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Abstract

Turbulent heat loss in a fusion reactor limits its ability to confine heat and produce fusion

energy. Exploring tokamak parameters to find configurations that minimize turbulent trans-

port will help us optimize fusion reactors. However, exploring efficiently and accurately is a

challenge. Gyrokinetic models can accurately calculate turbulence but are too expensive to

explore a broad parameter space with. Gyrofluid models are cheap, but they rely on moment

closures that break down in the presence of turbulence. In order to develop a fast and accurate

model to explore with, we will need robust closures that correctly capture nonlinear kinetic

effects.

As a starting point, we have developed such a closure for a simplified nonlinear gyrokinetic

system, DNA (Hatch et al.), which models ITG turbulence in an unsheared slab. Numer-

ical tests in the DNA simulation show that out new Dynami Multi-Mode (DMM) closure

outperforms standard closures and extrapolates to different parameter regimes.
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1 Background

1.1 Plasma Turbulence

Fusion plasmas are inherently turbulent. Plasma turbulence covers a wide range of spatial and

temporal scales - the smallest turbulent fluctuations are on the scale of the ion Larmor radius

(ρi), while the bulk properties of the plasma, which contain the gradients that cause these small

fluctuations, occur on the scale of the device (maybe the radius of the tokamak.) These bulk

properties, the mean fields, fluctuate at a rate 1/τE , where τE is the confinement time, that is

many ( 103) times slower than the turbulent fluctuation frequency, ω [1].

The presence of relevant physical processes on such disparate scales and the non-local nature

of the electromagnetic interactions in the plasma make modeling the dynamics very complex and

computationally expensive. Fortunately, we have been able to take advantage of the large separa-

tion between the small scales of the turbulent fluctuations and the large scales of the variation of

the mean fields which cause them, building reduced models which average over the small time and

space scales and track only the slow evolution of the bulk properties of interest[2].

1.2 Plasma Modeling

A kinetic description of a plasma defines the evolution of the distribution function for particles at

position ~x and velocity ~v in time according to the Boltzmann Equation:

∂fs
∂t

+ v · ∇fs +
q

m

(
E +

v

c
×B

)
· ∇vf = C[fs], (1)

where fs(x,v) denotes the distribution function of particle species s, E is the electric field, B is the

magnetic field, and C is a collision operator. In order to calculate the self-consistent fields, this must

be coupled to Maxwell’s equations. The kinetic equation time-evolves a six dimensional phase space

at the fast cyclotron frequency rendering it extremely challenging to solve numerically. Although

direct numerical simulations of Eq. 1 can be achieved at great expense for limited problems, the

the full kinetic equation remains, perhaps, most valuable as a starting point for reduced treatments

of plasmas.

One of these reduced treatments, gyrokinetics, has proven to be an extremely useful description

of plasmas in strongly magnetized regimes [3, 4]. The gyrokinetic model averages out the fast gy-

ration of the particles around the magnetic field, reducing the distribution function from 6D to 5D

(3 spatial dimensions and 2 velocity dimensions) and eliminating the fast cyclotron timescale, dras-

tically reducing the cost of simulations. The gyrokinetic equation effectively evolves a distribution

of ‘charged rings’, and is expressed in terms of the guiding center coordinates and gyro-averaged

fields.
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Gyrokinetics has become the standard tool for describing turbulent transport in magnetic fusion

devices, and more broadly, has found fruitful applications ranging from basic plasma physics to

space / astro systems [5, 6, 7, 8]. In fusion applications, in particular, gyrokinetics has demonstrated

ever increasing explanatory power and fidelity with respect to experimental observations [9, 10, 11].

Despite these developments, nonlinear gyrokinetics remains too expensive to be routinely used to

predict confinement (i.e., to evolve profiles) or broadly explore parameter space for optimal con-

finement configurations. Consequently, further reductions in complexity remain highly desirable.

One such approach to further reducing the gyrokinetic system, the gyrofluid framework, was

vigorously explored in the 90s [12, 13]. A critical component of gyrofluid models is closures that cap-

ture important kinetic effects within the fluid framework. A prototypical example is the Hammett

and Perkins (HP)[12] closure, which closes a fluid system in collisionless regimes using the linear

kinetic response. The HP closure is much more rigorous for collisionless plasmas than conventional

fluid closures, faithfully reproducing kinetic effects (i.e., phase mixing / Landau damping) and

resulting in linear growth rates and frequencies in quite good agreement with the true (kinetic)

values. However, its validity is not well established in systems outside its targeted collisionless

parameter regime nor in turbulent systems where nonlinear mixing can alter phase mixing dynam-

ics [14, 15, 16, 17]. In effect, the standard gyrofluid closures hard-wire the linear physics into the

closure, eliminating potentially important nonlinear modifications to the physics.

1.3 Gyrokinetics

In order to obtain the gyrokinetic equation from the kinetic, the fast ‘gyromotion’, the gyration of

the ions around the magnetic field at the larmor frequency, must be removed in order to reduce

the number of velocity dimensions from three to two. This reduction also necessitates a change of

perspective; we are no longer describing the motion of charged particles, but that of charged rings

centered at the gyro-center.

To do so, we first transform into the guiding-center or ‘drift’ coordinates. The gyro-center ~R is

defined in terms of the particle position ~r and particle velocity ~v

~R = ~r +
~v ×~b0

Ω0
(2)

where b0 = b0(~r) = B0/B0 is the unit vector along the local equilibrium field and Ω0 = Ω0(~r) =

qB0/m. The parallel andperpendicular velocity, v|| and v⊥, and the gyro-angle, θ with respect to

the equilibrium magnetic field (b0) are defined by the expression:

~v = v||~b0 + v⊥(cos θ~e1 + sin θ~e2)

The unit vectors ~b0, ~e1, and ~e2 form a local right handed coordinate basis i.e. ~e1 × ~e2 = ~b0, and
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they vary on the macroscopic, L, spacial scale and the slow, τ , time scale. In the straight field

(electrostatic) case, ~b0 = ẑ, ~e1 = x̂ and ~e2 = ŷ.

The fastest motion is the gyromotion (dθdt ). This is the motion over which we need to average.

The average we take, the gyro-average (ring-average) is defined in our new coordinate system as

follows:

< a(~r,~v, t) >R =
1

2π

∫ 2π

0

a(~R− ~v × b0
Ω0

, ~v, t)dθ.

This integration over θ is done at constant ~R, ~v⊥, andv||. So, the gyro-average is an average over a

ring centered at ~R of radius ~v⊥/Ω0. By separating the components of the kinetic ion-fokker planck

equation into their respective length and time scales based on the small parameter ε = ρ
L and

gyro-averaging these separated Equations, we have, at order ε, the gyrokinetic equation:

∂h

∂t
+ v||

∂h

∂Z
+ ~vD ·

∂h

∂ ~R
− ∂φ

∂ ~R
× (

~b0
B0

) · ∂h
∂R
−
〈
C̃(h)

〉
= q

F0

T0

∂ < φ >

∂ ~R
× (

~b0
B0

) · ∂F0

∂ ~R

and

~vD = − v2⊥
2Ω0

∇B0

B0
×~b0 =

v2⊥
2B0

1

Ω0

dB0

dx
~y

The gyrokinetic description is very similar to the kinetic description and retains much of the

accuracy of the kinetic description; it is still able to describe the small scale turbulent fluctuations

at the medium frequency, ω.

1.4 Fluid & Gyrofluid Models

The fluid description focuses on the mean fields and velocity moments of the plasma. The nth

velocity moment of the plasma distributon function can be obtained by integrating the kinetic

distribution function multiplied by velocity raised to the nth power with respect to velocity:

f(~x,~v, t)

n(~x, t) =

∫
f(~x,~v, t)d~v → ρ =

∑
qn

u(~x, t) =

∫
~vf(~x,~v, t)d~v → ~J =

∑
qu

P (~x, t) =
m

3

∫
v2f(~x,~v, t)d~v

where n = density, u = mean velocity, p is pressure, q = heat flux, moments r and up aren’t

physically meaningful.

Gyrofluid models are similar to fluid models, the only difference being that they are derived

from the gyrokinetic instead of kinetic equation. The gyrofluid equations are obtained by taking

moments of the gyrokinetic equation with respect to velocity; multiplying the gyrokinetic equation
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by velocity raised to the nth power and then integrating with respect to velocity gives the evolution

equation for the nth moment. The first few moment equations are shown below:

∂n

∂t
+ n0

∂u

∂z
= 0 (3)

∂u

∂t
+

1

mn0

∂p

∂z
− eE

m
n0 = 0 (4)

∂p

∂t
+
∂q

∂z
+ 3p0

∂u

∂z
= 0 (5)

∂q

∂t
+
∂uq

∂z
+ 3q

∂u

∂z
− 3p

mn

∂p

∂z
− ∂r

∂z
= 0 (6)

1.5 Moment Closures

Note that in Eq 3, the evolution equation for each moment depends on the next higher moment.

This is what gives rise to the closure problem; the evolution of a givenmoment depends directly on

the next higher or-der moment, so the set of equations is not closed. Some approximation scheme

for the highest moment, a moment closure, is required.

The most widely used closure for the gyrofluid system described in Eq 3, the HP closure,

expresses the 4th moment (r) in terms of the heat flux (q), pressure (p), and density (n) fluctuatons,

proposing a closure of the form:

r = Ai
k‖

|k‖|
q +B(p− T0n). (7)

Choosing coefficients A and B so that the fluid response resulting from the combination of the

closure ansatz 7 and the gyrofluid equations 3 matches the linear kinetic response in the low and

high frequency limits results in the HP Closure.

Below, we describe comparisons between three closure schemes: (1) HP, (2) simple truncation,

and (3) our novel SVD-based closure.

2 Results

2.1 The DNA Code

In order to explore various closure ideas, we study a relatively simple kinetic turbulent system—

ITG / ETG instability and turbulence in an unsheared slab. The underlying model is a reduction

of gyrokinetics to one dimension (parallel to the magnetic field) in velocity space and retaining

rudimentary finite Larmor radius (FLR) effects of the form e−k
2
⊥ρ

2
s . The parallel velocity dimension

is then decomposed on a basis of Hermite polynomials, resulting in the following set of equations [18,

19].
∂gn
∂t

= L[gn] +N [gn] (8)
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with the following linear and nonlinear operators:

L[gn] =ωT iky
k2⊥
2
ek

2
⊥/2φδn,0 − ωnikyek

2
⊥/2φδn,0

− ωT ikyek
2
⊥/2φδn,2 − ikzek

2
⊥/2φδn,1

− ikz[
√
ngn−1 +

√
n+ 1gn+1]− νngn

(9)

N [g] =
∑

~k′

(k′xky − kxk′y)e−k
′2
⊥/2φ~k′g~k−~k′ (10)

where

φ =
e−k

2
⊥g0

1 + τ − Γ0(k2⊥)
, (11)

ωT is the normalized inverse temperature gradient scale length, ωn is the normalized inverse density

gradient scale length, ν is the collision frequency, and n is the number of the Hermite moment.

The wavenumbers kx,y,z are in the direction of the background gradients, binormal direction, and

parallel (to the magnetic field) direction, respectively. This system of equations is numerically

solved using the DNA code [18, 19].

The phase mixing term, ikz[
√
ngn−1+

√
n+ 1gn+1], depends on gn±1 and results in the transfer

of energy between scales in phase space. The dependence of the equation for gn on gn+1 is

responsible for the closure problem; the evolution of a given moment depends directly on the

next higher order moment, so the set of equations is not closed. Some approximation scheme is

required. The simplest closure scheme is truncation: explicitly evolve nmax moment equations,

and set gnmax+1 = 0. If a sufficiently high number of moments are retained, the simulation can

be considered to be kinetic and closure by truncation generally does not disturb the low order

moments. If, however, one wishes to evolve a fluid system (i.e. evolve only a few moments),

simple truncation will generally produce deviations from the kinetic system, particularly at low

collisionality where Landau damping / phase mixing is an important effect.

2.2 Limitations of the HP Closure

The HP closure has been shown to faithfully reproduce kinetic Landau damping rates and linear

growth rates. Indeed, our simulations exhibit good agreement between kinetic linear growth rates

and fluid growth rates using the HP closure. A representative example is shown in Fig. 1, where

it is seen that the HP closure and the full kinetic system produce unstable growth rates that are

in close agreement
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Figure 1: Linear growth rates (γ) produced by eigenvalue calculations using the fluid model

with the HP closure and the fully kinetic model at the most unstable wavenumber, kx, ky, kz =

0, 0.7, 0.4, for temperature gradient drive (ωT ) = 8, collision frequency (ν) = 0.05.

However, the focus solely on linear physics is a major limitation. Several recent papers have

shown that Landau damping or phase mixing rates in the presence of turbulence can differ sub-

stantially from the linear expectation [14, 15, 16, 17]. If one constructs the energy equation corre-

sponding to Eqs, 9 10, the contribution from phase mixing defines the energy flux to higher order

moments [19]: Jn+1/2 = π1/2ikz
√
n+ 1g∗ngn+1. In words, the rate at which energy is transferred

to/from higher order moments is defined by a correlation between two neighboring moments. The

linear physics defines a fixed relationship between gn and gn+1, which the HP closure hard-codes

into the model. In the presence of turbulence, however, the various moments are continually per-

turbed by the nonlinearity, resulting in correlations that can differ substantially from the linear

expectation.

In order to gain insight into these dynamics, we analyze the simulated values of the coefficients

governing the relationship between g4 and g3 (A) as well as g4 and g2 (B). Simulation data from

the the most unstable wavenumber, kx, ky, kz = 0, 0.7, 0.4, is shown in Fig. 2 for parameter

point (ωT = 8, ν = 0.05), at which both HP and simple truncation deviate strongly from a kinetic

simulation. The figure shows the coefficients in the nonlinear simulation along with the HP values.
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The coefficients in the nonlinear simulation exhibit a broad distribution of values (shown in

the pdf in the upper panels) with a peak that does not correspond to the HP value. Moreover,

the coefficients vary rapidly in time and oscillate between positive and negative values, suggesting

that a closure would benefit from the versatility to allow for energy transfer both to and from

higher order moments. The HP closure is strictly dissipative, which is likely a major reason for its

inaccuracies in the nonlinear turbulence, as described below.

We note the connections between this closure and the line of research exploring the role of

damped eigenmodes in plasma micro turbulence [20, 21, 16, 22], which clearly shows that subdom-

inant stable modes play a crucial role in the turbulent energetics. We note also, the closure defined

in Ref. [23, 24], which appeals to both the ITG instability and its complex conjugate mode in for-

mulating the closure. Although that closure is static (i.e. constant in time), it clearly demonstrates

the need for the advantages of allowing energy transfer both to and from higher order moments.

These observations support our premise that a suitable closure in a nonlinear system may require

more flexibility than is allowed by a static, constant coefficient closure.

2.3 SVD Closure

Motivated by the results in the previous section, here we seek a dynamic, flexible closure for

phase mixing in a turbulent system. More specifically, we seek to accurately resolve the low-order

moments, g0:3 that define the physical quantities of interest and determine transport fluxes, without

retaining the higher order moments g4:∞.

The proposed method requires a single kinetic simulation to formulate a set of basis vectors.

In our case, we use 48 Hermite moments for the full kinetic simulation. Any number of subsequent

fast / fluid simulations can then be run requiring explicit computation of only g0:3.

The full kinetic simulation is used as follows. Let GN×M (M is the number of time points and

N is number of moments retained in the fluid model plus one) be the matrix created from the

simulated distribution function at a single wave vector gn(t) so that Gij = gi(tj):

G =




g0(t0) g0(t1) · · · g0(tM )

g1(t0) g1(t1) · · · g1(tM )

g2(t0) g2(t1) · · · g2(tM )

g3(t0) g3(t1) · · · g3(tM )

g4(t0) g4(t1) · · · g4(tM )




(12)

The SVD of G is given by

GN×M = UN×NΣN×NV
H
N×M (13)

where U and V are unitary and Σ is diagonal with real entries. The columns of the matrix U are
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Figure 2: Coefficients relating g4 and g3 (A) and g4 and g2 (B) from a simulation at parameter

point ωT = 8, ν = 0.05 are shown at the most unstable wavenumber, kx, ky, kz = 0, 0.7, 0.4. The

HP coefficients are not at the centers of the distributions marked by Â and B̂. The oscillation of

the coefficients from the simulation in time suggests that a closure should not be strictly dissipative

and that the closure relationship is time dependent.
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the N strongest eigenmodes and the rows of ΣV H are the time traces of the amplitude of each of

these eigenmodes.

For the purposes of our desired four moment model, we select N = 5 (i.e. only a small subset of

the 48 total Hermite moments), which is sufficient to fully exploit the information in the simulation

defining the natural (kinetic, turbulent) relations between g3 and g4.

In each time step of a subsequent fluid simulation, we numerically advance g0:3 explicitly. The

truncated moment, g4, is calculated as follows. First, we project the state vector g0 : 3 onto the

basis formed by the columns of U . This entails finding the projection coefficients that define the

amount of each SVD mode in the turbulent state at a given point in time. We will call these

projection coefficients v̂. We can do this by removing the row corresponding to the unknown N th

moment from U and extracting v̂ from the following equation:

g0:3 = U0:3,0:4v̂ (14)

This gives

v̂ = (U0:3,0:4)
†
g0:3 (15)

where † denotes the pseudo-inverse.

Now that we have v̂, a length N vector of the inferred mode strengths, we can predict ĝ4 by

applying these mode strengths to the previously removed row of U , U [4, :]. This gives

ĝ4 = U [4, :]v̂ = U4,0:4(U0:3,0:4)
†
g0:3 (16)

This procedure results in a closure that has the same number of degrees of freedom as the

underlying fluid model and can dynamically adapt to the nonlinear state of the system.

Moreover, although some extra computational expense is required by the projection, this is on

the order of the other terms in the linear operator and much less demanding than the pseudo-

spectral computation of the nonlinearity. In fact, the projection is only slightly more expensive

than the HP closure. The HP closure requires 2 complex multiplications (A · g3 and B ∗ g2) per

wave vector (k) per time step. The DMM closure amounts to a dot product between two length

4 vectors because in Eq. 16, U4,0:4(U†0:3,0:4) is a 1x4 vector times a 5 by 4 matrix which results in

a 1x4 vector. This product is computed ahead of time and saved to a file which is loaded at the

beginning of the simulation. In the simulation, this 1x4 vector must be dotted with g0:3, which is

a 4x1 vector to get the closure for g4. Thus, the DMM closure requires 4 complex multiplications

per wave vector per time step.

2.4 Simulation Results

DNA simulations covering a wide range of temperature gradients, ωT , and collision frequencies, ν,

were conducted with a fully (reduced gyro-) kinetic model (48 moments), simply truncated model
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(4 moments, 5th is set to 0), the DMM closure, and the standard Hammett-Perkins (HP) closure

for the 4th moment.

The exact HP closure used was g4 = 0.754860g2 − i(1.759312sgn(kz))g3. The matrix of basis

vectors, U , for the DMM closure was obtained from a full 48 moment simulation with parameters

ωT = 6 and ν = 0.01. The scan covers ωT = 5, 6, 7, 8, 9, and ν = 0.01, 0.05, 0.1, 0.2.

Ultimately, we would like closed simulations to reproduce the macroscopic behavior of gyroki-

netic simulations, so the performance of the closures was evaluated primarily by comparing the

saturated value of the total radial heat flux, Q, to that of the full simulation.

Time traces of the heat flux produced by all four types of simulation are shown for each

combination of input parameters, ωT and ν, in Fig. 3.
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Figure 3: Time traces of the perpendicular heat flux (Q) for full (blue), hp-closed (green), svd-

closed (orange), and truncated (red) simulations for temperature gradient drives (ωT ) ranging

from 5 to 9 (increasing downward by panel) and collision frequencies (ν) ranging from 0.01 to 0.2

(increasing to the right by panel). The metric of performance is the final saturation level. The HP

closure performs well at low collisionality but deteriorates, predicting a too-low saturation level,

as collisionality increases. The DMM closure generally shows better performance than both the

HP closure and truncation.

The simplest metric for the performance of the closure is the proximity of the saturated heat

flux for a given closure scheme to that of the full kinetic simulation. The final saturation levels

of each simulation type at each set of input parameters were calculated by averaging over the

last half of the time trace. Each plot in Fig. 4 shows the percent error in saturated heat flux,

(Qclosed −Qfull)/Qfull, for all parameter combinations for each closure scheme.
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Figure 4: Percent error in saturated heat flux for each closure (lef: SVD, middle: HP, right:

truncation) as compared against the full simulation for temperature gradient drives (ωT ) ranging

from 5 to 9 (increasing downward) and collision frequencies (ν) ranging from 0.01 to 0.2 (increasing

to the right). The basis of singular vectors was extracted from the ωT = 6, ν = 0.01 simulation,

but the DMM closure’s performance does not appear to systematically deteriorate as simulations

move farther from this point in parameter space, indicating that it is robust to changes in input

parameters and should be applicable throughout a broader parameter space.

As expected, simple truncation performs poorly compared to the other two closures with errors

roughly ranging from 20 − 50%. Note however, that the truncation errors are smallest at the

highest value of collisionality, suggesting that as collisionality increases the simple fluid treatment

becomes more accurate, thus confirming the expectation for a fluid treatment.

The HP closure works well in the low collisionality regime for which it was designed (note

the small errors at ν = 0.01). However, its performance deteriorates as collisionality is increased.

The HP errors are also larger as the gradient drive increases and the phase mixing physics must

compete with ω∗ physics and the nonlinearlity. This suggests that the HP closure is well-suited for

the its targeted regime (a regime where phase mixing dominates). However, when other physics

enters (strong gradient drive, nonlinearity, and/or collisions), it is too restrictive.

The DMM closure generally shows better performance than both the HP closure and truncation
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and, with few exceptions, performs well throughout the parameter space. Although the basis of

singular vectors was extracted from the ωT = 6, ν = 0.01 simulation, its performance does not

appear to systematically deteriorate as simulations move farther from this point in parameter

space. This indicates that the closure relation in the DMM closure is robust to changes in input

parameters and should be more robust throughout a broader parameter space.

In fact, considering the oscillation and range of the coefficients, one may question whether any

static closure with fixed coefficients could capture the effects of the kinetic simulation. The DMM

closure is dynamic: at each time it determines a new set of 4 coefficients based on mode strengths

inferred from the values of the lower moments. This time-dependent closure is very flexible. This

flexibility may be the key to effective extrapolation. Perhaps the strength of the closure lies not in

the accuracy of the extracted basis vectors, but rather, the capacity to adapt dynamically to the

nonlinear state. These ideas will be explored further in future work.

3 Discussion

We have compared several closure methods for a relatively simple turbulent system—ITG/ETG

driven turbulence in an unsheared slab—throughout the relevant 2D parameter space (collisionality

and gradient drive). Comparisons between four-moment fluid systems and a kinetic treatment

demonstrate that simple truncation performs poorly, with errors roughly at the level of 20− 50%,

while the HP closure performs much better, particularly in the low collisionality regime. Our new

DMM closure outperforms both throughout the parameter space with errors generally less than

10%. The DMM closure has the advantage of dynamically allowing the closure coefficients to vary

in time depending on the details of the nonlinear turbulent state. Consequently, the approach

appears to be much more robust throughout a broader parameter space and, in particular, in the

presence of turbulence.

This approach can potentially be generalized/adapted in several ways. For example, basis

vectors could be periodically enriched by performing kinetic simulations sparsely throughout pa-

rameter space. Additionally, suitable basis vectors could potentially be formulated without the

need for a nonlinear kinetic simulation by, e.g., taking inspiration from linear eigenmodes or other-

wise using physics-based intuition. We also note that the closure coefficients tend to center around

0, as shown in Fig. 2, suggesting that a deeper look at the raw statistics of the closure may prove

fruitful.

Moreover, although this method was tested here in a simple system, the approach can be

easily generalized to a more comprehensive toroidal system (e.g. that described in Ref. [25]) and,

potentially, to other closure problems (e.g. curvature terms, FLR effects, etc.). This method could

14



also be applied to stellarator optimization problems by extending it to the fluid models developed in

Ref. [26], which describe the ion temperature gradient turbulent saturation processes in stellarators

and also rely on closures.

Integrating this dynamic closure method with realistic simulations of tokamak or stellarator

plasmas has great potential for fusion optimization. Fast simulations that accurately reproduce the

macroscopic properties of turbulence would make broad exploration of parameter space feasible,

enabling parameter exploration and configuration optimization at an unprecedented scale.
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