
The Thesis Committee for Josey Hanish

certifies that this is the approved version of the following thesis:

Decoding Pauli-Z Errors on the 3-Dimensional
Tetrahedral Color Code with Boundaries

APPROVED BY

SUPERVISING COMMITTEE:

Brian La Cour, Supervisor

Greg Sitz, Honors Advisor in Physics

I grant the Dean’s Scholars Program permission to post a copy of this thesis on

the Texas ScholarWorks. For more information, visit

https://repositories.lib.utexas.edu.

Decoding Pauli-Z Errors on the 3-Dimensional
Tetrahedral Color Code with Boundaries

Department of Physics

Josey Hanish, Author

Date

Brian La Cour, Supervisor

Date

Decoding Pauli-Z Errors on the 3-Dimensional

Tetrahedral Color Code with Boundaries

by

Josey Hanish

Thesis

Presented to the Faculty of the College of Natural Sciences of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Bachelor of Science

Dean’s Scholars Honors Degree in Physics

The University of Texas at Austin

May 2020

Acknowledgements

This thesis is about my contribution to a project undertaken by a research

group at Applied Research Laboratories: University of Texas at Austin from Fall

2018 to Spring 2020.

I would like to thank my coworkers at ARL:UT; this project would not have

been possible without them. Skylar Turner guided the direction of this project,

did much of the background research, and wrote code to generate physical errors,

implement the improved lift procedure, and check for logical errors. Skylar also

suggested running the MWPM algorithm on the restricted lattice instead of the full

lattice and adapted the Z-error decoder to do so. Eion Blanchard wrote code to

generate the lattice geometries and to implement the X-error decoder. Noah Davis

and Brian La Cour provided valuable insights. Brian also secured funding for this

project and provided appreciated feedback on drafts of this thesis.

My contribution was to write code to implement the Z-error decoder, to find

the rank of a binary matrix, and to revise the code for parallel computing. I also

submitted such parallel jobs to the supercomputer queue and retrieved results.

This work was supported by the Air Force Research Laboratory under Grant

No. FA8750-18-1-0042. Large-scale numerical calculations were possible thanks to

an allocation from the Texas Advanced Computing Center.

Josey Hanish

The University of Texas at Austin

May 2020

iv

Abstract

Decoding Pauli-Z Errors on the 3-Dimensional

Tetrahedral Color Code with Boundaries

Josey Hanish

The University of Texas at Austin, 2020

Supervisor: Brian La Cour

In quantum computers, each logical qubit must be encoded in several physical

qubits to protect against noise in physical qubits. The tetrahedral color code is such

an encoding. In the primal lattice, the three-dimensional tetrahedral color code is

a bitruncated octahedral lattice, and in the dual lattice, the tetrahedral color code

is a four-colorable body-centered cubic lattice. This color code can be utilized for

measurement-based quantum computing, for which all entanglement is present in a

cluster state at the beginning of the computation and gate operations are performed

by local measurements and classical operations. Moreover, this color code admits a

gate set that is both transversal, i.e., realized by qubit-wise operations, and universal

v

when supplemented by measurement and classical computing. During cluster state

preparation and computation, errors may occur on the physical qubits. Therefore,

it is necessary to have a decoder that, using the syndrome of these errors, finds a

set of qubits to correct and performs the operations needed to correct those qubits.

The decoder is considered successful if and only if the correction does not cause a

logical error on the logical qubit. In this thesis, I present a decoder for Pauli Z, or

phase-flip, errors on the three-dimensional tetrahedral color code with nonperiodic

boundaries. This decoder for Z-errors includes as a subroutine a decoder for Pauli X

errors. The decoder uses a restriction procedure to map the tetrahedral color code

to a toric code. The toric code is another quantum error correcting code. Then,

an existing toric code decoder interprets the error syndrome. This research on the

bounded color code builds upon previous work on the unbounded color code and

the two-dimensional color code. Under independently identically distributed noise,

evidence indicates an error probability threshold for Z-errors between 0.01% and

0.02% and for X-errors between 2.5% and 3.3%. I also present example errors and

illustrate how the decoder attempts to correct those errors.

vi

Table of Contents

Chapter 1 Introduction 1

1.1 Quantum Error Correction . 2

1.1.1 The Stabilizer Formalism . 3

1.2 Topological Codes . 4

1.3 Characteristics of the Tetrahedral Color Code Lattice 4

1.3.1 Geometry . 4

1.3.2 Error Syndromes . 5

1.3.3 Gate Set . 7

1.4 A Use of the Tetrahedral Color Code: Measurement-Based Quantum

Computing . 8

1.5 Previous Work . 8

Chapter 2 Z-Error Decoding Algorithm 10

2.1 Restriction . 10

2.2 Minimum-Weight Perfect Matching 11

2.3 Sweep Decoder . 13

2.4 Lift Procedure . 13

2.5 Concluding the Algorithm and Remarks 14

2.6 Check for Logical Errors . 16

Chapter 3 Results 18

3.1 Example Errors and Corrections . 18

3.2 Threshold Probability for IID Errors 23

vii

Chapter 4 Conclusions 27

4.1 Future Work . 28

References 29

viii

Chapter 1

Introduction

Qubits are to a quantum computer as classical bits are to a classical computer.

Whereas classical bits can attain only two states, 0 or 1, a qubit can attain any

linear combination of these states, a |0〉 + b |1〉, where a, b ∈ C and |a|2 + |b|2 = 1.

In fact, in the formalism of quantum computing, |0〉 and |1〉 are orthonormal basis

vectors. If a, b ∈ R, a qubit can be visualized as a vector pointing from the origin

to a point on the unit circle, where a is the x-coordinate and b is the y-coordinate.

By a change of basis, this plane can be reparameterized to the second canon-

ical basis,
{
|+〉 = |0〉+|1〉√

2
, |−〉 = |0〉−|1〉√

2

}
. Often, for neatness, the normalization fac-

tor of
√

2 is omitted when writing the states. The normalization can easily be

found by taking the inner product of the state with itself. I will make that omission

throughout this thesis.

Measuring a qubit in some orthogonal basis makes the qubit “snap to” one

of the orthogonal basis vectors. For instance, measuring a qubit in the { | +〉, | −〉 }
basis will not only give a result of either |+〉 or |−〉, the qubit will have actually

moved from its original state to |+〉 or |−〉, respectively. Note that this will destroy

all information about how far the qubit was from |0〉 and |1〉.
Another advantage of qubits over classical bits is that qubits can be entangled

with each other. The state of two classical bits can be one of 00, 01, 10, or 11. But

two qubits can be in any state described by a |00〉 + b |01〉 + c |10〉 + d |11〉, where

|a|2 + |b|2 + |c|2 + |d|2 = 1. For instance, two qubits can be in the state |00〉+ |11〉.
Note that this state is not separable - it cannot be written as a tensor product1 of

1Tensor product: ⊗ : C2 × C2 −→ C4, [a, b]T ⊗ [c, d]T = [ac, ad, bc, bd]T

1

|1〉

|0〉

|+〉

|−〉

Figure 1.1: The two canonical orthogonal bases in quantum computing: { | 0〉, | 1〉 }
and { | +〉, | −〉 }.

two qubits. This state is therefore entangled. In fact, this state is one of the Bell

states, the maximally entangled states of two qubits.

When the entangled state |00〉+|11〉 is measured (in the { | 00〉, | 01〉, | 10〉, | 11〉 }
basis), the state will “snap to” either |00〉 or |11〉. The entanglement is lost, because

the state is now separable. For example, if the state “snaps to” |00〉, then the state

can be written as [10]⊗ [10] So, if one wants to correct errors in some entangled state,

one cannot simply measure the state - that will destroy the entanglement.

1.1 Quantum Error Correction

Every physical system that can be used to encode qubits is vulnerable to noise. Solid

state qubits are subject to thermal noise, and photonic qubits are subject to photon

loss or noisy communication channels. Since reaching absolute zero or manufacturing

perfectly flawless fiber-optic cables is impossible, qubits must be encoded in a way

that makes the information resistant to this noise. Such an encoding is called a

quantum error-correcting code. In a quantum error-correcting code, a logical qubit

is encoded in n > 1 code (physical) qubits. A logical qubit is denoted |ψ〉L.

A simple example of a quantum error-correcting code is the three-qubit re-

peating code2 [1, 2]. Let |0〉L = |000〉 and |1〉L = |111〉 such that a general state

is a |000〉 + b |111〉. Alice transmits this state through a noisy channel that may

2The example in this paragraph is adapted from [1].

2

perform a bit-flip operation on a code qubit. The three one-qubit error states are

a |100〉 + b |011〉, a |010〉 + b |101〉, and a |001〉 + b |110〉. Bob cannot measure the

qubits directly, because that would destroy the superposition. Instead, Bob must

use two ancillary qubits to find a syndrome of the error. A syndrome gives infor-

mation about the relationships between the qubits without measuring the values of

the qubits themselves, so the state is preserved. Here, Bob initializes his ancillas to

|0〉. He applies a Controlled-NOT gate with the first code qubit as the control and

the first ancilla as the target. He applies another Controlled-NOT gate with the

second code qubit as the control and the first ancilla again as the target. Now, if

the values of the first two code qubits are the same, the ancilla is |0〉. If the values

are different, the ancilla is |1〉. Bob repeats this procedure with the second and third

code qubits and the second ancilla. With these two bits of ancillary information,

Bob can figure out which one code qubit, if any, experienced a bit-flip error. Given

at least five code qubits, this scheme can be extended to protect against phase-flip

errors as well [2].

There are infinitely many errors that could happen to a qubit, because there

are infinitely many unitary operations - the space of unitary operations is continuous.

Fortunately, there exists a result that shows that if an error-correction scheme can

correct X and Z errors, it can correct any single-qubit error [2].

1.1.1 The Stabilizer Formalism

Often in quantum error correction, quantum states are described with the stabi-

lizer formalism instead of with the wavefunction. The wavefunction representation

describes the state as a function ψ of space and time (or momentum and time)

such that the Schroedinger equation, Ĥ |ψ(~x, t)〉 = i~ ∂
∂t |ψ(~x, t)〉, is satisfied. The

stabilizer formalism describes the same quantum state with a set S of stabilizer op-

erators. The quantum state is the state that, when operated on by operators from

S, stays the same.

For example, recall the state |00〉 + |11〉. Let Xi be the X, or NOT, gate

operating on the i-th qubit. X1X2(|00〉+ |11〉) = |00〉+ |11〉, so the state is stabilized

by X1X2 [3]. This state is also stabilized by Z1Z2, and in fact, the stabilizer set

{X1X2, Z1Z2 } is sufficient to identify this state [3].

In Section 1.3.1, the tetrahedral color code lattice is described by its stabi-

3

lizers. Thus, the tetrahedral color code is a “stabilizer code.”

1.2 Topological Codes

The tetrahedral color code is also a topological code. In a topological code, the

quantum information of the logical qubit is nonlocally distributed among the code

qubits; the information is stored in global degrees of freedom [4]. Topological sys-

tems protect quantum information naturally because of the energy gap between the

ground state and the excited states [5].

Furthermore, the three-dimensional tetrahedral color code allows topological

quantum computation without quasiparticles (anyons) or “braiding,” the arrange-

ment of quasiparticles in space to perform logic gates [5]. (In fact, “Topological

Computation without Braiding” was the title of the original paper on this code.)

Since anyons are less well-understood and more difficult to produce in the lab than

solid-state or photonic qubits, topological quantum computation without quasipar-

ticles is desirable [6].

Finally, the three-dimensional tetrahedral color code allows universal3 com-

putation without magic state distillation, a computationally costly operation that

allows universal computation in two-dimensional systems [7].

1.3 Characteristics of the Tetrahedral Color Code Lat-

tice

1.3.1 Geometry

The primal lattice L is a tetrahedral slice of the bitruncated octahedral lattice. The

primal lattice represents the physical configuration of the qubits. On the primal

lattice, qubits are vertices and edges are connections between qubits. All qubits are

4-valent (thus tetrahedral), connected to 4 other qubits, except for the qubits at the

corners of the primal bounding tetrahedron, which are 3-valent. Z-stabilizers are

on the faces of the primal lattice and X-stabilizers are on the cells. One color is

associated with each edge of the primal lattice, two colors are associated with each

face, and one color is associated with each cell and each facet. A facet is one of

3Defined in Section 1.3.3

4

the four triangular faces of the primal bounding tetrahedron. The color associated

with a cell is the color that is absent from its bounding edges; the facets are labeled

likewise; i.e. cells and facets are four-colorable. A face is labeled by the two colors

that are not present in the two cells it connects, which is equivalent to labeling a

face by the color of its edges.

The dual lattice L∗ allows for a more intuitive interpretation of the decoder

algorithms. The dual lattice is a slice of the body-centered cubic lattice, along

with four boundary vertices that are connected to the bulk vertices. The four

boundary vertices correspond to the four primal facets. On the dual lattice, qubits

are tetrahedra. This includes the tetrahedra for which 1, 2, or 3 vertices are a

boundary vertex, but not the tetrahedron where all four vertices are the boundary

vertices. Z-stabilizers are on edges, and X-stabilizers are on vertices. One color is

associated with each vertex, i.e., the vertices are four-colorable. Edges are labeled

by two colors each, the colors that are not present on the endpoints of the edge.

The fact that the vertices are four-colorable is essential to our implementation of

the Restriction Decoder [8].

Primal Lattice L Dual Lattice L∗
Qubits Vertices 0D Qubits Tetrahedra 3D

Connections Edges 1D Connections Faces 2D
Z-stabilizers Faces 2D Z-stabilizers Edges 1D
X-stabilizers Cells 3D X-stabilizers Vertices 0D

Boundary Facets 2D Boundary Vertices 0D

Table 1.1: Corresponding objects in the primal and dual lattices.

In the simplest possible lattice, shown in Figure 1.2, each face is adjacent to

four qubits and each cell is adjacent to eight qubits. In larger lattices, a face can be

adjacent to up to six qubits and a cell can be adjacent to up to 24 qubits.

1.3.2 Error Syndromes

A X-error is also known as a bit-flip. The action of an X-error on a physical qubit

in the state |ψ〉 = a |0〉+ b |1〉 is X |ψ〉 =
[
0 1
1 0

][
a
b

]
=
[
b
a

]
. The action of a Z-error,

also known as a phase-flip, is Z |ψ〉 =
[
1 0
0 −1

][
a
b

]
=
[a
−b
]
. X and Z are the Pauli-X

and Pauli-Z matrices σX , σZ .

A Z-stabilizer will show a syndrome if an odd number of the physical qubits

5

(a) The simplest possible primal lattice
(distance 3) with cell colors shown.

(b) The simplest possible primal lattice
with facet colors shown. This lattice is
shown with the same spatial orientation
as Figure 1.2a.

(c) The dual to the distance-3 lattice with
vertex colors shown. The four interior
vertices correspond to primal cells, and
the four exterior (boundary) vertices cor-
respond to primal facets.

(d) The distance-7 primal lattice. Here,
the bitruncated octahedral structure is
more apparent. Black lines are the edges
of the bounding tetrahedron, gray lines
are edges on a facet, and blue lines are
interior edges.

Figure 1.2

6

adjacent to that face have experienced an X-error. In the dual, Z-stabilizers with a

syndrome can be interpreted as edge-like excitations. Likewise, an X-stabilizer will

show a syndrome if an odd number of the physical qubits adjacent to that cell has

experienced a Z-error. This is a point-like excitation in the dual.

When the quantum state is in the code space, the measurement of a stabilizer

operator is positive one, Ŝ |ψ〉 = + |ψ〉. When an error brings the state out of the

code space, the measurement will return some other value. This is the physical

interpretation of a syndrome on a stabilizer.

1.3.3 Gate Set

Gates are operations that transform a quantum state into another quantum state.

For example, the X, or NOT, gate transforms the state |0〉 into |1〉 and vice versa.

The three-dimensional tetrahedral color code admits the gates:

• T =

[
1 0

0 eiπ/4

]

• CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



• CP =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


• P =

[
1 0

0 i

]
Details of how these gates are applied can be found in [9].

Uniquely, this gate set is both transversal and universal when supplemented

by measurement and classical computing. Universal means that any logical opera-

tion can be approximated to an arbitrary precision by applying only gates from the

set. Transversal means that the gate is applied qubitwise - the gate can be applied

to the logical qubit by applying a gate to each code qubit individually; the gate

7

on the logical qubit is a tensor product of gates on the physical qubits. (See [9]).

The Eastin-Knill theorem states that a quantum error correcting code cannot have

a gate set that is both universal and transversal [10]. But in our case, the allowed

operations are not restricted to the gate set; measurement and classical computing

are also permitted. Thus, the Eastin-Knill theorem is circumvented.

1.4 A Use of the Tetrahedral Color Code: Measurement-

Based Quantum Computing

In measurement-based quantum computing (MBQC), proposed by Robert Raussendorf

in 2001, all entanglement exists as a resource at the beginning of the computation.

This entangled state is called a cluster state. By measuring (logical) qubits in the

cluster state, the state is “sculpted” into the final result. The measurement-based

model is equivalent to the circuit model, although it is not always trivial to translate

between the two. The 3D tetrahedral color code is well-suited to MBQC because

the operations required for MBQC are quantum-local in this code [7].

Another challenge is that the basis in which some logical qubit is measured

may be affected by the result of previous measurements. The proper basis must be

calculated by a classical computer while the quantum state waits. This leaves time

for errors to accumulate on the quantum state, which is the source of the iid errors

investigated in this thesis and in [11]4.

1.5 Previous Work

Robert Raussendorf introduced measurement-based quantum computing in 2001,

suggesting implementation on systems that realize Ising-type interactions [12].

The original topological code was Kitaev’s surface/toric code, introduced in

1997 [13, 4]. The only gate that is transversal for the surface code is CNOT5 [5].

Hèctor Bomb̀ın introduced the tetrahedral color code in 2007 [5]. In the same

paper, he showed that the code admits a universal gate set. In 2018, he published

another transversal, universal gate set for this code and wrote about error prop-

agation under those operations [9]. He also proposed using the three-dimensional

4[11] is the paper written on this topic by the author’s group in parallel with this thesis.
5The Controlled-NOT gate, which entangles two qubits.

8

tetrahedral color code to implement measurement-based quantum computing on a

photonic architecture [7]. [7] also describes steps for preparing the 3D tetrahedral

color code lattice with ancilla qubits.

In this work, two decoders are used, both published by Aleksander Kubica. In

2019, Kubica introduced a method to map the color code onto the toric code, called

the Restriction Decoder. The Restriction Decoder builds upon Kubica’s Sweep

Decoder (2018), a cellular automaton decoder for the toric code. A more accessible

description of the Restriction Decoder can be found in [14].

9

Chapter 2

Z-Error Decoding Algorithm

Recall that, on the dual lattice, Z-errors are indicated by X-syndromes, which

correspond to vertices, while qubits correspond to tetrahedra. The goal of the

decoder is to find a set of tetrahedra for which errors on those tetrahedra would

correspond to the vertex-like syndrome observed. Then, those qubits (tetrahedra)

can be corrected by applying another phase-flip operation.1 The same argument

applies to X-errors, which can be corrected with the bit-flip operation.

In fact, the set of qubits that the decoder identifies to correct does not have

to be identical to the set of qubits that originally experienced an error, as long as

the set of original error qubits and the set of corrected qubits differ (XOR) only by

a stabilizer. If the difference is not a stabilizer, the logical qubit is flipped - a logical

error. Logical errors are considered decoder failures.

The general procedure this decoder uses is the following: (1) Twice-restrict

the lattice (defined below). (2) Connect 0D vertices into 1D edges. (3) Connect 1D

edges into 2D faces. (4) “Lift” 2D faces into 3D tetrahedra (qubits). (5) Return the

union of sets of error qubits found from all possible restrictions.

2.1 Restriction

Recall that the vertices of the dual lattice are four-colorable such that no two vertices

of the same color are connected. To restrict the lattice on a color c ∈ { r, y, b, g },

1Z · Z =

[
1 0

0 −1

][
1 0

0 −1

]
=

[
1 0

0 1

]
= I2. All Pauli operators are involutions, σ2

i = I.

10

means to remove all vertices of that color and all edges connected to those vertices

[8]. For X-errors, the lattice only needs to be restricted once. For Z-errors, the

lattice must be restricted twice - first remove c1, then remove c2, such that c1, c2 ∈
{ r, y, b, g } without replacement. The restriction procedure reduces the color code

to the toric code [8, 14].

2.2 Minimum-Weight Perfect Matching

A minimum-weight perfect matching (MWPM) is a pairing of vertices on a weighted

graph such that the edges in the pairing have the minimum possible weight [15]. The

goal of this step is to pair syndrome vertices such that the edges of the error qubits

(tetrahedra) can be reconstructed.

First, we restrict the syndrome to only those vertices that are present on the

twice-restricted lattice.

Then, we convert the restricted lattice to a weighted graph for MWPM. The

vertices of the MWPM graph are the syndrome vertices on the restricted lattice.

We find the shortest path between each of the vertices in the restricted syndrome.

The number of edges along that path becomes the weight of the edge between those

vertices on the MWPM graph.

Recall that boundary vertices do not show syndromes, even though an error

qubit could be adjacent to a boundary vertex. Essentially, syndrome information is

missing on the boundary vertices. But if an error qubit is adjacent to the boundary

vertex, the MWPM algorithm must be allowed to match to the boundary vertices

in order to recover those edges of the tetrahedron where one endpoint is a bound-

ary vertex. Therefore, the closest boundary vertex is submitted to the matching

algorithm, even though it cannot show a syndrome. Moreover, since the lattice is

twice-restricted, only two boundary vertices will remain.

Unsuccessful Approaches

The first version of the code for this step matched the syndrome on the

non-restricted lattice. This was unsuccessful because there are multiple shortest

paths between vertices on the unrestricted lattice. The paths on the edges that

would have been removed by restriction ended up as winglike triangles that should

not have been part of the edge-like syndrome (Figure 2.1a). These “wings” were

removed by identifying all vertices that were adjacent to only two edges in the edge-

11

(a) An example of a “wing” (left, red) and
the point-like syndrome (blue).

(b) The original error tetrahedra that
caused that syndrome. Note that the
“wing” doesn’t correspond with the edges
of the error tetrahedra.

(c) A case where an edge-like syndrome
ending at a boundary vertex is a legiti-
mate syndrome.

Figure 2.1

like syndrome, then removing those two edges that were adjacent to that vertex.

However, if such an inappropriate edge was adjacent to a boundary vertex, the

“wing” removal would not find it. (Recall that syndromes do not appear on edges

connecting boundary vertices.) This issue could not be fixed, because there are

sometimes legitimate reasons for an edge to go to the boundary vertex and then

stop - see the syndrome in Figure 2.1c.

That version of the code also sometimes matched bulk vertices to boundary

vertices, when there was a more appropriate bulk vertex that should have been the

match. This was imperfectly remedied by enforcing a weight-2 penalty for matchings

between a bulk vertex and a boudnary vertex.

12

The Z-error decoder calls the X-error decoder, described in Sections 2.3 and

2.4, as a subroutine.2 If the edge-like syndrome is not a valid syndrome of X-errors,

the X-error decoder fails to find a set of qubits to correct, and therefore the Z-error

decoder fails.

2.3 Sweep Decoder

Now we return to the full lattice in order to convert the edge-like syndrome to a

mesh of triangular faces. This step and the lift prodecure in Section 2.4 are the

same as in the X-error decoder; in fact, our implementation of the Z-error decoder

calls the X-error decoder as a subroutine. First, the full lattice is once-restricted,

so three colors remain. This procedure maps the color code to a toric code, so the

toric sweep decoder can be used.

The sweep decoder is a cellular automaton that converts an edge-like syn-

drome to a mesh of (in this case triangular) faces [16]. The sweep operation operates

in some direction that may not be parallel to any edge of the lattice. For each vertex

in the restricted lattice that is adjacent to a syndrome edge, we select the smallest

set of faces whose boundary matches the syndrome edges adjacent to that vertex.

For each vertex in the restricted lattice, we identify which syndrome edges

are adjacent to that vertex. If any syndrome edges are adjacent to that vertex, we

select the smallest set of faces in the sweep direction whose edges adjacent to that

vertex match those adjacent syndrome edges. We flip the edges of those faces and

recalculate the syndrome; i.e., edges that had a syndrome are now unexcited, and

edges that did not have a syndrome are now excited. We repeat this procedure until

the entire lattice has been swept through.

2.4 Lift Procedure

Next, we must “lift” the set of triangular faces to a set of tetrahedra [8]. One

arbitrary color from { r, g, b, y } is chosen as the lift color. For each vertex of this

color, tetrahedra are identified such that the faces of the triangular mesh adjacent to

that vertex are included in the 2D boundary of those tetrahedra. Our lift procedure

projects the triangular mesh to the facet, in the case of lifting on a boundary vertex,

2This is permissible for the reasons described in [14]

13

or to a topological sphere, in the case of lifting on a bulk vertex [11]. The projection

is then decoded using the Peel Algorithm [17].

Unsuccessful Approaches

In the primal lattice, the number of qubits on a facet is proportional to the

square of the code distance. Thus, in the dual, the number of qubits (tetrahedra)

adjacent to a boundary vertex is also proportional to the square of the code distance.

The original Restriction Decoder was intended for the tetrahedral color code

with periodic boundaries [8], which does not exhibit such quadratic scaling. Specif-

ically, on the code with periodic boundaries, each vertex in the dual is adjacent to

24 or fewer qubits. Therefore, one can implement a näıve lift procedure by combi-

natorically scanning all possible combinations of qubits (tetrahedra) until a set of

tetrahedra whose boundary locally matches the triangular mesh is found.

Because of the quadratic scaling on the lattice with non-periodic boundaries,

this näıve approach was computationally unrealistic when lifting on the boundary

vertices. Our solution to this problem, described above, was intended to fix the

computational complexity of lifting on boundary vertices, but it turned out to work

well on both boundary and bulk vertices.

2.5 Concluding the Algorithm and Remarks

We repeat the restrict-sweep-lift procedure of Sections 2.3 and 2.4 for three of the

four colors. The remaining color is the “pivot” or “lift” color. We chose the pivot

color to be red, but since the lattice is symmetric, any color would work equally.

Finally, we take the symmetric difference of all three correction sets to find the final

set of qubits to be corrected. This decoder is deterministic - given some specific

syndrome, it will always return the same correction.

The sweep decoder, the lift procedure, and the symmetric difference together

form the decoder for X-errors, whose syndromes are edge-like. As another part of

this project, the group wrote an X-error decoder [11]. In our implementation, we

call that decoder as a subroutine of the Z-error decoder.

14

0D
to

1D

Twice-restrict lattice

Minimum weight perfect matching

Take union of all matchings

Repeat for each
pair of colors

1D
to

2D Once-restrict lattice

Sweep decoder

2D
to

3D

Lift (Peel algorithm)

Take symmetric difference
of all corrections

Repeat for each
color except pivot

X-error decoder
(inside dashes)

Figure 2.2: The Z-error decoding procedure

15

2.6 Check for Logical Errors

To determine whether the decoder caused a logical error, we compare the set of

qubits corrected by the decoder to the original set of error qubits. In the following,

Q denotes the set that is the symmetric difference (XOR) of the set of original

error qubits and the set of corrected qubits. This is the set of qubits that have

experienced a phase-flip after the correction is applied. Recall that applying a

phase-flip to an original error qubit brings it back into its usual state. The phase-

flips on the remaining qubits, Q, comprise an operator that may or may not be a

logical Z operator.

If applying Z-gates to a set of qubits does not cause a logical error, that

set of qubits must be a linear combination of Z-stabilizers.3 We can represent the

stabilizers as a a binary matrix of size m×n, where m is the number of code qubits

and n is the number of stabilizers. Each row in the matrix represents one stabilizer.

The value in the i-th position is 1 if that stabilizer is adjacent to the i-th qubit and

0 otherwise. Recall from above that all faces (Z-stabilizers) are adjacent to either

4 or 6 qubits, so each row will have 4 or 6 ones. The rank of this matrix is the

number of independent stabilizers. Q can be represented as a vector ~Q of length m,

where the i-th value4 is 1 if the i-th qubit experienced a phase-flip and 0 otherwise.

Then, ~Q can be appended to the stabilizer matrix. If ~Q is a linear combination of

stabilizers, this will not affect the rank of the matrix; otherwise, the rank of the

matrix will increase by 1.

The function built into the Python module numpy to calculate the rank of

a matrix uses regular addition instead of addition mod 2. This is inappropriate

for our purpose because our matrices are binary. So, we wrote our own function

to calculate the rank of a binary matrix using row operations mod 2 and Gaussian

elimination.

Interestingly, in testing, all our logical errors occurred when Q had an odd

number of elements. This observation suggests an easier way to check whether an

operator is a logical operator. Namely, we do not need to check the rank of the matrix

with ~Q appended if there are an even number of elements in Q, or equivalently, if

3Not X-stabilizers. This is easy to get mixed up, because Z-errors show their syndrome on

X-stabilizers.
4The order of the qubits has no physical meaning. The order must be consistent with the

ordering of qubits used to build the stabilizer matrix.

16

the sum of elements of ~Q is odd. It also suggests that all logical Z operators on this

lattice act on an odd number of qubits.

17

Chapter 3

Results

3.1 Example Errors and Corrections

In this section, I present some examples of errors on the primal lattice, their syn-

dromes, how the decoder attempts to correct that syndrome, and the final result of

the correction. This section should not be taken as a characterization of all possible

error types that do or do not cause logical errors, although such a characterization

would be an interesting future project. The examples in this section are on lattices

of size d = 5 and d = 7.

Examples That Cause Logical Errors

The syndrome of an error along the primal edge of size greater than d
2 , where

d is the total number of qubits along that edge, is identical to the syndrome of the

remaining qubits on that edge. (See Figure 3.1b.) The decoder connects the error

to the opposite corner. (See Figure 3.1.)

18

(a) The original error
qubits, a chain on the
primal edge whose length is
greater than half the total
length of the edge.

(b) The syndrome of that
error. Red indicates syn-
drome vertices. Blue indi-
cates vertices that are ad-
jacent to error tetrahedra
but have no syndrome be-
cause an even number of er-
ror tetrahedra touch that
vertex.

(c) The qubits the decoder
recommends for correction.
The syndrome, shown in
Figure 3.1b, is the same as
the syndrome of this error,
and the decoder assumes
the smaller error.

(d) The final result is that
all qubits on the edge are
flipped. This causes a logi-
cal error because the edge
cannot be expressed as a
linear combination of Z-
stabilizers.

Figure 3.1

In some cases, for an error identical to the above, but on a different edge, the

decoder both connects the error to the opposite corner and unnecessarily corrects

some loops on an adjacent facet. (See Figure 3.2.) Although the lattice itself

is symmetrical, the decoder is asymmetrical because of the sweep direction and

the pivot color. This is why the same error on different edges may have different

corrections.

19

(a) Another chain of errors
on the primal edge whose
length is greater than half
the length of the edge.

(b) The qubits the decoder
recommends for correction.
The decoder completes the
edge to the opposite corner.
The decoder also flips four
qubits on the facet, which
has no effect on the final re-
sult because the loop sur-
rounds a Z-stabilizer. (See
Figure 3.5.

(c) The final result is a log-
ical error.

Figure 3.2

If the error is along the entire edge, as shown in Figure 3.3, it will have no

syndrome, so the decoder cannot correct it. This causes a logical error. Errors that

are loops around a face in the bulk or on a facet also have no syndrome, but since

those errors commute with Z-stabilizers, such loops do not cause logical errors.

(a) An error along the en-
tire primal edge.

(b) This error has no syn-
drome. Blue indicates ver-
tices that are adjacent to
error tetrahedra but have
no syndrome because an
even number of error tetra-
hedra touch that vertex.

Figure 3.3

20

Errors on the edge are not the only errors that can cause logical errors. Figure

3.4 shows an error in the bulk that results in a logical error. In this case, some of

the tetrahedra in the dual touch each other, so there is not syndrome information

on the vertices where two tetrahedra touch.

(a) Some qubits in the bulk
that appear to be uncon-
nected.

(b) In the dual, those
qubits (tetrahedra) are ad-
jacent on vertices. There is
no syndrome on those ver-
tices where two tetrahedra
touch.

(c) The correction recom-
mended by the decoder.

(d) The final set of qubits
that are flipped. This is a
logical Z-error because it is
not a linear combination of
Z-stabilizers.

Figure 3.4

Examples That Do Not Cause Logical Errors

A half-hexagon error on a facet or in the bulk, as shown in Figure 3.5, will

either correct the original error or complete the hexagon. Completing the hexagon

is not a logical error because Z-stabilizers are on the faces of the primal lattice. A

loop-like error is trivially a linear combination of Z-stabilizers; it corresponds to the

stabilizer on the face enclosed by the loop. It is therefore not a logical error.

21

(a) A half-hexagon error on
a facet.

(b) The decoder completes
the hexagon. The result
is that all six qubits are
flipped. This corresponds
with the Z-stabilizer on
that face, so it is not a log-
ical error.

(c) A half-hexagon error in
the bulk.

(d) Again, the decoder
completes the hexagon, so
the final result is not a log-
ical error.

Figure 3.5

Although several of the logical error examples above resulted from a correc-

tion that connected one primal corner to another, an error that connects primal

corners does not necessarily cause a logical error. Figure 3.6 shows such an error

that the decoder corrected successfully. This correction results in a more compli-

cated linear combination of Z-stabilizers than in Figure 3.5.

22

(a) The original error
qubits.

(b) The correction returned
by the decoder.

(c) The final set of flipped
qubits. This is not a
logical error because the
set of flipped qubits is a
linear combination of Z-
stabilizers, although this is
not trivially apparent from
looking at the figure.

Figure 3.6

3.2 Threshold Probability for IID Errors

We numerically test the decoder using Monte Carlo methods. Each physical qubit

in the lattice experiences an error with an independently and identically distributed

(iid) probability p. Then, the decoder is given a syndrome of those errors and

attempts to correct the errors. Finally, to assess the efficacy of the decoder, we

check whether the correction caused a logical error. A logical error is considered a

failure.

At high error probabilities, the decoder failure probability is high because as

the lattice size increases, the number of errors (which is equal to the number of qubits

×p, on average) increases more rapidly than the lattice’s capacity to correct errors.

But at small error probabilities, larger lattices may be more likely to successfully

correct an error than smaller lattices. The probability below which larger lattices

are more successful is called the threshold probability.

We note the following:

• When building a quantum computer, working in the below-threshold regime

is desirable. The lattice can be made arbitrarily large to push the failure

probability arbitrarily close to 0.

• Although the behavior of the decoder, given some error syndrome, is determin-

23

istic, decoder failure is expressed as a probability because the error is randomly

selected.

• The X- and Z-error decoders were tested separately because corrections of X-

and Z-errors are independent.

We chose error probabilities (p) ad hoc to locate the threshold regime for

this decoder. Broadly, we began with threshold regimes indicated by the original

Restriction Decoder [8], decreased p until the threshold regime for this decoder was

reached, then ran simulations for finer-grained increments of p in that region. These

data points are illustrated in Figures 3.7 and 3.8.

For each data point, the number of Monte Carlo simulations run was a power

of 10 between 104 and 107. By one “simulation,” I mean that the simulation gen-

erated a random iid error, found the syndrome, ran the decoder for that syndrome,

and checked whether the result was a logical error. In reality, since these tests were

run on the Lonestar 5 supercomputer, 24 simulations were run in parallel. Smaller

lattices and smaller probabilities required a larger number of simulations in order to

generate a significant number of logical errors. We made an effort to run a number

of simulations large enough that the error bars on vertically aligned points would

not overlap. Error bars represent the standard deviation of the mean, given by√
pf (1− pf)/N , where pf is the decoding failure probability and N is the num-

ber of Monte Carlos simulations. In Figures 3.7 and 3.8, some error bars are not

visible because the points themselves, as rendered, are larger than the bars. The

number of simulations was upper-bounded by the runtime limit on the Lonestar 5

supercomputer, which was 48 wall-clock hours.

We find evidence for a threshold for the X-error decoder between 2.5% and

3.3% and for a threshold for the Z-error decoder between 0.01% and 0.02%. (See

Figures 3.7 and 3.8.1) In comparison, the original paper on the restriction decoder

found a threshold of 10.2% for both X- and Z-errors on the 2D color code with

periodic boundaries; note that code has both a different dimensionality and a dif-

ferent boundary condition than the code studied in this thesis [8]. A recent paper

on decoding with connected components found the threshold on the 2D triangluar

color code with boundaries to be 0.2% [18]. (The decoder described in this thesis did

1Figures 3.7 and 3.8 were also published in [11].

24

not use connected components.) In addition, an investigation of the 3D gauge (not

tetrahedral) color code with boundaries found a threshold of 0.46% for X-errors;

Z-errors should admit the same threshold due to the symmetry of the gauge color

code [19]. To the best of my knowledge, there are no previous results for thresholds

on the 3D tetrahedral color code with boundaries, so I cannot compare our result

directly with those of other groups. Furthermore, there may exist better decoders

for the three-dimensional tetrahedral color code that admit higher thresholds.

It makes sense for the X-threshold to be higher than the Z-threshold, because

decoding Z-errors is more difficult for two reasons. First, there is more degeneracy

among syndromes of Z-errors than of X-errors because there are fewer X-stabilizers

than Z-stabilizers. Second, the syndrome of Z-errors is missing information on the

boundary vertices. Furthermore, the Z-error decoder uses the X-error decoder as a

subroutine, so the performance of the former will always be bounded by that of the

latter.

Figure 3.7: X-error decoder performance under iid local noise.

25

Figure 3.8: Z-error decoder performance under iid local noise.

26

Chapter 4

Conclusions

In this thesis, I have described the three-dimensional tetrahedral color code with

boundaries. The 3D tetrahedral color code is a topological quantum error code,

which encodes quantum information in global, as opposed to local, degrees of free-

dom. The code encodes one logical qubit in at least fifteen physical qubits. Further-

more, this code admits a logical gate set that is both transversal and universal. The

code can be described by stabilizers - namely, Z-stabilizers that are on the faces and

X-stabilizers that are on the cells of the primal lattice. Measuring the stabilizers

results in an error or non-error syndrome.

A decoder is an algorithm that, given the error syndrome, finds a set of

qubits that could have caused that error and applies operations to correct the error.

I described a decoder for Z-errors, which have a point-like syndrome on the dual

lattice. This decoder uses a restriction procedure to map the tetrahedral color code

to the toric code. The decoder uses minimum-weight perfect matching to connect the

point-like syndrome to an edge-like syndrome, uses the Sweep Decoder to connect

the edge-like syndrome to a triangular mesh, and uses the Peel Algorithm to lift

the triangular mesh to a tetrahedral set of qubits. This set of qubits is then the

correction recommended by the decoder. Since the sweep and lift steps required for

the Z-error decoder are the same procedures required for an X-error decoder, the

Z-error decoder can call an X-error decoder as a subroutine. (The research group

in which I work also wrote an X-error decoder as part of this project; see [11].)

The metric that measures decoder performance evaluates whether the sym-

metric difference between the set of original error qubits and the set of qubits cor-

27

rected by the decoder causes a logical error. I presented some examples of errors

that do and do not cause logical errors in Section 3.1. Then, I presented a threshold

error probability for iid X and Z errors. In the regime below the threshold error

probability, making the lattice arbitrarily large will push the probability of success-

ful correction arbitrarily close to 1. Evidence was found for a threshold for the

X-error decoder between 2.5% and 3.3% and for a threshold for the Z-error decoder

between 0.01% and 0.02%. Although this threshold is lower than thresholds found

on other codes ([8, 18, 19]), the three-dimensional tetrahedral color code merits fur-

ther investigation for the reasons described in Section 4.1. Furthermore, there may

exist better decoders for the three-dimensional tetrahedral color code that admit

higher thresholds.

4.1 Future Work

A possible extension to this project would be to test a just-in-time decoding scheme,

as proposed by Bomb̀ın in [7]. A just-in-time scheme would allow the three-dimensional

color code to be implemented on a two-dimensional array of physical qubits by al-

lowing the third dimension to be time. We chose the Sweep Decoder as our toric

code decoder because the Sweep Decoder is a cellular automaton that lends itself

to such a chronological ordering. In the just-in-time scheme, the decoder has less

information than in the regular 3D scheme, because stabilizers on future areas of

the lattice cannot be measured yet. Thus, the thresholds presented in this paper

set an upper bound for the thresholds of the just-in-time scheme. A just-in-time

application would be a potential reason to choose a three-dimensional color code in-

stead of a two-dimensional code with a higher threshold, so this application should

be explored further.

An extension of Chamberland’s work on connected components to the 3D

tetrahedral color code might result in higher thresholds than those presented in this

thesis [18].

This work used iid errors for the threshold simulations. A more realistic

noise model would take into account the noise propagation across gates described

in [9]. This could lead towards a fault-tolerance threshold for measurement-based

quantum computing on the color code.

Finally, a characterization of error configurations that cause or do not cause

28

logical errors could be used to predict, given some configuration of physical errors,

whether the logical qubit will experience a logical error. In threshold calculations,

this would circumvent the computational demand of running the decoder and check-

ing whether the result is a logical error. This could also be used to determine which

physical qubits are most likely to cause a logical error, so experimentalists construct-

ing quantum computers could prioritize insulating the most troublesome qubits from

noise.

29

References

[1] N. David Mermin. Quantum Computer Science. Cambridge University Press,

New York, NY, 2007. Pages 100–109.

[2] Scott Aaronson. [Notes for] Lecture 27, Thurs April 27: Quantum error cor-

rection. https://www.scottaaronson.com/qclec/27.pdf, 2017.

[3] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum

Information. Cambridge University Press, Cambridge, U.K., 2000.

[4] Hèctor Bomb̀ın. Topological codes. In Daniel A. Lidar and Todd A. Brun,

editors, Quantum Error Correction. Cambridge University Press, New York,

NY, 2013.

[5] Hèctor Bomb̀ın and Miguel A. Martin-Delgado. Topological computation

without braiding. Phys. Rev. Lett., 98:160502, 2007. doi: 10.1103/Phys-

RevLett.98.160502.

[6] Scott Aaronson. [Notes for] Lecture 29, Thurs May 4: Experimental realizations

of QC. https://www.scottaaronson.com/qclec/29.pdf, 2017.

[7] Hèctor Bomb̀ın. 2D quantum computation with 3D topological codes.

arXiv:1810.09571, 2018.

[8] Aleksander Kubica and Nicolas Delfosse. Efficient color code decoders in d ≥ 2

dimensions from toric code decoders. arXiv:1905.07393, 2019.

[9] Hèctor Bomb̀ın. Transversal gates and error propagation in 3D topological

codes. arXiv:1810.09575, 2018.

30

[10] Bryan Eastin and Emanuel Knill. Restrictions on transversal encoded quan-

tum gate sets. Phys. Rev. Lett., 102:110502, 2009. doi: 10.1103/phys-

revlett.102.110502.

[11] Skylar Turner, Josey Hanish, Eion Blanchard, Noah Davis, and Brian La Cour.

A decoder for the color code with boundaries. arXiv:2003.11602, 2020.

[12] Robert Raussendorf and Hans Briegel. A one-way quantum computer. Phys.

Rev. Lett., 86:5188, 2001. doi: 10.1103/PhysRevLett.86.5188.

[13] A. Yu. Kitaev. Fault-tolerant quantum computation by anyons. Ann. Phys. (N

Y), 303:2, 2003. doi: 10.1016/S0003-4916(02)00018-0.

[14] Arun B. Aloshious and Pradeep Kiran Sarvepalli. Projecting three-dimensional

color codes onto three-dimensional toric codes. Phys. Rev. A, 98:012302, 2018.

doi: 10.1103/PhysRevA.98.012302.

[15] Michel X. Goemans. Lecture notes on bipartite matching.

https://math.mit.edu/ goemans/18433S09/matching-notes.pdf, 2009.

[16] Aleksander Kubica and John Preskill. Cellular-automaton decoders with prov-

able thresholds for topological codes. Phys. Rev. Lett., 123:020501, 2019. doi:

10.1103/physrevlett.123.020501.

[17] Arun B. Aloshious and Pradeep Kiran Sarvepalli. Decoding toric codes on three

dimensional simplical complexes. arXiv:1911.06056, 2019.

[18] Christopher Chamberland, Aleksander Kubica, Theodore J Yoder, and Guanyu

Zhu. Triangular color codes on trivalent graphs with flag qubits. New J. Phys.,

22:023019, 2020. doi: 10.1088/1367-2630/ab68fd.

[19] Benjamin J. Brown, Naomi H. Nickerson, and Dan E. Browne. Fault-tolerant

error correction with the gauge color code. Nat. Commun., 7:12302, 2016. doi:

10.1038/ncomms12302.

31

