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A firewall system is a packet filter that is placed at the entry point
of an enterprise network in the Internet. Packets that attempt to enter the
enterprise network through this entry point are examined, one by one, against
the rules of some underlying firewall F' of the firewall system. Each rule in F
has a decision which is either “accept” or “reject”. For any incoming packet p,
the firewall system identifies the first rule (in the sequence of rules in F') that
matches p. If the decision of this rule is “accept”, then the firewall system
forwards p to the enterprise network. Otherwise the decision of this rule is

“reject” and packet p is discarded and prevented from entering the network.

Each firewall system consists of two units: a rule matching unit and
a decision unit. Both units are usually executed in the firewall system. To
simplify the task of managing the firewall system, we identify a special class of
firewall systems, called the outsourced system, where the rule matching unit is

executed in a public cloud. Unfortunately, public clouds are usually unreliable
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and execution of the rule matching unit in a public cloud can be vulnerable

to two types of attacks: verifiability attacks and privacy attacks.

The main objective of this dissertation is to discuss how to execute
the rule matching unit of an outsourced system in a public cloud such that
verifiability and privacy attacks are prevented from occurring. The main con-

tribution of this dissertation is three-fold.

First, we discuss how to design outsourced firewall system such that
execution of the designed system in the public clouds prevents the occurrence
of verifiability and privacy attacks. The resulting system, called the private
system, make use of two public clouds. We show that this private system
prevents verifiability and privacy attacks under the assumption that the two

public clouds used in this system are both “sensible” and “non-colluding”.

Second, we identify a special class of firewalls, called the partially spec-
ified firewall, where a firewall is called partially specified when the decisions of
some of the rules in the firewall are not specified as “accept” or “reject”. We
show that for every partially specified firewall PF'| there is a (fully specified)
firewall F' such that PF and F are equivalent. We discuss how to design an
outsourced system whose underlying firewall is a partially specified firewall PF
such that the designed system prevents both verifiability and privacy attacks.
We achieve this outsourced system by obtaining an equivalent firewall F' from

PF and designing a private system for F'.

Third, we present a generalization of firewalls called firewall expres-



sions. A firewall expression is specified using one or more component firewalls
and three firewall operators: “not”, “and”, and “or”. For example, the firewall
expression (G and H) consists of two component firewalls G and H and one
firewall operator “and”. This firewall expression accepts a packet p iff both
firewalls G and H accept p. For any underlying firewall expression F'E, we de-
fine an Ezpression System as a generalization of firewall systems that takes as
input any packet p and determines whether the underlying firewall expression

F'E accepts or rejects packet p.

We design an outsourced expression system for any underlying firewall
expression F'E. We achieve this outsourced expression system by using a
private system for each component firewall of F'E' and combining these private
systems through an overall decision unit to determine whether any packet is

accepted or rejected according to the firewall expression F'E.
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Chapter 1

Introduction

A firewall system is a packet filter that is placed at the entry point of
an enterprise network in the Internet. The function of the firewall system is
to examine the packets that attempt to enter the enterprise network through
the entry point, identify malicious packets, and prevent the malicious packets
from entering the network. Thus, a firewall system is a critical component in

the security of an enterprise network.

Each firewall system is built on top of an underlying firewall F. A
firewall F' is a sequence of rules where each rule consists of a sequence number,
a predicate, and a decision. The sequence number of each rule is a unique
integer in the range from 1 to n, where n is the number of rules in F. The
predicate of each rule is defined using ¢ attributes uq, us, ..., and u;. The

decision of each rule is either “accept” or “reject”.

Packets that attempt to enter the enterprise network through the entry
point are examined, one by one, against the rules of the underlying firewall
F of the firewall system. Examining a packet against the rules of the under-
lying firewall F', the firewall system determines whether to allow the packet

to be accepted and forwarded to the enterprise network or to be rejected and



prevented from entering the network. A packet p is accepted (or rejected, re-
spectively) by the underlying firewall F iff the decision of the first rule in F’

that matches p is accept (or reject, respectively).

In this dissertation, we study the execution of firewall systems using
public clouds. Executing firewall system using public clouds can simplify the
task of managing the firewall system for an enterprise network. Each fire-
wall system consists of two units: a rule matching unit and a decision unit.
Typically, both the rule matching unit and the decision unit of the firewall
system are executed by the system itself. In this dissertation, we are inter-
ested to investigate a class of firewall systems, called outsoured firewall sys-
tems, whose rule matching units are executed by public clouds. Unfortunately,
public clouds can be unreliable causing outsourced systems to be vulnerable
against two types of attacks: verifiability attacks and privacy attacks. In this
dissertation, we explore different designs of outsourced firewall systems with
an objective that the designed system takes advantage of public clouds and at

the same time prevents the verifiability and privacy attacks from occurring.

1.1 Firewall Systems

For any firewall F', we can define a Firewall System that takes as input
any packet p and determines whether packet p is accepted or rejected according
to the rules in F'. In this case, we call firewall F' the underlying firewall of the
firewall system. The architecture of a firewall system is presented in Figure 1.1.

This system consists of two units: a rule matching unit and a decision unit.



Both the rule matching unit and the decision unit are built on top of the

underlying firewall F'.

pktp

rule matching

(p, #(F, p))

accept p or

. . . reject
decision unit Jectp -

Figure 1.1: The architecture of a firewall system

When a packet p attempts to pass this firewall system, p is first di-
rected to the rule matching unit. The task of the rule matching unit is to
determine the sequence number of the first rule in F' that matches p and send
this sequence number to the decision unit. In Figure 1.1, the notation #(F, p)
denote the sequence number of the first match rule in firewall F' for packet p.
The task of the decision unit is to determine the decision of the rule whose

sequence number is #(F, p).

If the first match rule in F' for p has a decision “accept”, then the

decision unit forwards p to the enterprise network. Otherwise, the first match



rule in F for p has a decision “reject”, and in this case the decision unit discards

packet p and prevents it from entering the firewall system.

1.2 Firewall Outsourcing

Traditionally a firewall systems is designed and implemented such that
all the tasks of the firewall system are executed by the system itself. A com-
paratively newer approach is to design and implement a firewall system such
that some tasks of the firewall system are implemented and executed in public
clouds. The approach of implementing and executing part of a firewall system
in public clouds is called firewall outsourcing. Such a firewall system is called

an outsourced firewall system.

In recent years, with the rise of cloud computing, enterprises have be-
come interested in implementing and managing their firewall systems by us-
ing public clouds to reduce the associated cost and management complexity
[37,58], and [69]. According to a survey of firewall systems, firewall outsourc-
ing can provide three benefits [61]. First, reduces the initial investment and
the operational cost of the firewall system by taking advantage of the pay-per-
use model of the cloud. Second, reduces the number or staff needed to manage
and implement the firewall system. Third, increases availability of the firewall

system by maintaining necessary back-ups.

Despite these benefits of firewall outsoutcing, an outsourced system can
become vulnerable to security attacks caused by the fact that public clouds

are usually unreliable.



In this dissertation, we identify a class of outsourced systems whose
rule matching units are executed in public clouds. We obtain this outsourced
system from the firewall system presented in Figure 1.1 by executing the rule
matching unit in a public cloud C'. Since cloud C' is unreliable, the outsourced
system is vulnerable to two types of security attacks: verifiability attacks and

privacy attacks.

The verifiability attacks, caused by cloud C' can be described as follows.
When cloud C' executes the rule matching unit of the outsourced system and
computes the sequence number of the first match rule in the underlying firewall
F for an incoming packet p, C' may compute a wrong value. In particular, C'
may compute a sequence number v of a match rule (not the first match rule)
in F' for p and send the wrongly computed sequence number v to the decision
unit. In this case, the decision unit will accept or reject packet p according
to the decision of the rule whose sequence number is v in F. As a result, the
decision unit may end up incorrectly accepting a packet instead of rejecting it

or may end up incorrectly rejecting a packet instead of accepting it.

The privacy attacks, caused by cloud C' can be described as follows.
If C' knows the rules of the underlying firewall ', C' may leak F' to potential

attackers of the system.

Our goal in this dissertation is to design outsourced firewall systems by
taking advantage of public clouds, such that verifiability and privacy attacks

are prevented from occurring.



1.3 Limitation of Prior Outsourced Systems

Several outsourced firewall systems, for example, the systems in [20, 37,
42,43, 60, 62,68, 75], and [49], have been presented in the literature that take

advantage of one or more public clouds.

An important limitation of all prior outsourced systems is that none
of the systems defends against both verifiability and privacy attacks. We can

divide the prior outsourced systems into three categories as follows.

1. Systems that defend only against verifiability attacks.
2. Systems that defend only against privacy attacks.

3. Systems that do not defend against verifiability and privacy attacks.

In the firewall systems presented in [20, 75], and [76], the rules of the
underlying firewall F' are stored in the clear in the cloud. Each incoming
packet to the enterprise network is directed in the clear to the cloud. For
each incoming packet p, the cloud determines whether to accept or reject p
according to the rules of the underlying firewall I’ which are stored in the cloud.
If the cloud determines to accept p, then the cloud forwards p to the entry
point of the enterprise network. Then the firewall systems in [20, 75], and [76]
verify that packet p is indeed accepted according the underlying firewall F'.

Therefore, these firewall systems defend against verifiability attacks.

Whereas the firewall systems in [75] and [76] execute the verification

steps online, the firewall system in [20] executes the verification steps offline.



Moreover, because the rules of the underlying firewall F" are stored in the clear
in the cloud, the cloud can leak these rules to potential attackers of the system.
Therefore, the firewall systems in [20, 75|, and [76] defends against verifiability

attacks but do not defend against privacy attacks.

In the firewall systems presented in [37,42, 43,60, 62, 68], and [49], the
rules of the underlying firewall F' are encrypted before they are stored in the
cloud. Each incoming packet to the enterprise network is directed to the cloud.
For each incoming packet p, the cloud determines whether to accept or reject p
according to the encrypted rules of the underlying firewall F' which are stored
in the cloud. If the cloud determines to accept p, then the cloud forwards p to
the entry point of the enterprise network. Because the rules of the underlying
firewall F' which are stored in the cloud are encrypted, the cloud cannot know
the rules of the underlying firewall F' and so cannot leak these rules to potential

attackers of the system.

However, none of these firewall systems verifies that packet p that has
been forwarded to the entry point of the enterprise network from the cloud is
indeed accepted according to the underlying firewall F'. Therefore the firewall
systems in [37,42, 43,60, 62], and [68] defend against privacy attacks but do

not defend against verifiability attacks.

The outsourced systems in [25] and [61] are designed assuming that
public clouds are reliable. Thus, in these systems the rules of the underlying
firewall F' are stored in the clear in the cloud. Each incoming packet to the

enterprise network is directed in the clear to the cloud. For each incoming



packet p, the cloud determines whether to accept or reject p according to the
rules of the underlying firewall F' which are stored in the cloud. These firewall
systems do not verify that packet p is indeed accepted or rejected according
the underlying firewall F'. Moreover, because the rules of the underlying fire-
wall F' are stored in the clear in the cloud, the cloud can leak these rules
to potential attackers of the system. Therefore, these systems do not defend

against verifiability and privacy attacks.

1.4 Our Contributions

In this dissertation, we present different designs of outsourced systems
such that the designed system takes advantage of public clouds but prevents
the occurrence of verifiability and privacy attacks. There are three main con-

tributions in this dissertation.

The first contribution in this dissertation is to discuss how to design an
outsourced firewall system whose rule matching units are executed in public
clouds such that verifiability and privacy attacks cannot occur. The resulting
outsourced system, called the private system, makes use of two public clouds
in order to execute the rule matching units. We show that this private system
prevents verifiability and privacy attacks under the assumption that the two

public clouds used in this system are both “sensible” and “non-colluding”.

Our second contribution is to design an outsourced system for a special
class of firewalls, called the partially specified firewall. A firewall is called par-

tially specified when the decisions of some of the rules in the firewall are not



specified as “accept” or “reject”. We show that for every partially specified
firewall PF', there is a (fully specified) firewall F' such that PF and F are
equivalent. We discuss how to design an outsourced system whose underly-
ing firewall is a partially specified firewall PF' such that the designed system
prevents both verifiability and privacy attacks. We achieve this outsourced
system by obtaining an equivalent firewall F' from PF and designing a private

system for F.

In this dissertation, our third contribution is to present a generaliza-
tion of firewalls into firewall expressions and design and outsourced systems
for firewall expressions. A firewall expression is specified using one or more
component firewalls and the three firewall operators: “not”, “and”, and “or”.
For example, a firewall expression ((G and H) or not(G)) consists of two com-

b

ponent firewalls G and H and the three firewall operators “and”, “or”, and
“not”. This firewall expression accepts a packet p iff both firewalls G and H

accept p or firewall G rejects p.

For any underlying firewall expression, we define an Fxpression System
as a generalization of firewall systems that takes as input any packet p and de-
termines whether the underlying firewall expression accepts packet p or rejects
.

We design an outsourced expression system for any underlying firewall
expression F'E. We achieve this outsourced expression system by using a
private system for each component firewall of F'E' and combining these private

systems through an overall decision unit to determine whether any packet p is



accepted or rejected according to the firewall expression F'E.

1.5 Organization of the Dissertation
The rest of this dissertation is organized as follows.

In Chapter 2, we present basic concepts related to firewalls and per-
form a literature review on firewalls. We divide the literature on firewalls
into five categories: firewall design, firewall analysis, property verification of
firewalls, packet classification and firewall outsourcing. A brief survey of the
research that have been conducted in the first four categories are presented in
Section 2.3. We review the research works that fall in the category of firewall

outsourcing in Section 2.4.

In Chapter 3, we show how to design an outsourced system whose rule
matching unit is executed in a public cloud such that the resulting system pre-
vents verifiability and privacy attacks. We discuss execution of an outsourced
system in Section 3.2 and formally specify verifiability and privacy attacks in
Section 3.3. We design an outsourced system, called the verifiable system that
prevents verifiability attacks in Section 3.4. In Section 3.5, we modify the ver-
ifiable system to a system, called the private system that prevents occurrence

of both attacks.

Chapter 4 presents a special class of firewalls, called partially specified
firewalls. This chapter proceeds by first presenting several definitions such as

definition of partially specified firewalls, definition of a packet being accepted
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or rejected by a partially specified firewall and so on. Then, we show that every
partially specified firewall is equivalent to a (fully specified) firewall. Finally,
we show how to design an outsourced system when the underlying firewall is

partially specified.

In Chapter 5, we introduce a generalization of firewalls, called firewall
expressions. In Section 5.2, we present formal definition of firewall expres-
sions and discuss three theorems that state fundamental properties of firewall
expressions. In Section 5.3, we discuss an algorithm that can be used to eval-
uate a given firewall expression for any input stream of packets. Sections 5.4
and 5.5 present the logical analysis to determine whether the given firewall
expressions satisfy some logical properties such as adequacy, implication, and

equivalence.

Chapter 6 presents a generalization of firewall systems, called the ex-
pression systems that accepts or rejects incoming packets based on an underly-
ing firewall expression. The architecture of an expression system in presented
in Section 6.2. We design an outsourced expression system using public clouds
in Section 6.3. We describe the execution of our designed outsourced expres-
sion system in Section 6.4. We discuss in Section 6.5 that verifiability and

privacy attacks cannot occur in the designed outsourced expression system.

We conclude this dissertation in Chapter 7. In this chapter, we identify
some open research problems related to firewall outsourcing and shed some
light on how to approach some of these open problems by taking advantage of

the outsourcing techniques presented in this dissertation.
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Chapter 2

Firewalls

The function of the firewall system of an enterprise network is to iden-
tify malicious packets that aim to attack the enterprise network and prevent
these packets from entering the network. Packets that attempt to enter the
enterprise network through the entry point are examined, one by one, by the
firewall system that is placed at the entry point. Examining a packet, the
firewall system determines whether to allow the packet to proceed into the

enterprise network or to be rejected and prevented from entering the network.

Each firewall system is built on top of an underlying firewall F'. The
firewall system determines whether to accept or reject an incoming packet

according to the rules in F'. We now present the formal definition of firewall

F.

A firewall F' is a sequence of rules where each rule is of the following

form:

(sequence number) (predicate) — (decision)

Each rule in F' consists of a sequence number, a predicate, and a de-

cision. The sequence number of each rule is a unique integer in the range

12



from 1 to n, where n is the number of rules in F'. The predicate of each rule
is defined using t attributes u;, us, ..., and u;. The decision of each rule is

either “accept” or “reject”.

An example of a firewall F' that consists of three rules is as follows.

1 ((ur €[1,4]) A (uz € [8,9])) — reject
2 (w1 €[2,4]) A (ug € [7,9])) — accept

3 (w1 €[1,9) A (ug € [1,9])) — reject

Note that the predicate of each rule in this firewall F' is defined using
two attributes u; and us whose integer values are taken from the integer in-
terval [1, 9]. The first rule in F' is called rule 1, the second rule in F is called

rule 2, and so on.

A firewall can also be represented as a decision tree [7,44,74] or as a

finite automata [41] instead of as a sequence of rules.

Now consider two packets p and ¢ where each packet is defined as a
tuple of two integers. Packet p is defined as the tuple (u; = 3, us = 7) and
packet ¢ is defined as the tuple (u; = 2, us = 6). Packet p does not match
rule 1, but matches rule 2. So the first match rule in F' for packet p is rule 2.
Similarly, packet g does not match rule 1 and rule 2. Rather it matches rule

3. So the first match rule in F' for packet ¢ is rule 3.

When a packet p matches more than one rule in firewall F', the decision

13



of the first match rule is applied to p. For example, Because the first rule in F’
that matches ¢ is rule 3 and because this rule has a decision “reject”, packet

q is rejected by firewall F'.

2.1 Firewall Concepts

We now present formal definition for each of the following concepts:

Attributes, Predicates, Rules, Packets, First Match Rule and Complete Fire-

walls.
Attributes

An attribute is a “variable” that has a “name” and a “value”. We
denote t attributes as uj, us, ..., and u;. The value of each attribute w; is

taken from an interval that is called the domain of attribute u; and is denoted

D(u;).

Predicates

A predicate is of the form ((u; € X1) A--- A (up € X3)), where each u;
is an attribute, each X; is an interval that is contained in the domain D(u;)

of attribute u;, and A is the logical AND or conjunction operator.

A predicate ((u; € X1) A+ A (ur € X3)), where each interval X is the

whole domain of the corresponding attribute w;, is called the ALL predicate.

Throughout this dissertation, we assume that the number of attributes,

t, in each rule is a fixed value. More precisely, we assume that each rule in

14



any firewall is defined over five attributes: source IP address, destination IP

address, source port number, destination port number, and transport protocol.

Rules

A rule in a firewall F' is defined as a tuple, a sequence number, a

predicate and a decision, written as follows:
(sequence number) (predicate) — (decision)

The first rule in F is called rule 1, the second rule in F'is called rule 2 and so

o1n.

We assume that there are two distinct decisions: “accept” and “reject”.
A rule whose decision is “accept” is called an accept rule, and a rule whose
decision is “reject” is called a reject rule. An accept rule whose predicate is the
ALL predicate is called an accept-ALL rule, and a reject rule whose predicate

is the ALL predicate is called the reject-ALL rule.

Packets

A packet is a tuple (b, ..., b;) of t integers, where ¢ is the number of
attributes and each integer b; is taken from the domain D(u;) of attribute wu;.

We adopt P to denote the set of all packets. Note that set P is finite.

Matching Rule

A packet p is said to match a rule in a firewall F' iff the packet matches

the predicate of the rule.

15



First Match Rule

A rule r; in a firewall F' is called the first match rule in F for p iff the

following two conditions hold:

e packet p matches rule r; in F'

e packet p does not match any of the rules 1, ..., ;1 in F

where, where ¢ € {1,...,n} and n is the number of rules in F'.

We adopt the notation #(F,p) to denote the sequence number of the

first match rule in firewall F' for a packet p.

A firewall F' is said to accept, or reject respectively, a packet p iff the
rule whose sequence number is #(F,p) has a decision “accept” or “reject”

respectively.

Complete Firewalls

A firewall F' is complete iff every packet is either accepted by F' or
rejected by F'. Throughout this dissertation, when we refer a firewall F', we

mean a complete firewall F'.

Let F be a firewall. We adopt the notation not(F’) to denote the firewall
that is obtained from firewall F' by (1) replacing each “accept” decision in F
by a “reject” decision in not(F') and (2) replacing each “reject” decision in F’

by an “accept” decision in not(F).

Note that a firewall F' is complete iff the firewall not(F') is complete.
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2.2 A Firewall Example

Consider the network shown in Figure 2.1. This network has a firewall
system which is situated between the Internet and the enterprise network.
The enterprise network consists of a mail sever with IP address 192.168.0.1

and two hosts: host 1 with IP address 192.168.0.2 and host 2 with IP address

192.168.0.3.
e |
! Enterprise Network !
| |
| |
| |
| |
| at |
| Mail Host 1 Host 2 I
pktp 1 [_server I
|
acceptpor | 192.168.0.1 192.168.0.2 192.168.0.3 |
Firewall fejectp > \
System : :

Figure 2.1: An example firewall system and an enterprise network

The firewall system in Figure 2.1 is built on top of an underlying firewall

F. Suppose the requirement specification for F' is given as follows.

1. The mail server, with IP address 192.168.0.1, can receive emails at port

25. Any other packet destined to the mail server is rejected.

2. Any packet originated from the malicious domain 172.23.0.0/16 destined

to the mail server, host 1 and host 2 should be rejected.

3. Host 1 can only receive TCP packets.
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4. Host 2 can receive both TCP and UDP packets.

In this example, we assume that each rule in F' is defined over five
attributes: source IP address (u;), destination IP address (us), source port

number (u3), destination port number (u4), and transport protocol (us).

Domain of these attributes are defined as follows. The domain u; and
uy is the integer interval [0, 232 — 1] and the domain of u3 and wuy is the integer
interval [0, 100]. The domain of wj is the integer interval [0, 1] where 0 denotes
that the transport protocol is UDP (user datagram protocol) and 1 denotes

that the transport protocol is TCP (transmission control protocol).

Firewall F' can be defined with the following rules that satisfy the above

mentioned specification.

1 (u € [172.23.0.0, 172.23.255.255]) A (us € [192.168.0.1,192.168.0.3))
A (uz € [0,100]) A (ug € [0,100]) A (us € [0, 1]) — reject

2 (uy € [0,255.255.255.255]) A (uz € [192.168.0.1,192.168.0.1])
A (ug € [0,100]) A (uyq € [25,25]) A (us € [1,1]) — accept

3 (uy € [0,255.255.255.255]) A (uz € [192.168.0.1,192.168.0.1])
A ((uz € 10,100]) A (uy € [0,100]) A (us € [0,1]) — reject

4 (us € [0,255.255.255.255]) A (up € [192.168.0.2,192.168.0.2])
A (ug € [0,100]) A (uyq € [0,100]) A (us € [1,1]) — accept

5 (uy € [0,255.255.255.255]) A (uz € [192.168.0.2,192.168.0.2])
A (ug € [0,100]) A (uq € [0,100]) A (us € [0, 1]) — reject

6 (u € [0,255.255.255.255]) A (us € [192.168.0.3,192.168.0.3])

18



A ((us € 10,100]) A (uyq € [0,100]) A (us € [0,1]) — accept
(w1 € [0,255.255.255.255)) A (us € [0, 255.255.255.255))
A (us € [0,100]) A (ug € [0,100]) A (us € [0, 1]) — reject

The meaning of each of these rules is as follows.

e Rule 1 corresponds to the second specification. Any packet originated

from the malicious domain 172.23.0.0/16 is rejected.

e Rule 2 and 3 correspond to the first specification. Rule 2 says if a packet
p has a destination IP 192.168.0.1 and destination port 25, then p is
accepted. Rules 3 says if a packet p has a destination IP 192.168.0.1 but

the destination port is not 25, then p is rejected.

e Rule 4 and 5 correspond to the third specification. Rule 4 says if a
packet p has a destination IP 192.168.0.2 and the transport protocol is
TCP, then p is accepted. Rule 4 says if a packet p has a destination IP

192.168.0.2 and it is not accepted by Rule 4, then p is accepted.

e Rule 6 corresponds to the forth specification. Rule 5 says if a packet p
has a destination IP 192.168.0.3 and the transport protocol is TCP or

UDP, then p is accepted.

e Rule 7 ensures that if any packet p is not accepted by any of rules 1, 2,

3, 4, 5, and 6, then p is rejected.
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Now consider a packet p which is originated from a host with IP address
201.124.65.16 in the Internet and it is destined to the mail server in the enter-
prise network in Figure 2.1. Suppose p is defined as the tuple (201.124.65.16,
192.168.0.1, 90, 25, 0). When p attempts to enter the enterprise network, it
passes through the firewall system where p is examined against the rules of the
underlying firewall F. Packet p does not match rule 1 in F' but matches rule 2.
Because rule 2 has a decision ‘accept’, packet p enters the enterprise network.
Note that the arrow between the firewall system and enterprise network and
the label (accept p or reject p) in Figure 2.1 are the symbolic representation of
the following logic: if the firewall system concludes that the decision for p is
‘reject’, then p is discarded at the firewall system and so cannot enter the en-
terprise network. Otherwise the firewall system concludes that the decision for

p is ‘accept’ and in this case the system forwards p to the enterprise network.

2.3 Literature Review of Firewalls

We divide the literature on firewalls into five categories: firewall design,
firewall analysis, property verification of firewalls, packet classification and
firewall outsourcing. A brief survey of the research that have been conducted
in the first four categories is in order. We review the research works that fall

in the category of firewall outsourcing in the next section.
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Firewall Design

A firewall should be carefully designed so that designed firewall adhere
to the design specification. Some prominent methods that can be used in

designing firewalls are reported in [28], [29], [44], [4], [56], and [54].

The method for designing firewalls in [28, 29] consists of two steps. First
the designer designs the desired firewall using a large conflict-free decision
diagram. Second the designer uses several algorithms to convert the large
decision diagram into a compact, yet functionally equivalent, sequence of rules.
This design method can be referred to as “simplifying firewalls by introducing

conflicts”.

The method for designing firewalls in [44] consists of three steps. First,
the same specification of the desired firewall is given to multiple teams who
independently design different versions of the firewall. Second, the resulting
multiple versions of the firewall are compared with one another. Third, all
discrepancies between the multiple firewall versions are resolved, and a final
firewall that is agreed upon by all teams is generated. This design method can

be referred to as “diverse firewall design”.

The method for designing firewalls in [4] consists of three steps. First,
the set of all expected packets is partitioned into non-overlapping subsets 51,
Sa, -+, Sk. Second, for each subset S; (obtained in the first step), design a
firewall F; that accepts some of the packets in the subset S;. Third, identify

firewalls Fy, F,, ---, Fy generated in the second step as the desired firewall.
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This design methods can be referred to as “divide-and-conquer”.

The method for designing firewalls in [56] consists of k steps. First, the
designer starts with a simple firewall F; that accepts more packets than the
designer wishes. Second, the designer designs a second firewall F, such that
if any packet is accepted by F5 then the same packet is also accepted by F.
This process is repeated k times until the designer reaches a firewall Fj, that
accepts those packets and only those packets that the designer wishes to be

accepted. This design method can be referred to as “step-wise refinement”.

In [54], a bottom-up design method has been presented that can be
followed by a designer in designing firewalls. This design method proceeds as
follows. First, the designer designs several simple firewalls. Second, the de-
signer combines these simple firewalls using the three firewall operators “not”,

“and”, and “or” into a single firewall expression.

Firewall Analysis

Rule Anomaly Detection:
Firewall rules can be overlapping or disjoint. When rules are disjoint, the
ordering of the rules is insignificant. T'wo rules conflict when they are overlap-
ping and have conflicting decisions. It is possible that a packet matches both
of the two conflicting rules. In this case, firewall rules are assigned priority
and are ordered from higher priority to lower priority. The conflict is resolved
by choosing the first match rule. Thus finding the correct ordering of the rules

is very important and can be challenging when a firewall has large number of
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rules. Moreover, when the firewall contains a large number of rules, the pos-
sibility of writing conflicting or redundant rules is relatively high. Therefore,
it is of utmost importance to detect the conflicting rules in a firewall, as well

as other anomalies, such as existence of redundant rules, shadowed rules etc.

A classification of anomalies in a firewall, as well as algorithms to detect
them, is presented in a series of work [6-8] by Al-Shaer et. al. While in [§]
the authors defined intra-firewall anomalies, in [6, 7] the authors defined both
intra-firewall and inter-firewall anomalies. Besides classifying anomlaies, the
authors also proposed algorithms to detect and resolve these anomalies. These
works resulted in a tool called Firewall Policy Advisor. This tool can auto-
matically discover firewall rule anomalies after any rule insertion, removal, and
modification takes place, and can generate anomaly-free firewall. Like Fire-
wall Police Advisor, several other tools to detect and resolve firewall anomalies
have been proposed. FIREMAN [74] and FAME [35] are among these tools.
Firewall Policy Advisor only has the capability of detecting pairwise anoma-
lies in firewall rules. FIREMAN can detect anomalies among multiple rules by
analyzing the relationships between one rule and all preceding rules. FAME
considers all preceding and all subsequent rules when performing anomaly

analysis.

While the above mentioned works resolve anomalies preserving the pri-
ority order of the rules, the authors in [31] claims that resolving rule conflicts
based on prioritizing conflicting rules, and choosing the higher priority rule

does not always work. For example, they considered the case when each at-
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tribute in a rule is defined as a bit string. They proposed a scheme for conflict
resolution by modifying existing rules, inserting resolve rules and choosing
the best match rule. An linear space conflict detection technique has been

presented in [19].

The problem of detection and removal of firewall rule redundancy has

also been addressed in [3] and [45].

Vulnerability Analysis:
A firewall vulnerability is defined as an error made during firewall design, im-
plementation, or configuration, that can be exploited to attack the trusted
network that the firewall is supposed to protect [36]. Several methods for the
logical analysis of firewalls have been reported in [34, 36,48, 50, 70], and [14].
A framework for understanding the vulnerabilities in a single firewall is out-
lined in [22], and an analysis of these vulnerabilities is presented in [36]. A
quantitative study of configuration errors for a firewall is presented in [70]. An
example of an efficient firewall analysis algorithm is given in FIREMAN [74].
An integrated analysis engine for firewalls in a network is given in Fang [48]
where the authors developed a firewall analysis tool to perform customized
queries on a set of filtering rules and to manually verify the correctness of
the firewall policy. A firewall test generation tool, called Blowtorch has been

presented in [34].
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Property Verification of Firewalls

Over the last couple of years, researchers have shown interest in deter-
mining several logical properties of a given firewall. Examples of some logical
properties include adequacy, implication, equivalence etc. Adequacy property
refers to problem of determining whether a given firewall accepts at least one
packet. Implication property refers to the problem of determining whether a
given firewall P accepts all packets that are accepted by another given firewall
(). These properties have been formally defined in [18]. Also, it has been
shown in [18] that the problems of determining whether given firewalls defined
over any number of attributes satisfy some desired properties of adequacy,

implication, and equivalence are all NP-hard.

In [2], the authors present a polynomial time approach, called the PSP
method, to verify whether a given firewall satisfies a given logical property
(defined as a logical predicate) under the assumption that the number of at-
tributes in the firewall is fixed. PSP method has been later used to design a
polynomial time algorithm in [56] to solve the implication problem under the
assumption that the number of attributes in a rule in firewall is fixed. An

incremental verification approach has been presented in [17].

Besides the assumption of fixed number of attributes, there are two
main approaches to face the NP-hardness of determining whether given fire-
wall satisfy some desired properties of adequacy, implication, and equivalence.
The first approach is to use SAT solvers, for example as discussed in [33], [77],

and [5], to determine whether a given firewall satisfies some desired proper-
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ties of adequacy, implication, and equivalence. Note that the time complexity
of using SAT solvers is polynomial in most practical situations. The second
approach is to use probabilistic algorithms [1]. Note that the time complexi-
ties of probabilistic algorithms are always polynomial but unfortunately these

algorithms can yield wrong determinations in rare cases.

Moreover, the authors in [40, 41] investigated a novel representation of
firewalls as finite automata rather than as sequences of rules. They showed
later in [38], how to use the automata representation of a given firewall to
determine whether the given firewall satisfies some desired properties of ade-

quacy, implication, and equivalence.

Packet Classification

Given a packet p and a firewall I, a packet classification algorithm for
firewalls determines whether p is accepted or rejected according to the rules
in F'.

When the firewall is represented as a sequence of rule, the simplest
algorithm is linear search of the firewall rules to determine the first match

rule for p. Linear search exhibits packet classification complexity of O(t x n)

where n is the number of rules in a firewall and ¢ is the number of attributes.

Note that a firewall can also be represented as a decision tree [7,44, 74]
or as a finite automata [41] instead of as a sequence of rules. So packet clas-
sification is not only limited to the linear search approach. Several other

packet classification approaches are decision tree methods (for example, Hyper-
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Cuts [63]), partitioning methods (for example, Tuple Space Search (TSS) [64]),
hybrid methods that use both decision trees and partitioning (for example,

Smartsplit [32], PartitionSort [72]), and TCAM-based methods [47].

Decision tree based classification algorithms [63] exhibit logarithmic
complexity in packet classification. However, updating a rule sometimes re-

quire reconstruction of the decision tree.

Partitioning methods, for example T'SS [64], partitions the original rule-
set into smaller rulesets based on rule characteristics such that each partition
can be searched and updated in O(t) time where ¢ is the number of attributes.
Although updating a rule is faster in T'SS than that in decision tree approaches,
but classification time increases when the number of partitions increases be-

cause each partition must be searched for each packet.

Hybrid approaches [32,72] use both the partition approach to partition
the ruleset and decision tree approach for searching each resulting ruleset. As
a result, hybrid approaches improve rule update time over decision tree meth-
ods as decision trees are constructed for smaller rulesets. Hybrid approaches
improve the classification time over partition methods by producing a smaller
number of partitions. A recent hybrid approach, Partition Sort [72] achieves

both logarithmic classification and logarithmic rule update time.

Ternary content addressable memories (TCAMs [47]) are used to per-
form high speed packet classification. A TCAM is a memory chip where each

entry can store a packet classification rule that is encoded in ternary format.
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Given a packet, the TCAM hardware can compare the packet with all stored
rules in parallel and then return the decision of the first rule that the packet
matches. Thus, it takes O(1) time to find the decision for any given packet.
Given a firewall, the problem of generating another semantically equivalent
firewall that requires fewer number of TCAM entries has been addressed in [46]

and [16].

2.4 Literature Review of Firewall Outsourcing

Firewall outsourcing started to gain attention because of the related
economic benefits since the first decade of the twenty-first century. Some
cloud service providers (CSP) or internet service providers (ISP), for example
AT&T, started to offer outsourced firewall systems as a service to enterprise
networks [15, 30, 58,59, 69]. In such a service model, the firewall system of an
enterprise network is implemented and managed by the service provider. An
enterprise requires to provide its firewall rules to its CSP /ISP to configure the
firewall system. However, in this case enterprises do not have much control

over the design and execution of the outsourced system.

Since more and more enterprises were becoming interested in using
outsouced firewall systems, both academic and industry researchers became
interested in proposing models to design customized outsourced firewall sys-
tems for an enterprise network. As a result, starting from the beginning the
current decade, several models for outsourced firewall systems have been pro-

posed which enterprises can follow to design their own firewall systems using
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public clouds.
Some recent efforts in this area are surveyed in [67].

In 2012, Sherry et al. [61] studied the benefits outsourcing of firewall
systems by conducting a survey over 57 enterprise networks to estimate the
associated cost and complexity to implement and manage their firewall sys-
tems. They also proposed an architecture, called APLOMB, for outsourced
firewall systems for software defined network (SDN [21]). This system is de-
signed to be executed in a public cloud. They have argued that the enterprises
can reduce the associated cost and management complexity to implement and
manage their firewall systems by adopting APLOMB architecture for firewall

outsourcing.

In the same year, Gibb et al. [25] also proposed an outsourced firewall
system for software defined network (SDN). This system is designed to be ex-
ecuted in any location, for example, inside any local network or in a public
cloud, without requiring any changes in the design of the system. The enter-
prise network only requires to forward the packets to the location where the
firewall system is being executed. The location where the firewall system is

being executed can be geographically distant from the enterprise network.

The above mentioned outsourced systems provide the underlying fire-
wall in the clear to the public clouds and also do not verify that the task
executed by public clouds is indeed correct. Thus, these systems neither de-

fend against privacy attacks or verifiability attacks described in Section 1.2 in
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Chapter 1.

Towards the end of 2012, Khakpour and Liu [37] proposed an out-
sourced firewall system considering the fact that public clouds should not be
given the underlying firewall in the clear while outsourcing. Because if the
cloud knows the underlying firewall, it may leak that firewall to potential at-
tackers of the system. So they designed an outsourced firewall system where
the underlying firewall is encrypted before it is outsourced to the cloud. They
encrypt the underlying firewall in two steps. First, they use a Firewall Deci-
sion Diagram (FDD) [29] to represent the rules of the firewall. Second, they
use Bloom Filters [13] to represent edges of the FDD. Because the rules of the
underlying firewall are encrypted before they are outsourced to the cloud, the
cloud cannot know the rules of the underlying firewall and so cannot leak these
rules to potential attackers of the system. Their work was the first attempt to
design outsourced system when the underlying firewall is encrypted before it

is outsourced.

Following their work, several outsourced systems [42, 43, 49, 60, 62|, and [68]
have been proposed afterwards that encrypt the underlying firewall while out-
sourcing to public clouds. Among these systems, the outsourced system in [43]
encrypts the packets that are sent to the public cloud as well as the underlying
firewall. Embark enables the cloud to check the encrypted packets against the
encrypted firewall. The system in [49] used partial homomorphic encryption.
This system also requires the packets to be encrypted before processing by the

cloud. However, encryption of packets are done by a trusted component of the
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public cloud. Other systems only encrypts the underlying firewall.

These systems differ from each other mainly in their architecture and
in the encryption mechanisms. For example, each of the outsourced systems
in [37,43,62] is executed by one public cloud, each of the outsourced systems
in [60,68] is executed by two cooperative public clouds, and the outsourced
system in [42] is executed partially by a public cloud and partially by a private
cloud. Each of these systems aims to protect the underlying firewall from being
leaked to public clouds. Therefore, all of these systems defend against privacy
attacks. However, none of these systems verifies that the task executed by
a public cloud is indeed correct. Thus, these systems do not defend against

verifiability attacks.

A very few outsourced systems, for example, the systems in [20, 75],
and the system in [76], have been proposed in the literature that consider the
fact that the tasks that are executed by the public clouds need to be verified
at the enterprise end. Whereas the firewall systems in [75] and [76] execute the
verification steps online, the firewall system in [20] executes the verification
steps offline. However, the rules of the underlying firewall are stored in the
clear in the cloud in each of these systems. Therefore, these systems defend

against verifiability attacks but do not defend against privacy attacks.

The above mentioned efforts are mainly focused on outsourced firewall
systems. Besides there efforts, there exists a handful of research works that
deal with verifiability concerns in public cloud computing in general. Dif-

ferent verifiable computation schemes have been proposed over time such as
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trusted platform module [66], interactive proofs [26], probabilistic checkable
proofs [10], non-interactive verifiable computation [23] and so on. A brief sur-
vey of some these schemes are presented in [73]. In 2010, Gennaro et al. [23]
defined a non-interactive verifiable computation scheme for any function us-
ing Yao’s garbled circuit [71] combined with a fully homomorphic encryption
system [24]. This scheme is called the verifiable fully homomorphic encryption
(VFHE) which accounts for both privacy of outsourced computation and cor-
rectness of computed results. However, the problem of how to adopt VFHE in
an outsourced firewall system is still open. Melis et al. [49] used homomorphic
encryption to encrypt underlying firewall and incoming packets to design an
outsourced firewall system. But their system does not verify the correctness

of the computation executed by the public cloud.

Recent efforts have been made to discuss how to outsource systems of
access control policies, such as XACML polices [9], into public clouds [11, 12].

These systems do not defend against verifiability or privacy attacks.
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Chapter 3

Outsourcing of Firewalls

3.1 Introduction

The material presented in this chapter is based on our paper [57]'. In
this chapter, we present a special class of firewall systems called outsourced
systems. Like a regular firewall system, an outsourced system consists of two
units: a rule matching unit and a decision unit. To simplify the architecture
of the outsourced system, the rule matching unit of this system is executed by

a public cloud C.

The architecture of the outsourced system is shown in Figure 3.1. Note
that the only difference between the regular firewall system in Figure 1.1 and
the outsourced system in Figure 3.1 is that the rule matching unit in the former
system is executed by the firewall system itself whereas the rule matching unit

in the latter system is executed by a public cloud C.

Using public cloud C to execute the rule matching unit of an outsourced

system has a number of benefits and some disadvantages. The benefits of using

'Rezwana Reaz, Ehab S. Elmallah, and Mohamed G. Gouda. Executing firewalls in pub-
lic clouds. In Proceedings of the 10th international conference computing, communication
and networking technologies (ICCCNT). IEEE, 2019. (Accepted for publication). Rezwana
Reaz is the only student author in this paper and contributed the most in this paper.
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cloud C' to execute the rule unit are as follows [37,58,61,69]. First, it can
reduce the initial investment and the operational cost of the firewall system by
taking advantage of the pay-per-use model of the cloud. Second, it can reduce
the number of staff needed to manage and implement the firewall system.
Third, it can increase the availability of the firewall system by maintaining

necessary back-ups.

The disadvantage of using public cloud C' in executing the rule matching
unit is that cloud C' is unreliable and so the outsourced system is vulnerable
to two types of attacks: verifiability attacks and privacy attacks. We describe

these two types of attacks in Section 3.3 below.

Prior work in this area [20, 37,43, 60, 61, 75] yielded outsourced systems
that can defend against one of these two types of attacks, but none of the
systems can defend against both types of attacks. Our goal in this chapter is
to design outsourced systems that can prevent these two types of attacks from

occurring.

Table 3.1 classifies the prior outsourced systems into three categories:
(1) systems that do not defend against any attacks, (2) systems that can defend
only against verifiability attacks, and (3) systems that can defend only against

privacy attacks.
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Table 3.1: Summary of Prior Systems
Category Systems
Do not defend against [25] and [61]
any attacks
Can defend only against | [20], [75], and [76]
verifiability attacks
Can defend only against | [37], [42], [43], [60], [62], and [6§]
privacy attacks
Can prevent This chapter
both attacks

3.2 Execution of Outsourced Systems

The architecture of an outsourced system whose underlying firewall is
F' is shown in Figure 3.1. This outsourced system consists of two units: the
rule matching unit which is executed by a public cloud C, and the decision
unit which is executed by the firewall system. Both the rule matching unit

and the decision unit are built on top of the same underlying firewall F'.

When a packet p attempts to pass this outsourced system, p is first
directed to cloud C' which hosts the rule matching unit. Cloud C' uses the
underlying firewall F' to compute a sequence number v where v is the sequence
number #(F,p). Then, C forwards the pair (p, v) to the decision unit which

is executed by the firewall system.

The decision unit uses firewall F' to compute the decision (“accept” or

“reject”) of the rule whose sequence number is #(F, p).

If the rule whose sequence number is #(F, p) has a decision “accept”,

then the decision unit forwards p to the enterprise network. Otherwise, the rule
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whose sequence number is #(F), p) has a decision “reject” and so the decision

discards packet p and does not forward it to the enterprise network.

3.3 Unreliable Public Clouds

A cloud C' in the outsourced system is reliable iff C' satisfies the fol-
lowing two conditions. First, when C' sends a pair (p, v) to the decision unit,
value v is indeed the sequence number of the first match rule (rather than any
other match rule) in the underlying firewall F' for packet p. Second, if C' knows

the rules in F'; C' does not leak F' to any potential attacker of the system.

The outsourced system in Figure 3.1 is correct only if the public cloud

C' is reliable.

But cloud C' is in fact unreliable. Hence, the outsourced system in Fig-
ure 3.1 is vulnerable to two types of attacks: verifiability attacks and privacy

attacks. We describe these two types of attacks next.

The verifiability attacks caused by cloud C' can be described as follows.
When cloud C' executes the steps to compute the sequence number #(F, p) of
the first match rule in the underlying firewall F' for the incoming packet p, C'
may compute a wrong value. In particular, the computed value v can be the

sequence number for a match but not for the first match rule in F for p.

The privacy attacks caused by cloud C' can be described as follows. If
cloud C' knows the rules of the underlying firewall F', C' can leak the underlying

firewall F' to any potential attacker of the firewall system.
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As summarized in Table 3.1, all prior work on designing outsourced
firewall systems either defend against verifiability attacks or defend against
privacy attacks, but do not defend against both types of attacks. For example,
the outsourced systems in [20] and [76] defend against verifiability attacks, but
do not defend against privacy attacks. Also the outsourced systems in [37]

and [43] defend against privacy attacks but not against verifiability attacks.

We now discuss how to design an outsourced system that can prevent
both verifiability and privacy attacks from occurring. In the following two sec-
tions, we present two designs of outsourced systems. The first system is called
the verifiable firewall system. This system can prevent verifiability attacks
but cannot prevent privacy attacks. The second system is called the private
firewall system. This system can prevent both verifiability and privacy attacks

from occuring.

3.4 Verifiable Firewall Systems

The verifiable system in this section is obtained from the outsourced
system in Section 3.2 by performing the following three modifications. First,
cloud C' in the outsourced system is replaced by two identical public clouds C
and Cy. Second, the rule matching unit that is hosted in cloud C' is replaced
by two identical rule matching units that are hosted in clouds C; and C5 as
shown in Figure 3.2. Third, the decision unit in the outsourced system is

replaced by a verifiable decision unit as shown in Figure 3.2.

Next, we describe the tasks that need to be performed by the verifiable
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decision unit.

When a packet p attempts to pass the verifiable system in Figure 3.2,
packet p is directed to the rule matching unit hosted in cloud C; so that C
can compute a sequence number v; and send the pair (p, v1) to the verifiable
decision unit. Also, packet p is directed to the rule matching unit hosted in
cloud Cs so that Cy can compute a sequence number vs and send the pair (p,

vg9) to the verifiable decision unit.

Cloud (] is supposed to compute vy as equal to the sequence number
#(F, p) of the first match rule in F for p. But because C} is a public cloud, and
so is unreliable, the computed value v; can end up being the sequence number
of any match rule (not necessarily the first match rule) in F' for p. Similarly,
cloud Cs is supposed to compute vy as equal to the sequence number #(F, p)
of the first match rule in F' for p. But because Cs is a public cloud, and so is
unreliable, the computed value vy can end up being the sequence number of

any match rule (not necessarily the first match rule) in F for p.

If value v; computed by cloud C; and sent to the verifiable decision unit
equals the sequence number #(F,p), then cloud C; is said to “have told the
truth” to the verifiable decision unit. On the other hand, if value v; computed
by cloud C; and sent to the verifiable decision unit is not equal to the sequence
number #(F, p), then cloud C; is said to “have lied” to the verifiable decision

unit.

A cloud C} is said to be sensible iff C; does not lie when the other cloud

38



r—————-t—— A
: :
| |
| |
| .
cloud € | rule matching |
B _I
(p. v) from ¢
accept p or

. . . reject
decision unit Jectp
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can tell the truth and enable the decision unit to detect that C; has lied.

Two public clouds C] and Cy are said to be non-colluding iff when
cloud C sends a pair (p, v1) and cloud C5 sends a pair (p, vq) to the decision

unit, then v; and vy can be different.

Note that if both clouds are sensible and non-colluding then neither
cloud will lie. This is because if one cloud, say C1, lies then there is a possibility
that the other cloud Cy does not lie and sends the sequence number #(F, p)
and hence enables the decision unit to detect that C has lied. In contrast,
if collusion occurs and the two clouds agree on sending the same sequence

number of a match rule then the two sensible clouds can lie simultaneously.

Theorem 3.4.1. Under the assumption that the two clouds Cy and Cy are
both sensible and non-colluding, the two pairs (p,v1) and (p,vs), computed
respectively by clouds Cy and Cs, are such that both v and vy equal the sequence
number #(F,p). This indicates that verifiability attack cannot occur in the

verifiable system.

Proof. There are three cases to consider.

1. Case 1: Cloud C has lied and cloud C5 may or may not have lied. In
this case, vy is not equal to #(F,p). If vy equals #(F,p), then v; is
strictly greater than vy and the decision unit can detect that cloud Cy
has lied. By the assumption that C; and C5 are non-colluding, v, can be

#(F,p). In other words, Cy may have told the truth and have enabled
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the decision unit to detect that C} has lied. By the assumption that C}

is sensible, C; cannot lie in this case and so Case 1 is not possible.

. Case 2: Cloud (5 has lied and cloud €} may or may not have lied. In
this case, vy is not equal to #(F,p). If vy equals #(F,p), then vy is
strictly greater than v; and the decision unit can detect that cloud C,
has lied. By the assumption that C; and Cy are non-colluding, v; can be
#(F,p). In other words, C; may have told the truth and have enabled
the decision unit to detect that C5 has lied. By the assumption that Cs

is sensible, C5 cannot lie in this case and so Case 2 is not possible.

. Case 3: Neither C'; nor (5 has lied. If cloud C lies, then this case is
Case 1 and Case 1 is not possible by the assumption that cloud C is
sensible. Similarly, If cloud Cj lies, then this case is Case 2 and Case 2
is not possible by the assumption that cloud C} is sensible. Therefore,

neither C'; nor C5 has lied which makes Case 3 possible.

Since Case 3 is the only possible case, each cloud send the sequence

number #(F,p) to the decision unit. This indicates that verifiability attack

cannot occur. ]

From Theorem 3.4.1, each of the two sequence numbers v; and vy sent

to the verifiable decision unit respectively by clouds C'; and Cj, is equal to the

sequence number #(F,p). Thus, the verifiable system prevents verifiability

attacks from occurring.
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Although the two sequence number v; and vy are expected to be equal
when the verifiable decision receives them, v, and vy can be different if any
of these two sequence numbers gets corrupted before it reaches the verifiable
decision unit. If the decision unit detects that v; and v, are not equal, then
the decision unit concludes that corruption of v; or v, has occurred. In this
case, the decision unit discards packet p and puts the verifiable system into a
halt so that no more incoming packets can be allowed to enter the verifiable

system.

Therefore, after the verifiable decision unit receives the two pairs (p,
v1) and (p, vy), the decision unit is required to compare the two sequence
numbers v; and vy to check whether they are equal or they are not equal
indicating that a corruption has occurred. If the two values are equal, then
the decision unit uses the underlying firewall F' to compute the decision of
the rule whose sequence number is v;. If the decision of this rule is “accept”,
then the verifiable decision unit forwards packet p to the enterprise network.
Otherwise, the decision of this rule is “reject” and so the decision unit discards

packet p.

3.5 Private Firewall Systems

The verifiable system that is discussed in the previous section prevents
verifiability attacks but is still vulnerable to privacy attacks caused by the
fact that cloud C; which hosts the rule matching unit of the verifiable system,

knows the the underlying firewall F. Because C; is unreliable, C; can leak the
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underlying firewall F' to any potential attacker of the system.

To prevent privacy attacks from occurring, we design the private firewall
system from the verifiable system presented in the previous section as follows.
We replace each rule matching unit that uses firewall F' by a rule matching

unit that uses the incomplete version IF of F'.

The incomplete version IF of F is the same as F' except that the
decisions of all the rules in I F' are unspecified. For example, if the underlying

firewall F' is as follows:

1 ((w € [1,4]) A (up € 8,9])) — reject
2 ((u1 €[2,4]) A(up € [7,9])) — accept

3 (w1 €[1,9) A (u2 €[1,9])) — reject

then the incomplete version [ F' of F' is as follows:

1 ((ur € [1,4]) A (up € [8,9])) — unspecified
2 ((u1 € [2,4]) A (uz €[7,9])) — unspecified

3 ((u1 €[1,9]) A (uz € [1,9])) — unspecified

The first rule in this example of IF is called incomplete rule 1, the
second rule in [F' is called incomplete rule 2, and so on. Now consider two

packets p and ¢ where p is defined as the tuple (u; = 3, us = 7) and ¢ is defined
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as the tuple (u; = 2, uy = 6). Packet p does not match incomplete rule 1,
but matches incomplete rule 2. So the first match incomplete rule in I F' for
p is the incomplete rule 2. Similarly, packet ¢ does not match incomplete rule
1 and incomplete rule 2. Rather it matches incomplete rule 3. So the first

match incomplete rule in IF for ¢ is the incomplete rule 3.

We adopt the notation #(IF,p) to denote the sequence number of
the first match incomplete rule in I F' for packet p. For example, the sequence
number #(I F, p) is 2 and the sequence number #([ F, q) is 3. Observe that the
sequence number #(F p) is equal to the sequence number # (I F, p). Therefore,
the notations #([F,p) and #(F,p) can be used interchangeably.

A packet p that attempts to pass the private system whose underlying
firewall is F', is first directed to each of the rule matching units hosted in clouds
C; and Cs. Each rule matching unit in the private system uses the incomplete
firewall IF instead of the complete firewall F' and computes the sequence
number #(IF,p) which equals the sequence number #(F,p) . Each cloud C;
then sends its computed value #(F,p) to the verifiable decision unit along
with packet p. The verifiable decision unit of the private system computes the
decision for p in the same way the verifiable decision unit does in the verifiable

system.

Note that in the private system, for each incoming packet p, each cloud
knows the sequence number #(F, p) but does not know the decision of the rule
whose sequence number is #(F, p). Therefore, neither cloud knows the rules

of F' and so cannot leak these rules to potential attackers.
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Based on these discussions, correctness of the private system is obtained

from Theorem 3.5.1.

Theorem 3.5.1. Each cloud C; in the verifiable system knows the underlying
firewall F' and can leak F to potential attackers of the system. By contrast, no
cloud C; in the private system knows the underlying firewall F' and so cannot
leak F' to potential attackers of the system. This indicates that no privacy

attack can occur in the private system.

3.6 Chapter Summary

Our contributions in this chapter are two folds. First, we present a
family of firewall systems which is shown in Figure 3.3. Each member in this
family consists of a rule matching unit and a decision unit. The firewall system
without outsourcing executes the tasks of the rule matching unit and the
decision unit without any help from a public cloud. In contrast, the outsourced

system outsources the rule matching unit to a public cloud.

Unfortunately, public clouds are unreliable which makes the outsourced
system vulnerable to two types of attacks: verifiability attacks and privacy at-
tacks. To prevent these attacks from occurring, we present designs of two
outsourced systems: the verifiable system and the private system. The verifi-
able system outsources the task of the rule matching unit to two public clouds
and can prevent verifiability attacks under the assumption that both clouds are
sensible and non-colluding. However, the verifiable system does not prevent

privacy attacks.
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Our second contribution in this chapter is a presentation of the private
system which can prevent both verifiability and privacy attacks from occurring.
Prior work on designing outsourced systems using public clouds either defend
against verifiability attacks, for example [20] and [75], or defend against privacy

attacks, for example [37] and [60], but do not defend against both attacks.

The private system presented in this chapter uses two public clouds
and can prevent both verifiability and privacy attacks under the assumption
that the two public clouds are sensible and non-colluding. An extension of
the work presented in this chapter is to design an outsourced system that can
prevent both verifiability and privacy attacks under the assumption that the

two public clouds can be colluding.
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Chapter 4

Outsourcing of Partially Specified Firewalls

So far we defined the decision of a rule in a firewall to be either “accept”
or “reject”. In this chapter, we consider firewalls where the decision of each
rule is “accept”, “reject”, or “unspecified”. We refer to this class of firewalls
as partially specified firewalls and discuss techniques for outsourcing partially

specified firewalls.

An example of a partially specified firewall PF is as follows.

(wp € [1,4]) A (u2 € [8,9])) — reject
(u; € [2,6]) A (ug €] — unspecified

(ul € [274]) U2 E

(
( 8)))
3 ((u1 € [5,5]) A (us €[6,8])) — unspecified
( 9])) — accept
( 9)

(up € [1,9]) A (ug € | —  reject

Note that this partially specified firewall has two attributes u; and wuo
and the domain of each attribute is the integer interval [1, 9]. The decision of

each rule is either “accept”, “reject”, or “unspecified”.

A packet p is said to be accepted or rejected respectively by a partially

specified firewall PF iff PF has an accept rule or reject rule r that matches
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packet p and all the rules that match p and precede r in PF' are unspecified
rules. For example, packet p (u; = 3, ug = 7) is accepted by the partially
unspecified firewall PF mentioned above because PF has an accept rule, rule
4 that matches packet p and all the rules that match p and precede rule 4 in

PF are unspecified rules.

A partially specified firewall PF is said to be complete iff each packet
p is either “accepted” or “rejected” by PF. For example, the above partially

specified firewall is complete.

From now on, whenever we mention a partially specified firewall we

mean a complete partially specified firewall.

A partially specified firewall PF' is equivalent to a firewall F iff every
packet p that is accepted or rejected by PF' respectively is also accepted or

rejected by F' respectively, and vice versa.

Theorem 4.0.1. For every partially specified firewall PF' there exists a firewall

F such that PF and F are equivalent.

Proof. Let PF be a partially specified firewall and let F' be the firewall that is
obtained from PF by removing all unspecified rules in PF'. From definition of a
packet p being accepted or rejected respectively by a partially specified firewall
PF, packet p is accepted or rejected respectively by PF' iff p is accepted or
rejected respectively by F'. Therefore, firewall F' is equivalent to the partially
specified firewall PF. O
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We now discuss how to modify a firewall system when the underlying
firewall is a partially specified firewall PF. The architecture of a firewall
system has been presented in Figure 1.1 which consists of a rule matching
unit and a decision unit. When the underlying firewall is a partially specified

firewall, then the task of rule matching unit has to be redefined as follows.

For any packet p, the rule matching unit requires to compute the se-
quence number of the ‘first match rule that has a decision either accept or
reject’ in PF for p. Note that ‘first match rule that has a decision either ac-
cept or reject” in PF for p is not necessarily the sequence number of the ‘first
match rule’ in PF for p. After computing the sequence number of the ‘first
match rule that has a decision either accept or reject’ the rule matching unit
sends this sequence number to the decision unit and the decision unit applies

the decision of this rule to p.

Above design of the firewall system whose underlying firewall is a par-
tially specified firewall PF suggests that the rule matching unit needs to know
the decisions of the rules of PF. This makes the design of an outsourced sys-
tem for a partially specified firewall PF' challenging because the outsourced
systems presented in this dissertation require that the rule matching units are
executed in clouds and clouds do not know the decision of the rules of the

underlying firewall.

An alternative way to design an outsourced system for a partially spec-
ified firewall PF' is to find an equivalent firewall F' and design the outsourced

system for F'. From Theorem 4.0.1 for any PF there exists a firewall F' such
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that PF and F' are equivalent.

We now design an outsourced system for a partially specified firewall

PF in two steps.

e In the first step, we obtain a firewall F' from the partially specified firewall

PF by removing all unspecified rules such that PF and F are equivalent.

e In the second step, we design a private system presented in Chapter 3
for underlying firewall F' obtained in the first step. The designed pri-
vate system for firewall F' is the desired outsourced system for partially

specified firewall PF.
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Chapter 5

Firewall Expressions

5.1 Introduction

The material presented in this chapter is based on our papers [54,55]'.
In this chapter, we present a generalization of firewalls called firewall expres-
sions. A firewall expression is specified using one or more firewalls and the three
firewall operators: “not”, “and”, and “or”. We show that firewall expressions
can be utilized to support bottom-up methods for designing firewalls. We also
show that each firewall expression can be represented by a set of special types
of firewalls, called slices. Moreover, we present several algorithms that use the
slice representation of given firewall expressions to verify whether the given
firewall expressions satisfy logical properties such as adequacy, implication,

and equivalence.

We now present examples of two firewalls G and H and use these ex-

amples to introduce the concept of “firewall expressions”.

'Rezwana Reaz, H. B. Acharya, Ehab S. Elmallah, Jorge A. Cobb, and Mohamed G
Gouda. Policy expressions and the bottom-up design of computing policies. Computing,
101(9):13071326, 2019. Rezwana Reaz is the only student author in this paper and the main
contributor in this paper.
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Let firewall G consists of three rules which are defined as follows:

((ur € [1,4]) A (us € [8,9])) — reject
((u1 € [2,4]) A (uz € [7,9])) — accept

((ur € [1,9]) A (ug € [1,9])) — reject

The predicate of each rule in this firewall G is defined using two at-
tributes u; and us whose integer values are taken from the integer interval [1,
9]. The first rule states that each packet (by,bs), where the value of b; is an
integer in the interval [1,4] and where the value of by is an integer in the in-
terval [8,9], is to be rejected. The second rule states that each packet (by, ba),
that does not match the first rule and where the value of b; is an integer in
the interval [2,4] and where the value of by is an integer in the interval [7, 9],
is to be accepted. The third rule states that each packet (by,bs) that does not
match the first two rules is to be rejected. Thus, the set of packets that are
accepted by firewall G is {(2,7),(3,7),(4,7)}. Notice that because the third

rule rejects all packets that do not match the first two rules.

A second firewall H that consists of three rules, where each rule is

defined over attributes u; and us, is as follows:

((u1 € [2,3]) A (uz € [7,7])) — accept
((u1 € [2,4]) A (uz € [7,8])) — accept

((ur € [1,9]) A (ug € [1,9])) — reject
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r The set of packets that are accepted by H is {(2,7), (3,7),(4,7),(2,8),(3,8), (4,8)}

and all other packets are rejected.

Now assume that we need to use the two given firewalls G and H to
design a firewall expression (G or H). This firewall expression accepts every
packet that is accepted by firewall GG or accepted by firewall H. Thus, the set of
packets that is accepted by (G or H) is {(2,7), (3,7), (4,7),(2,8),(3,8), (4,8)}.
Firewalls G and H are called the component firewalls of the firewall expression

(G or H).

In this chapter, we show that every firewall expression that is specified
using one or more firewalls and the three firewall operators “not”, “and”, and
“or” can be represented by a set {S1,Ss,- -+, Sk} of a special class of firewalls
called slices such that the following condition holds. A packet is accepted by
a firewall expression iff this packet is accepted by at least one slice in the set

of slices that represents the firewall expression.

As an example, the firewall expression (G or H) can be represented
by the set of three slices {57, 52,53} according to Algorithm 4 presented in
Section 5.4.

Slice 5] is defined as follows:
(m € [LAY A (ur € 8,9])) — reject
((u1 € [2,4]) A (ug € [T, 9])) — accept
Slice S5 is defined as follows:

((u1 € [2,3]) A (uz € [7,7])) — accept
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Slice S5 is defined as follows:

((u1 € [2,4]) A (uz € [7,8])) — accept

(Notice that, as discussed in Section 5.4, each slice is a firewall that

consists of zero or more reject rules followed by exactly one accept rule.)

Similarly, consider a firewall expression (G and H). This firewall ex-
pression accepts any packet p iff both polices G and H accept p. The firewall
expression (G and H) can be represented by the set of two slices {Sy, S5}

according to Algorithm 3 presented in Section 5.4.

Slice Sy is defined as follows:

((u1 € 1,4]) A (us € [8,9])) — reject

((u1 € [2,3]) A (us € [7,7])) — accept

Slice Sy is defined as follows:

((ur € [1,4]) A (uz € [8,9])) — reject

((u1 € [2,4]) A (uz € [7,8])) — accept

Based on the above discussions, this chapter suggests a novel bottom-
up design method that can be followed by a designer in designing firewalls.
This design method proceeds as follows. First, the designer designs several
simple component firewalls. Second, the designer combines these component

firewalls using the three firewall operators “not”, “and”, and “or” into a single
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firewall expression F'E. Finally, the designer uses the algorithms in Section 6
below to determine that the designed firewall expression F'E is adequate, and

that F'E implies or is equivalent to a desired firewall expression.

As an example, a designer can start by designing two firewalls G and H,
then use these two firewalls to design the firewall expression (G and not(H)).
This firewall expression accepts every packet that is accepted by firewall G and
rejected by firewall H. Then the designer can use Algorithm 7 in Section 5.5
below to prove that this firewall expression implies both firewall G and firewall

not(H).

Other methods that can be used in designing firewalls are reported in
(28], [29], [44], [56], and [4]. A brief survey of these methods has been presented

in Chapter 2.

These design methods, along with the bottom-up method in the current
chapter can constitute a library of firewall design methods. When designing a
firewall, it is up to the designer to decide which design method in this library

will the designer follow to generate the desired firewall.

The rest of this chapter is organized as follows. In Section 5.2, we
present our formal definition of firewall expressions and discuss three theorems
that state fundamental properties of firewall expressions. In Section 5.3, we
discuss an algorithm that can be used to evaluate a given firewall expression
for any input stream of packets. In Section 5.4, we introduce the concept of

a base of a firewall expression as a set of slices that satisfies the following
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condition. For every incoming packet p, the firewall expression accepts p iff
at least one slice in the base of the firewall expression accepts p. Also in
Section 5.4, we present algorithms for constructing a base for every firewall
expression. In Section 5.5, we show that the bases of given firewall expressions
can be used to determine whether the given firewall expressions satisfy some
logical properties such as adequacy, implication, and equivalence. Finally, we

conclude this chapter in Section 5.6.

5.2 Definition of Firewall Expressions

In this section, we define firewall expressions. Informally, a firewall
expression is specified using one or more firewalls and three firewall operators:
“not”, “and”, and “or”. Each one of these firewall operators can be applied

to one or two firewall expressions to produce a firewall expression.

Formally, a (firewall expression F'E) is defined recursively as one of the
following four options:
A complete firewall G
A complete firewall not(G)
(firewall expression F'E;) and (firewall expression F'E»)

(firewall expression F'E;) or (firewall expression F Ey)

An example of a firewall expression is as follows:
(G and not(H)) or (not(G) and H)

In this example, G and H are complete firewalls and are called component
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firewalls of the firewall expression. Also “not”, “and”, and “or” are called

firewall operators.

Associated with each firewall expression F'E is a packet set PS defined

as follows:

o If F'E is a complete firewall G,

then PS is the set of all packets accepted by G

e If F'E is a complete firewall not(G),
then PS is the set of all packets accepted by not(G) or equivalently PS

is the set of all packets rejected by G

o If F'E is a firewall expression (FE; and FEs),
then PS is the intersection of two packet sets P.S; and PSy where PSy is
the packet set associated with F'F; and PS5 is the packet set associated
with F Ey

o If F'E is a firewall expression (FE; or FEs),
then PS is the union of two packet sets PS; and PS5 where PS; is the

packet set associated with F'E; and PS5 is the packet set associated with
FFE,

As an example, the packet set associated with the firewall expression (G and
not(H)) is the intersection of the two packet sets P.S; and PSy, where PS; is
the set of all packets accepted by firewall G and PS5 is the set of all packets

accepted by firewall not(H).
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Two firewall expressions F'E; and F'E5 are said to be equivalent iff the

two packet sets associated with F'E; and F' E, are identical.

For example, the firewall expression (G and not(H)) and the firewall

expression (not(G) and H) are equivalent.

Let FE be a firewall expression. We adopt the notation not(F'E) to

denote the firewall expression that is recursively obtained from F'E as follows:

o If F'E is a complete firewall G,

then not(FE) denotes the firewall expression not(G)

o If F'E is a complete firewall not(G),

then not(F'E) denotes the firewall expression G

o If F'E is a firewall expression (F'E; and F'E),

then not(F'E) denotes the firewall expression (not(F'E;) or not(F Ey))

o If F'E is a firewall expression (FE; or FE,),
then not(F'E) denotes the firewall expression (not(FFE;) and (FE,))

As an example, not((G and not(H)) or (not(G) and H)) denotes the
firewall expression ((not(G) or H) and (G or not(H))).

The following three theorems state fundamental properties of firewall

expressions.

Theorem 5.2.1. For every firewall expression F'E, (1) the packet set associ-

ated with the firewall expression (F'E and not(F'E)) is the empty set, and (2)
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the packet set associated with the firewall expression (F'E or not(FE)) is the

set P of all packets.

Proof. Our proof of this theorem makes use of the following definition of the

“rank” of a firewall expression FF.

The rank k of a firewall expression F'FE is a non-negative integer defined

recursively as follows:

e If FFE is a complete firewall G or is a complete firewall not(F'), then
k=0

o If F'E is of the form (FE, and F'E5) or is of the form (FE, or FE,),
then k = (1 + max(ky, k2)), where k; is the rank of F'E; and ks is the
rank of F'E,

Our proof of this theorem is by induction on the rank k of the firewall

expression F'E. Details of this proof are presented in [53].

]

Theorem 5.2.2. For every firewall expression F'E, the packet set associated
with the firewall expression not(FE) is (P — PS), where P is the set of all
packets, PS is the packet set associated with F'E, and “—” is the set difference
operator. (Note that the packet set (P — PS) can be written as the compliment
of set PS.)
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Proof. Let NS denote the packet set associated with not(#'E). Thus, the
packet set associated with the firewall expression (F'E and not(F'E)) is (PS(NS),
and the packet set associated with the firewall expression (F'E or not(F'E)) is
(PS|UNS). Hence, from Theorem 1, the set (PS [ NJS) is empty and the set
(PS|UNS) is the set P of all packets. Therefore, set NS is (P — PS). O

A firewall expression F'E is said to be complete iff for every packet p

either F'E accepts p or F'E rejects p.

Theorem 5.2.3. Every firewall expression is complete.

Proof. The proof is by contradiction. Assume that there is a firewall expression
FE that is not complete. Thus, there is a packet p such that FE neither
accepts p nor rejects p. Hence, from Theorem 2, packet p is neither in the
packet set PS associated with F'E nor in the packet set (P — P.S) associated
with not(F'E). Therefore, packet p is not in the union of the two sets PS and
(P — PS), which constitutes the set P of all packets. This contradicts the fact

that p is a packet in the set P of all packets. O

5.3 Evaluation of Firewall Expressions

In this section, we discuss an algorithm that takes as input any given
firewall expression F'E and any given packet p and produces as output a de-
termination of whether or not F'E accepts p. This algorithm can be used to

evaluate the given firewall expression F'E for any input stream of packets.
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The main idea of this algorithm is to use the input pair (p, F'E) to pro-
duce a Boolean expression BFE, that involves the two Boolean values “TRUE”

and “FALSE”, and the three Boolean operators “—", “A”, and “V”.

The Boolean expression BE corresponding to the pair (p, FE) is re-

quired to satisfy one of the following two conditions:

e (FE accepts p) iff (BE is TRUE)

e (FE rejects p) iff (BE is FALSE)

Now consider a firewall expression F'FE and a packet p as follows:
FE = (G and (H or I)) or not(H)

where G, H, and I are complete firewalls. Assume that GG accepts p, H rejects
p, and I rejects p. The Boolean expression BE corresponding to the pair (p,

FE) can be constructed as follows:

e Because G accepts p, replace firewall G in F'E by the Boolean value
TRUE in BE

e Because H rejects p, replace firewall H in F'EE by the Boolean value
FALSE in BE

e Because [ rejects p, replace firewall [ in F'E by the Boolean value FALSE
in BE
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e Replace the firewall operator “not” in F'E by the Boolean operator “—"

in BE

e Replace the firewall operator “and” in F'E by the Boolean operator “A”
in BE

e Replace the firewall operator “or” in F'E by the Boolean operator “V”
in BE

e The Boolean expression BE can now be computed as follows:
BE = (TRUE A (FALSE Vv FALSE)) VvV —FALSE
= FALSE v TRUE = TRUE

Because BE is TR