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Summary

Bilinear systems are an attractive alternative to the traditional linearisation approach for many
chemical plant items. Techniques for the identification and control of discrete time bilinear
systems were examined and developed.

The performance of four reccursive identification methods was compared for a discrete bilinear
system with white noise contamination of the output. Reccursive least squares methods gave the
best performance for a number of criteria. A reccursive maximum likelihood gave similar
performance to standard reccursive least squares despite having double the computational
requirements.

A design method for a discrete time, globally asymptotically stabilising, optimal controller with a
quadratic performance function was developed based on the solution to the algebraic matrix
Riccati equation. The controller design was successfully and safely applied to both simulated
and pilot scale, constant volume, heated tank systems and a simulated binary distillation column.

Application of the discrete-time, bilinear controller to the heated tank system gave good control
over the full operating range. Conventional linear and PID controllers, while accurate near the
tuning point, were unable to cope when away from this region. The linear controller gave large
steady state offset, while the PID controller suffered from stability problems. A method of
deadtime compensation, based on a discrete time bilinear model of the system, reduced deadtime
induced overshoot after set point changes or disturbances, however, steady state offset resulted,
due to the amplification of errors in the model.

The discrete bilinear controller gave good, safe, control of a simulated binary distillation column.
A reduction in steady state offset was observed when compared to a linear optimal regulator with
similar weighting matrices. The weakly bilinear nature of the distillation simulation did not
threaten the stability of either the linear regulator or a PID controller with static decoupling.
Versions of both the linear regulator and bilinear controller with added integral action gave
almost identical performance. The presence of integral action dominated the system response.

Significant improvements in control and safety may be achieved for strongly bilinear systems
such as the constant volume heated tank. For systems which display weak bilinearity, such as
the distillation simulation, the bilinear controller may improve the steady state performance,
eliminating the need for controllers with integral action in some applications.



Contribution

A number of innovations and advances in the identification and control of chemical plant items
which display bilinear behaviour have been made. These include :

1) A review of the theory of bilinear systems as relevant to chemical process control. Particular
empbhasis is given to discrete time systems as part of the growing trend towards digital rather
than analogue instrumentation.

2) A comparison of four recursive estimation methods for the identification of a discrete time
model of a bilinear chemical process, including trends in the characteristic parameters for
increasing "white" measurement noise. The characteristic parameters being the process time
constants and gains at selected operating points.

3) The development of a method for the design of discrete time optimal stabilising controllers
for bilinear systems using a quadratic performance index.

4) The development of methods for including feedforward and integral elements in the bilinear
controller design process.

5) Application of method for deadtime compensation based on the use of a bilinear process
model to predict system states in the near future. The control calculations are made using these
predictions rather than the measured values. An analysis of the limitations of this approach is
also included.

6) Application of bilinear controller designs to simulated and pilot scale constant volume tank
systems and a comparison of performance against traditional controller designs.

7) The use of contour plots to represent the steady state behaviour of the binary distillation
system, and the steady state errors in the identified models.

8) Modification of the Cohen-Coon PID controller tuning equations to garanttee the stability of
discrete time PID controllers.

9) Application of the bilinear controller design method to the control of a simulated binary
distillation column. As a basis for comparison PID and linear optimal regulators were also
implemented.



CHAPTER

Introduction

Most chemical plant items behave in a complex, non-linear manner. This is particularly true of
multi-stage separation processes such as distillation columns, which are based on non-linear
equilibrium relationships in addition to considerations of fluid dynamics. Despite this, the
systems used for the control of unit operations are usually based on linear system theory.

The use of linear system theory has the advantage of a well understood theoretical basis with a
range of analytical tools available to the control system designer. As important, the theory and
controller designs which result from the application of linear theory are relatively simple and the
control may be realised through the use of analogue equipment.

The complex, usually non-linear, equations which fully describe plant behaviour, however
accurate, may not be readily used to design controllers. In many cases the complexity of the
models alone prevents such application, without consideration of the non-linear effects involved.
However, the behaviour of non-linear systems and the design of controls for such systems is not
well understood. Many of the analytical tools used for linear systems are not applicable when
linearity is lost and the effect of disturbances or control action can only be predicted through the
use of digital computer simulation methods which are too expensive for most applications.

Bilinear Systems

A particular class of non-linear system which may provide a useful first step away from the
linear tradition is the group of bilinear systems. These systems are linear in both the states and
inputs when considered separately but not when considered jointly. The form of multiplicative
interaction which gives bilinear systems their name occurs naturally in a variety of processes.

Much of the initial impetus for research into bilinear systems was due to their natural occurrence
in open loop nuclear reactor dynamics (Mohler and Shen 1970). Bilinear systems have since
been found to occur naturally in a wide range of processes. Bilinear population models (Mohler
and Frick 1979) have been applied to a variety of systems including human demography,
biological cells and the manufacture and distribution of products.

1.1



Chapter 1

In engineering applications, in addition to the previously mentioned nuclear reactor models,
bilinear systems provide important approximations in vehicle braking and certain aircraft
dynamics (Mohler 1973). In the process industries bilinear systems arise naturally in many
items of constant volume plant. Espafia and Landau (1978) and Espafia (1977) develop a
bilinear equation set to describe the dynamic behaviour of the continuous multistage distillation
process and Janssen (1986) investigated the identification of discrete time bilinear models for a
binary distillation column,

In addition to these naturally occurring examples, the use of bilinear systems has been advocated
by Svoronos, Stephanopoulos and Aris (1980) as an alternative to linear systems for modeling
the behaviour of general non-linear processes. This application is described as bilinearisation.

Identification of Bilinear Systems

A variety of methods have been proposed for the identification of dynamic models of bilinear
systems. Many of these are based on methods developed for use with linear systems.

Among the more traditional approaches a significant amount of work has been done on the use
of recursive identification techniques for discrete time bilinear models. A recursive least squares
estimation via UD factorisation was used by Janssen (1986) to identify bilinear models for a
binary distillation column, an on-line application of the same method is used by Fletcher (1987)
for a constant volume tank system. On-line implementation of least squares algorithms has been
used as the basis for adaptive deadbeat control systems by Goodwin, McInnis and Long (1981),
Ohkawa and Yonezawa (1983), Dochain and Bastin (1984) and Cho and Marcus (1987).

In addition to the basic least squares algorithm, a variety of recursive methods which claim to
eliminate or reduce parameter biasing in noisy systems have been investigated. Methods
suggested include extended least squares methods. Two approaches have been advocated,
models linear in the error were used by Fnaiech and Ljung (1987) and models which include
multiplicative terms between the errors and the inputs by Gabr (1986). A batchwise instrumental
variable method was used by Ahmed (1986) and a recursive formulation is described by Fnaiech
and Ljung (1987). A recursive method based on a Newton-Raphson iterative approach to the
maximum likelihood parameter estimates was applied to bilinear systems by Gabr (1986).

Other approaches to the identification of bilinear systems include the use of Walsh functions
(Rao, Frick and Mohler 1978), Laguerre polynomials (Ranganathan, Jha and Rajamani 1986)
and Legendre polynomials (Hwang and Chen 1986).

1.2



Introduction

Control of Bilinear Systems

In recent years, attention has shifted to the problem of the control of bilinear systems. Initial
methods called for linearisation at some selected operating point and the use of the wealth of
accumulated knowledge on linear systems control. Although this approach produces acceptable
results close to the set-point, the stability and quality of control cannot be guarantied away from
this point.

Stabilising Control

A number of control methods for bilinear systems have been proposed based on stabilisation
approaches. Closed loop asymptotic stability was obtained by Ionescu and Monopoli (1975)
through the use of feedback control laws quadratic in the state. Other researchers have
concentrated on the local asymptotic stabilisation with a sufficiently large region of attraction in
the state-space (Derese and Noldus 1980).

Part of the difficulty in devising control schemes for bilinear systems lies in the nature of the
resulting closed loop system equations. For linear systems subject to a linear feedback control,
the resulting closed loop system is linear and has only one equilibrium point. In the bilinear
case, the application of linear feedback results in a closed loop equation which is quadratic in the
state, giving a number of possible equilibrium points. The characterisation of these equilibrium
sets has been explored by Benallou, Mellichamp and Seborg (1983).

Optimal Control

The optimal regulator problem for linear systems has a solution via the algebraic matrix Riccati
equation. For bilinear systems the presence of the bilinearity matrices prevents such a solution.
Derese and Noldus (1980) presented a controller design method for bilinear systems based on
the solution of the Riccati equation to produce a linear regulator. The magnitude of the
weighting matrices was determined based on the desired controller response and stability region.

Benallou, Mellichamp and Seborg (1988) have presented a controller design method which
globally asymptotically stabilized a continuous bilinear system and minimised a general
quadratic performance index.

Adaptive Control

A number of researchers have investigated the use of adaptive control methods based on bilinear
systems. The general approach has been through the use of a recursive identification procedure
coupled to a minimum variance or deadbeat controller. Goodwin, McInnis and Long (1980)
applied these methods to the control of waste water treatment and pH neutralization systems in
simulation studies, other works include Ohkawa and Yonezawa (1983) and Dochain and Bastin

1.3



Chapter 1

(1984). A weighted minimum variance controller was proposed by Cho and Marcus (1987) as
displaying boundedness in the closed loop control variables, the lack of which causes problems
in traditional minimum variance control.

This Work

In this work, a discrete-time version of an optimal stabilising controller for bilinear systems is
developed resulting in a practical design procedure. The controller is applied to the control of
both simulated and pilot-scale, constant volume, heated tank systems, and a simulated binary
distillation column.

In chapter 2 the structure and properties which make bilinear systems attractive for modeling
chemical plant items are reviewed. Much of this is necessary background to the work in later
chapters. Chapter 3 deals with practical methods for the identification of discrete time bilinear
systems and includes a comparison of four such methods for the identification of a single input,
single output bilinear system. Chapter 4 examines some of the methods available for the control
of bilinear systems and develops a design procedure for a discrete time bilinear optimal
controller. Feed-forward compensation and integral action are incorporated into controller
designs. These methods are applied to both simulated and pilot scale tank systems in chapter 5.
Chapters 6 and 7 deal with the identification and control of a simulated binary distillation
process.

At the end of each chapter a list of the references and nomenclature used in the chapter is given.
Included in the back of this thesis is an 800K floppy disk in Apple Macintosh format which
contains an executable copy of the batch identification program developed in this work, with
associated documentation and data samples from the simulations and pilot plant studies in
chapters 5 and 6.

Portions of this work have been previously published at CHEMECA'90 (Fletcher and Allen
1990). A copy of this paper is included in Appendix 1.
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CHAPTER

Bilinear System Theory

Overview

This chapter presents an introduction to the structure and properties of the class of bilinear
systems and to how they are suited to the modeling of chemical plant items. Structural forms
important to the identification and control of discrete time bilinear systems are examined as a
basis for work in later chapters.

Linear Systems

Traditionally, chemical engineers have used linearised models to describe the dynamic behaviour
of plant items. Linear systems have the advantages of a well developed theoretical base and a
relative lack of complexity.

A linear system may be described by the continuous time state space formulation in Equation
£,

g=Ax+ § ub 2.1)
where  x = the system state vector in deviations from a known steady state
A = the state coefficient matrix
u; = theith inputin deviation variable form
b; = the coefficient vector for the ith input
m = the number of inputs.

The rate of change of the states is a linear sum of the effect of the current state of the system and
the effect of the current inputs.

A linear system is not a true representation of the behaviour of most chemical plant items. For
such non-linear plant, the conventional approach has been to select some desired operating point,
and to linearise the behaviour of the plant about this point. The result of this approach is a

2.1



Chapter 2

process model which is only accurate over a portion of the possible operating range, the width of
this region is dependent upon the degree of non-linearity of the process.

Bilinear Systems

A more general class of systems may be obtained by the addition of a number of terms which
represent multiplicative interactions between the states and the inputs, these are termed bilinear.
The general continuous time bilinear state space representation is:

i =Ax+ ¥ ubi+ Y uiCix 2.2)

=1 I =

where C; = coefficient matrix for interaction between input / and the states.

The last set of terms describes a form of interaction common in chemical plant items of constant
volume.

Constant Volume Heated Tank

Figure 2.1 shows the flow diagram of a En

simple heated tank system. The level of the "

tank is maintained through the use of a weir

governing the outlet. The cold water flowrate

into the tank is the control variable, and the Tout
temperature of the outlet stream is the state. Q F,,

The tank is assumed to be well mixed, the Kigore i Heuted ol Fiow Dlagiam
outlet temperature being equal to the

temperature in the tank. It is also assumed that there are no heat losses from the system except
in the outlet water. The specific heat and density of the water remain constant over the entire

range of the plant.

Heat and mass balances over this system yield the equations 2.3 and 2.4.

av
dr =Fin-Fouy=0 .. F=Fiyp=Foyu (2.3)
ar
VG 0% =CroF Tn-T)+ O (24)

where C, = the specific heat of the liquid
p = theliquid density

The first term on the right side of equation 2.4 contains the state and the input multiplied
together, causing the system to be non-linear. This particular type of interaction is described as

2.2



Bilinear System Theory

bilinear, and the system above may be exactly modelled using the bilinear state-space form of
equation 2.2. This form of interaction should occur whenever the flowrate through a piece of
constant volume plant is used as a control variable, or acts as a measured disturbance.

Comparing equations 2.1 and 2.2, a linear system is merely a bilinear system without the
interaction terms. It follows that the set of linear systems is a subset of the set of bilinear
systems.

A larger group of systems exists, in addition to those systems which are naturally bilinear, which
are inherently bilinear or show bilinear tendencies to varying degrees. The modeling and control
of these systems can be improved through the use of bilinear rather than linear models, an
operation termed bilinearisation (Svoronos et. al. 1980). An example of such a system is the
operation of a distillation column which has been shown by Espaiia (1977) to display bilinear
tendencies. Further work on the identification of bilinear models for a distillation column was
carried out by Janssen (1986).

Discrete Bilinear State-Space Representation

With the developrﬁent of digital computing hardware over the last two decades, the control of
chemical plants has shifted from simple analog instrumentation toward distributed digital control
systems. These systems not only perform the basic low-level control of the individual plant
items, but may also perform higher level functions and provide accurate and up to the minute
analysis of the operation and efficiency of the entire site.

With digital computer control in mind, it is necessary to have a discrete time equivalent of the
bilinear system described by equation 2.2. This may be achieved by applying the central
difference approximations :

= L”)Z_tt_ﬂc) (2.5)
. M (2.6)

to the continuous system (2.2) giving :

xﬂ(+]})l-x(k)=Ax(k+1)2+ x(k)+;uibi+;uicix (2.7)

The x in the last term will be substituted at a later stage. Rearranging the above equation gives:

xlerl) = x) + %5 [xeeD) + x(0) + h 3w lby + Cix ] 2.38)
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{1-42—’3]xﬂc+1)=[1+%]x(k)+hi21u,-[b,-+c,-x] (2.9)
-1 ®
x(k+1):[1-%] [1+%]x(k)+h[1-42’1] ﬁlu,-[b,-+c,~x] (2.10)

The structure of equation 2.10 is similar to that of the continuous system and by combining
portions of the expression the discrete state space model may be established

x(k+1) = o x(k) + 2 u; [Bi + vi x] (2.11)
-1 '
where a=[I—ATh] [1+A7h] (2.12)
-1
B,—h[l-’%} bi (2.13)
1
y,=h[1-%] C; (2.14)

or by grouping the input terms :

-1 -1
6i(x)=ﬁf+vix=h[1-*—‘2@] [b,~+c,-x1=h[1-“—ﬂ dix) (215

These relations enable the parameters of a discrete model to be obtained from those of a
continuous model. It is also possible to obtain an approximate continuous model from the
parameters of a discrete system.

A=%[a—1] [a+1]" (2.16)
b=t [1-[a-17 [« +17"] B 2.17)
Stability
A sufficient condition for a continuous time system to be open loop stable is the existence of a
symetric positive definite matrix S that satisfies the Lyapunov equation(Elbert 1984).
SA+ATS=-Q (2.18)

Where @ isa symetric positive definite matrix.

Using equation 2.16 it is possible to substitute for A and after some algebra arrive at equation
2.19.

w8 [ T][oce 1" + R [o7 + 1] [oT-1] S =0
AL+ 118 [a- 1]+ [ -1]S [a + 1]}=- [o + 1] 0 [a+ 1]
aTSa-S=-2[aT+ 170 [ +1] (2.19)
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The above equation is equivalent to the discrete time Lyapunov equation 2.20 (Elbert 1984) in
that provided @ is positive definite, the right hand side of the expression will be negative
definite.

#

oTSa-S=-Q (2.20)

For a continuous time system sampled at intervals 4, equation 2.19 will yield the same solution
matrix S as the continuous Lyapunov equation for the system.

Identification

Application of identification techniques to discrete bilinear systems is covered in chapter 3,
including details of the algorithms used. This section shows how a discrete bilinear system may
be rewritten for identification purposes, and discusses how a model may account for deadtime
and also store information about the steady states of the process.

Deadtime ‘ ilnput

e e B i e

The presence of deadtime in a system )
Process [——=| Deadtime |— Bz

may be represented in two ways. | Output
The first case is the normal physical | C States ) .
reality where there exists some delay '

between the actual process and the point System
at which the outputs become Figure 2.2 Deadtime as a delay on Qutputs.

measurable (ie. the system boundary).
This concept is illustrated in figure 2.2.

o ) Input
The alternative is to consider a delay ... . IS —
between the time an input enters the | :
system and the point at which it begins Deadtime |—=' Process >

to affect the process. This is illustrated ' C >; Output
in figure 2.3. Although this is not Siaies |

always the case it provides a useful

basis for adapting discrete time System

identification procedures to cope with Figure 2.3 Deadtime as a delay on Inputs.

the presence of deadtime. The delay on inputs approach also enables different deadtimes to be
used for each input, giving greater flexibility.
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A first order discrete linear difference equation

yk+1)=ayk) + bu(k) (2.21)

may be modified to include deadtime simply by replacing u(k) with u(k-1), where [ is the
deadtime measured in sampling intervals:

yk+1)=ay(k) + bufk-l) (2.22)
Difference Equations

A difference equation form for the modelis required to facilitate the identification of a system.
Papers by Goodwin and Sin (1984) and Beghelli and Guidorzi (1976) present methods for
converting the state-space representation into a difference equation form.

ylk+1) = Z,Iﬁi)’(kﬂ—i) + Bo 2.23)

Where y(k) is the value of the measured variable at a time .
B; arenon-linear functions of u(k), u(k-1),... u(k+1-n)
Bo 1isalinear function of u(k),... u(k+1-n)

This full difference equation contains a large number of terms, many of which do not
significantly improve the accuracy of the model whilst slowing convergence of the identification
method.

A more manageable form may be obtained by taking the f; s as linear functions of u(k), u(k-
1),... u(k+1-n). This method was used by Janssen (1986) and defines the reduced bilinear
form:

y(k) = aryk-1) + ...apy(k-n) + byu(k-1) + ...byu(k-n)
+ cppy(k-1u(k-1) + ...cury(k-1)u(k-n)

+ ciny(k-nu(k-1) + ...cuny(k-n)u(k-n) (2.24)

Although many terms have been omitted, this form is still maintains the multiplicative non-
linearity which provides the improvement over a linear approximation. However, the number of
parameters involved is still proportional to 7 2 compared with » for a linear system. It has been
suggested by previous workers (Janssen 1986, Rao and Gabr 1984) that acceptable accuracy
may be obtained using a diagonal bilinear model. In such a model only those terms on the
diagonal of the matrix of ¢ terms are considered, the other elements of this matrix are assumed
to be zero, leading to a model
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k) = aryk-1) + ...a,y(k-n) + bju(k-1) + ...byu(k-n)
+cryk-Du(k-1) + c2y(k-2)u(k-2) + ...c, y(k-nju(k-n) (2.25)

Another approach is to consider the case where the states of the system are themselves
measurable (ie. the measurement equation is y(k) = I x(k)). Often it is the case that the
measured variables are the current states of the system or the states of the system at some point
in the near past where deadtime is involved. In this case the structure of the difference equation
may be directly derived from the state-space expression. A general second order, SISO discrete
bilinear state space relation including deadtime:

}’ﬂCUJ}_[Gz az}[}’(k) ] {[m] [0102][)’(/{) ]}
[y(k) L1 o Jlywen 1"V 1o 1" Lo o llyeer) e
may be rewritten to form a difference equation :

yk+1) = aryk) + azy(k-1) + byu(k-1) + cruk-1)y(k) + cou(k-1)y(k-1) (2.27)

Having converted the equation to difference form by one of the above methods, it may be
rewritten as the dot product of two vectors, equation 2.28. Hence for a reduced bilinear model :

yk)=07(k). d (k) (2.28)

0T = yk-1), yk-2), .. ylk-n), yk-1u(k-I-1), y(k-2)u(k-I-1),...
. Yk-nJulk-l-n), u-1-1),...utk-l-n) | (2.29)
0 T(k) = [ a1y @25 « sy Ci1s €12, 5::Cnp, D1, ...bn] (2.30)

The measurement vector ¢ is a non-linear function of the outputs (y) and the inputs (u).
However the parameter vector 6 is linear in the model parameters. It is therefore possible to
identify the parameters for the system using the techniques developed for linear systems.

Measured Variables

The models so far have been given in terms of deviation variables about some steady state. In
order to convert the measured values of the states and inputs into deviation variable form it is
neccessary to have accurate a priori knowledge of at least one steady state of the system. This
has the effect of tying the the model to this steady state even if in error. To overcome this
differculty the model may be modified to use the measured values directly. The deviation
variables are defined

ylkei) = Y(k-i) - Ys (2.31)
u(k-j) = Uk-j) - Us (2.32)

It follows that a bilinear term becomes
ufk=j) y(k-i) = Ufkj) Yfkei) - Us Y0-i) - Ufke) Y + Us¥s (2.33)
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Substituting these expressions into equation 2.24 leads to :

Yk) =8, Y(k-1) + .0, Y(k-n) + B,UK-1) + ..B,Uk-n)
+ 1 Yk-1)U(k-1) + ...co1 Y(k-1)U(k-n)

A
+ c1, Ytk-n)U(k-1) + ...cpnY(k-n)U(k-n) + DC (2.34)
Where :
5 = g Us icﬁ (2.35)
J=
Ej = bj— Ys z}cj‘i (236)

DC = UgYg 2 2 Cji + Ys( 2 ) Usg 2 b (2.37)

The DC term contains information about the steady states of the system. Analogous results are
obtained for the other difference equation representations (equations 2.25 and 2.27).

The measurement and parameter vectors for the system are now
¢k = [ Ytk-1), Yk-2), .Y (1), YO-DU K1), Y(-2)U(k-A-1),....
< .Y(-n)U(k-I-n), Uk-l-1),...U(k-I-n), 1 | (2.38)
6 Tﬂ() = [ é\Z], 32, ---é\zn, Cll; C]Z, L -Cnn: 31’ se -bni DC] (2'39)

The application of identification techniques to bilinear systems is examined in more detail in
chapter 3, including details of practical methods.

Conversion from Difference Equation to State Space
Form

A discrete difference model of a process can be converted to state space form by selecting
y(k+1-i) ,i = 1..n as the states at a time k At :

y(k)
sy =| TV (2.40)

y(k+1-n)
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The states at a time (k+ 1) At are found by :

yk+1) ajaz...an-1an y(k) di(x(k))
y(k) _|10..00 k1) | zui 0 2.40)
yirzny ) Looo. 1 0 dyarrm] L 0
Where :
y(k)
di(x(k)) = b; + | ¢t ciz -+ Cin | yl) (2.42)
y(k:l-n)

This form of model may now be used as the basis for some form of control design procedure.

Multivariable Systems

In the case of Multiple Input Multiple Output systems the concepts presented above still hold.

To identify MIMO systems it is usual to break the system down into a number of multiple input
single output (MISO) sub-systems which can be easily identified in the manner described
above. Once this is completed the overall state-space relation may be found by grouping all the
resulting equations.

A two input, two output, second order system :

Vitk+1) = ary;(k) + azyi(k-1) + byuy(k-l) + cypup(k-l)y;(k) + cou;(k-1)y; (k)
+ bouz(k-1) + copuz(k-1)y;(k) + caou;(k-1)y; (k)

Yatk+1) = azys(k) + agys(k-1) + bsuy(k-1) + c3puz(k-D)yz(k) + cs2uz(k-1)y2(k)
+ bauz(k-1) + cqpuz(k-1)y2(k) + cqou;(k-1)y2(k)

Becomes :
yitk+1) ajaz; 00 y1(k) by criciz 0 0 yi(k)
yi(k) _ 1000 ||yik1) B 0 . 0 0 00 Yi(k-1)
Ya(k+1) 0 0asay || yab) "1 b3 0 0csresr || yalk)
ya(k) 0010 |Lyzk-1) 0 0 000 y2(k-1)
b C21C22 0 0 yi(k)
0 0 0 0 0 yitk-1)
+ + 2.43
11 by 0 0cyicqz || ya(k) (2.43)
0 00 0 0 Jlyk1)
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Determination of Steady States

One of the important advantages of a bilinear model over a linear one is the increase in the range
over which a bilinear model remains valid for many real systems. It is important to be able to
determine the correct input values to correspond to a desired output.

For a single input, single output model, the input and output variables (u(k-j) & y(k-i)) can be
replaced with their steady state values (u; & y;). Rearranging to makeu; the subject of the
resulting equation yields an expression relating the steady states. For a reduced bilinear model :

[1—2ai]ys-DC

i=1

Us = (2.44)
Sl el

For a multiple input, multiple output system the problem is more complex as there are a number
of equations which must be solved simultaneously. Beginning with a state-space model :

xtk+1)=a x(k) + 2 u; di(x) + DC (2.45)

Substituting, rearranging and combining the #; into a single vector gives :
[I -a ] x5 - DC = A(x;) ug (2.46)

The above equation cannot usually be solved directly as A(x;) will not normally be square, may
contain one or more rows of zeros, and thus may not be readily inverted. If those rows of the
equation which contain only zeros in A(x;) are removed, what remains should be a well
conditioned set of simultaneous equations.

If there are still more rows remaining than inputs the system is uncontrollable as written. If less
rows remain then an excess of control variables exists and the value of one must be assigned
before the others may be calculated. When the number of equations equals the number of
unknown inputs the equations may be solved using the standard methods.

eg. For the multivariable system in equation 2.47. (note : as this model is already in deviation
variables about a known steady state the vector DC contains only zeros and has been omitted.)

yIS apas 00 )’15 bI C11€C12 0 0 YIS

y1s 1000 y]S .o 0 4 0 0 00 yf
= u

y:_,s 0 Oaszay )’25 . b; 0 0 c3;c32 }’25

v5* 0010 y5* 0 0 0 00 5
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b2 c21¢22 0 0 || V1

0 0000 ||y
+ Uy + 2.47
“ || b4 0 0carcaz ||y’ i)
0 0 0 00 v

Reducing :

S S S
[)’1 ]:[(11+az 0 }[)’1 :|+[d1d2][u1 ] (2.48)
ys 0 as+aqlly,® dsdqd| us®

Where d; =b;+y; (c11 +c¢12)
d; =by+y/ (a1 + C22)
d3 =b3+y5 (c31 +C32)
dy =by+y (cqs +Cq2)

Giving a steady state solution :

us’ d]dz]nj[l-al-az 0 :H:yls:l
- 2.49
Iiugs} |:d3d4 0 1-a3-ay s ( )
Process Gains & Time Constants

A discrete bilinear model, although accurate, does not lend itself to an appreciation of the actual
plant behaviour. System parameters which aid in understanding the behaviour of a piece of plant
include the time constants, which illustrate the relative speed of the process, and the gains with
respect to the inputs, which enable prediction of the response to a known change in an input.

To express a bilinear model in terms of gains and time constants it is necessary to linearise the
model about some operating point. A deviation variable model is obtained at this point. This
model is then linearised by dropping out all the bilinear terms. A linear difference equation will
remain. ie.

yhkoD) = ¥, aiyler ) + 3 biufk1-) (2.50)
= =
A transfer function expression using the z operator is then obtained by rearranging.
bizi
yz) &

- (2.51)
u(a) I- Zlai g

The gain of the process is found by setting z = I and evaluating the resulting fraction. To
evaluate the time constants it is necessary to consider the denominator of an nth order model to
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be the product of the denominators of n first order processes, where the 1st order denominator
is given by equation 2.52 and the nth order case by 2.53.

~T

Di)=1-71eT (2.52)
D(z) = H(] -zle TJ (2.53)
i=1

Multiplying the denominator by z# will yield a polynomial with roots defined by equation 2.54
and the time constants may be estimated using 2.55.

L=e TT' (2.54)
- lo;ez,- (2.55)

Nomenclature
Continuous State Space

X State Vector

X; i th element of State Vector

u Input Vector

U; i th element of Input Vector

n Number of States

m Number of Inputs

A State Coefficient Matrix

B Input Coefficient Matrix

b; i th Column of B, Coefficient vector for u;

C; Bilinear Coefficients for Input i

t Time

0S8 Symetric Positive Definite Matrices
Discrete State Space

x(k) State Vector sampledatz =k * A

k Discrete Time variable

Sampling Interval

l Discrete Deadtime in sampling intervals

o State Coefficient Matrix

Bi Coefficient Vector for i th input
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Yi Bilinear Coefficient Matrix for i th input
Oi(x(k)) Combined Coefficient Vector for Input i. d;(x(k)) = B; + Vi x(k)
Ax(k)) Combined Input Coefficient Matrix, columns are d;(x(k)), i = I,m

Discrete Diference Equations

y(k) Deyviation Variable Output at time k*h
u(k) Deyviation Variable Input at k*h
a; Coefficient of y(k+1-i)
bj Coefficient of u(k+1-j-1)
Cij Coefficient of y(k+1-i).u(k+1-j-1)
O(k) Parameter Vector
d(k) Measurement Vector
Y(k) Measured Output
Utk) Measured Input
Ys, Us Steady State Values
?1,-, b J Coefficients in Measured Variable Model
DC Constant Term
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CHAPTER

Identification of Bilinear Systems

Overview

A number of standard identification procedures were examined, the objective being their
application to the identification of discrete time models of bilinear systems.

Four methods were tested for the identification of a known third order discrete time bilinear
model with varying levels of measurement noise. The relative performance was gauged by use of
three properties of the identified models, the process gain, the principle time constant and the
variance of the identified model response against that of the noise free original system.

Theory
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