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ABSTRACT 

A successful design of rotating shaft-bladed disk (“blisk”) assemblies requires the facility to 

reliably predict the resonance speeds, which must be avoided during operation to avoid 

failure. Rotation-induced inertia effects (centrifugal stiffening, spin softening, Coriolis forces 

and gyroscopic moments) can cause significant variation of the modal frequencies with 

speed.  A review of the state-of-the-art highlights the need for a methodology that can 

efficiently include all rotation-induced inertia effects in a generic shaft-blisk system.  The 

novel contribution of this paper is a methodology to include such effects in a generic shaft-

blisk system, using zero-speed finite element (FE) modal data, without the need for additional 

FE analysis at each speed, or the derivation of equations from first principles.  This 

contribution is motivated by the need to upgrade an existing blisk simulator designed to 

generate blade tip timing (BTT) data for the development and validation of BTT algorithms.  

Rotational effects are added as discretised “external” excitations to the modal equations, 

which remain based on the zero-speed modes.  The method is progressively validated on six 

examples, using results from the literature and commercial FE rotordynamics software, to 

demonstrate its accuracy and high efficiency of computation for both Campbell diagrams and 

forced response.  
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1. INTRODUCTION 

Shaft-blisk (“bladed disk”) assemblies in turbomachinery often fail due to fatigue when they 

are exposed to excessive vibration in the resonant condition. To avoid such failure, it is of 

importance to accurately predict the vibration modes during the design stage. The 

deformations of the shaft, disk and blades are always to be coupled to some extent [1]. 

However, owing to the complexity of the problem, the majority of the early studies have been 

limited to analyses of individual elements, which is appropriate for cases where the 

fundamental natural frequency of the individual element is much lower than that of the other 

elements. The high speed, light weight, and large scale of modern turbomachinery have 

increased the importance of the higher critical speeds of such systems. This has consequently 

increased the need to study the effect of rotation-induced inertia effects on the vibration 

characteristics.  These effects are: centrifugal stiffening, spin softening, Coriolis forces and 

gyroscopic moments [2].  In the absence of such effects, the natural frequencies of the shaft-

blisk system are independent of speed.  Rotation-induced inertia effects result in the splitting 

of certain natural frequencies with increasing speed on the Campbell diagram (natural 

frequencies vs speed graph) [3]. 

The early analysis of blades was based on one-dimensional beam theory. Later on, rotation-

induced inertia effects were included in the beam model [4]. For beams, these effects come 

from centrifugal and Coriolis forces. Such effects were neglected in some studies [5–8] and 

considered in others [9–11]. For shaft-blisk assemblies, the accurate modelling of rotation 

effects requires consideration of disk flexibility.  Preliminary studies based on simple models 

have shown the possible effect of disk flexibility on the critical speeds of rotating solid shafts 



3 
 

[12–15]. Crawley et al. [16] showed that the blade modes with one nodal diameter 

dynamically couple to the rigid body whirling motion of the shaft-disk system. Shahab and 

Thomas [17] showed that the transverse movement of the shaft can excite the backward or 

forward whirling of the shaft-blisk system. 

In order to get an accurate prediction of the dynamic characteristics of turbomachinery, one 

ought to model a shaft-blisk system as an assembly, in which all the elements are 

dynamically coupled together [18]. Methods such as finite element (FEM), dynamic stiffness 

(DSM), assumed modes (AMM), and experimental methods, or combinations of these 

methods were used for modelling and analysis of rotating assemblies including the flexibility 

and dynamic couplings between different components [18–22]. 

In case of a single nodal diameter whirling mode of the blisk, a pitching force/moment is 

exerted on the shaft which couples the bending behaviour of the blisk to the shaft whirl 

through gyroscopic effect, resulting in forward and backward whirl modes [23]. The 

gyroscopic effects, rotary inertia, and shear deformation of the shaft can be ignored relative to 

those of the blisk at intermediate shaft speeds [23]. 

Some early studies, such as the one of Suyehiro, assumed that the gyroscopic load is acting 

on the mid-plane of a stationary disk [24]. Dopkin and Shoup [12] observed that the disk 

bending modes with one nodal diameter produce a net moment on the shaft and therefore 

coupled with the shaft flexural modes through gyroscopic effect. In their study, the shaft was 

modelled as lumped mass segments, while constant thickness plate elements (rings) and 

concentrated mass elements were used to model the disk. Many other studies considered the 

gyroscopic effects of one or more components such as [1,2,25,26]. A new dynamic model of 

a rotor/rigid disk/blade system was presented in 2015 by Ma et al. [2]. The model considered 

the gyroscopic effects of the disk and shaft, the Coriolis forces, centrifugal stiffening, and 
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spin softening of the blades, in addition to both the lateral and torsional deformations of the 

shaft. The blades were modelled using Timoshenko beam elements. The equations of motion 

were derived by using Hamilton’s principle and the assumed mode method. The analytical 

model was validated against both the finite element model by ANSYS FE software and 

experimentally. The centrifugal stiffening and spin softening effects were included in the 

ANSYS model stiffness matrix by using pre-stressed modal analysis which requires a separate 

analysis at each speed based on a static analysis. 

The trend towards increased efficiency at higher speeds has led to larger blades and stronger 

stagger angles, which generate large centrifugal and Coriolis forces [26]. Some early studies 

ignored the Coriolis effects since they were limited to small motions or to beams that are 

rigid in bending except at disk connection [27]. Krupka and Baumanis [28] found that both 

shear deformation and rotary inertia should be included in the analysis, as they result in 

changes of about 4% to 8% in first and second natural frequencies at high speeds. Sisto et al. 

[29] showed with high accuracy that the Coriolis forces alter the stability of the blades. 

A discrete system representation, at which the blade is divided into a number of segments has 

been employed in some studies [26, 29]. This facilitates the inclusion of Coriolis forces, shear 

and inertia effects. Xin and Wang found that the maximum frequency split due to Coriolis 

effects occurs for single nodal diameter modes [31]. A new test rig was developed in 2015 by 

Ruffini et al. [32] to study the Coriolis effects on blisk-shaft assemblies, and to provide 

validation data for the available numerical methods. The effect of Coriolis forces on the 

forced response of mistuned bladed-disk systems was studied by Kan et al. [33]. 

Rotating cantilever beam models have been used for turbomachinery blades. The vibration 

characteristics of rotating beams vary significantly with the increase in speed. One of the 

factors responsible for this variation is the centrifugal inertia force, which causes a significant 
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stretch in the blades, resulting in a change in the bending stiffness.  This is an example of 

geometric stiffening [34]. Ramamurti and Kielb [35]  used the stress smoothing technique in 

which the rotational stresses were first computed and then used to update the stiffness matrix, 

which is then used in the eigenvalue analysis. Banerjee derived the dynamic stiffness matrix 

of the rotating beams including the effect of axial force for both Euler-Bernoulli and 

Timoshenko beam elements [36,37] and later for tapered beams [38]. According to Banerjee, 

the dynamic stiffness method gives exact solutions for the natural frequencies and mode 

shapes without making any approximation [38]. A procedure based on the method of 

variational iteration was presented in 2016 by Chen et al. [39] for the determination of the 

natural frequencies and mode shapes of rotating Euler-Bernoulli beams. They showed that the 

procedure is able to predict the frequencies of higher order modes with acceptable accuracy 

and relatively low number of iteration steps. 

The above mentioned studies, concerning centrifugal stiffening of blades, neglected the 

flexibility of the disk. Other research works have considered centrifugal stiffening, and other 

rotation-induced inertia effects, in shaft-blisk assemblies. Chun and Lee developed an 

analytical synthesis and assumed mode method to study the effect of blisk flexibility on the 

dynamic behaviour of rotor systems, taking into account the Coriolis forces and centrifugal 

stiffening [18].  The assumed mode method, finite element method, and experimental method 

have been adopted by Chiu et al. in 2017 [22] in order to explore the dynamic coupling of 

multi flexible disk rotor system, considering centrifugal stiffening. 

The finite element (FE) method is used in several studies in order to cope with the 

complicated configurations of rotating systems.  However, shaft-blisk assemblies including 

Coriolis effects are rarely modelled and simulated using FE packages [26]. An investigation 

of different FE software packages has been done by Ruffini et al. [26] in order to examine 

their capabilities for predicting the dynamic behaviour of rotor systems in case of Coriolis 
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and gyroscopic effects, especially with regard to the frequency splits. The FE packages used 

were Abaqus v6.11-13, Ansys v12.1, NX Nastran v8.5, and SAMCEF v14.1. Three test cases 

were presented, and the resulting Campbell diagrams from all software packages for the three 

cases were compared to each other and to the results from the literature. One of the test cases 

was the Stodola-Green rotor, which is a classic model in rotordynamics, and has strong 

frequency splits due to gyroscopic effects. All software predicted the frequency splits 

correctly, except at high speed in the vicinity of instabilities. 

The non-rotational (i.e. zero-speed) mode shapes of the system obtained using FE analysis 

were used in a modal analysis approach by Khader and Loewy [30] to study the steady-state 

forced response of a flexible bladed disk supported by a shaft modelled as a massless, flexible 

cantilever. Although the method represented the motion using zero-speed modes, it required 

the derivation of the equations of motion (with rotation effects) from first principles via 

Lagrange’s method.  This in turn required the laborious derivation of kinetic energy and 

potential energy expressions.  The part of the potential energy contributed by centrifugal 

stiffening was derived by discretising the centrifugal force at a number of locations along the 

blade and calculating its local deformation components.  The zero-speed mode shapes were 

used again by Jacquet-Richardet et al. [15] in a modal analysis method that included 

gyroscopic effects, spin softening, and centrifugal stiffening.  The zero-speed modal method 

of [15] required static analysis for the geometric stiffness matrix (that contains the centrifugal 

effect) which had to be repeated at each speed.  This is similar to the approach used in the 

ANSYS rotordynamics solver [40] and can be computationally expensive (as shown in section 

3 of this paper). 

The above literature review highlights the need for a methodology that can efficiently include 

all rotation-induced inertia effects in a generic shaft-blisk system.  The novel contribution of 

this paper is a methodology to include such effects in a generic shaft-blisk system, using 
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zero-speed modal data and without the need for additional FE analysis at each speed or the 

derivation of equations from first principles (i.e. unlike [15] and [30] respectively).   

The contribution of this paper is motivated by the need to upgrade a blisk simulator designed 

to generate blade tip timing (BTT) data for the development and validation of BTT 

algorithms [41].  In this simulator, the blisk motion is a superposition of rigid rotation, 

prescribed steady movement (i.e. non-oscillatory movement like axial float of the shaft), and 

vibratory movement due to dynamic excitation forces.  This latter component of the 

movement is represented by a modal superposition that uses modal data from the FE model at 

zero rotational speed.  Transformation to modal coordinates is crucial for the efficient 

operation of the simulator since the effective number of blisk modes required for accurate 

convergence of the vibration response is typically much less than the number of degrees of 

freedom of the FE model [41].  In the current version of the simulator (i.e. as in [41]), the 

modal equations of motion neglect rotational effects.  This simulator was first used by the 

authors in [42] to investigate the effect of steady movement on BTT data.  In the same year, 

independent researchers [43] presented a simulator that was also based on FE-derived system 

modes.   Although the simulator in [43] accommodated gyroscopic/Coriolis effects as an 

optional input, these were based on a constant gyroscopic matrix (obtained from FE) 

applicable to a single speed only.  The corresponding natural frequencies used in the modal 

equations included rotational effects but were only applicable for a single speed.  Hence, the 

variation in rotational speed considered in [43] was only around 10%.  Using the 

methodology presented in this paper, the authors’ blisk simulator of [41,42] is upgraded to 

accommodate rotation-induced inertia effects, without speed restriction, by adding them to 

the modal equations as “external” excitations at discrete locations, so that the modal 

equations continue to be based on the zero-speed modes. The simulator is also upgraded to 

include the deflection of the shaft, but the parametric excitation effect introduced by the 
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consequent in-plane vibration of the blisk centre [44] is not considered.  A similar approach 

appears to have been taken by Ma et al. [2], Chun and Lee [18]. 

Section 2 starts with an overview of the existing blisk simulator (which neglects rotational 

effects on the dynamic response).  The methodology for adding rotational effects 

(Coriolis/spin softening; centrifugal stiffening; gyroscopic) is then presented.  Since the 

method requires angular displacement modal data, a method is presented to calculate such 

data from the translational modal data.  This is a one-off computation that is needed when 

solid elements are used in the FE modal analysis at zero-speed (since such elements use 

translational degrees of freedom).  The procedures for the computation of the Campbell 

diagram and the forced response are then described, followed by an extension of the analysis 

to shaft-blisk systems.  Section 3 presents and discusses the results of six examples that are 

validated against results from the literature or from commercial software.  

2. MODELLING FOR ROTATIONAL EFFECTS 

2.1 Overview of Existing FE-Based Modal Simulator of Blisk System [41] 

The description in this section is taken from [41], where rotation-induced inertia effects were 

neglected and the system consisted of a blisk only (transverse displacement of shaft 

neglected). If 𝐮(𝑡)  denotes the 3𝑁 × 1  vector containing the instantaneous absolute 

coordinates of a subset of FE nodes Q𝑛 (𝑛 = 1…𝑁) covering a certain region (e.g. the tip of 

a given blade), the simulator computes 𝐮(𝑡) as follows 

      𝐮(𝑡) = 𝐮(rgd)(𝑡) + Δ𝐮(off)(𝑡) + 𝐓aug(𝜑(𝑡))Δ𝐮(def)(𝑡)     (1) 

where: 
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 𝐮(rgd)(𝑡) represents the absolute blade tip positions due to rotation of the blisk as a rigid 

body (in the absence of deformation and any applied shifting) following a rotation 𝜑(𝑡) 

from a reference angular position of the blisk. 

 Δ𝐮(off)(𝑡) represents a prescribed steady (non-oscillatory) shift that is used to simulate 

“dc” bias errors on BTT data generated by the simulator [41].   

 Δ𝐮(def)(𝑡) represents the response to the applied dynamic excitation forces. 

 𝐓aug(𝜑(𝑡)) is a matrix that transforms displacements in a rotating coordinate frame to 

displacements in an inertial frame following a rigid rotation 𝜑(𝑡). 

Since Δ𝐮(def)(𝑡)  is superimposed on the rigid body rotation and the prescribed steady shift, it 

is determined by considering the dynamic response of the non-rotating system in a fixed 

reference angular position.  The elements of 𝚫𝐮(def)(𝑡)  are calculated using a modal 

transformation based on the first H undamped modes of vibration of the non-rotating system 

in the reference angular position: 

Δ𝐮(def)(𝑡) = 𝐇P𝐪(𝑡) (2) 

where 𝐪(𝑡)  is the 𝐻 × 1  vector of modal co-ordinates that are governed by the modal 

equations of motion: 

    �̈�(𝑡) + 𝐂�̇�(𝑡) + 𝐃𝐪(𝑡) = 𝐇𝐟
T𝐟(𝑡) (3) 

and, in Eqs. (2), (3): 

 𝐇P , 𝐇𝐟  are modal transformation matrices whose 𝐻  columns are mass-normalised 

eigenvectors corresponding to the undamped natural circular frequencies 𝜛𝑟  (𝑟 =

1,… ,𝐻) evaluated at the appropriate degrees of freedom. 

 The matrices 𝐃 and 𝐂 are given by 
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    𝐃 = diag([⋯𝜛𝑟
2 ⋯]),     𝐂 = diag([⋯2𝜁𝑟𝜛𝑟 ⋯]) (4, 5) 

where 𝜁𝑟  is the modal damping ratio. In this work 𝐂  is only included to suppress initial 

transients in the time domain integration for the forced response. 

 𝐟(𝑡) is the 3𝑆 × 1 vector of external dynamic excitation forces applied to the system 

(frozen at its reference angular position) at nodes A𝑠 (𝑠 = 1…𝑆) in the directions of the 

Cartesian degrees of freedom there [45]. 

2.2 Inclusion of Rotation-Induced Inertia Effects 

This section describes how the model in section 2.1 is altered to account for rotation-induced 

inertia effects through the addition of terms to the right hand side of Eq. (3).  Fig. 1 shows 

the coordinate system to be used, which is compatible with the previously described system.   

 

 

 

 

 

 

 

 

 

 

 

 

With reference to Fig. 1,  

 axis OZ is completely fixed and along the nominal axis of rotation (independent of tilt);  

Fig. 1. Rotating structure (inertial axes O𝑋(in), O𝑌(in) are horizontal, vertical respectively) 
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 the 𝑋(in),  𝑌(in) axes through O are inertial, and 𝐢(in), 𝐣(in) are associated unit vectors; 

 the X, Y axes through O rotate at the spin velocity 𝛺𝐤, where 𝛺 = �̇�; 

 𝐢, 𝐣  are unit vectors associated with X, Y; 

 the local Cartesian frame (𝑥, 𝑦, 𝑧) is always parallel to XYZ; 

 the blisk’s reference angular position is 𝜑 = 0. 

The undeformed position P of an arbitrary point is fixed relative to XYZ and is located within 

this frame using either Cartesian coordinates (𝑋0, 𝑌0, 𝑍0) or cylindrical coordinates (𝑅, 𝜗, 𝑍0).  

Axis U coincides with the perpendicular from P to OZ and axis V is normal to both U and Z. 

Q is the point on the undeformed shaft where the perpendicular from P meets OZ.  It shall be 

assumed until section 2.5 that the transverse deflection of Q (i.e. the component of its 

deformation in the plane of rotation UV) is zero. 

The deflection of P to P΄ is defined using either the local Cartesian frame (𝑥, 𝑦, 𝑧) (always 

parallel to XYZ) or the UVZ frame (𝑢, 𝑣, 𝑧).  Transformation from 𝑢, 𝑣 to 𝑥, 𝑦 and vice-versa 

is given by 

[
𝑥
𝑦] = 𝐓(𝜗) [

𝑢
𝑣
],  [

𝑢
𝑣
] = 𝐓T(𝜗) [

𝑥
𝑦], 𝐓(𝜗) = [

cos𝜗 −sin𝜗
sin𝜗 cos𝜗

]  (6a,b,c) 

In Fig. 1, the angular deformations 𝜃𝑥, 𝜃𝑦, 𝜃𝑧 refer to the rotations, about the respective local 

Cartesian axes, of a vector 𝐧 that is attached, and always perpendicular to, a local plane at P, 

where 𝐧 is initially parallel to axis Pz (in case of 𝜃𝑥, 𝜃𝑦) or axis Px (in case of 𝜃𝑧). 

As in Eq. (1), rigid rotation is superimposed on the dynamic deformation, and the latter is 

determined by modal equations with the blisk fixed in the reference angular position. Hence, 

the transformation to modal coordinates uses the same zero-speed mass-normalised 

eigenvectors used previously (which neglect rotation-induced inertia effects): 
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[
𝑥
𝑦
𝑧
] = [

𝜓𝑥
(1)

⋯ 𝜓𝑥
(𝐻)

𝜓𝑦
(1)

⋯ 𝜓𝑦
(𝐻)

𝜓𝑧
(1)

⋯ 𝜓𝑧
(𝐻)

] 𝐪, [

𝜃𝑥

𝜃𝑦

𝜃𝑧

] =

[
 
 
 
 𝜓𝜃𝑥

(1)
⋯ 𝜓𝜃𝑥

(𝐻)

𝜓𝜃𝑦

(1)
⋯ 𝜓𝜃𝑦

(𝐻)

𝜓𝜃𝑧

(1)
⋯ 𝜓𝜃𝑧

(𝐻)
]
 
 
 
 

𝐪 (7a,b) 

Using this modal transformation, but accounting for rotational effects, Eq. (3) is updated as 

follows: 

�̈� + 𝐂�̇� + 𝐃𝐪 = 𝐇𝐟
T𝐟(𝑡)

+ ∑{𝐇𝐡𝑘

T [𝐡𝑘(𝐪, �̇�, 𝛺, �̇�) + 𝐡𝟎𝑘
(𝛺, �̇�)] + 𝐇𝐦𝑘

T 𝐦𝑘(𝐪,𝛺) + 𝐇𝐠𝑘
T 𝐠𝑘(�̇�, 𝛺)}

P𝑘

 (8) 

In the above approach, the blisk is divided into radial/angular segments (Fig. 2) and the 

rotational inertia effects from the individual segments, with mass centres at selected FE 

nodes P𝑘 (𝑘 = 1…𝐾), are summed over the entire system and added as additional “external” 

forces to the modal equation.  The nodes P𝑘 are selected from the nodes of the FE mesh used 

in the non-rotational free undamped vibration analysis (for the mode shapes) so as to 

coincide as closely as possible with the mass centres of the radial/angular segments in Fig. 2.  

In Eq. (8): 

 𝐡𝑘 is a 2 × 1 force vector that contains the Coriolis and spin-softening effects; 

 𝐦𝑘 is a 3 × 1 moment vector that contains the centrifugal stiffening effect; 

 𝐠𝑘 is a 2 × 1 moment vector that contains the gyroscopic effect; 

 𝐡𝟎𝑘
 is a 2 × 1 force vector that is not vibration-dependent, unlike the above vectors.  

 𝐇𝐡𝑘
, 𝐇𝐦𝑘

, 𝐇𝐠𝑘
 are (speed-independent) modal matrices whose H columns are the mass-

normalised eigenvectors evaluated at the degrees of freedom associated with 𝐡𝑘, 𝐦𝑘, and 

𝐠𝑘 respectively. 

Expressions for the vectors 𝐡𝑘, 𝐡𝟎𝑘
, 𝐦𝑘, 𝐠𝑘 are derived in the following subsections. 
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2.2.1 Coriolis and Spin Softening Effects 

With reference to Fig. 1, the position vector of an arbitrary point P΄ that was at P prior to 

deformation is given by 

𝐫(𝑡) = (𝑅 + 𝑢(𝑡))𝐢′ + 𝑣(𝑡)𝐣′ + (𝑍0 + 𝑧(𝑡))𝐤 (9) 

where the unit vectors 𝐢′, 𝐣′ vary with time: 

d

d𝑡
(𝐢′) = 𝛺𝐤 × 𝐢′ = 𝛺𝐣′    ,      

d

d𝑡
(𝐣′) = 𝛺𝐤 × 𝐣′ = −𝛺𝐢′   (10a,b) 

Differentiating Eq. (9) twice with respect to time, and noting Eqs. (10a,b), results in: 

 �̈� = �̈�𝐢′ + �̈�𝐣′ + �̈�𝐤 − [(𝑅 + 𝑢(𝑡))𝛺2 + 2�̇�𝛺 + 𝑣(𝑡)�̇�]𝐢′ + [(𝑅 + 𝑢(𝑡))�̇� + 2�̇�𝛺 −

𝑣(𝑡)𝛺2]𝐣′ 

(11) 

Fig. 2. Blisk radial/angular divisions for rotational inertia effects, where a generic segment 

has mass centre P𝑘 and mass Δ𝑚P𝑘 (same nomenclature as Figure 1 but with P replaced by 

P𝑘 and Q replaced by Q𝑘, the shadow point of P𝑘 on axis of rotation). 
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𝜗P𝑘  

Q𝑘P𝑘 = 𝑅P𝑘  
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It is evident that the term 𝐡𝑘 + 𝐡𝟎𝑘
 in Eq. (8) is the inertial reaction (in Cartesian 

components) to the rotational acceleration terms in Eq. (11).  Hence, applying the 

transformation Eq. (6a) to the last two terms of Eq. (11), and denoting the mass of the 

radial/angular segment of P𝑘 as Δ𝑚P𝑘
, and relating Fig. 2 to Fig. 1, one obtains 

𝐡𝑘 + 𝐡𝟎𝑘
= Δ𝑚P𝑘

𝐓(𝜗P𝑘
) [

(𝑅P𝑘
+ 𝑢P𝑘

)𝛺2 + 2�̇�P𝑘
𝛺 + 𝑣P𝑘

�̇�

−(𝑅P𝑘
+ 𝑢P𝑘

)�̇� − 2�̇�P𝑘
𝛺 + 𝑣P𝑘

𝛺2
]   (12) 

from which 

 𝐡𝟎𝑘
= Δ𝑚P𝑘

𝐓(𝜗P𝑘
) [

𝑅P𝑘
𝛺2

−𝑅P𝑘
�̇�

] (13) 

Expressing the 𝑢, 𝑣 terms in Eq. (12) in terms of 𝑥, 𝑦 (using Eq. (6b)), and then the latter to 

modal coordinates, yields the following expression for 𝐡𝑘: 

 𝐡𝑘 = Δ𝑚P𝑘
𝐓(𝜗P𝑘

) {[
0 2𝛺

−2𝛺 0
]𝐓T(𝜗P𝑘

)𝐇𝐡𝑘
�̇� + [𝛺2 �̇�

−�̇� 𝛺2
] 𝐓T(𝜗P𝑘

)𝐇𝐡𝑘
𝐪} (14) 

Following Eq. (7a), the matrix 𝐇𝐡𝑘
 (used in Eq. (14) and Eq. (8)) is given by: 

 𝐇𝐡𝑘
=

[
 
 
 
 𝜓𝑥P𝑘

(1)
⋯ 𝜓𝑥P𝑘

(𝐻)

𝜓𝑦P𝑘

(1)
⋯ 𝜓𝑦P𝑘

(𝐻)

𝜓𝑧P𝑘

(1)
⋯ 𝜓𝑧P𝑘

(𝐻)

]
 
 
 
 

 (15) 
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2.2.2 Centrifugal Stiffening 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The centrifugal tension 𝑁P𝑘
 on a radial/angular segment with mass centre P𝑘 (𝑅P𝑘

, 𝜗P𝑘
, 𝑍0P𝑘

) 

of radial extent Δ𝑅P𝑘
 (see Fig. 3) is given by: 

Fig. 3. Modelling of centrifugal stiffening effect 

O 
𝜗P𝑘  

𝛺𝐤 𝑧 

P𝑘 

𝑥 

𝑦 

𝑍 
𝐤 

𝑅P𝑘  

𝜃𝑦P𝑘
 

𝜃𝑥P𝑘
 

 
𝜃𝑧P𝑘

 

 

𝑈 

𝑉 

𝑋 

𝑌 

𝜃𝑣P𝑘
 

𝑣 

(𝑗 = 1) 

(𝑗 = 2) 

(𝑗 = 3) 

Δ𝑅P𝑘  

𝑍0 

P𝑘 

Δ𝑅P𝑘  

𝑁P𝑘  

Δ𝑣 

𝜃𝑧𝑃𝑘
 

𝑉 𝑈 𝑅P𝑘  

𝑁P𝑘  

P𝑘 

Δ𝑅P𝑘  

𝑁P𝑘  

Δ𝑧 

−𝜃𝑣𝑃𝑘
 

𝑍 𝑈 𝑅P𝑘  

𝑁P𝑘  
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 𝑁P𝑘
= 𝛺2{∑ Δ𝑚𝑗𝑅𝑗

𝐽
𝑗=1 }|

𝑅1=𝑅𝑃𝑘

 (16) 

where the summation is applied to radial/angular segments of respective masses Δ𝑚𝑗  and 

radial positions 𝑅𝑗 , with mass centres at nodes located along the same angular and axial 

position of  P𝑘 (𝜗P𝑘
, 𝑍0P𝑘

), starting from P𝑘 (i.e. 𝑅1 = 𝑅P𝑘
) and proceeding radially outward.  

With reference to Fig. 3, let the deflections 𝑣, 𝑧 increase by Δ𝑣, Δ𝑧 respectively over the 

radial extent Δ𝑅P𝑘
.  The centrifugal tension 𝑁P𝑘

 stiffens the segment by inducing moments in 

the edge-wise (UV) and flap-wise (UZ) planes (𝑀𝑧P𝑘
, 𝑀𝑣P𝑘

 respectively) which oppose the 

corresponding angular deformations 𝜃𝑧P𝑘
, 𝜃𝑣P𝑘

: 

𝑀𝑧P𝑘
= −𝑁P𝑘

Δ𝑣 = −𝑁P𝑘
Δ𝑅P𝑘

Δ𝑣

Δ𝑅P𝑘

= −𝑁P𝑘
Δ𝑅P𝑘

𝜃𝑧P𝑘
 (17) 

𝑀𝑣P𝑘
= 𝑁P𝑘

Δ𝑧 = 𝑁P𝑘
Δ𝑅P𝑘

Δ𝑧

Δ𝑅P𝑘

= −𝑁P𝑘
Δ𝑅P𝑘

𝜃𝑣P𝑘
 (18) 

Considering Eq. (18) and applying the transformation of Eq. (6a) and then Eq. (6b): 

[
𝑀𝑥P𝑘

𝑀𝑦P𝑘

] = 𝑀𝑣P𝑘
[
−sin𝜗P𝑘

cos𝜗P𝑘

] = −𝑁P𝑘
Δ𝑅P𝑘

𝜃𝑣P𝑘
[
−sin𝜗P𝑘

cos𝜗P𝑘

]     

= −𝑁P𝑘
Δ𝑅P𝑘

(−𝜃𝑥P𝑘
sin𝜗P𝑘

+ 𝜃𝑦P𝑘
cos𝜗P𝑘

) [
−sin𝜗P𝑘

cos𝜗P𝑘

] 

(19) 

Hence, combining Eqs. (19) and (17), the centrifugal stiffening moment vector in Eq. (8) is 

given by: 

 𝐦𝑘 = −𝑁P𝑘
Δ𝑅P𝑘

�̌�(𝜗P𝑘
)[𝜃𝑥P𝑘

𝜃𝑦P𝑘
𝜃𝑧P𝑘]

T
= −𝑁P𝑘

Δ𝑅P𝑘
�̌�(𝜗P𝑘

)𝐇𝐦𝑘
𝐪 (20) 
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Where 

 �̌�(𝜗P𝑘
) = [

sin2𝜗P𝑘
−sin𝜗P𝑘

cos𝜗P𝑘
0

−sin𝜗P𝑘
cos𝜗P𝑘

cos2𝜗P𝑘
0

0 0 1

] (21) 

and, from Eq. (7b): 

 𝐇𝐦𝑘
=

[
 
 
 
 
 𝜓𝜃𝑥P𝑘

(1)
⋯ 𝜓𝜃𝑥P𝑘

(𝐻)

𝜓𝜃𝑦P𝑘

(1)
⋯ 𝜓𝜃𝑦P𝑘

(𝐻)

𝜓𝜃𝑧P𝑘

(1)
⋯ 𝜓𝜃𝑧P𝑘

(𝐻)

]
 
 
 
 
 

 (22) 

2.2.3 Gyroscopic Effects 

The angular momentum of a radial/angular segment with mass centre P𝑘 is given by 

 𝐋𝑘 = Δ𝐼P𝑘
𝛺 𝐧𝑘 (23) 

where Δ𝐼P𝑘
 is the moment of inertia of the segment about the nominal axis of rotation OZ 

(Fig. 1) and 𝐧𝑘 is a unit vector that is attached, and always perpendicular to, a local plane at 

P𝑘, where 𝐧𝑘 is originally parallel to OZ.  Due to deformation, 𝐧𝑘 is given by 

 𝐧𝑘 = 𝐤 + 𝐧def𝑘
(𝑡) (24) 

where 𝐧def𝑘
(𝑡)  is the variable part of 𝐧𝑘  due to its change in direction at a precession 

velocity of �̇�𝑥𝑃𝑘
𝐢 + �̇�𝑦𝑃𝑘

𝐣. 

  Hence 
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 �̇�𝑘 = Δ𝐼P𝑘
𝛺 �̇�𝑘 = Δ𝐼P𝑘

𝛺 (�̇�𝑥𝑃𝑘
𝐢 + �̇�𝑦𝑃𝑘

𝐣) × 𝐧𝑘 (25) 

Neglecting second order quantities from Eq. (25) by assuming 𝐢 × 𝐧𝑘 ≈ −𝐣 and 𝐣 × 𝐧𝑘 ≈ 𝐢, 

one obtains the gyroscopic moment reaction vector 𝐠𝑘 in Eq. (8) as: 

 𝐠𝑘 = −�̇�𝑘 = 𝛺 [
0 −Δ𝐼P𝑘

Δ𝐼P𝑘
0

] [
�̇�𝑥P𝑘

�̇�𝑦P𝑘

] = 𝛺 [
0 −Δ𝐼P𝑘

Δ𝐼P𝑘
0

]𝐇𝐠𝑘
�̇� (26) 

where, from Eq. (7b): 

 𝐇𝐠𝑘
= [

𝜓𝜃𝑥P𝑘

(1)
⋯ 𝜓𝜃𝑥P𝑘

(𝐻)

𝜓𝜃𝑦P𝑘

(1)
⋯ 𝜓𝜃𝑦P𝑘

(𝐻) ] (27) 

Notice that, for the simple case where the blisk is rigid and deformation only occurs in the 

shaft and/or bearings, the time-varying vectors 𝐧𝑘 across the blisk would all be in the same 

direction at any given instant, which means that the matrices 𝐇𝐠𝑘
 would be identical for all 

points P𝑘 on the (rigid) blisk. 

2.3 Calculation of modal angular displacements 

The eigenvectors computed from FE analysis using solid elements express the mode shapes 

in terms of the Cartesian translational deflections at the nodes i.e. (𝑥, 𝑦, 𝑧) and do not give 

angular deformation data i.e. (𝜃𝑥 ,𝜃𝑦 ,𝜃𝑧) . This section describes how the translational 

deflections of the mode shape are used to obtain the corresponding angular deformation data 

required for the matrices of Eqs. (22) and (27). 
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For each FE node corresponding to the centre of mass (P𝑘) of one of the blisk inertia sectors, 

three different FE nodes Q1, Q2, Q3 with respective coordinates (𝑋0Q𝑖
, 𝑌0Q𝑖

, 𝑍0Q𝑖
), 𝑖 = 1, 2, 3, 

are selected around P𝑘 such that they form a plane parallel to 𝑋𝑌 plane and containing P𝑘 as 

shown in Fig. 4. The normal vector 𝐧 of the plane is therefore parallel to the 𝑍-axis before 

deformation.  The 𝜃𝑥 , 𝜃𝑦  deformations at P𝑘  corresponding to known translational 

deformations at Q𝑖  (𝑥Q𝑖
, 𝑦Q𝑖

, 𝑧Q𝑖
) can be determined from the rotation of 𝐧 about the y and x 

axes: 

 𝜃𝑥P𝑘
 = −

𝑛𝑦

𝑛𝑧
      ,      𝜃𝑦P𝑘

=
𝑛𝑥

𝑛𝑧
 (28a,b) 

where      

𝐧 = 𝑛𝑥𝐢 + 𝑛𝑥𝐣 + 𝑛𝑥𝐤 = 𝐯12 × 𝐯32 (29a) 

𝐯12 = (𝑋Q1
− 𝑋Q2

) 𝐢 + (𝑌Q1
− 𝑌Q2

) 𝐣 + (𝑍Q1
− 𝑍Q2

)𝐤 (29b) 

𝐯32 = (𝑋Q3
− 𝑋Q2

) 𝐢 + (𝑌Q3
− 𝑌Q2

) 𝐣 + (𝑍Q3
− 𝑍Q2

)𝐤 (29c) 

Fig. 4. Local plane through segment mass centre P𝑘 formed by three adjacent nodes 

 

P𝑘 

𝐯12 

Q2 

Q1 

Q3 O 

𝐯32 

𝑋 
𝑍 

𝑌 
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𝑋Q𝑖
= 𝑋0Q𝑖

+ 𝑥Q𝑖
, 𝑌Q𝑖

= 𝑌0Q𝑖
+ 𝑦Q𝑖

, 𝑍Q𝑖
= 𝑍0Q𝑖

+ 𝑧Q𝑖
 (29d,e,f) 

The translational and angular deformations at nodes P𝑘  and Q𝑖  in response to a harmonic 

force 𝐹𝑧P𝑘
(𝑡) = Re {𝐹�̃�P𝑘

 ej𝜔𝑡}   applied at point P𝑘  in the 𝑧 -direction are given by the 

following receptance frequency response functions (FRFs): 

𝛼P𝑘P𝑘
(𝜔) =

�̃�𝑥P𝑘

�̃�𝑧P𝑘

= ∑
𝐴P𝑘P𝑘

(𝑟)

𝜛𝑟
2−𝜔2

𝐻
𝑟=1     ,      𝐴P𝑘P𝑘

(𝑟)
= 𝜓𝜃𝑥P𝑘

(𝑟)
𝜓𝑧P𝑘

(𝑟)
           (30a,b) 

𝛽P𝑘P𝑘
(𝜔) =

�̃�𝑦P𝑘

�̃�𝑧P𝑘

= ∑
𝐵P𝑘P𝑘

(𝑟)

𝜛𝑟
2−𝜔2

𝐻
𝑟=1     ,      𝐵P𝑘P𝑘

(𝑟)
= 𝜓𝜃𝑦P𝑘

(𝑟)
𝜓𝑧P𝑘

(𝑟)
                     (31a,b) 

𝛾Q𝑖P𝑘
(𝜔) =

�̃�Q𝑖

�̃�𝑧P𝑘

= ∑
𝐶Q𝑖P𝑘

(𝑟)

𝜛𝑟
2−𝜔2

𝐻
𝑟=1     ,      𝐶Q𝑖P𝑘

(𝑟)
= 𝜓𝑥Q𝑖

(𝑟)
𝜓𝑧P𝑘

(𝑟)
                     (32a,b) 

𝜎Q𝑖P𝑘
(𝜔) =

�̃�Q𝑖

�̃�𝑧P𝑘

= ∑
𝐷Q𝑖P𝑘

(𝑟)

𝜛𝑟
2−𝜔2

𝐻
𝑟=1     ,      𝐷Q𝑖P𝑘

(𝑟)
= 𝜓𝑦Q𝑖

(𝑟)
𝜓𝑧P𝑘

(𝑟)
          (33a,b) 

𝜀Q𝑖P𝑘
(𝜔) =

𝑧Q𝑖

�̃�𝑧P𝑘

= ∑
𝐸Q𝑖P𝑘

(𝑟)

𝜛𝑟
2−𝜔2

𝐻
𝑟=1     ,      𝐸Q𝑖P𝑘

(𝑟)
= 𝜓𝑧Q𝑖

(𝑟)
𝜓𝑧P𝑘

(𝑟)
                     (34a,b) 

where:  

 𝑥P𝑘
(𝑡) = Re {�̃�P𝑘

 ej𝜔𝑡}, ….etc, 𝜃𝑥P𝑘
(𝑡) = Re {�̃�𝑥P𝑘

 ej𝜔𝑡},…etc; 

 𝑥Q𝑖
(𝑡) = Re {�̃�Q𝑖

 ej𝜔𝑡}, ….etc,  (𝑖 = 1,2.3); 

 𝜛𝑟, 𝑟 = 1…𝐻, are the undamped natural circular frequencies. 

The only unknowns in Eqs. (30-34) are the modal angular deformations 𝜓𝜃𝑥P𝑘

(𝑟)
, 𝜓𝜃𝑦P𝑘

(𝑟)
, all 

other modal displacements being translational and output from FE analysis.  The values of 

𝜓𝜃𝑥P𝑘

(𝑟)
, 𝜓𝜃𝑦P𝑘

(𝑟)
are determined as follows. 
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1. Set 𝐹�̃�P𝑘
= 1. 

2. For a given excitation frequency 𝜔 , calculate the amplitudes �̃�Q𝑖
, �̃�Q𝑖

, �̃�Q𝑖
 (𝑖 = 1,2.3) 

from Eqs. (32-34). 

3. Determine the corresponding amplitudes �̃�𝑥P𝑘
, �̃�𝑦P𝑘

(and hence the FRFs 𝛼P𝑘P𝑘
(𝜔) , 

𝛽P𝑘P𝑘
(𝜔) on the left hand sides of Eqs. (30a), (31a)) using Eqs. (28) and (29) with 

𝑥Q𝑖
, 𝑦Q𝑖

, 𝑧Q𝑖
 replaced by �̃�Q𝑖

, �̃�Q𝑖
, �̃�Q𝑖

. 

4. Repeat steps 1-3 for excitation frequencies 𝜔 = 𝜔𝑛 , 𝑛 = 1…𝑁  (𝑁 > 𝐻)  thus 

determining the FRF values 𝛼P𝑘P𝑘
(𝜔𝑛), 𝛽P𝑘P𝑘

(𝜔𝑛) on the left hand sides of Eqs. (30a), 

(31a).  

5. Determine  𝐴P𝑘P𝑘

(𝑟)
 on the right hand side of Eq. (30a) by solving the least-squares 

problem: 

[
 
 
 
 
𝛼P𝑘P𝑘

(𝜔1)

𝛼P𝑘P𝑘
(𝜔2)

⋮
𝛼P𝑘P𝑘

(𝜔𝑁)]
 
 
 
 

𝑁×1

=

[
 
 
 
 
 
 
 

1

𝜛1
2 − 𝜔1

2

1

𝜛2
2 − 𝜔1

2 …
1

𝜛𝐻
2 − 𝜔1

2

1

𝜛1
2 − 𝜔2

2

1

𝜛2
2 − 𝜔2

2 …
1

𝜛𝐻
2 − 𝜔2

2

⋮ ⋮ … ⋮
1

𝜛1
2 − 𝜔𝑁

2

1

𝜛2
2 − 𝜔𝑁

2 …
1

𝜛𝐻
2 − 𝜔𝑁

2 ]
 
 
 
 
 
 
 

𝑁×𝐻

[
 
 
 
 𝐴P𝑘P𝑘

(1)

𝐴P𝑘P𝑘

(2)

⋮

𝐴P𝑘P𝑘

(𝐻)
]
 
 
 
 

𝐻×1

 (35) 

6. From Eq. (30b), determine 𝜓𝜃𝑥P𝑘

(𝑟)
. 

7. Determine 𝜓𝜃𝑦P𝑘

(𝑟)
 by repeating steps 5-6 for 𝐵P𝑘P𝑘

(𝑟)
 using Eqs. (31a) and (31b). 

A similar procedure is followed to obtain the modal angular deformations 𝜓𝜃𝑧P𝑘

(𝑟)
, with the 

following modifications: 

 The nodes Q1, Q2, Q3  are chosen to lie in a plane which is parallel to the 𝑌𝑍 plane. 
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 Equations (30), (31) are replaced by the FRF relating 𝐹�̃�P𝑘
 with 𝜃𝑧P𝑘

, and Eqs. (32-34) 

modified by replacing subscript “𝑧P𝑘
” with “𝑥P𝑘

”. 

 Replace Eq. (28) with the following formula: 

 𝜃𝑧P𝑘
=

𝑛𝑦

𝑛𝑥
 (36) 

2.4 Campbell Diagrams and Forced Response 

Substituting, Eqs. (13), (14), (20), and (26) into Eq. (8), results in the following modal 

equation: 

�̈� + {𝐂 + 𝛺(𝐆 + 𝐀1)}�̇� + {𝐃 + 𝛺2(𝐍 + 𝐀2) + �̇�𝐀3}𝐪 = 𝐇𝐟
T𝐟(𝑡) + 𝐚0(𝛺

2, �̇� ) (37) 

where the speed-independent matrices 𝐆, 𝐀1, 𝐍, 𝐀2, 𝐀3 respectively contain the gyroscopic, 

Coriolis, centrifugal stiffening, spin-softening and angular acceleration effects.  These 

matrices, along with the speed-dependent vector 𝐚0 are given by the following expressions. 

𝐆 = ∑{Δ𝐼P𝑘
𝐇𝐠𝑘

T [
0 1

−1 0
] 𝐇𝐠𝑘

}

P𝑘

 
(38) 

𝐀1 = −2∑ {Δ𝑚P𝑘
𝐇𝐡𝑘

T 𝐓(𝜗P𝑘
) [

0 1
−1 0

]𝐓T(𝜗P𝑘
)𝐇𝐡𝑘

}

P𝑘

 
(39) 

  

𝐍 = ∑{Δ𝑅P𝑘
 �̂�P𝑘

𝐇𝐦𝑘
T �̌�(𝜗P𝑘

)𝐇𝐦𝑘
}

P𝑘

 , �̂�P𝑘
= {∑ Δ𝑚𝑗𝑅𝑗

𝐽

𝑗=1
}|

𝑅1=𝑅𝑃𝑘

 
(40a,b) 
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𝐀2 = −∑{Δ𝑚P𝑘
𝐇𝐡𝑘

T 𝐓(𝜗P𝑘
) [

1 0
0 1

]𝐓T(𝜗P𝑘
)𝐇𝐡𝑘

}

P𝑘

 
(41) 

𝐀3 = −∑{Δ𝑚P𝑘
𝐇𝐡𝑘

T 𝐓(𝜗P𝑘
) [

0 1
−1 0

] 𝐓T(𝜗P𝑘
)𝐇𝐡𝑘

}

P𝑘

 
(42) 

𝐚0(𝛺
2, �̇� ) = ∑{Δ𝑚P𝑘

𝐇𝐡𝑘

T 𝐓(𝜗P𝑘
) [

𝑅P𝑘
𝛺2

−𝑅P𝑘
�̇�

]}

P𝑘

 
(43) 

2.4.1 Campbell Diagrams 

The undamped natural frequencies and mode shapes at a given speed are found by setting 

�̇� = 0 and solving the eigenvalue problem associated with the homogeneous form of Eq. 

(37): 

�̈� + {𝐂 + 𝛺(𝐆 + 𝐀1)}�̇� + {𝐃 + 𝛺2(𝐍 + 𝐀2)}𝐪 = 𝟎 (44) 

In order to solve the eigenproblem, the state space format of Eq. (44) is used: 

[
𝐈𝐻 𝟎
𝟎 𝐈𝐻

]
d

d𝑡
[
𝐪T

�̇�T] + [
𝟎 −𝐈𝐻

{𝐃 + 𝛺2(𝐍 + 𝐀2)} {𝐂 + 𝛺(𝐆 + 𝐀1)}
] [

𝐪T

�̇�T] = 𝟎  

or          𝐈2𝐻�̇� + 𝐁𝐬 = 𝟎 

(45) 

where the state vector 𝐬 = [𝐪T �̇�T]T and 𝐈𝐻 is an 𝐻-square identity matrix. 

Let    𝐬 = 𝐜e𝜆𝑡 and substituting in Eq. (45): 
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(𝜆𝐈2𝐻 + 𝐁)𝐜 = 𝟎 (46) 

The above eigenvalue problem is solved for a given speed using the eig.m function in Matlab 

[42].  Using a range of speeds, the natural frequencies are calculated at each speed (from the 

imaginary part of the eigenvalues 𝜆) and the Campbell diagram is plotted. 

2.4.2 Forced Response 

The system in Eq. (37) is cast in state-space format 

�̇� = 𝛘(𝐬, 𝑡) (47a) 

where 𝐬 = [𝐪T �̇�T]T and the vector function 𝛘 is 

𝛘 = [
𝟎 𝐈𝐻

−{𝐃 + 𝛺2(𝐍 + 𝐀2) + �̇�𝐀3} −{𝐂 + 𝛺(𝐆 + 𝐀1)}
] 𝐬 + 𝐇𝐟

T𝐟(𝑡) + 𝐚0(𝛺
2, �̇� )  (47b) 

The time domain response to a prescribed excitation 𝐟(𝑡) (e.g. travelling wave chirp signal 

[42]), under arbitrary time-varying speed condition 𝛺(𝑡), is then found by solving Eq. (47) 

using any one of the numerical integration routines in the ode suite of Matlab [46].  The 

dynamic response in the rotating XYZ frame (Fig. 1) is then given by Eq. (2) i.e. Δ𝐮(def).  

From this, the absolute coordinates of any subset of FE nodes can be determined using Eq. 

(1).  For use in the BTT simulator of [42,45], Eq. (47) is solved in Simulink and used in 

conjunction with Eqs. (1), (2), and the Hit Crossing block, to determine the blade tip timing 

values (as done previously with the state-space form of Eq. (3) [42]). 

2.5 Inclusion of Shaft Deflection – Extension to Shaft-Blisk System 

The effect of the deflection of point Q in Figure 1 is now considered. Let Q move to a point 

Q΄.  The position vector of the deformed position P΄ of P (Eq. (9)) is now rewritten as: 
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𝐫(𝑡) = 𝑋
Q′
(in)

(𝑡)𝐢(in) + 𝑌
Q′
(in)

(𝑡)𝐣(in) + (𝑅 + 𝑢(𝑡) − 𝑢Q′(𝑡)) 𝐢′ + (𝑣(𝑡) − 𝑣Q′(𝑡)) 𝐣′

+ (𝑍0 + 𝑧(𝑡))𝐤 

(48) 

where 

𝑋
Q′
(in)

(𝑡)𝐢(in) + 𝑌
Q′
(in)

(𝑡)𝐣(in) ≡ 𝑢Q′(𝑡)𝐢′ + 𝑣Q′(𝑡)𝐣′ 

is the transverse component of the position vector of Q΄, and hence the transverse deflection 

of Q.  The position vector 𝐫(𝑡) of P΄ in Eq. (48) can be written as 

𝐫(𝑡) = 𝑋(in)(𝑡)𝐢(in) + 𝑌(in)(𝑡)𝐣(in) + (𝑍0 + 𝑧(𝑡))𝐤    (49) 

where the absolute coordinates 𝑋(in)(𝑡), 𝑌(in)(𝑡) of the deformed position of P, P΄ are 

[
𝑋(in)(𝑡)

𝑌(in)(𝑡)
] = [

𝑋
Q′
(in)

(𝑡)

𝑌
Q′
(in)

(𝑡)
] + 𝐓(𝜑(𝑡)) [

𝑅cos𝜗
𝑅sin𝜗

] + 𝐓(𝜑(𝑡)) [
𝑥(𝑡) − 𝑥Q′(𝑡)

𝑦(𝑡) − 𝑦Q′(𝑡)
] (50) 

 

The modal matrices of the shaft-blisk system at zero-speed are used for transformation to the 

modal coordinate vector 𝐪(𝑡): 

[
𝑋

Q′
(in)

(𝑡)

𝑌
Q′
(in)

(𝑡)
] = [

𝜓𝑥Q

(1)
⋯ 𝜓𝑥Q

(𝐻)

𝜓𝑦Q

(1)
⋯ 𝜓𝑦Q

(𝐻)
] 𝐪(𝑡)    (51) 

 

[
𝑥(𝑡) − 𝑥Q′(𝑡)

𝑦(𝑡) − 𝑦Q′(𝑡)
] = {[

𝜓𝑥
(1)

⋯ 𝜓𝑥
(𝐻)

𝜓𝑦
(1)

⋯ 𝜓𝑦
(𝐻)] − [

𝜓𝑥Q

(1)
⋯ 𝜓𝑥Q

(𝐻)

𝜓𝑦Q

(1)
⋯ 𝜓𝑦Q

(𝐻)
]} 𝐪(𝑡)  (52) 

In Eq. (50), the transformation matrix 𝐓 is defined in Eq. (6c) and 𝜑(𝑡) is the rigid rotation.  

Hence, the simulator equation (1) is extended to a shaft-blisk system as follows 
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Δ𝐮(def)(𝑡) = 𝐓aug
−1 (𝜑(𝑡))𝐇Q𝐪(𝑡) + (𝐇P − 𝐇Q)𝐪(𝑡) (53) 

 

𝐇P, as before, is the modal matrix for points on the blisk, and 𝐇Q the modal matrix of their 

companion points on the shaft centreline (as per Figure 1), both matrices evaluated from 

modal analysis of the system at zero speed with the blisk in its reference angular position. 

The above equations mean that the following two modifications A, B to the analysis of the 

previous sections are necessary to extend it shaft-blisk systems. 

A.  The expression for 𝐇𝐡𝑘
 in Eq. (15) is replaced by the following 

𝐇𝐡𝑘
= [

𝜓𝑥P𝑘

(1)
⋯ 𝜓𝑥P𝑘

(𝐻)

𝜓𝑦P𝑘

(1)
⋯ 𝜓𝑦P𝑘

(𝐻)
] − [

𝜓𝑥Q𝑘

(1)
⋯ 𝜓𝑥Q𝑘

(𝐻)

𝜓𝑦Q𝑘

(1)
⋯ 𝜓𝑦Q𝑘

(𝐻)
] (54) 

where Q𝑘 is the shaft centreline counterpart to point P𝑘 on the blisk (see Figure 2; note that 

there will be multiple points Q𝑘 all coinciding with the same point on the shaft centreline, as 

many as there are points P𝑘 in a given plane normal to shaft centreline). 

B.  A modal parametric excitation term 𝛒 is added to Eqs. (8) and (37): 

𝛒(𝜑(𝑡), 𝐪, �̇�, �̈�, 𝛺, �̇�) = 

∆𝐌(𝜑(𝑡))�̈� + 𝛺 ∙ ∆𝐀1(𝜑(𝑡))�̇� + 𝛺2 ∙ ∆𝐀2(𝜑(𝑡))𝐪 + �̇� ∙ ∆𝐀3(𝜑(𝑡))𝐪 + ∆𝐚0(𝜑(𝑡), 𝛺2, 𝛺 )

           (55) 

where ∆𝐌, ∆𝐀1, ∆𝐀2, ∆𝐀3, ∆𝐚0 are time-varying matrices. 

Modification A is evident by comparing the last three terms in Eq. (48) to Eq. (9).  

Modification B is the result of the first term in Eq. (48), which means that the system now has 



27 
 

a deformable part that does not rotate (this part is defined by the collective of points Q 

originally along OZ in Figure 1). 

  Adding Eq. (55) to Eq. (37), results in the following equations of motion for the shaft-blisk 

system: 

�̈� + {𝐂 + 𝛺(𝐆 + 𝐀1)}�̇� + {𝐃 + 𝛺2(𝐍 + 𝐀2) + �̇�𝐀3}𝐪 

= 𝐇𝐟
T𝐟(𝑡) + 𝐚0(𝛺

2, �̇� ) + 𝛒(𝜑(𝑡), 𝐪, �̇�, �̈�, 𝛺, �̇�) 

(56) 

where all modal parameters belong to the shaft-blisk system at zero speed.  In other works on 

shaft-blisk systems e.g. Santos et al. [44], the first four terms of 𝛒 in Eq. (55) are incorporated 

with the corresponding terms on the left hand side of the equations of motion, rather than 

collected on the right hand side as above.  The derivation of expressions for the terms of 𝛒 is 

outside the scope of this paper. 

 𝛒 is only zero for 𝜑,𝛺, �̇� = 0.  For 𝛺  constant (i.e. �̇� = 0), 𝛒 is periodic and introduces 

parametric excitation into the system.  In this condition, the coefficients of 𝐪, �̇�, �̈� in Eq. (56) 

are not constant matrices and eigenvalue analysis for the Campbell diagrams cannot be 

performed since this requires constant matrices.  However, in this paper, the parametric 

excitation effect is not considered.  Hence, the eigenvalue analysis for Campbell diagrams for 

the rotor-blisk system is performed at any fixed speed 𝛺  as before (section 2.4.1), with 

modification A (above) but with the parametric term 𝛒 omitted. The same thing was done by 

Ma et al. [2] and Chun and Lee [18], who did eigenvalue analysis of the rotor-blisk system 

equations but did not declare the omission of any periodically varying terms in the matrices 

(in fact, there is no mention of parametric excitation in these papers).  The Campbell 

diagrams so generated in these references [2,18] are indeed verified by the present analysis 
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(sections 3.4.2 and 3.5).  Forced vibration analysis is done as in section 2.4.2 merely to cross-

check the resulting resonances with the results of the Campbell diagram. 

If 𝛒 is not omitted, rather than generating Campbell diagrams via eigenvalue analysis, one 

generates waterfall diagrams (WDs) by integrating for the time domain responses of Eq. (56) 

over a range of fixed speeds 𝛺 and then taking their Fast Fourier Transforms (FFTs), as done 

by Santos et al. [44].  The researchers [44] considered a simple model of a rotor-blades 

assembly, where the rotor was mounted with lateral flexibility to simulate shaft deflection. 

The external excitation consisted of a rotating unbalance (via term ∆𝐚0 in Eq. (55)) and 

impulses applied to either a blade or the rotor.  The WDs all contained frequencies 𝛺.  The 

WDs of the rotor lateral vibration (in an inertial coordinate frame, Figures 5, 7 in reference 

[44]) additionally showed frequencies of the form  𝜔𝑛 ± 𝛺 , where 𝜔𝑛 is one of the natural 

frequencies of the shaft-blades system at zero speed.  Such parametric vibration frequencies 

were not evident in the WDs of the blades response (in a rotating coordinate frame, Figures 6, 

8 in reference [44]), which showed variation in one of the natural frequencies that appears to 

be similar to the variation on a Campbell diagram obtained as discussed above (i.e. excluding 

𝛒).  This justifies, to a certain extent, the approach taken in this paper, as well as in references 

[2, 18].  It should be noted that the researchers [44] also considered gravitational forces, as 

well as nonlinearity (which are not considered here). 

3. VALIDATION 

This section presents a number of examples of shaft-disk-blades assemblies considering one 

or more of the rotational effects. All assemblies are modelled and analysed using the method 

presented in the previous section, and the results are correlated against analytical or 

experimental results from the literature, or results from commercial FE software.  
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The examples considered are presented in Table 1.  Example #0 is not actually about 

rotational effects, but about the effective stiffness variation induced by a longitudinal load on 

a beam.  It therefore serves as a preliminary verification of the accuracy of the original 

approach introduced in section 2.2.2 for considering the centrifugal stiffening effect. For 

examples #3a, #3b and #4, which are shaft-blisk systems, the parametric excitation effect is 

omitted, as per last two paragraphs of section 2.5. 

Table 1: Examples used for model validation 

Example Effects considered Validation Source 

0 
Longitudinal load on beam 

(preliminary check for Example 1) 
Shaker, 1975 [47] 

1 Centrifugal Stiffening Chen et al., 2016 [39] 

2 Coriolis forces Ruffini et al, 2015 [32] 

3a 
Gyroscopic moment – effect of disk 

flexibility 
ANSYS FE software 

3b 
Gyroscopic moment – example from 

literature 

Chun and Lee, 1996 [18]/ 

Zhang et al, 1994 [48] 

4 
Gyroscopic, Coriolis, Spin Softening, 

Centrifugal Stiffening 
Ma et al, 2015 [2] 

 

3.1 Example # 0 – Longitudinal Load on Beam (Table 1, preliminary check for section 

2.2.2) 

Fig. 5 shows a rectangular-section cantilever beam ( 𝑏 = 5ℎ ) subjected to a constant 

longitudinal force.  Using an analytical approach, Shaker [47] calculated the natural 

frequencies of the beam for a range of force values (tension and compression). 
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With the proposed method, for an applied load of 𝑄 (𝑄 > 0 for compression), Eqs. (44) and 

(40a,b) are modified as follows: 

�̈� + {𝐃 + 𝐍mod}𝐪 = 𝟎 (57) 

𝐍mod = ∑{Δ𝑅P𝑘
   �̂�P𝑘mod

𝐇𝐦𝑘
T �̌�(𝜗P𝑘

)𝐇𝐦𝑘
}

P𝑘

 ,   �̂�P𝑘mod
= −𝑄 

(58a,b) 

It is seen from Eqs. (58a,b) that Eqs. (40a,b) were modified to allow for a compressive load 

that is constant for all segments (and not varying as in centrifugal forces). 200 divisions 

(points P𝑘) were used for accuracy.  From Fig. 5 and Fig. 3, 𝜗P𝑘
= 0 in Eq. (21).  The basis 

modes used in the matrices 𝐃 and 𝐇𝐦𝑘
 pertain to the undamped modes of the given cantilever 

at zero longitudinal load.  The number of basis modes = 10 i.e. 5 modes were used for each 

bending plane XZ and XY.  The basis modes in each plane were calculated using exact 

formulas for natural circular frequencies and mass normalized mode shapes of the cantilever 

at zero longitudinal load (found in [49]), such that Eqs. (4), (5) are given by 

𝐃 = diag([𝜛𝑌𝑌1
𝜛𝑍𝑍1

𝜛𝑌𝑌2
𝜛𝑍𝑍2

⋯⋯]) (59) 

Fig. 5. Example 0 - Cantilever beam subjected to axial load 

𝑏 

ℎ 
𝑋 

𝑌 

𝑍 

𝐿 
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Fig. 6. Example 0 - natural frequencies vs axial load (𝑋𝑍 − plane)  

1st 

2nd 

3rd 

𝐇𝐦𝑘
=

[
 
 
 
 
 

0 0 0 0 ⋯⋯

−
d𝜙𝑍

(1)

d𝑋
0 −

d𝜙𝑍
(2)

d𝑋
0 ⋯⋯

0
d𝜙𝑌

(1)

d𝑋
0

d𝜙𝑌
(2)

d𝑋
⋯⋯]

 
 
 
 
 

 (60) 

 

where 𝜛𝑌𝑌𝑖
, 𝜙𝑍

(𝑖)
 denote the natural circular frequency and translational mode shape for i

th
 

bending mode of the cantilever in the XZ plane (i.e. bending about YY neutral axis) at zero 

longitudinal load, and 𝜛𝑍𝑍𝑖
, 𝜙𝑌

(𝑖)
  denote similar quantities for the XY plane. 
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Fig. 7. Example 0 - natural frequencies vs axial load (𝑋𝑌 − plane) 

1st 

2nd 

3rd 
 

 

 

 

 

 

 

 

 

 

The eigenvalue problem defined by Eq. (57) was then solved for each given value of 𝑄 

within a wide range.  The eigenvalue problem yields natural frequencies for bending in each 

plane XZ, XY.  Fig. 6 shows the variation of the first three natural frequencies for bending in 

the XZ plane with 𝑄 𝑄cr𝑌𝑌
⁄  and Fig. 7 shows the variation of the first three natural 

frequencies for bending in the XY plane with 𝑄 𝑄cr𝑍𝑍
⁄  and where 𝑄cr𝑌𝑌

 , 𝑄cr𝑍𝑍
 respectively 

denote the first critical buckling loads of the cantilever in the XZ, XY planes: 

𝑄cr𝑌𝑌,𝑍𝑍
=

𝜋2𝐸𝐼𝑌𝑌,𝑍𝑍

(2𝐿)2
         (61) 

where 𝐿  is the length and 𝐸𝐼𝑌𝑌 , 𝐸𝐼𝑍𝑍  denote the flexural rigidity in the XZ, XY planes 

respectively.  As per theory in [50], for either plane, the first natural frequency goes to zero 

when  𝑄 𝑄cr⁄ = 1  (first critical buckling load), while the second one becomes zero at 
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Fig. 8. Example 0 - non-dimensional frequencies of axially loaded cantilever beam (XZ-plane) 

1st 

2nd 

3rd 

𝑄 𝑄cr⁄ = 9 (second critical buckling load), and the third frequency goes to zero at 𝑄 𝑄cr⁄ =

25 (third critical buckling load). Fig. 8 shows the variation of the non-dimensional natural 

frequency 𝜆𝑖
2  in 𝑋𝑍 plane (𝜆𝑖

2 = 𝜔𝑌𝑌𝑖
𝐿2√

𝑚

𝐸𝐼𝑌𝑌
 where 𝜔𝑌𝑌𝑖

 is the i
th

 natural circular frequency 

in the XZ plane under load and m the mass per unit length).  Fig. 8, as well as Fig. 6, and Fig. 

7, show that the method presented in this paper accurately reproduces the analytical model 

results presented in [47]. 

 

 

 

 

 

 

 

 

 

 

 

3.2 Example # 1 – Centrifugal Stiffening (Table 1) 

In this example, a simple blade model consisting of a cantilever beam of rectangular cross 

section (Fig. 9) is used to validate the ability of the present method to calculate the natural 
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frequencies of the rotating beam under the effect of centrifugal stiffening. The results are 

compared to those obtained by Chen et al. [39] in 2016, who used a variational iteration 

method to study the flapwise vibration of rotating uniform Euler-Bernoulli beams. Non-

dimensional natural frequencies were calculated in [39] and so, the dimensions of the beam 

are assumed as shown in Fig. 9, and the material properties of the beam are assumed as 

follows: density 7800 kg m3⁄ , Young Modulus 210 GPa, and Poisson ratio 0.28. 

 

 

 

 

 

Using the present method, the matrices 𝐂, 𝐆, 𝐀1, 𝐀2 in Eq. (44) were set to zero.  The matrix 

𝐍 is as given by Eqs. (40a,b) with 𝜗P𝑘
= 0 and the number of divisions (points P𝑘) set to 500 

(the hub radius was taken to be zero).  Only the flapwise (XZ plane) modes were of interest 

since only these were considered in [39].  Hence, the matrices  𝐃 and 𝐇𝐦𝑘
 were a reduced 

form of Eqs. (50), (51) using only modes in the XZ plane: 

𝐃 = diag([𝜛𝑌𝑌1
𝜛𝑌𝑌2

⋯ ⋯]) (62) 

𝐇𝐦𝑘
= [

0 0 ⋯⋯

−
d𝜙𝑍

(1)

d𝑋
−

d𝜙𝑍
(2)

d𝑋
⋯⋯

0 0 ⋯⋯

] (63) 

Fig. 9. Example 1 - Blade model used in [39] 

15 

5 

𝑧 

𝑦 

500 𝑚𝑚 

𝑥 

𝑧 

Flapwise 

bending 
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A total of 𝐻 = 10 modes were used in the above equations.  The data in the matrices  𝐃 and 

𝐇𝐦𝑘
, were evaluated using the exact formulas given in [49].   

Following [39], the natural frequencies solutions from the eigenproblem of Eq. (44) were 

converted to non-dimensional natural frequencies �̃�𝑌𝑌𝑖
 corresponding to the non-dimensional 

rotational speed �̃�: 

 �̃�𝑌𝑌𝑖
= 𝜔𝑌𝑌𝑖

𝐿2√
𝑚

𝐸𝐼𝑌𝑌
 , 𝑖 = 1,2…,      �̃� = 𝛺𝐿2√

𝑚

𝐸𝐼𝑌𝑌
 (64a,b) 

 

Non-dim. 

speed 

1
st
 frequency 2

nd
 frequency 3

rd
 frequency 

ref [39] Present %error ref [39] Present %error ref [39] Present %error 

0 3.516 3.516 0 22.0345 22.0345 0 61.6972 61.6972 0 

3 4.7973 4.8001 0.058 23.3203 23.325 0.020 62.985 62.9889 0.006 

6 7.3604 7.3672 0.092 26.8091 26.8273 0.068 66.684 66.7013 0.026 

12 13.1702 13.1873 0.130 37.6031 37.6728 0.185 79.6145 79.697 0.104 

 

Table 2 presents a comparison with the results published in [39], where good agreement is 

demonstrated (maximum error 0.19%). The Campbell diagram of the first three flap-wise 

frequencies is presented in Fig. 10.  The simulation time to generate this diagram was only 20 

sec. 

The above procedure was repeated using FE (with solid elements) to determine the zero-

speed modal data in matrices  𝐃 and 𝐇𝐦𝑘
.  The resulting Campbell diagram (Fig. 11) was 

virtually identical to that in Fig. 10, but took much longer to generate (35 min), time taken to 

find the closest FE nodes to each P𝑘 point, in order to calculate angular displacement modal 

data from the FE translational displacement modal data for each of the 500 divisions using 

Table 2: Natural frequencies of blade model 
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the method of section 2.3.  If beam elements were used in the FE, rather than solid elements, 

the method of section 2.3 would not be required (since beam elements have angular degrees 

of freedom).  Table 3 shows that the maximum discrepancy relative to [39] increases to 1% 

since solid elements do not use the Euler-Bernoulli model of [39]. 

 

 

 

 

 

 

 

 

 

 

 

Nondim. 

speed 

1
st
 frequency 2

nd
 frequency 3

rd
 frequency 

Ref [39] Present %error Ref [39] Present %error Ref [39] Present %error 

0 3.516 3.5172 0.034 22.0345 21.9499 -0.384 61.6972 61.0543 -1.042 

3 4.7973 4.814 0.348 23.3203 23.2662 -0.232 62.985 62.3351 -1.032 

6 7.3604 7.3943 0.461 26.8091 26.845 0.134 66.684 66.0295 -0.982 

12 13.1702 13.2362 0.501 37.6031 37.9795 1.001 79.6145 79.108 -0.636 

Table 3: Natural frequencies of blade model (using zero-speed modal data from FE) 

Fig. 10. Example 1 - Campbell diagram of blade model (using zero-speed modal data derived from analytical 

expressions) 

1st 

2nd 

3rd 
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Fig. 11. Example 1 - Campbell diagram of blade model using zero-speed modal data derived from FE  

1st 

2nd 

3rd 

Fig. 12. Example 1 - forced response of blade model 
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A chirp excitation force was applied at one of the free end nodes in the Z-direction under 

variable speed conditions such that the excitation frequency was a fixed ratio (Engine Order, 

EO) of the rotational speed  𝛺(𝑡): 

𝑓(𝑡) = 𝐴 sin [EO (𝛺i𝑡 + (
𝛺f − 𝛺i

2𝑇s
) 𝑡2)] (65) 

where 𝛺i, 𝛺f are the values of the initial and final angular speeds over a duration 𝑇s.  Fig. 12 

shows the simulator response (as per section 2.4.2) for 𝐴 = 1  and EO = 3   (i.e. “3EO 

excitation”) and 𝑇s = 3 sec, 𝜁𝑟 = 0.05  (Eq. (5)), where it is seen that the resonance speeds 

agree with the results from Campbell diagram. 

3.3 Example # 2 – Coriolis Forces (Table 1) 

Fig. 13 shows a blisk which was specially designed by Ruffini et al. [32] in 2015 for 

experimental and numerical (FE) analysis of Coriolis effects. It is modelled and analysed 

again here using the proposed method and the results are validated against the published 

results in [32]. 

 

 

 

 

 

 

 

X 

Y 

Z 

Fig. 13. Example 2: specially designed blisk for Coriolis effects validation, as used in [32] 
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As shown in Fig. 13, the blades are bent 90° (out-of-plane). According to authors of [32] this 

increased the Coriolis-induced frequency splits as much as possible in order to have distinct 

travelling wave modes.  Such a design also minimised the effects of mistuning which could 

otherwise lead to frequency splits that overshadow the Coriolis effects.  The horizontal 

leaning of the blades also makes centrifugal stiffening not noticeable [32]. 

Detailed dimensions and boundary conditions of the model were not available in [32], so a 

number of attempts have been made with different dimensions until accurate natural 

frequencies of the non-rotating blisk were obtained.  The zero-speed modal data were 

obtained by ANSYS with the nodes along the periphery of the central hole and the small 

holes assumed fixed.  The number of degrees of freedom used for zero-speed modal data  

computation was 662337.  

In Eq. (44), all the matrices were set to zero except D and A1. The number of basis modes 

𝐻 = 10.  The number of rotational inertia divisions (points P𝑘) used in this matrix (Eq. (39)) 

was 54.  Each blade divided into a 3 divisions in axial direction (not radial, due to their bent), 

and the disk inertia was divided into 30 divisions [See Appendix A]. 

The Campbell diagram generated using the new method is shown in Fig. 14 for mode nos. 1 

to 7 over the speed range 0-500 rpm.  The simulation time was only 10 sec.   The 

experimental results obtained in [32] are reproduced in Fig. 14 and good correlation with the 

predictions is evident, proving the validity of the new method. The critical speeds for single 

engine order are shown in Table 4. 

 

Mode # 1 2 3 4 5 

Critical speed (rev/s) 148.9 156.8 174.2 192.15 258.7 

Table 4: Critical speeds (current method) 
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Fig. 14. Example 2 - Campbell diagram of the blisk specially designed for Coriolis effects 

1st 
2nd 

3rd 

4th 

5th 

6th 

7th 

Fig. 15. Example 2 - forced response of the blisk specially designed for Coriolis effects 
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A chirp excitation force was applied at one of the blade tips (normal to the blade) under 

variable speed condition, as per Eq. (56).  Fig. 15 shows the simulator response (as per 

section 2.4.2) for 𝐴 = 1 and EO = 1 and 𝑇s = 4 sec , 𝜁𝑟 = 0.05  (Eq. (5)).  The resonance 

speeds agree with the Campbell diagram results with small percentages of errors since the 

response is transient and not strictly steady-state. 

3.4 Example # 3a,b – Gyroscopic Effect 

3.4.1 Example # 3a – Gyroscopic moment – effect of disk flexibility (Table 1) 

 

 

 

 

 

 

 

The model shown in Fig. 16 consists of a disk with 4 blades positioned at the end of a 

cantilevered shaft. It is therefore subjected to gyroscopic coupling which leads to splits in 

frequencies with increasing rotational speed. The model was created using SolidWorks and 

ANSYS, the material used was steel with 7850 kg/m3  density and 200 GPa  elasticity 

modulus. The disk is considered bonded to the shaft, and the number of DOF used to generate 

the zero-speed modal data was 134217. 

Fig. 16. Example 3a - blisk supported by free-fixed shaft 



42 
 

The first five zero-speed natural frequencies and mode shapes are shown in Fig. 17 and Table 

5. It is clear from Fig. 17 that modes 1, 2, 4, and 5 are bending modes, so they are more likely 

to be affected by gyroscopic moments (resulting in frequency splits). 

 

 

 

 

 

 

 

 

 

 

 

 

Mode # 1 2 3 4 5 

Natural frequency (Hz) 171 171 231 611 611 

Another modal analysis was carried out using the rotordynamics analysis facility in ANSYS 

over a rotational speed range 0-600 rev/s, and the Campbell diagram was extracted as shown 

Table 5: Natural frequencies blisk supported by free-fixed shaft at zero speed 

1 2 3 

4 5 

 

X 

Z 

Y 
X 

Z 

Y 

X 

Z 

Y 

Fig. 17. Example 3a -  zero-speed mode shapes of blisk supported by free-fixed shaft  
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in Fig. 18. In this ANSYS analysis, the gyroscopic effect was activated on its own (without 

Coriolis and spin softening effects added) by applying the CORIOLIS command in a 

stationary reference frame [40]. 

 

 

 

 

 

 

 

 

 

 

As expected, Fig. 18 shows that modes 1, 2, 4, and 5 are affected by gyroscopic moments due 

to bending of both shaft and disk. Frequency splitting was high for modes 4 and 5 due to the 

bending of the disk. As seen from Fig. 18, for 1 EO excitation (i.e. EO = 1, Eq. (56)), only 

four critical speeds exist in the selected range of speeds and these are listed in Table 6. 

 

Mode # 1 2 3 4 5 

Critical speed (rev/s) 143.9 205.8 230.7 421.5 - 

Table 6 Critical speeds (1 EO excitation) of blisk supported by free-fixed shaft  (ANSYS rotordynamics solver). 

1st 

2nd 

2nd 
3rd 

3rd 

4th 

5th 

Fig. 18. Example 3a - Campbell diagram of rotating blisk supported by free-fixed shaft using 

ANSYS rotordynamic solver. 
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The Campbell diagram was then generated by the new method, as per section 2.4.1, using the 

zero-speed modal data (Fig. 17).  All the matrices in Eq. (44) were set to zero except 𝐃 and 

𝐆. The number of basis modes 𝐻 = 5.  Initially, the blisk was assumed to be rigid as far as 

the gyroscopic effect was concerned i.e. the matrices 𝐇𝐠𝑘
 were assumed identical for all 

points P𝑘 on the (rigid) blisk, as explained under Eq. (27) i.e. the modal displacements 𝜓𝜃𝑥P𝑘

(𝑟)
, 

𝜓𝜃𝑦P𝑘

(𝑟)
were all equal to the values at hub (i.e. were purely due to the flexibility of the shaft).  

The resulting Campbell diagram (Fig. 19) correlates well with the ANSYS result only for 

mode nos. 1 and 2 (where the bending is mainly in the shaft, Fig. 17), and of course mode 3 

(not affected by gyroscopic effect since it is torsional, Fig. 17).  For modes 4 and 5 (where 

the zero-speed modes are dominated by flexibility of the disk, Fig. 17), Fig. 19 shows that the 

Campbell diagram by the new method with rigid gyroscopic effect assumption is in 

disagreement with the ANSYS rotordynamics solver result.  This observation is also evident 

when comparing the critical speeds predicted by the new method (rigid disk gyroscopic effect 

assumption) with those from the ANSYS rotordynamics solver (Table 7), where the errors are 

low except for the fourth critical speed (28.7%). 

 

Mode # 1 2 3 4 5 

Critical speed (rev/s) 146.8 208.5 230.5 542.5 - 

% discrepancy from ANSYS 

rotordynamics solver 

2 1.3 -0.1 28.7 - 

Fig. 20 shows the result of the Campbell diagram analysis by the new method when 

flexibility of the disk is considered (i.e. the matrices 𝐇𝐠𝑘
 were allowed to be different for 

Table 7: Critical speeds (1 EO excitation) of blisk supported by free-fixed shaft (new method, rigid 

assumption for disc gyroscopic effect) 
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different points P𝑘 on the blisk).  In this case, 42 inertia subdivisions (Fig. 2) were used for 

the blisk [See Appendix A]. It is evident that the correlation between the Campbell diagrams 

of the ANSYS rotordynamics solver and the proposed method (Fig. 20) for mode nos. 4 and 5 

is considerably improved relative to previous result (Fig. 19).  Table 8 shows that the error in 

4
th

 critical speed becomes just 1.8%.  Errors in mode 1
st
 and 2

nd
 critical speeds slightly 

increased due to errors in the calculations of the angular modal displacements from the 

translational modal displacements by the vector product method of section.  

 

 

 

 

 

 

 

 

 

 

An important advantage of the new method is the ability to produce the Campbell diagram 

(including gyroscopic effect with disk flexibility) in less than 1 minute with high resolution 

(1000 points) compared to about 2 hrs for just 11 points using ANSYS rotordynamic solver. 

Fig. 19. Example 3a - Campbell diagram of rotating blisk supported by free-fixed shaft using the 

proposed method with gyroscopic effect based on rigid disc assumption. 

1st 

2nd 

2nd 

3rd 

3rd 

4th 

5th 
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Mode # 1 2 3 4 5 

Critical speed (rev/s) 148.3 198.1 230.4 429.3 - 

% discrepancy from ANSYS 

rotordynamics solver 

3 -3.7 -0.1 1.8 - 

 

3.4.2 Example # 3b – Gyroscopic moment – example from literature (Table 1) 

A model of a flexible shaft supported by 2 rigid bearings and a bladed disk of 8 blades shown 

in Fig. 21 was analysed by Chun and Lee in 1996 [18]. In their analysis, the supports were 

Table 8: Critical speeds (1 EO excitation) of flexible blisk supported by free-fixed shaft (new method, 

gyroscopic effect with blisk flexibility) 

Fig. 20. Example 3a - Campbell diagram of rotating flexible blisk supported by free-fixed shaft using 

the proposed method with gyroscopic effect based on flexible blisk. 

1st 

2nd 

2nd 

3rd 

3rd 

4th 

5th 
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modelled as pivots (i.e. the bearing flexibility was neglected), the shaft was modelled as a 

beam of different cross-sections, the disk as a uniform circular plate, and the blades as 

uniform rectangular beams.  For the case referred to as “model 1” in [18], the blades had no 

pre-twist and no stagger, and the results were validated against FE and experimental results 

published by Zhang et al. in 1994 [48].  The same case shall be analysed in this section by the 

method of this paper. 

 

 

 

 

 

 

 

 

The material properties used for the assembly are: density 7850 kg m3⁄ , Young Modulus 

210 GPa, and Poisson ratio 0.28.  The zero-speed modal data were generated by ANSYS 

using solid elements and the natural frequencies are listed in Table (9), along with the 

corresponding results of  [18] and [48]. 

The Campbell diagram was generated using the present method as shown in Fig. 22.  All the 

matrices in Eq. (44) were set to zero except 𝐃 and 𝐆, and the number of basis modes 𝐻 = 8.  

54 inertia subdivisions (Fig. 2) were used for the blisk [See Appendix A].  The Campbell 

diagram generated by the present method agrees fairly well with that published in [18]. 

Fig. 21.  Example 3b: a model of a bladed disc carried by shaft supported by 2 rigid 

bearings, as considered in [18]. 

𝑌 



48 
 

 

Method 

Natural frequency (Hz) 

1 2 3 4 

FE [present work] 46.8 46.8 61.3 61.3 

Analytical [18] 47.17 47.17 59.92 59.92 

FE [48] 46.0 46.0 60.15 60.15 

Experimental [48] 48.0 48.0 - - 

 

 

 

 

 

 

 

 

 

 

 

Table 9: Zero-speed natural frequencies 

Fig. 22. Example 3b - Campbell diagram of system in Figure 21 using proposed method. 

1st 

2nd 
3rd 

4th 
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A travelling wave excitation was then applied to the blade tips under a steadily increasing 

speed condition and at fixed engine order (EO).  In this type of excitation, the force on the tip 

of blade no. n is given by [51]: 

𝑓𝑛(𝑡) = 𝐴 sin [EO (𝛺i𝑡 + (
𝛺f − 𝛺i

2𝑇s
) 𝑡2) +

2𝜋𝑛𝑁𝑑

𝑁b
] (66) 

where 𝑁b is the total number of blades, and 𝑁𝑑 is the number of nodal diameters.  Fig. 23 

shows the simulator response (as per section 2.4.2) at one of the blade tips in the x-direction 

for 𝐴 = 1  and EO = 1  and 𝑇s = 2 sec  , 𝜁𝑟 = 0.05   (Eq. (5)).  The figure shows that the 

resonances due to the excitation of the first, second, and third modes agree with the first three 

critical speeds (for 1EO excitation) indicated in Fig. 22. 

 

 

 

 

 

 

 

 

 

 

Fig. 23. Example 3b – Forced response of system in Figure 20 using proposed method. 
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3.5 Example # 4 – Gyroscopic, Coriolis, Spin Softening, Centrifugal Stiffening 

The system shown in Fig. 24 was first solved for the modal data by Ma et al. [2] in 2015. 

They examined the effects of rotation analytically, numerically (FE), and experimentally. Not 

all natural frequencies were validated experimentally, so only those validated by experiments 

will be considered here. In their analytical analysis the authors in [2] used Hamilton’s 

principle in conjunction with the assumed modes method. 

 

 

 

 

 

 

 

 

The system consists of a stepped circular cross-section shaft supported by two bearings (with 

equal stiffness in the vertical and horizontal direction 1.5 × 107 N/m) carrying a disk with 

four blades, the material is the same for all components (density 7800 kg m3⁄ , Young 

Modulus 200 GPa ). SolidWorks and ANSYS used to create the FE model for the zero-speed 

data. The mesh was refined on all blades and the outer surface of disk in order to improve the 

results, and the total number of degrees of freedom was 1800858.  The boundary conditions 

were as follows: both ends of the shaft were constrained from axial motion; left hand end 

constrained from torsional motion. Fig. 25 shows the mode shapes of the system at zero 

Fig. 24. Example 4 - rotating assembly considered in [24]  

X 

Y 

Z 

Y 
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speed, as obtained by ANSYS.  The zero-speed natural frequencies are presented in Table 10 

where they are also compared with the results published in [2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 

4 5 6 

7 8 9 

Fig. 25. Example 4 - mode shapes of the non-rotating assembly. 
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X 
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Mode 1 2 3 4 5 6 7 8 9 

FE [present] (Hz) 121.7 133.8 133.8 266.5 266.5 364.3 365 365 370.4 

FE [2] (Hz) 117.4 132.9 132.9 269.6 269.6 364.7 365.4 365.4 370.7 

Experimental [2] (Hz) - 129.3 129.3 258 258 361.3 364.7 368 372 

 

The zero-speed modal data were then used in the proposed method in order to generate 

Campbell diagram as per section 2.4.1. The number of basis modes 𝐻 = 9.  The number of 

inertia divisions is 42 [See Appendix A]. First, only the gyroscopic effects were considered, 

as shown in Fig. 26. It is clear that the affected modes were those featuring some inclination 

of the disk (Fig. 25): the 2
nd

, 3
rd

 modes (slightly affected) and the 4
th

, 5
th

 modes (highly 

affected). This agrees with what was reported in [2]. 

 

 

 

 

 

 

 

 

 

Table 10: Natural frequencies of the non-rotating assembly. 

1st  

2nd, 3rd 

5th  

6th, 7th, 8th, 9th  

3rd  
1st  

4th  

5th  

6th, 7th, 8th, 9th  

2nd   

Fig. 26.  Example 4 - Campbell diagram with gyroscopic effect only. 
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Fig. 28. Example 4 - Campbell diagram with spin with softening effect only. 

1st  

2nd, 3rd  

4th, 5th  4th, 5th  

6th, 7th, 8th, 9th  

6th, 7th, 8th, 9th  

Fig. 27. Example 4 - Campbell diagram with Coriolis effect only. 

4th, 5th  

6th, 7th, 8th, 9th  

2nd, 3rd  

1st  
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Secondly, the effects of Coriolis only (Fig. 27) and spin-softening only (Fig. 28) were 

examined. It is clear that in case of Coriolis, no modes are affected, which justifies the 

assumption made in [2] of neglecting Coriolis.  In case of spin-softening, mode nos. 2-5 are 

unaffected, which justifies another assumption made in [2] that spin-softening effects came 

only from the blades (the affected modes 1, 6-9 involve little or no bending vibration in either 

shaft or disc, as per zero-speed modes in Figure 25).  

The 3
rd

 trial included the centrifugal stiffening effects, where the effects of the individual 

components (𝑀𝑥, 𝑀𝑦, 𝑀𝑧) of the centrifugal stiffening moment 𝐦𝑘 (Eq. (20) were examined. 

By examining the zero-speed mode shapes in Fig. 25, it is clear that mode no. 6 is the only 

mode affected by 𝑀𝑥, and mode no. 4 is the only mode affected by 𝑀𝑦.  The modes affected 

by 𝑀𝑧  are mode nos. 1, 6-9.  Hence, considering all three components of 𝐦𝑘 , all modes 

would be affected except for the 2
nd

 and 3
rd

, as shown in Fig. 29. 

6th, 7th, 8th, 9th  

6th, 7th, 8th, 9th  

1st  

2nd, 3rd  2nd, 3rd  

4th, 5th  

1st  

Fig. 29.  Example 4 - Campbell diagram with centrifugal stiffening effect only. 
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The last step was to consider all effects at the same time and comparing them to theoretical 

results published in [2].  The same assumptions made in [2] were applied to the rotational 

inertia matrices (Eqs. (38-41)). These have been shown to be consistent with the previous 

results in Figures 26-29 and are summarised as follows: 

- Gyroscopic effects were assumed to come only from shaft and disk, i.e. the 

gyroscopic effect from the blade inertia was ignored in [2]. 

- The disk was assumed to be rigid in [2]. 

- Centrifugal stiffening and spin-softening effects were assumed to come only from the 

blades in [2]. 

- The Coriolis effect was ignored in [2]. 

 

 

 

 

 

 

 

 

 

 

 

 

The resulting Campbell diagram in Fig. 30 is found to be in a good agreement with that 

published in [2]. 

Fig. 30. Example 4 - Campbell diagram with all rotational effects included. 

6th, 7th, 8th, 9th  

5th  

4th  

1st  

2nd, 3rd  

1EO  



56 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31. Forced response (first critical speed) 

Fig. 32. Forced response (second and third critical speeds) 
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The Campbell diagram in Fig. 30 was generated in just 1 or 2 minutes, depending on how 

many speed steps were required. To do the same analysis with ANSYS rotordynamics solver, 

the PRESTRESS command should be used for centrifugal stiffening and spin softening, and 

CORIOLIS command should be activated in modal analysis for the gyroscopic effect. Such 

an analysis was found to take a very long time, since it required, for each speed value, a 

separate analysis to generate the solution. This further validates the new method proposed in 

this paper. 

 

 

 

 

 

 

 

 

 

 

 

The critical speeds with respect to a 1 EO excitation (i.e. EO = 1, Eq. (56)),  are identified in 

Fig. 30 and presented in Table 11. 

 

Fig. 33. Steady state Forced response around the first critical speed 
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Mode # 1 2 3 

Critical speed (rev/sec) 120.15 133.5 171.7 

 

Fig. 31 and Fig. 32 show the forced responses at two different blades tips in x-direction due 

to a chirp excitation at one of the blades tips nodes (normal to the blade) under variable speed 

condition, as per Eq. (56) with 𝐴 = 1 and EO = 1 and 𝑇s = 5 sec , 𝜁𝑟 = 0.05  (Eq. (5)).  The 

resonance frequencies agree with the critical speeds listed in Table 11. However, there are 

slight errors in their values, since the response is transient and not strictly steady-state.  In 

order to confirm that, the simulation was repeated at a number of fixed speed values 𝛺𝑘 

around the first critical speed (i.e. in Eq. (56), 𝛺i = 𝛺f = 𝛺𝑘) so that the system reaches 

steady-state for each 𝛺𝑘.  The results are plotted in Fig. 33 for first critical speed,  confirming 

the agreement between the forced response and the Campbell diagram. 

CONCLUSIONS 

This paper has introduced a novel methodology to include rotational effects (centrifugal 

stiffening, Coriolis forces, spin softening and gyroscopic moments) in a generic shaft-blisk 

system, using zero-speed modal data.  The method does not require additional FE analysis at 

each speed or the derivation of equations from first principles.  This research was motivated 

by the need to upgrade a shaft-blisk simulator designed to generate blade tip timing (BTT) 

data for the development and validation of BTT algorithms.  To ensure computational 

efficiency, the dynamic response of the existing simulator was governed by modal equations 

based on the eigenvectors and eigenvalues of the FE analysis at zero-rotational speed.  The 

upgraded simulator equations remained based on the same speed-independent eigenvectors 

Table 11: Critical speeds (1 EO excitation) for Campbell diagram of Fig. 30 
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since the rotation-induced inertia effects were introduced as “external” excitations at discrete 

locations.  The methodology was progressively validated using six examples, its accuracy 

checked against results from the literature and commercial software.  A notable observation is 

the high computational speed in generating a Campbell diagram for gyroscopic effects on a 

flexible disk, or for centrifugal effects, where the new method was found to deliver the 

diagram with high resolution (1000 points) over a wide speed range (0 rpm to 60000 rpm) in 

a few minutes, compared to a few hours taken by commercial FE rotordynamics software.  

Such computational speed is essential for the generation of BTT data by the simulator under 

forced conditions, since the process of determining the blade passing time (past a given 

probe) involves multiple calculations in the integration process for the forced response 

(including revisions in the time step) [42]. Future research will focus on the inclusion of the 

parametric excitation term (Eq. (55)) arising from the shaft vibration. 
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APPENDIX A 

With reference to Fig. 2, the disc is divided into 𝑁𝑟 radial segments of constant thickness, 

each radial segment is divided into 𝑁𝑎 angular segments, and each blade is divided into 𝑁𝑏𝑟 

radial segments. 

Polar moment of inertia 

For the blade segment shown in Fig. A.1: 
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 ∆𝐼 = ∫ 𝑟2𝜌𝑡𝑏 𝑑𝑟
𝑟o

𝑟𝑖
= 𝜌𝑡𝑏 (

𝑟3

3
)
𝑟𝑖

𝑟𝑜
=

𝜌𝑡𝑏

3
(𝑟𝑜

3 − 𝑟𝑖
3) (A.1) 

where 𝑡, 𝜌 are the thickness and density respectively. 

 

 

 

 

 

 

For the disc segment shown in Fig. A.2. 

       ∆𝐼 = ∫ 𝑟2𝑟𝑜

𝑟𝑖
𝜌𝑡(2𝑟𝛼)d𝑟 = 2𝜌𝑡𝛼 ∫ 𝑟3𝑟𝑜

𝑟𝑖
d𝑟 =

𝜌𝑡𝛼

2
(𝑟𝑜

4 − 𝑟𝑖
4) (A.2) 

 

 

𝑟𝑜  
𝑟 

𝑟𝑐  
𝑟𝑖  

𝑑𝑟 
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𝜃𝑐  

Fig. A.1. Blade division element 
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Fig. A.2. Disk division 

element 



61 
 

𝑟𝑐  

𝑐 
= − − + 

ℎ 

𝑟 
𝑟𝑐  

𝑐 

𝛼 

𝑏 

𝑟 𝑟𝑐  

𝑐 

𝛼 

a) 

b) 
c) 

Fig. A.3. Centre of mass of disk divisions 

Centre of mass 

The position of the centre of mass of each segment (denoted by P𝑘  in the main text) is 

determined by two components (angular and radial).  In the case of a blade segment no. i: 

𝜃𝑐𝑖
= 𝜃𝑐1

+ 2𝛼b(𝑛𝑖 − 1)      ,        𝑛𝑖 = 1,2, …… . , 𝑁b (A.3) 

where 𝜃𝑐𝑖
 is the angle of the segment no. 𝑖 centre measured from the positive 𝑥 −axis, 𝜃𝑐1

 is 

the angle of first blade, 𝛼b is the angular difference between consecutive blades assuming 

that the first blade is in line with the positive 𝑥 −axis, and 𝑁b is the total number of blades. 

The radial position of segment centre is 

 𝑟𝑐𝑖
=

𝑟𝑖+𝑟𝑜

2
 (A.4) 

Where 𝑟𝑖 and 𝑟𝑜 are the inner and outer radii of the segment. 
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In the case of a disc segment no. i: 

𝜃𝑐𝑖
= 𝜃𝑐1

+ 2𝛼𝑑(𝑛𝑖 − 1)      ,        𝑛𝑖 = 1,2, …… . , 𝑁𝑎 (A.5) 

where 𝛼𝑑 is the angular difference between every two angular segments of the disc, and 𝑁𝑎 is 

the total number of angular divisions. In order to obtain 𝑟𝑐𝑖
, the segment is divided into 4 

parts, as shown in Fig. A.3(a). 

For segments 1 and 3 shown in Fig. A.3(b) 

 ℎ = 𝑟 cos 𝛼,    𝑏 = 2𝑟 sin 𝛼              𝛼 is half the segment angle (A.6) 

 𝐴 = 𝑏 𝑟 cos(𝛼) /2 = 𝑟2 sin 𝛼 cos 𝛼 (A.7) 

 𝑟𝑐 =
2

3
𝑟 (A.8) 

For segments 2 and 4 shown in Fig. A.3(c) 

 𝐴 =
1

2
𝑟2(2𝛼 − sin 2𝛼) (A.9) 

 𝑟𝑐 =
4𝑟(sin𝛼)3

3(2𝛼−sin(2𝛼))
 (A.10) 

Finally, the radius of the segment’s centre of mass is calculated as 

 𝑟𝑐𝑖
=

𝐴1𝑟𝑐1+𝐴2𝑟𝑐2−𝐴3𝑟𝑐3+𝐴4𝑟𝑐4

𝐴1+𝐴2−𝐴3+𝐴4
 (A.11) 
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APPENDIX B (Table of Nomenclature) 

A1 Coriolis effect matrix 

 A2 Spin softening matrix 

 A3 Angular acceleration matrix 

 C Modal damping matrix 

 D Diagonal matrix containing the squares of the natural frequencies  

 𝐸𝐼 The flexural rigidity of a beam 

EO Engine Order 

 𝐹𝑧P𝑘
(𝑡) A harmonic force 

 f(𝑡) Vector of external dynamic excitation forces  

 G Gyroscopic effect matrix 

 g𝑘  2 × 1 moment vector containing the gyroscopic effect 

H Number of modes used in transformation 

Hg𝑘
, Hh𝑘

, 

Hm𝑘
 

Zero-speed modal matrices whose H columns are the mass-normalised 

eigenvectors evaluated at the degrees of freedom associated with g𝑘, h𝑘, and m𝑘 

respectively 

HP, Hf Zero-speed modal matrices. 

h𝑘  2 × 1 force vector of the Coriolis and spin-softening effects 

 h0𝑘
  2 × 1 vibration-independent rotational force vector 

i, j, k Unit vectors parallel to axes X, Y, Z (Fig.1) 

i′, j′ Unit vectors parallel to U, V (Fig. 1) 

i(in), j(in)  Unit vectors parallel to axes  𝑋(in), 𝑌(in) (Fig. 1) 

𝐿 Beam length 

 L𝑘 Angular momentum of a segment with mass centre P𝑘 

𝑀𝑧P𝑘
, 

𝑀𝑣P𝑘
 

Induced moments in the edge-wise (UV) and flap-wise (UZ) planes due to the 

centrifugal tension 𝑁P𝑘
 

m Mass per unit length 

m𝑘 A 3 × 1 moment vector of the centrifugal stiffening effect 

 N Centrifugal stiffening matrix 

 𝑁P𝑘
 The centrifugal tension on a segment with mass centre P𝑘 of radial extent Δ𝑅P𝑘

 

 ndef𝑘
(𝑡) The variable part of n𝑘 due to its change in direction 
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 n𝑘 A unit vector originally parallel to k 

 𝑄cr The critical buckling load of the cantilever 

 q(𝑡) The 𝐻 × 1 vector of modal coordinates  

R, 𝑅P𝑘
 radial coordinate of P, P𝑘 in rotating frame XY (Fig. 1, 2) 

 r The position vector of an arbitrary point P΄ that was at P prior to deformation 

 s State vector 

T  2 × 2 coordinate transformation matrix (eq. (6c)) 

Taug  Augmented form of T for all degrees of freedom in a vector 

 𝑇s Duration 

𝑢, 𝑣 Deflections of P in UV frame (Fig. 1, 2) 

 u(𝑡) 3𝑁 × 1 vector containing the instantaneous absolute coordinates of a subset of 

FE nodes Q𝑛 (𝑛 = 1…𝑁) 

 u(rgd)(𝑡) The absolute blade tip positions due to rotation of the blisk as a rigid body 

 Δ𝐼P𝑘
 The moment of inertia of the segment about the nominal axis of rotation OZ 

 Δ𝑚P𝑘
 The mass of the segment with mass centre at P𝑘 (Fig. 2) 

Δu(def)(𝑡) Dynamic response to excitation (eq. (1)) 

Δu(off)(𝑡) Prescribed steady shift  

X, Y Coordinates in rotating frame (Fig. 1, 2) 

𝑋(in), 

𝑌(in) 

Coordinates in inertial frame (Fig. 1, 2) 

Z Coordinate along axis of rotation 

𝑋0, 𝑌0, 𝑍0 Coordinates of undeformed position in frame XYZ (Fig. 1) 

x, y, z Local deformations in a rotating frame 

𝜑(𝑡) Rigid rotation of blisk 

 𝜁𝑟 Modal damping ratio 

𝜗, 𝜗P𝑘
 Angular coordinate of P, P𝑘 in rotating frame XY (Fig. 1, 2) 

𝜃𝑥, 𝜃𝑦, 𝜃𝑧 The angular deformations about the respective local Cartesian axes, of a vector n 

that is attached, and always perpendicular to, a local plane at the undeformed 

position of point P 

 𝜆 Eigenvalue 

 𝛺 Angular velocity 

𝛺i, 𝛺f  Initial and final angular velocities 
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 𝜔 Excitation frequency 

 𝜛𝑟 Undamped natural circular frequencies at 𝛺 = 0, 𝑟 = 1…𝐻 
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