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Brain-Computer Interface (BCI) is a promising technology for individ-

uals who suffer from motor or speech disabilities due to the process of decoding

brain signals. This thesis uses a dataset for imagined speech to classify vowels

based on the neurological areas of the brain. We demonstrate that by using

the frontal region of the brain, we obtain higher than 85 percent accuracy

using a CNN and LSTM. This accuracy is higher than previous studies that

have classified the dataset using the entire brain region. This work shows great

promise in using the physiological aspects of the brain associated with specific

tasks.

v



Table of Contents

Acknowledgments iv

Abstract v

List of Tables viii

List of Figures ix

Chapter 1. Introduction 1

Chapter 2. Past Work 5

2.1 Applications in BCI . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Classical Machine Learning in BCI . . . . . . . . . . . . . . . . 6

2.3 Speech-based clinical studies . . . . . . . . . . . . . . . . . . . 7

2.4 Machine Learning for Speech . . . . . . . . . . . . . . . . . . . 8

Chapter 3. Data 10

3.1 10/20 System . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Cross-Correlation matrix . . . . . . . . . . . . . . . . . . . . . 15

3.4 Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 4. Models 19

4.1 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 5. Results 24

5.1 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 24

vi



5.2.1 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.2 CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Comparison of Results with Past Work . . . . . . . . . . . . . 26

Chapter 6. Conclusion and Future Work 29

Bibliography 31

Vita 42

vii



List of Tables

3.1 Lobes of the brain pertaining to electrode abbreviation . . . . 14

3.2 Summary of the neurological function of each electrode . . . . 14

3.3 Labeling of Correlation Matrices for both frontal and all electrodes 18

5.1 Parameters of Models . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Test Accuracy of LSTM . . . . . . . . . . . . . . . . . . . . . 25

5.3 Test Accuracy of CNN . . . . . . . . . . . . . . . . . . . . . . 26

5.4 Results of test accuracy for vowel data from Saha et al. [50] and
[46] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

viii



List of Figures

3.1 Example of EEG data from dataset for Participant 11. . . . . 11

3.2 Example of electrode position in the 10-20 system . . . . . . . 12

3.3 Example of the neurological function of each electrode and place-
ment using the 10-20 system with brain function [1]. . . . . . . 13

3.4 Example of heatmap of cross-correlation matrix for Subject 8e
between a and i. The first half of the electrodes correspond to
a and the second half to i. . . . . . . . . . . . . . . . . . . . . 16

4.1 Basic summary of the training and testing block diagram for
classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 One layer of LSTM architecture . . . . . . . . . . . . . . . . . 21

ix



Chapter 1

Introduction

Brain-Computer Interface (BCI) is a promising technology that shows

great promise in improving the quality of life in clinical neurology and reha-

bilitation [24, 9]. BCI’s objective is to aid people with disabilities to interact

with their environment by decoding brain signals instead of relying on their

muscle movement [63]. This technology could be very beneficial to people, for

example, who suffer from Locked-in syndrome. Locked-in syndrome is a rare

neurological disease where a person is completely paralyzed and are unable to

move any of their muscles, but they are able to communicate with their eye

blinks and eye movement [38]. BCI could help these individuals to communi-

cate by using covert or silent speech. There are several different methods to

measure brain signals for speech.

Electromyography (EMG) has shown promise in silent speech for healthy

people by using EMG electrodes on the larynx and orofacial muscles [4, 16, 30].

EMG-based recordings are beneficial for speech deprived people, but this ap-

proach would not work for someone who is unable to move their muscles. A

BCI would be very beneficial to aid such a person.

BCI signals can be measured by a plethora of instruments. These mea-
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surement methods include: magnetoencephalography (MEG), electrocorticog-

raphy (ECoG), Local Field Potential (LFP), single-unit activity (SUA) and

electroencephalogram (EEG) [9]. BCI measurements can be either invasive

[26, 40] or non-invasive [64, 57]. EEG and MEG are non-invasive, while ECoG,

LFPs, and SUAs are invasive methods. EEG and MEG record signals that are

based on the average of the activity of millions of neurons near the electrode.

MEG is a method where signals have higher spatiotemporal resolution than

EEG data [43]. A disadvantage of the use of MEG is that it is very expensive

to measure data on a MEG machine and there are very few machines at this

point in time. ECoG requires a surgical procedure where the electrodes are

placed on the cerebral cortex. ECoGs have also been used in BCI experiments

for controller based experiments [48, 53, 40]. LFPs and SUAs also require a

surgical procedure where electrodes are placed into the cerebral cortex. SUAs

record data for a single neuron, while LFPs record signals based on the ac-

tivity of 10-90 neurons. EEG measurements are more common as these are

portable, non-invasive, and low-cost. EEG shows promise in applications for

control and speech. For this thesis, we use EEGs as the method of measure-

ment for experiments.

The first study for EEG was conducted by Hans Berger in 1929 [3].

EEG data can be collected in two ways. In one approach, electrodes are placed

surgically in the brain. This is very costly and is an invasive method, which

could lead to long-term complications. A non-invasive method involves dry

EEG electrodes are placed on the head. Non-invasive EEG measurements are
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low-cost and have been shown to distinguish the differences in brain activity

using electrical fields. The drawback of using EEG is that the data collected is

challenging to analyze due to its high-dimensionality,low signal-to-noise ratio

(SNR), and various artifacts from the participant as well as the instrument.

Speech for BCI systems have been analyzed extensively in both physical and

imaginary speech scenarios.

Speech is a vital sense for communication. There have been several

studies towards understanding speech from both covert (or imaginary) speech

and physical speech perspectives to solve this complex problem for different

scenarios. Several studies have investigated how to classify individual speech

into categories like English vowels, short words, and long words [12, 15, 33, 46].

The majority of this work has been carried out using classical machine learning

(ML) models like Support Vector Machines. Neural Networks have shown

great promise for speech processing and have achieved better accuracy than

classical ML methods. Many of the experiments for speech use all the data

from the electrodes and don’t specifically pinpoint a certain location of the

brain where activity occurs. The question lies in how do the neurological

areas of the brain associate with the data and how a model can be learned

that requires less computation leading to a low-cost speech-based BCI.

The following thesis addresses this question in the following manner.

We show that by using the electrodes from the frontal lobe, i.e., the region

responsible for speech in the brain, we can get the same, if not better, accuracy

than using the measurements from all the electrodes. To the best of our
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knowledge, this is the first study of using a certain lobe to classify speech from

the dataset of [46]. To show that the classification accuracy is as good, we

analyze the data using subsets of the entire 64 electrodes. The subsets studied

include all the electrodes and the electrodes in the frontal region of the brain

where speech occurs. The classification process is modeled using two very well

known and frequently used deep learning algorithms. These two algorithms are

the Long Short-Term Memory (LSTM) and the Convolutional Neural Network

(CNN). Our results show that by using the frontal electrodes, the accuracy of

the data is above 90 percent for each participant. This shows that speech-

based BCI signals can be classified using only the active parts of the brain,

which would help in enabling less computation time and less hardware needed

for BCI experiments.

This thesis is organized in the following manner. Chapter 2 discusses

the past work in BCI. Chapter 3 explains the data used for the experiments.

Chapter 4 explains the modeling of the data. Chapter 5 discusses and compares

the results. Finally, Chapter 6 concludes the work and presents future work.
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Chapter 2

Past Work

BCIs have been studied extensively for applications in speech and other

tasks to understand what information is obtained from brain-signals using the

many different measurement methods. The main objective of much of BCI is

to aid in rehabilitation for people with motor disabilities.

2.1 Applications in BCI

BCI’s target population is subdivided into three groups [47]. The first

group involves locked− in patients who have lost all motor-control. The sec-

ond group involves patients who have some capability of movement. The third

group is for healthy individuals, who have no real need for aid from BCI. The

types of applications that BCI can be involved in include entertainment, motor

restoration, enviromental control, locomotion, and communication. Entertain-

ment has had quite a growth in applications for BCI. Gaming and controlling

objects using BCI systems are some examples of the types of applications that

are involved in BCI entertainment and environmental control. Gaming has

been very popular recently with the idea of being able to control objects with

your mind. Examples include the ”mind-controlled” BCI quadcopter [37] and
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BCI using virtual reality [11]. Pacman, Pong, and other such classic controller

games have been played using motor imagery using BCI systems [34]. Pinball

has also been played using non-invasive recordings to show the promise of us-

ing BCI systems with complex controller tasks [58]. However, entertainment

using BCI is not going to aid in uncovering how to best create a system for

someone who has poor motor-control. Communication is a vital application

for BCI systems to aid in rehabilitation.

Communication in BCI has different applications. A common method

of studying BCI is to communicate using a keyboard on a screen with a BCI

system. For example, using a virtual keyboard, studies have developed a de-

vice that spells with such a system [5, 10, 17, 29]. Eye blinks were also shown

to be able to use a virtual keyboard to communicate [10]. Another applica-

tion in communication was based on internet browsers[31, 2]. Speech-based

communication is another method of communication that has been studied

extensively.

2.2 Classical Machine Learning in BCI

BCI data has been studied extensively before the promise of neural

networks using classical ML algorithms like Support Vector Machines. Clas-

sification is one approach to understanding BCI data. Classification has been

used to recognize the characteristics of the brain activity based on features.

Traditionally, classification was accomplished by supervised learning. Nguyen

et. al investigate an imaginary speech dataset using Riemannian manifold
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features classified by a Relevant Machine Vector [46]. Another example of

supervised learning used frequency-following responses to project electrophys-

iological responses onto a low-dimensional spectral feature for two vowels [65].

Supervised learning, however, has many drawbacks due to a BCI system be-

ing non-stationary [55]. Supervised learning has many drawbacks especially in

large datasets. For this reason, semi-supervised learning has been suggested

for a speller system using BCI [41]. Semi-supervised learning, however, is not

the most realistic method to look at BCIs using the brain signal when ground

truth is not known.

Unsupervised learning or reinforcement learning is a good method to

identify BCI data when all the data are unlabelled. One approach to unsuper-

vised experiments is to have the user and BCI learning together [60, 42, 28].

Reinforcement learning, a type of supervised learning that is based on a

reward − learning, has been used for classification by observing the neuron

spikes when a person makes errors [56].

2.3 Speech-based clinical studies

BCI for communication has been studied extensively by both invasive

and not-invasive methods. One method of study was to implement a ”type-

writer” approach where intracortical electrodes are implanted. One such ex-

periment in by Kennedy was the first implant for a human subject with a

chronic microelectrode to aid a paralyzed patient by an intracortical BCI [32].

This subject could make binary decisions until her death of 76 days after im-
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plantation. Another study involved an experiment by Donoghue [26]. This

study involved human volunteers, who were implanted with the Utah micro-

electrode array-based system. At least two of these subjects learned to use a

mouse cursor on a computer screen. Speech data has also been studied based

on deep learning for EEG

2.4 Machine Learning for Speech

Speech is crucial for rehabilitation for locked-in patients or those with

speech impairments. Several studies have been made for imaginary speech and

physical speech. Speech imagery is much easier to be repeated than image

and motor imagery. We use in this thesis a speech imagery data for vowels.

Research in speech imagery has been investigated by phonemes and syllables

without vocalizing. One such example, was by Wester et al., who showed a

system with high accuracy that was capable of recognizing imagined speech

with high accuracy [62]. It was later found that this high accuracy was due to

the way the data was collected creating temporal correlation in the EEG [49].

A study by DaSalla et al. showed 68-79 percent accuracy when classifying a, u,

and rest using CSP [12]. This high accuracy was later found to be obtained due

to CSP having discriminant channels Fz, C3,Cz, and C4. These four channels

are related to motor imagery and not speech imagery. Deng et al. used Huang-

Hilbert transform to get an accuracy of 72.6 percent by classifying ba and ku

vowels [15]. These studies have primarily used signal processing algorithms

and classical ML to determine the classification for imagined speech in vowel
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data. The accuracy for these studies has been reasonable, but not as well as

in neural networks.

Several models have been used to gain an understanding of the informa-

tion that lies in BCI EEG for speech processing with neural networks. Hidden

Markov Models (HMMs) were the first models to be used with neural net-

works for speech processing [6, 61]. However, the combination of HMMs with

neural networks has shown to not perform as well as deep neural networks.

Neural networks gained even more recognition in the use of acoustic modeling

[45]. Several papers have shown that speech recognition with recurrent neural

networks (RNNs) avoid the misplaced alignments of HMMs and achieve bet-

ter accuracy due to the larger state space [19, 20]. Long short-term memory

models are a subgroup of recurrent neural networks that have shown to also

have very good accuracy in categorizing speech [35, 52]. Some work has also

been done using a hybrid neural network architecture with LSTM and Convo-

lutional Neural Networks (CNN) speech system that has shown better results

than using a single neural network model [51]. These methods all show that

accuracy improves using a neural network compared to classical ML models.

They all also classify speech signals based on using the entire brain’s data.

Our approach for this thesis is show that the physiological aspects of the brain

play a big part in understanding the BCI data and that less computation is

sufficient when using the parts of the brain that are active during speech.
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Chapter 3

Data

Data plays an important role in all machine learning problems. The

data used for this thesis is from a publicly available imaginary speech dataset

[46]. This data was collected at the Human-Oriented Robotics and Control Lab

of the Arizona State University. There were 15 subjects in this study, however

data for seven subjects were made publicly available. The subjects for the

dataset are all right-handed except Subject 13. During the experiments, the

subjects were instructed to pronounce words in their mind with cues from a

computer monitor. For each trial, a beep would appear when the trial started

and a visual cue would be prompted. The beeping sound was repeated with

a period of T . T is 1 second for the vowel data. The trials would then end

with a rest period of approximately two seconds. The reasoning for using this

approach to run the experiments was to make sure that the areas of the brain

where sound occurs are not activated. This dataset has data for short words,

long words, and vowels for EEG data that follows the international 10/20

system placement, which is explained more in Section 3.1 [54]. For this thesis

we focus on the vowel data. The vowel data consists of data for a, i, and u.

An example of the data for an EEG can be seen in Figure 3.1 for Subject 11.
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Figure 3.1: Example of EEG data from dataset for Participant 11.

3.1 10/20 System

The 10/20 system is an internationally recognized system based on the

location between an electrode and the cerebral cortex. The numbers ten and

twenty refer to the distances between adjacent electrodes. An example of the

10/20 system is shown in Figure 3.2. Each electrode has a letter identifying

the lobe in the brain where the electrode resides. Table 3.1 summarizes what

region of the brain each electrode resides in. Even numbered electrodes repre-

sent electrodes on the right hemisphere of the brain. Similarly, odd numbers

represent the left hemisphere. Each region of the brain pertains to a specific

function. Table 3.2 summarizes the function of each electrode. This can be

observed better in 3.3 from [1].
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Figure 3.2: Example of electrode position in the 10-20 system
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Figure 3.3: Example of the neurological function of each electrode and place-
ment using the 10-20 system with brain function [1].
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Table 3.1: Lobes of the brain pertaining to electrode abbreviation
Electrode abbreviation Lobe in Brain

F Frontal
T Temporal
C Central
P Parietal
O Occipital

Table 3.2: Summary of the neurological function of each electrode
Electrode Function

Fp1 Attention
Fp2 Judgement

F3,F4 Motor Planning
F7 Verbal Expression
F8 Emotional Expression
Fz Working Memory/Absent mindedness
T3 Verbal Memory
T4 Emotional Memory
T5 Verbal Understanding
T6 Emotional Understanding

C3,C4,Cz Sensorimotor Integration
P3,P4,Pz Cognitive Processing

O1,O2 Visual Processing

3.2 Preprocessing

The following data has been preprocessed as listed below:

• Bandpass filter at 8-70 Hz using a 5th order Butterworth filter.

• Notch filter at 60 Hz for power line signal.

• EOG artifact removal by the ADJUST algorithm [44] to remove muscle
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and eye blinks.

• Downsample from 1000 Hz to 256 Hz.

After pre-processing the dataset, the cross-correlation matrices are cal-

culated. This process is explained in Section 3.3.

3.3 Cross-Correlation matrix

The features for the deep learning models chosen are the cross-correlation

matrices between the electrodes for each trial for each of the seven sub-

jects. We calculate the cross-correlation matrices for each subject. Each

cross-correlation matrix is calculated in the following manner with ei

representing electrode i and ej representing electrode j. X represents

the EEG data and t represents the time. The covariance between each

electrode is measured:

Cov(Xei , Xej)(t) = E[(Xei(t) − E(Xej(t))(Xei(t+ τ) − E(Xej(t+ τ)]

The cross-correlation matrix between each electrode is then calculated

as follows using the covariance:

Reiej =
Coveiej√

CoveieiCovejej

The matrices are calculated for each trial for each subject. The function

’corrcoef’ from python was used in this calculation. Figure 3.4 represents

an example of a correlation matrix from the data between a and i for

subject 8e. The white diagonal represents the correlation between two

15



Figure 3.4: Example of heatmap of cross-correlation matrix for Subject 8e
between a and i. The first half of the electrodes correspond to a and the
second half to i.

16



of the same electrodes. The correlation matrices are symmetric. We can

observe that there are some highly correlated electrodes and a few elec-

trodes that have low correlation. This correlation matrix was calculated

for data with 64 electrodes, which creates a 128 × 128 matrix. The top

right and bottom left 64 × 64 matrix or the heavily purple section of

the heat map represents the cross-correlation of a and i. The top left

and bottom right 64 × 64 matrix represents the correlation of the vowel

and itself. A total of 191 such matrices are calculated for each subject

and used as features for all electrodes. The less correlated electrodes

show that those electrodes may provide more discrimination than the

electrodes that are highly correlated with each other. A subset of all the

64 electrodes is the 20 frontal electrodes where speech occurs. The cross-

correlation matrices for the frontal electrodes are calculated in the same

manner as the electrodes. The difference between the frontal electrodes

correlation matrices and all the electrodes is the number of channels

and the dimension of the frontal cross-correlation matrices. The frontal

electrodes consist of 20 channels. The dimension of the cross-correlation

matrices is 40 × 40. There are 191 matrices calculated for the frontal

electrodes also. Labeling the data for the frontal and all the electrodes

is the same.
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3.4 Labeling

The correlation matrices vowel data consists of 191 matrices. Each

subject has ten trials of data for each vowel. The trial data consists of prepro-

cessed EEG data. The cross-correlation matrices are calculated as explained

in Section 3.3. This data is then used to calculate the 191 matrices with labels

of a,i, and u. The matrices are labeled by taking the first trial vowel with

whatever vowel it is correlated with. For example, corr0 is labeled as a due

to the fact that we take the first trial of a and then correlate it with i. This

method aids in understanding what part of the data we are correlating. All

the other matrices are calculated in a similar manner for each subject. For

the frontal electrodes, we label the data in the exact same manner. Table 3.3

shows which correlation matrices (corr) pertain to which vowel with respect

to both all the electrodes and the frontal electrodes. There are 75 matrices

Table 3.3: Labeling of Correlation Matrices for both frontal and all electrodes
Vowel label Correlation Matrix

a corr0–18,corr55–70,corr100–112,corr136–145,corr163–169,corr181–190
i corr19–37,corr71–85,corr113–124,corr146–154,corr170–175
u corr38-54,corr86–99,corr125–135,corr155–162,corr176–180

labeled as a, 61 labeled as i, and 55 labeled as u. This shows this dataset is

not an unbalanced dataset.
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Chapter 4

Models

Figure 4.1 summarizes the basic modeling of the experiments with the

classifier depicting the deep learning model chosen for classification of the vowel

data. In the case of the experiments, the two models chosen are LSTM and

CNN. They were chosen primarily for their promising results in classification

tasks [14, 22, 36]. The data input has 191 correlation matrices representing

Figure 4.1: Basic summary of the training and testing block diagram for clas-
sification.

the features of the input to the classifiers for each subset of the electrode.

Each correlation matrix is a 128 × 128 matrix for all the electrodes. For the

subset of all the electrodes, the frontal electrodes consist of 40 × 40 with the

same number of 191 correlation matrices for each subject. Out of the 191,
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151 matrices are used as the training data and 40 as the testing data for each

subject. For the experiments considered, we take all the electrodes in the

brain, and the twenty electrodes from the frontal region for both the left and

right hemisphere. We calculate the accuracy for each of the seven subjects.The

vowels are one–hot encoded. The test accuracy is calculated based on how a

vowel is calculated based on the True Positive (TP), True Negative (TN), False

Positive (FP), and False Negative (FN). This is calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN

The loss is calculated by categorical cross entropy. Categorical cross entropy is

where the true class is represented as a one-hot encoded vector. The outputs

are compared to the one-hot encoded vector, which will then determine how

low the loss is. This can be measured in the following manner where ŷ is the

predicted output, which is the output from the softmax:

L(y, ŷ) = −
M∑
j=0

N∑
i=0

(yijlog(ŷij))

4.1 LSTM

Long short-term memory (LSTM) is a recurrent neural network (RNN)

with the capability of long-term memory units [27]. It has shown promising re-

sults in speech systems. LSTMs have four gates that interact in a specific way.

RNNs typically have one neural network layer. Traditional LSTMs incorporate

sequential data as their input data including time-series data. Adding layers
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to an LSTM can add a certain-level of abstractness to the results. There are

several different LSTM models. A stacked LSTMs is one type of LSTM that

was proposed by Hinton et, al. for speech [20]. In this thesis, we use the same

stacked LSTM as [20]. One layer of the LSTM used is shown Figure ??. We

Figure 4.2: One layer of LSTM architecture

run the data with correlation matrices using a stacked LSTM with two layers.

In a typical RNN with an input sequence x = (x1, ....xT), h = (h1, ....,hT) is

the hidden vector, y = (y1,y2, ...yT) is the output vector, and the time series

is from t = 1, 2, ...., T . The RNN is formulated as follows:

ht = H(Wxhxt +Whhht−1 + bh)

yt = Wyhht + by

where W represents the weight matrices, b represents the bias vector, and H

denoted the hidden layer function. The LSTM comprises of four gates: input

21



gate, forget gate, output gate, and cell activation vector. These are all the

same size as h from RNN. The LSTM can be written as:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wxfxt +Whfht − 1 +Wcfct−1 + bf )

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoht−1 + bc)

ht = ottanh(ct)

where σ represents the logistic sigmoid function, i, f, o, and c represents the

input gate, forget gate, output gate, and cell activation. The weight matrices

from the cell to gates are diagonal Wsi.

4.2 CNN

Convolutional Neural Networks (CNN) have shown great promise in

classifying images [36, 39]. A CNN is a multi-layer neural network with several

convolution-pooling layer pairs and fully-connected layers at the output. It can

take an input image and be able to differentiate from other images. For this

thesis, our correlation matrices are the images. Pre-processing in CNNs are

much lower than other classification algorithms, which makes it easier to work

with. First, a CNN has an input tensor in the case of our data for all the

electrodes, we have an input tensor with size 191 by 128 by 128 consisting of

each image or cross-correlation matrix. An individual image is of size 1 by

128 by 128. This image is an RGB or Red, Blue, and Green image. Next, the
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convolution layer or kernel is run with certain image dimensions. In our case,

we take a 3*3*1 image. The kernel then shifts through the entire image. This

is known as the convolution step, which is used to extract high-level features.

We use two convolutional layers in our experiment. After convolving, a pooling

layer is run, which is used to decrease the computation needed. We use a max

pooling layer in our case. After the CNN has output, an activation and softmax

layer is calculated in parallel. This is then used to find the cross-entropy loss.

This step is also done for the LSTM.
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Chapter 5

Results

To test whether the hypothesis that the selected physiological regions

of the brain creates higher accuracy than using the entire brain, we ran ex-

periments using all 64 electrodes and a subset of the 64 electrodes containing

20 electrodes that correspond to the frontal electrodes. These are known as

physiological areas of the brain where speech occurs. We ran all our experi-

ments using Google CoLab. This chapter discusses the parameters used and

results of the experiments.

5.1 Model Parameters

Parameter tuning is an art when it comes to training models. For the

experiments that are run on the correlation matrices, Table 5.1 summarizes

the parameters for each model for each subset of the electrodes.

5.2 Experimental Results

5.2.1 LSTM

Table 5.2 shows the accuracy of the LSTM based on all 64 and subset

containing 20 electrodes. We can observe that utilizing the brain signals in
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Table 5.1: Parameters of Models
Model Parameter CNN LSTM frontal CNN frontal LSTM

Epochs 100 50 100 50
Batch Size 150 100 150 100

Total Layers 2 2 2 2
Number of Hidden Layers 1 1 1 1

Activation ReLu ReLu ReLu ReLU
Optimizer Adam Adam Adam Adam

the frontal electrodes shows higher accuracy than learning from the entire 64

electrodes for these eight subjects. Using all the electrodes, the accuracy using

LSTM never reaches above 80 percent, while when the frontal electrodes are

used, the accuracy significantly improves to above 90 percent for each subject.

This shows the promise of using EEG data in certain regions of the brain based

on activities.

Table 5.2: Test Accuracy of LSTM
Participant Accuracy (all 64 electrodes) Accuracy (frontal 20 electrodes)

Subject 8 74.4 96.2
Subject 8e 76.9 100
Subject 9 33.3 92.1
Subject 11 12.8 90
Subject 12 51.3 99.2
Subject 13 33.3 100
Subject 15 69.2 100

5.2.2 CNN

The test accuracy for CNN is shown below in Table 5.3 using the pa-

rameters from 5.1.
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Table 5.3: Test Accuracy of CNN
Participant Accuracy (64 electrodes) Accuracy (20 frontal electrodes)

Subject 8 68.5 92.1
Subject 8e 73.4 95.1
Subject 9 28.2 89.5
Subject 11 15.2 85
Subject 12 53.6 94.5
Subject 13 27.4 98.4
Subject 15 73.4 100

Similar to LSTM, we observe that there is significant improvement by

just using the frontal electrodes. The CNN accuracy is slightly worse than

LSTM, but it shows significant improvement. Now let’s observe how well the

accuracy achieved is compared to past work using the same dataset.

5.3 Comparison of Results with Past Work

We compare the results from Table 5.2 and Table 5.3 with results from

[50] ans [46]. We compare with the two literatures due to them using the same

dataset. Saha et al. proposed a hybrid LSTM and CNN hybrid-based model.

They calculated the channel cross-covariance of the electrodes to determine the

accuracy using the Nguyen et al. dataset, which we used in our experiments as

well. Unlike Saha et al., we calculate the cross-correlation matrices between the

two electrodes for our features. Another difference between the two studies is

that we pinpoint the frontal electrodes as the region where the most activity in

the brain occurs during speech. Both Saha and Nguyen use all 64 electrodes

of the brain region. Table 5.4 summarizes the results from [50], which is
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compared with [46]. Nguyen et al. compute the covariance matrix as the

feature vector and use a Relevance Vector Machine to classify the vowel data

using Riemannian Manifold features [46]. Comparing Table 5.2, Table 5.3,and

Table 5.4: Results of test accuracy for vowel data from Saha et al. [50] and
[46]

Subjects Nguyen et al. [46] Saha et al. [50]

Subject 8 51 73
Subject 11 53 75
Subject 12 51 79
Subject 13 46.7 69
Subject 15 48 84

Table 5.4, we observe that the results from [46] are very low in accuracy

compared with Saha et al. [50]. The accuracy for [46] is approximately at 50

percent for all the subjects. This shows that for our Subjects 9 and 13 get

worse accuracy using all the electrodes using neural network models. This also

demonstrates the difference between traditional ML methods and the accuracy

that can be obtained with neural networks for classification.

The approach in Saha et al. [50] achieves accuracy less than 85 for all

the subjects. This is slightly better than our results for all electrodes since we

achieve less than 80 percent. From our results, for all 64 electrodes our results

have similar accuracy to [50] for the Subject 8. When we use just the frontal

electrode, we have accuracy above 85 percent for all subjects using both LSTM

and CNN, which are better than the hierarchical model using simple LSTM

and CNN architectures. This shows that by understanding the physiological
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aspects of the brain, we can better understand and classify brain signals to

aid in computation time and accuracy.

Overall, we were able to prove that by pinpointing the neurological area

of the brain that is active, one is able to obtain higher accuracy than using the

data from the entire brain. This creates better understanding of brain signals

and shows the need to understand the physiology of the brain associated with

specific tasks.
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Chapter 6

Conclusion and Future Work

We demonstrate in this thesis that by using the correlation data from

the frontal region of the brain that we are able to obtain an accuracy that is

above 90 percent, while using the entire brain region the accuracy tends to be

below 80 percent using LSTM and CNN. This demonstrates that the neuro-

logical parts of the brain where the brain is active could be the only regions

needed to gain information to aid non-vocal patients. This would significantly

reduce hardware as well as computational time in BCI experiments

There are several paths that could be promising from this initial work.

One path could be to run more sophisticated models, such as a hybrid model,

on the data to determine how the accuracy is for each region of the brain. This

would allow in getting a full understanding of each part of the brain. These

results could then be compared with these initial results. There are several

other methods that could be studied to get a general sense of how one could

use the physiology of the brain to get a better understanding of how BCI could

hopefully one day have a state of the art BCI system to aid those that are

unable to speak.

One step to allow for a benchmark would be to create a clinically public
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datatset. A possibility for this is to use the resources at UTs medical school or

cognitive psychology labs to determine how using the physiology of the brain

can help locked-in people or people who are unable to speak. This would really

help in comparing these individuals with healthy participants to determine how

well this method would work. It would be great if this could be a large study

to gain a better understanding and determine how well such a process to get

closer to rehabilitation and have a benchmark with other researches on the

best methods for this main goal.

Another possibility is to use the collected data and figure out how the

system being non-stationary could affect the data and system as a whole. This

could potentially help in understanding what algorithms need to be created

that have potential to create one day an online system for people who suffer

from speech disorders.
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brain–computer interface (bci). Neuroimage, 36(3):581–593, 2007.

[44] Andrea Mognon, Jorge Jovicich, Lorenzo Bruzzone, and Marco Buiatti.

Adjust: An automatic eeg artifact detector based on the joint use of

spatial and temporal features. Psychophysiology, 48(2):229–240, 2011.

[45] A. Mohamed, G. E. Dahl, and G. Hinton. Acoustic modeling using deep

belief networks. IEEE Transactions on Audio, Speech, and Language

Processing, 20(1):14–22, 2012.

[46] Chuong H Nguyen and Panagiotis Artemiadis. Eeg feature descriptors

and discriminant analysis under riemannian manifold perspective. Neu-

rocomputing, 275:1871–1883, 2018.

[47] Luis Fernando Nicolas-Alonso and Jaime Gomez-Gil. Brain computer

interfaces, a review. sensors, 12(2):1211–1279, 2012.

[48] Tejaswy Pailla, Werner Jiang, Benjamin Dichter, Edward F Chang, and

Vikash Gilja. Ecog data analyses to inform closed-loop bci experiments

for speech-based prosthetic applications. In 2016 38th Annual Inter-

national Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC), pages 5713–5716. IEEE, 2016.

[49] Anne Porbadnigk, Marek Wester, and Tanja Schultz Jan-p Calliess. Eeg-

based speech recognition impact of temporal effects. 2009.

38



[50] Pramit Saha and Sidney Fels. Hierarchical deep feature learning for

decoding imagined speech from eeg. arXiv preprint arXiv:1904.04352,

2019.

[51] Pramit Saha, Sidney Fels, and Muhammad Abdul-Mageed. Deep learn-

ing the eeg manifold for phonological categorization from active thoughts.

In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 2762–2766. IEEE, 2019.

[52] Madhumitha Sakthi, Ahmed Tewfik, and Bharath Chandrasekaran. Na-

tive language and stimuli signal prediction from eeg. In ICASSP 2019-

2019 IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), pages 3902–3906. IEEE, 2019.

[53] Gerwin Schalk and Eric C Leuthardt. Brain-computer interfaces using

electrocorticographic signals. IEEE reviews in biomedical engineering,

4:140–154, 2011.

[54] F. Sharbrough, G.E. Chatrian, Ronald Lesser, H. Luders, M. Nuwer, and

Terence Picton. American electroencephalographic society guidelines

for standard electrode position nomenclature. Clinical Neurophysiology,

8:200–202, 01 1991.

[55] Pradeep Shenoy, Matthias Krauledat, Benjamin Blankertz, Rajesh PN

Rao, and Klaus-Robert Müller. Towards adaptive classification for bci.

Journal of neural engineering, 3(1):R13, 2006.

39
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