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Summary 

Bilinear systems are an attractive alternative to the traditional linearisation approach for many 

chemical plant items. Techniques for the identification and control of discrete time bilinear 

systems were examined and developed. 

The performance of four reccursive identification methods was compared for a discrete bilinear 

system with white noise contamination of the output. Reccursive least squares methods gave the 

best performance for a number of criteria. A reccursive maximum likelihood gave similar 

performance to standard reccursive least squares despite having double the computational 

requirements. 

A design method for a discrete time, globally asymptotically stabilising, optimal controller with a 

quadratic performance function was developed based on the solution to the algebraic matrix 

Riccati equation. The controller design was successfully and safely applied to both simulated 

and pilot scale, constant volume, heated tank systems and a simulated binary distillation column. 

Application of the discrete-time, bilinear controller to the heated tank system gave good control 

over the full operating range. Conventional linear and PID controllers, while accurate near the 

tuning point, were unable to cope when away from this region. The linear controller gave large 

steady state offset, while the PID controller suffered from stability problems. A method of 

deadtime compensation, based on a discrete time bilinear model of the system, reduced deadtirne 

induced overshoot after set point changes or disturbances, however, steady state offset resulted, 

due to the amplification of errors in the model. 

The discrete bilinear controller gave good, safe, control of a simulated binary distillation column. 

A reduction in steady state offset was observed when compared to a linear optimal regulator with 

similar weighting matrices. The weakly bilinear nature of the distillation simulation did not 

threaten the stability of either the linear regulator or a PID controller with static decoupling. 

Versions of both the linear regulator and bilinear controller with added integral action gave 

almost identical performance. The presence of integral action dominated the system response. 

Significant improvements in control and safety may be achieved for strongly bilinear systems 

such as the constant volume heated tank. For systems which display weak bilinearity, such as 

the distillation simulation, the bilinear controller may improve the steady state performance, 

eliminating the need for controllers with integral action in some applications. 
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Contribution 

A number of innovations and advances in the identification and control of chemical plant items 

which display bilinear behaviour have been made. These include : 

1) A review of the theory of bilinear systems as relevant to chemical process control. Particular 

emphasis is given to discrete time systems as part of the growing trend towards digital rather 

than analogue instrumentation. 

2) A comparison of four recursive estimation methods for the identification of a discrete time 

model of a bilinear chemical process, including trends in the characteristic parameters for 

increasing "white" measurement noise. The characteristic parameters being the process time 

constants and gains at selected operating points. 

3) The development of a method for the design of discrete time optimal stabilising controllers 

for bilinear systems using a quadratic performance index. 

4) The development of methods for including feedforward and integral elements in the bilinear 

controller design process. 

5) Application of method for deadtime compensation based on the use of a bilinear process 

model to predict system states in the near future. The control calculations are made using these 

predictions rather than the measured values. An analysis of the limitations of this approach is 

also included. 

6) Application of bilinear controller designs to simulated and pilot scale constant volume tank 

systems and a comparison of performance against traditional controller designs. 

7) The use of contour plots to represent the steady state behaviour of the binary distillation 

system, and the steady state errors in the identified models. 

8) Modification of the Cohen-Coon PID controller tuning equations to garanttee the stability of 

discrete time PID controllers. 

9) Application of the bilinear controller design method to the control of a simulated binary 

distillation column. As a basis for comparison PID and linear optimal regulators were also 

implemented. 

1 



CHAPTER 1 
Introduction 

Most chemical plant items behave in a complex, non-linear manner. This is particularly true of 

multi-stage separation processes such as distillation columns, which are based on non-linear 

equilibrium relationships in addition to considerations of fluid dynamics. Despite this, the 

systems used for the control of unit operations are usually based on linear system theory. 

The use of linear system theory has the advantage of a well understood theoretical basis with a 

range of analytical tools available to the control system designer. As important, the theory and 

controller designs which result from the application of linear theory are relatively simple and the 

control may be realised through the use of analogue equipment. 

The complex, usually non-linear, equations which fully describe plant behaviour, however 

accurate, may not be readily used to design controllers. In many cases the complexity of the 

models alone prevents such application, without consideration of the non-linear effects involved 

However, the behaviour of non-linear systems and the design of controls for such systems is not 

well understood. Many of the analytical tools used for linear systems are not applicable when 

linearity is lost and the effect of disturbances or control action can only be predicted through the . 

use of digital computer simulation methods which are too expensive for most applications. 

Bilinear Systems 

A particular class of non-linear system which may provide a useful first step away from the 

linear tradition is the group of bilinear systems. These systems are linear in both the states and 

inputs when considered separately but not when considered jointly. The form of multiplicative 

interaction which gives bilinear systems their name occurs naturally in a variety of processes. 

Much of the initial impetus for research into bilinear systems was due to their natural occurrence 

in open loop nuclear reactor dynamics (Mohler and Shen 1970). Bilinear systems have since 

been found to occur naturally in a wide range of processes. Bilinear population models (Mohler 

and Frick 1979) have been applied to a variety of systems including human demography, 

biological cells and the manufacture and distribution of products. 

1.1 
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In engineering applications, in addition to the previously mentioned nuclear reactor models, 

bilinear systems provide important approximations in vehicle braking and certain aircraft 

dynamics (Mohler 1973). In the process industries bilinear systems arise naturally in many 

items of constant volume plant. Espana and Landau (1978) and Espana (1977) develop a 

bilinear equation set to describe the dynamic behaviour of the continuous multistage distillation 

process and Janssen (1986) investigated the identification of discrete time bilinear models for a 

binary distillation column. 

In addition to these naturally occurring examples, the use of bilinear systems has been advocated 

by Svoronos, Stephanopoulos and Aris (1980) as an alternative to linear systems for modeling 

the behaviour of general non-linear processes. This application is described as bilinearisation. 

Identification of Bilinear Systems 

A variety of methods have been proposed for the identification of dynamic models of bilinear 

systems. Many of these are based on methods developed for use with linear systems. 

Among the more traditional approaches a significant amount of work has been done on the use 

of recursive identification techniques for discrete time bilinear models. A recursive least squares 

estimation via UD factorisation was used by Janssen (1986) to identify bilinear models for a 

binary distillation column, an on-line application of the same method is used by Fletcher (1987) 

for a constant volume tank system. On-line implementation of least squares algorithms has been 

used as the basis for adaptive deadbeat control systems by Goodwin, Mcinnis and Long (1981), 

Ohkawa and Yonezawa (1983), Dochain and Bastin (1984) and Cho and Marcus (1987). 

In addition to the basic least squares algorithm, a variety of recursive methods which claim to 

eliminate or reduce parameter biasing in noisy systems have been investigated. Methods 

suggested include extended least squares methods. Two approaches have been advocated, 

models linear in the error were used by Fnaiech and Ljung (1987) and models which include 

multiplicative terms between the errors and the inputs by Gabr (1986). A batchwise instrumental 

variable method was used by Ahmed ( 1986) and a recursive formulation is described by Fnaiech 

and Ljung (1987). A recursive method based on a Newton-Raphson iterative approach to the 

maximum likelihood parameter estimates was applied to bilinear systems by Gabr (1986). 

Other approaches to the identification of bilinear systems include the use of Walsh functions 

(Rao, Frick and Mohler 1978), Laguerre polynomials (Ranganathan, Jha and Rajamani 1986) 

and Legendre polynomials (Hwang and Chen 1986). 
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Control of Bilinear Systems 

In recent years, attention has shifted to the problem of the control of bilinear systems. Initial 

methods called for linearisation at some selected operating point and the use of the wealth of 

accumulated knowledge on linear systems control. Although this approach produces acceptable 

results close to the set-point, the stability and quality of control cannot be guarantied away from 

this point. 

Stabilising Control 

A number of control methods for bilinear systems have been proposed based on stabilisation 

approaches. Closed loop asymptotic stability was obtained by Ionescu and Monopoli ( 1975) 

through the use of feedback control laws quadratic in the state. Other researchers have 

concentrated on the local asymptotic stabilisation with a sufficiently large region of attraction in 

the state-space (Derese and Noldus 1980). 

Part of the difficulty in devising control schemes for bilinear systems lies in the nature of the 

resulting closed loop system equations. For linear systems subject to a linear feedback control, 

the resulting closed loop system is linear and has only one equilibrium point. In the bilinear 

case, the application of linear feedback results in a closed loop equation which is quadratic in the 

state, giving a number of possible equilibrium points. The characterisation of these equilibrium 

sets has been explored by Benallou, Mellichamp and Seborg (1983). 

Optimal Control 

The optimal regulator problem for linear systems has a solution via the algebraic matrix Riccati 

equation. For bilinear systems the presence of the bilinearity matrices prevents such a solution. 

Derese and Noldus (1980) presented a controller design method for bilinear systems based on 

the solution of the Riccati equation to produce a linear regulator. The magnitude of the 

weighting matrices was determined based on the desired controller response and stability region. 

Benallou, Mellichamp and Seborg (1988) have presented a controller design method which 

globally asymptotically stabilized a continuous bilinear system and minimised a general 

quadratic performance index. 

Adaptive Control 

A number of researchers have investigated the use of adaptive control methods based on bilinear 

systems. The general approach has been through the use of a recursive identification procedure 

coupled to a minimum variance or deadbeat controller. Goodwin, Mcinnis and Long (1980) 

applied these methods to the control of waste water treatment and pH neutralization systems in 

simulation studies, other works include Ohkawa and Yonezawa (1983) and Dochain and Bastin 
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(1984). A weighted minimum variance controller was proposed by Cho and Marcus (1987) as 

displaying boundedness in the closed loop control variables, the lack of which causes problems 

in traditional minimum variance control. 

This Work 

In this work, a discrete-time version of an optimal stabilising controller for bilinear systems is 

developed resulting in a practical design procedure. The controller is applied to the control of 

both simulated and pilot-scale, constant volume, heated tank systems, and a simulated binary 

distillation column. 

In chapter 2 the structure and properties which make bilinear systems attractive for modeling 

chemical plant items are reviewed. Much of this is necessary background to the work in later 

chapters. Chapter 3 deals with practical methods for the identification of discrete time bilinear 

systems and includes a comparison of four such methods for the identification of a single input, 

single output bilinear system. Chapter 4 examines some of the methods available for the control 

of bilinear systems and develops a design procedure for a discrete time bilinear optimal 

controller. Feed-forward compensation and integral action are incorporated into controller 

designs. These methods are applied to both simulated and pilot scale tank systems in chapter 5. 

Chapters 6 and 7 deal with the identification and control of a simulated binary distillation 

process. 

At the end of each chapter a list of the references and nomenclature used in the chapter is given. 

Included in the back of this thesis is an 800K floppy disk in Apple Macintosh format which 

contains an executable copy of the batch identification program developed in this work, with 

associated documentation and data samples from the simulations and pilot plant studies in 

chapters 5 and 6. 

Portions of this work have been previously published at CHEMECA'90 (Fletcher and Allen 

1990). A copy of this paper is included in Appendix 1. 
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CHAPTER 2 
Bilinear System Theory 

Overview 

This chapter presents an introduction to the structure and properties of the class of bilinear 

systems and to how they are suited to the modeling of chemical plant items. Structural forms 

important to the identification and control of discrete time bilinear systems are examined as a 

basis for work in later chapters. 

Linear Systems 

Traditionally, chemical engineers have used linearised models to describe the dynamic behaviour 

of plant items. Linear systems have the advantages of a well developed theoretical base and a 

relative lack of complexity. 

A linear system may be described by the continuous time state space formulation in Equation 

2.1. 

.t = A X + L Uj bi 
i=l 

where x = the system state vector in deviations from a known steady state 

A = the state coefficient matrix 

u; = the ith input in deviation variable form 

bi = the coefficient vector for the ith input 

m = the number of inputs. 

(2.1) 

The rate of change of the states is a linear sum of the effect of the current state of the system and 

the effect of the current inputs. 

A linear system is not a true representation of the behaviour of most chemical plant items. For 

such non-linear plant, the conventional approach has been to select some desired operating point, 

and to linearise the behaviour of the plant about this point. The result of this approach is a 
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process model which is only accurate over a portion of the possible operating range, the width of 

this region is dependent upon the degree of non-linearity of the process. 

Bilinear Systems 

A more general class of systems may be obtained by the addition of a number of terms which 

represent multiplicative interactions between the states and the inputs, these are termed bilinear. 

The general continuous time bilinear state space representation is: 

(2.2) 

where Ci = coefficient matrix for interaction between input i and the states. 

The last set of terms describes a form of interaction common in chemical plant items of constant 

volume. 

Constant Volume Heated Tank 

Figure 2.1 shows the flow diagram of a 

simple heated tank system. The level of the 

tank is maintained through the use of a weir 

governing the outlet. The cold water flowrate 

into the tank is the control variable, and the 

temperature of the outlet stream is the state. 

The tank is assumed to be well mixed, the 

outlet temperature being equal to the 

Tout 

Fout 

Figure 2.1 Heated Tank Flow Diagram 

temperature in the tank. It is also assumed that there are no heat losses from the system except 

in the outlet water. The specific heat and density of the water remain constant over the entire 

range of the plant. 

Heat and mass balances over this system yield the equations 2.3 and 2.4. 

dV 
dt = F;n - Fout = 0 . ·. F = Fin = F 011, 

dT 
V Cp p dt = Cp p F (Tin - T) + Q 

where C P = the specific heat of the liquid 

p = the liquid density 

(2.3) 

(2.4) 

The first term on the right side of equation 2.4 contains the state and the input multiplied 

together, causing the system to be non-linear. This particular type of interaction is described as 

2.2 
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bilinear, and the system above may be exactly modelled using the bilinear state-space form of 

equation 2.2. This form of interaction should occur whenever the flowrate through a piece of 

constant volume plant is used as a control variable, or acts as a measured disturbance. 

Comparing equations 2.1 and 2.2, a linear system is merely a bilinear system without the 

interaction terms. It follows that the set of linear systems is a subset of the set of bilinear 

systems. 

A larger group of systems exists, in addition to those systems which are naturally bilinear, which 

are inherently bilinear or show bilinear tendencies to varying degrees. The modeling and control 

of these systems can be improved through the use of bilinear rather than linear models, an 

operation termed bilinearisation (Svoronos et. al. 1980). An example of such a system is the 

operation of a distillation column which has been shown by Espana (1977) to display bilinear 

tendencies. Further work on the identification of bilinear models for a distillation column was 

carried out by Janssen (1986). 

Discrete Bilinear State-Space Representation 

With the development of digital computing hardware over the last two decades, the control of 

chemic;:al plants has shifted from simple analog instrumentation toward distributed digital control 

systems. These systems not only perform the basic low-level control of the individual plant 

items, but may also perform higher level functions and provide accurate and up to the minute 

analysis of the operation and efficiency of the entire site. 

With digital computer control in mind, it is necessary to have a discrete time equivalent of the 

bilinear system described by equation 2.2. This may be achieved by applying the central 

difference approximations : 

x(k+ 1) + x(k) 
X= 2 
. x(k+ 1) - x(k) 
X= h 

to the continuous system (2.2) giving : 

x(k+ 1) - x(k) _ A x(k+ 1) + x(k) fl, b fl, C . 
h - 2 + L Uj i + L Uj i X 

1=1 1=1 

(2.5) 

(2.6) 

(2.7) 

The x in the last term will be substituted at a later stage. Rearranging the above equation gives: 

Ah fl, 
x(k+ 1) = x(k) + 2 [x(k+ 1) + x(k)] + h L ui [b; + C; x] 

1=1 
(2.8) 

2.3 
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(2.9) 

[ Ah ]-1 [ Ah ] [ Ah J-1 ~ x(k+l)= I- 2 1+ 2 x(k)+h I- 2 /~,1u;[b;+Cix] (2.10) 

The structure of equation 2.10 is similar to that of the continuous system and by combining 

portions of the expression the discrete state space model may be established 

x(k+ 1) = a x(k) + k ui [Bi + Yi x] (2.11) 

where a= [ J _ ~h J1 
[/ + ~h] (2.12) 

[ Ah J-1 B; = h I- 2 b; (2.13) 

[ Ah J- 1 
Y; = h I- 2 Ci (2.14) 

or by grouping the input terms : 

[ Ah J-1 [ Ah J-1 
5i(x) = Bi + Y; x = h I - 2 [ b; + Ci .r] = h I - 2 di (x) (2.15) 

These relations enable the parameters of a discrete model to be obtained from those of a 

continuous model. It is also possible to obtain an approximate continuous model from the 

parameters of a discrete system. 

Stability 

(2.16) 

(2.17) 

A sufficient condition for a continuous time system to be open loop stable is the existence of a 

symetric positive definite matrix S that satisfies the Lyapunov equation(Elbert 1984). 

SA+ ATS= - Q 

Where Q is a symetric positive definite matrix. 

(2.18) 

Using equation 2.16 it is possible to substitute for A and after some algebra arrive at equation 

2.19. 

2.4 

is [a-J][a +Jr1 +i[aT+Jr1 [aT-J] S=-Q 

~ {[aT + I]S [a-I]+ [aT -I]S [a+ I]}= - [aT + I]Q [a+ I] 
h 

aTSa - S=-4[aT+J]Q[a+I] (2.19) 
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The above equation is equivalent to the discrete time Lyapunov equation 2.20 (Elbert 1984) in 

that provided Q is positive definite, the right hand side of the expression will be negative 

definite. 

aT Sa - S = - Q * (2.20) 

For a continuous time system sampled at intervals h, equation 2.19 will yield the same solution 

matrix Sas the continuous Lyapunov equation for the system. 

Identification 

Application of identification techniques to discrete bilinear systems is covered in chapter 3, 

including details of the algorithms used. This section shows how a discrete bilinear system may 

be rewritten for identification purposes, and discusses how a model may account for deadtime 

and also store information about the steady states of the process. 

Deadtime 

The presence of deadtime in a system 

may be represented in two ways. 

The first case is the normal physical 

reality where there exists some delay 

between the actual process and the point 

at which the outputs become 

measurable (ie. the system boundary). 

This concept is illustrated in figure 2.2. 

The alternative is to consider a delay 

between the time an input enters the 

system and the point at which it begins 

to affect the process. This is illustrated 

in figure 2.3. Although this is not 

always the case it provides a useful 

basis for adapting discrete time 

Input 

Process 1----~ Deadtime i-...-- .-.. 

States~ 

Output 

System 

Figure 2.2 Deadtime as a delay on Outputs. 

Input 

System 

I 
Process t--~!--~ 

I Output 

States ~ I 
identification procedures to cope with Figure 2.3 Deadtime as a delay on Inputs. 

the presence of deadtime. The delay on inputs approach also enables different deadtimes to be 

used for each input, giving greater flexibility. 
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A first order discrete linear difference equation 

y(k+ 1) = a y(k) + b u(k) (2.21) 

may be modified to include deadtime simply by replacing u(k) with u(k-l), where l is the 

deadtime measured in sampling intervals: 

y(k+ 1) = a y(k) + b u(k-l) (2.22) 

Difference Equations 

A difference equation form for the modelis required to facilitate the identification of a system. 

Papers by Goodwin and Sin (1984) and Beghelli and Guidorzi (1976) present methods for 

converting the state-space representation into a difference equation form. 

y(k+l) = !Biy(k+l-i) + Bo 
l=l 

Where y(k) is the value of the measured variable at a time k. 

Bi are non-linear functions of u(k), u(k-1), ... u(k+ 1-n) 

Bo is a linear function of u(k), ... u(k+ 1-n) 

(2.23) 

This full difference equation contains a large number of terms, many of which do not 

significantly improve the accuracy of the model whilst slowing convergence of the identification 

method. 

A more manageable form may be obtained by taking the Bis as linear functions of u(k), u(k-

1), ... u(k+ 1-n). This method was used by Janssen (1986) and defines the reduced bilinear 

form: 

y(k) = aJY(k-1) + ... a"y(k-n) + b1u(k-l) + ... b"u(k-n) 

+ c11y(k-l)u(k-l) + .. . c,,1y(k-l)u(k-n) 

+ ..... . 

+ C1nY(k-n)u(k-l) + .. . CnnY(k-n)u(k-n) (2.24) 

Although many terms have been omitted, this form is still maintains the multiplicative non­

linearity which provides the improvement over a linear approximation. However, the number of 

parameters involved is still proportional to n 2 compared with n for a linear system. It has been 

suggested by previous workers (Janssen 1986, Rao and Gabr 1984) that acceptable accuracy 

may be obtained using a diagonal bilinear model. In such a model only those terms on the 

diagonal of the matrix of c terms are considered, the other elements of this matrix are assumed 

to be zero, leading to a model 
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y(k) = a1y(k-l) + ... a,,y(k-n) + b1u(k-l) + ... b,,u(k-n) 

+ c1 y(k-l)u(k-1) + c2 y(k-2)u(k-2) + ... c,, y(k-n)u(k-n) (2.25) 

Another approach is to consider the case where the states of the system are themselves 

measurable (ie. the measurement equation is y(k) = I x(k) ). Often it is the case that the 

measured variables are the current states of the system or the states of the system at some point 

in the near past where deadtime is involved. In this case the structure of the difference equation 

may be directly derived from the state-space expression. A general second order, SISO discrete 

bilinear state space relation including deadtime: 

[y~;/)] =[~' ~, ][;:j)J + u(k-1)[~ H~~'J[;:;J (2.26) 

may be rewritten to form a difference equation : 

y(k+ 1) = a1y(k) + a2y(k-l) + b1u(k-l) + c1u(k-l)y(k) + c2u(k-l)y(k-l) (2.27) 

Having converted the equation to difference form by one of the above methods, it may be 

rewritten as the dot product of two vectors, equation 2.28. Hence for a reduced bilinear model : 

y(k) = 0 T (k). cf> (k) (2.28) 

cf> T (k) = [ y(k-1), y(k-2), ... y(k-n), y(k-l)u(k-l-1), y(k-2)u(k-l-l), ... 

.. . y(k-n)u(k-l-n), u(k-l-1), ... u(k-l-n)] (2.29) 

eT(k) = [ a1, a2, ... an, C11, C12, ... c,,,,, b1, ... b,,] (2.30) 

The measurement vector cf> is a non-linear function of the outputs (y) and the inputs (u). 

However the parameter vector 0 is linear in the model parameters. It is therefore possible to 

identify the parameters for the system using the techniques developed for linear systems. 

Measured Variables 

The models so far have been given in terms of deviation variables about some steady state. In 

order to convert the measured values of the states and inputs into deviation variable form it is 

neccessary to have accurate a priori knowledge of at least one steady state of the system. This 

has the effect of tying the the model to this steady state even if in error. To overcome this 

differculty the model may be modified to use the measured values directly. The deviation 

variables are defined 

It follows that a bilinear term becomes 

y(k-i) = Y(k-i) - Ys 

u(k-j) = U(k-j) - Us 

(2.31) 

(2.32) 

u(k-j) y(k-i) = U(k-j) Y(k-i) - Us Y(k-i) - U(k-j) Ys + UsYs (2.33) 
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Substituting these expressions into equation 2.24 leads to : 

Where: 

Y(k) = a1Y(k-l) + ... allY(k-n) + ~1U(k-J) + ... ~IIU(k-n) 

+ c11 Y(k-l)U(k-1) + ... c111Y(k-l)U(k-n) 

+ ..... . 

+ C1nY(k-n)U(k-l) + ... C1111Y(k-n)U(k-n) + DC 

ai = a;- Us f Cji 
)~ 

~j = br Ys kcft 
DC= UsYs k11t Cji + Ys(l - k1 a;)- Us 1t bj 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

The DC term contains information about the steady states of the system. Analogous results are 

obtained for the other difference equation representations (equations 2.25 and 2.27). 

The measurement and parameter vectors for the system are now 

¢ T (k) = [ Y(k-1), Y(k-2), ... Y(k-n), Y(k-l)U(k-l-1), Y(k-2)U(k-l-1), ... 

. . . Y(k-n)U(k-l-n), U(k-l-1), ... U(k-l-n), 1] (2.38) 

8 T(k) = [ al, a2, ... a11 , ClJ, C12, ... C,111 , ~I, ... ~ 11 , DC] (2.39) 

The application of identification techniques to bilinear systems js examined in more detail in 

chapter 3, including details of practical methods. 

Conversion from Difference Equation to State Space 
Form 

A discrete difference model of a process can be converted to state space form by selecting 

y(k+ 1-i) ,i = 1..n as the states at a time k Af: 

x(k) = 

2.8 

y(k) 

y(k-1) 

y(k+ 1-n) 

(2.40) 
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The states at a time (k+ 1) ru are found by: 

y(k+ 1) a1a2 ... an-Jan y(k) 

y(k) 1 0 ... 0 0 y(k-1) 
+ bu; = ............... 

y(k+2-n) 0 0 ... 1 0 y(k+ 1-n) 

Where: 

d;(x(k)) = b; + [ CiJ C;2 ... C;n] 

y(k) 

y(k-1) 

y(k+ 1-n) 

di(x(k)) 

0 
(2.41) 

0 

(2.42) 

This form of model may now be used as the basis for some form of control design procedure. 

Multivariable Systems 

In the case of Multiple Input Multiple Output systems the concepts presented above still hold. 

To identify MIMO systems it is usual to break the system down into a number of multiple input 

single output (MISO) sub-systems which can be easily identified in the manner described 

above. Once this is completed the overall state-space relation may be found by grouping all the 

resulting equations. 

A two input, two output, second order system : 

Y1(k+ 1) = a1Y1(k) + a2y1(k-l) + b1u1(k-l) + c11u1(k-lJy1(k) + c12u1(k-l)y1(k) 

+ b2u2(k-l) + c21u2(k-lJy1(k) + c22u1(k-l)y1(k) 

Y2(k+ 1) = a3y2(k) + a4y2(k-l) + b1u1(k-l) + C31u1(k-l)Y2(k) + C32u1(k-lJy2(k) 

+ b4U2(k-l) + C41U2(k-l)Y2(k) + C42U1(k-l)Y2(k) 

Becomes: 

Y1(k+l) a1a200 Y1(k) b1 C11C12 0 0 Y1(k) 

Y1(k) 1 0 0 0 Y1(k-l) 0 0 0 0 0 Y1(k-l) 
= + UJ + 

Y2(k+ 1) 0 0 a3a4 Y2(k) b1 0 0 C3J C32 Y2(k) 

Y2(k) 0 0 1 0 Y2(k-l) 0 0 0 0 0 Y2(k-l) 
b2 C21 C22 0 0 YI (k) 

0 0 0 0 0 Y1(k-l) 
+ U2 + 

b4 0 0 C4J C42 Y2(k) 

0 0 0 0 0 Y2(k-l) 

(2.43) 
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Determination of Steady States 

One of the important advantages of a bilinear model over a linear one is the increase in the range 

over which a bilinear model remains valid for many real systems. It is important to be able to 

determine the correct input values to correspond to a desired output. 

For a single input, single output model, the input and output variables (u(k-j) & y(k-i)) can be 

replaced with their steady state values (us & Ys). Rearranging to makeus the subject of the 

resulting equation yields an expression relating the steady states. For a reduced bilinear model : 

[ J - k ai] Ys - DC 
Us = - ----- (2.44) 

Jt [bj + y, k Cj;] 

For a multiple input, multiple output system the problem is more complex as there are a number 

of equations which must be solved simultaneously. Beginning with a state-space model: 

x(k+ 1) = ex x(k) + k Ui ~'>i(x) + DC (2.45) 

Substituting, rearranging and combining the Ui into a single vector gives : 

[ I - CX ] Xs - DC = !1(.~s) Us (2.46) 

The above equation cannot usually be solved directly as !1(xs) will not normally be square, may 

contain one or more rows of zeros, and thus may not be readily inverted. If those rows of the 

equation which contain only zeros in !1(xs) are removed, what remains should be a well 

conditioned set of simultaneous equations. 

If there are still more rows remaining than inputs the system is uncontrollable as written. If less 

rows remain then an excess of control variables exists and the value of one must be assigned 

before the others may be calculated. When the number of equations equals the number of 

unknown inputs the equations may be solved using the standard methods. 

eg. For the multivariable system in equation 2.47. (note : as this model is already in deviation 

variables about a known steady state the vector DC contains only zeros and has been omitted.) 

y/ a1 a2 0 0 y/ b1 Cl] C12 0 0 y/ 
y/ 1 0 0 0 y/ 

+ u/ 
0 0 0 0 0 y/ 

= + 
y/ 0 0 a3a4 y/ b1 0 0 C31 C32 y/ 
y/ 0 0 1 0 y/ 0 0 0 0 0 y/ 
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b2 C21 C22 0 0 y/ 

+ U2 s 
0 0 0 0 0 y/ 

(2.47) + 
b4 0 0 C4J C42 y/ 
0 0 0 0 0 yl 

Reducing: 

(2.48) 

Where d1 = b1 + y/ (en + c12) 

d2 = b2 + y/ (C21 + C22) 

d3 = b3 + Yi (C31 + C32) 

d4 = b4 + Yi (C41 + C42) 

Giving a steady state solution : 

[u/]=[d1d2 ]-
1 [1-ara2 0 J[y/] 

ui d3 d4 0 1 - ar a4 y/ 
(2.49) 

Process Gains & Time Constants 

A discrete bilinear model, although accurate, does not lend itself to an appreciation of the actual 

plant behaviour. System parameters which aid in understanding the behaviour of a piece of plant 

include the time constants, which illustrate the relative speed of the process, and the gains with 

respect to the inputs, which enable prediction of the response to a known change in an input. 

To express a bilinear model in terms of gains and time constants it is necessary to linearise the 

model about some operating point. A deviation variable model is obtained at this point. This 

model is then linearised by dropping out all the bilinear terms. A linear difference equation will 

remain. ie. 

y(k+l) = _L a;y(k+l-i) + L biu(k+l-i) 
1=1 1=1 

(2.50) 

A transfer function expression using the z operator is then obtained by rearranging. 

(2.51) 

The gain of the process is found by setting z = 1 and evaluating the resulting fraction. To 

evaluate the time constants it is necessary to consider the denominator of an nth order model to 
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be the product of the denominators of n first order processes, where the 1st order denominator 

is given by equation 2.52 and the nth order case by 2.53. 
-T 

D(z) = 1 - z-1 e T (2.52) 

D(z) = ri(1 -z-I e ~) (2.53) 
i=l 

Multiplying the denominator by zn will yield a polynomial with roots defined by equation 2.54 

and the time constants may be estimated using 2.55. 

Nomenclature 

Continuous State Space 

X 

u 

n 

m 

A 

B 

t 

Q,S 

Discrete State Space 

2.12 

x(k) 

k 

h 

l 

(X 

~i 

State Vector 

-T 

Zi = e f; 
-T 

Ti= logeZi 

i th element of State Vector 

Input Vector 

i th element of Input Vector 

Number of States 

Number of Inputs 

State Coefficient Matrix 

Input Coefficient Matrix 

i th Column of B, Coefficient vector for Ui 

Bilinear Coefficients for Input i 

Time 

Symetric Positive Definite Matrices 

State Vector sampled at t = k * h 

Discrete Time variable 

Sampling Interval 

Discrete Deadtime in sampling intervals 

State Coefficient Matrix 

Coefficient Vector for i th input 

(2.54) 

(2.55) 



'6i(x(k)) 

!i(x(k)) 
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Bilinear Coefficient Matrix for i th input 

Combined Coefficient Vector for Input i. '6;(x(k)) = B; + Yi x(k) 

Combined Input Coefficient Matrix, columns are '6;(x(k)), i = 1,m 

Discrete Diference Equations 

y(k) 

u(k) 

8(k) 

cj)(k) 

Y(k) 

U(k) 

Ys, Us 

~i.~j 

DC 
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CHAPTER 3 
Identification of Bilinear Systems 

Overview 

A number of standard identification procedures were examined, the objective being their 

application to the identification of discrete time models of bilinear systems. 

Four methods were tested for the identification of a known third order discrete time bilinear 

model with varying levels of measurement noise. The relative performance was gauged by use of 

three properties of the identified models, the process gain, the principle time constant and the 

variance of the identified model response against that of the noise free original system. 

Theory 

The identification of a process model involves finding the values of the parameters which 

minimise some function of the errors between the model predictions and the measured values 

for a set of data. The most commonly used cost function is the sum of the square of the 

prediction error at each data point. Methods using such a cost function are termed Least Squares 

(LS) methods. There are two ways in which least squares methods may be used to estimate 

model parameters, batchwise or recursively. 

In batch estimation the data collection and parameter estimation operations are performed 

separately. The data is first collected and stored, then a multivariable search procedure is used to 

find the parameter values which minimise the cost function. A commonly used search procedure 

is the Newton-Raphson method. Batchwise methods often require the storage and manipulation 

of large amounts of data. 

Alternatively, successive estimates to the values may be obtained as the data becomes available 

by using recursion techniques developed from statistical theory. After each data point is 

measured, it is used to generate a new estimate of the model parameters. The storage 

requirements are significantly lower than for batch or off-line methods although the overall 

computational requirements may be greater. Recursive estimation methods may also be operated 

in an off-line fashion, this approach has been used throughout this work. 
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Recursive Estimation 

Recursive Least Squares (RLS) is the simplest formulation which may be used to estimate 

parameters on-line. 

Given a set of data: 

{ <f>(k), y(k)}, k = 1 .. N 

it is possible to find a set of parameters 0 that minimise the square of the error through : 

e(k) =y(k)-<f>T(k).0(k-J) 

R(k) = R(k-1) + <f>(k) <f> T(k) 

0(k) = 0(k-1) + R-1 (k) <f>(k) e(k) 

where e(k) = the error at step k 

<f> (k) = the measured values of the independent variables at step k 

e (k) = the estimate of the parameters at step k 

R(k) = the information matrix at step k 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Replacement of R-1 (k) with P(k) leads to a form which is computationally more efficient. The 

covarience matrix P(k) can be updated by applying the matrix-inversion lemma (Friedmann 

1954) to equation (3.3). The recursive equation set now becomes: 

e(k) = y(k) - <f> T(k).0(k-l) 
P(k) - P(k-1) - P(k-1) <f>(k) <f> T(k) p T(k-1) 

- 1 + <f>T(k) P(k-1) <f>(k) 

0(k) = 0(k-l) + P(k) <f>(k) e(k) 

(3.5) 

(3.6) 

(3.7) 

For the purposes of identifying dynamic systems, equation 3.6 is further modified by the 

addition of a forgetting factor 'A(k). This parameter allows the system to 'forget', or reduce the 

importance of events that occurred in the distant past, placing more importance on recent events. 

A forgetting factor is useful in adaptive control applications or where the parameters of a system 

may change with time. 

J [ P(k-l)<f>(k)<f>T(k)PT(k-1)] 
P(k) = 'A (k) P(k-1) - A (k) + <f> T (k) P(k-1) <f>(k) (3.8) 

Under some circumstances the recursive least squares algorithm converges poorly or not at all. 

It has been shown by Bierman ( 1977) to become unstable if the error covarience matrix P loses 

positive definiteness. 

3.2 



IdentificaJion of Bilinear Systems 

UD Factorisation Algorithm 

An efficient and stable method for solving the recursive equation set is provided by the UD 

factorisation algorithm of Bierman (1977). Cholesky decomposition is used to factorise the 

error covarience matrix Pinto the form U D UT. 

At each measurement point the following procedure is calculated : 

1. f = UT(k-1) ¢(k) 

2. g = D(k-l)f 

3. a1 = A + g1 Ji 
4. dJ(k) = d1(k-l) I a1 

5. /2T = [g1, 0, ... 0] 

6. Repeat steps 7 to 10 for j = 2 to m ( m is the order of D ) 

7. Uj = Uj-1 + gj fj 
8. dj(k) = dj(k-1) aj-1 I aj A 

9. uj(k) = llj(k-1) + µj lj where µj = -fj I aj-1 

10. lj+J = lj + gj Uj(k-1) 

The parameter gain and the new values of the parameters may be found 

L(k) = lm+l 
Um 

0(k) = 0(k-1) + L(k) e(k) 

(3.9) 

(3.10) 

In practise it is not necessary to calculate L(k) directly, but to use the following expression : 

e(k) 
0(k) = 0(k-1) + 1111 +1 -a (3.11) 

Ill 

To start the algorithm the elements of U and the initial parameter estimates 0 should be set to 0. 

The initial values for the elements on the diagonal of D should be assigned a large value. The 

forgetting factor A should be in the range 0.9-1.0. 

Recursive Least Squares 

From a discrete bilinear system described by a difference equation 3.12 it is possible to obtain a 

vector dot-product equation 3.13. 

y(k) = k/;y(k-i) + t
1
t1cfiu(k-j-l)y(k-i) + k/;u(k-i-1) + DC (3.12) 

y(k) = 0 T. ¢(k) (3.13) 

¢ T (k) = [ y(k-1), y(k-2), ... y(k-n), y(k-l)u(k-l-1), y(k-2)u(k-l-1), ... 

.. . y(k-n)u(k-l-n), u(k-l-1), ... u(k-l-n) ,1] (3.14) 

e T = [ a1, a2, ... an, Cl], C12, ... Cnn, b1, .•. bn ,DC] (3.15) 
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The vector <!>(k) contains the measured values of the inputs and outputs at time k and0 contains 

the model parameters. The parameter vector 0 is linear in the parameters although the overall 

system is not linear. The linearity of 0 enables the application of recursive least squares 

estimation techniques to the bilinear system. 

The recursive least squares estimator will always converge to a set of parameters using the UD 

factorisation algorithm. However, if there is any noise present in the process, these parameters 

will suffer from biasing. The identification procedure determines the parameters which best 

model the "noisy" response of the process to the input sequence. The accidental correlation of 

the noise with the input sequence results in the parameters being different from those of the 

"true" process. The extent of this bias will vary depending upon the amount of noise present 

and to what extent the noise is correlated with the process response. 

There are three approaches to reducing this bias : 

I .Modify the process and / or the sensors to reduce the noise. 

2.Use some form of filter to attempt to remove or reduce the noise. 

3.Use an identification procedure which is less susceptible to noise-induced biasing. 

Combinations of the above methods may be applied to a process. In most cases with existing 

plant, it is impossible or expensive to make changes to the physical equipment of the process so 

the first option has not been considered further. 

There are many methods of filtering currently available, ranging from simple analog low-pass 

devices to very complex, software-based, digital methods. The important consideration when 

filtering process response data is to select a filter which will remove the noise without removing 

important information about the process. 

A number of alternatives to RLS have been reported in the literature, many of these have been 

adapted for the identification of discrete time bilinear systems (Fnaiech and Ljung 1987, Gabr 

1986). Three such methods are examined in this work. 

Recursive Extended Least Squares 

In RLS estimation the model structure is assumed to be deterministic with no random 

components affecting the system behaviour. 

An alternative is to consider the system as a combination of a deterministic process and a. 

random process. In this manner a linear system may be written: 
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y(k) = 2, ai y(k-i) + 2, bi u(k-i-1) + DC + 2, Ei e(k-i) 
1=1 1=1 1=1 

(3.16) 

Where e(k) = the random error at a time k found by e(k) = y(k) - y(k)predicted 

The additional terms in this expression may be separated and attached on the end of the 

parameter and measurement vectors and these 'extended' vectors used in the recursive 

identification procedure. This is termed Recursive Extended Least Squares (RELS) (lsermann 

1981). 

For bilinear systems there are two possible methods of extending the model structure. The 

simpler method is to use additional terms identical to those for a linear system of the same order 

(Fnaiech and Ljung 1987). For a reduced bilinear difference equation this gives: 

This method is referred to as RELS throughout this work. 

The second method is the use of a more complete formulation, including bilinear terms between 

the errors and the inputs (Gabr 1986). The reduced bilinear difference equation becomes : 

To prevent confusion this has been referred to as REELS. 

Recursive Maximum Likelihood 

(3.18) 

The fourth method used was the Recursive Maximum Likelihood method of Gabr (1986). A 

derivation of this method is not given here. Unlike the other three methods RML is based on the 

Newton-Raphson method. The recursive equation set for this method is given below. 

V(k) = -cp(k) - k/i V(k-i) - k1 Jt/ftU(k-j-1) V(k-i) 

1 [ P(k-1) V(k) VT(k) PT(k-1)] 
P(k) = 11.(k) P(k-l)- 11.(k) + VT(k) P(k-1) V(k) 

0(k) = 0(k-1) - P(k) V(k) e(k) 

(3.19) 

(3.20) 

(3.21) 
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This method uses the same structure as REELS for the measurement and parameter vectors, and 

may be solved using the UD factorisation algorithm by substituting V (k) for each occurrence 

of<f>(k) and calculating V(k) recursively using equation 3.19. 

Input Sequence and Sampling Interval 

A suitable input sequence and sampling interval is required, to accurately identify a model of a 

process. 

The sampling rate should be fast enough to provide good modeling of the fastest time constant 

of interest in the system, but not so fast that it correlates high frequency noise. A general rule for 

selecting sampling intervals is given by Isermann (1981). 

1 1 
lS T95 <Ts< 4- T95 (3.22) 

Where T95 = the time taken for the process to reach 95% of its final value after a step change 

in one of the inputs. 

An input sequence should have the following properties: 

1. The sequence must be sufficiently stimulating to excite all the non-linearities in the process. A 

common method for achieving this is to use a pseudo-random binary sequence as this contains a 

wide range of frequencies. The use of such a sequence has been mathematically shown to 

satisfy the persistent excitation criterion for both linear (lsermann 1980) and bilinear systems 

(Janssen 1986). 

2. The sequence should drive the plant over its entire operating range. A plant model should be 

identified over the desired range of operation. This is essential for bilinear models where the 

gain is subject to variation over the operating range. To achieve this, a series of operating points 

should be selected and these in conjunction with a pseudo random binary sequence should be 

used to form the input sequence. 

3. The identification run should be long enough to provide a good base for estimating the 

parameters of the model. As a guide, Gustavsson ( 1975) suggests the length be at least ten times 

the major time constant of the system. Longer runs may be required if the system is subject to 

excessive amounts of noise. 

A suitable input sequence for identifying bilinear systems is a series of step changes with a 

superimposed pseudo-random binary sequence (PRBS). An example of such a sequence is 

shown in graph 3.1. Three input values were used as a basis with a PRBS of amplitude 1.0 

superimposed. 
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Graph 3.1 Step sequence with superimposed PRBS 
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A series of tests were carried out to assess the effectiveness of these identification methods for a 

bilinear system. 

A third order diagonal bilinear model of a steam heated tank, identified by an on-line application 

of RLS (Fletcher 1987), was used as the basis for method trials. 

Y(k) = 0.8602 Y(k-1) + 0.2206 Y(k-2) - 0.0914 Y(k-3) 

- 0.01008 U(k-2) Y(k-1)- 0.00313 U(k-3) Y(k-2)- 0.00078 U(k-4) Y(k-3) 

+ 0.1124 U(k-2) + 0.0200 U(k-3) + 0.0354 U(k-4) + 4.9379 (3.23) 

The process gain of the system was calculated at steady states corresponding to selected values 

of the input U. The principle time constant was also estimated at U = 10 I/min and is shown in 

table 3.1 as a number of sampling intervals. 

Table 3.1 Model Gain and Time Constant at Selected Steady States 

u y Kp T1 

llmin oc (x Ts) 

8 51.3 -4.482 -

10 44.0 -2.9707 5.916 

12 38.9 -2.1124 -
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The known discrete time bilinear model was subjected to the input sequence shown in graph 3.1. 

The response of the model is shown in graph 3.2. This response then became the noise-free 

process. 

To gauge the effect of noise on the performance of the identification methods a normally 

distributed random noise signal of varying amplitude was superimposed on the above response. 

The parameters of the resultant noisy system were then identified using the four methods 

described earlier. Three criteria were then used to evaluate the performance of the methods. 

G 
0 
'-' 

50 

~ 45 
B-
8 

40 

Variance 

0 

Graph 3.2 Model Response to Input Sequence 3.1 

50 100 150 200 250 300 350 

Time (Sampling Intervals) 

The most natural measure of the success of an identification procedure is to see how well the 

model predicts the behaviour of the system. This involves calculation of the variance between 

model predictions and plant output. 

The identified models were subjected to the same input sequence used in graph 3.1. The 

variance between the response of the model and the original noise-free system was calculated 

and the results are shown on graph 3.3. The solid line indicates a variance equivalent to the noise 

standard deviation ( cr) at which the model was identified. 

All methods apart from RML produced models with variances less than that of the noise signal 

over the range examined. The performance of the two extended least squares methods (RELS & 

REELS) was similar and apart from a small region between .2 ~ cr ~ . 7 was better than the other 

two methods. The performance of recursive maximum likelihood was poor, giving variances 
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greater than that of the noise signal in one region and at least {Rf greater than RELS over the 

entire range. 

Time Constants 

A second measure of the suitability of an identification method may be obtained by comparing 

the principle time constant of the identified model with that of the known process. The 

estimation of these time constants is described in chapter 2. 

Graph 3.4 Reduced Time Constant vs Noise for 4 Identification Methods 
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0.8 -

0.6 -

0.4 -

.01 

RLS 

REL.S 

REELS 

RML 

. 1 1 10 
Noise Standard Deviation 

The time constants of the identified models were estimated at the steady state corresponding to 

an input value of 10 !/min. The largest of these was the principle time constant for the model. 
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This value was divided by the time constant of the original system and the results plotted on 

graph 3.4. The solid line represents the true time constant. 

The results for all four model types follow the same general trends. For low noise the estimator 

slightly overestimated the value of the time constant. As the noise increased further the time 

constant estimate decreased rapidly, suggesting that the faster noise signal was dominating the 

process. For RLS at high noise a levelling off was observed which was due to the time constant 

estimate approaching the size of one sampling interval. Given a sufficiently large noise signal all 

four methods should exhibit this behaviour. 

The best results were obtained using the extended least squares methods (RELS & REELS), 

with the maximum likelihood method (RML) on a par with normal recursive least squares 

(RLS). 

Process Gains 

The third criterion for judging the performance of a method for identifying bilinear systems was 

the ability of the model to determine the gains of the process at various steady states. A major 

advantage of bilinear models over linear models is the ability of the bilinear model to account for 

changes in the process gain over the full operating range. 

The gain was calculated at three steady states for each identified model, corresponding to input 

values of 8, 10 and 12 llmin. These results were then plotted for each method (Graphs 3.5 - 3.8) 

As for the time constant biasing, all four methods produced graphs with the same general form. 

At low noise levels the estimated gains correspond to the gains of the original process. As the 
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amount of noise present increases the separation between the gains begins to disappear until at 

some value of the noise standard deviation the gains at the operating points are the same. This 

point indicates where a bilinear model ceases to give any advantage over a linear process model. 

As was found with both the variance and time constant comparisons the best results were 

obtained using the Recursive Extended Least Squares methods (RELS & REELS). There was 

almost no change in the gain estimates for RELS until the noise standard deviation reached 1 °C 

and the point at which the gains were equal occurred at a noise of <J = 3.5°C. Convergence of 

the gain estimates for REELS began earlier but the gains did not become equal until the noise 

reached <J = 4.2°C. 

The performance of the recursive maximum likelihood method was similar to ordinary recursive 

least squares. 

CPU Usage 

The identification procedures were carried out using a 

FORTRAN program on a VAX 11/730 

minicomputer. Table 3.2 gives the CPU requirements 

for each method, including the initialisation section of 

the program. 

For RLS, RELS and REELS the CPU usage was 

almost exactly proportional to the number of terms in 

the model. RML used extra CPU time because of the 

additional recursive calculation required to obtain 

V(k). 

T bl 3.2 CPU a e usage 1y me o b th d 

Method Number CPU 

of Terms usage 

RLS JO 31 s 

RELS 13 41 s 

REELS 16 51 s 

RML 16 73 s 

Computational requirements of this order are becoming trivial for many applications as many 

modern desk-top computers have more calculating power than the VAX system used for these 

trials. The exception to this is in the design of adaptive control systems in which the parameter 

estimation is carried out on-line, as part of the control calculation. 

Conclusion 

It is possible to identify bilinear process models using many of the methods designed for linear 

systems. Although bilinear models are not linear, they may be separated to form a vector dot 

product in which the parameter vector is linear. 

A comparison of four recursive identification methods was carried out using a known discrete 

bilinear model of a steam heated constant volume tank as the process. Important properties of 
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the identified models were compared to the original system. Under low noise conditions all four 

identification methods gave similar results. Recursive extended least squares gave the best 

performance for the trial system over a wide range of superimposed white noise strengths with a 

noise rejection of approximately 10-1 on the variance. 

As a result of these trials, implementations of RLS, RELS and REELS were used in the batch 

identification program developed for the Apple Macintosh and used to identify the models in 

chapter 6. 

Nomenclature 

y(k) Output value at time k 

u(k) Input value at time k 

k Discrete Time variable 

n Model order 

m Number of terms in model 

l Discrete Deadtime 

N Number of Data Points 

e(k) Prediction error at time k 

<f>(k) Measurement Vector at time k 

0 (k) Parameter Vector Estimate at time k 

R(k) Information Matrix 

P(k) Error Covarience Matrix 

A (k) Forgetting factor at time k 

a; State Coefficient 

b1 Input Coefficient 

c iJ Bilinear Coefficient 

DC Constant Term 

£; Error Coefficient (RELS, REELS & RML) 

y iJ Bilinear Error Coefficient (REELS & RML) 

V(k) First order derivatives of e(k) with respect to 0 (RML) 

UD Factorisation Algorithm 

U(k) 

D(k) 

f, g 

Upper triangular matrix 

Diagonal Matrix 

Vectors 
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h i=l,m+l 

L(k) 
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CHAPTER 4 
Control of Bilinear Systems 

Overview 

In this chapter the methods currently available for the control of bilinear systems are reviewed and a 

controller design method for discrete time bilinear systems is developed. 

The results of Benallou et. al. are presented. Discrete approximation for the controller is derived. 

Control systems with feed forward and integral elements are examined. 

Traditional Methods 

The traditional approach to the control of bilinear systems or any other form of non-linear system is 

to linearise the behaviour of the plant about some operating point. The linearisation approach is 

represented graphically in graph 4.1. 

The resulting linear model is used to design a 

controller for the plant. Although accurate near the 

linearisation point a linear approximation may 

become inaccurate with relatively small changes in 

the state of the plant. 

The curve in graph 4.1 represents the behaviour of 

a constant volume heated tank and its linearised 

model at a selected operating point. The gain of the 

process is inversely proportional to the square of 

the flowrate through the plant. 

Graph 4.1 Process Linearisation for a Constant 

Volume Tank System 

.3 -,--.......-------------, 

Real System 

2 

>< 

A PID controller tuned using the ultimate method O -+-...-,...-.--.--1-.....-.--.--.---....-...-,,_..,.--1 

will become unstable if the process gain reaches 0 2 3 
u 

1. 7 times the gain at the linearisation point, this 

being the gain margin used in the Ziegler-Nichols tuning technique (Stephanopoulos 1984). For the 

constant volume heated tank system, this corresponds to a 23.3% reduction in the inlet water flowrate, 

severely limiting the operating range of the plant Similarly as the flowrate of water through the plant 
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increases, the gain of the system decreases, Graph 4.2 Comparison of Linearised Model & Pla1it 

stabilising the system but decreasing the Gains for a Tank System 

effectiveness of the controller. 

There exists a narrow region where the 

performance of a standard controller is acceptable. 

The width of this region depends upon the degree 

of non-linearity of the process. 

Gain Scheduling 

The simplest way to extend the viable region of a 

controller is to use the technique of parameter 

scheduling. As suggested by the name, this method 

involves the use of a schedule, table or formula to 

alter the parameters of the controller based on the 
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current set point and/ or the current states of the plant. Often only the gain of the controller is 

changed leading to the term gain scheduling. 

Parameter scheduled controllers may be divided into two types. Set point based controllers where the 

parameters are adjusted whenever the set point of the plant is changed and state based controllers 

where the controller gain is expressed as a function of the current states of the plant. 

Set Point Based Scheduling 

A set point based schedule can be developed in two ways. 

1) By tuning the controller at a number of set points and using these settings to create a reference 

table. When the set point is altered the new parameter values are extracted from the table. 

2) By using a non-linear model of the plant to obtain an expression for the process gain as a function 

of the operating point. A gain modification function can be obtained from this expression by 

applying some suitable constraint such as maintaining a constant open loop gain. For the heated tank 

system described above : 

where 

1 
Kp ex p2 

1 
Kc ex K ex F2 

p 

F is the steady state flowrate corresponding to, the desired set point. 

Kp is the process gain 

Kc is the controller gain 

(4.1) 

(4.2) 

The non-linear plant model used may be derived using knowledge of the behaviour of the plant or by 

using plant behaviour to identify the parameters of a general non-linear model eg. bilinear. 
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State Based Scheduling 

State based scheduling is more complex, and requires a non-linear dynamic model of the plant. The 

non-linear model is used to construct a function which determines the appropriate controller 

parameters at any point in time. The structure of the modifications is determined from the results of 

linear control theory or relevant non-linear theory. 

Optimal Control 

Graph 4.3 Absolute and Squared Costs For a physical process it is possible to formulate 

an expression which associates costs with 

deviations from the steady state values of the states 

and controlled inputs. The resulting equation is 

referred to as a cost function. The cost function 

must be designed with a global minimum at the set 

point. One approach would be to take the absolute 

values of the errors and use these in the cost 

function. This method introduces a discontinuity in 

the first derivative of the cost function as shown in 

graph 4.3. A better method is to use the squares of 

the errors as these will always be positive and there 

is no discontinuity. 

4....----------------, 

3 / g(x)=x 2 

-2 -1 

The usual cost function for a continuous system is 

Where W is the weighting matrix for the final states 

Q represents the costs associated with the states during the run, 

R gives the cost weightings for the controller action. 

0 
X 

2 

(4.4) 

In many control applications it is possible to consider the final time fj'to be a long time in the future. 

The control objective is now to maintain the system as close as possible to the desired states by the 

use of a reasonable amount of control and without regard for the terminal state, this is expressed in 

equation 4.5. 

1 Yr 1 ~ J = 2 ,jjj(x,u,t) dt = 2 ,l~TQx + uTRu]dt (4.5) 

The Hamiltonian of the system is defined as: 

H(.ic,'A,u,t) = L(x,u,t) + }._T(t).f(x,u,t) (4.6) 
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Where .x = f (x,u,t) describes the system behaviour, 

L(x,u,t) = xTQx + uTRu 

and A (t) is a vector of Lagrange multipliers. 

A sufficient condition for optimality is that the minimum value of the Hamiltonian function is equal to 

zero (Athans & Falb 1966). The control scheme which satisfies this is found from the stationary 

points of the Hamiltonian. 

(4.7) 

For a time invarient linear system with quadratic performance index as above the optimal control is 

given by: 

u(t) = -R-1 BT S x(t) (4.8) 

where the matrix S is the symmetric positive definite solution to the algebraic matrix Riccati equation. 

s A + AT s + Q - s B R-1 BT s = 0 (4.9) 

An optimal state variable feedback controller (4.8), will be globally asymptotically stabilisingfor 

strictly linear systems. The controlled system will return to a stable steady state regardless of its 

starting point, as changes in the control variable have a constant effect over the entire operating range 

of the plant. The gain of a non-linear system may vary to such an extent over the operating region that 

the controlled plant will not return to the desired state from some initial conditions. In designing 

controllers for non-linear systems it is therefore necessary to ensure that the control system is stable 

for the entire operating range of the plant. 

Lyapunov stability theory states that if, for a homogeneous system 

.t = f(x,t) 

there exists a scalar function V(x(t),t) such that: 

I. The partial derivatives with respect to x and t are continuous, 

II. V(x(t),t) > 0 for all xtO and for all t, 

III. dV!dt = V < 0 for all x#J and for all t, 

N. V(x(t),t) - 00 asxT(t) x(t) -+ oo_ 

then the system has asymptotic, global stability (Elbert 1984). 

Continuous Time Bilinear Optimal Controller 

(4.10) 

For the case of continuous time bilinear systems a globally asymptotically stabilizing optimal 

controller design was established by Benallou et. al. (1988). What follows is a summary of their 

results, aside from differences in nomenclature. 

For a continuous bilinear system 
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.t =Ax + f ui [b; + Ci x] (4.11) 
1=1 

Let d;(x) = bi + C x and D(x) = [ d1(x) I d2(x) I ... I dm(x)] and the process may be written: 

x =Ax+ D(x) u 

If the control objective is to minimise the cost function 

J =fr J}TQx + !~ [xTSd1(xJi2 + uTRu }a, 

Where Q is the symmetric, positive definite state weighting matrix, 

R is the diagonal matrix of control weightings and 

(4.12) 

(4.13) 

S is the symmetric positive definite solution to the continuous time Lyapunov 

equation A TS + SA = -Q. 

then the optimal control policy is given by: 

u'l' = _ l xTSd·(x) 
I Ti I 

which may also be written: 

u* = - R-1DT(x) S x 

Implementation of this control results in the closed loop system : 

x =Ax - D(x) R-1DT(x) S x 

= [A - D(x} R-1DT(x) S]x 

Proof of Stability 

A suitable Lyapunov candidate which meets conditions I, II and N is: 

V=f xTS X 

differentiating with respect to time gives: 

v = f xTS x + f xTS x 

substituting for x : 

as ATS + SA = -Q : 
. 1 
V = -2 xTQ x - xTS D(x) R-1DT(x) S x 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

Both Q and R are positive definite so the above expression will be negative for all values of x other 

than zero, thus fulfilling criterion III. The controlled system has global, asymptotic stability. 
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Proof of Optimality 

Using the Hamiltonian: 

H(x,u) = L(x,u) + Vx(x) [Ax+ D(x) u] 
= f {xTQx + xTSD(x) R-1DT(x) Sx + uTRu} + xTS [Ax+ D(x) u] 

BH -a = 0 = Tj Uj + xT S dj{x) 
Ui 

uf = -f xT S dj{x) or u* = - R-1DT(x) S x 
I 

Substituting this back into the Hamiltonian function gives : 

H(x,u) = f {xTQx + xTSD(x) R-lDT(x) Sx + xTSD(x) R-1DT(x) Sx} 

+ Vlx) [Ax - D(x) R-1DT(x) S x] 

= xT { ½ [Q + SA + ATS] +SD(xJR-lDT(x) S -SD(xJR-lDT(x) S }x 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

which is zero for all values of x, so the control is optimal for the performance function (4.13). 

Effect of Set Point Changes 

The work of Benallou et al stopped short of considering the effect of changes in set point on the 

behaviour of the controlled system. A major advantage of using bilinear models of processes is the 

ability to use the model over a greater range of the operating region than is possible with linear 

models. Any controller design method should have provision for dealing with changes in the 

operating or set point. 

Set point changes alter the parameters of the state matrix A, 

(4.26) 

where fii is the value of the ith input, required to achieve a steady state at the new set point, as a 

deviation from the current steady state input. 

To ensure the system remains stable after such a change, the Lyapunov solution must be recalculated. 

If this is done while holding Q constant, then although the system must necessarily remain stable the 

nature of the control and process response will change. The reasons for this become clear when the 

structure of the performance index is examined. 

The performance index for the continuous controller is given in ( 4.27). This may be reorganised to 

combine the state weighting terms giving an expression of the form used in standard optimal control 

theory (4.28). 

J ~ J {xrQx + k# xrSd;(x!]' + urR+ (4.27) 

j(t) = xTQx + xTSD(x)R-1DT(x)Sx + uTRu 
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(4.28) 

The value of the overall state weighting matrix is dependent upon the current operating region of the 

system as both S & D(x) are dependent upon the controller set point. If we desire the response of the 

system to be consistent for the entire range of operation then whenever the set point is changed the 

value of Q must be re-evaluated, so that Q + SD(x)R-1 D7 (x)S remains constant at the various set 

points. Let this be equal to a symmetric positive definite matrix P equation. 

Q + SD(x)K1D7(x)S = P (4.29) 

By substituting for Q from the Lyapunov equation and defining K(x) = D(x)R-1 n7 (x) the expression 

becomes: 

ATS+ SA + P- S K(x) S = 0 (4.30) 

which has the same form as the Algebraic Matrix Riccati Equation. Thus in order to maintain the 

same overall weighting matrices at each set point, it is necessary to solve the Algebraic Riccati 

equation whenever the set point is altered, using K(x) calculated at the set point. 

In the case of a linear system, K(x) becomes B R-1 B7, giving the standard continuous time optimal 

regulator equation. 

Discrete Time 

To obtain a discrete time controller the central difference equations 4.31 and 4.32 were applied to the 

continuous equations resulting in the following substitutions developed in chapter 2. 

x(k+ 1) + x(k) 
X= 2 
. x(k+ 1) - x(k) 
X = h 

A = ~ [ a - J] [ a + J r1 

d;=i[J-[a-J] [a+1r1]0,. 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

When these are applied to equation 4.14 the control equation 4.35 results, or 4.37 in matrix form. 

ul = - ;, xTS k !I - [a -I] { ex + J f1]b;(x) (4.35) 

Ll - [51 lei I ... l&n] (4.36) 

u* = -¾ R-1LlT(xJ[1 - [a - l] [a + J r1]TS x (4.37) 

The value of x is found by substituting this expression back into the discrete time equations for the 

system, to obtain an expression for x(k+ 1 ). 

x(k+l) = a x(k) + -iLl(xJR-1LlT(xJ[1- [a -J] [a+ 1r1]TS x 

x(k+l) = ax(k)- ih [Ll(x(k+l)) + Ll(x(k)J] R-l[LlT(x(k+l)) + LlT(x(k)J] 

[1- [a -J] [a+ 1r1]Ts [x(k+l) + x(k)] 

(4.38) 

(4.39) 
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Defining a function G(x(k+ l),x(k)) = 

ih [ ~(x(k+ 1)) +~(x(k)J] R-1 [ ~T (x(k+ ])) +~T(x(kJJ] [] - [ a - I] [ a + 1r1] TS (4.40) 

Substituting this expression into equation 4.39 yields the pseudo-linear equation 4.41. Together these 

two equations make up an iterative pair which may be used to find x(k+ 1) and therefore x. 

x(k+l) =[I+ G(x(k+l),x(k))r1 [a -G(x(k+l),x(k))] x(k) (4.41) 

In a linear system, the function G is independent of the state and therefore constant over the entire 

operating range of the plant. For bilinear systems, however, the value of G can only be found by 

iterating the equations above. An approximation may be obtained by using one of a number of 

simplifying assumptions, to avoid the computation associated with solving exactly. In order of 

complexity, or computational load. 

1) As the sampling time of the system becomes very small in relation to the time constant 

the state of the system will not change much between sampling points and x(k) may be 

used in place of x in the control equation. 

2) Use the linear system case and assume G is independent of the state, giving 

x(k+l) =[I+ G(O,O)r1 [a -G(0,0)] x(k) (4.42) 

3) Take the first estimate of x(k+ 1) from the iterative sequence and use this to estimate x. 

x(k+ 1) = [ / + G(x(k),x(k)) ]-1 [ a - G(x(k),x(k))] x(k) (4.43) 

4) The last case is the complete iterative method using the equation pair to obtain x(k+ 1) to 

the desired accuracy. 

A comparison of these four methods is given in table 4.1 for a sampled continuous time bilinear 

system with the following characteristics. 

System 

Control 

Current State 

X = -0.25 X - 0.025 XU - 0.5 U 

U = 2 (0.5 + 0.025 X) X 

x(k) = JO 

The data is presented as the estimated value of x divided by the initial value x(k). The 'true' values are 

given by method 4. 
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Graph 4.4 Comparison of x;k) Values for a 1st Order Bilinear System 
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Table 4.1 Comparison of x;k) Values for a 1st Order Bilinear System 

using different approximations for x(k+ 1) 

Method 1 Method2 Method3 Method4 

Linear I Iteration 3 Iterations 

1.0 0.9996 0.9993 0.9993 

1.0 0.9963 0.9932 0.9932 

1.0 0.9816 0.9668 0.9671 

1.0 0.9639 0.9357 0.9367 

1.0 0.9302 0.8791 0.8825 

1.0 0.8421 0.7442 0.7568 

1.0 0.7273 0.5926 0.618 

1.0 0.5714 0.4211 0.4585 

1.0 0.4 0.2667 0.3067 

There is little difference between the four methods at very small sampling times (h <0.05 min). The 

state of the system does not change significantly over such a small interval and under these 

circumstances acceptable control may be obtained using x = x(k). As the sampling period increases, 

the differences between the assumptions increases. The two bilinear methods produce very similar 

results for sampling intervals up to one minute, suggesting the use of iteration to produce a more 

accurate result is not justified The linear assumption falls in the mid-range and may provide a useful 

compromise as it is only re-evaluated when the set point changes thus reducing computation at each 

sampling point. 

The selection of an appropriate approximation depends upon the size of the sampling interval and the 

degree of non-linearity present in the process. 
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Discrete Bilinear Controller Design Method 

An efficient design procedure results: 

1) An input weighting matrix R and an approximate overall state weighting matrix P should 

be selected for the desired response, P satisfying: 

P = Q + SD R-1 DTS (4.44) 

2) The equivalent continuous model parameters A and D may be calculated at the set point, 

3) The algebraic Riccati equation may be solved to obtain S. 

AT s + s A + p - s D R-1 DT s = 0 

4) The constant factor of the controller, L, can be obtained from S. 

L=-is(1-~] 

(4.45) 

(4.46) 

(4.47) 

(4.48) 

5) The control variable may now be calculated using Equation 4.49 where xis determined 

using a suitable approximation to Equation 4.38. 

u'-lf (k) = l xT L B·(x) 
I T/ I 

(4.49) 

A discrete optimal controller for bilinear systems can be obtained with little more effort than for a 

linear system. 

Limitations 

Many chemical plant items are subject to environmental effects or disturbances of long duration. In 

addition, the behaviour of some plant items may alter over time, for example, fouling of heat 

exchangers. Under such circumstances a state variable feedback controller, such as the bilinear 

optimal controller, will suffer from offset and will not bring the plant back to the desired set point. To 

overcome this: 

4.10 

1) Incorporate as many of the variables which affect the plant into the process model. A 

rigourous treatment of the dynamic equations of the system may be used to determine 

how each influences the plant and a suitable parametric model structure devised. The 

resulting model may be used to develop a feed-forward control strategy for the plant. The 

feedforward design is limited to those variables which may be changed or that vary 

sufficiently on their own to provide sufficient information for good parameter 

identification. 
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2) Eliminate or reduce as many of the disturbances as possible, either by physical 

modifications to the plant or its surrounds, or by improving the control on upstream 

units. In many cases, this approach is not possible or cannot be justified for economic 

reasons. 

3) Implement adaptive control. An identification procedure can be included in the control 

system to continually update the parameters of the model. Adaptive control has usually 

been implemented using minimum variance or deadbeat control strategy (Goodwin, 

Mcinnis & Long (1981), Ohkawa & Yonezawa (1983)). However, these designs have the 

drawback of unboundedness in the controlled inputs and may result in unrealisable 

control action. The adaptive implementation of a more complex control strategy has many 

difficulties, not the least of which being the amount of computation which may be 

required. 

4) Include integral action in the controller design to correct for small amounts of drift. 

Of these four methods the simplest to implement is the use of control based on the integral of the 

state. Feed forward and integral methods have been examined in further detail, as they apply to the 

bilinear controller design. 

Feedforward Control 

An expression which relates the measured disturbances to the system states is required for the design 

of a feedforward control or compensation system. 

A dynamic system subject to measured disturbances m, may be modeled: 

x = Ax + D(x) u + G m (4.50) 

Two methods exist for developing a f eedforward strategy based on such a model, by cancellation or 

by an augmented optimal control method. 

Cancellation Approach 

The objective for the cancellation method, is to find a control setting that removes the effect of the 

disturbance from the system. Let the total control response be a linear sum of the response to the 

states and the control required to offset the disturbances. The system equation becomes 

X = Ax + D(x) Ux + D(x) U,n + G m (4.51) 

To cancel the disturbances the last two terms must add to zero. The disturbance portion of the 

controller action is 

Um = - D(xJ-1 G m (4.52) 

In order to obtain an inverse of D(x) it is necessary to use only those rows of D & G which contain 

non-zero elements. In the case of a linear system the value of D(xJ-1 G is independent of x, and need 
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only be calculated once. For a bilinear system it is necessary to perform an m*m matrix inversion at 

each control point. 

The overall controller response may be written: 

u = - D(x)-1 Gm - R-1 DT(x) S x (4.53) 

For many systems the solution of equation 4.52 may not be found and it is not possible to obtain 

f eedforward cancellation of the disturbance effects. 

Augmented Optimal Control Method 

If the state vector is augmented to include the disturbances, the modified system becomes: 

y = [: ~} + r D:x)l · wiiliy =[:l (4.54) 

where the first derivatives of the disturbances are assumed to be random functions with a mean of 

zero. The vector m can be referred to as the vector of pseudo-states. The pseudo-states of the system 

may not be controlled and should not be represented in the cost function so the state weighting matrix 

for the modified system is that of the simple system with zeros added to bring it to the correct order. 

PN=[~t] 
o lo 

(4.55) 

The augmented state matrix AN and the augmented state weighting matrix PN are both singular. A 

number of the terms in the Riccati equation solution, SN, will be undefined. However, the leading n*n 
sub matrix of SN will be the same as S obtained from the original system: 

The control policy is 

SN = [~j S2
] (4.56) 

s~ I# 

u = - R-1 D f N1~2] l X 1 
= - R-1 [D(x) IO] _L _ 

s~I# m 

= - R-1 DT S X - R-1 W S2 m (4.57) 

This method will not eliminate the disturbances but will mitigate their effects through the use of a 

reasonable amount of control as defined by the cost function. Unlike the cancellation method, this 

approach will always give a result. 

The following example is given to illustrate the differences between the two methods: 
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d!o = .25 (0; - 60] - .Sf+ .025f[0; - 60] (4.58) 

where 60 is the state, 0; is the disturbance and f is the input. The state and input weights for the 

optimal control calculation are both one. The optimal control for the system, ignoring the disturbance, 

is: 

f= 1.236 [.5 + .025 60] eo 

Using the cancellation method to control the disturbance effect gives: 

[ ] .25 0; 
f = 1.236 .5 + .025 80 80 + .S + _025 [So _ e;J 

and the augmented optimal method gives: 

= [ .S + _025 {e _ B·} 0] [ 1.236 .5528 ] [Bo] 
f O I .5528 2.577e+ 10 0; 

= [5 + .025 { 60 - 0;}] [ 1.236 80 + .5528 0;] 

(4.59) 

(4.60) 

(4.61) 

In the case where 0; = 1 and 60 = 0 the two methods givef = .526 andf = .263 respectively. When 

feed into the system equation ( 4.58) the cancellation method completely removes the effect of the 

disturbance. The augmented state method halves the first derrivative, reducing but not removing the 

disturbance effect. 

Integral Action and the Bilinear Controller 

For a general bilinear system : 

.t = A x + D(x) u (4.62) 

extra virtual states may be added to the system which when evaluated represent the integrals with 

respect to time of actual states. To integrate a state x; define a virtual state x11 +j such that 

Xn+j = X; 

if the augmented system equation is used to design a state feedback controller the resulting control 

policy will include terms based on this additional state. Thus it is possible to include integral action 

into bilinear controller design method. 

For the second order, single input bilinear system : 

.t = A x + D(x) u where x = [;] (4.63) 

an extra virtual state may be included which represents the integral of x. The system becomes : 

X = r: o~l x + r D:) l · wherex =l:J (4.64) 
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It is not possible to obtain S from the Lyapunov equation for the augmented system as the augmented 

matrix A is singular. However, it is possible to calculate Q from a known S . A value for S may be 

obtained by solving the Riccati equation for some selected P. The resulting controller expression is: 

u = -1 [DT(x)I OJ s[:J (4.65) 

If the system has the standard second order structure: 

A = [ a J ] and D(x) = [ a ] + [ a o ] [x] 
a1a2 b1 c1c2 x 

(4.66) 

then as X3 = fx dt the control becomes: 

u == -f {b1 + c1x + c2x} { s21x + s22X + s23 fx dt} (4.67) 

which describes a PID controller with state based gain scheduling defined by equation 4.68. 

Gainx _ {b1 + CzX + c2x} 
Gaino - b1 (4.68) 

whereGainx == the controller gain at a state x 

Gaino = the controller gain at the tuning point. 

Extending this further, the performance of a PID controller for a bilinear system might be improved 

by implementing a state-based schedule defined in the same manner. 

Nomenclature 
Kp 

F 

Kc 

Optimal Control 

X 

4.14 

u 

x(tj) 

w 
Q 

R 

Tj 

J 

H(x,"A,u,t) 

A(t) 

s 

Process Gain 

Flowrate into Heated Tank 

Controller Gain 

State Vector 

Input Vector 

Final value of State 

Symmetric Positive Definite Final State Weighting Matrix 

Symmetric Positive Definite State Weighting Matrix 

Positive Definite Diagonal Input Weighting Matrix 

Diagonal Element of R 

Performance Criterion 

Hamiltonian Function 

Lagrange multipliers 

Symmetric Positive Definite Matrix 
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V(x(t),t) 

A 

B 

d;(x) 

D(x) 

p 

K(x) 

Discrete Tune 

x(k) 

k 

h 

a. 

Yi 

o;(x(k)) 

Positive Valued Scalar Function 

State Coefficient Matrix 

Input Coefficient Matrix 

i th Column of B, Coefficient vector for Ui 

Bilinear Coefficients for Input i 

Combined Coefficient Vector for Input i. di(x) = bi + gi x(k) 

Combined Input Coefficient Matrix, columns are di(x), i = 1,m 

Symmetric Positive Definite Overall State Weighting Matrix 

Positive Definite Matrix Function 

State Vector sampled at t = k * h 

Discrete Time variable 

Sampling Interval 

State Coefficient Matrix 

Coefficient Vector for i th input 

Bilinear Coefficient Matrix for i th input 

Combined Coefficient Vector for Input i. Oi(X(k)) = Bi + Yi x(k) 

l:!.(x(k)) Combined Input Coefficient Matrix, columns are oi(x(k)), i = l,m 

G(x(k+ l),x(k)) Matrix Function 

L Constant portion of Control Equation. 

Feedforward Control & Compensation 

G 

m 

y 

Integral Action 

Disturbance Coefficient Matrix 

Vector of Measured Disturbances 

Augmented State Vector 

Gainx Controller gain at state x 

Gaino Controller gain at the tuning point. 
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CHAPTER 5 
Bilinear Control of a Heated Tank 

Overview 

The control methods described in the previous chapter were applied to a constant volume steam 

heated tank system. A sequence of set point and heat input disturbances was used to compare 

the performance of the controller designs. 

The results of digital computer simulations are presented along with data collected from pilot 

plant trials. 

Tank System 

As mentioned in previous chapters the constant volume heated tank system is one of the 

simplest physical processes which displays bilinear behaviour. The tank system is thus ideal for 

trials of control methods for bilinear systems, before attempting to implement them on more 

complex systems. 

Tin 

F . 
m 

Q 

Figure 5.1 Diagram of Tank System 
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Graph 5.1 Input Sequence for Simulation Identification 
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The control objective was to maintain the temperature of the outlet water at a desired value, by 

manipulating the flowrate of cold water into the tank. Selecting the control variable in this 

manner enables the full use of all the available heat to provide water of the desired temperature 

but results in a process which is inherently bilinear. 

Digital Computer Simulation 

A digital computer simulation of the tank system was used for initial trials. The differential 

equations governing the tank were integrated using a modified Euler method with an integration 

step size of 0.01 minutes. The process response was sampled at 0.5 minute intervals. 

Identification 

The simulation was run using a series of flowrate step changes with a superimposed pseudo 

random binary sequence to drive the system. The input sequence and resulting process output 

are shown in graphs 5.1 and 5.2. Using this data, discrete time models were obtained by least 

squares identification. 

The bilinear model used for the control simulations is given in equation 5 .1 in terms of 

deviations from a steady state output of 40°C corresponding to a cold water flowrate of 10 

llmin. 

(k+ = [1.480-0.523] + [-.08756] + [-.00246 -.00199] /I, l 
X 1) J 0 X(k) U 0 0 0 X1n:) (5.1) 

Where the state vector is defined, x(k) = [ Tour(k) ] 
Tout(k-J) 

A linear model was obtained, for the design of linear controllers, by ignoring the bilinear terms. 

Control 

The simulation was modified to enable a variety of controllers to be implemented by linking with 

different subroutines. An interrupt system was designed to provide a series of set point and heat 

flow disturbances to test the various control methods. The source code for the simulation may 

be found on the appendix disk. The operating sequence for the control trials is given below. 

Operating Sequence 

The operating sequence for the control trials was designed to test plant response over a wide 

range of operation. The plant was subjected to a combination of set point changes and heat input 

disturbances. 
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Three outlet temperature set points were used, at 30°C, 40°C and 50°C. At each of these points 

the system was subjected to both an increase and a decrease in the heat input by 100% for 0.4 

minutes each. At least 10 minutes was allowed after each disturbance or set point change to 

enable the system to regain the set point. The overall length of the trial runs was 120 minutes. 

PID Control 

Proportional only control was used for a disturbance at the initial set point to obtain constant 

amplitude oscillations from the plant. A PID controller was tuned using the ultimate method 

(Stephanopoulos, 1984) from this data. Graph 5.4 shows the plant response with this control. 

Ku= -4 °C !/min, Pu= JO.lo min 

Kc = -2.4 °C //min, T1 = 5.083 min, Tn = 1.271 min (5.2) 

The controller gave adequate performance in the close vicinity of the tuning point. At the higher 

temperature set point the system became unstable. At the third set point the system became 

sluggish. 
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5.4 Simulation Response with PID Control 
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Gain Scheduled PID Control 

A gain scheduled PID · controller was obtained by modifying the gain of the above PID 

controller to maintain a constant open loop gain at different set points. The gain modifying 

relation was obtained from the bilinear differential equations of the system. The response is 

shown in graph 5 .5. 

The introduction of gain scheduling resulted in a significant improvement in the stability of the 

controlled system. Oscillation at the 50°C set point was reduced, however a steady state was not 

achieved before the heat disturbance at 42.5 minutes occurred. The system response time at the 

low temperature set point was reduced 

The integral portion of the control caused large overshoot after set point changes. 

Linear Optimal Regulator 

A Linear Optimal Regulator (Elbert, 1984) was obtained for the process by solving the Riccati 

Equation, using a linearised form of equation 5.1 . The weighting matrices used were 

P = [ ~ ~] R = []] (5.3) 

The system response is shown by graph 5.6. 

Good control was observed at the linearisation point Slight overshoot, attributable to deadtime, 

occurred when returning to this point from the remote set points. At the remote set points the 

system remained stable with no long term oscillatory effects. However, an offset of 

approximately 2°C was observed due to the inability of the linear model to accurately predict the 

steady states of the system. 

Bilinear Controller 

The bilinear controller design was applied to the simulation using the weighting matrices in 

equation 5.3. The response of the system with this control is shown in graph 5.7. 

The bilinear controller gave precise response at all three set points. The nature of the response 

was similar over the entire range. However, some overshoot was observed when recovering from 

set point changes which is attributable to the effect of uncompensated deadtime. 
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5.6 Simulation Response with Linear Optimal Control 
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5.8 

Graph 5.8 Simulation Response with Bilinear Optimal Control 

and Deadtime Compensation of 1 Sampling Interval 
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Deadtime Compensation 

A form of deadtime compensation was tested in an effort to reduce the overshoot caused by 

deadtime present in the system. The bilinear model of the process was used to predict the state 

of the plant at points 1 or 2 sampling intervals into the future. The predicted state was then used 

to calculate the control to be applied. 

Graphs 5.8 and 5.9 show the results of trials with deadtime prediction of 1 and 2 sampling 

intervals respectively. The overshoot after set point changes was significantly reduced with 1 

sampling interval and eliminated with 2 sampling interval prediction. In general the use of 

prediction resulted in a more cautious controller. However, the effect of errors in the process 

model was amplified as predictions further into the future were used, resulting in increased 

offset from the set point. 

Pilot Plant Trials 

The pilot plant tank system as instrumented for these trials is shown in figure 5.2. Cascade 

control was used on the cold water flowrate to remove non-linearities associated with the control 

valve and to eliminate disturbances due to supply pressure changes. 

~ ~ @) .......... , I 

·~~ 
Cold Water cL 

~ 
&_ 

)' Dead-time leg 

Figure 5.2 Experimental Tank System 

(Q) ToVAX 

@ FromVAX 

The temperature of the inlet cold water was measured and the results passed to the computer 

program. The inlet temperature data was used to ensure no additional disturbances were entering 

the system and disrupting the basis for comparison of the various controller types. 
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I 11\IERSITY OF CANTERBURY' 

CHRISTCHURCH, N.Z. 

5.9 



Chapter 5 

Graph 5.10 Input Sequence for Pilot Plant Identification 
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Bilinear Control of a Heated Tank 

The steam valve was positioned remotely by the operating program to provide identical 

disturbances for all control trials. The flowrate of hot water through the deadtime leg was held 

constant to provide a uniform delay on all output measurements. 

Sampling was performed every 30 seconds. 

Identification 

A sequence of flowrate step changes and a superimposed pseudo random binary sequence was 

used to drive the plant, graph 5.10, the response of the system is shown in graph 5 .11. A bilinear 

model of the system was identified from this data resulting in equation 5.4. 

+ -[1.083 -.1981] + [-.2691] + [-.00634 -.004411_ l 
x(k 1) - 1 0 x(k) u O O O _r:(k) (5.4) 

Control 

An operating sequence similar to the one used for the simulation trials was devised and used to 

test the behaviour of the various controller types. The operating sequence is shown in graph 

5.12. 

Operating Sequence 

The operating sequence for the pilot plant tank was similar to that used by the simulation. 
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However some changes were required due to physical constraints not present in the previous 

case. The set points used were 35°C, 40°C and 45°C. It was intended to use the same set points 

as the simulation but the PID controller proved to be dangerously unstable at a set point of 

50°C. The size and duration of the heat disturbances was also altered. The size of the increase 

was 160% of the normal value and the decrease 100%. The duration of both disturbances was 

one minute. 

Manual control was used at the start of each run to bring the system to a steady state near the 

first set point. Hence the initial offset present in some of the response plots. 

PID Control 

A standard PID controller was designed using the ultimate method at an initial set point of 40°C. 

The controlled plant was then subjected to the operating sequence described above. The results 

are shown in graph 5.13. 

Ku= -2.4 °CI/min, Pu= 3.8 min 

:. Kc= -1.44 °CI/min, T1 = 1.9 min, Tv = 0.45 min (5.5) 

The system response gave similar behaviour to the digital simulation. Acceptable control was 

obtained at the tuning point but performance away from this set point was poor, particularly at 

the 45°C set point. 

Gain Scheduled PID Control 

The gain scheduled PID controller was obtained using the bilinear process model (5.4) to 

modify the gain of the above PID controller when the set point was altered. Graph 5.14 shows 

the response of the system with this controller. 

Many of the stability problems of the PID controller were reduced by the introduction of gain 

scheduling. However the systein was still prone to large overshoot after set point changes or 

large disturbances. The controller also required a considerable length of time to damp out 

oscillations after each disturbance. 
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Graph 5.13 Tank Response with PID Control 
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Bilinear Control of a Heated Tank 

Bilinear Controller 

The bilinear control design method was applied to the system using the process model (5.4), and 

the weighting matrices 

(5.6) 

The response of the system is shown in graph 5.15. The bilinear controller provided precise 

stable control at all set points. However, as with the simulation, the deadtime present in the 

process resulted in overshoot when the set point was changed or when recovering from large 

disturbances. 

Deadtime Compensation 

The deadtime compensation method, described earlier, was applied to the pilot scale tank. The 

controlled response is shown in graphs 5 .16 & 5.17. The behaviour of the system was similar to 

the simulation trials. Increasing the prediction time reduced the amount of overshoot that 

occurred after set point changes and lead to a more cautious controller. However, extending the 

forecast time resulted in an increase in steady state offset. A mathematical treatment explains this 

phenomena. 

If a first order discrete time linear system 

x(k+ 1) = a x(k) + b u(k-l) + de 

is modelled giving 

x(k+ 1) = a x(k) + b u(k-l) + de + b 

where b represents the error in the identified model. 

This model is used to predict the state of the system a distance l into the future, giving 

(5.7) 

(5.8) 

x(k+l) = a x(k+l-1) + b u(k-1) + [ de + b] (5.9) 

The prediction error at this point may be defined 

e(k+l) = x(k+l) - x(k+l) 

= a x(k+l-1) + b u(k-1) + de + b - a x(k)- b u(k-l) -de 

= a e(k+l-1) + b 

e(k+l) = f ai-1 b 
1='1 

(5.10) 

If a state variable feedback controller is designed using this prediction then the final steady state 

of the controller is given by the simultaneous equation set 

'iss = a 'iss + b uss + de (5.11) 
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Bilinear Control of a Heated Tank 

uss = Kx(+l) 

x(+i) = a x(+i-1) + b Uss + de + o for i = 1..1 

Solving by successive substitution gives the final steady state as 

Kb f i-J 5'. de 
Xss = 1 - a - Kb 1~/ u + 1 - a - Kb (5.12) 

Table 5.1 gives the final steady states for a system with the parameters a = .9, b = .1, de = 0 and 

o = 1 subject to a state variable feedback controller with gain K = -1. 

Table 5.1 Predictive Controller Offset 

Similar results may be obtained for bilinear systems and higher order systems, although the 

equation complexity increases rapidly. 

· The controller offset due to the modelling error increases as the model is used to predict the 

system state further into the future. 

Bilinear Controller with Integral Action 

A discrete time bilinear controller incorporating integral action was designed using the 

augmented state method described in chapter 4. The modified system model was 

x(k+l) = [ l.~83 -.1~81 ~]x(k) +u ff--2i91] + [--~34 -.w:41 ~}(k)} (J.lJ) 

o.5 o 1 [o o o o 
To11r(k) 

with the state vector is defined as 
To111(k-l) x(k) = 
JT0 wdt 

and using the weighting matrices 

[l O OJ 
P = 0 1 0 and R = []] 

002 
(5.14) 

The response of the controlled system is given in graph 5 .18. At all three set points the quality 

of control was better than the gain scheduled PID controller with less overshoot and faster 

damping of oscillations. The performance of this controller was not as precise as the normal 

bilinear controller as the presence of integral action tended to increase overshoot and oscillation 

effects when recovering from disturbances. 
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Integral action enables a control system to adjust for changes in the process. In addition, integral 

action has been used to cover up the non-linearity present in most plant items. The 

disadvantages of using integral action are the overshoot and oscillation effects that occur when 

the system recovers from set point changes or disturbances. In situations where such offset is 

unacceptable the use of integral based control should be replaced by the use of suitable non­

linear controller designs, possibly including feed forward and/or adaptive mechanisms. 

Conclusions 

In both simulation and pilot plant trials traditional PID controllers performed poorly, being 

unable to maintain good control in the face of changes in the process gain. A significant 

improvement was obtained by using set point based gain scheduling to maintain a constant open 

loop gain based on a bilinear model of the process. 

The bilinear controller provided precise control for the entire range of plant operation. Stability 

was maintained even in the presence of small amounts of uncompensated dead-time. 

Bilinear models were successfully used to provide deadtime compensation in an attempt to 

eliminate overshoot. A more cautious controller resulted, but the effect of modeling errors was 

amplified, causing process offset in the controlled system. 

Nomenclature 

General 

x(k) 

u 

PID Controller 

Optimal Control 

p 

R 

State vector at time k. 

Input 

Controller Gain for constant amplitude oscillation 

Period of constant amplitude oscillation 

PID Controller Gain 

Integral Time 

Derivative Time 

Overall State Weighting Matrix 

Input Weighting Matrix 

Deadtime Compensation Analysis 

X(k) Actual System State at time k 
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CHAPTER 6 
Bilinear Modeling of a Binary 

Distillation Column 

Overview 

A rigourous treatment of the system dynamics is examined to devise suitable structures for the 

parametric modeling of distillation processes. The selection of control variables and 

determination of operating region is also examined. 

Linear and bilinear models of a simulated binary distillation column were identified and their 

performance compared. The identified models were used in chapter 7 as the basis for controller 

designs for the simulated column. 

Distillation Dynamics 

Distillation and other separation 

processes are among the most complex 

unit operations regularly used in 

chemical plants. The dynamics of these 

processes is compounded by the non­

linear nature of most equilibrium 

relationships and the number of 

operations occurring in each stage. A 

rigourous model of the distillation 

process is unsuitable for control 

purposes, even with modern computer 

hardware, due to this complexity. 

Simpler control models which 

characterise the response of the system 

are required. 

Figure 6.1 Ckneral Plate 

Li-1 

hi-1 Vi 
: .-., : ·' .. : · Heat Loss P 

X .. ,,·:• :· .. H. · .. •: .:.•. . 1-l · •:•:•,• ... I . •.. · . I 
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x· I 

6.1 



Chapter6 

In the development of parametric models for chemical plant units it is important to examine the 

basic equations governing the systems. A general plate in a binary distillation column is shown 

in figure 6.1. If the vapour and liquid on the plate are assumed to be perfectly mixed, the vapour 

leaving is at equilibrium with the liquid on the plate, and of the holdup of liquid on the plate is 

time invarient then the equations governing this plate can be written as follows: 

Mass Balance: dci = L· z + V:· z - V:· - L · dt I- 1+ I I 

d 
Component Balance: dt ( c i Xi) = Lj_ 1 Xi-I + ½ + z Yi+ 1 - Vi Yi - Li Xi 

d 
Energy Balance: dt (ci hi) = Li-I hi-I + Vi+I H;+1 - Vi H; - Li hi - Pi 

Constant Volumetric Holdup: i,j = 0 

Enthalpy Relations: hi= h(xi) Hi= H(xi) 

Molar Holdup: Ci= v; g(xi) 

Equilibrium Relation: Yi = f(x;) 

where L; Liquid molar flow from plate i 
V; Vapour molar flow from plate i 

hi Liquid enthalpy on plate i 

Hi Vapour enthalpy on plate i 

Xi Liquid concentration on plate i 

Yi Vapour concentration on plate i 

pi Heat Loss from plate i 

C; Molar holdup on plate i 

Vi Volumetric holdup on plate i 

g(x;) Liquid Density Function 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

By using the multiplication rule for differentiation and equation 6.1, the component and enthalpy 

balances may be rewritten to obtain expressions for the derivatives of x; and hi respectively. 

dx· 
ci d/ = Li_i(xi-1 - x;) + V;+ z(y;+ 1 - x;) - Vi(Yi - xJ 

dh· 
ci d/ = Li_i(hi-1 - h;) + V;+1(Hi+l - h;) - V;(Hi - hi) - P; 

(6.8) 

(6.9) 

The enthalpy relations (6.5) give the enthalpy as an explicit function of the concentration. The 

differential of the enthalpy with respect to time can therefore be written: 

(6.10) 

Using this relationship and equation 6.9 it is possible to convert the dynamic enthalpy balance 

into an algebraic equation. 

-L;_1(h_;(x;)di-1,i - '<\-1,;) -Vi+l(h;(x;)Di+l,i - ~;+1,;) + ½(h;(xJDi,i - ~i.J = P; (6.11) 

6.2 



Bilinear Modeling of a Binary Distillation Column 

where the following symbols have been introduced: 

di-1,i = Xi-] - Xi •i-1,i = hi-] - hi 

Di+I,i = Yi+I - X; l!ii+I ,i = H;+1 - hi 

Di,i = Yi - Xi l!i;,i = Hi - hi 

In the same way the constant volume holdup equation may be used to reduce the dynamic molar 

holdup equation to an algebraic relationship, equations 6.12 and 6.13. 

de; dg(x;) dx; 't ) . - - V· - - V· g X · X· dt - 1 dx; dt - 1 1 1 

( g'(x;) ) (g.:_gJ_ ) (g'(x;) )-L; + L;_z g(x;) d;_1 ,; - + Vi+I g(x;) D;+J,i -1 - Vi g(x;) Di,i -1 - 0 

(6.12) 

(6.13) 

The dynamic behaviour of the plate has been reduced to one differential equation ( 6.8) and two 

algebraic equations (6.11 & 6.13), all of which are non-linear. 

A distillation column contains a number of specialised plates in addition to the standard plate in 

the above development. These include the reboiler, feed plate and the condenser-top plate group. 

The development of the equations for these special plates is not given here. The full derivations 

are given by &pafia (1977) it suffices to say that similar equation structures result. 

The dynamic behaviour of a binary distillation column, with B plates, may be described by a set 

of 2B+ 3 algebraic and B+ 1 differential equations, all non-linear and interacting. The differential 

equation set may be expressed in matrix form as 

Vz Ii Vz 0 0 0 
Cc Cc 

Lo Lo+ V2+ Vz(frl) V2f2 
0 0 

CJ CJ CJ 

0 L1 L1+ V3+ V2(frl) VJ/3 0 
C2 C2 C2 

j: = X 

0 Lw-1+LF+ Vw+1+ Vw(lirl) Vw+J.bF+l 
CjF CjF 

0 

0 0 0 

+ 
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VJY~ 
Cc 

V2y}ViyJ 
CJ 

VJy}V2y~ 
C2 

V;F+ 1Y;F°+ r V;FY[i,+ LFXF 
CjF 

where the equilibrium has been linearised on each plate, to give 

(6.14) 

The state coefficient matrix is tridiagonal. The coefficients of both matrices are determined by 

the current inputs and the solutions of the algebraic equations obtained from the plate energy 

and mass balances. This system is bilinear in the feed and reflux flowrates (LF & Lo), and 

boilup rate (VB), and linear in the product of feed concentration and flowrate (LFXF)-

It is reasonable to consider a discrete time, parametric model with a similar structure to the above 

matrix differential equation. 

Simulation Structure 

A simulation of a 9" distillation column with 8 sieve plates, developed by Janssen (1986) was 

used in this work. The simulation used LSODE to integrate the differential and algebraic 

equation set for the column, including the fluid mechanical relations for the tray holdups. Feed 

for the simulation was a mixture of methanol and water. 

The simulation was operated as a batch job on a VAX minicomputer. The feed, reflux and steam 

condensate flowrates and the feed concentration were read from a data file. Output was in the 

form of a data file with the following columns. 

Time Feed Reflux Steam Feed Tops Bottoms Tops Bottoms 
Flow Flow Flow Cone. Cone. Cone. Flow Flow 

(min) (llmin) (mole fraction MeOH) (mo! !min) 

FORTRAN source for a modified version of the simulation which incorporates control is 

included on the Appendix disk. 
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Identification Program 

The Macintosh identification program was developed to enable the identification of mixed linear 

and bilinear models. The program was written in Turbo Pascal and makes full use of Macintosh 

toolbox calls to provide an easy to use interface. 

Flexibility of operation was obtained by the use of a number of specialised file types. 

1) Data files, which contain the process input and output data in columns. 

2) Configuration files, which define the inputs and outputs of the system in terms of 

the columns of the data file. These files also define the structure of the process 

model to be identified. 

3) Model files, which contain the identified model parameters, in addition to a copy of 

the Configuration file used for the identification. 

All three file types can be exported as 

TEXT files for use by other applications, 

such as word processors. The 

configuration report in figure 6.2 was 

generated in this manner. Data input in 

tab delimited TEXT form was 

implemented. 

Fiirure 6.2 Samole Model Confi!mration 

A choice of identification algorithm was 

given based on the results from chapter 3, 

with three identification methods available 

to the user (RLS, RELS and REELS). 

A copy of the application along with more 

detailed information in the form of a 

HyperCard 2.0 stack, is included in the 

disk appendix. 

Configuration Report 

Time: Column l 
State: Column 6 
Inputs : Columns 2 3 4 5 
Constant term included 

Length of Model Vector 25 

Detailed Configuration 

State 
Order: 3 
Bilinear Links 

Diagonal with 
Diagonal with 
Diagonal with 

Inputs 
No l Order : 

No 2 Order : 
No 3 Order 
No : 4 Order 

Input l 

Input 2 

Input 3 

3 DeadTime 
3 DeadTime 
3 DeadTime 
3 DeadTime 

Selection of Control Variables 

: 0 
: 0 
: 0 
: 0 

In the control of binary distillation processes there are four basic control objectives and six 

possible manipulated variables. These are listed in table 6.1. 

The two product flowrates were used to control the reflux accumulator and reboiler liquid levels, 

as this gave two relatively quick control loops which were ignored when considering the 
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composition control. The preceding dynamic analysis of column behaviour incorporated this 

strategy. 

Table 6.1 Inputs & Control Objectives for a Binary Distillation Column 

Inputs Control Objectives 

Feed Flowrate Distillate Cone. 

Feed Cone. Bottoms Cone. 

Tops Flow Re.fl.we Accumulator Level 

Refl,uxFlow Reboiler Level 

Bottoms Flow 

Heat Input 

In many cases the configuration of the plant and the position of the unit operation within the 

plant determines which of the remaining variables are available for control use. Generally the 

feed for the process is the output stream of another unit such as a reactor and may not be easily 

manipulated as part of the distillation control, although it may be possible to buffer some of the 

concentration and flow disturbances by using a feed tank, figure 6.3. 

If the feed flow and/or 

concentration is subject to 

disturbances and these are 

measured, then they may be 

incorporated in the parametric 

model structure for later use in 

devising a feed-forward strategy. 

The product concentrations are 

bilinearly dependent upon the 

reflux flow, heat input and feed 

flowrate and linearly dependent 

Figure 6.3 Buffering of Column Feed 

a) Unbuffered b) Buffered 

upon the feed rate of the key component. The structure of parametric models for the plant 

should reflect this. A possible model configuration for the tops concentration of the simulation, 

which incorporates this structure is shown in figure 6.2. 

If the feed variables are not measured or do not vary sufficiently for successful identification 

then two inputs remain with which to achieve two control objectives. Having reduced the control 

problem to two interacting loops a suitable parametric model structure using these variables can 

be devised. The states are the tops and bottoms product concentrations, the inputs are the reflux 

flowrate and the heat input to the reboiler. A model with fewer parameters results. 
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Inp-ut Sequence Design 

The design of an input sequence for a multi variable system requires careful consideration of the 

modeling objectives. A good fit for both plant steady state and dynamic behaviour is required 

over the range of possible operating conditions. 

As a basis for the input sequence design, the combination of preset values and superimposed 

pseudo random binary sequence discussed in chapter 3 was used. Without careful selection of 

the base points this method alone cannot guarantee a useful result from whatever identification 

method is used. 

To determine the required input values to obtain a desired set point, a control system based on a 

parametric model must solve the matrix equation: 

(6.15) 

The chosen operating sequence must produce a wide range of output values for a robust 

solution, particularly if the output signal is subject to significant amounts of noise. 

The predicted shape of the steady state response surface was another consideration. The steady 

states of a two-input linear system may be represented by an inclined plane in three dimensional 

space (equation -6.16). The position and inclination of such a plane can be defined with 

knowledge of but three points on its surface. A bilinear system, on the other hand, will give a 

curved surface which requires that a greater number of points be found, even though the general 

form is known. The general bilinear steady state equation (6.17) contains five unknowns, 

therefore at least five points should be used to define the surface. This may be extended to cover 

systems with more than two inputs. For then input case the linear system has n+ 1 unknowns 

and the bilinear system has 2n + 1. 

z=ax+by+c 
ax+by+c z- -- 1 -dx- ey 

(6.16) 

(6.17) 

The location of these points plays an important part in the performance of the identification 

procedure. The operating points for the identification of a linear system should not lie along a 

line, but be arranged to form a triangle. A different approach is desired for bilinear systems, to 

obtain a good representation of the curved portion of the surface. The input points should be 

arranged about a central point with lines to the outer points having a wide angular separation. 

The operating points for the identification of existing plant should be selected with regard to 

plant operating data to ensure a safe and realistic range of operation. 
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Graph 6.l(a) Reflux and Steam Flo~Tates 
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Four Input Models 

Janssen (1987) used a series of seven points obtained from downward step sequences in the 

feed, reflux and steam flowrates with superimposed PRBS to identify a three input model for the 

binary distillation system. This sequence of points was used as the basis for the identification of 

a four input model of the simulated distillation column1 using the model structure given in 

figure 6.2. In addition to these points and their superimposed PRBS, the feed concentration was 

forced using a PRBS of amplitude 0.1 centred about XF = 0.5. The input sequence and system 

response are shown in graphs 6.1 and 6.2. 

Both linear and diagonal bilinear models were identified from this data2• 

Two variances were calculated for each model, the "full run" variance and the "one step 

prediction" variance. The full run variance is obtained by using the original input sequence to 

drive the model and then comparing the response of the model to that of the original system. 

The one step prediction variance is obtained by using the model to predict the state of the system 

at the next sampling point based on the measured states and inputs of the system, and 

comparing this with the measured value. The variances are shown in table 6.2. 

1 Details and Source code for the Binary Distillation Simulation are included on the enclosed disk. 

2Data included as "DC with 4 Inputs" on the enclosed disk, model structure files "L Bots 4In.C", "L Tops 
4In.C", "B Bots 4In.C" and "B Tops 4In.C". 
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The use of bilinear models effected reductions of 85 % and 53 % in the full run variances for the 

bottoms and tops, respectively. 

Table 6.2 Model Variances for 4 Input Models (*H17) 

Model Type Bottoms Tops 

Linear Full Run 861.6 91.0 

1 Step 11.0 4.0 

Bilinear Full Run 129.8 42.7 

1 Step 9.7 3.2 

Improvement Full Run 85 % 53 % 

1 Step 12 % 20% 

Two Input Models 

When the feed flowrate and concentration are not manipulated and do not vary sufficiently of 

their own accord to enable modeling, the distillation column model becomes a two input - two 

output system. The states or outputs are the tops and bottoms concentrations, the inputs are the 

reflux flowrate and heat input to the reboiler. 

A contour plot of the simulation steady states was obtained by running the simulation at a range 

of reflux and steam flowrates. The feed flowrate and concentration were held constant at 

1.351/min and 0.5 respectively, the desired operating region for the plant. The steady state data 

was plotted using a contouring package on a VAX 11/730 minicomputer giving graph 6.3. This 

approach is equivalent to the use of historical data from existing plant. 

The distance between the contour lines increases towards the bottom right of the graph, 

indicating non-linear behaviour. The top left comer represents a region of rapid change in the 

composition profile in the column as the bottoms concentration approaches zero. The bottom 

plates of the column provide very little separation while operating in this region. 

The operating points for the simulation identification were selected to fall within the region not 

affected by the equilibrium non-linearity, yet still provide a wide range of output values. The 

selected points are given in table 6.3. The input sequence was generated by superimposing a 

PRBS of suitable amplitude on these points. The final input sequences are shown in graph 6.4. 

The input sequence in graph 6.4 was used to drive the distillation simulation giving the response 

shown in graph 6.51. Linear and bilinear models were then identified for the tops and bottoms 

concentrations from this data using recursive least squares. The resulting discrete time models 

are shown in figures 6.4 and 6.5. 

1Data included as "DC with 2 Inputs" on the enclosed disk. 
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Graph 6.3 Contour plot of Steady States for the Distillation Column Simulation 
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Table 6.3 Selected Operating Points 

No LR Qs 

1 .75 .75 

2 .75 .9 

3 .65 .8 

4 .55 .75 

5 .55 .825 

.75 .8 

Contour plots of the error between the model and the simulation were prepared to assess the 

steady state performance of the models. Graphs 6.6 and 6.7 show the sum of the absolute errors 

in the tops and bottoms concentrations for the two models. 

Both models gave poor steady state performance towards the top left of the graph. The operating 

sequence did not drive the simulation in this region due to the equilibrium non-linearity. The 

bilinear model remained accurate over a larger portion of the operating region, particularly 

towards the bottom right corner. 
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Graph 6.4 Input Sequence for Simulation Identification 
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Fi2:ure 6.4 Linear models of Bottoms and Toos Comoosition 
Discrete Time Model Report 

l State in Column 7 
2 Inputs in Columns 3,4 

State 
Order= 3 

Discrete Time Model Report 

l State in Column 6 
2 Inputs in Columns 3,4 

State 
Order= 3 

5.4674e-l 3.388le-l 7.8814e-3 5.8174e-l l.9314e-l -3.5408e-2 

Input l 
Order 2 Deadtime 0 
3.5689e-2 l.8784e-2 

Input 2 
Order 2 Deadtime 0 

-l.027le-l -4.5704e-2 

Constant Term= l.00?le-1 

Input l 
Order 2 Deadtime o 
2.1485e-2 l.8769e-2 

Input 2 
Order 2 Deadtime o 

-2.2699e-2 -l.9988e-2 

Constant Term= 2.516le-l 

Graph 6.6 Steady State Errors for Linear Model 
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Fi!!Ure 6.5 Dial!onal Bilinear Models of Bottoms and Tops Composition 
Discrete Time Model Report 

l State in Column 7 
2 Inputs in Columns 3,4 

State 
Order= 3 
5.5252e-l 3.7188e-l -l.9987e-2 
Diagonal Bilinear Link, Input : l 
7.3105e-3 -l.2058e-2 -l.7353e-2 
Diagonal Bilinear Link, Input : 2 

-2.3055e-2 l.4525e-2 l.6040e-2 

Input l 
order 2 Deadtime o 
3.4652e-2 2.2696e-2 

Input 2 
Order 2 Deadtime O 

-9.8919e-2 -4.8993e-2 

Constant Term= 9.8097e-2 

Discrete Time Model Report 

l State in Column 6 
2 Inputs in Columns 3,4 

State 
Order= 3 
4.7226e-l l.9342e-l l.4215e-2 
Diagonal Bilinear Link, Input : l 

-4.7592e-2 -l.1586e-l l.8130e-3 
Diagonal Bilinear Link, Input : 2 
l.416le-l 4.7584e-2 - 4.1844e-3 

Input 1 
Order 2 Deadtime O 
6.6666e-2 l.280le-l 

Input 2 
Order 2 Deadtime O 

-l . 5622e-l -6.4348e-2 

Constant Term= 3.0932e-l 

Graph 6.7 Steady State Errors for Bilinear Model 
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The response of both models to the original input sequence was obtained and compared to the 

output data to calculate the variances in table 6.4. The use of bilinear models effected useful 

reductions in both the tops and bottoms variances particularly for the "full run". 

Table 6.4 Model Variances for 2 Input Models (*UJ-8) 

Model Type Bottoms Tops 

Linear Full Run 283.2 13Z7 

1 Step 11.8 16.8 

Bilinear Full Run 13Z8 59.8 

1 Step 8.9 9.5 

Improvement Full Run 51 % 57% 

1 Step 25 % 44 % 

A measure of the degree of non-linearity or bilinearity present in a plant or model may be 

obtained by comparing the values of the process gains at a number of points in the operating 

range. The gains of the models at the operating points used in the identification are given in table 

6.5. 

a e T bl 6.5 C ompanson o o e ams fM d I G . 

Model Point Tops Bottoms 

Reflux Steam R~fiux Steam 

1 .132 -.143 .48 -1.368 

2 .159 -.174 .528 -1.398 

Bilinear 3 .156 -.171 .517 -1.411 

4 .165 -.18 .522 -1.435 

5 .183 -.2 .548 -1.451 

Linear 1-5 .154 -.164 .511 -1.393 

The behaviour of the distillation column simulation shows weak bilinearity over the selected 

region with the tops gains varying by 38 % and 42 % between points 1 and 5, the bottoms gains 

show rather less variation, 14 % and 6 %. Gain variations of this order are not sufficient to 

threaten the stability of a PID controller tuned in the middle of the operating region. 

Conclusions 

The dynamic equations which govern the behaviour of the distillation process show bilinear 

interactions between the states and inputs. 

A significant improvement in model performance was obtained by the use of bilinear rather than 

linear models for both four and two input systems. 
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For the two input case, contour plots provided a useful representation of information about the 

steady states of the plant, enabling the selection of suitable operating points for identification 

trials. Contour plots also provide a useful tool for comparing the errors in model steady state 

estimates and determining valid regions for such models. 

A comparison of process gains for identified linear and bilinear models of the distillation system 

showed weak bilinearity over the operating range used The stability of a PID controller tuned in 

the middle of the operating region would not be threatened by the changes in process gain that 

occur towards the region boundary. 

Nomenclature 

Distillation Dynamic Analysis 

L; 

vi 

hi 

Hi 

Yi 

pi 

Ci 

Vi 

g(xi) 

di-1,i, Di+l,i 

•i-1,i, !).i+ 1,i 

JF 
B 

Qs 

Discrete State Space 

ll 

6.16 

Liquid flow from plate i 

Vapour flow from plate i 

Liquid enthalpy on plate i 

Vapour enthalpy on plate i 

Liquid concentration on plate i 

Vapour concentration on plate i 

Heat Loss from plate i 

Molar holdup on plate i 

Volumetric holdup on plate i 

Liquid Density Function 

Concentration difference functions 

Enthalpy difference functions 

Feed Plate Number 

Reboiler 

Feed Flowrate 

Reflux Flowrate 

Boilup Rate or Vapour flow from Reboiler 

Feed Concentration 

Steam Condensate flow from reboiler 

Input Vector 

Reduced Input Coefficient Matrix 



Xs 

Bilinear Modeling of a Binary Distillation Column 

Steady State 

Reduced State Coefficient Matrix 

Reduced Constant Matrix 

Three Dimensional Surface Equations 

x,y,z 

a,b,c,d,e 
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CHAPTER 7 
Bilinear Control of a 

Binary Distillation Column 

Overview 

The control methods developed in Chapter 4 were applied to the binary distillation process. 

Digital Computer Simulation was used to evaluate the performance of a range of controller 

design methods. 

Digital Computer Simulation 

The digital computer simulation described in the previous chapter was modified to provide 

simulations for a variety of controller configurations1. A sequence of operating points and feed 

concentration disturbances was used to test the performance of the controllers. 

Operating Sequence 

Using the steady state information from graph 6.3 a 

series of set points was selected, table 7.1. 240 

minutes were spent at each set point. Feed 

concentration increases of 0.05 mole fraction and 

duration 20 minutes occurred midway between set 

point changes, these are shown in graph 7.1. The set 

points were selected to cover a wide range of 

operation and to include changes in the tops and 

bottoms set points both individually and jointly. The 

Table 7.1 Set Points for Control 

Simulation Operation 

Set Point Bottoms Tops 

1 0.06 0.92 

2 0.14 0.92 

3 0.14 0.94 

4 0.26 0.94 

5 0.3 0.96 

set points are represented by dashed lines on the process response graphs. 

1FORTRAN source code for the simulation is contained on the disk appendix. 
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Graph 7.1 Feed Concentration Disturbances for Controller Trials 
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The following control methods were examined. 

PID Control with Static Decoupling 
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For multivariable systems, such as distillation columns, in which there is strong interaction 

between the states and inputs it is necessary to decouple the control loops before tuning the 

individual controllers. Both the decoupling and controller tuning may be accomplished through 

the use of the process reactions to step changes in each of the inputs. 

The process reaction curves of the system for reflux and steam input step changes were 

obtained, these are shown in graphs 7.2(a) and 7.2(b). From these graphs a gain matrix G for 

the system was generated: 

G _ [0.128 -0.172] h fXD] _ G [LR] 
- 0.49 -1.346 w ere lxB - Qs (Zl) 

The inverse of the gain matrix provides a steady state or static decoupler for the process1. The 

block diagram of the decoupled system is shown in figure 7.1. The control problem was 

reduced to controlling the two decoupled systems XD = f(uD) and XB = f(uB). By using the 

inverse of the gain matrix as the decoupler, the process gains of the decoupled system were both 

forced to unity and the controllers designed, based solely on the time characteristics of the 

process dynamics. 

1 A mathematical proof of this is given in Appendix IL 
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Graph 7.2(a) Process Reaction Curve for step in Reflux Flow 
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Graph 7.2(b) Process Reaction Curve for step in Steam Flow 
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The equivalent first order plus deadtime parameters for the decoupled system were calculated 

from graphs 7.2 (a & b), and are given in table 7.2. The sampling period for the simulation trials 

was four minutes. 

Table 7.2 Equivalent First Order + Deadtime Systems 

Bottoms Tops 

Gain 1 1 

Time Constant 34 14 

Deadtime 3 3 

The parameters of the discrete PID controller were found using a modified Cohen - Coon 

relationship to ensure stability despite the relatively large sampling period, ie. Ts is larger than 

the deadtime of the first order approximation. 

The modification is achieved by multiplying the gain calculated using the Cohen - Coon 

formulae by an exponential relating the sampling interval to the deadtime of the first order 

approximation for the system. This form was arrived at empirically and tested for a variety of 

first order systems and sampling times using a digital computer simulation. The resulting 

formulae are shown below : 

Kc = _l_ _!_ (-!.. + !:...) e- TsfL 
Kp L 3 4T 

32 + 6Lfr 
Ti = L 13 + 8 Lfr 

4 
TD = L 11 + 2 LIT 

(Z2) 

(Z3) 

(Z4) 

The response of the controlled system was evaluated using the parameters in table 7.3. The State 

and Input responses are shown in graphs 7.3 and 7.4. 
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Graph 7.3 State Response with PID Control & Static Decoupler 
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Graph 7.4 Input Response with PID Control & Static Decoupler 
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Table 7.3 PID Controller Parameters 

Bottoms Tops 

Kc -4.049 -1.706 

T1 7.12 min 6.786min 

Tn 1.074 min 1.05 min 

The modified Cohen - Coon method provided a reasonably well tuned, stable PID controller. It 

was however necessary to set minimum values for the reflux and steam flows to ensure that 

plates of the column did not become dry. During the second set point change the reflux flowrate 

exceeded the total rate of liquid formation in the condenser for eight minutes which would ca:use 

problems in a real plant. The integral action of the controller caused some overshoot when 

recovering from both set point and load disturbances. 

Linear Optimal Control 

A linear optimal regulator was designed using the linear models of tops and bottoms 

composition from Figure 6.4. The compound model structure is shown in equation 7 .5. The 

weighting matrices were selected to be inversely proportional to the desired operating ranges for 

the tops and bottoms concentrations. 

x(k+ 1) = a. x(k) + ku;(k).'6Jx(k)) where x(k) = (Z5) 

Q = [ 20.IJ O 3 ] R = [ 1 0 ] 
03 5.IJ 0 1 (7.6) 

Where his the 3* 3 identity matrix and 03 is the 3* 3 matrix of zeros. 

The response of the system is shown in graphs 7.5 and 7.6. 

The linear regulator displayed good stability over the entire operating range. However, as 

expected based on the results of the tank simulation, small amounts of offset were observed at 

most set points due to model inaccuracy. The control action used during set point changes was 

within an acceptable range for the safe operation of a real plant. Significant disturbances were 

observed in the tops concentration during bottoms set point changes these are a direct result of 

the optimal regulator design procedure. The controller was designed to minimise a quadratic 

performance index, rather than provide decoupling of control loops. 
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Graph 7.5 State Response ,v.ith Linear Control 
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Graph 7.7 State Response with Bilinear Control 
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Bilinear Optimal Controller 

A discrete bilinear controller was implemented using the composition models from 6.5 and the 

weighting matrices 

P= [20.13 03 ] R = [1 O] 
03 5.13 0 1 (7.7) 

The system response is given in graphs 7.7 and 7.8. 

The performance of the bilinear controller was superior to the linear regulator, with smaller 

steady state offsets being observed. However, the response of the system to disturbances was 

similar for both controllers, due to the weakly bilinear nature of the control model. Minimal 

overshoot occurred and the control values were within a realisable range. 

Linear and Bilinear Controllers with Integral Action 

Integral action was added to the previous two controllers by the augmented state method 

described in chapter 4. The augmented state vector and weighting matrices used were 

xv(k) 0 
xv(k-1) 20.13 0 04 
xv(k-2) 0 

x(k) = Sv(k) P= 000 4 
Xs(k) 
Xs(k-]) 
Xs(k-2) 
Ss(k) 

0 
5.1] 0 

0 
000 0.5 

R=[~~] 

where the integral terms were calculated using the rectangular method: 

Sv(k) = Sv(k-1) + Ts* xv{k), Ss(k) = Ss(k-1) + Ts* XB(k) 

The system responses are shown in graphs 7.9 to 7.12. 

(7.8) 

(7.9) 

The performance of both controllers was similar with the integral action negating any advantage 

gained through the use of a bilinear model. However the performance was not as good as the 

standard bilinear controller because of overshoots and unattainable input values occurring 

during set point changes. 

THE LIBRI\RY 7.9 



Chapter 7 

"' 0.. 
0 

E-< 

7.10 

0.98 

0.97 

0.96 

0.95 

0.94 

0.93 

0.92 

0.91 

Graph 7.9 State Response with Linear Control + Integral Action 

-.-----------------.------------..... 0.35 

0 200 400 600 

Time (min) 

800 1000 

Tops 

Bottoms 

Graph 7.10 Input Response with Linear Control+ Integral Action 

0.25 

0.20 

0.15 

0.10 

1200 

1.5 --.-----------------------------.- 1.2 

\ 
1.0 

0.5 

1.0 

(~ o.s 

· "---- 0.6 

Reflux 

Steam 

0 .4 

0 .2 

0.0 --------.--..---~-------.--........ -----~---.-----+- 0.0 

0 200 400 600 

Time (min) 

800 1-000 1200 

"' s 
0 ::: 
0 

o::l 



~ 
0 

f-< 

>< 
:;I = <L) 

~ 

Bilinear Control of a Binary Distillation Column 

Graph 7.11 State Response with Bilinear Control + Integral Action 
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Conclusions 

The discrete time bilinear controller design method in chapter 4 was successfully applied to a 

simulated binary distillation column. For a sequence of set point changes and feed concentration 

disturbances the bilinear controller gave good control through the use of a realisable range of 

input values. 

Although the distillation system showed only weak bilinearity over the selected operating range 

the bilinear controller displayed a significant improvement over a linear regulator by reducing 

process offset through better modeling of the system steady states. In this case a suitable design 

compromise might be reached by using a bilinear model to determine the steady state inputs and 

implementing the control using a linear regulator. 

As a consequence of the performance function and weighting matrices used in the design 

procedure, the control of tops and bottoms concentrations was not independent and significant 

disturbances in each were observed when the other set point was altered. 

Versions of both the linear regulator and bilinear controller were devised incorporating integral 

action. The performance of both controllers was almost identical, and was very similar to that of 

a discrete time PID controller with static decoupling, designed using a modified Cohen-Coon 

method. In all three cases the presence of integral action resulted in sizable overshoot when 

recovering from set point changes. Both the standard linear and bilinear designs were free of 

this problem. The use of integral action also resulted in physically impossible or unsafe control 

values. 

Nomenclature 

Distillate Concentration 

Bottoms Concentration 

Steam Condensate Flowrate 

Reflux Flowrate 

PID Control and Static Decoupler 

7.12 

G 

Kc 

Kp 

T 

Matrix of System Gains 

Distillate Control Value 

Bottoms Control Value 

Controller Gain 

Process Gain 

Time Constant of equivalent first order plus deadtime system 



Optimal Control 

x(k) 

a 

b;(x(k)) 

Q 

R 

p 
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Deadtime of equivalent first order plus deadtime system 

Sampling Period 

Integral Time 

Derivative Time . 

State at time k 

State Coefficient Matrix 

Value of i th Input 

Combined Coefficient Vector for Input i. b;(x(k)) = ~i + Yi x(k) 

Symmetric Positive Definite State Weighting Matrix 

Diagonal Positive Definite Input Weighting Matrix 

Symmetric Positive Definite Overall State Weighting Matrix 

n*n Identity matrix 

n *n z.ero Matrix 

Discrete Integral of Distillate Concentration Deviations 

Discrete Integral of Bottoms Concentration Deviations 
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CHAPTER 8 
Conclusions 

Objectives 

The structural properties of bilinear systems make them a particularly attractive choice for the 

modelling of many chemical plant dynamics. Bilinear systems occur naturally in a number of 

applications such as the constant volume tank and binary distillation systems used in this work. 

The object of this work was the development of a discrete time controller design method for 

bilinear systems and application of such a method to both heated tank and simulated binary 

distillation systems. In addition a number of recursive identification procedures for bilinear 

systems were trialled and an Apple MacIntosh program developed, in Turbo Pascal, for 

batchwise identification of sampled linear, bilinear and mixed linear/bilinear systems. 

Identification 

A comparison of four recursive identification methods for bilinear systems yielded significant 

differences in performance. In a low noise environment, all four methods gave similar results for 

a number of performance criteria. When white noise was added to the system a considerable 

variation resulted. Recursive extended least squares methods gave the best overall performance. 

A recursive maximum likelihood implementation was disappointing, giving results similar to 

standard recursive least squares despite requiring double the computation. The maximum 

likelihood method assumes a coloured noise signal and has little effect on systems with white 

noise contamination. 

Heated Tank Control 

Standard PID controllers performed satisfactorily at the original tuning point but performance 

was poor away from this region with the stability of the system being endangered under some 

conditions. Using a bilinear model of the system to develop a set point based gain schedule went 

a long way in improving the stability and control of the system. 

8.1 



Chapter8 

A linear state feedback controller gave good stability but suffered from offset at set points other 

than the tuning point. The discrete time bilinear controller yielded a stable system with good 

steady state accuracy at all set points despite the presence of uncompensated deadtime. 

A form of deadtime compensation was successfully implemented by using a discrete time 

bilinear model to predict future states of the system, and using these predictions to calculate the 

control response. While it reduced deadtime induced overshoot, this method resulted in steady 

state off set by amplification of errors in the prediction model. 

Distillation Simulation 

Significant improvements in fit were achieved by using bilinear rather than linear models for a 

binary distillation system with two or four inputs. The four input case is of limited application as 

most industrial columns have little freedom or control over the feed concentration and flowrate. 

However, if either variable is subject to significant and frequent disturbances then it may be 

incorporated into a parametric plant model with a view to developing a feed forward control 

strategy. 

The use of bilinear models for the two input case gave a reduction in "full run" prediction 

variance of the order of 50% when compared with linear models. The steady state estimates 

generated by the model showed a corresponding improvement. A comparison of model gains 

over the operating range revealed changes of approximately 40% for the tops concentration 

relative to the reflux and steam condensate flowrates and approximately 10% for the bottoms 

concentration suggesting that the distillation system was only weakly bilinear over the selected 

range. This was also reflected in the "one step" prediction variance where the reduction was in 

the region of 20% for the bottoms. 

Due to the weakly bilinear nature of the distillation simulation the performance of the bilinear 

controller was only slightly better than a linear regulator with the same weighting matrices. The 

performance improvement was achieved through better estimates of the inputs required to obtain 

a desired steady state. 

A disadvantage of state variable feedback controllers is that offset occurs when the plant is 

subject to prolonged disturbances. Integral action may be included in the controller design to 

overcome this, by an augmented state approach. The incorporation of integral action into both 

linear and bilinear controller designs resulted in almost identical responses. The presence of 

integral action also lead to sizeable offshoot when recovering from disturbances and set point 

changes as well as requiring physically impossible control settings during set point changes. 

8.2 



Conclusions 

Overview 

The bilinear controller design method may be successfully and safely applied to chemical plant 

items. Significant improvements in control and safety may be achieved for strongly bilinear 

systems such as the constant volume tank in chapter 5. On weakly bilinear systems such as the 

distillation column simulation where stability is not a problem, the steady state behaviour may be 

improved enabling the use of a controller design without integral action in some applications. 

8.3 
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BILINEAR CONTROL FOR CHEMICAL PLANT 

A.J. Fletcher, R.M. Allen 
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Bilinear systems provide a convenient compromise between the inaccuracy of linearised moi:J 
operating away from their set point and the computational load and compl_exity associated with m11n 

non-linear models. This class of system is particularly suited to the multiplicative non-linearities cc:i::: 

· found in constant volume chemical plant such as mixers and distillation columns. Their strucr.m 
enables the use of conventional linear identification techniques. 

A design procedure for a discrete, optimal, globally asymptotically stabilizing controller has ti::: 
developed using the solution of the Lyapunov equation. Trials of the method both on a dit1:i 

computer simulation and on pilot scale plant showed precise, reliable control for a wide rang: c 
process set points and disturbances. Conventional linear and PID controllers, while accurate near n:, 

tuning point, were not able to cope with large disturbances, or set point changes. 

Introduction 

Common practice is to consider the behaviour of a piece of chemical plant as a linear sumo{ :r.: 

effects of the current states and the effects of the current inputs. This assumption has been ap;~::: 
even when it is known the plant is not linear, because the mathematics of these linear models is ·,,-:;. 
understood, but the assumption is only valid for the process near the linearisation point. 

With the rapid development of microprocessor technology, more complicated control calculations .:n 
now be performed at an acceptable speed and cost, allowing us to consider and work with cc: 
accurate descriptions of unit operations. 

Bilinear Systems 

Bilinear systems provide a logical first step away from the linear tradition . A general contir .. 1:a 

bilinear model is: 
m 

x =Ax+Bu+ L Ui Ci x 
i = I 
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The first two terms on the right hand side are the usual linear system and the remaining summation 
de.scribes the non-linearity. These extra terms account for a form of interaction common in chemical 
:!ant items such as constant volume tanks or reactors and provides a good approximation for many 
"thers, for example distillation columns ( Espana, 1977, Janssen, 1986 ). 

b keeping with digital computer control, a discrete version of the above equation may be obtained: 
m 

x (k+ 1) = a x(k) + ~ u(k) + L, Ui(k) Yi x(k) 
i = 1 

(2) 

This model may be separated into two vectors, one containing the parameters and the other the 

rariables, exactly as for linear systems. The variable, or measurement, vector is a non-linear function 
.:,f x(k) and u(k). The parameter vector, however, remains linear. The wealth of knowledge available 
for the identification of linear discrete time systems may be directly applied ( Gabr, 1986, Ahmed, 
1986). 

Controller Design 

Controllers to operate with bilinear models may be designed in two ways. The simple approa~h is to 

'J$e the bilinear model to modify the parameters of a conventional controller, usually by maintaining a 
constant open loop gain. This form of retuning is termed gain scheduling ( S tephanopoulos, 1984 ). 

The second method is to develop a controller which makes full use of the process knowledge 
contained in the model to give a design which will optimise some performance function. Benallou et. 

~. (1988) used this approach to derive an optimal controller 

u~ = _ .!_ xTSd·(x) (3) 
I ri I 

for a continuous bilinear system 
m 

x =Ax+ L, Ui di(X) 

subject to a performance function. 
m 

j(x,u) = xTQx + L, 
i = 1 

i = 1 

The matrix S is the solution to the continuous time Lyapunov equation. 

SA+ATS=-Q 

(4) 

(5) 

(6) 

.\n equivalent discrete time controller, Equations 7 to 9, may be derived through application of finite 

differences to the above equations. Application of central difference approximations result in the 
controller equations being implicit, requiring that their solutions be found iteratively. However, a 

number of approximations to the solution of Equation 8 may be used to reduce the computation. 

ut(k) = - r1 xTS { I - [ a - I] [ a + 1r1 } [~ i + Yi x] {7) 

x=x(k+li+x(k) (8) 

h . 
aTSa-S=- 4 [aT+I]Q[a+I] (9) 

This controller can be shown to provide optimal globally asymptotically stabilizing control. 
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Set point changes alter the state matrix (A or a) and the Lyapunov equation must accordingly 
recalculated to ensure stability. If this is done holding Q constant, then the system must necessar 
remain stable, but the nature of the response will change. Consequently, the algebraic matrix Rice 
equation must be solved to maintain the desired balance between state and input weightings. 

An efficient design procedure results; 

1) An input weighting matrix Rand an approximate overall state weighting matrix P sho1 
be selected for the desired response, P satisfying: 

P = Q +SD R-lDTS 

2) The equivalent continuous model parameters A and D may be calculated at the set poini 

~h = [ a - I][ a + Ir 1 

D = k [ I - A;] Ll(x(k)) 

3) The algebraic Riccati equation may be solved to obtain S. 

AT S + S A + P - S D R-1 DT S = 0 

4) The constant factor of the controller, L, can be obtained from S. 

L = -¾ S [ I - A 2h] 

5) The control variable may now be calculated using Equation 15 where x is determir 
using a suitable approximation to Equation 8. · 

ui(k) = ~ x TL Oi(x) 

The structure of this controller is similar to that obtained for discrete linear optimal regulators, exc 

the last term Oi(x) is not constant, to reflect system bilinearity. 

Simulation 

A digital computer simulation of a heated stirred tank was used to evaluate the controller performar 

Figure 1. Mass and energy balances on the tank led to the continuous bilinear model, Equation 

These equations were integrated using a modified Euler method with a step size of 0.01 minutes.~ 

process exit temperature was controlled using the inlet water flowrate. 

Tout 

Fout 

Figure 1 Heated Tank Flow Diagram 

dV dt = Fin - Fout = 0 

dT 
Cp P V dt = Cp p F (Tin - T) + Q 

dTout _ T _ T 
dt - out 

With plant parameters 

V = 40 l, Q = 840W 

operating at 
.,,ss ss 
l = 40°C and F = 10 Vmin; 

. [-.25 o] [-·5] [-.02s o] 
X= 1 -1 x+ 0 u+u O 0 X I 
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Sample points were 0.5 minutes apart, about 15% of the process time constant. The simulation also 
rnntained a deadtime of 1 sampling interval to accurately reflect real plant conditions. 

Results 

A Recursive Least Squares method was applied to input/ output data from the simulation to obtain a 

discrete bilinear model. This model was then used as the basis for the controller design procedure. 

For comparison three conventional controllers, a PID, a gain scheduled PID and a linear optimal 

~egulator, were also designed and tuned temperature and flow set points of 40°C and 10 I/min. 

All four controllers were subjected to a sequence of set point changes and heat input disturbances. 
Three different set points were chosen; the tuning point and 10°C either side. At each set point the 

rrocess was subject to two pulse disturbances to the heat input, increasing and decreasing the heat by 

~-!OW for 0.4 minutes. Graphs 1 to 4 show the response of the controllers, the dotted line indicating 

the set point and the solid line the process response. 

The standard, constant parameter PID controller was tuned using the ultimate method 

(Stephanopoulos, 1984) and gave adequate performance in the close vicinity of the tuning point, but 

proved unsuitable with even modest (10°C) set point changes, resulting in unstable behaviour in one 

case and very slow response in another (Graph 1). 

-~ gain scheduled variant of the same controller, designed to maintain a constant open loop gain 
showed noticeable improvement. However, Graph 2 shows that merely altering the gain is not 

sufficient to adjust for the non-linearities present in the system. 

A linearised model of the system was used to design a linear multivariable optimal regulator (Elbert, 

1984). This gave precise control near the tuning point but was subject to large offset when operating 

~t other set points (Graph 3). 

The Bilinear controller gave precise response at all three set points. However, some overshoot was 

observed when recovering from set point changes, attributable to the effect of deadtime (Graph 4). 

Deadtime compensation was added to the bilinear controller to correct for deadtime and remove this 

overshoot. The discrete bilinear model was used to predict the state of the system at one and two 

sampling intervals into the future and the control calculation based on these predictions. The results 
JJe shown in Graphs 5 and 6. 

Deadtime compensation was effective in correcting for deadtime offset resulted but if the predictive 
model was imperfect. Offset was caused at some set points due to increased sensitivity to modeling 

errors. However, use of the predictor made the controller more cautious, reducing or eliminating 

overshoot during recovery from disturbances. Over-estimating the deadtime when using a predictor 

led to larger offset and slower return from disturbances. 

Pilot Scale Tank 

Further controller trials were performed on the pilot scale steam heated tank shown in Figure 2. Cold 

water flow into the plant was regulated, using an analog PI controller in cascade configuration, to 

remove the effect of valve non-linearities. The steam valve was used to provide heat input 

disturbances. 
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Graph 3 Simulation Response with Linear Optimal Control 
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Sample points were 0.5 minutes apart and the 
:lowrate through the deadtime leg corresponded to 

! deadtime of 0.5 to 0.8 minutes. 

The operating sequence was similar to that used 
for the simulation, with three set points and heat 
disturbances at each. The duration of the heat 
disturbances was increased to 1 minute (2 sample 
intervals) and the magnitude of the disturbances 
?ltered to + 160% and -100% of the normal steam 
now. 

Results 

-~ gain scheduled PID controller and a bilinear 
optimal controller were applied to this system. The 
~esults are shown in Graphs 7 and 8. 

@ To VAX 

@ From VAX 

~ 
171tt=~ "------~ 

Dead-time 
leg 

Figure 2 Pilot Tank PID 

The gain scheduled PID controller was tuned at 40°C and a flowrate of 9.8 litres/min. Large 
overshoot occurred after set point changes or after large disturbances, especially at the high 
temperature set point. The controller also required a considerable length of time to damp out 
oscillations after each disturbance (Graph 7). 

The results for the bilinear controller show precise control over the full range. Some overshoot 
occurred, due to the presence of dead time. The nature of the plant response remained the same at all 
set points (Graph 8). 

The results of these trials confirmed those from the simulation. Gain scheduled PID control resulted 

in large overshoot, and oscillation after disturbances . Bilinear control was precise and rapidly 
iecovered from disturbances. 

Conclusions 

Bilinear control is particularly suited to constant volume chemical plant such as the steam heated tank 
used in this study. 

The bilinear controller provides precise control over the entire plant operating range. Stability was 

maintained even when the process contained small amounts of uncompensated dead-time. 

Computational requirements are approximately twice those for a linear controller of the same order, 

easily achieved with most programable devices. 

Dead-time compensation was successfully employed by using the bilinear model of the plant. A more 

cautious controller resulted but the effects of any process modeling errors were multiplied causing 
controller process variable off set. 
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Nomenclature 

Continuous System Discrete System 
A State coefficient matrix a State coefficient matrix 

bi Coefficient vector for input Ui Pi Coefficient vector for input Ui 

Ci Bilinear coefficient matrix for input Ui 'Yi Bilinear coefficient matrix for input Ui 

di(x) Overall coefficient vector for input Ui Dj(X) Overall coefficient vector for input Ui 

D(x) Overall input coefficient matrix ~(x) Overall input coefficient matrix 

Heated Tank System General 
V Tank volume (litres) X State vector 
F Flowrate (litres/ minute) u Input vector 
Cp Specific heat() n Number of states 
p Density (kg /litre) m Number of inputs 
Q Heat input (W) p Overall state weighting matrix 

Time (minutes) R Input weighting matrix 
Q,S Weighting matrices 

h Sampling interval 
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Appendix II 
Steady State Decoupling 

----------------------· 
+ 

+ 
+ 

Process 

Figure 1 Interacting Process with Decoupler 

I 

A system with interaction is shown in figure 1. The standard decoupler arrangement uses two 

decoupling elements with transfer functions defined by Stephanopoulos (1984) as 

H12(s) H21(s) 
DJ(s) = -Hn(s) and D2(s) = -H 22 (s) (1) 

For steady state decoupling the transfer functions Hij(s) are replaced by their gains, giving: 

(2) 

The inputs after the decouplers are 

(3) 

or in matrix form 

(4) 
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Appendix II 

The corresponding steady state values of the process variables are found by multiplying by the 

gain matrix. 

[ ][ 1 G12] Gu G12 -G11 

X = G21 G22 - G21 1 C 

G22 

[ 
G 1 _ G 12G21 O ] 

_ l G22 C 
- O G G12G21 

22 - G11 

(5) 

Post multiplying the decoupler matrix by the inverse of the matrix in equation 5 results in the 

inverse of the process gain matrix. Therefore the inverse of the process gain matrix is a valid 

steady state decoupler. A consequence of using the inverse gain matrix for decoupling is that the 

open loop gain of the process with respect to the controller outputs c is the identity matrix. 
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