Observations 461672 461672 461672

Note. ∆̃Pricereplace
(07−09) is the county-firm specific price growth at the replacement margin between 2007 and 2009

defined in Appendix A.3, and ∆HP(07−09) (other) is the initial sales-weighted house price growth between

2007 and 2009 in the other counties where the firm generates sales. Sectors are defined based on SIC 4-digit.

Region-Firm controls include log of initial county-firm specific sales, log of initial firm-level sales, log of firm’s

initial number of local markets, log of firm’s initial number of product groups. All regressions are weighted by

state-firm specific initial sales. Standard errors are double clustered at the state and sector level. *, **, and ***

denote significance at the 10%, 5%, and 1% level, respectively.

Table A.17: Quality Response at the Extensive Margin

(1) (2) (3)

∆̃Price (Avg. Adj.)replace
(07−09) ∆̃Price (Avg. Adj.)replace

(07−09) ∆̃Price (Avg. Adj.)replace
(07−09)

∆̃HP(07−09) (other) 0.344∗∗ 0.481∗∗∗ 0.209∗∗

(0.128) (0.144) (0.102)

Region-Firm Controls X X X

Sector x Region FE X X X

Index Equal Weight Sales Weight Size Adj.

R2 0.428 0.419 0.403

Observations 461672 461672 461672

Note. ∆̃Price (Avg. Adj.)replace
(07−09) is the county-firm specific quality growth at the replacement margin between

2007 and 2009 defined in Appendix A.3, and ∆HP(07−09) (other) is the initial sales-weighted house price growth

between 2007 and 2009 in the other counties where the firm generates sales. Sectors are defined based on SIC

4-digit. Region-Firm controls include log of initial county-firm specific sales, log of initial firm-level sales, log

of firm’s initial number of local markets, log of firm’s initial number of product groups. All regressions are

weighted by state-firm specific initial sales. Standard errors are double clustered at the state and sector level. *,

**, and *** denote significance at the 10%, 5%, and 1% level, respectively.
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Table A.18: Extensive Margin Decomposition (State-level)

(1) (2) (3)

∆̃Salereplace(07−09) ∆̃Salereplace, multi
(07−09) ∆̃Salereplace, local(07−09)

∆̃HP(07−09) (other) 0.376∗∗∗ 0.389∗∗∗ -0.013

(0.085) (0.078) (0.009)

Region-Firm Controls X X X

Sector x Region FE X X X

R2 0.449 0.450 0.144

Observations 83610 83610 83610

Note. ∆̃Salereplace
(07−09) is the state-firm specific sales growth between 2007 and 2009 arising from product replace-

ments, ∆̃Salereplace, multi
(07−09) is the state-firm specific sales growth between 2007 and 2009 arising from products

replaced in multiple states, and ∆̃Salereplace, local
(07−09) is the state-firm specific sales growth between 2007 and 2009

arising from products only replaced in the state. ∆̃HP(07−09) (other) is the initial sales-weighted house price

growth between 2007 and 2009 in the other states where the firm generates sales. Sectors are defined based on

SIC 4-digit. Region-Firm controls include log of initial state-firm specific sales, log of initial firm-level sales,

log of firm’s initial number of local markets, log of firm’s initial number of product groups. All regressions are

weighted by state-firm specific initial sales. Standard errors are double clustered at the state and sector level. *,

**, and *** denote significance at the 10%, 5%, and 1% level, respectively.
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Table A.19: Relationship between γrt and Log of State Income Level

(1) (2) (3) (4) (5) (6)

ln γrt ln γrt ln γrt ln γrt ln γrt ln γrt

ln(Incomert) 0.166∗∗∗ 0.202∗∗∗ 0.147∗∗

(0.033) (0.045) (0.058)

ln(HPrt) 0.033∗∗ 0.089∗∗∗ 0.012

(0.013) (0.022) (0.013)

Year Dummy (2009) 0.002 0.002 0.002 0.007 0.016 0.003

(0.012) (0.011) (0.002) (0.013) (0.011) (0.003)

Constant -1.825∗∗∗ -2.222∗∗∗ -1.610∗∗ -0.381∗∗ -1.067∗∗∗ -0.114

(0.373) (0.500) (0.650) (0.159) (0.269) (0.156)

Census Division FE - X - - X -

State FE - - X - - X

R2 0.153 0.561 0.994 0.053 0.540 0.993

Observations 98 98 98 98 98 98

Note. ln(Incomert) is the log of state level average income in year t, and ln(HPrt) is the log of state level house

price in year t. The regression pools 2007 and 2009 observations with year dummy (Year FE) and either Census

Division fixed effects or state fixed effects. All regressions are weighted by market size measured by state level

sales. Robust standard errors are reported in parentheses. weighted by state level sales. *, **, and *** denote

significance at the 10%, 5%, and 1% level, respectively.

A-18



Table A.20: Regression of the Structural Equation: State-Firm level

(1) (2) (3) (4)

∆̃Sale(07−09) ∆̃Sale(07−09) ∆̃Price(07−09) ∆̃Price(07−09)

(∆̃Sale(07−09) + ∆̃γ(07−09)) (avg) 0.996∗∗∗ 0.618∗∗∗ 0.144∗∗∗ 0.317∗∗

(0.007) (0.096) (0.020) (0.152)

IV - X - X

First-stage F stat - 22.1 - 22.1

State-Firm Controls X X X X

State FE X X X X

Sector FE X X X X

R2 0.707 0.544 0.327 -0.009

Observations 83550 83550 83550 83550

Note. ∆̃Sale(07−09) is the state-firm specific sales growth between 2007 and 2009, ∆̃Price(07−09) is the state-firm

specific price growth between 2007 and 2009 defined in Appendix A.3, and (∆̃Sale(07−09) + ∆̃γ(07−09) (avg) is

the measure of
∑
r′∈kf

[
ωr′f,0Ŝr′f + θr′f,0γ̂r′

]
. In Column (2) and Column (4), we instrument (∆̃Sale(07−09) +

∆̃γ(07−09) (avg) using ∆HP(07−09) (other), which is the initial sales-weighted house price growth between 2007

and 2009 in the other states where the firm generates sales. Sectors are defined based on SIC 4-digit. State-Firm

controls include log of initial state-firm specific sales, log of initial firm-level sales, log of firm’s initial number

of local markets, log of firm’s initial number of product groups. All regressions are weighted by state-firm

specific initial sales. Standard errors are double clustered at the state and sector level. *, **, and *** denote

significance at the 10%, 5%, and 1% level, respectively.
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Table A.21: Goodness of Fit: State-Firm level Regression - Data vs. Model

(1) (2) (3) (4)

∆̃Sale(07−09) ∆̃Sale(07−09) ∆̃Sale(07−09) ∆̃Sale(07−09)

∆̃HP(07−09) 0.159∗∗∗ 0.150∗∗∗

(0.051) (0.004)

∆̃HP(07−09) (other) 0.203∗ 0.191∗∗∗ 0.238∗∗∗ 0.236∗∗∗

(0.103) (0.021) (0.085) (0.020)

Region-Firm Controls X X X X

Region FE - - X X

Source Data Model Data Model

Observations 83610 83610 83610 83610

Note. Column (1) and Column (3) uses the actual data, and Column (2) and Column (4) uses model generated

variables by feeding in the observed house price growth as the state-level exogenous shock in the model.

∆̃Sale(07−09) is the state-firm specific sales growth between 2007 and 2009, ∆̃HP(07−09) is the state-level house

price growth between 2007 and 2009, and ∆̃HP(07−09) (other) is the initial sales-weighted house price growth

between 2007 and 2009 in the other states where the firm generates sales. Region-Firm controls include log of

initial state-firm specific sales, log of initial firm-level sales, log of firm’s initial number of local markets, log of

firm’s initial number of product groups, and sector fixed effects (at SIC 4-digit). In Column (2) and Column

(4), we bring firm’s initial number of product groups and sector fixed effects directly from the data and map it

with corresponding firm in the model, while the rest of the control variables are generated from the model. All

regressions are weighted by state-firm specific initial sales. Standard errors are double clustered at the state

and sector level. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.
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Table A.22: Regression of the Structural Equation under Homogeneous Utility Function

across Regions with Homothetic Preferences: State-Firm level

(1) (2) (3) (4)

∆̃Sale(07−09) ∆̃Sale(07−09) ∆̃Price(07−09) ∆̃Price(07−09)

(∆̃Sale(07−09)) (avg) 0.997∗∗∗ 0.646∗∗∗ 0.144∗∗∗ 0.331∗∗

(0.006) (0.096) (0.020) (0.161)

IV - X - X

First-stage F stat - 20.3 - 20.3

State-Firm Controls X X X X

State FE X X X X

Sector FE X X X X

R2 0.707 0.556 0.327 -0.016

Observations 83550 83550 83550 83550

Note. ∆̃Sale(07−09) is the state-firm specific sales growth between 2007 and 2009, ∆̃Price(07−09) is the state-firm

specific price growth between 2007 and 2009 defined in Appendix A.3, and (∆̃Sale(07−09)) (avg) is the measure

of
(∑

r′∈kf
ωr′f,0Ŝr′f

)
where ωrf,0 is the initial sales weight. In Column (2) and Column (4), we instrument

(∆̃Sale(07−09)) (avg) using ∆HP(07−09) (other), which is the initial sales-weighted house price growth between

2007 and 2009 in the other states where the firm generates sales. Sectors are defined based on SIC 4-digit.

State-Firm controls include log of initial state-firm specific sales, log of initial firm-level sales, log of firm’s

initial number of local markets, log of firm’s initial number of product groups. All regressions are weighted by

state-firm specific initial sales. Standard errors are double clustered at the state and sector level. *, **, and ***

denote significance at the 10%, 5%, and 1% level, respectively.
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Table A.23: Regional Redistribution across States - All States

State ĤP r(%) Îr(%) Ûr(%) V̂r(%) Pop. Weight (%)

Benchmark Counterfactual Abs. Diff. Benchmark Counterfactual Abs. Diff.
AL -7.88 -1.81 -4.10 -3.16 0.94 -2.22 -2.03 0.19 1.54
AZ -38.13 -8.77 -13.67 -15.40 1.72 -9.73 -10.09 0.36 2.12
AR -4.68 -1.08 -2.90 -1.75 1.15 -1.39 -1.16 0.23 0.95
CA -33.11 -7.61 -11.70 -13.40 1.71 -8.40 -8.76 0.36 12.20
CO -5.53 -1.27 -3.17 -2.10 1.07 -1.60 -1.39 0.22 1.62
CT -13.04 -3.00 -5.76 -5.23 0.53 -3.51 -3.40 0.11 1.17
DE -8.14 -1.87 -4.06 -3.03 1.03 -2.26 -2.05 0.21 0.29
DC -11.91 -2.74 -5.25 -4.46 0.79 -3.20 -3.03 0.16 0.20
FL -43.19 -9.93 -14.84 -17.22 2.38 -10.89 -11.40 0.51 6.09
GA -17.11 -3.93 -6.76 -6.76 0.00 -4.46 -4.46 0.00 3.19
ID -14.74 -3.39 -6.27 -5.75 0.52 -3.92 -3.82 0.11 0.50
IL -20.33 -4.68 -7.75 -8.10 0.35 -5.25 -5.32 0.07 4.29
IN -8.76 -2.02 -4.33 -3.52 0.81 -2.43 -2.27 0.17 2.12
IA 0.18 0.04 -1.40 0.17 1.57 -0.20 0.12 0.32 1.00
KS -3.59 -0.83 -2.60 -1.33 1.26 -1.13 -0.88 0.26 0.93
KY -2.36 -0.54 -2.24 -0.86 1.38 -0.83 -0.55 0.28 1.42
LA 1.28 0.30 -1.10 0.63 1.73 0.07 0.42 0.35 1.43
ME -14.07 -3.24 -5.87 -5.28 0.58 -3.72 -3.60 0.12 0.44
MD -22.93 -5.27 -8.74 -9.14 0.40 -5.93 -6.01 0.08 1.87
MA -10.19 -2.34 -4.66 -3.99 0.67 -2.76 -2.62 0.14 2.15
MI -29.68 -6.83 -10.69 -11.75 1.06 -7.57 -7.79 0.22 3.36
MN -16.95 -3.90 -6.80 -6.67 0.12 -4.44 -4.41 0.03 1.73
MS -4.51 -1.04 -2.88 -1.70 1.18 -1.36 -1.12 0.24 0.97
MO -6.47 -1.49 -3.49 -2.51 0.98 -1.84 -1.64 0.20 1.96
MT 0.06 0.01 -1.47 0.12 1.59 -0.23 0.09 0.32 0.32
NE -1.67 -0.38 -2.08 -0.57 1.51 -0.67 -0.37 0.31 0.59
NV -54.06 -12.43 -18.24 -20.43 2.19 -13.59 -14.06 0.47 0.86
NH -13.11 -3.02 -5.59 -4.93 0.65 -3.49 -3.35 0.13 0.44
NJ -17.26 -3.97 -7.14 -7.13 0.01 -4.56 -4.56 0.00 2.90
NM -5.18 -1.19 -3.06 -1.92 1.14 -1.52 -1.29 0.23 0.66
NY -15.23 -3.50 -6.33 -6.28 0.05 -4.03 -4.02 0.01 6.44
NC -6.23 -1.43 -3.35 -2.41 0.95 -1.77 -1.58 0.19 3.02
ND 1.72 0.39 -0.93 0.77 1.70 0.18 0.52 0.34 0.21
OH -9.11 -2.10 -4.37 -3.67 0.70 -2.50 -2.36 0.14 3.83
OK 3.27 0.75 -0.35 1.42 1.77 0.58 0.94 0.36 1.21
OR -15.86 -3.65 -6.46 -6.14 0.33 -4.17 -4.10 0.07 1.25
PA -4.56 -1.05 -2.82 -1.75 1.06 -1.35 -1.14 0.22 4.15
RI -18.61 -4.28 -7.44 -7.15 0.29 -4.87 -4.81 0.06 0.35
SC -8.37 -1.92 -4.03 -3.20 0.83 -2.30 -2.13 0.17 1.47
SD 0.72 0.16 -1.26 0.38 1.64 -0.07 0.26 0.33 0.27
TN -5.76 -1.33 -3.16 -2.17 0.98 -1.64 -1.44 0.20 2.05
TX -5.93 -1.36 -3.30 -2.38 0.93 -1.70 -1.52 0.19 7.98
UT -10.82 -2.49 -4.77 -4.07 0.70 -2.90 -2.76 0.14 0.88
VT -7.40 -1.70 -3.84 -2.74 1.10 -2.08 -1.86 0.22 0.21
VA -15.83 -3.64 -6.24 -6.08 0.16 -4.12 -4.09 0.03 2.57
WA -17.97 -4.13 -7.39 -7.35 0.04 -4.75 -4.74 0.01 2.16
WV -4.02 -0.92 -2.66 -1.45 1.21 -1.22 -0.98 0.24 0.60
WI -7.07 -1.63 -3.64 -2.72 0.92 -1.98 -1.80 0.19 1.87
WY -1.32 -0.30 -2.02 -0.42 1.60 -0.60 -0.27 0.32 0.17
Mean -16.60 -3.82 -6.65 -6.61 0.97 -4.34 -4.34 0.20 Sum: 100
Std 12.97 2.98 4.03 5.21 3.20 3.44

Note. ĤP r(%) is the state-level house price growth. Îr(%) is the exogenous regional income growth which is

calculated as ĤP r(%)× 0.23. Benchmark indicates the model with uniform quality choice in Section 1.6, and

counterfactual indicates the model with market-specific quality choice in Appendix A.5. Ûr(%) is the welfare

growth from CPG expenditures (“CPG welfare”), and V̂r(%) is the welfare growth from both CPG and outside

good expenditures (“overall welfare”). Summary statistics are weighted by population.

A-22



A.2 Additional Figures

Figure A.1: Share of consumer goods producers by the number of states they sell:

the number of firms in ratio (Up) and sales share of firms (Down)
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Note. Calculation based on ACNielsen Retailer Scanner database combined with GS1 database.

A-23



Figure A.2: Cross-sectional Dispersion of Regional Overall Welfare

Note. ∆′Vr,t ≡ (Vr,t − Avg.Vr,t)/Avg.Vr,t measures the cross-sectional dispersion of regional overall welfare

at time t. The size of the circle reflects population weights. The mean, Avg.Vr,t, and the reported standard

deviations are weighted by state level population.
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A.3 Measuring Values : Price and Quality

Let pr,u,g,f,t refer to the unit price of a product, where r region, u indicates product,

c product group (category), f firm, and t time. We first define county-firm-category

specific price for classification i ∈ {common, exit, enter} at time t, pir,g,f,t, as

pir,g,f,t ≡ Πu∈Ωi,r,t

(
p
ωr,g,f,tu,i

r,u,g,f,t

)
(A.3.1)

where we use either ωr,g,f,tu,i ≡ 1
N i
r,g,f,t

(equal weight) or ωr,g,f,tu,i ≡ Sr,u,g,f,t∑
u′∈Ωi,r,t

Sr,u′,g,f,t
≡ Sr,u,g,f,t

Sir,g,f,t

(sales weight). Ωi,r,07 indicates set of products in 2007 in county r that either commonly

exist in both periods (i = common) or exit in 2009 (i = exit), and Ωi,r,09 indicates set

of products that either commonly exist in both periods (i = common) or newly enter in

2009 (i = enter). Now by aggregating across i, we define county-firm-category specific

price pr,g,f,t at time t as

pr,g,f,t ≡ Πi

(
pir,g,f,t

)ωr,g,f,ti (A.3.2)

where ωr,g,f,ti ≡ Sir,g,f,t∑
i′ S

i′
r,g,f,t

≡ Sir,g,f,t
Sr,g,f,t

. Similarly, county-category specific price pr,g,t at time

t is defined as

pr,g,t ≡ Πf

(
p
ωr,g,tf

r,g,f,t

)
(A.3.3)

where ωr,g,tf ≡ Sr,g,f,t∑
f ′ Sr,g,f ′,t

≡ Sr,g,f,t
Sr,g,t

.

We define county-firm-category specific quality for classification i ∈ {common, exit, enter}

at time t, φir,g,f,t, as

φir,g,f,t ≡
pir,g,f,t
pr,g,t

(A.3.4)

This captures how far the prices of products (classified as i) in category c produced by

firm f are from the average price level of products in the same category in county r at

time t.
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We define county-firm specific price and quality for classification i ∈ {common, exit, enter}

at time t, pir,f,t and φir,f,t, as

pir,f,t ≡ Πg

(
pir,g,f,t

)ωr,f,tg,i (A.3.5)

φir,f,t ≡ Πg

(
φir,g,f,t

)ωr,f,tg,i (A.3.6)

where ωr,f,tg,i ≡
Sir,g,f,t∑
g′ S

i
g′,r,f,t

≡ Sir,g,f,t
Sir,f,t

.

Finally, we define county-firm specific quality and price at time t, pr,f,t and φr,f,t, as

pr,f,t ≡ Πi

(
pir,g,f,t

)ωr,f,ti (A.3.7)

φr,f,t ≡ Πi

(
φir,g,f,t

)ωr,f,ti (A.3.8)

where ωr,f,ti ≡ Sir,f,t∑
i′ S

i′
r,f,t

≡ Sir,f,t
Sr,f,t

.

In addition to the benchmark price and quality measures, we also consider “size-

adjusted” measures based on the unit price after adjusting package size and unit differ-

ences. Finally, under the rationale that organic products have higher quality compared

to the non-organic products, we also measure value of products based on organic product

turnover rates.
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A.4 Derivation of Optimal Prices and Quality

From the profit function (1.6.17), we have

πf =
∑
r∈kf

(
Srf −

c(φf )

af
Qrf

)
− f(φf )− f0

where Srf = φf
(σ−1)γrprf

1−σAr and Qrf = (φf )
(σ−1)γrp−σrf Ar with Ar ≡ Pr

σ−1Sr indicat-

ing regional aggregate term.
To obtain the first-order conditions with respect to prf and φf , we first calculate

∂Srf
∂prf

, ∂Qrf
∂prf

, ∂Srf
∂φf

, ∂Qrf
∂φf

, ∂c(φf )

∂φf
, and ∂f(φf )

∂φf
:

∂Srf
∂prf

= (1− σ)φf
(σ−1)γrp−σrf Ar ,

∂Qrf
∂prf

= −σφf (σ−1)γrp−σ−1
rf Ar

∂Srf
∂φf

= (σ − 1)γrφf
(σ−1)γr−1p1−σ

rf Ar ,
∂Qrf
∂φf

= (σ − 1)γrφf
(σ−1)γr−1p−σrf Ar

∂c(φf )

∂φf
= ξ(φf )ξ−1 ,

∂f(φf )

∂φf
= b(φf )

1
β
−1

We derive the first-order conditions for prices and quality below. The proof for the

uniqueness (i.e., second-order conditions) can be found in Online Appendix C.3.

A.4.1 First-order Conditions in Prices

The first-order condition with respect to prf is given as follows.

0 =
∂πf
∂prf

=
∂Srf
∂prf

− c(φf )

af

∂Qrf

∂prf

By plugging in the corresponding derivatives, the above equation can be written as

0 =
∂πf
∂prf

=(1− σ)φf
(σ−1)γrp−σrf Ar +

c(φf )

af
σφf

(σ−1)γrp−σ−1
rf Ar

=

[
(1− σ) +

c(φf )

af

σ

prf

]
φf

(σ−1)γrp−σrf Ar (A.4.1)

This implies optimal price

prf =
c(φf )

af

(
σ

σ − 1

)
where the markup is given by µ ≡ σ

σ−1
.
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A.4.2 First-order Conditions in Quality

The first-order condition with respect to φs(as) is given as follows.

0 =
∂πf
∂φf

=
∑
r∈kf

∂Srf
∂φf

− 1

af

∂c(φf )

∂φf

∑
r∈kf

Qrf −
c(φf )

af

∑
r∈kf

∂Qrf
∂φf

− ∂f(φf )

∂φf

=
∑
r∈kf

(σ − 1)γrφf
(σ−1)γr−1p1−σ

rf Ar −
1

af
ξ(φf )ξ−1

∑
r∈kf

Qrf −
c(φf )

af

∑
r∈kf

(σ − 1)γrφf
(σ−1)γr−1p−σrf Ar − b(φf )

1
β
−1

=
∑
r∈kf

(
1−

φξf
af

1

prf

)
(σ − 1)γrφf

(σ−1)γr−1p1−σ
rf Ar −

∑
r∈kf

ξ

(
φξ−1
f

af

1

prf

)
φf

(σ−1)γrp1−σ
rf Ar − b(φf )

1
β
−1

=(φf )−1

∑
r∈kf

[(
1−

φξf
af

1

prf

)
(σ − 1)γr −

(
φξf
af

1

prf

)
ξ

]
φf

(σ−1)γrp1−σ
rf Ar − b(φf )

1
β


=(φf )−1

∑
r∈kf

[(
1−

φξf
af

1

prf

)
(σ − 1)(γr − ξ)

]
φf

(σ−1)γrp1−σ
rf Ar − b(φf )

1
β

 (A.4.2)

where in the last equality we used the relationship σ−1
σ

=
φξf
af

1
prf

(⇔
(
φξf
af

1
prf

)
=(

1− φξf
af

1
prf

)
(σ − 1)) from the FOC w.r.t. price.

By multiplying φf on both side of the equation, we get

0 =
∑
r∈kf

[(
1−

φξf
af

1

prf

)
(σ − 1)γr − ξ

(
φξf
af

1

prf

)]
φf

(σ−1)γrp1−σ
rf Ar − b(φf )

1
β

=
∑
r∈kf

(
σ − 1

σ

)
(γr − ξ)Srf − b(φf )

1
β

=
∑
r∈kf

(
γr − ξ
µ

)
Srf − b(φf )

1
β (A.4.3)

By rearranging terms, we get the optimal quality choice

φf =

∑
r∈kf

Srf

(
1

b

γr − ξ
µ

)β
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A.4.3 Structural Equation of Market Interdependency - Derivation

We start with the equation (1.6.21). Define Υr ≡ β(σ − 1)(γr − ξ), B(af) ≡
[
µ
af

]1−σ
,

Xf ≡
[∑

r∈kf Srf

(
1
b
γr−ξ
µ

)]
, and Ar ≡ (Pr)

σ−1Sr. Denote a firm’s initial local sales as

Srf,0.

Put logarithm in both side of (1.6.21):

logSrf = Υr logXf + logBr(af ) + logAr

By defining ŷ ≡ log y/y0, we have

Ŝrf = (Υr,0e
Υ̂r)X̂f + Υr,0(eΥ̂r − 1) logXf,0 + (σ − 1)âf + Âr

Linearization with respect to the hat-variables imply

Ŝrf = Υr,0X̂f + (logXf,0)Υr,0Υ̂r + Âr + (σ − 1)âf

Now lets derive X̂f . Denote the initial state as

Xf,0 ≡
∑
r∈kf

Srf,0

(
1

b

γr,0 − ξ
µ

)
By using x = x0e

x̂, we get

X̂f ≡
∑
r∈kf

[
ωrf,0Ŝrf + θrf,0γ̂r

]
where ωrf,0 ≡ Srf,0(γ0,r−ξ)∑

r′∈kf
Sr′f,0(γr′,0−ξ)

with
∑

r∈kf ωrf,0 = 1, and θrf,0 ≡ Srf,0γr,0∑
r′∈kf

Sr′f,0(γr′,0−ξ)

with
∑

r∈kf θrf,0 > 1. Note that if γr = γ for all r ∈ R, ωrf,0 =
Srf,0∑

r′∈kf
Sr′f,0

becomes the

initial sales weight.

Thus, we get

Ŝrf = Υr,0

∑
r∈kf

[
ωrf,0Ŝrf + θrf,0γ̂r

]
+ (logXf,0)Υr,0Υ̂r + Âr + (σ − 1)âf (A.4.4)
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A.5 Counterfactual: Market-specific Quality Choice

In this section, we describe the counterfactual economy where all firms choose market-

specific quality as well as market-specific prices.

A.5.1 Price and Quality Choice

We denote market-specific choice of quality by φrf . To distinguish optimal prices under

market-specific quality with those under uniform quality, we denote optimal price under

market-specific quality by pmrf . We denote corresponding quantity, sales, and profit by

Qm
rf , Smrf , and πmf . The market-level aggregates are denoted by Qm

r and Smr .

We allow potentially different fixed costs structure between uniform quality and

market-specific quality. If a firm chooses market-specific quality, the firm potentially

supplies different levels of quality across its markets incurring market-specific fixed costs.

We assume for supplying φr quality of product bundle in market r, the firm pays fixed

costs of fm(φrf ) + fm0r . We let the term fm0r capture both market-specific and firm-wise

fixed cost that do not depend on the choice of quality. Superscript m is used to indicate

cost associated with market-specific quality strategy. We parametrize fm(φrf ) as

fm(φrf ) ≡ bmβm(φrf )
1
βm (A.5.1)

where we allow fixed cost parameters bm and βm under market-specific quality to have

different values from corresponding parameters b and β under uniform quality.1

The price and quality choice problem of firm ak under market-specific quality is

formally written as follows:

max
{φrf ,pmrf}r∈kf

πmf =
∑
r∈kf

[(
pmrf −mc(φrf ; af )

)
Qm
rf − fm(φrf )− fm0r

]
(A.5.2)

1Only for the cases of bm and βm we use subscript m instead of superscript to avoid notational confusion

with raising power of b and β.
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subject to demand condition

Qm
rf = φ

(σ−1)γr
rf (pmrf )

−σ(Pm
r )σ−1Smr (A.5.3)

We can show that the optimal price is

pmrf = mc(φrf ; af )× µ (A.5.4)

and the optimal quality for market r ∈ kf is given by

φrf =

[
Smrf

(
1

bm

γr − ξ
µ

)]βm
(A.5.5)

where

Smrf = (φrf )
(σ−1)γr

(
pmrf
Pm
r

)1−σ

Smr (A.5.6)

The profit under market-specific quality can be rearranged as

πmf =
∑
r∈kf

[(
1− µ−1

)
Smrf − fm(φrf )− fm0r

]
By plugging (A.5.5) into (A.5.1), we obtain the expression of equilibrium fixed cost

for quality adjustments as fm(φrf) = βm(µ−1)Smrf(γr − ξ). By combining these two

equations, we obtain

πmf =
∑
r∈kf

[
1

σ
[1− βm(σ − 1)(γr − ξ)]Smrf − fm0r

]
(A.5.7)

The expression of sales of firm f in market r, Smrf , is derived using (A.5.4), (A.5.5),

and (A.5.6) as

Smrf =

[
Smrf

(
1

bm

γr − ξ
µ

)]βm(σ−1)(γr−ξ) [ µ
af

]1−σ

(Pm
r )σ−1Smr (A.5.8)

This implies

Smrf =

(
1

bm

γr − ξ
µ

) βm(σ−1)(γr−ξ)
1−βm(σ−1)(γr−ξ)

[
µ

af

] 1−σ
1−βm(σ−1)(γr−ξ)

[(Pm
r )σ−1Smr ]

1
1−βm(σ−1)(γr−ξ) (A.5.9)

where we assume βm > 0 is sufficiently small that βm(σ − 1)(γr − ξ) < 1.
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The optimal price of a firm with ak in market r is

pmrf =

[
Smrf

(
1

bm

γr − ξ
µ

)]βmξ [ µ
af

]
(A.5.10)

Note that from (A.5.9), Smrf = Smrf ′ if af = af ′ . Also, it is clear from (A.5.9) that
∂ logSmrf
∂ log af

> 0 as long as βm(σ − 1)(γr − ξ) < 1. Also, from (A.5.5) and (A.5.10), we have

that if af = af ′ , then φrf = φrf ′ and pmrf = pmrf ′ . These results imply that regardless

of market network a firm has, each firm’s optimal quality and price in market r only

depends on local market condition and the productivity af under market-specific quality

strategy. We summarize these results below.

Proposition 5. (Productivity and Quality, Sales under Market-specific Quality Choice)

Under market-specific quality choice, we have Smrf = Smrf ′, φrf = φrf ′, and pmrf = pmrf ′

if af = af ′.

Also, if βm > 0 is sufficiently small that βm(σ − 1)(γr − ξ) < 1, we have

∂ log φrf
∂ log af

> 0 (A.5.11)

∂ logSmrf
∂ log af

> 0 (A.5.12)

Proof. We only need to prove ∂ log φrf
∂ log af

> 0. We know
∂ logSmrf
∂ log af

> 0 under βm(σ−1)(γr−ξ) <

1. Note that (A.5.5) implies ∂ log φrf
∂ logSmrf

> 0. Thus, we have ∂ log φrf
∂ log af

=
∂ log φrf
∂ logSmrf

∂ logSmrf
∂ log af

> 0.

Corollary 6. Under the conditions in Proposition 5, the equilibrium profit πmf under

market-specific quality strictly monotonically increases with firm productivity af .

Proof. It is immediate from equation (A.5.7) and
∂ logSmrf
∂ log af

> 0.

A.5.2 Market Independence under Market-specific Quality

In contrast to the case under uniform quality choice, we can show that (firm-level)

market independence arises under market-specific quality strategy.

Proposition 7. (Independence across Markets under Market-specific Quality Choice)
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Consider a firm under market-specific quality. Let r, r′ ∈ k and r 6= r′. Suppose we

shut down general equilibrium adjustments by fixing Pm
r and Dm

r (and thus treat yr as

exogenous). Then,
∂ logSmrf
∂ log yr′

= 0, ∂ log φrf
∂ log yr′

= 0, and
∂ log pmrf
∂ log yr′

= 0.

Proof.
∂ logSmrf
∂ log yr′

= 0 is immediate from (A.5.9) and the fact that ∂ logPmr
∂ log yr′

= ∂ logSmr
∂ log yr′

= 0

since we shutting down the general equilibrium effect through Pm
r . ∂ log φrf

∂ log yr′
=

∂ log prf
∂ log yr′

= 0

follows from (A.5.4) and (A.5.5) and
∂ logSmrf
∂ log yr′

= 0.
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Appendix to Chapter 2

B-1



B.1 Additional Tables

Table B.1: Autocorrelation of County-Company level Sales by Firms : Consider firms

selling products in (≥ 2) counties

variable N median mean sd p10 p90

Corri(Si,l,06, Si,l,07) 14,327 .971 .847 .315 .539 .999

Corri(Si,l,06, Si,l,08) 14,327 .944 .772 .388 .287 .998

Corri(Si,l,06, Si,l,09) 14,327 .91 .716 .416 .114 .997

Note. For each company, we calculate correlations of county-company level sales between years 2006-2007,

2006-2008, and 2006-2009, respectively. This table provides summary statistics of such correlations.

Table B.2: Autocorrelation of County-Company level Sales by Firms : Consider firms

selling products in (≥ 800) counties

variable N median mean sd p10 p90

Corri(Si,l,06, Si,l,07) 1,210 .989 .969 .0691 .929 .997

Corri(Si,l,06, Si,l,08) 1,210 .981 .949 .0971 .88 .995

Corri(Si,l,06, Si,l,09) 1,210 .975 .933 .115 .844 .993

Note. For each company, we calculate correlations of county-company level sales between years 2006-2007,

2006-2008, and 2006-2009, respectively. This table provides summary statistics of such correlations.
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Table B.3: Summary Statistics: Downstream Firms (Full Sample)

Variable Obs Mean Std. Dev. P10 P50 P90

∆ House Price (06-09) 18128 -.159 .134 -.352 -.154 -.002

∆ Sale (07-09) 18128 -.247 .706 -1.388 -.093 .547

Sale (07) 18128 8.16 83.031 0 .072 5.647

Total Sales in Sample (07) 18128 147919.1 0 147919.1 147919.1 147919.1

Med. HH Income 18128 48596.29 6663.89 40280.42 48512.33 56100.77

Educ (Less than HS) 18128 .169 .039 .123 .169 .216

Num. County 18128 173.545 275.124 2 29 688

Table B.4: Summary Statistics: Downstream Firms (Matched Sample)

Variable Obs Mean Std. Dev. P10 P50 P90

∆ House Price (06-09) 1758 -.166 .1 -.27 -.168 -.062

∆ Sale (07-09) 1758 -.181 .643 -1.217 -.044 .504

Sale (07) 1758 32.565 195.743 .003 1.355 51.385

Total Sales in Sample (07) 1758 57249.57 0 57249.57 57249.57 57249.57

Med. HH Income 1758 48776.44 5127.367 42904.48 48896.47 54088.66

Educ (Less than HS) 1758 .17 .029 .135 .171 .2

Num. County 1758 381.784 354.044 6 269.5 905
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Table B.5: Summary Statistics: Downstream Firms (Restricted Sample)

Variable Obs Mean Std. Dev. P10 P50 P90

∆ House Price (06-09) 469 -.167 .097 -.27 -.172 -.061

∆ Sale (07-09) 469 -.181 .557 -.953 -.073 .413

Sale (07) 469 69.147 358.18 .008 3.422 101.283

Total Sales in Sample (07) 469 32429.79 0 32429.79 32429.79 32429.79

Med. HH Income 469 48782.79 4683.352 43149.17 49087.73 53875.84

Educ (Less than HS) 469 .172 .027 .145 .171 .2

Num. County 469 429.736 366.785 7 387 928

Num. Supplier 469 11.512 22.625 1 4 37

Table B.6: Summary Statistics: Suppliers

Variable Obs Mean Std. Dev. P10 P50 P90

∆ House Price (06-09) 659 -.161 .067 -.211 -.171 -.068

∆ Sale (07-09) 659 -.012 .25 -.32 -.004 .319

Sale (07) 659 6849.301 23664.95 31.378 493.725 14771

Short Liquidity (07) 659 -.185 .251 -.593 -.088 .036

Avg. ∆ DS Sale (07-09) 659 -.09 .409 -.619 -.078 .447

Avg. DS Sale (07) 659 449.799 1423.843 .045 18.862 807.478

Med. HH Income 659 48280.33 3810.055 44289.56 48855.94 50783.25

Educ (Less than HS) 659 .169 .017 .152 .169 .184

Num. Customer 659 2.37 1.565 1 1 5
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Table B.7: The Number of Local Markets of Downstream Firms

variable N mean sd p25 p50 p75

Num. County (Full) 18,128 174 275 5 29 202

Num. County (Matched) 1,758 382 354 36 270 751

Num. County (Restrict) 469 430 367 46 387 808

Note. For each company, we calculate the number of counties (i.e. local markets) in which the firm generated

positive sales in 2007. This table shows the summary statistics of such measure for the full sample, matched

sample, and the restricted sample.

Table B.8: Upstream Propagation - Other Linkage Weights and Sector Definition

(1) (2) (3) (4) (5)

∆Sale (%) ∆Sale (%) ∆Sale (%) ∆Sale (%) ∆Sale (%)

∆HP (%) 0.619∗∗∗ 0.624∗∗∗ 0.531∗∗∗ 0.503∗∗∗ 0.663∗∗

(0.199) (0.203) (0.191) (0.187) (0.267)

Firm Controls X X X X X

Sector FE X X X X X

Network FE X X X X X

Version Equal Weight Linkage-Revenue Weight Sales Weight Equal Weight (Customer) NAICS 6 digit

R2 0.219 0.219 0.216 0.216 0.238

Observations 659 659 659 659 555

Note. For Columns (1)-(4), sectors are defined based on NAICS 4-digit code. Column (1) shows the result based

on the benchmark equal linkage weight. Column (2) shows the result using percentage of supplier’s revenue

arising from linkage with a particular downstream company as weight whenever possible, and applying uniform

weight for the remaining missing cases. Column (3) shows the result using downstream firms’ initial sales as

linkage weight. Column (4) shows the result using linkage weight constructed based on the assumption that

each downstream firm puts equal weights across suppliers. For Column (5), we define sectors based on NAICS

6-digit code while using equal weights when constructing supplier-specific variables. Firm controls include

log of initial sales, initial short-term liquidity, and supplier-specific demographic controls. Supplier-specific

demographic controls are weighted average of firm-specific demographic controls weighted based on linkage

weights, and capture average demographic properties faced by a given supplier’s downstream companies (see

Section 2.3.3 for details). All standard errors are clustered at the sector level.
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B.2 Additional Figures

Figure B.1: The Number of Local Markets each Firm Participates (2007) (Full Sample)
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Figure B.2: The Number of Local Markets each Firm Participates (2007) (Restricted

Sample)
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B.3 Derivation of Equilibrium

We shut down the productivity shock: z = 0. More detail explanation of derivation,

and the solution in the presence of productivity shock can be found in ?. The unit cost

function of firm i is given by

Ci(p, w) = Biw
αliΠN

j=1p
aij
j (B.3.1)

where p ≡ (p1, ..., pN)′ and

Bi =

[
1

αli

]αli
ΠN
j=1

[
1

aij

]aij
(B.3.2)

Zero profit condition for firm i implies

ln pi = lnBi + αli lnw +
N∑
j=1

aij ln pj (B.3.3)

for all i ∈ S. We will use wage as numeraire (w = 1), and thus we get

ln pi = lnBi +
N∑
j=1

aij ln pj (B.3.4)

or

ln p = (I − A)−1 lnB (B.3.5)

where ln p ≡ (ln p1, ..., ln pN)T and lnB ≡ (lnB1, ..., lnBN)T ,1 and

A =


a11 a12 · · · a1N

a21 a22 · · · a2N

...
... . . . ...

aN1 aN2 · · · aNN


Thus, for a given vector of productivities, the equilibrium price vector is uniquely

determined regardless of the vector of household expenditure shocks H.

Now note that profit maximization yields

aij =
pjxij
piyi

, and αli =
wli
piyi

(B.3.6)

1Note that we are assuming z = 0. If we allow variation in z, this will appear in (B.3.1) and thus (B.3.5).
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and utility maximization implies

pici
βi

=
pjcj
βj

, i, j ∈ SD (B.3.7)

and

− γ′(l)l

γ(l)
=

wl

wl − T
(B.3.8)

As in ?, we assume γ(l) = (1− l)λ, which gives us

l =
1 + λT

1 + λ
(B.3.9)

By combining (2.6.5), (2.6.6), (B.3.7), and (B.3.9), we get

pici = βi(l − T )

=
βi

1 + λ

[
1−

N∑
j=1

pjHj

]
(B.3.10)

where βi = 0 (and thus pici = 0) if i ∈ SU . From this equation, we can completely pin

down ci.

Finally, by combining (2.6.3) and (B.3.6),

piyi = (pici + piHi) +
N∑
j=1

ajipjyj (B.3.11)

Define ỹi ≡ piyi, c̃i ≡ pici, and H̃i ≡ piHi. We also define Ṽi ≡ c̃i + H̃i. Then

ỹ = (I − AT )−1(c̃+ H̃)

= (I − AT )−1(Ṽ ) (B.3.12)

where for x ∈ {y, c,H, V }, we define x̃ ≡ (x̃1, ..., x̃N)T . Note that
∑N

i=1 ỹi indicates

gross output, and
∑N

i=1 Ṽi indicates value added.

We completely characterized the equilibrium.
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Appendix C

Appendix to Chapter 3
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C.1 Equilibrium Conditions : Benchmark Model

The equilibrium is defined by sequence of 10 endogenous variables{
Yt, Ct, Lt, It, Kt, Et,Wt, R

k
t , Rt,Ξt

}
and that of 3 exogenous variables {εat , gt, P e

t } satisfying

Yt = F (Kt−1, Lt, Et; ε
a
t ) (C.1.1)

λ
Yt
Lt

[
αl + βel log

(
Et
Ess

)]
= Wt (C.1.2)

λ
Yt
Kt−1

αk = Rk
t (C.1.3)

λ
Yt
Et

[
αe + βel log

(
Lt
Lss

)]
= P e

t (C.1.4)

It = Kt −
(
1− δ

)
Kt−1 (C.1.5)

Ξt = UC(Ct, Lt) (C.1.6)

− UL(Ct, Lt)

UC(Ct, Lt)
= Wt (C.1.7)

Ξt = βRtEt [Ξt+1] (C.1.8)

Ξt = βEt
[
Ξt+1(1− δ +Rk

t+1)
]

(C.1.9)

Yt = Ct +Kt − (1− δ)Kt−1 + Y · gt (C.1.10)

log(εat ) = ρa log(εat−1) + ηat , η
a
t ∼ i.i.d. N(0, σ2

a) (C.1.11)

log(gt) = (1− ρg) log(gss) + ρg log(gt−1) + ηgt , η
g
t ∼ i.i.d. N(0, σ2

g) (C.1.12)

log(P e
t ) = (1− ρe) log(P e

ss) + ρe log(P e
t−1) + ηet , η

e
t ∼ i.i.d. N(0, σ2

e) (C.1.13)
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C.2 A Model with Endogenous Energy Price

In this section, we provide a simple model that features the endogenous energy producing

sector. Importantly, the energy price is no longer exogenous but endogenously determined

(see Kilian (2008) for discussion). We focus on industrial energy usage by abstracting

energy consumption by household as in Finn (2000) and Kormilitsina (2011). The model

provided in this appendix differs from that in Finn (2000) and Kormilitsina (2011),

however, in two dimensions. First, to be consistent with the empirical specification

in section 2, we assume that firms directly choose energy as a factor input (instead

of assuming that households provide energy to firms by choosing amounts of capital

utilization). Letting firms choose the energy input (instead of households providing

it) is necessary in this paper, because the empirical specification assumes energy as

a factor input is directly chosen by firms. Second, we accommodate the important

discussion by Kilian (2008) and make the energy price endogenous, whereas Finn (2000)

and Kormilitsina (2011) assume in exogenous energy price (oil price).

C.2.1 The Model

C.2.1.1 Households

The economy is populated by a large number of identical infinitely lived households.

The representative household chooses sequence of consumption Ct, labor supplied Lht ,

investment It, capital stock Kt, and borrowing Bt to solve

max
Ct,Lt,It,Kt,Bt

E0

∞∑
t=0

βtU(Ct, L
h
t )

subject to the budget constraint

Ct + It +
Bt

Rt

+ Tt = Rk
tKt−1 +Bt−1 +WtL

h
t + Πt + Πe

t

and the law of motion of capital

Kt = It + (1− δ)Kt−1 (C.2.1)
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where R is the (gross) risk-free rate, Rk is the real rental rate of capital, W is the real

wage, T is the tax paid by the household in terms of consumption unit, Π is the dividend

paid to the households by the intermediate goods firms, and Πe is the dividend paid by

the energy firms. We assume UC,t > 0, UCC,t ≤ 0, UL,t ≤ 0, ULL,t ≤ 0.

The FOCs are given by

UC(Ct, L
h
t ) = βEt

[
UC(Ct+1, L

h
t+1)

{
Rk
t+1 + 1− δ

}]
(C.2.2)

Wt = −UL(Ct, L
h
t )

UC(Ct, Lht )
(C.2.3)

UC(Ct, L
h
t ) = βRtEt

[
UC(Ct+1, L

h
t+1)
]

(C.2.4)

C.2.1.2 The Final Goods Firm

The final goods producers purchase differentiated intermediate goods and aggregate

them using the Dixit-Stiglitz CES technology. We assume that the final goods sector is

perfectly competitive. Each final goods producer solves

max
Yt,Yit

Yt −
∫ 1

0

PitYitdi

subject to

Yt =

[∫ 1

0

Y λ
it di

]1/λ

where Yt, Yt(i) are the final and intermediate goods, respectively, and Pt(i) is the price

of intermediate goods. λ is the inverse of markup.

The optimality implies

Yit = Yt · P 1/(λ−1)
it (C.2.5)

C.2.1.3 Intermediate Goods Producers

We assume a monopolistic competitive intermediate goods sector. Following (3.3.1), I

assume intermediate goods producer i’s technology is characterized by the following

normalized Translog production function.

Yit = εat [(Ks
it)
αkLαlit E

αe
it ] ·

(Lit
Lss

)βellog
(
Ẽt
Ess

)(
Eit
Ess

)βellog
(
L̃t
Lss

) (C.2.6)
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Here, Yit is intermediate goods producer i’s output, Ks
it is the capital services used in

production, Lit is labor input, and Eit is energy input. L̃t and Ẽt are cross-section

average labor and energy, which individual firms take as given. Total factor productivity

εat follows

log εat = ρa log εat−1 + ηat , η
a
t ∼ N(0, σ2

a) (C.2.7)

Each intermediate goods producer’s periodic profit is given by

Πit = PitYit −WtLit −Rk
tK

s
it − P e

t Eit (C.2.8)

where Wt, Rk
t , and P e

t are the aggregate real wage, the real rental rate of capital, and

the real energy price, respectively. Note that because there is no price rigidity, the final

good is used as a numeraire.

Each intermediate goods producer maximizes (C.2.8) subject to the demand for its

output (C.2.5) and the technology (C.2.6). The FOCs, after dropping subscript i’s, are

given by

λ
Yt
Lt

[
αl +

{
βel log

(
Et
Ess

)}]
= Wt (C.2.9)

λ
Yt
Ks
t

αk = Rk
t (C.2.10)

λ
Yt
Et

[
αe +

{
βel log

(
Lt
Lss

)}]
= P e

t (C.2.11)

C.2.1.4 Energy Producer

We introduce an energy producer that combines labor, capital and raw material to

produce energy that is used by intermediate goods producers. We assume that the energy

sector operates in a perfectly competitive market. The energy production function is

given by

Et = G (Kes
t , L

e
t ,M

e
t ; aet)

≡ εet
[
(Kes

t )θk(Let )
θl(M e

t )θm
]

(C.2.12)
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where Kes
t , Let , M e

t are capital service, labor, and a raw material (e.g. fossil fuel) used

in energy production. εet is the energy production technology shock following

log εet = ρe log εet−1 + ηet , η
e
t ∼ N(0, σ2

e) (C.2.13)

We assume constant returns to scale in energy production : θk + θl + θm = 1.

Each energy producer solves the following problem :

max
Kse
t ,L

e
t ,M

e
t

P e
t · εet

[
(Kes

t )θk(Let )
θl(M e

t )θm
]
−WtL

e
t −Rk

tK
se
t − Pm

t M
e
t

where Pm
t follows the exogenous process

logPm
t = ρm logPm

t−1 + (1− ρm) logPm + ηmt , η
m
t ∼ N(0, σ2

m) (C.2.14)

The FOCs are given by

Rk
t = θkP

e
t

Et
Kes
t

(C.2.15)

Wt = θlP
e
t

Et
Let

(C.2.16)

Pm
t = θmP

e
t

Et
M e

t

(C.2.17)

C.2.1.5 Government

The government budget constraint is given by

Gt +Bt−1 = Tt +
Bt

Rt

(C.2.18)

where Gt is government spending, and Tt is lump-sum taxes (or subsidies). Following

\cite{smetsandwouters2007}, we denote gt = Gt
Yss

, where Yss is the steady state value of

output, and assume gt follows exogenous process

log gt = (1− ρg) log gss + ρg log gt−1 + ηgt , η
g
t ∼ N(0, σ2

g) (C.2.19)

C.2.1.6 Resource Constraint

Market clearing implies

Kt−1 = Ks
t +Kes

t

Lht = Lt + Let
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The social resource constraint can be written as

Yt = Ct +Kt − (1− δ)Kt−1 +Gt

C.2.2 Functional Form

To simulate the model we impose the following functional form of utility function, which

is widely used in the literature.

U(C,L) =
1

1− σc
C1−σc − ψ L

1+σl

1 + σl
(C.2.20)

C.2.3 Equilibrium Conditions

The equilibrium is defined by sequence of 15 endogenous variables{
Yt, Ct, L

h
t , Lt, L

e
t , Kt, K

s
t , K

es
t , Et,M

e
t ,Wt, R

k
t , Rt, P

e
t ,Ξt

}
and that of 4 exogenous variables {εat , gt, εet , Pm

t } satisfying

Yt = F (Ks
t , Lt, Et; ε

a
t ) (C.2.21)

λ
Yt
Lt

[
αl +

{
βel log

(
Et
Ess

)}]
= Wt (C.2.22)

λ
Yt
Ks
t

αk = Rk
t (C.2.23)

λ
Yt
Et

[
αe +

{
βel log

(
Lt
Lss

)}]
= P e

t (C.2.24)

Ξt = UC(Ct, L
h
t ) (C.2.25)

Ξt = βEt
[
Ξt+1

{
Rk
t+1 + 1− δ

}]
(C.2.26)

Wt = −UL(Ct, L
h
t )

UC(Ct, Lht )
(C.2.27)

Ξt = βRtEt [Ξt+1] (C.2.28)

Yt = Ct +Kt − (1− δ)Kt−1 +Gt (C.2.29)

Kt−1 = Ks
t +Kes

t (C.2.30)

Lht = Lt + Let (C.2.31)
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Rk
t = θkP

e
t

Et
Kes
t

(C.2.32)

Wt = θlP
e
t

Et
Let

(C.2.33)

Pm
t = θmP

e
t

Et
M e

t

(C.2.34)

Et = εet
[
(Kes

t )θk(Let )
θl(M e

t )θm
]

(C.2.35)

log εat = ρa log εat−1 + ηat , η
a
t ∼ N(0, σ2

a) (C.2.36)

log gt = (1− ρg) log gss + ρg log gt−1 + ηgt , η
g
t ∼ N(0, σ2

g) (C.2.37)

log εet = ρe log εet−1 + ηet , η
e
t ∼ N(0, σ2

e) (C.2.38)

logPm
t = ρm logPm

t−1 + (1− ρm) logPm + ηmt , η
m
t ∼ N(0, σ2

m) (C.2.39)

C.2.4 Dynamics of the Economy

In this section, we replicate our results in Section 4 using the model provided in this

appendix. All the main results remain robust, even if we endogenize the energy market.

In other words, using the Normalized Translog production technology with procyclical

RTS (i) generates procyclical real wage, capital, and investment with respect to demand

shock, (ii) amplifies shocks regardless of the sources, and (iii) has the potential to

reconcile the micro- vs. macro-Frisch elasticity debate. In addition, we show that

explicitly considering the energy production sector and endogenizing the energy price

render the economy less sensitive to raw material price shocks.

C.2.4.1 Procyclical Wage, Capital, Investment with respect to the Government

Spending Shock

• Procyclicality : Increase in government spending by 1 % : Figure C.7
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C.2.4.2 Strong Amplification

• Amplification : Increase in productivity by 1 % : Figure C.8

• Amplification : Increase in government spending by 1 % : Figure C.9

C.2.4.3 Using Micro-consistent Frisch Elasticity

• Frisch elasticity : Increase in productivity by 1 % : Figure C.10

C.2.4.4 Impulse Response w.r.t. Raw material Price shock

• Impulse Response : Increase in raw material price (Pm) by 1 % : Figure C.11
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C.3 Additional Figures

C.3.1 All Variables

Figure C.1: Impulse response w.r.t. 1% productivity shock:

Cobb-Douglas vs. Translog

Note. Y-axis represents a percent deviation from steady state. The solid black line represents the model with

a normalized Translog production function. The red dashed line represents the model with a Cobb-Douglas

production function. The solid green line represents the model with a Cobb-Douglas production function and

no energy input (i.e., standard RBC without energy).
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Figure C.2: Impulse response w.r.t. 1% government spending shock:

Cobb-Douglas vs. Translog

Note. Y-axis represents a percent deviation from steady state. The solid black line represents model with

normalized Translog production function. The red dashed line represents model with a Cobb-Douglas production

function. The solid green line represents model with a Cobb-Douglas production function and no energy input

(i.e., standard RBC without energy).

C-11



Figure C.3: Frisch elasticity: Increase in productivity by 1 %

Note. Y-axis represents a percent deviation from steady state. The blue solid line represents the model with a

normalized Translog with micro-consistent Frisch elasticity of 0.86. The green dashed line represents model

with Cobb-Douglas with micro-consistent Frisch elasticity of 0.86. The red dotted-dashed line represents the

model with a Cobb-Douglas with macro-consistent Frisch elasticity of 3.31.
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C.3.2 Comparison with RBC model with Capital Utilization

Figure C.4: Procyclicality: Increase in government spending by 1 %

Note. Y-axis represents a percent deviation from steady state. Dashed lines represent the model with a

Cobb-Douglas production function, and solid lines represent the model with a normalized Translog production

function.
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Figure C.5: Amplification: Increase in productivity by 1 %

Note. Y-axis represents a percent deviation from steady state. The solid black lines represent the model with a

normalized Translog production function (with energy input). The red Dashed lines represent the model with a

Cobb-Douglas production function with energy input. The blue starred line represent the RBC model with

capital utilization but without energy input. In (2,3) panel, we plot energy for the normalized Translog and

Cobb-Douglas model with energy input (E), and plot utilization (U) for the RBC model with capital utilization.
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Figure C.6: Amplification: Increase in government spending by 1 %

Note. Y-axis represents a percent deviation from steady state. The solid black lines represent the model with a

normalized Translog production function (with energy input). The red Dashed lines represent the model with a

Cobb-Douglas production function with energy input. The blue starred line represent the RBC model with

capital utilization but without energy input. In (2,3) panel, we plot energy for the normalized Translog and

Cobb-Douglas model with energy input (E), and plot utilization (U) for the RBC model with capital utilization.
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C.3.3 Dynamics: A Model with Endogenous Energy Price

C.3.3.1 Procyclical Wage, Capital, Investment with respect to the Government

Spending Shock

Figure C.7: Procyclicality: Increase in government spending by 1 %

Note. Y-axis represents a percent deviation from steady state. The dashed line represents the model with

a Cobb-Douglas production function, and the solid line represents the model with a normalized Translog

production function.
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C.3.3.2 Strong Amplification

Figure C.8: Amplification: Increase in productivity by 1 %

Note. Y-axis represents a percent deviation from steady state. The dashed line represents the model with

a Cobb-Douglas production function, and the solid line represents the model with a normalized Translog

production function.
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Figure C.9: Amplification: Increase in government spending by 1 %

Note. Y-axis represents a percent deviation from steady state. The dashed line represents the model with

a Cobb-Douglas production function, and the solid line represents the model with a normalized Translog

production function.
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C.3.3.3 Using Micro-consistent Frisch Elasticity

Figure C.10: Frisch elasticity: Increase in productivity by 1 %

Note. Y-axis represents a percent deviation from steady state. The blue solid line represents the model with a

normalized Translog with micro-consistent Frisch elasticity of 0.86. The green dashed line represents the model

with a Cobb-Douglas with micro-consistent Frisch elasticity of 0.86. The red dotted-dashed line represents the

model with a Cobb-Douglas with macro-consistent Frisch elasticity of 3.31.
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C.3.3.4 Impulse Response w.r.t. Raw material Price shock

Figure C.11: Impulse Response: Increase in raw material price (Pm) by 1 %

Note. Y-axis represents a percent deviation from steady state. The dashed blue line represents the model

with a normalized Translog production function with exogenous energy price (Section 4 model), and the solid

black line represents the model with a normalized Translog production function with endogenous energy price

(Appendix D model). For the dashed blue line (Section 4 model), energy price is identical to the raw material

price (i.e., Pe = Pm).
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