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Abstract:  36

Background:37

Low serum 25-hydroxyvitamin D (25(OH)D) concentrations in colorectal cancer (CRC) patients have 38

been consistently associated with higher mortality in observational studies. It is unclear whether low 39

25(OH)D levels directly influence CRC mortality. To minimize bias, we use genetic variants 40

associated with vitamin D levels to evaluate the association with overall and CRC-specific survival.41

Methods:  42

Six genetic variants have been robustly identified to be associated with 25(OH)D levels in genome-43

wide association studies. Based on data from the International Survival Analysis in Colorectal Cancer 44

Consortium (ISACC) the individual genetic variants and a weighted genetic risk score were tested for 45

association with overall and CRC-specific survival using Cox proportional hazards models in 7 657 46

stage I-IV CRC patients of which 2 438 died from any cause and 1 648 died from CRC. 47

Results:  48

The 25(OH)D decreasing allele of single nucleotide polymorphism (SNP) rs2282679 (GC) was 49

associated with poorer CRC-specific survival, although not significant after multiple-testing 50

correction. None of the other five SNPs showed an association. The genetic risk score showed non-51

significant associations with increased overall (HR=1.54, 95% CI:0.86-2.78) and CRC-specific 52

mortality (HR=1.76, 95% CI:0.86-3.58). A significant increased risk of overall mortality was observed 53

in women (HR=3.26, 95% CI:1.45-7.33, p-value for heterogeneity=0.01) and normal-weight individuals 54

(HR=4.14, 95% CI:1.50-11.43, p-value for heterogeneity=0.02).55

Conclusions: 56

Our results provided little evidence for an association of genetic predisposition of lower vitamin D 57

levels with increased overall or CRC-specific survival, although power might have been an issue. 58

Impact: 59

Further studies are warranted to investigate the association in specific subgroups.60

61
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Introduction:  62

Colorectal cancer (CRC) belongs to the most common cancer types (third) and is the second leading 63

cause of cancer related death globally (1). Despite improved therapy regimens which have led to 64

increased survival after diagnosis, survival time is still limited for advanced stages (2).65

One of the factors with potential prognostic relevance is 25(OH)D levels since the vitamin D receptor 66

is highly expressed in the colon (3,4). The most stable and therefore most reliable indicator of 67

circulating vitamin D is 25(OH)D; it is influenced by both dietary intake and skin synthesis by sun 68

exposure (5). Low levels of 25(OH)D have been consistently found associated with reduced overall 69

(hazard ratio (HR): 0.68, 95% confidence interval (CI): 0.55–0.85) and CRC-specific survival (HR: 70

0.67, 95% CI: 0.57–0.78), as evidenced in a recent meta-analysis (6). Therefore, vitamin D status71

could be a potential modifiable factor for improving prognosis in CRC patients. 72

It is unclear whether a genetic predisposition of higher/lower vitamin D levels is involved in 73

mechanisms leading to better survival or whether low vitamin D levels are primarily an indicator for 74

poor health (7). Studies assessing post-diagnostic vitamin D concentrations need to be interpreted with 75

caution as lower vitamin D levels in patients with poorer health could also be due to behavior changes 76

after diagnosis and treatment e.g. less sun exposure. The association between postdiagnostic vitamin D 77

and survival after CRC in observational studies could thus reflect confounding or reverse causation. 78

Previous genome-wide association studies (GWAS) have identified six single nucleotide 79

polymorphisms (SNPs) associated with circulating 25(OH)D levels at genome-wide significance (p-80

value<5x10-8) (8,9). The four SNPs with the strongest influence on vitamin D levels have been 81

replicated by several studies (8,9,32). As genetic variants are randomly allocated during gamete 82

formation independent of environmental factors, confounding should not play a role. Therefore, 83

determining associations using vitamin D-related genetic variants could help minimize confounding 84

bias and reverse causation.85
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We aimed to estimate the relationship of these six vitamin D related genetic variants with overall and 86

CRC-specific survival in studies collaborating in the International Survival Analysis in Colorectal 87

Cancer Consortium (ISACC).88

89
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Materials and Methods:  90

Study population and genotype data: 91

This analysis is based on 7 657 CRC patients from 10 studies with available genotyping and follow-up 92

data participating in the ISACC Consortium. The studies are Darmkrebs: Chancen der Verhuetung 93

durch Screening (DACHS) (10,11), Diet, Activity and Lifestyle Study (DALS) (12), Cancer 94

Prevention Study II Nutrition cohort (CPSII) (13), Health Professionals Follow-up Study (HPFS) (14),95

Nurses’ Health Study (NHS) (15-17), Physicians` Health Study (PHS) (18); Prostate, Lung, Colorectal 96

and Ovarian Cancer Screening Trial (PLCO) (19,20), Post-Menopausal Hormone- Seattle Colon 97

Cancer Family Registry Study (PMH-CCFR), VITamins And Lifestyle Study (VITAL) (21) and 98

Woman's Health Initiative (WHI) (22) (Supplementary Table 1). Nine of the ten studies are also 99

included in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) (23) and one 100

study, CPS II, is part of the Colorectal Cancer Transdisciplinary consortium (CORECT) (24). Details 101

on the consortia and studies have been described previously (13,23,24) and study descriptions are 102

provided in the supplementary information (Supplementary Table 1). Participant overlap between the 103

studies has been excluded. All participants provided written, informed consent and studies were 104

approved by their respective institutional review boards. Demographic and lifestyle factors were 105

queried by in-person interviews or self-filled questionnaires. A multistep data harmonization 106

procedure was carried out centrally for pooled analyses (25). Details of assessment of survival in the 107

individual studies have been previously published (10,12-14,17,21,26-29). In short, vital status was 108

obtained either using active follow-up with confirmation of death by review of death certificates or 109

medical records or the studies used linkage to state death records or state cancer registries. Alive 110

patients were censored at the date of last follow-up or data linkage.111

Genotype data and imputation 112

All included studies provided genotype information. See previously published reports for details on 113

genotyping, quality assurance and imputation (23,24,30). Imputation was conducted using the 114

imputation panel of the Haplotype Reference Consortium (31). Exclusion of SNPs was based on call 115

rate (<98% in GECCO; <95% in CORECT), Hardy-Weinberg equilibrium in controls (p-value<1x10-116
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4) or low minor allele frequency (≤1%). Patients were assigned values of 0, 1, or 2 for having 0 (wild-117

type homozygous), 1 (heterozygous) or 2 (homozygous for the risk allele) alleles associated with 118

lower vitamin D levels for each SNP. For imputed SNPs, patients received continuous values between 119

0 and 2. 120

SNP selection and Genetic Risk Score 121

Six SNPs, which were found associated with 25(OH)D levels at genome-wide significance (p-122

value<5x10-8) in a GWAS of European populations, were selected (8,9,32) (Table 1). Two of these 123

SNPs have been recently discovered by the SUNLIGHT Consortium (8), which also confirmed the 124

other four previously identified SNPs (9). The six SNPs explain around 2.8% of the variance in 125

circulating 25(OH)D levels (8).126

Linkage disequilibrium between the individual SNPs was checked, and no strong correlation was 127

detected (R2<0.01). A weighted genetic risk score (GRS) consisting of the six SNPs was calculated for 128

each person as the sum of the number of vitamin D decreasing alleles weighted by their effect on 129

vitamin D levels as reported in Jiang et al. (8). As Jiang et al. used natural log transformed vitamin D 130

levels as outcome in their GWAS, units of the GRS are not easily interpretable. The risk score ranges131

between 0 and 0.432. Results are reported per one unit increase in risk score.132

According to Milaneschi et al. (33) a one unit increase in this risk score is associated with a change of 133

5.29nmol/l (95% CI:4.18-6.39).134

Statistical analysis:135

The association of the individual SNPs with overall survival and CRC-specific survival was assessed 136

using cox proportional hazard models. Analyses were adjusted for age, sex and principal components 137

(PCs) of genetic ancestry to control for potential confounding due to population substructure (PCs 138

were calculated using the EIGENSTRAT method (https://reich.hms.harvard.edu/software)). Three PCs 139

were used for Analysis of GECCO studies used three PC and 10 PCs were used for CPSII from the 140

CORECT consortium. Analyses were conducted for GECCO and CORECT studies separately. Fixed-141

effects meta-analysis was employed to get summary results for GECCO and CORECT. Bonferroni 142

correction was used to account for multiple testing of six single SNP tests (p<0.05/6=0.0083). 143
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Additional stratified analyses were carried out by sex, cancer site (colon/rectum), stage (stage 1-local, 144

stage 2,3-regional, stage 4-distant) and BMI categories (self-reported pre-diagnostic BMI) in kg/m² 145

(BMI 18.5–24.9 for normal weight, 25-30 for overweight, >30 for obese, excluding the 1% with 146

BMI<18.5).  Heterogeneity was assessed using likelihood ratio tests  which compare the models 147

including / excluding interaction term.148

To calculate time-to-event, date of diagnosis was considered as the starting point and follow-up time 149

was censored at death or end of follow-up, whichever occurred first. For calculation of CRC-specific 150

survival, censoring was done at the time of death for all patients who died from other causes than CRC 151

The reverse Kaplan-Meier method was employed for calculation of median follow-up time (34).152
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Results:153

Of 7 657 CRC patients included for this analysis, 2 438 died from any cause and 1 648 died from CRC 154

after a median follow-up time of 54.8 month (interquartile range: 27.7-73.6 months). Supplementary 155

Table 2 shows selected characteristics of the study population and numbers per GECCO/CPSII. 156

Among patients included, 54.6% were women and 45.4% were men.157

The association of the vitamin D associated SNPs with overall and with CRC-specific survival were 158

similar, see Table 2. None of the six SNPs were statistically significantly associated with overall 159

survival. There was a significant association between SNP rs2282679 and CRC specific survival (HR: 160

1.08, 95% CI: 1.00-1.16) (Table 2), which did not remain significant when applying a Bonferroni 161

corrected p-value of <0.0083. None of the other five SNPs showed significant associations with CRC 162

specific survival. Results per GECCO/CPSII studies are shown in Supplementary Table 3 for overall 163

survival and CRC-specific survival. 164

The GRS representing genetically determined lower levels of vitamin D was not significantly 165

associated with risk of death after CRC diagnosis (HR per one unit of GRS: 1.54, 95% CI: 0.86-2.78) 166

(Table 3). For CRC-specific survival, a similar non-significant association was found for lower 167

genetically determined levels of vitamin D (HR per one unit of GRS: 1.76, 95% CI: 0.86-3.58).  168

Exploration of effect heterogeneity yielded differential associations for overall survival according to 169

sex and BMI (Table 3). A higher GRS was significantly associated with increased overall mortality 170

(HR: 3.26, 95% CI: 1.45-7.33) in women and not in men (HR: 0.68, 95% CI: 0.29-1.62). In addition, 171

the association of higher GRS with increased overall mortality was only significant in normal weight 172

patients (HR: 4.14, 95% CI: 1.50-11.43) but not obese patients (HR: 1.67, 95% CI: 0.53-5.26). In 173

overweight patients the SNP association was in the opposite direction (HR: 0.55, 95% CI: 0.21-1.45). 174

No significant differential associations were found for CRC-specific survival, but associations in the 175

subgroups were generally similar to that for overall survival in magnitude and direction (Table 3).176
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Discussion177

In this large study, we investigated the association between six genetic variants and a GRS associated 178

with vitamin D levels and overall and CRC-specific survival. The single SNPs and GRS were not 179

significantly associated with overall/CRC-specific survival. We found significant effect heterogeneity 180

by sex and BMI in the association of GRS for vitamin D and overall survival.181

Recent large observational studies reported inverse associations between serum 25(OH)D levels and 182

survival after CRC (4,35,36). Except for one study that used pre-diagnostic 25(OH)D levels (35) all 183

studies used post-diagnostic vitamin D levels which could already have been influenced by the disease 184

or a poor health status after treatment (4,36). We and others have thus employed vitamin D related 185

genetic variants as instrumental variables to evaluate the association with CRC mortality in order to 186

minimize bias due to reverse causation and confounding.187

A recent study that investigated only rs2282679 (GC gene) found a non-significant association with 188

reduced overall survival in 489 CRC patients, corroborating our findings. Additionally, they reported a 189

significant association of the vitamin D lowering allele with poorer disease-free survival (37), 190

however, CRC-specific survival was not investigated. A further study that investigated three SNPs 191

rs2282679 (GC), rs10741657 (CYP2R1) and rs12785878 (DHCR7) in association with time to 192

recurrence in patients with stages II and III colon cancer found only rs2282679 to be significantly 193

associated with decreased time to recurrence in the subgroup of patients who underwent only surgery 194

(38). 195

Mendelian randomization (MR) studies on vitamin D levels have also been conducted. These MR 196

studies were not conducted specifically in CRC patients and CRC-specific death was not investigated 197

as outcome in any of these studies. A former large MR study of 95 766 participants investigated the 198

association of SNPs associated with lower vitamin D levels (using a GRS score of two SNPs in the 199

DHCR7 gene and two SNPs in the CYP2R1 gene explaining around 1% in variation in vitamin D 200

levels) with all-cause mortality and cancer-specific mortality and found that the genetic instrument 201

was associated with increased all cause and cancer-specific mortality (39). In contrast to that, a study 202

in women of 33 682 participants and 3 985 cancer cases found no significant association of a five SNP 203
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instrument and overall or cancer mortality (40). A recent study using UK Biobank data (438 870 204

participants and 6 998 cancer-specific deaths) did not find evidence for genetically determined low 205

vitamin D levels (using five vitamin D related variants, four of them overlapping with the variants 206

used in our study) and increased cancer mortality (41). The variance in vitamin D levels explained by 207

a genetic instrument using the previously known four SNPs, which were confirmed by Jiang et al., was 208

estimated to be approximately 5% (42). Jiang et al. estimated that the six SNPs used in our study 209

explain around 2.8% of genetic variation; 7.5% of variation was explained by all common GWAS 210

variants (8). 211

We found sex-differences in the association of the GRS with overall survival. Some observational 212

studies have also observed differences by sex (43) or significant associations of vitamin D levels with 213

cancer incidence (44) or mortality only in women (45) but not in men. In the present study, the GRS 214

conferring lower vitamin D levels was found associated with worse prognosis only in women. One 215

reason for this could be stronger associations of vitamin D levels with diseases that are more common 216

in women than in men, like breast cancer (46) and osteoporosis (47). But whether the vitamin D 217

related SNPs are also associated with breast cancer mortality or mortality after osteoporosis (e.g. as 218

consequence of fractures) is unclear. A lookup in the BCAC consortium including 42 124 patients with 219

3 733 breast cancer-specific deaths showed that rs2282679 is not associated with breast cancer specific 220

mortality (http://bcac.ccge.medschl.cam.ac.uk/). A SNP in the vitamin D receptor gene, which was 221

previously reported to be significantly associated with higher breast cancer specific mortality in 498 222

breast cancer patients (48), has not been found associated with vitamin D levels in GWAS. In addition, 223

our finding of higher mortality with a GRS for lower 25(OH)D levels only in normal weight people is 224

interesting and it is consistent with results of a recent RCT in the VITAL study of vitamin D 225

supplementation and all cancer incidence (49) which found lower all-cancer incidence only in normal 226

weight participants receiving vitamin D compared to placebo and not in overweight or obese 227

participants. It is known that overweight and obese people have lower levels of vitamin D compared to 228

normal weight people (7) which could be due to sequestration of vitamin D in adipose tissues or 229

dilution of ingested vitamin D (7). In this case higher levels of 25(OH)D would be needed for 230

protection in overweight/obese individuals. Also there is a difference in direction of point estimates 231
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when comparing the overweight and obese groups. Since the confidence intervals are large, these 232

differences could be due to chance because of power issues for the subgroup analyses and therefore 233

needs to be investigated in further larger studies.234

Regarding mortality after CRC diagnosis, RCTs of vitamin D supplementation are also being 235

conducted. Two recent meta-analysis reported that vitamin D supplementation reduced all-cancer 236

death by 16% (50) and 13% (51), CRC death was not specifically investigated. One small RCT has 237

been published (52) on vitamin D supplementation in CRC patients which was conducted in Croatia 238

and randomized 71 metastatic CRC patients to either standard chemotherapy or standard 239

chemotherapy plus 2000IU vitamin D. No difference in overall or progression-free survival between 240

groups was observed (52). A further RCT of 139 metastatic CRC patients reported in a conference 241

abstract a longer progression-free survival in patients who received high vitamin D supplementation 242

compared to low vitamin D supplementation (53). A more recent RCT found suggestive evidence that 243

high dose compared to standard-dose vitamin D supplementation combined with chemotherapy could 244

improve survival for patients with advanced or metastatic CRC (54). Supplementation for CRC 245

patients might have a different effect on mortality after CRC compared to genetically determined 246

differences in vitamin D levels. And this RCT suggests that higher than physiologic levels may lead to 247

improvement in survival. 248

Strengths of our study include the large sample size, which is the largest published sample size among 249

CRC survivors to date for investigation of the association of vitamin D related genetic variants with 250

overall and CRC-specific survival. We used the latest published set of SNPs discovered in GWAS to 251

be associated with vitamin D levels. The association of vitamin D related SNPs with CRC-specific 252

survival has been investigated for the first time. Moreover, all included studies carried out a 253

comprehensive follow-up with long follow-up duration. Our study has also some limitations. As this 254

study is based on populations of European descent, the generalizability to other populations is limited. 255

The advantage is that we were able to minimize bias due to confounding by population stratification. 256

We did not have serum measurements of vitamin D levels available for all included studies; therefore 257

we were not able to analyze the strength of the association of the SNPs with vitamin D levels in our 258
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study. Although our study has a large sample size, power to conduct a Mendelian randomization study 259

is still limited due to the moderate association of the SNPs with decreasing vitamin D levels. 260

In conclusion, this is the first study to examine the most recent set of vitamin D related SNPs 261

discovered in GWAS with respect to overall and also CRC-specific mortality among CRC patients. We 262

did not find evidence for an association of genetically determined lower vitamin D levels and higher 263

mortality. The potential effect heterogeneity by sex and BMI requires confirmation. Further larger 264

studies are warranted to investigate the association of vitamin D levels and survival after CRC also in 265

specific subgroups.266

267
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Tables 

Table 1: Single nucleotide polymorphisms identified in genome-wide association analyses for 
circulating 25-hydroxyvitamin D concentrations 

Abbreviations: Chr, chromosome; SNP, single nucleotide polymorphism. 
aeffect allele of the vitamin D level decreasing allele. 
b beta value and standard error as reported in Jiang et al. (8) for the association of the genetic variants with natural log 
transformed vitamin D levels. 

Table 2: Association between the vitamin D decreasing allele of vitamin D
related genetic variants and overall and CRC-specific mortality after CRC diagnosis 

Abbreviations: CI, confidence interval, GRS, genetic risk score; HR, hazard ratio; No, number; SNP, single nucleotide 
polymorphism. 
aMedian follow-up time: 54.8 months (interquartile range: 27.7-73.6)
bAdjusted for age, sex, genotyping phase and 3 PC for GECCO, and 10 PC for CPSII, respectively.

SNP Chr Gene Effect allelea betab Standard 
error

rs2282679 4 GC G -0.089 0.0023
rs10741657 11 CYP2R1 G -0.031 0.0022
rs12785878 11 DHCR7 G -0.036 0.0022
rs6013897 20 CYP24A1 A -0.026 0.0027
rs10745742 12 AMDHD1 C -0.017 0.0022
rs8018720 14 SEC23A C -0.017 0.0029

SNP No (total) No (eventsa) HRb 95% CI p-value

Overall mortality
rs2282679 7657 2438 1.06 1.00-1.13 0.07
rs10741657 7657 2438 0.99 0.93-1.05 0.75
rs12785878 7657 2438 1.05 0.98-1.11 0.17
rs6013897 7657 2438 0.95 0.89-1.02 0.19

rs10745742 7657 2438 1.00 0.95-1.06 0.94

rs8018720 7657 2438 0.98 0.91-1.05 0.57

CRC-specific mortality
rs2282679 7657 1648 1.08 1.00-1.16 <0.05

rs10741657 7657 1648 0.99 0.92-1.06 0.73

rs12785878 7657 1648 1.04 0.96-1.13 0.31

rs6013897 7657 1648 0.97 0.88-1.05 0.44

rs10745742 7657 1648 1.00 0.93-1.07 0.97

rs8018720 7657 1648 0.97 0.89-1.07 0.57
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Table 3: Association between GRS for vitamin D levels and mortality after CRC diagnosis stratified according subgroups  

Abbreviations: CI, confidence interval, GRS, genetic risk score; HR, hazard ratio; No, number; p.het, p-value for heterogeneity; SNP, single nucleotide polymorphism. 
aAdjusted for age, sex, genotyping phase and 3 PC for GECCO, and 10 PC for CPSII, respectively.
b weighted genetic risk score for overall survival is computed out of the sum of vitamin D decreasing alleles of the six vitamin D associated SNPs multiplied by their effect on vitamin D levels (e.g. 
beta from Table 1). The HR indicates risk of death per 1 unit change in GRS. The risk score ranges between 0 and 0.432. One unit change in GRS is associated to a change in vitamin D levels of 
5.29nmol/l according to Milaneschi et al (33). 
c weighted genetic risk score for CRC-specific survival is computed out of the sum of vitamin D decreasing alleles of the six vitamin D associated SNPs multiplied by their effect on vitamin D levels 
(e.g. beta from Table 1). The HR indicates risk of death per 1 unit decrease in GRS. The risk score ranges between 0 and 0.432. One unit change in GRS is associated to a change in vitamin D levels 
of 5.29nmol/l according to Milaneschi et al. (33).
d p-value calculated using likelihood ratio tests comparing the model with and without interaction term.

Overall mortalityb CRC-specific mortalityc

Group N (total) N
(events) HRa 95% CI p.

hetd
N
(total) N (events) HRa 95% CI p. hetd

GRS 7657 2438 1.54 0.86-2.78 7657 1648 1.76 0.86-3.58

Sex
Female 4182 1278 3.26 1.45-7.33 0.01 4179 912 3.32 1.28-8.60 0.15
Male 3473 1160 0.68 0.29-1.62 3466 736 0.78 0.27-2.29

Cancer site
Colon 5824 1870 1.49 0.76-2.92 0.98 5816 1230 1.34 0.58-3.06 0.64
Rectum 1755 535 1.46 0.41-5.16 1753 395 3.16 0.74-13.20

Stage
Stage 1 / local 2325 356 3.88 0.79-19.00 0.39 2324 95 11.07 0.56-217.56 0.65
Stage 2,3 / regional 4010 1124 1.27 0.54-3.01 4004 710 1.52 0.52-4.48
Stage 4 / distant 939 788 2.04 0.69-6.02 936 735 1.67 0.55-5.13

BMI
Normal 2549 824 4.14 1.50-11.43 0.02 2545 563 3.78 1.12-12.78 0.51
Overweight 3190 961 0.55 0.21-1.45 3185 645 0.93 0.28-3.01
Obese 1771 594 1.67 0.53-5.26 1770 306 1.32 0.33-5.28
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Data and Materials Availability

Genotyping data of the GECCO studies are available at the database of Genotypes and 
Phenotypes (dbGaP) for download at the accession number: phs001078.v1.p1. 
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