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Abstract: Bulk graphitic carbon nitride (CN) was synthetized by heating of melamine at 550 ◦C, and
the exfoliated CN (ExCN) was prepared by heating of CN at 500 ◦C. Sulfur-doped CN was synthesized
by heating of thiourea (S-CN) and by a novel procedure based on the post-synthetic derivatization of
CN with methanesulfonyl (CH3SO2

−) chloride (Mes-CN and Mes-ExCN). The obtained nanomaterials
were investigated by common characterization methods and their photocatalytic activity was tested
by means of the decomposition of acetic orange 7 (AO7) under ultraviolet A (UVA) irradiation. The
content of sulfur in the modified CN decreased in the sequence of Mes-ExCN > Mes-CN > S-CN. The
absorption of light decreased in the opposite manner, but no influence on the band gap energies was
observed. The methanesulfonyl (mesyl) groups connected to primary and secondary amine groups
were confirmed by high resolution mass spectrometry (HRMS). The photocatalytic activity decreased
in the sequence of Mes-ExCN > ExCN > CN ≈Mes-CN > S-CN. The highest activity of Mes-ExCN
and ExCN was explained by the highest amounts of adsorbed Acetic Orange 7 (AO7). In addition,
in the case of Mes-ExCN, chloride ions incorporated in the CN lattice enhanced the photocatalytic
activity as well.
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1. Introduction

Graphitic carbon nitride is a semiconducting nanomaterial that has been intensively studied during
the last decade owing to its interesting properties such as high thermal, chemical, and photochemical
stability [1,2]. Another important feature of carbon nitride (CN) is absorption of visible light as a result
of band gap energy of 2.7 eV (459 nm), which is promising for various applications including solar
cells’ fabrication [3], imaging, biotherapy, sensing of some compounds [4–7], and so on. However,
most of the applications have been directed in the field of photocatalysis [8–13].

Besides these positive and useful properties, the serious shortcoming of CN is fast recombination of
photoinduced electrons and holes, which has been solved by the formation of heterojunction composites
with metal oxides, inorganic salts noble metals, and so on [13–16]. Recently, we have investigated the
heterojunction composites of CN with TiO2 [17,18], WO3 [19,20], SnO2 [21], BiVO4 [22,23], BiOIO3 [24],
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ZnO [25], and graphene oxide [26]. Another possibility is the formation of heterojunction composites
of pure and doped CN.

The doping with metal and/or non-metal elements allows us to tune band gap energy and to
enhance absorption of visible light, physico-chemical, and photocatalytic properties. The topic of
CN doping has been well described in several review papers [6,27,28]. Especially, doping with
environmental-friendly non-metals, such as S, O, P, and N, is an interesting research topic that has
been investigated at present [6,27,28]. There are a lot of papers dealing with the S-doping of CN in
the literature. The common way is the synthesis of CN from sulfur-rich organic compounds, such as
benzyl disulphide [29], thiourea [30–36], trithiocyanuric acid [37–40], elemental sulfur [41], H2S [42],
and sulfuric acid [43].

Unlike these synthesis procedures from S-containing precursors, our new approach was based on
the post-synthetic derivatization of already prepared bulk and exfoliated CN [44] with suitable highly
reactive chemical agents having sulfur in their structure such as mesyl chloride. To the best of our
knowledge, this is the first post-synthetic approach to S-dope CN, and no such synthetic strategy has
been reported in the literature yet. Some modifications of CN with various organic compounds were
referred to in the literature, but not in terms of the mesyl derivatization [45,46].

As already mentioned, thiourea is one of the often-used sulfur precursors and, therefore, such
prepared S-doped CN was used as a comparative nanomaterial. All new nanomaterials were prepared
and their properties were studied by means of common characterization and the photocatalytic
decomposition of the commonly utilized dye Acid Orange (AO7).

2. Materials and Methods

2.1. Chemicals

All used chemicals were of analytical-reagent grade. Melamine and Acid Orange 7 were
purchased from Sigma-Aldrich (Darmstadt, Germany), and thiourea was purchased from Merck
(Darmstadt, Germany). Triethylamine (Penta, Czech Republic) and 1,4-dioxane (Lachner, Czech
Republic) were dried by molecular sieves prior to reaction, and mesyl chlorid (Sigma-Aldrich) was
used without additional purification. Distilled water was used for the preparation of all solutions
and post-synthetic washing. The structures of melamine and AO7 are presented in Supplementary
Materials (Figures S1 and S2).

2.2. Preparation of Bulk and S-Doped CN

Bulk CN was prepared by heating melamine at 550 ◦C for 4 h with the heating rate of 3 ◦C min−1

in a ceramic crucible with a lid (diameter 5 cm, 30 mL) in a muffle furnace. The crucible was cooled
down out of the furnace to ambient temperature and then grounded in an agate mortar to a fine
powder. S-doped bulk CN was prepared under same conditions as bulk CN. The only difference
was that thiourea was used as a precursor instead of melamine. The content of sulfur in S-CN was
determined by the X-ray fluorescence spectroscopy (XRF) (SPECTRO Xepos, SPECTRO Analytical
Instruments GmbH, Kleve, Germany) and elemental analysis; see Table 1.

Table 1. Elemental composition of carbon nitride (CN)-based nanomaterials. XRF, X-ray fluorescence
spectroscopy; EA, elemental analysis; CI, confidence interval.

Nanomaterials C (%) H (%) N (%) S (XRF/EA) (%) Cl (%)

CN 34.54 1.72 62.31 — —
ExCN 33.42 1.87 60.42 — —
S-CN 34.06 1.74 61.15 0.22/n.d. —

Mes-CN 35.43 2.20 56.36 0.26/0.34 1.43
Mes-ExCN 33.39 1.80 60.20 0.56/0.70 3.33

Note: n.d.—not determined.
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2.3. Exfoliation of Bulk CN

Exfoliated CN was performed by heating the bulk CN [44] in a thin layer on a ceramic plate
(diameter 8 cm, 50 mL) at 500 ◦C in the muffle furnace for 2 h with the heating rate of 10 ◦C min−1. The
ceramic plate with the product was cooled down to ambient temperature out of the oven.

2.4. Derivatization of Bulk and Exfoliated CN

The bulk and exfoliated CN (10 g) were suspended in dry 1,4-dioxane (100 mL) under inert
atmosphere and triethylamine was added, and the suspension was cooled down in a cooling bath
(water/ice) to ca. 10 ◦C. Then, mesyl chloride (50 mL, 0.73 mol) was added sequentially and the mixture
was diluted by addition of 1,4-dioxane (50 mL). The cooling bath was removed and the reaction mixture
was stirred at room temperature overnight. Then, the mixtures were quenched by addition of distilled
water (ca. 20 mL) and the products were filtered off using a paper filter and washed with water
(ca. 1000 mL) until neutral pH (according to pH-test strips). The content of sulfur in S-CN, Mes-CN,
and Mes-ExCN was determined by the X-ray fluorescence spectroscopy (SPECTRO Xepos, SPECTRO
Analytical Instruments GmbH Kleve, Germany) and elemental analysis (EA); see Table 1.

2.5. Ion-Exchange of Mes-ExCN with Hydroxide

First, 0.15 g of Mes-ExCN was added into 150 mL of NaOH (1 mmol/L) and stirred on a magnetic
stirrer for 4 h. Then, the suspension was filtered through a membrane filter (0.6 µm), washed with
200 mL of water, and dried at 70 ◦C overnight. The solid product was used for the photocatalysis.

2.6. Elemental Analysis

The elemental analysis of C, N, and H in the prepared CN-based nanomaterials was performed
using a Flash 2000 Elemental analyser (ThermoFisher Scientific, Waltham, MA, USA). The content of
chlorine was determined by the Schöniger combustion method followed by the argentometric titration
of chloride.

2.7. UV/Vis Diffuse Reflectance Spectroscopy

The UV/vis diffuse reflectance spectra (DRS) in the range of 220–1400 nm were recorded using a
spectrophotometer Shimadzu UV-2600 (IRS-2600Plus) at laboratory temperature. Reflectance data
were re-calculated to absorbance ones using Schuster–Kubelka–Munk’s equation F(R∞) as follows:

F(R∞) =
(1−R∞)

2

2R∞
, (1)

where R∞ is the diffuse reflectance from a semi-infinite layer. The obtained DRS spectra were
transformed to the dependencies of (F(R∞)·hν)2 on hν in order to obtain the optical band gap energies
of the prepared nanomaterials.

2.8. FTIR-ATR Spectroscopy

Fourier transform infrared spectroscopy with (FTIR) was measured using the Nicolet iS50 device
(Thermo Scientific, Waltham, MA, USA). The spectra were collected in the Attenuated total reflection
(ATR) mode using a diamond ATR crystal. The spectra were collected in the wavenumber range of
400–4000 cm−1, and 32 scans were averaged. The ATR correction followed by baseline subtracting was
applied on each spectrum using the OMNIC software (Waltham, MA USA).

2.9. X-Ray Diffraction

The phase composition and microstructural properties of the prepared nanomaterials were
determined using the X-ray powder diffraction (XRD) technique. XRD patterns were obtained using a
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(Rigaku SmartLab diffractometer Rigaku, Tokyo, Japan) with a detector D/teX Ultra 250. A source of
X-ray irradiation was a Co tube (CoKα, λ1 = 0.178892 nm, λ2 = 0.179278 nm) operated at 40 kV and
40 mA. The XRD patterns were collected in a 2θ range of 5–90◦ with a step size of 0.01◦ and speed of
0.5 deg min−1. The crystallite size L was calculated according to Scherrer´s equation for broadening
B(2θ) (in radians) at a half maximum intensity (FWHM) of a diffraction peak as

B(2Θ) =
Kλ

LcosΘ
, (2)

where λ is the wavelength of X-rays, θ is Bragg´s angle, and K is the constant equal to 0.94 for cube or
0.89 for spherical crystallites. In this study, K was rounded to 0.9.

2.10. TEM Analysis

Transmission electron microscopy (TEM) was performed with a JEOL 2100 microscope with
(Jeol Ltd., Tokyo, Japan) a LaB6 electron gun. The accelerating voltage of 200 kV was applied.
Micrographs were taken by a camera Tengra (EMSIS GmbH, Münster, Germany). For the TEM
analysis, the samples were prepared by suspending in ethanol and were then sonicated for 5 min.
One drop of this suspension was placed on a copper grid with a holey carbon film and was dried at
room temperature.

2.11. Specific Surface Area Measurements

The specific surface area (SSA) of each nanomaterial was measured by a device SORPTOMATIC
1990 series (Thermo Scientific, Waltham, MA, USA). SSA was determined by the analysis of N2

adsorption isotherm at −196 ◦C by means of the Brunauer–Emmett–Teller (BET) method.

2.12. XPS Analysis

The superficial elemental analyses of the samples were carried out by means of an X-ray
photoelectron spectrometer (XPS) ESCA 3400 (Kratos) with a base pressure in the analysis chamber of
~5.0 × 10−7 Pa. Electrons were excited with an Mg Kα radiation (hν = 1253.6 eV) generated at 12 kV
and 10 mA. For all spectra, the Shirley background was subtracted. Peaks in all spectra ascribed to the
sp2 hybridized nitrogen (C=N-C) were set to 398.8 eV as a charge correction.

2.13. High Resolution Mass Spectrometry (HRMS) Analysis

High resolution mass spectra were obtained by means of a MicrOtofIII spectrometer
(Bruker Daltonik, Bremen, Germany) with Atmospheric pressure chemical ionization (APCI) ionization
in a positive mode. Before the measurement, the samples were wetted with methanol and delivered
into an APCI source in the solid state using a direct glass capillary inlet. The setting of the ion source
was as follows: capillary—4000 V, end plate—500 V, corona—3000 nA, nebulizer (N2)—1 Bar, dry gas
(N2)—4 L/min, temperature—drying 350 ◦C, and vaporizer—400 ◦C. The HRMS spectra were taken in
the m/z range of 50 to 1550 Da with the low mass of 50 m/z and collision RF of 400 Vpp. The spectra
were processed using the Compass Data Analysis 1.5 software (Bruker Daltonik, Bremen, Germany).
The accurate mass scale was calibrated using ESI-L Low Conc. Tuning Mix (Agilent technologies,
Santa Clara, CA, USA).

2.14. Photocatalytic Experiments

The photocatalytic activity was tested by means of the decomposition of AO7 in the concentration
of 25 mg L−1 and this solution (150 mL) was placed into glass vessels: volume of 25 mL, height of
49 mm, and diameter of 32 mm. Under dark conditions, 10 mg of each nanomaterial was added.
These suspensions were stirred for 60 min to reach adsorption equilibria and then irradiated under a
UVA tube (368 nm, 0.94 mW cm−2) during times up to 120 min. The samples of 2 mL were taken and
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absorbances at 485 nm were measured by a UV/vis spectrometer Helios (Thermo Scientific, Waltham,
MA, USA). The experiments verifying the influence of incorporated chloride ions were performed in
glass vessels of 250 mL with a height of 52 mm and diameter of 90 mm.

3. Results

In order to incorporate a sulfur containing moiety into the structure of g-C3N4, highly reactive and
cheap mesyl chloride was used instead of tosyl chloride, which is rather less reactive, or triflic chloride,
which is more expensive. The physico-chemical properties of the CN-based nanomaterials were
studied by means of several characterization methods. First, the nanomaterial elemental compositions
were determined after their synthesis; see Table 1. Then, the light absorption was studied by UV/vis
DRS; the structure was studied by XRD, FTIR-ATR, XPS, and HRMS. The texture properties were
investigated by means of TEM and the physisorption of nitrogen. The photocatalytic properties were
studied by means of the decomposition of AO7.

3.1. UV/Vis Diffuse Reflectance Spectrometry

The UV/vis DRS spectra shown in Figure 1 were recorded for us to observe light absorption
properties and to determine the optical band gap energies of the prepared nanomaterials.
For comparison, images of the prepared nanomaterials are demonstrated in Supplementary Materials
(Figure S3) in order to display their real colors.
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Figure 1. UV/vis diffuse reflectance spectra of carbon nitride (CN)-based nanomaterials.

Figure 1 demonstrates that S-CN was the most-light absorbing sample and the absorption
decreased in the sequence of S-CN > Mes-CN > Mes-ExCN > CN > ExCN, which agrees with the
nanomaterial colors displayed in Figure S3. The higher absorption of S-CN in comparison with CN
was also referred to in the literature, for example, in the works of [32,35,36,39]. The derivatization
of CN with mesyl chloride was supposed to incorporate new atom groups to heptazine units acting
as chromophores. The resulting derivatized CN structures were discussed below based on other
experimental results.
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The optical band gap energies (hereinafter, the band gap energy) were evaluated by means of the
commonly employed Tauc´s plot [47]

εhν = C
(
hν− Eg

)p
, (3)

where ε is the molar extinction coefficient; hν is the energy of incident photons; Eg is the band gap
energy, C is a constant; and p is the power depending on the type of electron transition: p = 2 and
p = 1

2 for direct and indirect semiconductors, respectively. In this study, p = 1
2 was used [48–52]. The

evaluated band gap energies are summarized in Table 2. Both the direct synthesis as well as the
derivatization led to insignificant changes of the band gap energies.

Table 2. Evaluated values of band gap energy and crystallite size of prepared nanomaterials.

Nanomaterial Eg (eV) L002 (nm)

CN 2.69 6.6
ExCN 2.77 6.6
S-CN 2.63 6.6

Mes-CN 2.66 6.6
Mes-ExCN 2.73 6.7

3.2. FTIR-ATR Spectrometry

The prepared nanomaterials were studied by FTIR-ATR spectrometry, as shown in Figure 2. The
spectra contained broad spectral bands in the regions labelled as A and B. The spectral bands in
region A can be attributed to the stretching vibrations of N–H bonds. The spectral bands in region
B, such as 1232 cm−1, 1318 cm−1, 1399 cm−1, 1541 cm−1, and 1630 cm−1, are typically ascribed to the
stretching vibrations of C=N and C–N bonds of heterocyclic rings. The medium band at 804 cm−1 can
be attributed to the breathing mode of triazine units. All these spectra are typical for graphitic carbon
nitride and their explanation can be found elsewhere, for example, in the works of [53–56].
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Probably because of the low degree of derivatization, no significant differences between the
FTIR-ATR spectra of CN and ExCN and Mes-CN and Mes-ExCN were observed. Thus, no evidence of
the derivatization was brought.

3.3. XRD and TEM Analysis

The prepared nanomaterials were characterized by XRD and the patterns are shown in Figure 3.
The two low intensive diffraction peaks at 2Θ = 14.9◦ (d100 = 0.690 nm) and 32.1◦ (d002 = 0.324 nm)
correspond to (100) and (002) diffractions, which can be attributed to the hexagonal phase of CN
(JCPDS 87-1526). The stronger (002) diffraction peak is related to interlayer stacking of the (002) melem
planes. The weaker (100) one is attributed to the in-plane ordering of nitrogen-linked heptazine
units [57].
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The crystallite sizes were calculated based on the (002) diffraction peaks by means of Scherrer´s
Equation (2) and are summarized in Table 2. The L002 values were nearly the same. This means that the
sizes of diffracting domains as well as their interlayer distances were changed neither by the exfoliation
nor the derivatization of CN. Unlike other authors [32,37,58], no change in the XRD pattern of S-CN as
a result of the supposed substitution of nitrogen with sulfur in the CN lattice was observed.

The morphology of the nanomaterials was studied by means of transmission electron microscopy
(TEM). The TEM micrographs are displayed in Figure 4. The complex CN structures were composed
of flake-like sheets and snake-like shells. The flake-like structure was typical for bulk CN, regardless of
the S-doping procedure. The shell-like structure as a result of the thermal exfoliation was observed for
the ExCN (Figure 4a) as well as Mes-ExCN (Figure 4b). During the exfoliation, the flat nanosheets
partially wrapped themselves into the shells and no derivatization effect was observed in the TEM
micrographs. An energy dispersive X-ray (EDX) spectrum of Mes-ExCN is shown in Figure 4c. The
presence of sulfur, chlorine, and oxygen is clearly demonstrated.

3.4. XPS Analysis

The XPS analysis confirmed the presence of carbon, nitrogen, oxygen, and sulfur. The carbon
1s spectrum in Figure 5a shows two distinct peaks at 285.5 eV and 288.3 eV of binding energies.
While the peak at 288.3 eV is clearly CN3 carbon typical for CN [59], the peak of 285.5 eV belongs
to sp2 hybridized carbon of C=C or CN2 bonds [60,61]. Some portion of the 285.5 eV signal might
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be attributed to the carbon tape, which was used as a sample carrier. The ratio between the signals
was roughly 3:1 in favour of 288.3 eV for CN and ExCN and 2:1 for S-CN. In the derivatised samples,
the ratio decreased to 2:1 for Mes-ExCN and 1:1 for Mes-CN. This might suggest the exfoliation and
derivatization effect onto g-C3N4. The signal of CH3, which occurred at about 284 eV, could not be
equivocally detected by XPS owing to a low degree of derivatization in Mes-CN and Mes-ExCN and
its overlap with the signal at 285.5 eV.Nanomaterials 2020, 10, 193 8 of 20 
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The shape of the nitrogen 1s peak (Figure 5b) was formed by the superposition of at least four
signals at 398.8 eV, 400.0 eV, 401.4 eV, and 404.2 eV [62]. The dominant part of this spectrum was the
pyridinic (triazinic) NC2 nitrogen signal, which corresponded to nitrogen atoms located at the edges
of the melem subunits of g-C3N4. The signals of 400.0 eV and 401.4 eV were attributed to the NC3

nitrogen. The lower one was likely connected with bridging nitrogen atoms between melem structure
cores (NC3

B); the higher one was attributed to NC3
C nitrogen atoms in the centers of melem units. The
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theoretical ratios of NC2 and NC3 nitrogen 6:1 (in favor of N-C2 nitrogen for both NC3
B and NC3

C)
were found in no nanomaterials. That was probably because of the additional presence of NH+–C2

protonated nitrogen atoms (binding energy around 402 eV), bridging NH–C2 (binding energy around
399 eV), and marginal C–NH2 nitrogen (binding energy around 399 eV). Their capability to influence
the shape of the spectra has to be taken into account [63].

The nitrogen region in the samples ExCN and Mes-ExCN showed the ratio between NC2 and
NC3

B of roughly 4.5:1, suggesting the thermally exfoliated samples bearing more NH–C2 and marginal
C–NH2 groups were not influenced by the derivatization. In Mes-CN, this ratio decreased to 3.3:1,
while the pure CN had a ratio around 7.7:1, which suggests that, in the bulk nanomaterial, the
derivatization led to increase of the amount of nitrogen atoms in NH–C2 or C–NH2. In comparison,
the S-CN nanomaterial had ratios between both NC2 and NC3 identically around 10:1. Moreover,
the overall portion in pyridine N–C2 nitrogen atoms decreased significantly in the CN nanomaterial
after the derivatization (77 at.% vs. 66 at.% of all nitrogen atoms). This phenomenon was not observed
in ExCN (71 at.% of all nitrogen atoms in both ExCN and Mes-ExCN). The most prolific nanomaterial
in the overall NC2 portion is S-CN (81 at.% of all nitrogen atoms). All of the spectra have distinct
broad peaks representing the binding energy of 404.2 eV and can be ascribed to π–π* (HOMO–LUMO)
transition, that is, a shake-up line, a satellite peak [64].

The oxygen 1s broad peak (Figure 5c) around the binding energy 533 eV only confirmed its
presence in the graphitic carbon structure and did not prove any further structure motive [65]. The
sulfur 2p section of the spectrum in Figure 5d provided unsurprisingly no signal in the CN and ExCN
samples. Interestingly, no significant sulfur 2p signal was recorded for the S-CN nanomaterial as
well. On the other hand, in the cases of Mes-CN and Mes-ExCN, two types of sulfur incorporated
in their structures were indicated. The first signal included a couple of 2p binding energies around
164 eV, suggesting sulfur in a low oxidation state (sulfide or thiol motive); the second one included
another couple of 2p binding energies around 168 eV, suggesting a more oxidized form of sulfur [66],
which could be attributed to mesyl groups. The sulfide XPS signal was explained by the presence of
possible defects on the edge, which could promote electron delocalization, enabling the reduction
of –SO2– groups [67]. The ratio between reduced and oxidized sulfur was inverse in the case of
S-CN (approximately 1:3 in favor of oxidized sulfur) and S-ExCN (approximately 2:1 in favor of
reduced sulfur).

3.5. HRMS Analysis

The presence of mesyl functionalities upon the derivatization of ExCN was finally confirmed by
measuring its mass spectra. It is obvious that, in the MS spectra of Mes-ExCN, several characteristic
peaks were found proving the CH3SO2- functionality presence (Figure 6a), including the mass loss of
78.9854 (467.0840–389.1065 Da); corresponding structural moieties were depicted above the peaks. In
comparison, Figure 6b shows the mass spectra prior to the derivatization of ExCN. Other structural
moieties were not clarified within the accuracy of HRMS owing to the complexity of the investigated
nanomaterials. The analysis evidenced the presence of CH3SO2

− moiety, and thus helped us to propose
the structure of Mes-ExCN and its mostly presumable way of formation.

3.6. Overall Structure Theory

On the basis of information obtained from the XRD, FTIR-ATR, XPS, and HRMS results and
considering the elemental composition of the nanomaterials, some characteristic structure motives of
the post-synthetically derivatized nanomaterials were identified as demonstrated in Figure 7. The
presence of chloride in the CN structure owing to bonding to NH+–C2 was confirmed by leaching of
Mes-ExCN with the NaOH solution according to the procedure described in the Section 2.5. Chloride
ions were exchanged with hydroxide ones and were determined by argentometric titration at 3.6 wt.%,
which well agrees with the content of chlorine 3.33% found by EA; see Table 1. The incorporation of
chloride into the CN lattice was described recently in the literature [68].
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During the reaction of ExCN with the highly reactive mesyl chloride, the following reaction steps
were suggested: (i) the reaction of mesyl chloride with the most nucleophilic triazine nitrogen to
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corresponding “pyridinium” species; (ii) the reaction of mesyl chloride with primary and secondary
amine groups upon saturation of the most nucleophilic aromatic nitrogen atoms; and (iii) the hydrolysis
of “pyridinium” moieties within the workup of reaction (Figure 7). This suggestion is based on the
different nucleophilicity of triazine versus secondary (or primary) aromatic amines and also supports
the presence of chloride ions in the resulting material.

3.7. Photocatalytic Activity

Heterogeneous photocatalytic reactions of a model compound, the azo-dye AO7 with radicals on
the surface of the CN nanomaterials, can be described by the Langmuir–Hinshelwood model [69] for
reaction rate r as follows

r = −
dcP

dt
= k

KPcP

1 + KPcP +
∑

Kici

KR cR

1 + KRcR
, (4)

where k is the kinetic parameter; KP, KR, Ki, cP, cR, and ci are the adsorption constants and the
concentrations of the remaining AO7, radicals, and intermediates, respectively. If cR >> cP and ΣKici is
neglected, then Equation (4) can be simplified to its most commonly used form:

r = −
dcP

dt
= kapp

KPcP

1 + KPcP
, (5)

where kapp is the apparent kinetic parameter depending on the irradiation intensity, mass, and nature
of a solid phase (photocatalyst) and the concentration of the R radicals. Considering low values of
adsorption constants and concentrations, we can assume that 1 + KPcP ≈ 1, and then we obtain the
common relationship:

r = −
dcP

dt
= kapp

KPcP

1 + KPcP
= kobscP, (6)

where kobs is the observed kinetic constant, supposing that the concentration of radicals is constant. The
decomposition kinetic curves are shown in Figure 8. The observed kinetic constants were evaluated for
all the tested nanomaterials and are summarized in Table 3. It can be concluded that the photocatalytic
activity decreased in the sequence of Mes-ExCN > ExCN > CN ≈Mes-CN > S-CN.

Nanomaterials 2020, 10, 193 13 of 20 

 

𝑟 = − 𝑑𝑐𝑑𝑡 = 𝑘 𝐾 𝑐1 + 𝐾 𝑐 , (5) 

where kapp is the apparent kinetic parameter depending on the irradiation intensity, mass, and nature 
of a solid phase (photocatalyst) and the concentration of the R radicals. Considering low values of 
adsorption constants and concentrations, we can assume that 1 + KPcP ≈ 1, and then we obtain the 
common relationship: 𝑟 = − 𝑑𝑐𝑑𝑡 = 𝑘 𝐾 𝑐1 + 𝐾 𝑐 = 𝑘 𝑐 , (6) 

where kobs is the observed kinetic constant, supposing that the concentration of radicals is constant. 
The decomposition kinetic curves are shown in Figure 8. The observed kinetic constants were 
evaluated for all the tested nanomaterials and are summarized in Table 3. It can be concluded that 
the photocatalytic activity decreased in the sequence of Mes-ExCN ˃ ExCN ˃ CN ≈ Mes-CN ˃ S-CN. 

Table 3. Observed kinetic constants and specific surface area (SSA) of CN-based nanomaterials. AO7, 
Acid Orange 7. 

Nanomaterial kobs × 10−3 (min−1) SSA (m2∙g−1) Ads. AO7 (mg g−1) 
CN 22.2 ± 3.0 11 0.27 

ExCN 35.7 ± 3.3 90 1.9 
S-CN 15.8 ± 2.4 20 0.22 

Mes-CN 22.2 ± 5.3 8 0.22 
Mes-ExCN 113 ± 9 67 2.4 

In order to explain this photocatalytic behavior, the observed kinetics constant was compared 
with the specific surface area of the nanomaterials. The exfoliation increased the specific surface area 
of CN from 11 m2 g−1 to 90 m2 g−1 (Table 3). It is clear that the low kobs values of CN, Mes-CN, and S-
CN can be related to the small SSA values, but this does not hold for the exfoliated nanomaterials. 

 

Figure 8. Photocatalytic decomposition of Acid Orange 7 (AO7) in aqueous dispersions of CN-based 
nanomaterials. 

The higher photocatalytic activity of S-CN than CN refeed in the previously mentioned papers 
was not confirmed. The reason is still a subject of further investigation.  

Figure 8. Photocatalytic decomposition of Acid Orange 7 (AO7) in aqueous dispersions of
CN-based nanomaterials.



Nanomaterials 2020, 10, 193 13 of 18

Table 3. Observed kinetic constants and specific surface area (SSA) of CN-based nanomaterials. AO7,
Acid Orange 7.

Nanomaterial kobs × 10−3 (min−1) SSA (m2
·g−1) Ads. AO7 (mg g−1)

CN 22.2 ± 3.0 11 0.27
ExCN 35.7 ± 3.3 90 1.9
S-CN 15.8 ± 2.4 20 0.22

Mes-CN 22.2 ± 5.3 8 0.22
Mes-ExCN 113 ± 9 67 2.4

In order to explain this photocatalytic behavior, the observed kinetics constant was compared
with the specific surface area of the nanomaterials. The exfoliation increased the specific surface area
of CN from 11 m2 g−1 to 90 m2 g−1 (Table 3). It is clear that the low kobs values of CN, Mes-CN, and
S-CN can be related to the small SSA values, but this does not hold for the exfoliated nanomaterials.

The higher photocatalytic activity of S-CN than CN refeed in the previously mentioned papers
was not confirmed. The reason is still a subject of further investigation.

The adsorption of AO7 on the nanomaterials was investigated under the same laboratory
conditions, but in the dark. The adsorption plots depending on time are shown in Figure 9. Table 3
also summarizes the adsorbed mass of AO7 after 60 min. The adsorption equilibria for all adsorbents
were reached during 40 min. The highest adsorbed mass of AO7 was observed for Mes-ExCN and
ExCN; Mes-ExCN adsorbed more than ExCN. On the other hand, CN, S-CN, and Mes-CN adsorbed
similarly very little. In case of the nanomaterials with the small SSA, the low mass of adsorbed AO7
was observed.
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We can assume the adsorption was affected by SSA as well as by the derivatization, because new
types of interactions between CN and AO7 appeared. Interactions of mesyl groups as well as van der
Waals interactions of CN with AO7 molecules can be expected. On the basis of the EA data, the S/Cl
ratio in Mes-CN and Mes-ExCN was only 0.2–0.25, which is consistent with the fact that protonation is
much more effective than mesylation. Therefore, strong charge-assisted hydrogen-bonding interactions
formed by means of NH+ groups of CN and SO3

− ones of AO7 can be expected as well.
The effect of chloride ions incorporated in the CN lattice on the photocatalytic activity was also

investigated. As mentioned in Section 3.6, chloride ions in MeS-ExCN were exchanged with hydroxide
ones (see Section 2.5), and such a prepared nanomaterial was tested for the photocatalytic decomposition
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of AO7 (see Section 2.14). The obtained kinetic curves are shown in Figure 10. It is obvious that the
photocatalytic activity of MeS-ExCN with chloride and with hydroxide ions (MeS-ExCN/OH−) was
similar up to 40 min. Then, the activity of MeS-ExCN/OH− decreased significantly. The reason is
unclear, but the exchange of hydroxide ions with anions resulting from the decomposition of AO7,
such as sulfate and salts of organic acids [70,71], could be possible. Chloride ions were shown to
play an important role in the photocatalytic decomposition of AO7, which is supported by results
already reported in the literature [68,72]. Their activity was explained by (i) enhancement of electronic
delocalization owing to extending the local 2D π-conjugated system of CN and (ii) up-shift of the
conduction band of CN providing a stronger reduction ability of photogenerated electrons and
oxidation ability of formed radicals.
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Therefore, we can summarize that the enhanced photocatalytic activity of Mes-ExCN can be
explained by the combination of higher adsorption ability and the activity of chloride ions incorporated
in the derivatized nanomaterials.

4. Conclusions

Graphitic carbon nitride was synthetized by heating of melamine at 550 ◦C for 4 h. The exfoliated
CN was then prepared by heating of the bulk one at 500 ◦C for 2 h. Together with these nanomaterials,
S-CN was synthesized by heating of thiourea and bulk and exfoliated CN were derivatized with mesyl
chloride. All these nanomaterials were investigated by several characterization methods and their
photocatalytic activity was tested by means of the decomposition of AO7. S-CN served for comparison
in this study.

The content of sulfur decreased in the sequence of Mes-ExCN > Mes-CN > S-CN. The absorption
of light decreased in the opposite manner. The influence of the sulfur content on the band gap
energies was not found because the exfoliation effect indicated by the increase of specific surface
area (from 11 m2 g−1 to 90 m2 g−1) played an important role as well. The nanomaterials were further
examined by FTIR-ATR, XRD, TEM, XPS, and HRMS. Unlike S-CN, in which sulfur has been supposed
to substitute nitrogen in the CN lattice, sulfur in Mes-ExCN and Mes-CN was confirmed to be a part of
mesyl moieties connecting to primary and secondary amine. Chlorine retrained in the structure in the
form of chloride ions, which were determined by argentometry.

The photocatalytic activity decreased in the sequence of Mes-ExCN > ExCN > CN ≈Mes-CN >

S-CN. The highest activity of Mes-ExCN and ExCN was confirmed by the highest amounts of adsorbed
AO7 to these nanomaterials and by the presence of chloride ions in the MeS-ExCN lattice.
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The post-synthetic derivatization was likely the first approach to obtain doped graphitic carbon
nitride. Future research will be focused on the synthesis and characterization of CN-based nanomaterials
doped with other elements by means of some post-synthetic reactions. Their applications, especially in
environmental photocatalysis, will be investigated.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/2/193/s1,
Figure S1: Structure of melamine; Figure S2: Structure of Acid Orange 7; Figure S3: Images of
prepared nanomaterials.
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g-C3N4/BiVO4 composite. Appl. Surf. Sci. 2019, 469, 181–191. [CrossRef]

23. Praus, P.; Lang, J.; Martaus, A.; Svoboda, L.; Matějka, V.; Kormunda, M.; Šihor, M.; Reli, M.; Kočí, K.
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