
Copyright

by

Rezwana Reaz

2019

The Dissertation Committee for Rezwana Reaz
certifies that this is the approved version of the following dissertation:

Theory and Practice of Firewall Outsourcing

Committee:

Mohamed G. Gouda, Supervisor

Aloysius K. Mok

Lili Qiu

Hrishikesh B. Acharya

Theory and Practice of Firewall Outsourcing

by

Rezwana Reaz

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2019

Dedicated to my parents and my daughter.

Acknowledgments

My Phd journey at UT Austin has been a long journey of six and half

years. I am thankful to many great people who helped me make this journey

happen.

I would like to express my deep gratitude to my supervisor Prof. Mo-

hamed G. Gouda for believing in me and giving me the opportunity to work

under his invaluable guidance. I am very grateful to him for introducing me

to the area of formal analysis of network firewalls, which is a perfect blend of

theory and systems. As I mainly worked on theoretical computer science dur-

ing my undergraduate and masters theses and was willing to work in systems

during my PhD, this area matched both my expertise and interest. Having

the privilege of working with Prof. Gouda, who has years of experience in sys-

tems and formal methods, has been a great learning experience for me where

I have learned to appreciate the value and importance of formal methods in

systems. He always showed great enthusiasm about my work. He encouraged

and appreciated every little contribution I made towards my dissertation. He

was always there to help overcome every single difficulty I faced. His attention

to detail always helped me find better ways to shape my work.

I owe a special thanks to my committee members: Prof. Lili Qiu, Prof.

Aloysius K. Mok, and Prof. Hrishikesh B. Acharya for agreeing to serve on

v

my committee, and providing useful feedback. It has been a great honor to

have them in my doctoral committee. I am also very grateful to Prof. Ehab.

S. Elmallah for his collaboration and contribution in my research. His careful

observations and practical suggestions helped greatly to improve the quality of

my work. I also want to thank Prof. Marijn J. H. Heule for his collaboration

in one of my early work during PhD. He introduced me to various techniques

of SAT-based approach of analyzing firewalls. I am also thankful to all my

colleagues in Prof. Gouda’s Lab, especially to Muqeet Ali. He helped me

get familiar with my research field when I joined Prof. Gouda’s Lab and

collaborated with me in research for the first two years of my PhD.

I must thank Prof. Tandy Warnow who was my first PhD supervisor.

I could work with her only in my very first semester at UT Austin, as she left

UT Austin the next semester. It was a very short but a wonderful journey

with her. Her expertise and art of supervising brought out the best out of

me even within just one semester. The work I had done with her during that

short period resulted in one of my most cited papers.

I also want to extend my gratitude to my undergraduate and master’s

thesis supervisor Prof. M. Sohel Rahman. I am indebted to him for preparing

me for the PhD journey abroad. His faith in me and his moral support en-

couraged me a lot to apply for a PhD program at a prestigious university in

USA.

I would like to thank all those people whom I met during my PhD

life outside the boundary of my Lab, who encouraged me and helped me get

vi

through the challenging grad life with their kind words and sensible actions.

Time would fail me to name them all.

My Phd journey would not be very smooth without the support of my

entire family. I thank them all from the bottom of my heart. I would like to

start by thanking my three and half year old daughter Zunairah. She was born

during the third year of my PhD. As soon as she turned one, my husband,

who was also a Phd student that time at UT Austin, graduated and left USA

for his job back home. Although at first it felt like I would not be able make

progress in my dissertation with a young child and for not having my husband

around while I was already in the middle of all sorts of uncertainty of Phd

life, it went quite smooth as time had passed. A special credit goes to my

wonderful daughter, who is very sensible and understanding towards my work.

I am also deeply thankful to my husband Bayzid, who had to stay away from us

and miss a lot of milestones of toddler Zunairah, for his unconditional support

and patience. I want to express my deep gratitude towards my parents, who

have always helped me in the best possible way they can. I would never be

able to make progress in my dissertation if they weren’t there to take care of

my daughter while my husband was away. I am indebted to them for their

love and support. I also would like to thank my sister, Rumana, for always

being there to boost up my confidence whenever I suffered lack of confidence.

I want to extend my gratitude to my parents-in-laws and other members of

my in-laws family for supporting and appreciating my work.

Finally, I deeply express my sincere gratitude to the endless kindness of

vii

almighty Allah. His guidance and generosity, made it possible for me to carry

out my research and complete my dissertation.

viii

Theory and Practice of Firewall Outsourcing

Publication No.

Rezwana Reaz, Ph.D.

The University of Texas at Austin, 2019

Supervisor: Mohamed G. Gouda

A firewall system is a packet filter that is placed at the entry point

of an enterprise network in the Internet. Packets that attempt to enter the

enterprise network through this entry point are examined, one by one, against

the rules of some underlying firewall F of the firewall system. Each rule in F

has a decision which is either “accept” or “reject”. For any incoming packet p,

the firewall system identifies the first rule (in the sequence of rules in F) that

matches p. If the decision of this rule is “accept”, then the firewall system

forwards p to the enterprise network. Otherwise the decision of this rule is

“reject” and packet p is discarded and prevented from entering the network.

Each firewall system consists of two units: a rule matching unit and

a decision unit. Both units are usually executed in the firewall system. To

simplify the task of managing the firewall system, we identify a special class of

firewall systems, called the outsourced system, where the rule matching unit is

executed in a public cloud. Unfortunately, public clouds are usually unreliable

ix

and execution of the rule matching unit in a public cloud can be vulnerable

to two types of attacks: verifiability attacks and privacy attacks.

The main objective of this dissertation is to discuss how to execute

the rule matching unit of an outsourced system in a public cloud such that

verifiability and privacy attacks are prevented from occurring. The main con-

tribution of this dissertation is three-fold.

First, we discuss how to design outsourced firewall system such that

execution of the designed system in the public clouds prevents the occurrence

of verifiability and privacy attacks. The resulting system, called the private

system, make use of two public clouds. We show that this private system

prevents verifiability and privacy attacks under the assumption that the two

public clouds used in this system are both “sensible” and “non-colluding”.

Second, we identify a special class of firewalls, called the partially spec-

ified firewall, where a firewall is called partially specified when the decisions of

some of the rules in the firewall are not specified as “accept” or “reject”. We

show that for every partially specified firewall PF , there is a (fully specified)

firewall F such that PF and F are equivalent. We discuss how to design an

outsourced system whose underlying firewall is a partially specified firewall PF

such that the designed system prevents both verifiability and privacy attacks.

We achieve this outsourced system by obtaining an equivalent firewall F from

PF and designing a private system for F .

Third, we present a generalization of firewalls called firewall expres-

x

sions. A firewall expression is specified using one or more component firewalls

and three firewall operators: “not”, “and”, and “or”. For example, the firewall

expression (G and H) consists of two component firewalls G and H and one

firewall operator “and”. This firewall expression accepts a packet p iff both

firewalls G and H accept p. For any underlying firewall expression FE, we de-

fine an Expression System as a generalization of firewall systems that takes as

input any packet p and determines whether the underlying firewall expression

FE accepts or rejects packet p.

We design an outsourced expression system for any underlying firewall

expression FE. We achieve this outsourced expression system by using a

private system for each component firewall of FE and combining these private

systems through an overall decision unit to determine whether any packet is

accepted or rejected according to the firewall expression FE.

xi

Table of Contents

Acknowledgments v

Abstract ix

List of Tables xiv

List of Figures xv

Chapter 1. Introduction 1

1.1 Firewall Systems . 2

1.2 Firewall Outsourcing . 4

1.3 Limitation of Prior Outsourced Systems 6

1.4 Our Contributions . 8

1.5 Organization of the Dissertation 10

Chapter 2. Firewalls 13

2.1 Firewall Concepts . 15

2.2 A Firewall Example . 18

2.3 Literature Review of Firewalls 22

2.4 Literature Review of Firewall Outsourcing 29

Chapter 3. Outsourcing of Firewalls 35

3.1 Introduction . 35

3.2 Execution of Outsourced Systems 37

3.3 Unreliable Public Clouds . 39

3.4 Verifiable Firewall Systems . 40

3.5 Private Firewall Systems . 45

3.6 Chapter Summary . 48

xii

Chapter 4. Outsourcing of Partially Specified Firewalls 51

Chapter 5. Firewall Expressions 55

5.1 Introduction . 55

5.2 Definition of Firewall Expressions 60

5.3 Evaluation of Firewall Expressions 64

5.4 Bases of Firewall Expressions 67

5.5 Properties of Firewall Expressions 72

5.6 Chapter Summary . 76

Chapter 6. Outsourcing of Firewall Expressions 78

6.1 Introduction . 78

6.2 Expression Systems . 79

6.3 Outsourced Expression Systems 83

6.4 Execution of Outsourced Expression Systems 86

6.5 Security of Outsourced Expression Systems 90

6.6 Chapter Summary . 92

Chapter 7. Conclusion and Future Work 93

Bibliography 99

Vita 112

xiii

List of Tables

3.1 Summary of Prior Systems . 37

xiv

List of Figures

1.1 The architecture of a firewall system 3

2.1 An example firewall system and an enterprise network 19

3.1 A firewall system with outsourcing 38

3.2 Verifiable firewall system . 42

3.3 Our family of firewall systems 49

6.1 Expression system for firewall expression FE which has two
component firewalls G and H 80

6.2 Firewall system for component firewall G 81

6.3 Firewall system for component firewall H 82

6.4 Outsourced expression system for firewall expression FE that
has two component firewalls G and H 84

6.5 Private system for component firewall G 85

6.6 Private system for component firewall H 87

6.7 The overall decision unit . 89

xv

Chapter 1

Introduction

A firewall system is a packet filter that is placed at the entry point of

an enterprise network in the Internet. The function of the firewall system is

to examine the packets that attempt to enter the enterprise network through

the entry point, identify malicious packets, and prevent the malicious packets

from entering the network. Thus, a firewall system is a critical component in

the security of an enterprise network.

Each firewall system is built on top of an underlying firewall F . A

firewall F is a sequence of rules where each rule consists of a sequence number,

a predicate, and a decision. The sequence number of each rule is a unique

integer in the range from 1 to n, where n is the number of rules in F . The

predicate of each rule is defined using t attributes u1, u2, . . . , and ut. The

decision of each rule is either “accept” or “reject”.

Packets that attempt to enter the enterprise network through the entry

point are examined, one by one, against the rules of the underlying firewall

F of the firewall system. Examining a packet against the rules of the under-

lying firewall F , the firewall system determines whether to allow the packet

to be accepted and forwarded to the enterprise network or to be rejected and

1

prevented from entering the network. A packet p is accepted (or rejected, re-

spectively) by the underlying firewall F iff the decision of the first rule in F

that matches p is accept (or reject, respectively).

In this dissertation, we study the execution of firewall systems using

public clouds. Executing firewall system using public clouds can simplify the

task of managing the firewall system for an enterprise network. Each fire-

wall system consists of two units: a rule matching unit and a decision unit.

Typically, both the rule matching unit and the decision unit of the firewall

system are executed by the system itself. In this dissertation, we are inter-

ested to investigate a class of firewall systems, called outsoured firewall sys-

tems, whose rule matching units are executed by public clouds. Unfortunately,

public clouds can be unreliable causing outsourced systems to be vulnerable

against two types of attacks: verifiability attacks and privacy attacks. In this

dissertation, we explore different designs of outsourced firewall systems with

an objective that the designed system takes advantage of public clouds and at

the same time prevents the verifiability and privacy attacks from occurring.

1.1 Firewall Systems

For any firewall F , we can define a Firewall System that takes as input

any packet p and determines whether packet p is accepted or rejected according

to the rules in F . In this case, we call firewall F the underlying firewall of the

firewall system. The architecture of a firewall system is presented in Figure 1.1.

This system consists of two units: a rule matching unit and a decision unit.

2

Both the rule matching unit and the decision unit are built on top of the

underlying firewall F .

rule matching

decision unit

pkt p

(p, #(F, p))

accept p or
reject p

Figure 1.1: The architecture of a firewall system

When a packet p attempts to pass this firewall system, p is first di-

rected to the rule matching unit. The task of the rule matching unit is to

determine the sequence number of the first rule in F that matches p and send

this sequence number to the decision unit. In Figure 1.1, the notation #(F, p)

denote the sequence number of the first match rule in firewall F for packet p.

The task of the decision unit is to determine the decision of the rule whose

sequence number is #(F, p).

If the first match rule in F for p has a decision “accept”, then the

decision unit forwards p to the enterprise network. Otherwise, the first match

3

rule in F for p has a decision “reject”, and in this case the decision unit discards

packet p and prevents it from entering the firewall system.

1.2 Firewall Outsourcing

Traditionally a firewall systems is designed and implemented such that

all the tasks of the firewall system are executed by the system itself. A com-

paratively newer approach is to design and implement a firewall system such

that some tasks of the firewall system are implemented and executed in public

clouds. The approach of implementing and executing part of a firewall system

in public clouds is called firewall outsourcing. Such a firewall system is called

an outsourced firewall system.

In recent years, with the rise of cloud computing, enterprises have be-

come interested in implementing and managing their firewall systems by us-

ing public clouds to reduce the associated cost and management complexity

[37, 58], and [69]. According to a survey of firewall systems, firewall outsourc-

ing can provide three benefits [61]. First, reduces the initial investment and

the operational cost of the firewall system by taking advantage of the pay-per-

use model of the cloud. Second, reduces the number or staff needed to manage

and implement the firewall system. Third, increases availability of the firewall

system by maintaining necessary back-ups.

Despite these benefits of firewall outsoutcing, an outsourced system can

become vulnerable to security attacks caused by the fact that public clouds

are usually unreliable.

4

In this dissertation, we identify a class of outsourced systems whose

rule matching units are executed in public clouds. We obtain this outsourced

system from the firewall system presented in Figure 1.1 by executing the rule

matching unit in a public cloud C. Since cloud C is unreliable, the outsourced

system is vulnerable to two types of security attacks: verifiability attacks and

privacy attacks.

The verifiability attacks, caused by cloud C can be described as follows.

When cloud C executes the rule matching unit of the outsourced system and

computes the sequence number of the first match rule in the underlying firewall

F for an incoming packet p, C may compute a wrong value. In particular, C

may compute a sequence number v of a match rule (not the first match rule)

in F for p and send the wrongly computed sequence number v to the decision

unit. In this case, the decision unit will accept or reject packet p according

to the decision of the rule whose sequence number is v in F . As a result, the

decision unit may end up incorrectly accepting a packet instead of rejecting it

or may end up incorrectly rejecting a packet instead of accepting it.

The privacy attacks, caused by cloud C can be described as follows.

If C knows the rules of the underlying firewall F , C may leak F to potential

attackers of the system.

Our goal in this dissertation is to design outsourced firewall systems by

taking advantage of public clouds, such that verifiability and privacy attacks

are prevented from occurring.

5

1.3 Limitation of Prior Outsourced Systems

Several outsourced firewall systems, for example, the systems in [20, 37,

42, 43, 60, 62, 68, 75], and [49], have been presented in the literature that take

advantage of one or more public clouds.

An important limitation of all prior outsourced systems is that none

of the systems defends against both verifiability and privacy attacks. We can

divide the prior outsourced systems into three categories as follows.

1. Systems that defend only against verifiability attacks.

2. Systems that defend only against privacy attacks.

3. Systems that do not defend against verifiability and privacy attacks.

In the firewall systems presented in [20, 75], and [76], the rules of the

underlying firewall F are stored in the clear in the cloud. Each incoming

packet to the enterprise network is directed in the clear to the cloud. For

each incoming packet p, the cloud determines whether to accept or reject p

according to the rules of the underlying firewall F which are stored in the cloud.

If the cloud determines to accept p, then the cloud forwards p to the entry

point of the enterprise network. Then the firewall systems in [20, 75], and [76]

verify that packet p is indeed accepted according the underlying firewall F .

Therefore, these firewall systems defend against verifiability attacks.

Whereas the firewall systems in [75] and [76] execute the verification

steps online, the firewall system in [20] executes the verification steps offline.

6

Moreover, because the rules of the underlying firewall F are stored in the clear

in the cloud, the cloud can leak these rules to potential attackers of the system.

Therefore, the firewall systems in [20, 75], and [76] defends against verifiability

attacks but do not defend against privacy attacks.

In the firewall systems presented in [37, 42, 43, 60, 62, 68], and [49], the

rules of the underlying firewall F are encrypted before they are stored in the

cloud. Each incoming packet to the enterprise network is directed to the cloud.

For each incoming packet p, the cloud determines whether to accept or reject p

according to the encrypted rules of the underlying firewall F which are stored

in the cloud. If the cloud determines to accept p, then the cloud forwards p to

the entry point of the enterprise network. Because the rules of the underlying

firewall F which are stored in the cloud are encrypted, the cloud cannot know

the rules of the underlying firewall F and so cannot leak these rules to potential

attackers of the system.

However, none of these firewall systems verifies that packet p that has

been forwarded to the entry point of the enterprise network from the cloud is

indeed accepted according to the underlying firewall F . Therefore the firewall

systems in [37, 42, 43, 60, 62], and [68] defend against privacy attacks but do

not defend against verifiability attacks.

The outsourced systems in [25] and [61] are designed assuming that

public clouds are reliable. Thus, in these systems the rules of the underlying

firewall F are stored in the clear in the cloud. Each incoming packet to the

enterprise network is directed in the clear to the cloud. For each incoming

7

packet p, the cloud determines whether to accept or reject p according to the

rules of the underlying firewall F which are stored in the cloud. These firewall

systems do not verify that packet p is indeed accepted or rejected according

the underlying firewall F . Moreover, because the rules of the underlying fire-

wall F are stored in the clear in the cloud, the cloud can leak these rules

to potential attackers of the system. Therefore, these systems do not defend

against verifiability and privacy attacks.

1.4 Our Contributions

In this dissertation, we present different designs of outsourced systems

such that the designed system takes advantage of public clouds but prevents

the occurrence of verifiability and privacy attacks. There are three main con-

tributions in this dissertation.

The first contribution in this dissertation is to discuss how to design an

outsourced firewall system whose rule matching units are executed in public

clouds such that verifiability and privacy attacks cannot occur. The resulting

outsourced system, called the private system, makes use of two public clouds

in order to execute the rule matching units. We show that this private system

prevents verifiability and privacy attacks under the assumption that the two

public clouds used in this system are both “sensible” and “non-colluding”.

Our second contribution is to design an outsourced system for a special

class of firewalls, called the partially specified firewall. A firewall is called par-

tially specified when the decisions of some of the rules in the firewall are not

8

specified as “accept” or “reject”. We show that for every partially specified

firewall PF , there is a (fully specified) firewall F such that PF and F are

equivalent. We discuss how to design an outsourced system whose underly-

ing firewall is a partially specified firewall PF such that the designed system

prevents both verifiability and privacy attacks. We achieve this outsourced

system by obtaining an equivalent firewall F from PF and designing a private

system for F .

In this dissertation, our third contribution is to present a generaliza-

tion of firewalls into firewall expressions and design and outsourced systems

for firewall expressions. A firewall expression is specified using one or more

component firewalls and the three firewall operators: “not”, “and”, and “or”.

For example, a firewall expression ((G and H) or not(G)) consists of two com-

ponent firewalls G and H and the three firewall operators “and”, “or”, and

“not”. This firewall expression accepts a packet p iff both firewalls G and H

accept p or firewall G rejects p.

For any underlying firewall expression, we define an Expression System

as a generalization of firewall systems that takes as input any packet p and de-

termines whether the underlying firewall expression accepts packet p or rejects

p.

We design an outsourced expression system for any underlying firewall

expression FE. We achieve this outsourced expression system by using a

private system for each component firewall of FE and combining these private

systems through an overall decision unit to determine whether any packet p is

9

accepted or rejected according to the firewall expression FE.

1.5 Organization of the Dissertation

The rest of this dissertation is organized as follows.

In Chapter 2, we present basic concepts related to firewalls and per-

form a literature review on firewalls. We divide the literature on firewalls

into five categories: firewall design, firewall analysis, property verification of

firewalls, packet classification and firewall outsourcing. A brief survey of the

research that have been conducted in the first four categories are presented in

Section 2.3. We review the research works that fall in the category of firewall

outsourcing in Section 2.4.

In Chapter 3, we show how to design an outsourced system whose rule

matching unit is executed in a public cloud such that the resulting system pre-

vents verifiability and privacy attacks. We discuss execution of an outsourced

system in Section 3.2 and formally specify verifiability and privacy attacks in

Section 3.3. We design an outsourced system, called the verifiable system that

prevents verifiability attacks in Section 3.4. In Section 3.5, we modify the ver-

ifiable system to a system, called the private system that prevents occurrence

of both attacks.

Chapter 4 presents a special class of firewalls, called partially specified

firewalls. This chapter proceeds by first presenting several definitions such as

definition of partially specified firewalls, definition of a packet being accepted

10

or rejected by a partially specified firewall and so on. Then, we show that every

partially specified firewall is equivalent to a (fully specified) firewall. Finally,

we show how to design an outsourced system when the underlying firewall is

partially specified.

In Chapter 5, we introduce a generalization of firewalls, called firewall

expressions. In Section 5.2, we present formal definition of firewall expres-

sions and discuss three theorems that state fundamental properties of firewall

expressions. In Section 5.3, we discuss an algorithm that can be used to eval-

uate a given firewall expression for any input stream of packets. Sections 5.4

and 5.5 present the logical analysis to determine whether the given firewall

expressions satisfy some logical properties such as adequacy, implication, and

equivalence.

Chapter 6 presents a generalization of firewall systems, called the ex-

pression systems that accepts or rejects incoming packets based on an underly-

ing firewall expression. The architecture of an expression system in presented

in Section 6.2. We design an outsourced expression system using public clouds

in Section 6.3. We describe the execution of our designed outsourced expres-

sion system in Section 6.4. We discuss in Section 6.5 that verifiability and

privacy attacks cannot occur in the designed outsourced expression system.

We conclude this dissertation in Chapter 7. In this chapter, we identify

some open research problems related to firewall outsourcing and shed some

light on how to approach some of these open problems by taking advantage of

the outsourcing techniques presented in this dissertation.

11

Chapter 2

Firewalls

The function of the firewall system of an enterprise network is to iden-

tify malicious packets that aim to attack the enterprise network and prevent

these packets from entering the network. Packets that attempt to enter the

enterprise network through the entry point are examined, one by one, by the

firewall system that is placed at the entry point. Examining a packet, the

firewall system determines whether to allow the packet to proceed into the

enterprise network or to be rejected and prevented from entering the network.

Each firewall system is built on top of an underlying firewall F . The

firewall system determines whether to accept or reject an incoming packet

according to the rules in F . We now present the formal definition of firewall

F .

A firewall F is a sequence of rules where each rule is of the following

form:

〈sequence number〉 〈predicate〉 → 〈decision〉

Each rule in F consists of a sequence number, a predicate, and a de-

cision. The sequence number of each rule is a unique integer in the range

12

from 1 to n, where n is the number of rules in F . The predicate of each rule

is defined using t attributes u1, u2, . . . , and ut. The decision of each rule is

either “accept” or “reject”.

An example of a firewall F that consists of three rules is as follows.

1
(
(u1 ∈ [1, 4]) ∧ (u2 ∈ [8, 9])

)
→ reject

2
(
(u1 ∈ [2, 4]) ∧ (u2 ∈ [7, 9])

)
→ accept

3
(
(u1 ∈ [1, 9]) ∧ (u2 ∈ [1, 9])

)
→ reject

Note that the predicate of each rule in this firewall F is defined using

two attributes u1 and u2 whose integer values are taken from the integer in-

terval [1, 9]. The first rule in F is called rule 1, the second rule in F is called

rule 2, and so on.

A firewall can also be represented as a decision tree [7, 44, 74] or as a

finite automata [41] instead of as a sequence of rules.

Now consider two packets p and q where each packet is defined as a

tuple of two integers. Packet p is defined as the tuple (u1 = 3, u2 = 7) and

packet q is defined as the tuple (u1 = 2, u2 = 6). Packet p does not match

rule 1, but matches rule 2. So the first match rule in F for packet p is rule 2.

Similarly, packet q does not match rule 1 and rule 2. Rather it matches rule

3. So the first match rule in F for packet q is rule 3.

When a packet p matches more than one rule in firewall F , the decision

13

of the first match rule is applied to p. For example, Because the first rule in F

that matches q is rule 3 and because this rule has a decision “reject”, packet

q is rejected by firewall F .

2.1 Firewall Concepts

We now present formal definition for each of the following concepts:

Attributes, Predicates, Rules, Packets, First Match Rule and Complete Fire-

walls.

Attributes

An attribute is a “variable” that has a “name” and a “value”. We

denote t attributes as u1, u2, . . ., and ut. The value of each attribute ui is

taken from an interval that is called the domain of attribute ui and is denoted

D(ui).

Predicates

A predicate is of the form ((u1 ∈ X1) ∧ · · · ∧ (ut ∈ Xt)), where each ui

is an attribute, each Xi is an interval that is contained in the domain D(ui)

of attribute ui, and ∧ is the logical AND or conjunction operator.

A predicate ((u1 ∈ X1) ∧ · · · ∧ (ut ∈ Xt)), where each interval Xi is the

whole domain of the corresponding attribute ui, is called the ALL predicate.

Throughout this dissertation, we assume that the number of attributes,

t, in each rule is a fixed value. More precisely, we assume that each rule in

14

any firewall is defined over five attributes: source IP address, destination IP

address, source port number, destination port number, and transport protocol.

Rules

A rule in a firewall F is defined as a tuple, a sequence number, a

predicate and a decision, written as follows:

〈sequence number〉 〈predicate〉 → 〈decision〉

The first rule in F is called rule 1, the second rule in F is called rule 2 and so

on.

We assume that there are two distinct decisions: “accept” and “reject”.

A rule whose decision is “accept” is called an accept rule, and a rule whose

decision is “reject” is called a reject rule. An accept rule whose predicate is the

ALL predicate is called an accept-ALL rule, and a reject rule whose predicate

is the ALL predicate is called the reject-ALL rule.

Packets

A packet is a tuple (b1, . . ., bt) of t integers, where t is the number of

attributes and each integer bi is taken from the domain D(ui) of attribute ui.

We adopt P to denote the set of all packets. Note that set P is finite.

Matching Rule

A packet p is said to match a rule in a firewall F iff the packet matches

the predicate of the rule.

15

First Match Rule

A rule ri in a firewall F is called the first match rule in F for p iff the

following two conditions hold:

• packet p matches rule ri in F

• packet p does not match any of the rules r1, . . ., ri−1 in F

where, where i ∈ {1, . . . , n} and n is the number of rules in F .

We adopt the notation #(F, p) to denote the sequence number of the

first match rule in firewall F for a packet p.

A firewall F is said to accept, or reject respectively, a packet p iff the

rule whose sequence number is #(F, p) has a decision “accept” or “reject”

respectively.

Complete Firewalls

A firewall F is complete iff every packet is either accepted by F or

rejected by F . Throughout this dissertation, when we refer a firewall F , we

mean a complete firewall F .

Let F be a firewall. We adopt the notation not(F) to denote the firewall

that is obtained from firewall F by (1) replacing each “accept” decision in F

by a “reject” decision in not(F) and (2) replacing each “reject” decision in F

by an “accept” decision in not(F).

Note that a firewall F is complete iff the firewall not(F) is complete.

16

2.2 A Firewall Example

Consider the network shown in Figure 2.1. This network has a firewall

system which is situated between the Internet and the enterprise network.

The enterprise network consists of a mail sever with IP address 192.168.0.1

and two hosts: host 1 with IP address 192.168.0.2 and host 2 with IP address

192.168.0.3.

Firewall
System

pkt p
accept p or
reject p

Mail
server

Internet

Host 1 Host 2

Enterprise Network

192.168.0.1 192.168.0.2 192.168.0.3

Figure 2.1: An example firewall system and an enterprise network

The firewall system in Figure 2.1 is built on top of an underlying firewall

F . Suppose the requirement specification for F is given as follows.

1. The mail server, with IP address 192.168.0.1, can receive emails at port

25. Any other packet destined to the mail server is rejected.

2. Any packet originated from the malicious domain 172.23.0.0/16 destined

to the mail server, host 1 and host 2 should be rejected.

3. Host 1 can only receive TCP packets.

17

4. Host 2 can receive both TCP and UDP packets.

In this example, we assume that each rule in F is defined over five

attributes: source IP address (u1), destination IP address (u2), source port

number (u3), destination port number (u4), and transport protocol (u5).

Domain of these attributes are defined as follows. The domain u1 and

u2 is the integer interval [0, 232−1] and the domain of u3 and u4 is the integer

interval [0, 100]. The domain of u5 is the integer interval [0, 1] where 0 denotes

that the transport protocol is UDP (user datagram protocol) and 1 denotes

that the transport protocol is TCP (transmission control protocol).

Firewall F can be defined with the following rules that satisfy the above

mentioned specification.

1 (u1 ∈ [172.23.0.0, 172.23.255.255]) ∧ (u2 ∈ [192.168.0.1, 192.168.0.3])

∧ (u3 ∈ [0, 100]) ∧ (u4 ∈ [0, 100]) ∧ (u5 ∈ [0, 1])→ reject

2 (u1 ∈ [0, 255.255.255.255]) ∧ (u2 ∈ [192.168.0.1, 192.168.0.1])

∧ (u3 ∈ [0, 100]) ∧ (u4 ∈ [25, 25]) ∧ (u5 ∈ [1, 1])→ accept

3 (u1 ∈ [0, 255.255.255.255]) ∧ (u2 ∈ [192.168.0.1, 192.168.0.1])

∧ ((u3 ∈ [0, 100]) ∧ (u4 ∈ [0, 100]) ∧ (u5 ∈ [0, 1])→ reject

4 (u1 ∈ [0, 255.255.255.255]) ∧ (u2 ∈ [192.168.0.2, 192.168.0.2])

∧ (u3 ∈ [0, 100]) ∧ (u4 ∈ [0, 100]) ∧ (u5 ∈ [1, 1])→ accept

5 (u1 ∈ [0, 255.255.255.255]) ∧ (u2 ∈ [192.168.0.2, 192.168.0.2])

∧ (u3 ∈ [0, 100]) ∧ (u4 ∈ [0, 100]) ∧ (u5 ∈ [0, 1])→ reject

6 (u1 ∈ [0, 255.255.255.255]) ∧ (u2 ∈ [192.168.0.3, 192.168.0.3])

18

∧ ((u3 ∈ [0, 100]) ∧ (u4 ∈ [0, 100]) ∧ (u5 ∈ [0, 1])→ accept

7 (u1 ∈ [0, 255.255.255.255]) ∧ (u2 ∈ [0, 255.255.255.255])

∧ (u3 ∈ [0, 100]) ∧ (u4 ∈ [0, 100]) ∧ (u5 ∈ [0, 1])→ reject

The meaning of each of these rules is as follows.

• Rule 1 corresponds to the second specification. Any packet originated

from the malicious domain 172.23.0.0/16 is rejected.

• Rule 2 and 3 correspond to the first specification. Rule 2 says if a packet

p has a destination IP 192.168.0.1 and destination port 25, then p is

accepted. Rules 3 says if a packet p has a destination IP 192.168.0.1 but

the destination port is not 25, then p is rejected.

• Rule 4 and 5 correspond to the third specification. Rule 4 says if a

packet p has a destination IP 192.168.0.2 and the transport protocol is

TCP, then p is accepted. Rule 4 says if a packet p has a destination IP

192.168.0.2 and it is not accepted by Rule 4, then p is accepted.

• Rule 6 corresponds to the forth specification. Rule 5 says if a packet p

has a destination IP 192.168.0.3 and the transport protocol is TCP or

UDP, then p is accepted.

• Rule 7 ensures that if any packet p is not accepted by any of rules 1, 2,

3, 4, 5, and 6, then p is rejected.

19

Now consider a packet p which is originated from a host with IP address

201.124.65.16 in the Internet and it is destined to the mail server in the enter-

prise network in Figure 2.1. Suppose p is defined as the tuple (201.124.65.16,

192.168.0.1, 90, 25, 0). When p attempts to enter the enterprise network, it

passes through the firewall system where p is examined against the rules of the

underlying firewall F . Packet p does not match rule 1 in F but matches rule 2.

Because rule 2 has a decision ‘accept’, packet p enters the enterprise network.

Note that the arrow between the firewall system and enterprise network and

the label (accept p or reject p) in Figure 2.1 are the symbolic representation of

the following logic: if the firewall system concludes that the decision for p is

‘reject’, then p is discarded at the firewall system and so cannot enter the en-

terprise network. Otherwise the firewall system concludes that the decision for

p is ‘accept’ and in this case the system forwards p to the enterprise network.

2.3 Literature Review of Firewalls

We divide the literature on firewalls into five categories: firewall design,

firewall analysis, property verification of firewalls, packet classification and

firewall outsourcing. A brief survey of the research that have been conducted

in the first four categories is in order. We review the research works that fall

in the category of firewall outsourcing in the next section.

20

Firewall Design

A firewall should be carefully designed so that designed firewall adhere

to the design specification. Some prominent methods that can be used in

designing firewalls are reported in [28], [29], [44], [4], [56], and [54].

The method for designing firewalls in [28, 29] consists of two steps. First

the designer designs the desired firewall using a large conflict-free decision

diagram. Second the designer uses several algorithms to convert the large

decision diagram into a compact, yet functionally equivalent, sequence of rules.

This design method can be referred to as “simplifying firewalls by introducing

conflicts”.

The method for designing firewalls in [44] consists of three steps. First,

the same specification of the desired firewall is given to multiple teams who

independently design different versions of the firewall. Second, the resulting

multiple versions of the firewall are compared with one another. Third, all

discrepancies between the multiple firewall versions are resolved, and a final

firewall that is agreed upon by all teams is generated. This design method can

be referred to as “diverse firewall design”.

The method for designing firewalls in [4] consists of three steps. First,

the set of all expected packets is partitioned into non-overlapping subsets S1,

S2, · · · , Sk. Second, for each subset Si (obtained in the first step), design a

firewall Fi that accepts some of the packets in the subset Si. Third, identify

firewalls F1, F2, · · · , Fk generated in the second step as the desired firewall.

21

This design methods can be referred to as “divide-and-conquer”.

The method for designing firewalls in [56] consists of k steps. First, the

designer starts with a simple firewall F1 that accepts more packets than the

designer wishes. Second, the designer designs a second firewall F2 such that

if any packet is accepted by F2 then the same packet is also accepted by F1.

This process is repeated k times until the designer reaches a firewall Fk that

accepts those packets and only those packets that the designer wishes to be

accepted. This design method can be referred to as “step-wise refinement”.

In [54], a bottom-up design method has been presented that can be

followed by a designer in designing firewalls. This design method proceeds as

follows. First, the designer designs several simple firewalls. Second, the de-

signer combines these simple firewalls using the three firewall operators “not”,

“and”, and “or” into a single firewall expression.

Firewall Analysis

Rule Anomaly Detection:

Firewall rules can be overlapping or disjoint. When rules are disjoint, the

ordering of the rules is insignificant. Two rules conflict when they are overlap-

ping and have conflicting decisions. It is possible that a packet matches both

of the two conflicting rules. In this case, firewall rules are assigned priority

and are ordered from higher priority to lower priority. The conflict is resolved

by choosing the first match rule. Thus finding the correct ordering of the rules

is very important and can be challenging when a firewall has large number of

22

rules. Moreover, when the firewall contains a large number of rules, the pos-

sibility of writing conflicting or redundant rules is relatively high. Therefore,

it is of utmost importance to detect the conflicting rules in a firewall, as well

as other anomalies, such as existence of redundant rules, shadowed rules etc.

A classification of anomalies in a firewall, as well as algorithms to detect

them, is presented in a series of work [6–8] by Al-Shaer et. al. While in [8]

the authors defined intra-firewall anomalies, in [6, 7] the authors defined both

intra-firewall and inter-firewall anomalies. Besides classifying anomlaies, the

authors also proposed algorithms to detect and resolve these anomalies. These

works resulted in a tool called Firewall Policy Advisor. This tool can auto-

matically discover firewall rule anomalies after any rule insertion, removal, and

modification takes place, and can generate anomaly-free firewall. Like Fire-

wall Police Advisor, several other tools to detect and resolve firewall anomalies

have been proposed. FIREMAN [74] and FAME [35] are among these tools.

Firewall Policy Advisor only has the capability of detecting pairwise anoma-

lies in firewall rules. FIREMAN can detect anomalies among multiple rules by

analyzing the relationships between one rule and all preceding rules. FAME

considers all preceding and all subsequent rules when performing anomaly

analysis.

While the above mentioned works resolve anomalies preserving the pri-

ority order of the rules, the authors in [31] claims that resolving rule conflicts

based on prioritizing conflicting rules, and choosing the higher priority rule

does not always work. For example, they considered the case when each at-

23

tribute in a rule is defined as a bit string. They proposed a scheme for conflict

resolution by modifying existing rules, inserting resolve rules and choosing

the best match rule. An linear space conflict detection technique has been

presented in [19].

The problem of detection and removal of firewall rule redundancy has

also been addressed in [3] and [45].

Vulnerability Analysis:

A firewall vulnerability is defined as an error made during firewall design, im-

plementation, or configuration, that can be exploited to attack the trusted

network that the firewall is supposed to protect [36]. Several methods for the

logical analysis of firewalls have been reported in [34, 36, 48, 50, 70], and [14].

A framework for understanding the vulnerabilities in a single firewall is out-

lined in [22], and an analysis of these vulnerabilities is presented in [36]. A

quantitative study of configuration errors for a firewall is presented in [70]. An

example of an efficient firewall analysis algorithm is given in FIREMAN [74].

An integrated analysis engine for firewalls in a network is given in Fang [48]

where the authors developed a firewall analysis tool to perform customized

queries on a set of filtering rules and to manually verify the correctness of

the firewall policy. A firewall test generation tool, called Blowtorch has been

presented in [34].

24

Property Verification of Firewalls

Over the last couple of years, researchers have shown interest in deter-

mining several logical properties of a given firewall. Examples of some logical

properties include adequacy, implication, equivalence etc. Adequacy property

refers to problem of determining whether a given firewall accepts at least one

packet. Implication property refers to the problem of determining whether a

given firewall P accepts all packets that are accepted by another given firewall

Q. These properties have been formally defined in [18]. Also, it has been

shown in [18] that the problems of determining whether given firewalls defined

over any number of attributes satisfy some desired properties of adequacy,

implication, and equivalence are all NP-hard.

In [2], the authors present a polynomial time approach, called the PSP

method, to verify whether a given firewall satisfies a given logical property

(defined as a logical predicate) under the assumption that the number of at-

tributes in the firewall is fixed. PSP method has been later used to design a

polynomial time algorithm in [56] to solve the implication problem under the

assumption that the number of attributes in a rule in firewall is fixed. An

incremental verification approach has been presented in [17].

Besides the assumption of fixed number of attributes, there are two

main approaches to face the NP-hardness of determining whether given fire-

wall satisfy some desired properties of adequacy, implication, and equivalence.

The first approach is to use SAT solvers, for example as discussed in [33], [77],

and [5], to determine whether a given firewall satisfies some desired proper-

25

ties of adequacy, implication, and equivalence. Note that the time complexity

of using SAT solvers is polynomial in most practical situations. The second

approach is to use probabilistic algorithms [1]. Note that the time complexi-

ties of probabilistic algorithms are always polynomial but unfortunately these

algorithms can yield wrong determinations in rare cases.

Moreover, the authors in [40, 41] investigated a novel representation of

firewalls as finite automata rather than as sequences of rules. They showed

later in [38], how to use the automata representation of a given firewall to

determine whether the given firewall satisfies some desired properties of ade-

quacy, implication, and equivalence.

Packet Classification

Given a packet p and a firewall F , a packet classification algorithm for

firewalls determines whether p is accepted or rejected according to the rules

in F .

When the firewall is represented as a sequence of rule, the simplest

algorithm is linear search of the firewall rules to determine the first match

rule for p. Linear search exhibits packet classification complexity of O(t × n)

where n is the number of rules in a firewall and t is the number of attributes.

Note that a firewall can also be represented as a decision tree [7, 44, 74]

or as a finite automata [41] instead of as a sequence of rules. So packet clas-

sification is not only limited to the linear search approach. Several other

packet classification approaches are decision tree methods (for example, Hyper-

26

Cuts [63]), partitioning methods (for example, Tuple Space Search (TSS) [64]),

hybrid methods that use both decision trees and partitioning (for example,

Smartsplit [32], PartitionSort [72]), and TCAM-based methods [47].

Decision tree based classification algorithms [63] exhibit logarithmic

complexity in packet classification. However, updating a rule sometimes re-

quire reconstruction of the decision tree.

Partitioning methods, for example TSS [64], partitions the original rule-

set into smaller rulesets based on rule characteristics such that each partition

can be searched and updated in O(t) time where t is the number of attributes.

Although updating a rule is faster in TSS than that in decision tree approaches,

but classification time increases when the number of partitions increases be-

cause each partition must be searched for each packet.

Hybrid approaches [32, 72] use both the partition approach to partition

the ruleset and decision tree approach for searching each resulting ruleset. As

a result, hybrid approaches improve rule update time over decision tree meth-

ods as decision trees are constructed for smaller rulesets. Hybrid approaches

improve the classification time over partition methods by producing a smaller

number of partitions. A recent hybrid approach, Partition Sort [72] achieves

both logarithmic classification and logarithmic rule update time.

Ternary content addressable memories (TCAMs [47]) are used to per-

form high speed packet classification. A TCAM is a memory chip where each

entry can store a packet classification rule that is encoded in ternary format.

27

Given a packet, the TCAM hardware can compare the packet with all stored

rules in parallel and then return the decision of the first rule that the packet

matches. Thus, it takes O(1) time to find the decision for any given packet.

Given a firewall, the problem of generating another semantically equivalent

firewall that requires fewer number of TCAM entries has been addressed in [46]

and [16].

2.4 Literature Review of Firewall Outsourcing

Firewall outsourcing started to gain attention because of the related

economic benefits since the first decade of the twenty-first century. Some

cloud service providers (CSP) or internet service providers (ISP), for example

AT&T, started to offer outsourced firewall systems as a service to enterprise

networks [15, 30, 58, 59, 69]. In such a service model, the firewall system of an

enterprise network is implemented and managed by the service provider. An

enterprise requires to provide its firewall rules to its CSP/ISP to configure the

firewall system. However, in this case enterprises do not have much control

over the design and execution of the outsourced system.

Since more and more enterprises were becoming interested in using

outsouced firewall systems, both academic and industry researchers became

interested in proposing models to design customized outsourced firewall sys-

tems for an enterprise network. As a result, starting from the beginning the

current decade, several models for outsourced firewall systems have been pro-

posed which enterprises can follow to design their own firewall systems using

28

public clouds.

Some recent efforts in this area are surveyed in [67].

In 2012, Sherry et al. [61] studied the benefits outsourcing of firewall

systems by conducting a survey over 57 enterprise networks to estimate the

associated cost and complexity to implement and manage their firewall sys-

tems. They also proposed an architecture, called APLOMB, for outsourced

firewall systems for software defined network (SDN [21]). This system is de-

signed to be executed in a public cloud. They have argued that the enterprises

can reduce the associated cost and management complexity to implement and

manage their firewall systems by adopting APLOMB architecture for firewall

outsourcing.

In the same year, Gibb et al. [25] also proposed an outsourced firewall

system for software defined network (SDN). This system is designed to be ex-

ecuted in any location, for example, inside any local network or in a public

cloud, without requiring any changes in the design of the system. The enter-

prise network only requires to forward the packets to the location where the

firewall system is being executed. The location where the firewall system is

being executed can be geographically distant from the enterprise network.

The above mentioned outsourced systems provide the underlying fire-

wall in the clear to the public clouds and also do not verify that the task

executed by public clouds is indeed correct. Thus, these systems neither de-

fend against privacy attacks or verifiability attacks described in Section 1.2 in

29

Chapter 1.

Towards the end of 2012, Khakpour and Liu [37] proposed an out-

sourced firewall system considering the fact that public clouds should not be

given the underlying firewall in the clear while outsourcing. Because if the

cloud knows the underlying firewall, it may leak that firewall to potential at-

tackers of the system. So they designed an outsourced firewall system where

the underlying firewall is encrypted before it is outsourced to the cloud. They

encrypt the underlying firewall in two steps. First, they use a Firewall Deci-

sion Diagram (FDD) [29] to represent the rules of the firewall. Second, they

use Bloom Filters [13] to represent edges of the FDD. Because the rules of the

underlying firewall are encrypted before they are outsourced to the cloud, the

cloud cannot know the rules of the underlying firewall and so cannot leak these

rules to potential attackers of the system. Their work was the first attempt to

design outsourced system when the underlying firewall is encrypted before it

is outsourced.

Following their work, several outsourced systems [42, 43, 49, 60, 62], and [68]

have been proposed afterwards that encrypt the underlying firewall while out-

sourcing to public clouds. Among these systems, the outsourced system in [43]

encrypts the packets that are sent to the public cloud as well as the underlying

firewall. Embark enables the cloud to check the encrypted packets against the

encrypted firewall. The system in [49] used partial homomorphic encryption.

This system also requires the packets to be encrypted before processing by the

cloud. However, encryption of packets are done by a trusted component of the

30

public cloud. Other systems only encrypts the underlying firewall.

These systems differ from each other mainly in their architecture and

in the encryption mechanisms. For example, each of the outsourced systems

in [37, 43, 62] is executed by one public cloud, each of the outsourced systems

in [60, 68] is executed by two cooperative public clouds, and the outsourced

system in [42] is executed partially by a public cloud and partially by a private

cloud. Each of these systems aims to protect the underlying firewall from being

leaked to public clouds. Therefore, all of these systems defend against privacy

attacks. However, none of these systems verifies that the task executed by

a public cloud is indeed correct. Thus, these systems do not defend against

verifiability attacks.

A very few outsourced systems, for example, the systems in [20, 75],

and the system in [76], have been proposed in the literature that consider the

fact that the tasks that are executed by the public clouds need to be verified

at the enterprise end. Whereas the firewall systems in [75] and [76] execute the

verification steps online, the firewall system in [20] executes the verification

steps offline. However, the rules of the underlying firewall are stored in the

clear in the cloud in each of these systems. Therefore, these systems defend

against verifiability attacks but do not defend against privacy attacks.

The above mentioned efforts are mainly focused on outsourced firewall

systems. Besides there efforts, there exists a handful of research works that

deal with verifiability concerns in public cloud computing in general. Dif-

ferent verifiable computation schemes have been proposed over time such as

31

trusted platform module [66], interactive proofs [26], probabilistic checkable

proofs [10], non-interactive verifiable computation [23] and so on. A brief sur-

vey of some these schemes are presented in [73]. In 2010, Gennaro et al. [23]

defined a non-interactive verifiable computation scheme for any function us-

ing Yao’s garbled circuit [71] combined with a fully homomorphic encryption

system [24]. This scheme is called the verifiable fully homomorphic encryption

(VFHE) which accounts for both privacy of outsourced computation and cor-

rectness of computed results. However, the problem of how to adopt VFHE in

an outsourced firewall system is still open. Melis et al. [49] used homomorphic

encryption to encrypt underlying firewall and incoming packets to design an

outsourced firewall system. But their system does not verify the correctness

of the computation executed by the public cloud.

Recent efforts have been made to discuss how to outsource systems of

access control policies, such as XACML polices [9], into public clouds [11, 12].

These systems do not defend against verifiability or privacy attacks.

32

Chapter 3

Outsourcing of Firewalls

3.1 Introduction

The material presented in this chapter is based on our paper [57]1. In

this chapter, we present a special class of firewall systems called outsourced

systems. Like a regular firewall system, an outsourced system consists of two

units: a rule matching unit and a decision unit. To simplify the architecture

of the outsourced system, the rule matching unit of this system is executed by

a public cloud C.

The architecture of the outsourced system is shown in Figure 3.1. Note

that the only difference between the regular firewall system in Figure 1.1 and

the outsourced system in Figure 3.1 is that the rule matching unit in the former

system is executed by the firewall system itself whereas the rule matching unit

in the latter system is executed by a public cloud C.

Using public cloud C to execute the rule matching unit of an outsourced

system has a number of benefits and some disadvantages. The benefits of using

1Rezwana Reaz, Ehab S. Elmallah, and Mohamed G. Gouda. Executing firewalls in pub-
lic clouds. In Proceedings of the 10th international conference computing, communication
and networking technologies (ICCCNT). IEEE, 2019. (Accepted for publication). Rezwana
Reaz is the only student author in this paper and contributed the most in this paper.

33

cloud C to execute the rule unit are as follows [37, 58, 61, 69]. First, it can

reduce the initial investment and the operational cost of the firewall system by

taking advantage of the pay-per-use model of the cloud. Second, it can reduce

the number of staff needed to manage and implement the firewall system.

Third, it can increase the availability of the firewall system by maintaining

necessary back-ups.

The disadvantage of using public cloud C in executing the rule matching

unit is that cloud C is unreliable and so the outsourced system is vulnerable

to two types of attacks: verifiability attacks and privacy attacks. We describe

these two types of attacks in Section 3.3 below.

Prior work in this area [20, 37, 43, 60, 61, 75] yielded outsourced systems

that can defend against one of these two types of attacks, but none of the

systems can defend against both types of attacks. Our goal in this chapter is

to design outsourced systems that can prevent these two types of attacks from

occurring.

Table 3.1 classifies the prior outsourced systems into three categories:

(1) systems that do not defend against any attacks, (2) systems that can defend

only against verifiability attacks, and (3) systems that can defend only against

privacy attacks.

34

Table 3.1: Summary of Prior Systems
Category Systems
Do not defend against [25] and [61]
any attacks
Can defend only against [20], [75], and [76]
verifiability attacks
Can defend only against [37], [42], [43], [60], [62], and [68]
privacy attacks
Can prevent This chapter
both attacks

3.2 Execution of Outsourced Systems

The architecture of an outsourced system whose underlying firewall is

F is shown in Figure 3.1. This outsourced system consists of two units: the

rule matching unit which is executed by a public cloud C, and the decision

unit which is executed by the firewall system. Both the rule matching unit

and the decision unit are built on top of the same underlying firewall F .

When a packet p attempts to pass this outsourced system, p is first

directed to cloud C which hosts the rule matching unit. Cloud C uses the

underlying firewall F to compute a sequence number v where v is the sequence

number #(F, p). Then, C forwards the pair (p, v) to the decision unit which

is executed by the firewall system.

The decision unit uses firewall F to compute the decision (“accept” or

“reject”) of the rule whose sequence number is #(F, p).

If the rule whose sequence number is #(F, p) has a decision “accept”,

then the decision unit forwards p to the enterprise network. Otherwise, the rule

35

whose sequence number is #(F, p) has a decision “reject” and so the decision

discards packet p and does not forward it to the enterprise network.

3.3 Unreliable Public Clouds

A cloud C in the outsourced system is reliable iff C satisfies the fol-

lowing two conditions. First, when C sends a pair (p, v) to the decision unit,

value v is indeed the sequence number of the first match rule (rather than any

other match rule) in the underlying firewall F for packet p. Second, if C knows

the rules in F , C does not leak F to any potential attacker of the system.

The outsourced system in Figure 3.1 is correct only if the public cloud

C is reliable.

But cloud C is in fact unreliable. Hence, the outsourced system in Fig-

ure 3.1 is vulnerable to two types of attacks: verifiability attacks and privacy

attacks. We describe these two types of attacks next.

The verifiability attacks caused by cloud C can be described as follows.

When cloud C executes the steps to compute the sequence number #(F, p) of

the first match rule in the underlying firewall F for the incoming packet p, C

may compute a wrong value. In particular, the computed value v can be the

sequence number for a match but not for the first match rule in F for p.

The privacy attacks caused by cloud C can be described as follows. If

cloud C knows the rules of the underlying firewall F , C can leak the underlying

firewall F to any potential attacker of the firewall system.

36

As summarized in Table 3.1, all prior work on designing outsourced

firewall systems either defend against verifiability attacks or defend against

privacy attacks, but do not defend against both types of attacks. For example,

the outsourced systems in [20] and [76] defend against verifiability attacks, but

do not defend against privacy attacks. Also the outsourced systems in [37]

and [43] defend against privacy attacks but not against verifiability attacks.

We now discuss how to design an outsourced system that can prevent

both verifiability and privacy attacks from occurring. In the following two sec-

tions, we present two designs of outsourced systems. The first system is called

the verifiable firewall system. This system can prevent verifiability attacks

but cannot prevent privacy attacks. The second system is called the private

firewall system. This system can prevent both verifiability and privacy attacks

from occuring.

3.4 Verifiable Firewall Systems

The verifiable system in this section is obtained from the outsourced

system in Section 3.2 by performing the following three modifications. First,

cloud C in the outsourced system is replaced by two identical public clouds C1

and C2. Second, the rule matching unit that is hosted in cloud C is replaced

by two identical rule matching units that are hosted in clouds C1 and C2 as

shown in Figure 3.2. Third, the decision unit in the outsourced system is

replaced by a verifiable decision unit as shown in Figure 3.2.

Next, we describe the tasks that need to be performed by the verifiable

37

decision unit.

When a packet p attempts to pass the verifiable system in Figure 3.2,

packet p is directed to the rule matching unit hosted in cloud C1 so that C1

can compute a sequence number v1 and send the pair (p, v1) to the verifiable

decision unit. Also, packet p is directed to the rule matching unit hosted in

cloud C2 so that C2 can compute a sequence number v2 and send the pair (p,

v2) to the verifiable decision unit.

Cloud C1 is supposed to compute v1 as equal to the sequence number

#(F, p) of the first match rule in F for p. But because C1 is a public cloud, and

so is unreliable, the computed value v1 can end up being the sequence number

of any match rule (not necessarily the first match rule) in F for p. Similarly,

cloud C2 is supposed to compute v2 as equal to the sequence number #(F, p)

of the first match rule in F for p. But because C2 is a public cloud, and so is

unreliable, the computed value v2 can end up being the sequence number of

any match rule (not necessarily the first match rule) in F for p.

If value vi computed by cloud Ci and sent to the verifiable decision unit

equals the sequence number #(F, p), then cloud Ci is said to “have told the

truth” to the verifiable decision unit. On the other hand, if value vi computed

by cloud Ci and sent to the verifiable decision unit is not equal to the sequence

number #(F, p), then cloud Ci is said to “have lied” to the verifiable decision

unit.

A cloud Ci is said to be sensible iff Ci does not lie when the other cloud

38

rule matching

decision unit

pkt p

(p, v) from C

cloud C

accept p or
reject p

Figure 3.1: A firewall system with outsourcing

verifiable decision unit

rule matching

pkt p

(p, v1) from C1

cloud C1 rule matching cloud C2

(p, v2) from C2

accept p or
reject p or
halt

Figure 3.2: Verifiable firewall system

39

can tell the truth and enable the decision unit to detect that Ci has lied.

Two public clouds C1 and C2 are said to be non-colluding iff when

cloud C1 sends a pair (p, v1) and cloud C2 sends a pair (p, v2) to the decision

unit, then v1 and v2 can be different.

Note that if both clouds are sensible and non-colluding then neither

cloud will lie. This is because if one cloud, say C1, lies then there is a possibility

that the other cloud C2 does not lie and sends the sequence number #(F, p)

and hence enables the decision unit to detect that C1 has lied. In contrast,

if collusion occurs and the two clouds agree on sending the same sequence

number of a match rule then the two sensible clouds can lie simultaneously.

Theorem 3.4.1. Under the assumption that the two clouds C1 and C2 are

both sensible and non-colluding, the two pairs (p, v1) and (p, v2), computed

respectively by clouds C1 and C2, are such that both v1 and v2 equal the sequence

number #(F, p). This indicates that verifiability attack cannot occur in the

verifiable system.

Proof. There are three cases to consider.

1. Case 1: Cloud C1 has lied and cloud C2 may or may not have lied. In

this case, v1 is not equal to #(F, p). If v2 equals #(F, p), then v1 is

strictly greater than v2 and the decision unit can detect that cloud C1

has lied. By the assumption that C1 and C2 are non-colluding, v2 can be

#(F, p). In other words, C2 may have told the truth and have enabled

40

the decision unit to detect that C1 has lied. By the assumption that C1

is sensible, C1 cannot lie in this case and so Case 1 is not possible.

2. Case 2: Cloud C2 has lied and cloud C1 may or may not have lied. In

this case, v2 is not equal to #(F, p). If v1 equals #(F, p), then v2 is

strictly greater than v1 and the decision unit can detect that cloud C2

has lied. By the assumption that C1 and C2 are non-colluding, v1 can be

#(F, p). In other words, C1 may have told the truth and have enabled

the decision unit to detect that C2 has lied. By the assumption that C2

is sensible, C2 cannot lie in this case and so Case 2 is not possible.

3. Case 3: Neither C1 nor C2 has lied. If cloud C1 lies, then this case is

Case 1 and Case 1 is not possible by the assumption that cloud C1 is

sensible. Similarly, If cloud C2 lies, then this case is Case 2 and Case 2

is not possible by the assumption that cloud C2 is sensible. Therefore,

neither C1 nor C2 has lied which makes Case 3 possible.

Since Case 3 is the only possible case, each cloud send the sequence

number #(F, p) to the decision unit. This indicates that verifiability attack

cannot occur.

From Theorem 3.4.1, each of the two sequence numbers v1 and v2 sent

to the verifiable decision unit respectively by clouds C1 and C2, is equal to the

sequence number #(F, p). Thus, the verifiable system prevents verifiability

attacks from occurring.

41

Although the two sequence number v1 and v2 are expected to be equal

when the verifiable decision receives them, v1 and v2 can be different if any

of these two sequence numbers gets corrupted before it reaches the verifiable

decision unit. If the decision unit detects that v1 and v2 are not equal, then

the decision unit concludes that corruption of v1 or v2 has occurred. In this

case, the decision unit discards packet p and puts the verifiable system into a

halt so that no more incoming packets can be allowed to enter the verifiable

system.

Therefore, after the verifiable decision unit receives the two pairs (p,

v1) and (p, v2), the decision unit is required to compare the two sequence

numbers v1 and v2 to check whether they are equal or they are not equal

indicating that a corruption has occurred. If the two values are equal, then

the decision unit uses the underlying firewall F to compute the decision of

the rule whose sequence number is v1. If the decision of this rule is “accept”,

then the verifiable decision unit forwards packet p to the enterprise network.

Otherwise, the decision of this rule is “reject” and so the decision unit discards

packet p.

3.5 Private Firewall Systems

The verifiable system that is discussed in the previous section prevents

verifiability attacks but is still vulnerable to privacy attacks caused by the

fact that cloud Ci which hosts the rule matching unit of the verifiable system,

knows the the underlying firewall F . Because Ci is unreliable, Ci can leak the

42

underlying firewall F to any potential attacker of the system.

To prevent privacy attacks from occurring, we design the private firewall

system from the verifiable system presented in the previous section as follows.

We replace each rule matching unit that uses firewall F by a rule matching

unit that uses the incomplete version IF of F .

The incomplete version IF of F is the same as F except that the

decisions of all the rules in IF are unspecified. For example, if the underlying

firewall F is as follows:

1
(
(u1 ∈ [1, 4]) ∧ (u2 ∈ [8, 9])

)
→ reject

2
(
(u1 ∈ [2, 4]) ∧ (u2 ∈ [7, 9])

)
→ accept

3
(
(u1 ∈ [1, 9]) ∧ (u2 ∈ [1, 9])

)
→ reject

then the incomplete version IF of F is as follows:

1
(
(u1 ∈ [1, 4]) ∧ (u2 ∈ [8, 9])

)
→ unspecified

2
(
(u1 ∈ [2, 4]) ∧ (u2 ∈ [7, 9])

)
→ unspecified

3
(
(u1 ∈ [1, 9]) ∧ (u2 ∈ [1, 9])

)
→ unspecified

The first rule in this example of IF is called incomplete rule 1, the

second rule in IF is called incomplete rule 2, and so on. Now consider two

packets p and q where p is defined as the tuple (u1 = 3, u2 = 7) and q is defined

43

as the tuple (u1 = 2, u2 = 6). Packet p does not match incomplete rule 1,

but matches incomplete rule 2. So the first match incomplete rule in IF for

p is the incomplete rule 2. Similarly, packet q does not match incomplete rule

1 and incomplete rule 2. Rather it matches incomplete rule 3. So the first

match incomplete rule in IF for q is the incomplete rule 3.

We adopt the notation #(IF, p) to denote the sequence number of

the first match incomplete rule in IF for packet p. For example, the sequence

number #(IF, p) is 2 and the sequence number #(IF, q) is 3. Observe that the

sequence number #(F, p) is equal to the sequence number #(IF, p). Therefore,

the notations #(IF, p) and #(F, p) can be used interchangeably.

A packet p that attempts to pass the private system whose underlying

firewall is F , is first directed to each of the rule matching units hosted in clouds

C1 and C2. Each rule matching unit in the private system uses the incomplete

firewall IF instead of the complete firewall F and computes the sequence

number #(IF, p) which equals the sequence number #(F, p) . Each cloud Ci

then sends its computed value #(F, p) to the verifiable decision unit along

with packet p. The verifiable decision unit of the private system computes the

decision for p in the same way the verifiable decision unit does in the verifiable

system.

Note that in the private system, for each incoming packet p, each cloud

knows the sequence number #(F, p) but does not know the decision of the rule

whose sequence number is #(F, p). Therefore, neither cloud knows the rules

of F and so cannot leak these rules to potential attackers.

44

Based on these discussions, correctness of the private system is obtained

from Theorem 3.5.1.

Theorem 3.5.1. Each cloud Ci in the verifiable system knows the underlying

firewall F and can leak F to potential attackers of the system. By contrast, no

cloud Ci in the private system knows the underlying firewall F and so cannot

leak F to potential attackers of the system. This indicates that no privacy

attack can occur in the private system.

3.6 Chapter Summary

Our contributions in this chapter are two folds. First, we present a

family of firewall systems which is shown in Figure 3.3. Each member in this

family consists of a rule matching unit and a decision unit. The firewall system

without outsourcing executes the tasks of the rule matching unit and the

decision unit without any help from a public cloud. In contrast, the outsourced

system outsources the rule matching unit to a public cloud.

Unfortunately, public clouds are unreliable which makes the outsourced

system vulnerable to two types of attacks: verifiability attacks and privacy at-

tacks. To prevent these attacks from occurring, we present designs of two

outsourced systems: the verifiable system and the private system. The verifi-

able system outsources the task of the rule matching unit to two public clouds

and can prevent verifiability attacks under the assumption that both clouds are

sensible and non-colluding. However, the verifiable system does not prevent

privacy attacks.

45

Firewall System

Firewall System without Outsourcing Outsourced Firewall System

Verifiable Firewall System

Private Firewall System

Figure 3.3: Our family of firewall systems

46

Our second contribution in this chapter is a presentation of the private

system which can prevent both verifiability and privacy attacks from occurring.

Prior work on designing outsourced systems using public clouds either defend

against verifiability attacks, for example [20] and [75], or defend against privacy

attacks, for example [37] and [60], but do not defend against both attacks.

The private system presented in this chapter uses two public clouds

and can prevent both verifiability and privacy attacks under the assumption

that the two public clouds are sensible and non-colluding. An extension of

the work presented in this chapter is to design an outsourced system that can

prevent both verifiability and privacy attacks under the assumption that the

two public clouds can be colluding.

47

Chapter 4

Outsourcing of Partially Specified Firewalls

So far we defined the decision of a rule in a firewall to be either “accept”

or “reject”. In this chapter, we consider firewalls where the decision of each

rule is “accept”, “reject”, or “unspecified”. We refer to this class of firewalls

as partially specified firewalls and discuss techniques for outsourcing partially

specified firewalls.

An example of a partially specified firewall PF is as follows.

1
(
(u1 ∈ [1, 4]) ∧ (u2 ∈ [8, 9])

)
→ reject

2
(
(u1 ∈ [2, 6]) ∧ (u2 ∈ [7, 8])

)
→ unspecified

3
(
(u1 ∈ [5, 5]) ∧ (u2 ∈ [6, 8])

)
→ unspecified

4
(
(u1 ∈ [2, 4]) ∧ (u2 ∈ [7, 9])

)
→ accept

5
(
(u1 ∈ [1, 9]) ∧ (u2 ∈ [1, 9])

)
→ reject

Note that this partially specified firewall has two attributes u1 and u2

and the domain of each attribute is the integer interval [1, 9]. The decision of

each rule is either “accept”,“reject”, or “unspecified”.

A packet p is said to be accepted or rejected respectively by a partially

specified firewall PF iff PF has an accept rule or reject rule r that matches

48

packet p and all the rules that match p and precede r in PF are unspecified

rules. For example, packet p (u1 = 3, u2 = 7) is accepted by the partially

unspecified firewall PF mentioned above because PF has an accept rule, rule

4 that matches packet p and all the rules that match p and precede rule 4 in

PF are unspecified rules.

A partially specified firewall PF is said to be complete iff each packet

p is either “accepted” or “rejected” by PF . For example, the above partially

specified firewall is complete.

From now on, whenever we mention a partially specified firewall we

mean a complete partially specified firewall.

A partially specified firewall PF is equivalent to a firewall F iff every

packet p that is accepted or rejected by PF respectively is also accepted or

rejected by F respectively, and vice versa.

Theorem 4.0.1. For every partially specified firewall PF there exists a firewall

F such that PF and F are equivalent.

Proof. Let PF be a partially specified firewall and let F be the firewall that is

obtained from PF by removing all unspecified rules in PF . From definition of a

packet p being accepted or rejected respectively by a partially specified firewall

PF , packet p is accepted or rejected respectively by PF iff p is accepted or

rejected respectively by F . Therefore, firewall F is equivalent to the partially

specified firewall PF .

49

We now discuss how to modify a firewall system when the underlying

firewall is a partially specified firewall PF . The architecture of a firewall

system has been presented in Figure 1.1 which consists of a rule matching

unit and a decision unit. When the underlying firewall is a partially specified

firewall, then the task of rule matching unit has to be redefined as follows.

For any packet p, the rule matching unit requires to compute the se-

quence number of the ‘first match rule that has a decision either accept or

reject’ in PF for p. Note that ‘first match rule that has a decision either ac-

cept or reject’ in PF for p is not necessarily the sequence number of the ‘first

match rule’ in PF for p. After computing the sequence number of the ‘first

match rule that has a decision either accept or reject’ the rule matching unit

sends this sequence number to the decision unit and the decision unit applies

the decision of this rule to p.

Above design of the firewall system whose underlying firewall is a par-

tially specified firewall PF suggests that the rule matching unit needs to know

the decisions of the rules of PF . This makes the design of an outsourced sys-

tem for a partially specified firewall PF challenging because the outsourced

systems presented in this dissertation require that the rule matching units are

executed in clouds and clouds do not know the decision of the rules of the

underlying firewall.

An alternative way to design an outsourced system for a partially spec-

ified firewall PF is to find an equivalent firewall F and design the outsourced

system for F . From Theorem 4.0.1 for any PF there exists a firewall F such

50

that PF and F are equivalent.

We now design an outsourced system for a partially specified firewall

PF in two steps.

• In the first step, we obtain a firewall F from the partially specified firewall

PF by removing all unspecified rules such that PF and F are equivalent.

• In the second step, we design a private system presented in Chapter 3

for underlying firewall F obtained in the first step. The designed pri-

vate system for firewall F is the desired outsourced system for partially

specified firewall PF .

51

Chapter 5

Firewall Expressions

5.1 Introduction

The material presented in this chapter is based on our papers [54, 55]1.

In this chapter, we present a generalization of firewalls called firewall expres-

sions. A firewall expression is specified using one or more firewalls and the three

firewall operators: “not”, “and”, and “or”. We show that firewall expressions

can be utilized to support bottom-up methods for designing firewalls. We also

show that each firewall expression can be represented by a set of special types

of firewalls, called slices. Moreover, we present several algorithms that use the

slice representation of given firewall expressions to verify whether the given

firewall expressions satisfy logical properties such as adequacy, implication,

and equivalence.

We now present examples of two firewalls G and H and use these ex-

amples to introduce the concept of “firewall expressions”.

1Rezwana Reaz, H. B. Acharya, Ehab S. Elmallah, Jorge A. Cobb, and Mohamed G
Gouda. Policy expressions and the bottom-up design of computing policies. Computing,
101(9):13071326, 2019. Rezwana Reaz is the only student author in this paper and the main
contributor in this paper.

52

Let firewall G consists of three rules which are defined as follows:

(
(u1 ∈ [1, 4]) ∧ (u2 ∈ [8, 9])

)
→ reject(

(u1 ∈ [2, 4]) ∧ (u2 ∈ [7, 9])
)
→ accept(

(u1 ∈ [1, 9]) ∧ (u2 ∈ [1, 9])
)
→ reject

The predicate of each rule in this firewall G is defined using two at-

tributes u1 and u2 whose integer values are taken from the integer interval [1,

9]. The first rule states that each packet (b1, b2), where the value of b1 is an

integer in the interval [1, 4] and where the value of b2 is an integer in the in-

terval [8, 9], is to be rejected. The second rule states that each packet (b1, b2),

that does not match the first rule and where the value of b1 is an integer in

the interval [2, 4] and where the value of b2 is an integer in the interval [7, 9],

is to be accepted. The third rule states that each packet (b1, b2) that does not

match the first two rules is to be rejected. Thus, the set of packets that are

accepted by firewall G is {(2, 7), (3, 7), (4, 7)}. Notice that because the third

rule rejects all packets that do not match the first two rules.

A second firewall H that consists of three rules, where each rule is

defined over attributes u1 and u2, is as follows:

(
(u1 ∈ [2, 3]) ∧ (u2 ∈ [7, 7])

)
→ accept(

(u1 ∈ [2, 4]) ∧ (u2 ∈ [7, 8])
)
→ accept(

(u1 ∈ [1, 9]) ∧ (u2 ∈ [1, 9])
)
→ reject

53

r The set of packets that are accepted by H is {(2, 7), (3, 7), (4, 7), (2, 8), (3, 8), (4, 8)}

and all other packets are rejected.

Now assume that we need to use the two given firewalls G and H to

design a firewall expression (G or H). This firewall expression accepts every

packet that is accepted by firewall G or accepted by firewall H. Thus, the set of

packets that is accepted by (G or H) is {(2, 7), (3, 7), (4, 7), (2, 8), (3, 8), (4, 8)}.

Firewalls G and H are called the component firewalls of the firewall expression

(G or H).

In this chapter, we show that every firewall expression that is specified

using one or more firewalls and the three firewall operators “not”, “and”, and

“or” can be represented by a set {S1, S2, · · · , Sk} of a special class of firewalls

called slices such that the following condition holds. A packet is accepted by

a firewall expression iff this packet is accepted by at least one slice in the set

of slices that represents the firewall expression.

As an example, the firewall expression (G or H) can be represented

by the set of three slices {S1, S2, S3} according to Algorithm 4 presented in

Section 5.4.

Slice S1 is defined as follows:(
(u1 ∈ [1, 4]) ∧ (u2 ∈ [8, 9])

)
→ reject(

(u1 ∈ [2, 4]) ∧ (u2 ∈ [7, 9])
)
→ accept

Slice S2 is defined as follows:(
(u1 ∈ [2, 3]) ∧ (u2 ∈ [7, 7])

)
→ accept

54

Slice S3 is defined as follows:

(
(u1 ∈ [2, 4]) ∧ (u2 ∈ [7, 8])

)
→ accept

(Notice that, as discussed in Section 5.4, each slice is a firewall that

consists of zero or more reject rules followed by exactly one accept rule.)

Similarly, consider a firewall expression (G and H). This firewall ex-

pression accepts any packet p iff both polices G and H accept p. The firewall

expression (G and H) can be represented by the set of two slices {S4, S5}

according to Algorithm 3 presented in Section 5.4.

Slice S4 is defined as follows:

(
(u1 ∈ [1, 4]) ∧ (u2 ∈ [8, 9])

)
→ reject(

(u1 ∈ [2, 3]) ∧ (u2 ∈ [7, 7])
)
→ accept

Slice S5 is defined as follows:

(
(u1 ∈ [1, 4]) ∧ (u2 ∈ [8, 9])

)
→ reject(

(u1 ∈ [2, 4]) ∧ (u2 ∈ [7, 8])
)
→ accept

Based on the above discussions, this chapter suggests a novel bottom-

up design method that can be followed by a designer in designing firewalls.

This design method proceeds as follows. First, the designer designs several

simple component firewalls. Second, the designer combines these component

firewalls using the three firewall operators “not”, “and”, and “or” into a single

55

firewall expression FE. Finally, the designer uses the algorithms in Section 6

below to determine that the designed firewall expression FE is adequate, and

that FE implies or is equivalent to a desired firewall expression.

As an example, a designer can start by designing two firewalls G and H,

then use these two firewalls to design the firewall expression (G and not(H)).

This firewall expression accepts every packet that is accepted by firewall G and

rejected by firewall H. Then the designer can use Algorithm 7 in Section 5.5

below to prove that this firewall expression implies both firewall G and firewall

not(H).

Other methods that can be used in designing firewalls are reported in

[28], [29], [44], [56], and [4]. A brief survey of these methods has been presented

in Chapter 2.

These design methods, along with the bottom-up method in the current

chapter can constitute a library of firewall design methods. When designing a

firewall, it is up to the designer to decide which design method in this library

will the designer follow to generate the desired firewall.

The rest of this chapter is organized as follows. In Section 5.2, we

present our formal definition of firewall expressions and discuss three theorems

that state fundamental properties of firewall expressions. In Section 5.3, we

discuss an algorithm that can be used to evaluate a given firewall expression

for any input stream of packets. In Section 5.4, we introduce the concept of

a base of a firewall expression as a set of slices that satisfies the following

56

condition. For every incoming packet p, the firewall expression accepts p iff

at least one slice in the base of the firewall expression accepts p. Also in

Section 5.4, we present algorithms for constructing a base for every firewall

expression. In Section 5.5, we show that the bases of given firewall expressions

can be used to determine whether the given firewall expressions satisfy some

logical properties such as adequacy, implication, and equivalence. Finally, we

conclude this chapter in Section 5.6.

5.2 Definition of Firewall Expressions

In this section, we define firewall expressions. Informally, a firewall

expression is specified using one or more firewalls and three firewall operators:

“not”, “and”, and “or”. Each one of these firewall operators can be applied

to one or two firewall expressions to produce a firewall expression.

Formally, a 〈firewall expression FE〉 is defined recursively as one of the

following four options:

A complete firewall G

A complete firewall not(G)

〈firewall expression FE1〉 and 〈firewall expression FE2〉

〈firewall expression FE1〉 or 〈firewall expression FE2〉

An example of a firewall expression is as follows:

(G and not(H)) or (not(G) and H)

In this example, G and H are complete firewalls and are called component

57

firewalls of the firewall expression. Also “not”, “and”, and “or” are called

firewall operators.

Associated with each firewall expression FE is a packet set PS defined

as follows:

• If FE is a complete firewall G,

then PS is the set of all packets accepted by G

• If FE is a complete firewall not(G),

then PS is the set of all packets accepted by not(G) or equivalently PS

is the set of all packets rejected by G

• If FE is a firewall expression (FE1 and FE2),

then PS is the intersection of two packet sets PS1 and PS2 where PS1 is

the packet set associated with FE1 and PS2 is the packet set associated

with FE2

• If FE is a firewall expression (FE1 or FE2),

then PS is the union of two packet sets PS1 and PS2 where PS1 is the

packet set associated with FE1 and PS2 is the packet set associated with

FE2

As an example, the packet set associated with the firewall expression (G and

not(H)) is the intersection of the two packet sets PS1 and PS2, where PS1 is

the set of all packets accepted by firewall G and PS2 is the set of all packets

accepted by firewall not(H).

58

Two firewall expressions FE1 and FE2 are said to be equivalent iff the

two packet sets associated with FE1 and FE2 are identical.

For example, the firewall expression (G and not(H)) and the firewall

expression (not(G) and H) are equivalent.

Let FE be a firewall expression. We adopt the notation not(FE) to

denote the firewall expression that is recursively obtained from FE as follows:

• If FE is a complete firewall G,

then not(FE) denotes the firewall expression not(G)

• If FE is a complete firewall not(G),

then not(FE) denotes the firewall expression G

• If FE is a firewall expression (FE1 and FE2),

then not(FE) denotes the firewall expression (not(FE1) or not(FE2))

• If FE is a firewall expression (FE1 or FE2),

then not(FE) denotes the firewall expression (not(FE1) and (FE2))

As an example, not
(
(G and not(H)) or (not(G) and H)

)
denotes the

firewall expression
(
(not(G) or H) and (G or not(H))

)
.

The following three theorems state fundamental properties of firewall

expressions.

Theorem 5.2.1. For every firewall expression FE, (1) the packet set associ-

ated with the firewall expression (FE and not(FE)) is the empty set, and (2)

59

the packet set associated with the firewall expression (FE or not(FE)) is the

set P of all packets.

Proof. Our proof of this theorem makes use of the following definition of the

“rank” of a firewall expression FE.

The rank k of a firewall expression FE is a non-negative integer defined

recursively as follows:

• If FE is a complete firewall G or is a complete firewall not(F), then

k = 0

• If FE is of the form (FE1 and FE2) or is of the form (FE1 or FE2),

then k = (1 + max(k1, k2)), where k1 is the rank of FE1 and k2 is the

rank of FE2

Our proof of this theorem is by induction on the rank k of the firewall

expression FE. Details of this proof are presented in [53].

Theorem 5.2.2. For every firewall expression FE, the packet set associated

with the firewall expression not(FE) is (P − PS), where P is the set of all

packets, PS is the packet set associated with FE, and “−” is the set difference

operator. (Note that the packet set (P −PS) can be written as the compliment

of set PS.)

60

Proof. Let NS denote the packet set associated with not(FE). Thus, the

packet set associated with the firewall expression (FE and not(FE)) is (PS
⋂

NS),

and the packet set associated with the firewall expression (FE or not(FE)) is

(PS
⋃

NS). Hence, from Theorem 1, the set (PS
⋂

NS) is empty and the set

(PS
⋃

NS) is the set P of all packets. Therefore, set NS is (P − PS).

A firewall expression FE is said to be complete iff for every packet p

either FE accepts p or FE rejects p.

Theorem 5.2.3. Every firewall expression is complete.

Proof. The proof is by contradiction. Assume that there is a firewall expression

FE that is not complete. Thus, there is a packet p such that FE neither

accepts p nor rejects p. Hence, from Theorem 2, packet p is neither in the

packet set PS associated with FE nor in the packet set (P − PS) associated

with not(FE). Therefore, packet p is not in the union of the two sets PS and

(P −PS), which constitutes the set P of all packets. This contradicts the fact

that p is a packet in the set P of all packets.

5.3 Evaluation of Firewall Expressions

In this section, we discuss an algorithm that takes as input any given

firewall expression FE and any given packet p and produces as output a de-

termination of whether or not FE accepts p. This algorithm can be used to

evaluate the given firewall expression FE for any input stream of packets.

61

The main idea of this algorithm is to use the input pair (p, FE) to pro-

duce a Boolean expression BE, that involves the two Boolean values “TRUE”

and “FALSE”, and the three Boolean operators “¬”, “∧”, and “∨”.

The Boolean expression BE corresponding to the pair (p, FE) is re-

quired to satisfy one of the following two conditions:

• (FE accepts p) iff (BE is TRUE)

• (FE rejects p) iff (BE is FALSE)

Now consider a firewall expression FE and a packet p as follows:

FE = (G and (H or I)) or not(H)

where G, H, and I are complete firewalls. Assume that G accepts p, H rejects

p, and I rejects p. The Boolean expression BE corresponding to the pair (p,

FE) can be constructed as follows:

• Because G accepts p, replace firewall G in FE by the Boolean value

TRUE in BE

• Because H rejects p, replace firewall H in FE by the Boolean value

FALSE in BE

• Because I rejects p, replace firewall I in FE by the Boolean value FALSE

in BE

62

• Replace the firewall operator “not” in FE by the Boolean operator “¬”

in BE

• Replace the firewall operator “and” in FE by the Boolean operator “∧”

in BE

• Replace the firewall operator “or” in FE by the Boolean operator “∨”

in BE

• The Boolean expression BE can now be computed as follows:

BE = (TRUE ∧ (FALSE ∨ FALSE)) ∨ ¬FALSE

= FALSE ∨ TRUE = TRUE

Because BE is TRUE, we conclude that the given firewall expression

FE accepts the given packet p.

Next, we discuss the time complexity for computing the Boolean ex-

pression BE that represents a given firewall expression FE and a given packet

p. Assume that the given firewall expression FE has m distinct firewalls and

k firewall operators. Also assume that each distinct firewall has t attributes

(t is usually 5 for firewalls) and at most n rules. Therefore, the time com-

plexity to determine whether each distinct firewall in FE accepts the given

packet p is O(n × t). The “length” of the constructed Boolean expression

BE is O(k). Thus, the time complexity to construct the Boolean expression

is O((n × t × m) + (m × k)). Also, the time complexity of computing

the Boolean value of BE is O(k2) [51]. Therefore, the time complexity for

63

constructing the Boolean expression BE and computing its Boolean value is

O((n × t × m) + ((m × k) + k2)).

5.4 Bases of Firewall Expressions

In the next section, Section 5.5, we discuss several properties of fire-

wall expressions and present algorithms to determine whether given firewall

expressions satisfy these properties. For example, we present algorithms to

determine whether any given two firewall expressions are equivalent.

Our discussion in Section 5.5 is based on two concepts, namely “slices”

and “bases of firewall expressions” that we introduce in the current section.

A slice is a firewall that consists of zero or more reject rules followed

by exactly one accept rule.

Let SS be a set of slices and let FE be a firewall expression. Set SS

is said to be a base of the firewall expression FE iff the following condition

holds. Each packet p is accepted by at least one slice in set SS iff p is in the

packet set associated with the firewall expression FE.

The following five algorithms can be applied to any firewall expression

FE to construct a slice set SS that is a base of FE.

Algorithm 1

Input: A complete firewall G

Output: A slice set SS that is a base of G

64

Steps: For each accept rule ar in G, construct a slice sl in SS as follows. All

the reject rules that precede rule ar in G are added to slice sl. Then rule ar

is added at the end of slice sl.

Correctness: Proof of Correctness is presented in [53].

Time Complexity: A slice may contain up to n rules where n is the number

of rules in the input firewall G and adding one rule to a slice takes O(t) steps

where t is the number of attributes in G. So the time complexity to construct

each slice is O(n × t). There can be at most n slices in SS, one for each accept

rule in G. Therefore, the time complexity of Algorithm 1 is of O(n2 × t) where

n is the number of rules and t is the number of attributes in G.

End

Algorithm 2

Input: A complete firewall not(G)

Output: A slice set SS that is a base of not(G)

Steps: For each accept rule ar in not(G), construct a slice sl in SS as follows.

All the reject rules that precede rule ar in not(G) are added to slice sl. Then

rule ar is added at the end of slice sl.

Correctness: The correctness proof of Algorithm 2 is same as the correctness

proof of Algorithm 1.

Time Complexity: The time complexity of Algorithm 2 is same as the time

complexity of Algorithm 1.

End

65

Algorithm 3

Input: A firewall expression FE of the form (FE1 and FE2)

A slice set SS1 that is a base of FE1

A slice set SS2 that is a base of FE2

Output: A slice set SS that is a base of FE

Steps: For every slice sl1 in SS1 and every slice sl2 in SS2, construct a slice

sl in SS as follows:

1. The reject rules of slice sl are constructed by merging the reject rules of

sl1 with the reject rules of sl2 in any order

2. The accept rule of slice sl is constructed by taking the intersection of the

predicates of the two accept rules of slices sl1 and sl2. If this intersection

is empty, then discard slice sl from the base SS of the firewall expression

FE.

Correctness: Proof of Correctness is presented in [53].

Time Complexity: The number of slices in SS is (m1 × m2) where m1 is

the number of slices in SS1 and m2 is the number of slices in SS2. The time

complexity to construct a slice in SS is of O(n1 × t + n2 × t), where n1

is the number of rules in the largest slice in SS1, n2 is the number of rules in

the largest slice in SS2 and t is the number of attributes. Therefore, the time

complexity of Algorithm 3 is of O((m1 ×m2) × (n1 × t + n2 × t)) where

m1 is the number of slices in SS1, m2 is the number of slices in SS2, n1 is the

66

number of rules in the largest slice in SS1, n2 is the number of rules in the

largest slice in SS2, and t is the number of attributes.

End

Algorithm 4

Input: A firewall expression FE of the form (FE1 or FE2)

A slice set SS1 that is a base of FE1

A slice set SS2 that is a base of FE2

Output: A slice set SS that is a base of FE

Steps: The slice set SS is constructed as the union of the two slice sets SS1

and SS2.

Correctness: Proof of Correctness is presented in [53].

Time Complexity: The time complexity of Algorithm 4 is the sum of the

time complexity to add all slices of SS1 to SS and the time complexity to add

all slices of SS2 to SS. The time complexity to add each slice of SS1 to SS is

of O(n1 × t), where n1 is the number of rules in the largest slice in SS1 and t is

the number of attributes. Similarly, The time complexity to add each slice of

SS2 to SS is of O(n2 × t), where n2 is the number of rules in the largest slice

in SS2. Therefore, The time complexity of Algorithm 4 is of O((m1×n1 × t)

+ (m2 × n2 × t)) where m1 is the number of slices in SS1, m2 is the number

of slices in SS2, n1 is the number of rules in the largest slice in SS1, n2 is the

number of rules in the largest slice in SS2, and t is the number of attributes.

End

67

Algorithm 5

Input: A firewall expression FE

Output: A slice set SS that is a base of FE

Steps: SS is constructed by recursively applying the following four steps:

1. If FE is a complete firewall G then use Algorithm 1 to construct SS as

a base of G

2. If FE is a complete firewall not(G) then use Algorithm 2 to construct

SS as a base of not(G)

3. If FE is (FE1 and FE2) and SS1 is a base of FE1 and SS2 is a base

of FE2 then use Algorithm 3 to construct SS as a base of FE from the

two slice sets SS1 and SS2

4. If FE is (FE1 or FE2) and SS1 is a base of FE1 and SS2 is a base of FE2

then use Algorithm 4 to construct SS as a base of firewall expression

FE from the two slice sets SS1 and SS2

Correctness: The correctness proof of Algorithm 5 follows from the correct-

ness proofs of Algorithms 1, 2, 3 and 4.

Time Complexity: The time complexity of Algorithm 5 depends on the

number and type of operators in the input firewall expression FE. The time

complexity of Algorithm 5 has been explained in more detail with an example

68

in [53].

End

5.5 Properties of Firewall Expressions

In this section, we present several important properties of firewall ex-

pressions (namely adequacy, implication, and equivalence) and present algo-

rithms that can be used to determine whether any given firewall expression

satisfies these properties.

A firewall expression FE is said to be adequate iff FE accepts at least

one packet. The following algorithm can be used to determine whether any

given firewall expression is adequate.

Algorithm 6

Input: A firewall expression FE

Output: A determination of whether FE accepts a packet.

Steps: Construct a base SS of the firewall expression FE using Algorithm

5. For each slice in the constructed base SS, determine whether this slice

accepts a packet using the Probing Algorithm [53]. If one or more slices in SS

accepts a packet, then FE accepts a packet. Otherwise, FE does not accept

any packet.

Time Complexity: Let T denote the time complexity of Algorithm 5 when

applied to the input firewall expression to construct its base SS. Also let m be

69

the number of slices in the constructed base SS and n be the number of rules

in the largest slice in SS. As showed in [53], the time complexity of Probing

Algorithm to determine whether a slice of n rules and t attributes accepts a

packet is of O(nt+1 × t). Therefore, the time complexity of Algorithm 6 is of

O(T + (m × (nt+1 × t))).

End

A firewall expression FE1 is said to imply a firewall expression FE2 iff

the packet set associated with the firewall expression (FE1 and not(FE2)) is

empty. (Note that FE1 implies FE2 iff every packet that is accepted by FE1

is also accepted by FE2.)

Theorem 5.5.1. FE1 implies FE2 iff the packet set PS1 associated with FE1

is a subset of the packet set PS2 associated with FE2.

Proof. Proof of the Only-If-Part: Assume that FE1 implies FE2. Thus,

the packet set associated with the firewall expression (FE1 and not(FE2))

is empty. From Theorem 2, the packet set associated with not(FE2) is the

set (P − PS2), where P is the set of all packets. Therefore, the set
(
PS1

⋂
(P − PS2)

)
is empty and PS1 is a subset of PS2.

Proof of the If-Part: Assume that the packet set PS1 associated with

FE1 is a subset of the packet set PS2 associated with FE2. Thus, the set
(
PS1⋂

(P − PS2)
)
, where P is the set of all packets, is empty. From Theorem 2,

the packet set associated with not(FE2) is the set (P − PS2). Therefore,

70

the packet set associated with the firewall expression (FE1 and not(FE2)) is

empty and FE1 implies FE2.

Algorithm 7

Input: Two firewall expressions FE1 and FE2

Output: A determination of whether FE1 implies FE2

Steps: First, construct a firewall expression FE from the firewall expression

(FE1 and not(FE2)) by recursively applying “not” to firewall expression FE2

until “not” is applied only to the constituent component firewalls of FE2. Sec-

ond, use Algorithm 6 to determine whether the constructed firewall expression

FE accepts a packet. From the definition of “implies”, if FE accepts no packet

then FE1 implies FE2. Otherwise, FE1 does not imply FE2.

Time Complexity: The time complexity of the first step of Algorithm 7 is

dominated by the time complexity of the second step which uses Algorithm 6.

Therefore, the time complexity of Algorithm 7 is of O(T + (m × nt+1 × t)),

where T is the time complexity for constructing the firewall expression FE

and its base SS, m is the number of slices in the constructed base SS, n is

number of rules in the largest slice in SS, and t is the number of attributes in

each slice in SS.

End

Theorem 5.5.2. Two firewall expressions FE1 and FE2 are equivalent iff

71

FE1 implies FE2 and FE2 implies FE1.

Proof. Proof of the Only-If-Part: Assume that FE1 and FE2 are equivalent.

Thus, the packet set PS1 associated with FE1 and the packet set PS2 associ-

ated with FE2 are identical. Therefore, PS1 is a subset of PS2 and PS2 is a

subset of PS1. From Theorem 2, FE1 implies FE2 and FE2 implies FE1.

Proof of the If-Part: Assume that FE1 implies FE2 and FE2 implies

FE1. Thus, from Theorem 2, PS1 is a subset of PS2 and PS2 is a subset of

PS1. Therefore, the packet set PS1 associated with FE1 and the packet set

PS2 associated with FE2 are identical and the two firewall expressions FE1

and FE2 are equivalent.

Algorithm 8

Input: Two firewall expressions FE1 and FE2

Output: A determination of whether FE1 and FE2 are equivalent

Steps: Use Algorithm 7 twice to determine: (1) whether FE1 implies FE2

and (2) whether FE2 implies FE1. From Theorem 5, if FE1 implies FE2 and

FE2 implies FE1, then FE1 and FE2 are equivalent. Otherwise, also from

Theorem 5, FE1 and FE2 are not equivalent.

Time Complexity: The time complexity of Algorithm 8 is twice the time

complexity of Algorithm 7.

End

72

5.6 Chapter Summary

The main contribution of this chapter is to present a generalization

of firewalls called firewall expressions. Each firewall expression is specified

using one or more firewalls and the three firewall operators “not”, “and”, and

“or”. We showed that each firewall expression can be represented by a set

of slices called a base of the firewall expression. We also showed that the

bases of given firewall expressions can be used to determine whether the given

firewall expressions satisfy some desired properties of adequacy, implication,

and equivalence. Finally, we showed that firewall expressions can be utilized

to support bottom-up methods for designing firewalls.

A concrete running example has been presented in [53] to illustrate the

utility of some of the algorithms presented in this chapter.

The authors in [38, 41] investigated a novel representation of firewalls as

finite automata rather than as sequences of rules. They show later in [40], how

to use the automata representation of a given firewall to determine whether the

given firewall satisfies some desired properties of adequacy, implication, and

equivalence. They also showed in a recent work [39] that a firewall expression

can also be represented as finite automata.

It has been shown in [18] that the problems of determining whether

given firewalls satisfy some desired properties of adequacy, implication, and

equivalence are all NP-hard. From this fact and the fact that each (complete)

firewall is also a firewall expression, it follows that the problems of determining

73

whether given firewall expressions satisfy some desired properties of adequacy,

implication, and equivalence are also NP-hard. Indeed, the time complexities

of Algorithms 6, 7, and 8 that can be used to determine whether given fire-

wall expressions satisfy some desired properties of adequacy, implication, and

equivalence are all exponential.

There are two main approaches to face the NP-hardness of determining

whether given firewall expressions satisfy some desired properties of adequacy,

implication, and equivalence. The first approach is to use SAT solvers, for

example as discussed in [33], [77], and [5], to determine whether given fire-

wall expressions satisfy some desired properties of adequacy, implication, and

equivalence. Note that the time complexity of using SAT solvers is polynomial

in most practical situations.

The second approach is to use probabilistic algorithms [1]. Note that

the time complexities of probabilistic algorithms are always polynomial but

unfortunately these algorithms can yield wrong determinations in rare cases.

74

Chapter 6

Outsourcing of Firewall Expressions

6.1 Introduction

In Chapter 5, we presented a generalization of firewalls called firewall

expressions. A firewall expression is specified using one or more firewalls and

the three firewall operators: “not”, “and”, and “or”. An example of a firewall

expression FE is as follows:

FE = (G and not(H)) or not(G)

In this example, G and H are two firewalls, called the component firewalls of

FE, “not”, “and”, and “or” are firewall operators. This firewall expression

accepts a packet p iff firewall G accepts p and firewall H rejects p or firewall G

rejects p. In the rest of this chapter, when we mention ‘firewall expression FE’,

we mean the firewall expression in the above example and when we mention

‘component firewalls of FE’, we mean firewalls G and H mentioned above.

We now introduce a generalization of firewall systems, called expression

systems, whose underlying firewall is a firewall expression. Like a firewall

system, an expression system can be used as a packet filter when placed at

the entry point of an enterprise network to examine the packets that attempt

to enter the network and decide based on an underlying firewall expression

75

whether to accept or reject each of these packets. If the expression system

determines that packet p is to be rejected, then the system discards packet p.

Otherwise, the expression system determines that packet p is to be accepted

and in this case the system forwards p to the enterprise network.

When part of the tasks that need to be executed to implement and

manage an expression system are executed by public clouds, then the resulting

system is called an outsourced expression system. Our goal in this chapter is to

design an outsourced expression system such that the resulting system prevents

the attacks that can be caused by public clouds that are used to implement

the system.

6.2 Expression Systems

For firewall expression FE, we can define an Expression System as a

system that takes as input any packet p and determines whether packet p is

accepted or rejected according to the firewall expression FE. In this case, we

call FE the underlying firewall expression of the expression system.

The firewall expression FE has two component firewalls G and H.

Figure 6.1 presents the architecture of the expression system whose underlying

firewall expression is FE. This expression system has 3 components: one

firewall system for G , one firewall system for H, and one decision unit which

we call an overall decision unit.

When a packet p passes this expression system, p is first forwarded to

76

overall decision unit

pkt p

firewall system
for G

(p, decision of p)
for G

(p, decision of p)
for H

accept p or reject p

firewall system
for H

Figure 6.1: Expression system for firewall expression FE which has two com-
ponent firewalls G and H

77

each of the two component firewall systems. The architecture of each compo-

nent firewall system is same as that of a regular firewall system presented in

Figure 1.1.

rule matching

decision unit

pkt p

(p, #(G, p))

(p , decision of p)

overall decision unit

Figure 6.2: Firewall system for component firewall G

Figure 6.2 presents the architecture of the firewall system for G which

consists of two units: a rule matching unit and a decision unit. When p enters

this firewall system, p is first forwarded to the rule matching unit. Then, the

rule matching unit uses the underlying firewall G to compute the sequence

number #(G, p) of the first match rule in G for p. Next, the rule matching

unit forwards the pair (p, #(G, p)) to the decision unit. Finally, the decision

78

unit takes as input packet p and the sequence number #(G, p) received from

the rule matching unit and uses firewall G to compute the decision (“accept”

or “reject”) of the rule whose sequence number is #(G, p). After computing

the decision for packet p, the decision unit sends the pair (p, decision of p) to

the overall decision unit.

rule matching

decision unit

pkt p

(p, #(H, p))

(p , decision of p)

overall decision unit

Figure 6.3: Firewall system for component firewall H

Figure 6.3 presents the architecture of the firewall system for H which

consists of two units: a rule matching unit and a decision unit. Similar to the

system in Figure 6.2, this system computes the decision for packet p according

to the underlying firewall H and sends the pair (p, decision of p) to the overall

79

decision unit

The task of the overall decision unit is to take as input two pairs of (p,

decision of p), one from the firewall system for G and one from the firewall

system for H, and compute a decision for packet p according to the underlying

firewall expression FE. If the overall decision unit determines that the decision

for packet p is “accept”, then the decision unit forwards p to the enterprise

network. Otherwise, the overall decision unit determines that the decision for

packet p is “reject”, then the decision unit discards packet p and prevents it

from entering the network.

6.3 Outsourced Expression Systems

In this section, we design an outsourced expression system whose under-

lying firewall expression FE has two component firewalls G and H. Figure 6.4

shows the architecture of the outsourced expression system for the firewall

expression FE. (Extending the discussion to designing an outsourced expres-

sion system whose underlying firewall expression has any number of component

firewalls is straight forward.)

Our outsourced expression system is obtained from the expression sys-

tem in Figure 6.1 by replacing the firewall system for component firewall G

with a private system for G and by replacing the firewall system for component

firewall H with a private system for H. (Recall that the private system for

any underlying firewall F has been presented in Section 3.5 in Chapter 3.)

80

overall decision unit

pkt p

private system
for G

private system
for H

(p, decision of p) for G
or halt

accept p or
reject p or
halt

(p, decision of p) for H
or halt

Figure 6.4: Outsourced expression system for firewall expression FE that has
two component firewalls G and H

81

Figure 6.5 shows the private system for G that consists of two identical

rule matching units and a verifiable decision unit. The two rule matching units

are hosted in two public clouds C1 and C2. Each rule matching unit uses an

incomplete version IG of the underlying firewall G. Note that the incomplete

version of G is the same as G except that the decisions of all the rules in G

are unspecified. The verifiable decision unit uses the underlying firewall G.

verifiable decision unit

rule matching

pkt p

(p, v1) from C1

cloud
C1 rule matching

cloud
C2

(p, v2) from C2

(p, decision of p) for G
or halt

overall decision unit

accept p or
reject p or
halt

Figure 6.5: Private system for component firewall G

Figure 6.6 shows the private system for H that consists of two identical

rule matching units and a verifiable decision unit. The two rule matching units

82

are hosted in two public clouds C3 and C4. Each rule matching unit uses an

incomplete version IH of the underlying firewall H. Note that the incomplete

version of H is the same as H except that the decisions of all the rules in H

are unspecified. The verifiable decision unit uses the underlying firewall H.

verifiable decision unit

rule matching

pkt p

(p, v1) from C3

cloud
C3 rule matching

cloud
C4

(p, v2) from C4

(p, decision of p) for H
or halt

overall decision unit

accept p or
reject p or
halt

Figure 6.6: Private system for component firewall H

6.4 Execution of Outsourced Expression Systems

Assume that a packet p attempts to pass the expression system in

Figure 6.4. Then packet p is directed to both the private system for G and

83

the private system for H.

When packet p enters the private system for G, p is first directed to

the rule matching unit hosted in cloud C1 so that C1 can compute a sequence

number v1 using IG and send the pair (p, v1) to the verifiable decision unit.

Also, packet p is directed to the rule matching unit hosted in cloud C2 so that

C2 can compute a sequence number v2 using IG and send the pair (p, v2) to

the verifiable decision unit.

Cloud C1 computes v1 as the sequence number #(IG, p) of the first

match rule in IG for p. Similarly, cloud C2 computes v2 as the sequence

number #(IG, p) of the first match rule in IG for p.

After the verifiable decision unit receives the two pairs (p, v1) and (p,

v2), the decision unit checks whether the two sequence numbers v1 and v2

are equal. If v1 and v2 are equal, then the decision unit uses the underlying

firewall G to determine the decision (“accept” or “reject”) of the rule whose

sequence number is v1. After computing the decision for packet p, the verifiable

decision unit sends the pair (p, decision of p) to the overall decision unit of

the expression system.

On the other hand, if the two sequence numbers v1 and v2 are not equal,

then the verifiable decision unit concludes that one of the two pairs (p, v1) and

(p, v2) is corrupted as these pairs are being transferred from the rule matching

unit to the verifiable decision unit. In this case, the verifiable decision unit

“issues a halt” to the overall decision unit.

84

When the overall decision unit receives a “halt” command from the

verifiable system of the private system for G or from the verifiable system

of the private system for H, the overall decision unit puts the outsourced

expression system into a halt so that no more incoming packet can enter this

expression system. The private system for H works same as the private system

for G.

If the overall decision unit receives (p, decision of p) from the private

system for G and (p, decision of p) from the private system for H as shown

in Figure 6.7, the overall decision unit computes the decision for packet p as

follows.

overall decision unit

(p, decision of p)
for G or
halt

accept p or
reject p or
halt

(p, decision of p)
for H or
halt

Figure 6.7: The overall decision unit

Let dG denote the decision of p received by the overall decision unit

85

from the private system for G, and let dH denote the decision of p received by

the overall decision unit from the private system for H.

• The overall decision unit computes a Boolean expression BE for the

pair (p, FE) as follows. If dG is “accept”, then every occurrence of G

in FE is replaced by TRUE in BE. Otherwise every occurrence of G

in FE is replaced by FALSE in BE. Similarly, if dH is “accept”, then

every occurrence of H in FE is replaced by TRUE in BE. Otherwise

every occurrence of H in FE is replaced by FALSE in BE. Moreover,

the firewall operators “not”, “and”, and “or” in FE are replaced by the

Boolean operators “¬”, “∧”, and “∨” respectively in BE.

• If BE evaluates to TRUE, then the decision for p is “accept”. Otherwise,

BE evaluates to FALSE and the decision for p is “reject”.

If the computed decision for packet p is “reject”, then the overall deci-

sion unit discards packet p. Otherwise, the decision for packet p is “accept”

and in this case the decision unit forwards packet p to the enterprise network.

6.5 Security of Outsourced Expression Systems

In Section 3.3 in Chapter 3, we argued that an outsourced system for

any underlying firewall F where the rule matching unit is hosted in a public

cloud C is vulnerable to two types of security attacks: verifiability attacks

and privacy attacks. Later in Section 3.4 and in Section 3.5 in Chapter 3, we

86

showed how to modify the outsourced system for the underlying firewall F to

make sure that verifiability attacks and privacy attacks cannot occur in the

modified system. This modified system is called the private system for firewall

F .

The outsourced expression system presented in Section 6.3 in the cur-

rent chapter uses two private systems for component firewalls G and H. Each

private system uses two public clouds to outsource the two rule matching

units. For example, the private system for G outsources the two rule match-

ing units to two public clouds C1 and C2, where both clouds are sensible and

they are non-colluding. By applying Theorem 3.4.1 to the private system for

component firewall G, we conclude that verifiability attacks cannot occur in

the private system for G.

Similarly, the private system for H outsources the two rule matching

units to two public clouds C3 and C4 where both clouds are sensible and

they are non-colluding. By applying Theorem 3.4.1 to the private system for

component firewall H, we conclude that verifiability attacks cannot occur in

the private system for H.

Since no verifiability attack can occur in each private system of the

outsourced expression system, we conclude that no verifiability attack can

occur in the outsourced expression system.

By Theorem 3.5.1 the private system for the component firewall G

prevents privacy attacks from occurring because neither of the two clouds C1

87

or C2 knows the underlying firewall G. (Note that neither of the two clouds

C1 and C2 knows the firewall expression FE and the underlying firewall H.)

Similarly, By Theorem 3.5.1 the private system for the component fire-

wall G prevents privacy attack from occurring neither of the two clouds C3 or

C4 knows the underlying firewall H. (Note that neither of the two clouds C3

and C4 knows the firewall expression FE and the underlying firewall G.)

Since no privacy attack can occur in each private system of the out-

sourced expression system, we conclude that no privacy attack can occur in

the outsourced expression system.

6.6 Chapter Summary

The main contribution of this chapter is two-fold.

First, we showed that it is possible to design a packet filter for an

enterprise network by choosing a generalized firewall model, namely firewall

expression, which is a combination of multiple firewalls. For this model, we

designed a generalized firewall system, called an expression system. An ex-

pression system takes as input a packet p and determines whether to accept

or reject p according to an underlying firewall expression. We discussed the

architecture of an expression system in Section 6.2.

Second, we designed an outsourced expression system using public

clouds (presented in Section 6.3). We described the execution of our designed

outsourced expression system in Section 6.4. In this system, a private system

88

is used for each component firewall of the underlying firewall expression. We

discussed in Section 6.5 that verifiability and privacy attack cannot occur in

our outsourced expression system.

89

Chapter 7

Conclusion and Future Work

In this dissertation, we identified a class of outsourced systems whose

rule matching units are executed in public clouds. Since public clouds are

usually unreliable, we further identified that the outsourced systems obtained

by executing the rule matching units in public clouds are vulnerable to two

types of security attacks: verifiability attacks and privacy attacks.

Prior outsourced systems that exist in literature either defend against

verifiability attacks or defend against privacy attacks. But none of these sys-

tem defends against both types of attacks. Our main contribution in this

dissertation is to design several outsourced systems whose rule matching units

are executed in public clouds such that the resulting systems prevent verifia-

bility and privacy attacks from occurring.

Every outsourced system is built on top of an underlying firewall. We

present the formal definition and example of an underlying firewall in Chap-

ter 2. We have identified a special class of firewalls, called partially specified

firewalls in Chapter 4. We have also identified a generalization of firewalls,

called firewall expressions in Chapter 5. For each of these classes, we designed

outsourced system that prevents both verifiability and privacy attacks from

90

occurring.

In Chapter 3, we first presented the architecture of an outsourced sys-

tem for firewalls which has one rule matching unit and one decision unit, where

the rule matching unit is executed in a public cloud. Then, we formally speci-

fied verifiability and privacy attacks that can occur in this outsourced system.

Next, we modified this outsourced system to a system, called the private sys-

tem. The design of the private system involved two identical rule matching

units which are executed in two public clouds. The private system prevents

both verifiability and privacy attacks under the assumption that the two public

clouds used in this system are sensible and non-colluding.

We introduced partially specified firewalls in Chapter 4. In a partially

specified firewall the decisions of some of the rules in the firewall are not

specified. To design an outsourced system for partially specified firewall we

used the private system designed in Chapter 3 for firewalls. In Chapter 4, we

showed that every partially specified firewall has an equivalent (fully specified)

firewall. Thus, we achieved an outsourced system for any partially specified

firewall PF by first obtaining an equivalent firewall F from PF , and then

designing a private system for firewall F .

In Chapter 5, we presented a generalization of firewalls called firewall

expressions which is specified using one or more component firewalls and three

firewall operators: “not”, “and”, and “or”. For any underlying firewall ex-

pression FE, we defined an Expression System as a special class of firewall

systems that takes as input any packet p and determines whether the under-

91

lying firewall expression FE accepts or rejects packet p.

We designed an outsourced expression system for any underlying fire-

wall expression FE in Chapter 6. We achieved this outsourced expression

system by using a private system, presented in Chapter 3, for each component

firewall of FE and combining these private systems through an overall decision

unit to determine whether any packet is accepted or rejected according to the

underlying firewall expression FE.

Although we have made a number of contributions to design of out-

sourced systems, several avenues of future work still remain. Below we discuss

some of the avenues for future work:

• The private system presented in Chapter 3 involves two public clouds

system and this system can prevent both verifiability and privacy attacks

under the assumption that the two public clouds are sensible and are non-

colluding. An interesting open problem is to design a private system that

can prevent both verifiability and privacy attacks when the two public

clouds are sensible and can be colluding.

A high-level idea of how to proceed to solve this problem is discussed

below. One can proceed by designing two firewalls F1 and F2 from the

underlying firewall F such that F1 and F2 are ‘different’ but they are

functionally equivalent to F . One might use the concept of partially

specified firewalls discussed in Chapter 4 to create two different but func-

tionally equivalent firewalls from an underlying firewall.

92

Firewalls F1 and F2 are different in a way such that for any incoming

packet p, the sequence number #(F1, p) may not be same as the sequence

number #(F2, p). Moreover, the first match rule in F in p can be either

the first match rule or the second match rule in F1 for p. Similarly, the

first match rule in F in p can be either the first match rule or the second

match rule in F2 for p. The mapping between F and F1 and the mapping

between F and F2 should be pre-calculated and stored at the enterprise

side. It will also be required that if the first match rule in F in p is

mapped to the second match rule in firewall Fi for packet p, then the

first match rule in Fi for p is not mapped to any rule in F .

After obtaining two different firewalls from F , one can then modify the

private system presented in Chapter 3 as follows. One rule matching unit

can be executed in a public cloud C1 based on firewall F1 and another

rule matching unit can be executed in a public cloud C2 based on firewall

F2. The two public clouds C1 and C2 are sensible but can be colluding.

Each cloud Ci will be required to send the sequence numbers of both

the first and second match rules for any incoming packet p based on the

underlying firewall Fi. The decision unit will then use the pre-calculated

mappings between F and F1 and between F and F2 to determine that

each mapping resolves to the same rule in F , which is the first match

rule in F for p. The high-level solution presented above merits further

research.

• The firewall model considered in this dissertation is stateless. A firewall

93

F is called stateless when a packet is accepted or rejected by F only

based on the rules in F . A model for designing stateful firewalls has been

presented in [27]. In this model, each stateful firewall has a variable set

called the state of the firewall, which is used to store some packets that

the firewall has accepted previously and needs to remember in the near

future. A packet is accepted or rejected by a stateful firewall F not only

based on the rules in F but also based on the state of firewall F i.e, the

packets that have been previously accepted by F .

One open problem is to extend the techniques presented in this disser-

tation to design outsourced systems for stateful firewalls such that the

resulting systems can prevent both verifiability and privacy attacks from

occurring.

The authors in [37] suggest that their outsourced firewall system that

is designed for stateless firewall can be extended for stateful firewall by

storing the state of the firewall in the clear in the cloud. However, their

designed system defends only against privacy attacks. No outsourced sys-

tem has been proposed yet for stateful firewalls that can defend against

both verifiability and privacy attacks. To use the techniques presented

in this dissertation to design outsourced systems for stateful firewalls,

one must first find the answer of the following question. Where to store

the state of the firewall such that the verifiability and privacy attacks

are prevented and also purpose of outsourcing is achieved?

• In this dissertation, we developed methods to prevent both verifiability

94

and privacy attacks for firewall outsourcing. The problems of extending

these techniques for outsourcing other middleboxes (such as Intrusion

Detection System (IDS [52]), Network Address Translation (NAT [65]))

that defend against both verifiability and privacy attacks require further

research.

Several middlebox outsourcing techniques, for example [43, 62], and [75]

have already been presented in the literature. However, none of these

techniques defends against both verifiability and privacy attacks.

95

Bibliography

[1] Hrishikesh B Acharya and Mohamed G Gouda. Linear-time verification

of firewalls. In Proceedings of the 17th IEEE International Conference

on Network Protocols (ICNP), pages 133–140. IEEE, 2009.

[2] Hrishikesh B Acharya and Mohamed G Gouda. Projection and division:

Linear-space verification of firewalls. In Proceedings of the 30th IEEE

International Conference on Distributed Computing Systems (ICDCS),

pages 736–743. IEEE, 2010.

[3] Hrishikesh B Acharya and Mohamed G Gouda. Firewall verification and

redundancy checking are equivalent. In INFOCOM, 2011 Proceedings

IEEE, pages 2123–2128. IEEE, 2011.

[4] Hrishikesh B Acharya, Aditya Joshi, and Mohamed G Gouda. Firewall

modules and modular firewalls. In Proceedings of the 18th IEEE Interna-

tional Conference on Network Protocols (ICNP), pages 174–182. IEEE,

2010.

[5] Hrishikesh B Acharya, Satyam Kumar, Mohit Wadhwa, and Ayush Shah.

Rules in play: On the complexity of routing tables and firewalls. In Pro-

ceedings of the 24th IEEE International Conference on Network Protocols

(ICNP). IEEE, 2016.

96

[6] Ehab Al-Shaer, Hazem Hamed, Raouf Boutaba, and Masum Hasan. Con-

flict classification and analysis of distributed firewall policies. IEEE jour-

nal on selected areas in communications, 23(10):2069–2084, 2005.

[7] Ehab S Al-Shaer and Hazem H Hamed. Discovery of policy anomalies

in distributed firewalls. In INFOCOM 2004. Twenty-third AnnualJoint

Conference of the IEEE Computer and Communications Societies, vol-

ume 4, pages 2605–2616. IEEE, 2004.

[8] Ehab S Al-Shaer and Hazem H Hamed. Modeling and management of

firewall policies. IEEE Transactions on network and service management,

1(1):2–10, 2004.

[9] Anne Anderson, Anthony Nadalin, B Parducci, D Engovatov, H Lockhart,

M Kudo, P Humenn, S Godik, S Anderson, S Crocker, et al. Extensible

access control markup language (xacml) version 1.0. OASIS, 2003.

[10] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A

new characterization of np. Journal of the ACM (JACM), 45(1):70–122,

1998.

[11] Meryeme Ayache, Mohammed Erradi, and Bernd Freisleben. curlx: A

middleware to enforce access control policies within a cloud environment.

In Proceedings of the 2015 IEEE Conference on Communications and

Network Security (CNS 2015), pages 771–772. IEEE, 2015.

97

[12] Meryeme Ayache, Mohammed Erradi, Ahmed Khoumsi, and Bernd Freisleben.

Analysis and verification of xacml policies in a medical cloud environment.

Scalable Computing: Practice and Experience, 17(3):189–206, 2016.

[13] Burton H Bloom. Space/time trade-offs in hash coding with allowable

errors. Communications of the ACM, 13(7):422–426, 1970.

[14] D Brent Chapman, Elizabeth D Zwicky, and Deborah Russell. Building

internet firewalls. O’Reilly & Associates, Inc., 1995.

[15] Wen Ding, William Yurcik, and Xiaoxin Yin. Outsourcing internet

security: Economic analysis of incentives for managed security service

providers. In International Workshop on Internet and Network Eco-

nomics, pages 947–958. Springer, 2005.

[16] Qunfeng Dong, Suman Banerjee, Jia Wang, Dheeraj Agrawal, and Ashutosh

Shukla. Packet classifiers in ternary cams can be smaller. In ACM SIG-

METRICS Performance Evaluation Review, volume 34, pages 311–322.

ACM, 2006.

[17] Ehab S Elmallah, Hrishikesh B Acharya, and Mohamed G Gouda. In-

cremental verification of computing policies. In Proceedings of the 16th

International Symposium on Stabilization, Safety, and Security of Dis-

tributed Systems (SSS), volume 8756 of Lecture Notes in Computer Sci-

ence, pages 226–236. Springer, 2014.

98

[18] Ehab S Elmallah and Mohamed G Gouda. Hardness of firewall analy-

sis. In Proccedings of the 2nd International Conference on NETworked

sYStems (NETYS), volume 8593 of Lecture Notes in Computer Science,

pages 153–168. Springer, 2014.

[19] David Eppstein and S Muthukrishnan. Internet packet filter management

and rectangle geometry. In Proceedings of the twelfth annual ACM-SIAM

symposium on Discrete algorithms, pages 827–835. Society for Industrial

and Applied Mathematics, 2001.

[20] Seyed Kaveh Fayazbakhsh, Michael K Reiter, and Vyas Sekar. Verifiable

network function outsourcing: Requirements, challenges, and roadmap.

In Proceedings of 2013 ACM Workshop on Hot Topics in Middleboxes

and Network Function Virtualization (HotMiddlebox 2013), pages 25–30.

ACM, 2013.

[21] MV Fernando, Paulo Esteves, Christian Esteve, et al. Software-defined

networking: A comprehensive survey. PROCEEDINGS OF THE IEEE,

2015.

[22] Mike Frantzen, Florian Kerschbaum, E Eugene Schultz, and Sonia Fahmy.

A framework for understanding vulnerabilities in firewalls using a dataflow

model of firewall internals1. Computers & Security, 20(3):263–270, 2001.

[23] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive ver-

ifiable computing: Outsourcing computation to untrusted workers. In

Annual Cryptology Conference, pages 465–482. Springer, 2010.

99

[24] Craig Gentry et al. Fully homomorphic encryption using ideal lattices.

In Stoc, volume 9, pages 169–178, 2009.

[25] Glen Gibb, Hongyi Zeng, and Nick McKeown. Outsourcing network func-

tionality. In Proceedings of the first workshop on Hot topics in software

defined networks, pages 73–78. ACM, 2012.

[26] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge

complexity of interactive proof systems. SIAM Journal on computing,

18(1):186–208, 1989.

[27] Mohamed G Gouda and Alex X Liu. A model of stateful firewalls and

its properties. In Proceedings of the 2005 International Conference on

Dependable Systems and Networks (DNS 2005), pages 128–137. IEEE,

2005.

[28] Mohamed G Gouda and Alex X Liu. Structured firewall design. Com-

puter Networks, 51(4):1106–1120, 2007.

[29] Mohamed G Gouda and X-YA Liu. Firewall design: Consistency, com-

pleteness, and compactness. In Proceedings of the 24th International

Conference on Distributed Computing Systems, pages 320–327. IEEE,

2004.

[30] Mohammad Hajjat, Xin Sun, Yu-Wei Eric Sung, David Maltz, Sanjay

Rao, Kunwadee Sripanidkulchai, and Mohit Tawarmalani. Cloudward

bound: planning for beneficial migration of enterprise applications to the

100

cloud. ACM SIGCOMM Computer Communication Review, 41(4):243–

254, 2011.

[31] Adiseshu Hari, Subhash Suri, and Guru Parulkar. Detecting and re-

solving packet filter conflicts. In INFOCOM 2000. Nineteenth Annual

Joint Conference of the IEEE Computer and Communications Societies.

Proceedings. IEEE, volume 3, pages 1203–1212. IEEE, 2000.

[32] Peng He, Gaogang Xie, Kavé Salamatian, and Laurent Mathy. Meta-

algorithms for software-based packet classification. In Network Protocols

(ICNP), 2014 IEEE 22nd International Conference on, pages 308–319.

IEEE, 2014.

[33] Marijn JH Heule, Rezwana Reaz, Hrishikesh B Acharya, and Mohamed G

Gouda. Analysis of computing policies using sat solvers (short paper). In

Proccedings of the 18th International Symposium on Stabilization, Safety,

and Security of Distributed Systems, pages 190–194. Springer, 2016.

[34] Daniel Hoffman and Kevin Yoo. Blowtorch: a framework for firewall test

automation. In Proceedings of the 20th IEEE/ACM International Con-

ference on Automated Software Engineering (ASE), pages 96–103. ACM,

2005.

[35] Hongxin Hu, Gail-Joon Ahn, and Ketan Kulkarni. Detecting and re-

solving firewall policy anomalies. IEEE Transactions on dependable and

secure computing, 9(3):318–331, 2012.

101

[36] Seny Kamara, Sonia Fahmy, Eugene Schultz, Florian Kerschbaum, and

Michael Frantzen. Analysis of vulnerabilities in internet firewalls. Com-

puters & Security, 22(3):214–232, 2003.

[37] Amir R Khakpour and Alex X Liu. First step toward cloud-based fire-

walling. In Proceedings of the 31st IEEE International Symposium on

Reliable Distributed Systems (SRDS 2012), pages 41–50. IEEE, 2012.

[38] Ahmed Khoumsi, Mohamed Erradi, Meryeme Ayache, and Wadie Krombi.

An approach to resolve np-hard problems of firewalls. In Proceedings

of the 4th International Conference on NETworked sYStems (NETYS).

Springer, 2016.

[39] Ahmed Khoumsi and Mohammed Erradi. Automata-based bottom-up

design of conflict-free security policies specified as policy expressions. In

International Conference on Networked Systems, pages 343–357. Springer,

2018.

[40] Ahmed Khoumsi, Wadie Krombi, and Mohammed Erradi. A formal ap-

proach to verify completeness and detect anomalies in firewall security

policies. In Proceedings of the 7th International Symposium on Founda-

tions and Practice of Security, pages 221–236. Springer, 2014.

[41] Wadie Krombi, Mohammed Erradi, and Ahmed Khoumsi. Automata-

based approach to design and analyze security policies. In Proceedings of

the 12th Annual International Conference on Privacy, Security and Trust

(PST), pages 306–313. IEEE, 2014.

102

[42] Tytus Kurek, Marcin Niemiec, and Artur Lason. Taking back control

of privacy: A novel framework for preserving cloud-based firewall policy

confidentiality. International Journal of Information Security, 15(3):235–

250, 2016.

[43] Chang Lan, Justine Sherry, Raluca Ada Popa, Sylvia Ratnasamy, and

Zhi Liu. Embark: Securely outsourcing middleboxes to the cloud. In

Proceedings of the 13th USENIX Symposium on Netwroked System Design

and Implementation (NSDI 2016), volume 16, pages 255–273, 2016.

[44] Alex X Liu and Mohamed G Gouda. Diverse firewall design. IEEE

Transactions on Parallel and Distributed Systems (TPDS), 19(9):1237–

1251, 2008.

[45] Alex X Liu and Mohamed G Gouda. Complete redundancy removal

for packet classifiers in tcams. IEEE Transactions on Parallel and Dis-

tributed Systems, 21(4):424–437, 2010.

[46] Alex X Liu and Mohamed G Gouda. Complete redundancy removal

for packet classifiers in tcams. IEEE Transactions on Parallel and Dis-

tributed Systems, 21(4):424–437, 2010.

[47] Alex X Liu, Chad R Meiners, and Eric Torng. Tcam razor: A systematic

approach towards minimizing packet classifiers in tcams. IEEE/ACM

Transactions on Networking (TON), 18(2):490–500, 2010.

103

[48] Alain Mayer, Avishai Wool, and Elisha Ziskind. Fang: A firewall analysis

engine. In IEEE Symposium on Security and Privacy, pages 177–187.

IEEE, 2000.

[49] Luca Melis, Hassan Jameel Asghar, Emiliano De Cristofaro, and Mo-

hamed Ali Kaafar. Private processing of outsourced network functions:

Feasibility and constructions. In Proceedings of the 2016 ACM Inter-

national Workshop on Security in Software Defined Networks & Network

Function Virtualization, pages 39–44. ACM, 2016.

[50] Rolf Oppliger. Internet security: firewalls and beyond. Communications

of the ACM, 40(5):92–102, 1997.

[51] Christos H. Papadimitriou. Computational complexity. John Wiley and

Sons Ltd., 2003.

[52] Vern Paxson. Bro: a system for detecting network intruders in real-time.

Computer networks, 31(23-24):2435–2463, 1999.

[53] Rezwana Reaz, H. B. Acharya, Ehab S. Elmallah, Jorge A. Cobb, and

Mohamed G Gouda. Policy expres- sions and the bottom-up design of

computing policies. Technical Report No. TR-17-01, Department of

Computer Science, The Universisty of Texas at Austin, 2017.

[54] Rezwana Reaz, H. B. Acharya, Ehab S. Elmallah, Jorge A. Cobb, and

Mohamed G. Gouda. Policy expressions and the bottom-up design of

104

computing policies. In Proceedings of the 5th International Conference

on Netwroked Systems (NETYS 2017), pages 151–165. Springer, 2017.

[55] Rezwana Reaz, H. B. Acharya, Ehab S. Elmallah, Jorge A. Cobb, and

Mohamed G Gouda. Policy expressions and the bottom-up design of

computing policies. Computing, 101(9):1307–1326, 2019.

[56] Rezwana Reaz, Muqeet Ali, Mohamed G Gouda, Marijn JH Heule, and

Ehab S Elmallah. The implication problem of computing policies. In

Proceedings of the 17th International Symposium on Stabilization, Safety,

and Security of Distributed Systems, pages 109–123. Springer, 2015.

[57] Rezwana Reaz, Ehab S. Elmallah, and Mohamed G. Gouda. Executing

firewalls in public clouds. In Proceedings of the 10th international confer-

ence computing, communication and networking technologies (ICCCNT).

IEEE, 2019. (Accepted for publication).

[58] Ted Ritter. Network-based firewall: Extending the firewall into the cloud.

https://www.business.att.com/content/whitepaper/Nemertes_DN0496_

Network-Based_Firewall_Services_May_2009.pdf, 2009.

[59] Bruce Schneier. The case for outsourcing security. Computer, 35(4):supl20–

supl21, 2002.

[60] Hualong Sheng, Lingbo Wei, Chi Zhang, and Xia Zhang. Privacy-

preserving cloud-based firewall for iaas-based enterprise. In Proceedings

105

of 2016 International Conference on Networking and Network Applica-

tions (NaNA 2016), pages 206–209. IEEE, 2016.

[61] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia

Ratnasamy, and Vyas Sekar. Making middleboxes someone else’s prob-

lem: network processing as a cloud service. ACM SIGCOMM Computer

Communication Review, 42(4):13–24, 2012.

[62] Junjie Shi, Yuan Zhang, and Sheng Zhong. Privacy-preserving network

functionality outsourcing. [online] arXiv:1502.00389, 2015.

[63] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. Packet

classification using multidimensional cutting. In Proceedings of the 2003

conference on Applications, technologies, architectures, and protocols for

computer communications, pages 213–224. ACM, 2003.

[64] Venkatachary Srinivasan, Subhash Suri, and George Varghese. Packet

classification using tuple space search. In ACM SIGCOMM Computer

Communication Review, volume 29, pages 135–146. ACM, 1999.

[65] Pyda Srisuresh and Kjeld Egevang. Traditional ip network address trans-

lator (traditional nat), 2001.

[66] Nancy Sumrall and Manny Novoa. Trusted computing group (tcg) and

the tpm 1.2 specification. In Intel Developer Forum, volume 32, 2003.

106

[67] Cong Wang, Xingliang Yuan, Yong Cui, and Kui Ren. Toward secure

outsourced middlebox services: Practices, challenges, and beyond. IEEE

Network, 32(1):166–171, 2018.

[68] Lingbo Wei, Chi Zhang, Yanmin Gong, Yuguang Fang, and Kefei Chen.

A firewall of two clouds: Preserving outsourced firewall policy confiden-

tiality with heterogeneity. In Proceedings of 2016 IEEE Global Commu-

nications Conference (GLOBECOM 2016), pages 1–6. IEEE, 2016.

[69] Martin Whitworth. Outsourced security–the benefits and risks. Network

Security, 2005(10):16–19, 2005.

[70] Avishai Wool. A quantitative study of firewall configuration errors.

Computer, 37(6):62–67, 2004.

[71] Andrew C Yao. Protocols for secure computations. In 23rd annual

symposium on foundations of computer science (sfcs 1982), pages 160–

164. IEEE, 1982.

[72] Sorrachai Yingchareonthawornchai, James Daly, Alex X Liu, and Eric

Torng. A sorted partitioning approach to high-speed and fast-update

openflow classification. In Network Protocols (ICNP), 2016 IEEE 24th

International Conference on, pages 1–10. IEEE, 2016.

[73] Xixun Yu, Zheng Yan, and Athanasios V Vasilakos. A survey of verifiable

computation. Mobile Networks and Applications, 22(3):438–453, 2017.

107

[74] Lihua Yuan, Hao Chen, Jianning Mai, Chen-Nee Chuah, Zhendong Su,

and Prasant Mohapatra. Fireman: A toolkit for firewall modeling and

analysis. In Security and Privacy, 2006 IEEE Symposium on, pages

15–pp. IEEE, 2006.

[75] Xingliang Yuan, Huayi Duan, and Cong Wang. Bringing execution as-

surances of pattern matching in outsourced middleboxes. In Proceedings

of the 24th IEEE International Conference on Network Protocols (ICNP

2016), pages 1–10. IEEE, 2016.

[76] Xingliang Yuan, Huayi Duan, and Cong Wang. Assuring string pat-

tern matching in outsourced middleboxes. IEEE/ACM Transactions on

Networking (TON), 26(3):1362–1375, 2018.

[77] Shuyuan Zhang, Abdulrahman Mahmoud, Sharad Malik, and Sanjai Narain.

Verification and synthesis of firewalls using SAT and QBF. In Proceedings

of the 20th IEEE International Conference on Network Protocols (ICNP),

pages 1–6. IEEE, 2012.

108

Vita

Rezwana Reaz is from Dhaka, Bangladesh. She completed her high

school education in Dhaka. She started her undergraduate studies at Bangladesh

University of Engineering and Technology (BUET) in January 2006 and earned

B.Sc. in Computer Science and Engineering in February 2011. She enrolled in

the masters program in the same university in April 2011 and graduated with

a masters degree in Computer Science and Engineering in August 2013. Dur-

ing her masters, she also served as an ad-hoc Lecturer in the Department of

Computer Science and Engineering in BUET. Her undergraduate and masters

theses addressed interesting problems in the field of Computational Biology.

She enrolled in the PhD program in the Department of Computer Science

at the University of Texas at Austin in Fall 2013. During her PhD, she has

worked under the supervision of Prof. Mohamed G. Gouda in network pro-

tocols and firewall security. Her research interest lies in the areas of formal

methods, network firewalls, security protocols, and computational biology.

Email address: rimpi0505042@gmail.com

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

109

