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Abstract

Background: The neurochemical background of the evolution of headache disorders, still remains partially
undiscovered. Accordingly, our aim was to further explore the neurochemical profile of Complete Freund’s adjuvant
(CFA)-induced orofacial pain, involving finding the shift point regarding small molecule neurotransmitter
concentrations changes vs. that of the previously characterized headache-related neuropeptides. The investigated
neurotransmitters consisted of glutamate, γ-aminobutyric acid, noradrenalin and serotonin. Furthermore, in light of
its influence on glutamatergic neurotransmission, we measured the level of kynurenic acid (KYNA) and its
precursors in the kynurenine (KYN) pathway (KP) of tryptophan metabolism.

Methods: The effect of CFA was evaluated in male Sprague Dawley rats. Animals were injected with CFA (1 mg/ml,
50 μl/animal) into the right whisker pad. We applied high-performance liquid chromatography to determine the
concentrations of the above-mentioned compounds from the trigeminal nucleus caudalis (TNC) and somatosensory
cortex (ssCX) of rats. Furthermore, we measured some of these metabolites from the cerebrospinal fluid and plasma
as well. Afterwards, we carried out permutation t-tests as post hoc analysis for pairwise comparison.

Results: Our results demonstrated that 24 h after CFA treatment, the level of glutamate, KYNA and that of its
precursor, KYN was still elevated in the TNC, all diminishing by 48 h. In the ssCX, significant concentration increases
of KYNA and serotonin were found.

Conclusion: This is the first study assessing neurotransmitter changes in the TNC and ssCX following CFA
treatment, confirming the dominant role of glutamate in early pain processing and a compensatory elevation of
KYNA with anti-glutamatergic properties. Furthermore, the current findings draw attention to the limited time
interval where medications can target the glutamatergic pathways.
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Background
Although the pathomechanism of orofacial pain and
headache disorders, is not fully understood [1], the acti-
vation and sensitization of the trigeminovascular system
(TS) probably takes part in the evolution of symptoms
[2–4]. The pathomechanism of these disorders may be
further investigated by using animal models with the ac-
tivation of nociceptive pathways of the TS [1, 3, 5]. The
administration of inflammation-inducing substances to
the orofacial area can evoke the above-described activa-
tion/sensitization of the primary and secondary trigemi-
nal neurons during pain processing [6, 7]. For the
induction of this peripheral inflammation, the applica-
tion of Complete Freund’s adjuvant (CFA) into the whis-
ker pad or the dural parietal surface is a widely used
method [6, 8, 9] as it is able to enhance local reaction at
the injection site and then to evoke the release of inflam-
matory cytokines, alongside with hyperalgesia/allodynia
on the face via the activation/sensitization of the TS [7].
Regarding the delay of the development of peripheral
and central sensitization, indirect data from studies with
CFA injection to the paw demonstrated that pain
hypersensitivities were observed 24 h after the injection
[9–13], whereas data from studies with orofacial CFA
model, more precisely from the temporomandibular
joint induced inflammation model, suggest that both
thermal and mechanical allodynia peak at 24 h as well
[14]. The orofacial CFA model has been thoroughly
studied regarding gene expression characteristics [6, 15–
20]. Recently, in relation to two migraine-related bio-
markers, the pituitary adenylate cyclase-activating pep-
tide (PACAP) and calcitonin gene-related peptide
(CGRP), their increasing levels were detected starting
even 24 h after the administration of CFA in the trigemi-
nal nucleus caudalis (TNC) [9]. However, there are no
studies which aimed at the investigation of the small
molecule neurotransmitters and neuromodulators and
some of their precursors (glutamate (Glu), γ-
aminobutyric acid (GABA), setotonin (5-hydroxy-trypta-
mine; 5-HT), noradrenaline (NA), tryptophan (TRP),
kynurenine (KYN), kynurenic acid (KYNA)) in this
model with established or presumed role in the develop-
ment of peripheral and central sensitization during
headache. Therefore, there are no data about how the
concentration changes of these substances affect the
evolution of peripheral and central sensitization. Accord-
ingly, finding the transition point where the dominance
of small molecule mediated neurotransmission shifts to
that of the PACAP and CGRP mentioned earlier may
have significant therapeutic consequences in view of the
different targeted approaches.
The primary excitatory neurotransmitter Glu plays

an important role in the primary sensory neurotrans-
mission and trigeminal nociception [15, 21, 22].

Accordingly, the alteration of Glu levels in migraine
has been widely studied and data consistently show
elevated Glu levels in the CSF samples of patients
with chronic migraine [23], or migraine with and
without aura [24], whereas in plasma samples, the re-
sults were not consistent across studies [25–27].
Moreover, similar importance has to be attributed to
the changes of the concentration of GABA, the main
inhibitory neurotransmitter of the central nervous sys-
tem (CNS), which is capable of modulating the exci-
tatory pathways [28]. Recently, mainly in light of its
influence on glutamatergic neurotransmission, special
attention was dedicated to the investigation of the ef-
fect of KYNA, a compound of the KYN pathway (KP)
of the TRP metabolism [29–34]. KYNA can influence
glutamatergic neurotransmission in a complex way
[35], i.e., it acts as a competitive antagonist at the N-
methyl-D-aspartate (NMDA) receptor [36] and has
weak antagonistic effects at the α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) and kainate
receptors as well [37]. 5-HT, another well-known
TRP metabolite, released from serotonergic neurons
of the raphe nuclei, exerts modulating effect on TS
activation [38–40]. Noradrenaline (NA) may be of
interest as well, as noradrenergic neurons project to
TNC and may have a role in cluster headache, an-
other primary headache disorder [41, 42].
Based on the observed gradually increasing levels of

PACAP and CGRP from 24 h following CFA injection in
our previous experiment [9], the aim of the current
study was to find the shift point of concentration
changes of small molecule neurotransmitters and neuro-
modulators and the above-mentioned peptides. This
may yield substantial information for the selection be-
tween different therapeutic paradigms regarding diseases
involving the activation of the TS, such as primary head-
ache disorders, including migraine.

Materials and methods
Animal experiments and sample collection
Twenty-seven young adult (10–12 weeks old, 250–300 g)
male Sprague-Dawley rats (Charles River Laboratories,
Wilmington, MA, USA), were used for the experiments.
The animals were bred and maintained under standard
laboratory conditions with 12 h–12 h light/dark cycle at
24 ± 1 °C and 50% relative humidity, 3 animals per each
home cage in the Laboratory Animal House of the De-
partment of Neurology, University of Szeged. The rats
had free access to standard rat chow and water. The ex-
periment was not pre-registered. All experimental proce-
dures performed in this study complied fully with the
guidelines of Act 1998/XXVIII of the Hungarian Parlia-
ment on Animal Experiments (243/1988) and with the
recommendations of the International Association for
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the Study of Pain and European Communities Council
(86/609/ECC). The studies were in harmony with the
Ethical Codex of Animal Experiments and were ap-
proved by the Ethics Committee of the Faculty of Medi-
cine, University of Szeged, with a permission number of
XI./1102/2018. CFA (killed mycobacteria suspended in
paraffin oil, 1 mg/ml) was obtained from Sigma-Aldrich
(product number: F5881; St. Louis, MO, USA), and 50 μl
was administered per animal. We tried to minimalize
the use of animals by adopting the key aspects of the
3Rs (Replacement, Reduction and Refinement) [43].
Therefore, the experimental groups were added in a se-
quential manner, starting from 24 h following CFA ad-
ministration with 24 h steps till the time point where the
proposed alterations diminish. Therefore, no
randomization was performed to allocate subjects in the
study. By the end of the experiments we had three
groups, one control (CO) and two with CFA treatment
(Fig. 1). Similar to the previous experiment on PACAP
and CGRP in the same model [9], only sham-injected
rats processed 24 h following the injection were used as
CO, as a pilot study conducted on naïve and sham-
injected (processed 24 and 48 h following injection) rats
demonstrated that there is no difference in the level of
the metabolites of interest, in neither TNC, nor ssCX
(n = 3 in each group, data not shown). The rats were
anesthetized with intraperitoneal 4% chloral hydrate so-
lution mainly based on its safe application (CAS ID:
302–17-0, Sigma-Aldrich, St. Louis, MO, USA; 10 ml/kg
body weight dose) in the morning and 50 μl of CFA was
injected into the right whisker pad. No other analgesic
was applied, otherwise the activation/sensitization phe-
nomena during pain processing, an essential characteris-
tic of the CFA model as well, would have been
influenced. Control rats were injected with an equal vol-
ume of saline. Cerebrospinal fluid (CSF) was taken from
the suboccipital cistern, including the control group
(n = 9), 24 (n = 9) and 48 h (n = 9 initially, finally n = 8 as
one animal died during the experiment) after injection
applying the above-described anesthetic procedure, and

following that the animals were perfused transcardially
with 200 ml phosphate-buffered saline (PBS). The spinal
tap procedures were unsuccessful in 5 occasions and 7
of the CSF samples were excluded from analysis due to
contamination with blood. Accordingly, 5–5 samples
remained in the CO and CFA 24 h groups, and 4 in the
CFA 48 h group for analysis. Therefore, this part of the
study focusing at that secondary endpoint was only ex-
ploratory due to the low statistical power. Also as a sec-
ondary endpoint, blood samples were taken from the left
ventricle into ice-cold glass tubes containing disodium
ethylenediaminetetraacetate dihydrate (Na2EDTA; CAS
ID: 194491–31-1 Lach-Ner s.r.o, Neratovice, Czech Re-
public) and the plasma was separated by centrifugation
(1170 g for 10 min at 4 °C). Following decapitation two
different brain structures, the TNC and the somatosen-
sory cortex (ssCX) were dissected for the assessment of
the targeted primary endpoints. In each case both right
and left sided samples were separately removed on ice
and stored at − 80 °C until further use.

Instruments and chromatographic conditions
Validated high performance liquid chromatography
(HPLC) measurements were performed by an Agilent
1100 HPLC system (Santa Clara, CA, USA), coupled
with UV detector (UVD), fluorescence detector (FLD)
and electrochemical detector (ECD). The chromato-
graphic separations were carried out with validated
methods comprehensively described elsewhere [44–46].
Prior to all measurements, during the tissue weighting
or plasma/CSF precipitation process, all samples were
relabeled, and a blind study was conducted, i.e., the ex-
perimenter who did the HPLC measurements was not
aware of which samples were part of CO or 24 h groups.
Moreover, Eppendorf tubes were randomly assigned for
measurements and when the 48 h group was measured,
the same systematic randomization was applied. The
purity of all standards and solutions were analytical
grade or HPLC grade and they were acquired from
Sigma-Aldrich, St. Louis, MO, USA, except the

Fig. 1 Time-line of the experimental procedure applied in this study. CFA Complete Freund’s adjuvant. n number of the animals per group. *One
animal died in cage after CFA injection
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fluorescent internal standard used for the TRP method
which was synthesized at the Department of Pharma-
ceutical Chemistry, University of Szeged, as detailed
elsewhere [44]. Briefly, the brain regions were homoge-
nized in 0.5 M perchloric acid (PCA), at 1:5 w/v
containing internal standards (ISs, 3-nitro-L-tyrosine
and 4-hydroxyquinazoline-2-carboxylic acid, the latter
custom-made material will be shared upon reasonable
request) applied in the measurement of TRP metabolites
[44] utilizing both UVD and FLD. After centrifugation
the supernatant was collected and first used for the TRP
metabolite measurement. The remaining supernatant
was aliquoted in two further parts and were kept at −
80 °C until further analyses. 150 μl from it was applied
for the determination of NA concentration by ECD [45],
with addition of 10 μl solution of the corresponding IS,
2,3-dihydroxybenzoic acid. For the measurement of Glu
and GABA, another 100 μl was diluted to 1:100 v/v with
distilled water and 100 μl of this dilution was derivatized
with 100 μl solution containing o-phthaldialdehyde and
3-mercaptopropionic acid in borate buffer and further
diluted with 50 μl distilled water containing the corre-
sponding IS, homoserine, used for this method applying
FLD [46].
For the measurement of the TRP metabolites from the

CSF, the method described before [44] was applied, with
a slight modification. Briefly, during sample preparation,
we used a dilution of 5:6 v/v, with the final concentration
of PCA at 0.5 M, with the above described ISs, but only
35 μL of the sample was injected. Furthermore, a

linearity study was conducted for rat CSF samples to de-
termine limit of detection (LOD) and limit of quantita-
tion (LOQ) values, because the cited article contains
data only for human CSF. Accordingly, the LOD and
LOQ values for rat CSF were 31.1 and 102 nM for TRP,
107 and 702 nM for KYN and 1.04 and 3.45 nM for
KYNA, respectively, whereas 5-HT was undetectable in
each case. Regarding Glu and GABA, the initial amount
of mobile phase A applied for the brain samples was
95%, but for CSF samples it was changed to 93%, as coe-
lution was observed under the initial circumstances. The
ratios applied for the CSF sample preparation (1:1:0.5 =
sample: derivatization solution: IS) remained the same,
similar to brain supernatants [46]. Due to low sample
amount we omitted the determination of NA levels from
CSF.
With regard to plasma samples we measured the levels

of TRP metabolites as described in [44]. Glu, GABA and
NA concentrations from plasma samples were not
assessed because we were only interested in their role as
a neurotransmitter.
As for the plasma samples, the LOD and LOQ values

were 0.102 μM and 0.308 μM for TRP, 0.027 and
0.083 μM for KYN and 1.23 and 3.72 nM for KYNA, re-
spectively. In each case, the 5-HT levels from plasma
samples were undetectable.

Statistical analyses
All statistical calculations were performed with the use
of the freely available R software 3.5.3 (R Development

Table 1 Concentration levels of the measured metabolites in the analyzed brain regions

Control group (n = 9) CFA 24 h (n = 9) CFA 48 h (n = 8†)

Trigeminal nucleus caudalis (TNC)

Glu (μg/g ww) 684 (644–746) 772*,# (742–859) 731 (687–745)

GABA (μg/g ww) 167 (154–187) 180 (174–235) 167 (164–171)

TRP (nmol/g ww) 20.3 (19.2–22.4) 20.3 (18.2–24.5) 19.4 (17.7–20.8)

KYN (nmol/g ww) 0.656 (0.428–0.671) 0.876*,# (0.830–1.13) 0.532 (0.480–0.597)

KYNA (pmol/g ww) 22.8 (21.2–24.2) 52.6**,# (34.6–72.3) 25.8 (21.9–28.8)

5-HT (pmol/g ww) 2991 (2917–3333) 2841 (2629–3425) 3315 (3088–3438)

NA (μg/g ww) 0.328 (0.320–0.343) 0.352 (0.328–0.388) 0.348 (0.324–0.366)

Somatosensory cortex (ssCX)

Glu (μg/g ww) 1178 (1082–1290) 1269 (1206–1397) 1152 (1052–1287)

GABA (μg/g ww) 215 (207–218) 230 (217–251) 199 (178–211)

TRP (nmol/g ww) 20.6 (17.8–23.5) 22.6 (21.5–23.7) 21.6 (20.9–22.7)

KYN (nmol/g ww) 0.824 (0.743–0.970) 0.974 (0.714–1.15) 0.616 (0.552–0.663)

KYNA (pmol/g ww) 16.2 (9.70–18.8) 27.3*,# (17.3–39.3) 9.73 (7.01–12.8)

5-HT (pmol/g ww) 2547 (1665–2677) 2271# (2166–2527) 2885 (2653–3172)

NA (μg/g ww) 0.840 (0.192–0.853) 0.754 (0.142–0.934) 0.886 (0.556–0.974)

Results are shown as median (1st-3rd quartile). †One animal died in cage after CFA injection. * p < 0.05 vs. CO, ** p < 0.01 vs. CO, # p < 0.05 vs. 48 h, 5-HT
serotonin, CFA Complete Freund’s adjuvant, GABA gamma-aminobutyric acid, Glu glutamate, KYN kynurenine, KYNA kynurenic acid, n number of the animals per
group, NA noradrenaline, TRP tryptophan, ww wet weight
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Fig. 2 (See legend on next page.)
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Core Team). The distribution of our data population
was not determined as the applied statistical tests do not
need assumptions regarding the distribution of under-
lying data. Accordingly, first we performed the Levene
test to assess the homogeneity of variances. As the vari-
ances were equal, we performed a general independence
test for two sets of variables measured on arbitrary
scales, where the reference distribution was approxima-
tive based on the Monte-Carlo method. Afterwards, we
carried out permutation t-tests as post hoc analysis for
pairwise comparison. Permutations were applied via the
Monte-Carlo method (10,000 random permutations) and
Type I errors from multiple comparisons were con-
trolled with false discovery rate. No test for outliers was
conducted. With the key aspects of 3Rs in mind [43] we
tried to keep the sample size as low as we can based on
experiences from previous experiments ([47]: 8 and 12/
group; [48]: 6/group; [49]: 6/group; [50]: 6/group; [51]:
8/group; [52]: 6 and 7/group; [53]: 6/group). For every
statistically significant result, we calculated the corre-
sponding effect size (Cohen’s d in this case) and based
on its value, we decided whether the increase of sample
size is necessary or not. The manuscript contains the
final effect sizes.

Results
Concentration levels of the assessed compounds in the
TNC and ssCX
First of all, both contralateral and ipsilateral CNS regions
were measured separately, but we did not find significant
differences in concentrations of any of the metabolites
between the two sides, so the coherent data were pooled
for further analysis. Therefore, the concentration values
presented in Table 1 demonstrate the mean values of
the two analyzed sides of each CNS regions.
Regarding TNC, pairwise permutation t-tests following

the independence tests revealed a significant elevation in
the concentration of Glu (p = 0.0319, Cohen’s d = 1.49),
KYN (p = 0.0123, Cohen’s d = 1.58) and KYNA (p =
0.0098, Cohen’s d = 1.92) 24 h following CFA injection
compared to the controls and a significant decrease
could be observed in Glu (p = 0.0357, Cohen’s d = 1.29),
KYN (p = 0.0123, Cohen’s d = 1.85) and KYNA (p =
0.0263, Cohen’s d = 1.39) levels by 48 h compared to the
24 h group, whereas there was no difference between the
control and 48 h groups (Table 1, Fig. 2).

Regarding ssCX samples, an elevation in KYNA con-
centration (p = 0.0237, Cohen’s d = 1.36) could be ob-
served 24 h following CFA administration, followed by a
significant decrease by 48 h (p = 0.0173, Cohen’s d =
1.80) and there was no difference between control and
48 h groups. Furthermore, in the ssCX, there was a sig-
nificant increase in 5-HT levels in the 48 h group com-
pared to the controls (p = 0.0479, Cohen’s d = 1.21) and
to the 24 h group (p = 0.0479, Cohen’s d = 1.20; Table 1,
Fig. 3).
We calculated the KYN/TRP and KYNA/KYN ratios

as well. The KYN/TRP ratio was significantly elevated in
the 24 h group compared to the controls (p = 0.0419,
Cohen’s d = 1.19) or to the 48 h group (p = 0.0419,
Cohen’s d = 1.35; Table 1, Fig. 2). With regard to the
KYNA/KYN ratio, there was no difference in any of the
investigated biological matrices (data no shown).

CSF and plasma samples
Regarding CSF samples, TRP metabolites, Glu and
GABA were measured. We found no significant alter-
ations in the CSF, however, the power of the statistical
tests in this case is low due to low case number (n = 5, 5,
4 for control, 24 h and 48 h groups, respectively) and the
concentration values of KYN in the control and CFA
treated 48 h groups were below LOD (0.107 μM), except
one case from each group (for more details, see Add-
itional file 1, Table S1; due to the low amount of 5-HT
in the CSF samples, we could not quantify it, as the
values were below LOD, LOD = 0.0274 μM). In case of
plasma samples, only the TRP metabolites were mea-
sured, and no significant differences were observed (for
more details, see Additional file 2, Table S2).

Discussion
Headache is one of the most common neurological dis-
orders and it is one of the leading causes of health-
related problems worldwide. In 2010, tension type head-
ache and migraine were the second and third most
prevalent conditions in the world, respectively, according
to the Global Burden of Disease (GBD) study [54, 55].
Furthermore, the GBD study in 2015 established that
headache is responsible [56] for more disability adjusted
life years than all other neurological disorders in
combination.
The treatment of primary headache disorders is chal-

lenging, requiring both acute and preventive therapeutic

(See figure on previous page.)
Fig. 2 Concentration changes in glutamate (a), γ-aminobutyric acid (b), tryptophan (c), kynurenine (d), kynurenic acid (e), serotonin (f),
noradrenaline (g) and changes in kynurenine/tryptophan ratio (h) in the TNC. * p < 0.05 vs. CO, ** p < 0.01 vs. CO, # p < 0.05 vs. 48 h. n = 9 in the
control and 24 h groups and n = 8 in the 48 h group. The boxplots are displayed as the intervals between the 1st and 3rd quartiles presenting
the median values as well. 24 and 48 h CFA treated groups, 5-HT serotonin, CO control, GABA γ-aminobutyric acid, KYN kynurenine, KYNA
kynurenic acid, n number of the animals per group, NA noradrenaline, TRP tryptophan, TNC trigeminal nucleus caudalis, ww wet weight

Cseh et al. The Journal of Headache and Pain           (2020) 21:35 Page 6 of 12



Fig. 3 (See legend on next page.)
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measures [57, 58]. The preventive treatment aims to re-
duce the frequency, severity and duration of headaches,
and to avoid medication-overuse headache. The efficacy
of the currently applied drugs is not always satisfactory
and the contraindications and side-effects often limit the
options of the physician [59, 60]. Therefore, there is a
constant need to study and develop new molecules.

Glutamate and pain
Peripheral and central sensitization manifest mainly in
forms of hyperalgesia and allodynia. The activation of
the peripheral terminals of the nociceptors is responsible
for Glu release at central sites with the activation of
ionotropic and metabotropic Glu receptors [61]. This
process was demonstrated not only in preclinical studies
[62–64], but in patients with headache as well [23, 24].
Accordingly, the role of glutamatergic pathways in asso-
ciation with different types of pain is well established
[65] and several antagonists of ionotropic glutamate re-
ceptors were investigated and found to be effective to
decrease nociceptive transmission [66]. However, they
had severe side effects, and therefore, the interest in this
direction of research diminished [67, 68]. Nevertheless,
ketamine, an NMDA receptor antagonist, is so far the
only promising option in the treatment of severe or
long-lasting migraine aura [69], and tezampanel, which
acts on the AMPA and kainate subtypes of ionotropic
Glu receptors [70], has also shown promising results in
acute migraine therapy [71].

Tryptophan metabolism and pain
It has been already demonstrated that the level of
KYNA and some other KP metabolites are altered in
migraine and cluster headache patients as well: there
are significant reductions in the serum levels of
KYN, KYNA, 3-hydroxy-kynurenine, 3-hydroxy-
anthranilic acid and quinolinic acid, whereas concen-
trations of TRP and anthranilic acid were
significantly increased [72, 73]. KYNA as an en-
dogenous NMDA receptor antagonist, is a molecule
of interest for CNS drug development in case of sev-
eral neurological conditions [74], but due to its poor
ability to cross the blood-brain barrier (BBB) and its
rapid clearance from the body [75], its application
for most CNS-related alterations is limited, and
therefore several KYNA analogs were synthetized
[76–79]. However, the first order neuron of pain

processing is located outside the BBB [80], so KYNA
itself may have therapeutic potential as well. Accord-
ingly, the antinociceptive properties of KYNA were
proved in animal models of pain [29, 81]. Further-
more, some of the developed analogs also displayed
promising results in different animal models of head-
ache [31, 82–85]. In an earlier study we investigated
two KYNA analogs where both of them proved to be
effective in the formalin model of trigeminal pain
[84]. However, one of them was more effective than
the other and according to our analyses the better
performing compound caused a more pronounced
elevation of KYNA concentration on the periphery,
whereas in the CNS the concentrations of KYNA
were similar. Based on these results we hypothesized
that the peripheral elevation of KYNA may be
enough to exert beneficial effects on pain processing
and targeting this component could provide an op-
tion to pharmaceutical drug design without the obli-
gation of good penetration through the BBB.
Elevated Glu concentration in the TNC of CFA-

treated rats, demonstrated by the current study, is ac-
companied by increased KYN and KYNA levels, which
may serve as a feedback mechanism to the sensitization
process caused by Glu. This hypothesis is supported by
the above-mentioned findings [72, 73] that decreased KP
metabolite levels are associated with those headache dis-
orders, where increased NMDA receptor activation may
play a crucial role. These results may have a great im-
portance especially in light of the finding that the
slightly, but not significantly elevated GABA level may
not be enough to counterbalance the effects of increased
Glu levels. With regard to 5-HT, its cortical elevation by
48 h may serve as a feedback inhibitory response as well
to ameliorate the activation of the trigeminovascular
pathway [86].
The current study draws attention to the limited

time interval for therapies targeting glutamatergic
pathways as well, as based on our previous experi-
ments, a clear shift to dominantly peptide-mediated
pain processing can be seen even from 24 h after
CFA application [9]. This time point corresponds to
the onset of peripheral and central sensitization of
the TS as well in this model [10, 11, 14]. At this
stage, mainly novel antibody-based therapies may
come into account [87–90]. With regard to these
novel therapies, the focus of attention is on

(See figure on previous page.)
Fig. 3 Concentration changes in glutamate (a), γ-aminobutyric acid (b), tryptophan (c), kynurenine (d), kynurenic acid (e), serotonin (f),
noradrenaline (g) and changes in kynurenine/tryptophan ratio (h) in the somatosensory cortex. * p < 0.05 vs. CO, # p < 0.05 vs. 48 h. n = 9 in the
control and 24 h groups and n = 8 in the 48 h group. The boxplots are displayed as the intervals between the 1st and 3rd quartiles presenting
the median values as well. 24 and 48 h CFA treated groups, 5-HT serotonin, CO control, GABA γ-aminobutyric acid, KYN kynurenine, KYNA
kynurenic acid, n number of the animals per group, NA noradrenaline, TRP tryptophan, TNC trigeminal nucleus caudalis, ww wet weight
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monoclonal antibodies targeting the CGRP pathway
for the prophylactic treatment of migraine. Currently,
four of these antibodies are in clinical trials (eptinezu-
mab, galcanezumab, fremanezumab, erenumab) with
promising results. However, the cost of these therap-
ies is considerably higher than that of acute phase
treatments.

Conclusion
This is the first study assessing small molecule neuro-
transmitter changes in the TNC and ssCX following
CFA treatment, confirming a dominant role of glutamate
in early pain processing and a compensatory elevation of
KYNA with anti-glutamatergic properties. The time
interval for the intervention targeting the glutamatergic
system is presumed to be limited to the first 24 h. The
results of our previous therapeutic studies with KYNA
or with its analogs strongly support this theory.
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