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D. Cristóbal-Hornillos,5 R. A. Dupke,2,8 A. Ederoclite,9 C. López-Sanjuan,5
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ABSTRACT
The next generation of galaxy surveys will allow us to test one of the most fundamental
assumptions of the standard cosmology, i.e. that gravity is governed by the general theory
of relativity (GR). In this paper, we investigate the ability of the Javalambre Physics of the
Accelerating Universe Astrophysical Survey (J-PAS) to constrain GR and its extensions. Based
on the J-PAS information on clustering and gravitational lensing, we perform a Fisher matrix
forecast on the effective Newton constant, μ, and the gravitational slip parameter, η, whose
deviations from unity would indicate a breakdown of GR. Similar analysis is also performed
for the DESI and Euclid surveys and compared to J-PAS with two configurations providing
different areas, namely an initial expectation with 4000 deg2 and the future best case scenario
with 8500 deg2. We show that J-PAS will be able to measure the parameters μ and η at a
sensitivity of 2–7 per cent, and will provide the best constraints in the interval z = 0.3–0.6,
thanks to the large number of ELGs detectable in that redshift range. We also discuss the
constraining power of J-PAS for dark energy models with a time-dependent equation-of-state
parameter of the type w(a) = w0 + wa(1 − a), obtaining �w0 = 0.058 and �wa = 0.24 for
the absolute errors of the dark energy parameters.

Key words: dark energy – large-scale structure of Universe.

1 IN T RO D U C T I O N

The success of the general theory of relativity (GR) is unquestion-
able. For about a hundred years now, GR has remained unchanged
and capable of explaining observations and experiments in a number
of regimes, such as the dynamics of the Solar system, gravitational
wave emission, the energetics of supermassive black holes, and
quasars [see e.g. Will (2014) for the status of experimental tests of

� E-mail: migueapa@ucm.es

GR]. When extrapolated to cosmological scales, Einstein’s theory
has also provided a very good description of the evolution of the
Universe, which is obtained at the cost of postulating the existence
of both dark matter as well as a dark energy component, i.e.
an additional field with fine-tuned properties responsible for the
current cosmic acceleration (Sahni & Starobinsky 2000; Padman-
abhan 2003; Peebles & Ratra 2003; Copeland, Sami & Tsujikawa
2006).

Given the unnatural properties of dark energy (Weinberg 1989), a
promising alternative to the standard scenario (GR plus dark energy)
is based on infra-red modifications to GR, leading to a weakening
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of gravity on cosmological scales and thus to late-time acceleration.
In the past few decades, a number of modified or extended theories
of gravity (MG) have been proposed (Dvali, Gabadadze & Porrati
2000; Sahni & Shtanov 2003; Capozziello 2002; Carroll et al. 2004;
Santos et al. 2007; see also Sotiriou & Faraoni 2010; Capozziello &
De Laurentis 2011; Clifton et al. 2012a; Ferreira 2019 for recent
reviews). In general, these ideas explore as much as they can
the loopholes of Lovelock’s theorem, while preserving GR on
astrophysical scales. Recently, the number of allowed MG theories
was significantly restricted (Baker et al. 2017; Creminelli & Vernizzi
2017; Ezquiaga & Zumalacárregui 2017), given the tight bound on
the speed of propagation of gravitational waves, |cgw/c − 1|� 10−15,
obtained from the binary neutron star merger GW170817 (Abbott
et al. 2017). In the near future, other constraints are also expected
from black hole imaging, as recently reported by the Event Horizon
Telescope.1

Cosmological observations are also able constrain MG theories at
the largest scales, as has been shown by e.g. the Planck experiment
(Aghanim et al. 2018). In this context, the large-scale structure
surveys that will become available in the coming years will play the
major role (Ferreira 2019). Those surveys can be categorized in two
main types: (i) spectroscopic surveys, obtaining high-quality spectra
(and corresponding high-quality redshift measurements thereof),
typically targeting a pre-selected subsample of extragalactic objects
BOSS (e.g. Dawson et al. 2013), eBOSS (Dawson et al. 2016), DESI
(Flaugher & Bebek 2014; Aghamousa et al. 2016), Euclid (Laureijs
et al. 2011; Amendola et al. 2018), etc., and (ii) photometric surveys,
probing the sky at deeper magnitudes in a reduced number of
filters, providing significantly larger catalogues of sources, but at
the expense of a poorer spectral characterization (e.g. DES, Abbott
et al. 2005; LSST, Abell et al. 2009).

An intermediate regime is represented by the so-called spec-
trophotometric surveys (COMBO-17, Wolf et al. 2003; ALHAM-
BRA, Moles et al. 2008; COSMOS, Ilbert et al. 2009; MUSYC,
Cardamone et al. 2010; CLASH, Postman et al. 2012; SHARDS,
Pérez-González et al. 2013; PAU, Martı́ et al. 2014; J-PLUS,
Cenarro et al. 2019a; J-PAS, Benitez et al. 2014; SPHEREx, Korngut
et al. 2018) that combine deep imaging with multicolour information
obtained through combination of broad-, medium- and narrow-
band filters. In this way, a low-resolution spectrum (also known
as ‘pseudo-spectrum’) is obtained for every pixel in the survey’s
footprint, and in particular for each and all sources present in
the joint catalogue extracted from the combination of all bands.
This allows providing high-quality photometric redshift estimations
for a much larger number of objects compared with spectroscopic
surveys, on top of 2D information for those sources that are spatially
resolved.

This paper discusses the expected cosmological implications
of J-PAS Benitez et al. (2014) on dark energy and modified
gravity theories. As is well known, the main body of observations
currently available comes from distance measurements that map the
expansion history of the Universe at the background level. However,
these measurements alone are not enough to discriminate between
a dark energy fluid and modifications to GR, as different models
can predict the same expansion history (Kunz 2012). Additional
observational information is thus required in order to break the
model degeneracy and, in particular, the growth of structures and
gravitational lensing, which is directly sensitive to the growth of
dark matter perturbations – in contrast with measurements based on

1https://eventhorizontelescope.org

galaxies, neutral hydrogen or any other baryonic tracer – are among
the most promising avenues in this respect.

Here, we consider the J-PAS information on clustering and
gravitational lensing and perform a Fisher matrix forecast on the
effective Newton constant, μ, and the gravitational slip parameter,
η (defined in Section 3), assuming two configurations of area for
J-PAS, i.e. 4000 and 8500 deg2. For completeness, we also discuss
the constraining power of J-PAS for dark energy models with a
time-dependent equation-of-state parameter w(a), and compare all
J-PAS forecasts with those expected by the DESI (Flaugher & Bebek
2014; Aghamousa et al. 2016) and Euclid surveys (Laureijs et al.
2011; Amendola et al. 2018). In this sense, this work updates some
of the results contained in Benitez et al. (2014) and also makes
new forecasts, including several new scenarios. Further analysis on
interactions in the dark sector can be found in Costa et al. (2019).

2 TH E J -PA S SU RV EY

The Javalambre Physics of the Accelerating Universe Astrophysical
Survey (J-PAS; Benitez et al. 2014) is a spectrophotometric survey
to be conducted at the Observatorio Astrofı́sico de Javalambre
(hereafter OAJ), a site on top of Pico del Buitre, a summit about
∼2000 m high above sea level at the Sierra of Javalambre, in the
Eastern region of the Iberian peninsula. The Javalambre Survey
Telescope (JST/T250), a 2.5 m diameter, altazimuthal telescope,
will be on charge of J-PAS. JST will be equipped with the
Javalambre Panoramic Camera (JPCam), a 14-CCD mosaic camera
using a new large format e2v 9.2 k-by–9.2 k 10μm pixel detectors,
and will incorporate a 54 narrow- and 4 broad-band filter set
covering the optical range (Marı́n-Franch et al. 2017). The field
of view covered by JPCam is close to 5 deg2, and thus the
JST/JPCam system constitutes a system specifically defined to
optimally conduct spectrophotometric surveys. J-PAS is not the
first survey being carried out at the OAJ, since the Javalambre
Local Universe Photometric Survey (J-PLUS), conducted by the
Javalambre Auxiliary Survey Telescope (JAST/T80), has already
covered about 1600 deg2 with 12 broad- and narrow-band filters
(some of them in common to J-PAS). We refer the reader to Benitez
et al. (2014) and Cenarro et al. (2019b) for more details on J-PAS
and J-PLUS, respectively.

3 DA R K E N E R G Y A N D M O D I F I E D G R AV I T Y
PA R A M E T R I Z AT I O N S

In recent years, many different models of dark energy or MG
have been proposed as alternatives to the standard � cold dark
matter (�CDM) cosmology. The possibility of confronting such
alternatives with observations in a largely model-independent way
has motivated the development of theoretical frameworks in which
general modifications can be captured in a few effective parameters
that can be directly tested by observations (Clifton et al. 2012b;
Silvestri, Pogosian & Buniy 2013).

In this section, we introduce the phenomenological parametriza-
tions of dark energy and MG that will be considered throughout the
paper.

3.1 Dark energy

In the context of GR, dark energy is understood as a smooth (non-
clustering) energy component with a sufficient negative pressure,
p, to violate the strong energy condition (ρ + 3p ≥ 0, where ρ

is the energy density) and accelerate the Universe. Many different
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models of dark energy have been proposed in recent years (see e.g.
Peebles & Ratra 2003; Copeland et al. 2006; Barboza & Alcaniz
2008; and references therein), based on fluid descriptions with
different equations of state or the inclusion of an additional scalar
field, as in the quintessence models.

Rather than focusing on particular models, we will consider a
phenomenological description of dark energy as a perfect fluid with
an equation of state given by the parametrization (Chevallier &
Polarski 2001; Linder 2003)

w(a) = w0 + wa(1 − a), (1)

which reduces to the standard �CDM model for values of w0 = −1
and wa = 0. Note also that this effective modification with respect
to the standard cosmology mainly affects the background evolution.
Notice that the dark energy component could acquire cosmological
perturbations that are already taken into account in the CAMB code
(Lewis, Challinor & Lasenby 2000).

3.2 Modified gravity

We will consider for simplicity the case of MG theories that include
additional scalar degrees of freedom. Extensions of the model-
independent approach for modified theories including additional
vector fields can be found in Resco & Maroto (2018b).

Let us then consider the scalar-perturbed flat Friedmann–
Lemaı̂tre–Robertson–Walker (FLRW) metric, written in the lon-
gitudinal gauge (Amendola & Tsujikawa 2010; Tsujikawa, De
Felice & Alcaniz 2013):

ds2 = −(1 + 2�)dt2 + a2(t)(1 + 2�)dx2. (2)

The modified Einstein equation to first order in perturbations can
be written as

δḠμ
ν = 8πG δT μ

ν, (3)

where the perturbed modified Einstein tensor δḠμ
ν can in principle

depend on both the metric potentials � and �, and the perturbed
scalar field δφ. On the other hand, at late times the only relevant
energy component is non-relativistic matter so that

δT 0
0 = −ρm δm, (4a)

δT 0
i = −ρm vi, (4b)

δT i
j = 0, (4c)

where vi is the three velocity of matter, ρm is the total matter density,
and δm = δρm/ρm is the corresponding matter density contrast,
which is related to the galaxy density contrast δg via the bias factor
b, as δg = b δm.

Using the Bianchi identities in the modified Einstein tensor, we
find that in the sub-Hubble regime (k � aH, H = ȧ(t)/a(t) is
the Hubble parameter) there are only two independent Einstein
equations, which together with the scalar field equation of motion
lead to the following set of equations to first order in perturbations
in Fourier space:

k2 � = 4πGa2 μη ρmδm, (5)

k2 � = −4πGa2μρmδm. (6)

Here, for simplicity, we have restricted ourselves to the case of
second-order operators and used the so-called quasi-static approx-
imation, in which time derivatives can be neglected with respect

to the spatial ones. Notice that the quasi-static approximation is
a good one for models with large speed of sound of dark energy
perturbations and can be safely employed for current galaxy surveys.
For future large surveys, it could be inappropriate on scales close to
the Hubble horizon. Also as shown in Sawicki & Bellini (2015), it
should never be used for the integrated Sachs–Wolfe effect analysis.

Note that on the sub-Hubble scales, δm agrees with the density
perturbation � used in Silvestri et al. (2013) since � = δm + 3aHv

k
.

Therefore, in the quasi-static approximation, a general modification
of Einstein’s equations can be written in terms of two arbitrary
functions of time and scale μ(a, k) and η(a, k) (Pogosian et al.
2010; Silvestri et al. 2013). These parameters can be understood as
an effective Newton constant, Geff(a, k), given by

μ(a, k) = Geff

G
, (7)

and the gravitational slip parameter

η(a, k) = −�

�
, (8)

which modifies the equation for the lensing potential that depends
upon the combination (� − �)/2. Thus, deviations from μ = η =
1 indicate a breakdown of standard GR. Notice that alternative
parametrizations have been considered in the literature such as (μ,
�) with � = μ(1 + η)/2. We have preferred to use (μ, η), since
they have a more direct physical interpretation.

The modified equations can be rewritten as

k2� � −4πGeff a
2ρmδm, (9)

and

� − �

2
� −3Geff

2G

1 + η

2

(
aH

k

)2


m(a)δm. (10)

where 
m(a) = 
m a−3 E(a)−2 is the matter density parameter
and E(a) = H(a)/H0, with the Hubble constant written as H0 =
100h km s−1 Mpc−1.

Using the standard conservation equation, T μν
;ν = 0, we obtain

the continuity and Euler equations, which in the sub-Hubble regime
and for non-relativistic matter, reduce to

aδ̇m = −θ, (11)

aθ̇ = −aHθ + k2�, (12)

where θ = i(k · v).
Taking the time derivative of equation (11) and using (12), we

obtain the modified growth equation that reads

δ′′
m +

(
2 + H ′

H

)
δ′

m − 3

2
μ(a, k)
m(a)δm � 0, (13)

where the prime denotes derivative with respect to ln a.
Notice that in general, in typical modified gravity theories such

as f(R) or scalar-tensor models, the effective Newton constant and
slip parameter generically depends on both scale k and time a.
For simplicity, in our analysis we will limit ourselves to two
particular classes of effective parameters, namely scale-independent
parametrizations with μ = μ(a) and η = η(a) and time-independent
parametrizations, i.e. μ = μ(k) and η = η(k), in order to inde-
pendently assess the sensitivity of the surveys to scale and time
dependences. Notice that, in any case, this type of parametrizations
will only be valid in a given range of scales and times. At high
redshifts or sub-galactic scales, we expect the standard μ = η = 1
values to be recovered.
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In the scale-independent case, two particularly relevant examples
will be analysed. On one hand, the constant in time case and, on the
other, the parametrization proposed in Simpson et al. (2013), which
is usually employed in the literature (Ade et al. 2016),

μ(a) = 1 + (μ0 − 1)
1 − 
m(a)

1 − 
m
, (14)

η(a) = 1 + (η0 − 1)
1 − 
m(a)

1 − 
m
. (15)

This parametrization ensures that at high redshift the standard GR
values are recovered.

4 FI S H E R MATR I C E S FO R G A L A X Y A N D
LENSING POWER SPECTRA

The Fisher matrix formalism provides a simple way to estimate
the precision with which certain cosmological parameters could be
measured from a set of observables once the survey specifications
and the fiducial cosmology are fixed. Thus, given a set of parameters
{pα}, the Fisher matrix Fp is just the inverse of the covariance
matrix in the parameters space. It provides the marginalized error
for the pα parameter as

√
F−1

αα . The corresponding 1σ region
is just an ellipsoid in the parameter space since the probability
distribution function (PDF) are assumed to be Gaussian in the Fisher
formalism. If we are interested in obtaining errors for a different set
of parameters {qα}, the Fisher matrix of the new parameters simply
reads

Fq = Pt Fp P, (16)

where P = Q−1 and Qαβ = ∂qα/∂pβ , evaluated on the fiducial model.
In the following, we provide general expressions for the Fisher

matrices for the galaxy power spectrum in redshift space and for the
lensing convergence power spectrum, both in different redshift and
in k (or �) bins. We will apply them separately to J-PAS (Benitez
et al. 2014), DESI (Aghamousa et al. 2016), and Euclid (Laureijs
et al. 2011) galaxy surveys and for J-PAS and Euclid lensing surveys.

4.1 Fisher matrix for galaxy clustering

Following Amendola et al. (2013, 2014), let us introduce the
following dimensionless parameters A and R,

A = D b σ8, (17)

R = D f σ8, (18)

where D(z) = δm(z)/δm(0) is the growth factor, b is the bias, and f
is the growth function defined by

D(z) = exp

[∫ N(z)

0
f (N ′) dN ′

]
, (19)

being N(z) = −log (1 + z). The σ 8 constant corresponds to σ8 =
σ (0.8 Mpc h−1), where

σ 2(z, R) = D2(z)
∫

k′2 dk′

2π2
P (k′)|Ŵ (R, k′)|2, (20)

being P(k) the matter power spectrum. We use a top-hat filter
Ŵ (R, k), defined by

Ŵ (R, k) = 3

k3R3
[sin(kR) − kR cos(kR)]. (21)

Then, the galaxy power spectrum in redshift space is (Seo &
Eisenstein 2003)

P (kr , μ̂r , z) = D2
A r E

D2
A Er

(A + R μ̂2)2 P̂ (k) e−k2
r μ̂2

r σ 2
r , (22)

where sub-index r denotes that the corresponding quantity is
evaluated on the fiducial model, P̂ (k) ≡ P (k)/σ 2

8 , σr = (δz (1 +
z))/H (z) with δz(1 + z) the photometric redshift error, and DA

is the angular distance which, in a flat universe, reads DA =
(1 + z)−1 χ (z), with

χ (z) = H−1
0

∫ z

0

dz′

E(z′)
. (23)

The dependences k = k(kr), μ̂ = μ̂(μ̂r ), and the factor
D2

Ar
E

D2
A Er

are

due to the Alcock–Paczynski effect (Alcock & Paczynski 1979; see
also Amendola & Tsujikawa 2010):

k = Q kr, (24)

μ̂ = E μ̂r

Er Q
, (25)

Q =
√

E2 χ2 μ̂2
r − E2

r χ2
r

(
μ̂2

r − 1
)

Er χ
. (26)

If we consider different galaxies as dark matter tracers with bias
bi, the galaxy power spectrum is (White, Song & Percival 2008;
McDonald & Seljak 2009)

Pij (kr , μ̂r , z) = D2
A r E

D2
A Er

(Ai + R μ̂2)

× (Aj + R μ̂2)P̂ (k) e−k2
r μ̂2

r σ 2
r , (27)

where Ai = D bi σ8. Then, considering a set of cosmological
parameters {pα}, the corresponding Fisher matrix for clustering
of different tracers and for a given redshift bin centred at za is
(Abramo 2012; Abramo, Secco & Loureiro 2016)

FC
αβ (za) = Va

8π2

∫ 1

−1
dμ̂

∫ ∞

kmin

dk k2 ∂Pij (k, μ̂, za)

∂pα

∣∣∣∣
r

×C−1
j l

∂Plm(k, μ̂, za)

∂pβ

∣∣∣∣
r

C−1
mi e

−k2 �2
⊥−k2 μ̂2

(
�2

‖−�2
⊥

)
,

(28)

where

�⊥(z) = 0.785 D(z) �0, (29)

�‖(z) = 0.785 D(z) (1 + f (z)) �0, (30)

with �0 = 11 h−1 Mpc for our fiducial value of σ 8 = 0.82 in the
modified gravity case, and �0 = 6.5 h−1 Mpc for the dark energy
case due to the reconstruction procedure (Seo & Eisenstein 2007).
Finally, kmin is fixed to 0.007 h Mpc−1 (Amendola et al. 2014).
Thus, the exponential cut-off (Seo & Eisenstein 2007) removes
the contribution from non-linear scales across and along the line of
sight. The factor 0.785 takes into account the different normalization
of (1 + z) D(z) at high redshifts compared to Seo & Eisenstein
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(2007).2 The data covariance matrix is

Cij = Pij + δij

n̄i

, (31)

where n̄i = n̄i(za) is the mean galaxy density of tracer i in the
z bin a. Finally, Va is the total volume of the ath bin. For a flat
�CDM model, Va = 4π fsky

3

(
χ (z̄a)3 − χ (z̄a−1)3

)
where fsky is the

sky fraction of the survey and z̄a the upper limit of the ath bin. For
the particular case in which we have only one tracer we recover
from (28) the standard Fisher matrix of clustering for the power
spectrum (22) at za (Seo & Eisenstein 2003),

FC
αβ (za) = Va

8π2

∫ 1

−1
dμ̂

∫ ∞

kmin

k2 Veff
∂ ln(P (k, μ̂, za))

∂pα

∣∣∣∣
r

× ∂ ln(P (k, μ̂, za))

∂pβ

∣∣∣∣
r

e
−k2 �2

⊥−k2 μ̂2
(

�2
‖−�2

⊥
)

dk. (32)

Here, Va is the volume of the redshift slice za, and the effective
volume is given by

Veff =
(

n̄(za) P (k, μ̂, z)

1 + n̄(za) P (k, μ̂, z)

)2

. (33)

Finally, if we are interested in estimating errors in different k-
bins, we sum the information for all z bins in each kq bin of width
�kq, so that

FC
αβ (kq ) =

∑
a

Va

8π2

∫ 1

−1
dμ̂

∫
�kq

dk k2 ∂Pij (k, μ̂, za)

∂pα

∣∣∣∣
r

×C−1
j l

∂Plm(k, μ̂, za)

∂pβ

∣∣∣∣
r

C−1
mi e

−k2�2
⊥−k2μ̂2

(
�2

‖−�2
⊥

)
. (34)

4.2 Fisher matrix for weak lensing

The main observable for the weak lensing measurements is the
convergence power spectrum. Using the Limber and flat-sky ap-
proximations, we obtain (Lemos, Challinor & Efstathiou 2017)

P (�) =
∫ ∞

0
dz

H 2
0 
2

m

H (z)
K2(z)

μ2 (1 + η)2

4
D2(z) P

(
�

χ (z)

)
,

(35)

where K(z) is defined as

K(z) = 3 H0

2
(1 + z)

∫ ∞

z

(
1 − χ (z)

χ (z′)

)
n(z′) dz′, (36)

being n(z) the source galaxy density function as a function of the
redshift. For a redshift tomography analysis, we can generalize the
convergence power spectrum as (Hu 1999)

Pij (�) � H0

∑
a

�za

Ea

Ki(za)Kj (za)L2
aP̂

(
�

χ (za)

)
, (37)

where we have discretized the integral (35) and defined the dimen-
sionless parameter L as (Amendola et al. 2013)

L = 
m D
μ (1 + η)

2
σ8, (38)

2Note that there is a typo in the normalization factor of 0.785 on Seo &
Eisenstein (2007). We thank Cássio Pigozzo for pointing this out.

where La = L(za). The function Ki is related to the weak lensing
window function for the i-bin by

Ki(z) = 3 H0

2
(1 + z)

∫ ∞

z

(
1 − χ (z)

χ (z′)

)
ni(z

′) dz′, (39)

where ni(z) is the density function for the i-bin, which is obtained
as follows: let us first consider the source galaxy density function
for the survey (Ma, Hu & Huterer 2005),

n(z) = 3

2z3
p

z2 e−(z/zp )3/2
, (40)

where zp = zmean/
√

2, being zmean the survey mean redshift. Then,
within the i-bin we have a new distribution function which is defined
to be equal to n(z) inside the bin and zero outside. Now, taking into
account the photometric redshift error, σi = δz (1 + zi), we obtain

ni(z) ∝
∫ z̄i

z̄i−1

z′2e−(z′/zp )3/2
e
− (z′−z)2

2σ2
i dz′, (41)

where z̄i is the upper limit of the i-bin. Then, the Fisher matrix for
weak lensing is given by (Eisenstein, Hu & Tegmark 1999)

FL
αβ = fsky

∑
�

� ln �
(2� + 1)�

2
Tr

[
∂P
∂pα

C−1 ∂P
∂pβ

C−1

]
, (42)

where P and C are the matrix of size nb × nb with,

Cij = Pij + γ 2
int n̂

−1
i δij , (43)

γ int = 0.22 being the intrinsic ellipticity (see for instance Hilbert
et al. 2017). Notice that we are not considering the effect of possible
systematic errors in the shear measurements (Huterer et al. 2006).
Finally, n̂i denotes the number of galaxies per steradian in the ith
bin,

n̂i = nθ

∫ z̄i

z̄i−1
n(z) dz∫ ∞

0 n(z) dz
, (44)

where nθ is the areal galaxy density. We sum in � with �ln � =
0.1 from �min = 5 (Amendola et al. 2014) to �max with �max =
χ (zα′ ) kmax where α

′ = min(α, β) and kmax(za) is defined so that
σ (za, π/2kmax(za)) = 0.35 using (20), i.e. we only consider modes
in the linear regime.

Finally, if we are interested in estimating errors in different �-
bins, we introduce a window function in the Fisher matrix (42) in
order to take into account only the information of a bin �a of width
��a,

FL
αβ (�a) = fsky

∑
�

��
(2� + 1)

2
Wa(�)Tr

[
∂P
∂pα

C−1 ∂P
∂pβ

C−1

]
,

(45)

where Wa(�) is defined as

Wa(�) = θ

(
� −

[
�a − ��a

2

])
θ

([
�a + ��a

2

]
− �

)
, (46)

being θ (x) is the Heaviside function.

4.3 Fiducial model and surveys specifications

The fiducial J-PAS cosmology Costa et al. (2019) assumed in our
analysis is the flat �CDM model with the parameters 
m = 0.31,

b = 0.049, ns = 0.96, h = 0.68, H−1

0 = 2997.9 Mpc h−1, and σ 8 =
0.82 which are compatible with Planck 2018 (Aghanim et al. 2018).
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For this cosmology, the E(z) function defined previously is given
by

E(z) =
√


m (1 + z)3 + (1 − 
m), (47)

whereas the growth function can be written as

f�(z) =
(


m (1 + z)3 1

E2(z)

)γ

, (48)

with the growth index γ = 0.545 (Linder & Cahn 2007). For the
fiducial cosmology, the linear matter power spectrum P̂ (k) takes
the form

P̂ (k) ∝ kns T 2(k), (49)

where the transfer function has been obtained from CAMB (Lewis
et al. 2000). Then, we impose the normalization

∫
k′2 dk′

2π2
P̂ (k′)|Ŵ (8 Mpc h−1, k′)|2 = 1, (50)

since we have taken out σ 2
8 from the power spectrum and have

inserted it in the definitions (17) and (18). In the dark energy case,
we will consider derivatives of the transfer function with respect to
w0 and wa parameters when calculating the corresponding Fisher
matrices. However in the modified gravity case this is no longer
as the dependence of the transfer functions on the modified gravity
parameters is not explicitly known. For the bias, we consider four
different types of galaxies: luminous red galaxies (LRGs), emission-
line galaxies (ELGs), bright galaxies (BGS), and quasars (QSO;
Mostek et al. 2013; Ross et al. 2009). Each type has different fiducial
bias given by

b(z) = b(0)

D(z)
, (51)

being b0 = 0.84 for ELGs, b0 = 1.7 for LRGs, and b0 = 1.34 for
BGS. For Euclid survey we use a fiducial bias for ELGs of the form
b(z) = √

1 + z (Laureijs et al. 2011), while the bias for quasars is
b(z) = 0.53 + 0.289 (1 + z)2.

Finally, we summarize the surveys specifications necessary to
compute the different Fisher matrices. For clustering, we have
considered: redshift bins and galaxy densities for each bin which
can be found in the left-hand panel of Table A1 for J-PAS, in the
centre panel of Table A1 for DESI and in the right-hand panel of
Table A1 for Euclid. We consider two configurations of total area for
J-PAS, namely 8500 and 4000 deg2 which correspond to fractions
of the sky of fsky = 0.206 and fsky = 0.097, respectively. fsky =
0.339 for DESI with 14 000 deg2 and fsky = 0.364 for Euclid with
15 000 deg2. The redshift error is δz = 0.003 for galaxies and QSO
in J-PAS, δz = 0.0005 for galaxies in DESI and δz = 0.001 for QSO
in DESI and galaxies in Euclid.

For the weak lensing analysis we have used: redshift bins and
the fraction of the sky fsky, which are the same as in the clustering
analysis; mean redshifts for the galaxy density which are zmean = 0.5
for J-PAS and zmean = 0.9 for Euclid; the angular number density
nθ (in galaxies per square arcminute) that can be found in Table A8
for J-PAS with three different photometric errors. For Euclid, nθ =
35 galaxies per square arcminute with δz = 0.05.

5 R ESULTS

5.1 Galaxy clustering

5.1.1 Dark energy

The dark energy equation of state is one of the main drivers of
modern galaxy surveys. Low-redshift measurements of the scale
of baryonic acoustic oscillations (BAOs) in galaxy clustering con-
stitute a straightforward, nearly systematic-free way of measuring
distances using the ‘cosmic standard ruler’ provided by the acoustic
horizon at the epoch of baryon drag (Seo & Eisenstein 2003). These
distances are measured both along the line of sight [since dχ =
cdz/H(z)] as well as across the line of sight (using the angular-
diameter distance, which for an object of size dL subtending an
angle dθ reads dθ = dL/DA). The different dependencies of H(z)
and DA(z) on cosmological parameters help break degeneracies,
improving the constraints.

In order to derive these constraints, the BAOs derived from
galaxy clustering must be compared against the high-redshift
measurement of the acoustic horizon from observations of the
cosmic microwave background (Ade et al. 2016). In terms of the
Fisher matrix analysis, this means that one should include priors
that codify the CMB constraints on the acoustic horizon, so we
have considered from Aghanim et al. (2018) the acoustic horizon
rdrag = 147.18 ± 0.29 Mpc. Here, we chose the standard procedure
of including those priors as additional Fisher matrices that are
added to the full Fisher matrix (for all parameters and all slices),
before slicing and eventually inverting those matrices to find the
constraints.

It is important to note that one may break degeneracies and
improve measurements by measuring not only the BAO features
but also the shape of the power spectrum. However, since the shape
measurements are much more sensitive to systematic errors than
the pure BAO measurements (Seo & Eisenstein 2003; White et al.
2008), by isolating the former from the latter one obtains more
robust constraints. For that reason, it has become standard practice
to first derive constraints from each redshift slice on H(z) and DA(z),
and then project those constraints into the cosmological parameters.

It has been pointed out that the smearing of the BAO scale caused
by mode-coupling in the nonlinear regime can be partially undone
(at least on large scales) by the procedure known as reconstruction
(Seo & Eisenstein 2007). For our dark energy constraints, we
assume that a simple, conservative reconstruction procedure has
been applied to all data sets, which would lower the non-linear
scale �0 from 11 h−1 Mpc to 6.5 h−1 Mpc.

The procedure for extracting constraints from BAOs while
isolating as much as possible the systematics from the unknown
broad-band shape of the power spectrum and non-linear effects
has been well established (Seo & Eisenstein 2003). We have
followed this standard procedure, which in our case means that
our basic (parent) Fisher matrices include not only the ‘global’
degrees of freedom θglob = {
k, 
b, 
c, h, ns} but also ‘local’
parameters, which are unknown on each redshift slice: θ loc = {H(z),
DA(z), fσ 8(z), bσ 8(z), Pshot(z)}. If there are more than one tracer
available on a given slice, there are as many bias factors in that
slice.

After marginalizing against every other parameter in the parent
Fisher matrix, we obtain constraints for the radial and angular-
diameter distances on each redshift slice (for dark energy constraints
we employed slices of �z = 0.2, and rescaled DESI and Euclid
parameters to match that choice). Finally, the Fisher matrices in
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3622 M. A. Resco et al.

Figure 1. Top panel: Constraints on w0 (left) and wa (right) as we increase the depth of the surveys. Here, we consider only the clustering information. The
errors for J-PAS (8500 deg2, black solid lines; 4000 deg2, black thin lines) combine ELGs, LRGs, and QSOs; those for DESI (14 000 deg2, blue dashed lines)
combine the BGS sample, ELGs, LRGs, and QSOs; and those for Euclid (15 000 deg2, green dotted lines) include only ELGs. Bottom panel: Added value of
each successive redshift slice (assuming here bins of �z = 0.2) on w0 (left) and wa (right).

terms of these parameters are used to derive constraints on the
desired cosmological parameters – in our case, {
m, w0, wa}. This
last step requires that we use the BAO scale, which is imposed in
terms of a suitable prior derived from Planck data.

As mentioned earlier, our model for dark energy parametrizes
the equation of state using two parameters, such that w(a) = w0

+ wa(1 − a) (Chevallier & Polarski 2001; Linder 2003). The
joint measurement of w0 and wa has been the standard metric for
comparing surveys in terms of their power to constrain dark energy
(Albrecht et al. 2006). In Fig. 1, we compare the constraints on w0

and wa for two areas of J-PAS, together with those for DESI and
Euclid. In the top panel, we show how the constraints improve as we
include successive redshift slices, and in the bottom panel, we show
the added value of each successive slice for those constraints. In
Fig. 2, we plot 1σ contour error for w0 and wa using the information
of all redshift bins. We summarize the marginalized errors for w0

and wa in Table A2.

5.1.2 Modified gravity

For MG scenarios, we have the following independent parameters:
Ai, R, and E with i denoting the different tracers. Because we
have checked that marginalizing with respect to a non-Poissonian
shot noise component has a minimal effect, for simplicity, we do
not consider the shot noise term as a free parameter in this case.
However, we are interested in obtaining errors for the effective
Newton constant parameter μ and the growth function f. Thus,
we first consider as parameters the dimensionless quantities Ai, R,

and E for each redshift bin. Using the definitions of the Ai and R
parameters, we obtain for ∂Pij (kr , μ̂r , za)/∂pα ,

∂Pij (kr , μ̂r , za)

∂Al

=
[

δli

Ai + R μ̂2
+ δlj

Aj + R μ̂2

]
Pij , (52a)

∂Pij (kr , μ̂r , za)

∂R
=

[
μ̂2

Ai + Rμ̂2
+ μ̂2

Aj + Rμ̂2

]
Pij , (52b)

∂Pij (kr , μ̂r , za)

∂E
=

[
1

E
+ 2Rμ̂2(1 − μ̂2) � + 2�za

E2 H0χ (za)

]
Pij

(52c)

where

� =
(

1

Ai + R μ̂2
+ 1

Aj + R μ̂2

)(
1

E
− �za

E2 H0 χ (za)

)
,

and the length of the bin �za appears since we have discretized the
integration in equation (23) in order to calculate the derivative with
respect to E. Following Amendola et al. (2013), in the calculation
of ∂Pij (kr , μ̂r , za)/∂E we do not consider the dependence of
Pij (kr , μ̂r , z) on E through k since we do not know its explicit
k dependence in a model-independent way.

Once we have obtained the Fisher matrix for [ Ai, R, E ],
we project first into [ Ai, f , E ], and then to [ Ai, μ, E ] using
equations (16) and (48) and the approximate analytic expression for
f = f(μ, z) (Resco & Maroto 2018a),

f (μ, z) = 1

4

(√
1 + 24 μ − 1

)
f�(z), (53)
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Figure 2. 1σ contour error for w0 and wa for J-PAS (8500 deg2, black solid lines; 4000 deg2, black thin lines) combine ELGs, LRGs, and QSOs; those for
DESI (14 000 deg2, blue dashed lines) combine the BGS sample, ELGs, LRGs, and QSOs; and those for Euclid (15 000 deg2, green dotted lines) include only
ELGs.

Figure 3. Left: Tomographic relative errors on scale independent and constant μ for J-PAS with ELGs, LRGs, and quasars. Right: Same as in the left plot but
for J-PAS (ELGs+LRGs+QSOs), DESI (BGS+ELGs+LRGs+QSOs), and Euclid (ELGs) using clustering information (right).

which is valid for time-independent μ. Thus, using equation (32) we
obtain the errors for f and then those for μ. Forecasts for the relative
errors in μ and f(z) in the different redshift bins can be found in
Table A4 and in Table A5 for J-PAS, in Table A3 for DESI and in
Table A6 for Euclid. In Fig. 3, we plot these results for the three
surveys. As we can see, ELGs provide the tightest constraints for
J-PAS. Compared to Euclid or DESI, we find that J-PAS provides
the best precision in the redshift range of z = 0.3–0.6. Notice this is
also the case in the 4000 deg2 configuration. This is mainly thanks
to the large number of expected ELG detection in that redshift range
that compensates the smaller fraction of sky of J-PAS as compared
to other surveys.

In Fig. 4, we show f(z) and fσ 8(z) with the expected error bars.
Errors for μ in different k-bins are obtained using (equation 34)
and can be found in Table A7 and in Fig. 5 (left). We find that
the best precision is obtained for scales around k = 0.1 h Mpc−1,
which are slightly below Euclid and DESI best scales. Finally, in
Fig. 7 (left) we show errors for the Hubble dimensionless parameter
E(z) in the different redshift bins. Once more, J-PAS provides better

precision below z = 0.6, but also thanks to QSOs observation at
higher redshifts, J-PAS will be able to measure the expansion rate
in the practically unexplored region up to redshift z = 3.5 with
precision below 30 per cent.

5.2 Weak lensing

In this section, we obtain the errors on the η parameter using weak
lensing information. First, we compute the Fisher matrix for [E, L]
in each bin which has the following form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1E1 E1L1 E1E2 E1L2 ...

L1E1 L1L1 L1E2 L1L2 ...

E2E1 E2L1 E2E2 E2L2 ...

L2E1 L2L1 L2E2 L2L2 ...

... ... ... ... ...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (54)
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Figure 4. Growth function and fσ 8 function for the fiducial cosmology with error bars for J-PAS 8500 and 4000 deg2, using ELGs+LRGs+QSOs.

Figure 5. Left: Relative errors on constant μ(k) for J-PAS (ELGs+LRGs+QSOs), DESI (BGS+ELGs+LRGs+QSOs), and Euclid (ELGs) using clustering
information. Centre: Tomographic relative errors of scale-independent constant η for J-PAS (ELGs+LRGs) and Euclid (ELGs) using lensing information.
Right: Relative errors on constant η(�) for J-PAS (ELGs+LRGs) and Euclid (ELGs) using lensing information.

Then, we obtain the expressions for the derivatives of the
convergence power spectrum. The simplest case corresponds to
the derivative with respect to L,

∂Pij

∂La

= 2H0
�za

Ea

Ki(za)Kj (za) La P̂

(
�

χ (za)

)
. (55)

For the derivative with respect to E, we need the expression,

∂Ki(zb)

∂Ea

= 3(1 + zb)�za

2E2
a

[
−θ̂ (za − zb)χ (zb)

∫ ∞

za

ni(z′)
χ (z′)2

dz′

+ θ (zb − za)
∫ ∞

zb

(
1 − χ (zb)

χ (z′)

)
ni(z′)
χ (z′)

dz′
]

, (56)

where we have discretized the integration in equation (23) in the
different bins and we have introduced Heaviside functions such that
θ̂ (0) = 0 and θ (0) = 1. Then the derivative with respect to E reads

∂Pij

∂Ea

= −H0
�za

E2
a

Ki(za)Kj (za)L2
aP̂

(
�

χ (za)

)

+H0

∑
b

�zb

Eb

∂Ki(zb)

∂Ea

Kj (zb) L2
bP̂

(
�

χ (zb)

)

+H0

∑
b

�zb

Eb

∂Kj (zb)

∂Ea

Ki(zb) L2
bP̂

(
�

χ (zb)

)
. (57)

As in the clustering case, we have not considered derivatives of
P̂ (k).

Now, it is necessary to change the initial parameters [E, L] to
the new ones [E, η]. Using equation (38), we obtain ∂η

∂L
= 2

L
and

∂η

∂E
= 0. For time-independent parameters, we show in Table A9 and

in Fig. 5 (middle) the relative errors in η for the different redshift
bins for J-PAS and Euclid. Again, J-PAS provides the best errors
in the range of z = 0.3–0.6. In order to obtain the errors of η in
different �-bins, we compute the Fisher matrix (equation 45). We
first change from [E, L] to [E, η] in each redshift bin and then sum the
information of η for the different redshift bins. The corresponding
errors can be found in Table A10 for J-PAS and Euclid as well as in
Fig. 5 (right).

5.3 Clustering+weak lensing

Finally, in this section, we analyse the case in which information
from clustering and lensing is combined. We first take the Fisher
matrix of parameters [Ai, μ, E] for clustering and [E, η] for weak
lensing and build the full matrix with parameters [Ai, μ, E, η]. This
matrix has the form,⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A1A1 A1μ1 0 A1E1 ...

μ1A μ1μ1 0 μ1E1 ...

0 0 η1η1 η1E1 ...

E1A1 E1μ1 E1η1 E1E1 ...

... ... ... ... ...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (58)

where EE is the sum of terms EE for clustering and lensing. By
inverting this Fisher matrix, we obtain the errors for μ and η. These
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results are shown in Table A11 for J-PAS and in Table A12 for
Euclid. Finally, Fig. 6 compares the sensitivity of both surveys
for time-independent μ and η in the different redshift bins. For
completeness, we also show the same comparison for the function
E(z) in Fig. 7. As we can see, the combination of clustering and
lensing information improves the sensitivity in around a 10 per cent
for all the parameters. We sum all the information in the whole
redshift range for μ and η and plot their error ellipses in the right-
hand panel of Fig. 8. These results are summarized in Table A13.

So far we have limited ourselves to time-independent μ and
η parameters. For scale-independent parameters, we consider the
case in equations (14) and (15). Using the analytical fitting
function for this particular expressions obtained in Resco &
Maroto (2018a), we obtain errors for μ0 and η0 with fiducial
values μ0 = η0 = 1. We plot on the left-hand panel of Fig. 8
error ellipses for μ0 and η0, and we summarize these errors in
Table A13.

6 D ISC U SSION AND CONCLUSION

Over the past years, cosmological observations have been used not
only to constrain models within the context of GR but also the
theory of gravity itself (see e.g. Okumura et al. 2016). In general,
MG theories introduce changes in the Poisson equation which
relate the density perturbations δ with the gravitational potential
�, thus modifying the amplitude and evolution of the growth of
cosmological perturbations. Furthermore, gravitational lensing is
directly sensitive to the growth of dark matter perturbations – in
contrast with measurements based on galaxies, neutral hydrogen, or
any other baryonic tracer. These theories, therefore, also introduce
modifications in the equation that determines the lensing potential
and controls the motion of photons. Thus, observations of the
distribution of matter on large scales at different redshifts, and of the
weak lensing generated by those structures, provide a new suite of
tests of GR on cosmological scales (Tsujikawa et al. 2013; Huterer
et al. 2015; Joyce et al. 2015).

In this work, we have investigated the ability of the J-PAS survey
to constrain dark energy and MG cosmologies using both the J-
PAS information on the galaxy power spectra for different dark
matter tracers, with baryon acoustic oscillations and redshift-space
distortions, as well as the weak lensing information by consid-
ering the convergence power spectrum. Our analysis considers
phenomenological parametrization of dark energy and modified
gravity models, as discussed in Section 3.

Following Amendola et al. (2013), we have adopted a model-
independent parametrization of the power spectra of clustering
and weak lensing. This parametrization considers all the free and
independent parameters that are needed to describe such power
spectra in the linear regime. In this analysis, we have fixed the
initial dark matter power spectrum P̂ (k) to the fiducial model,
corresponding to a flat �CDM cosmology. As mentioned above,
rather than focusing on specific dark energy or MG theories, we
have considered a phenomenological approach described in terms
of a set of parameters that can be contrasted with observations.
Thus, in the dark energy case, the widely used (w0, wa) CPL
parametrization has been assumed. For MG theories, two cases
have been considered. First, for time-independent μ and η, we have
performed both a tomographic redshift bin analysis and an analysis
in k-bins. By summing over all the redshift range, we have obtained
the best errors for the modified gravity parameters. Secondly, for
scale-independent parameters, we have considered the particular

parametrization in terms of μ0 and η0 (equations 14 and 15) usually
employed in the literature.

J-PAS will be able to measure different tracers, e.g. LRG, ELG,
and QS. In order to contextualize the J-PAS measurements, we have
performed the same Fisher analysis for DESI and Euclid surveys.
In the case of DESI, in addition to LRGs, ELGs, and QSOs, a
bright galaxy sample (BGS) will be also measured at low redshifts,
while Euclid will measure only ELGs. In the dark energy analysis,
we have found that J-PAS will measure w0 with precision below
6 per cent that can be compared with the 4.5 per cent for DESI
and 3 per cent for Euclid. The absolute error in wa is found to be
below 0.24 for J-PAS, 0.19 for DESI, and 0.13 for Euclid. From the
tomographic analysis, we find that using the clustering information
alone, J-PAS will allow to measure the expansion rate H(z) with
precision 3 per cent in the best redshift bin (z = 0.7) and the μ

parameter with a precision around 5 per cent in the best redshift
bin. From lensing alone, J-PAS will be able to measure η with a
precision around 8 per cent in the best redshift bin. The combination
of clustering and lensing will allow to improve the precision in μ

down to 4 per cent in the best bin. Considering the information in
the whole redshift range, we have found that J-PAS will be able
to measure time-independent μ and η with precision better than
3 per cent for both parameters. For μ0 and η0, we have obtained
errors of 10 per cent and 5 per cent, respectively.

When compared to future spectroscopic surveys such as DESI or
spectroscopic and photometric ones such as Euclid, we have shown
that from clustering and lensing information, J-PAS will have the
best errors for redshifts between z = 0.3 and 0.6, thanks to the
large number of ELGs detectable in that redshift range. Note also
that thanks to QSOs observation at higher redshifts, J-PAS will
be able to measure the expansion rate and MG parameters in the
practically unexplored region up to redshift z = 3.5 with precision
below 30 per cent.

In the whole redshift range, the J-PAS precision in both μ and
η will be a factor of 1.5–2 below Euclid in their respective best
bins. For the (time-dependent) μ0–η0 parametrization (eqautions
14 and15), we have shown that J-PAS is closer to Euclid than
in the constant case. This is due to the fact that low-redshift
measurements are more sensitive to μ0 and η0 than high-redshift
ones, such that at low-redshift J-PAS precision surpasses that of
Euclid.

Finally, it is worth mentioning that by increasing the precision in
the determination of the dimensionless Hubble parameter using
e.g. the J-PAS sample of type Ia supernovae, and taking into
account information from the non-linear power spectra, it can
be expected that the sensitivity to the μ and η parameters will
increase. Additionally, considering the cross-correlation between
galaxy distribution and galaxy shapes will also allow to improve
the precision of J-PAS in the determination of dark energy and MG
parameters.
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Figure 6. Left: Tomographic relative errors for scale-independent constant μ for J-PAS (ELGs+LRGs+QSOs), DESI (BGS+ELGs+LRGs+QSOs), and
Euclid (ELGs) using clustering and lensing information. In the case of DESI and J-PAS quasars only clustering information is taken into account. Right:
Tomographic relative errors for scale-independent constant η for J-PAS (ELGs+LRGs+QSOs) with δz = 3 per cent and Euclid (ELGs) using clustering and
lensing information.

Figure 7. Relative errors for E(z) for J-PAS (ELGs+LRGs+QSOs), DESI (BGS+ELGs+LRGs+QSOs), and Euclid (ELGs) using clustering information
(left-hand panel), and using clustering and lensing information (right-hand panel). In the case of DESI and J-PAS quasars, only clustering information is taken
into account. For lensing in J-PAS, the redshift error is δz = 3 per cent.

Figure 8. Left: 1σ contour error for μ0 and η0 defined in equations (14) and (15). Right: 1σ contour error for scale-independent constant μ and η. All in
J-PAS (ELGs+LRGs+QSOs) and Euclid (ELGs) surveys combining clustering and lensing information for 8500 and 4000 deg2.
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Table A1. In left-hand panel: Redshift bins and densities of luminous red
galaxies, emission-line galaxies, and quasars for J-PAS. In centre panel:
Redshift bins and densities of bright galaxies, luminous red galaxies,
emission-line galaxies and quasars for DESI. In right-hand panel: Redshift
bins and densities of emission-line galaxies for Euclid. Galaxy densities in
units of 10−5 h3 Mpc−3.

J-PAS
z LRG ELG QSO

0.3 226.6 2958.6 0.45
0.5 156.3 1181.1 1.14
0.7 68.8 502.1 1.61
0.9 12.0 138.0 2.27
1.1 0.9 41.2 2.86
1.3 0 6.7 3.60
1.5 0 0 3.60
1.7 0 0 3.21
1.9 0 0 2.86
2.1 0 0 2.55
2.3 0 0 2.27
2.5 0 0 2.03
2.7 0 0 1.81
2.9 0 0 1.61
3.1 0 0 1.43
3.3 0 0 1.28
3.5 0 0 1.14
3.7 0 0 0.91
3.9 0 0 0.72

DESI
z BGS LRG ELG QSO

0.1 2240 0 0 0
0.3 240 0 0 0
0.5 6.3 0 0 0
0.7 0 48.7 69.1 2.75
0.9 0 19.1 81.9 2.60
1.1 0 1.18 47.7 2.55
1.3 0 0 28.2 2.50
1.5 0 0 11.2 2.40
1.7 0 0 1.68 2.30

Euclid
z ELG

0.6 356
0.8 242
1.0 181
1.2 144
1.4 99
1.6 66
1.8 33

Table A2. Absolute errors for w0 and wa for Euclid,
DESI, and JPAS (with 8500 and 4000 deg2), considering
clustering information.

Survey �w0 �wa

Euclid 0.029 0.128
DESI 0.045 0.186
J-PAS 8500 0.058 0.238
J-PAS 4000 0.079 0.316

Table A3. Redshift bins, fiducial values for μ and f, and
their errors for DESI forecast with clustering information, using
BGS+ELGs+LRGs+QSOs. Relative errors are per cent errors.

DESI clustering
z μ �μ/μ f �f �f /f

0.1 1 55.4 0.585 0.085 14.5
0.3 1 27.9 0.683 0.037 5.47
0.5 1 21.9 0.759 0.048 6.32
0.7 1 4.73 0.816 0.016 1.96
0.9 1 3.59 0.858 0.014 1.62
1.1 1 3.55 0.889 0.014 1.58
1.3 1 4.41 0.913 0.017 1.87
1.5 1 6.09 0.930 0.022 2.40
1.7 1 12.7 0.943 0.044 4.66
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Table A4. Redshift bins, fiducial values for μ and f, and their errors for J-PAS forecast with clustering
information, 4000 deg2 and using ELGs+LRGs+QSOs . Relative errors are per cent errors.

J-PAS clustering 4000 deg2

z μ �μ/μ f �f �f /f fσ 8 �fσ 8 �f σ8/f σ8

0.30 1 17.5 0.683 0.024 3.57 0.477 0.074 15.6
0.50 1 7.47 0.759 0.021 2.81 0.477 0.033 6.83
0.70 1 6.14 0.816 0.023 2.84 0.465 0.027 5.75
0.90 1 6.69 0.858 0.029 3.39 0.446 0.028 6.33
1.10 1 8.03 0.889 0.035 3.96 0.423 0.030 7.10
1.30 1 16.9 0.913 0.068 7.42 0.400 0.052 13.1
1.50 1 28.7 0.930 0.113 12.1 0.377 0.080 21.1
1.70 1 30.0 0.943 0.122 12.9 0.357 0.079 22.1
1.90 1 31.9 0.954 0.132 13.9 0.337 0.079 23.5
2.10 1 32.8 0.961 0.139 14.4 0.318 0.077 24.2
2.30 1 39.4 0.968 0.169 17.4 0.302 0.088 29.0
2.50 1 40.8 0.973 0.177 18.2 0.287 0.086 30.0
2.70 1 44.7 0.977 0.195 20.0 0.273 0.090 33.0
2.90 1 49.6 0.980 0.218 22.2 0.259 0.094 36.5
3.10 1 54.9 0.983 0.242 24.7 0.248 0.100 40.4
3.30 1 60.5 0.985 0.268 27.2 0.237 0.105 44.4
3.50 1 67.1 0.987 0.298 30.2 0.228 0.112 49.2
3.70 1 82.2 0.989 0.363 36.7 0.218 0.130 59.7
3.90 1 100 0.990 0.442 44.6 0.210 0.152 72.5

Table A5. Redshift bins, fiducial values for μ and f and their errors for J-PAS forecast with clustering
information, 8500 deg2 and using ELGs+LRGs+QSOs. Relative errors are per cent errors.

J-PAS clustering 8500 deg2

z μ �μ/μ f �f �f /f fσ 8 �fσ 8 �f σ8/f σ8

0.30 1 12.0 0.683 0.017 2.45 0.477 0.051 10.7
0.50 1 5.12 0.759 0.015 1.93 0.477 0.022 4.68
0.70 1 4.21 0.816 0.016 1.95 0.465 0.018 3.95
0.90 1 4.59 0.858 0.020 2.32 0.446 0.019 4.34
1.10 1 5.51 0.889 0.024 2.72 0.423 0.021 4.87
1.30 1 11.6 0.913 0.046 5.09 0.400 0.036 8.97
1.50 1 19.7 0.930 0.077 8.32 0.377 0.055 14.5
1.70 1 20.6 0.943 0.083 8.84 0.357 0.054 15.1
1.90 1 21.9 0.954 0.091 9.52 0.337 0.054 16.1
2.10 1 22.5 0.961 0.095 9.90 0.318 0.053 16.6
2.30 1 27.0 0.968 0.116 12.0 0.302 0.060 19.9
2.50 1 28.0 0.973 0.121 12.5 0.287 0.059 20.6
2.70 1 30.7 0.977 0.134 13.7 0.273 0.062 22.6
2.90 1 34.0 0.980 0.149 15.2 0.259 0.065 25.0
3.10 1 37.7 0.983 0.166 16.9 0.248 0.068 27.7
3.30 1 41.5 0.985 0.184 18.6 0.237 0.072 30.4
3.50 1 46.1 0.987 0.204 20.7 0.228 0.077 33.7
3.70 1 56.4 0.989 0.249 25.2 0.218 0.089 41.0
3.90 1 68.9 0.990 0.303 30.6 0.210 0.104 49.8

Table A6. Redshift bins, fiducial values for μ and f and their
errors for Euclid forecast with clustering information, using
ELGs. Relative errors are per cent errors.

Euclid clustering
z μ �μ/μ f �f �f /f

0.6 1 4.88 0.789 0.017 2.12
0.8 1 3.42 0.838 0.014 1.65
1.0 1 2.64 0.875 0.012 1.32
1.2 1 2.60 0.902 0.012 1.31
1.4 1 2.46 0.922 0.011 1.19
1.6 1 2.67 0.937 0.012 1.23
1.8 1 3.58 0.949 0.014 1.50

MNRAS 493, 3616–3631 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/493/3/3616/5733171 by U
niversidad de G

ranada - Biblioteca user on 13 M
ay 2020



3630 M. A. Resco et al.

Table A7. Centres of bins ka in units of h−1 Mpc, fiducial values for
μ and their relative errors (per cent) for Euclid forecast using ELGs,
DESI forecast using BGS+ELGs+LRGs+QSOs, and J-PAS forecast us-
ing ELGs+LRGs+QSOs with 8500 and 4000 deg2. All for clustering
information.

�μ/μ

k μ Euclid DESI JPAS 8500 deg2 JPAS 4000 deg2

0.024 1 7.02 8.48 8.47 12.4
0.058 1 3.49 4.59 5.09 7.41
0.093 1 2.69 3.83 4.68 6.82
0.127 1 2.50 3.80 5.10 7.44
0.161 1 2.69 4.37 6.43 9.38
0.196 1 3.12 5.37 8.92 13.0
0.230 1 3.99 7.39 15.0 21.8
0.264 1 5.34 10.7 29.6 43.2
0.299 1 7.78 17.6 67.6 98.6
0.333 1 1.21 32.6 153 223

Table A8. nθ values for J-PAS with different galaxies
and redshift errors in galaxies per square arcminute.

nθ values for J-PAS
δz LRG ELG LRG+ELG

0.003 0.52 2.48 3.00
0.01 2.02 6.21 8.23
0.03 3.25 9.07 12.32

Table A9. Redshift bins, �max values, fiducial values for η, and relative
errors (per cent). In left table, errors for J-PAS, using LRG+ELG galaxies
with δz = 0.03. We show only errors using ELG+LRG and lensing
information. In right table, errors for Euclid using lensing information.

J-PAS lensing
8500 deg2 4000 deg2

z �max η �η/η �η/η

0.1 40 1 12.4 18.1
0.3 130 1 7.98 11.6
0.5 238 1 10.6 15.4
0.7 366 1 23.6 34.4
0.9 514 1 106 154
1.1 686 1 – –
1.3 884 1 – –

Euclid lensing
z �max η �η/η

0.2 83 1 4.21
0.4 182 1 4.48
0.6 300 1 3.97
0.8 437 1 4.72
1.0 597 1 8.10
1.2 782 1 20.9
1.4 994 1 78.3
1.6 1240 1 490
1.8 1510 1 –

Table A10. Centres of bins �a, fiducial values for η and relative
errors (per cent) for J-PAS, using LRG+ELG galaxies with δz=
0.03 and for Euclid using lensing information.

Euclid 8500 deg2 4000 deg2

� η �η/η �η/η �η/η

100 1 5.35 10.3 15.0
250 1 7.78 16.7 24.4
400 1 8.55 63.3 92.3
550 1 15.2 360 524
700 1 42.1 – –
850 1 130 – –
1000 1 176 – –

MNRAS 493, 3616–3631 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/493/3/3616/5733171 by U
niversidad de G

ranada - Biblioteca user on 13 M
ay 2020



J-PAS forecasts on DE and MG 3631

Table A11. Redshift bins, relative errors (per cent) for η, μ, and E(z) for J-PAS considering clustering and lensing information
(with δz = 3 per cent and ELGs+LRGs+QSOs).

J-PAS clustering +lensing
z �η/η 8500 �η/η 4000 �μ/μ 8500 �μ/μ 4000 �E/E 8500 �E/E 4000

0.3 4.28 6.25 11.1 16.1 7.12 10.4
0.5 6.86 10.0 4.71 6.86 3.22 4.70
0.7 17.1 24.9 4.03 5.87 2.88 4.20
0.9 88.8 129 4.49 6.55 3.34 4.87
1.1 – – 5.47 7.97 3.98 5.80
1.3 – – 11.6 16.9 7.88 11.5

Table A12. Redshift bins, relative errors (per cent) for
η, and μ for Euclid, considering clustering and lensing
information.

Euclid clustering +lensing
z �η/η �μ/μ �E/E

0.6 2.58 4.68 3.42
0.8 3.63 2.83 1.84
1.0 6.78 2.31 1.54
1.2 17.6 2.36 1.59
1.4 66.9 2.35 1.61
1.6 415 2.60 1.74
1.8 – 3.54 2.27

Table A13. Relative errors (per cent) for constant μ and η, and μ0 and
η0 for Euclid and JPAS (with 8500 and 4000 square degrees), considering
clustering and lensing information.

Survey �μ/μ �η/η �μ0/μ0 �η0/η0

Euclid 0.98 1.37 7.13 3.38
J-PAS 8500 2.08 2.89 9.66 4.58
J-PAS 4000 3.03 4.21 14.1 6.68
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