

[The title page contains the title of the report, the names of the authors, the names of the
Faculty Mentor and sponsors, the names of the department and university, and the date
the report is submitted. Note that this page is considered to be the first page of the front
matter (that is, page i; see the General Specifications for Final Reports; however, the
number does not appear on the page. Everything on this and the following pages that is
between brackets represents instructions or examples and is to be replaced witinserted
text. Material that appears outside of brackets represents text that will appear in the
report in that exact form (i.e., both content and formatting).]

High-Speed Data Acquisition System for
Nanoscale Imaging

Submitted To

Edward T. Yu
Department of Electrical and Computer Engineering

University of Texas at Austin
[This and the following information should be set in 14-point Times New Roman Bold.]

Prepared By

Katherine P. Anderson
Vic Frederick

Cassandra Huff
Clara Johnson

Ran Trakhtengerts
Jerry A. Yang

EE464 Senior Design Project
Department of Electrical and Computer Engineering

University of Texas at Austin

Spring 2020

ii

CONTENTS

TABLES ...v

FIGURES ... vi

EXECUTIVE SUMMARY ... vii

1.0 INTRODUCTION..1

2.0 DESIGN PROBLEM ...2

2.1 Current Preamplifier ..3

2.2 Data Acquisition System (DAQ) ..3

2.2.1 Main System ..3

2.2.2 Phase-Locked Loop (PLL) ..4

2.3 Data Processing ...4

2.4 Graphic User Interface (GUI)..5

3.0 DESIGN SOLUTION ..5

3.1 Design Concept ..6

3.2 Current Preamplifier ..6

3.3 DAQ ..12

3.3.1 Main System ..13

3.3.2 PLL ..16

3.4 Data Processing ...18

3.4.1 Processing Submodules ..18

3.4.2 Visualization ..21

3.5 GUI ...21

3.5.1 GUI Layout and Usage ...21

3.5.2 GUI Functionality ...24

4.0 DESIGN IMPLEMENTATION ...25

4.1 Current Preamplifier ..25

4.2 Data Acquisition System (DAQ) ..28

4.2.1 Main System ..28

4.2.2 PLL ..30

iii

CONTENTS (continued)

4.3 Data Processing ...31

4.4 GUI ...34

5.0 TEST AND EVALUATION..36

5.1 Current Preamplifier ..37

5.2 DAQ ..40

5.2.1 Main System ..40

5.2.2 PLL ..42

5.3 Data Processing ...44

5.3.1 Individual Module Testing ...44

5.3.2 Integration ...49

5.3.2 Visualization ..49

5.4 GUI ...51

5.5 System-Level Testing ..51

6.0 TIME AND COST CONSIDERATIONS ..52

6.1 Current Preamplifier ..52

6.2 Data Acquisition System (DAQ) ..53

6.2.1 Main System ..53

6.2.2 PLL ..54

6.3 Data Processing ...54

6.4 GUI ...54

7.0 SAFETY AND ETHICAL ASPECTS OF DESIGN ...55

7.1 Current Preamplifier ..55

7.2 Data Acquisition System (DAQ) ..56

7.2.1 Main System ..56

7.2.2 PLL ..56

7.3 Data Processing ...57

7.4 GUI ...57

8.0 RECOMMENDATIONS ...58

8.1 Current Preamplifier ..58

iv

CONTENTS (continued)

8.2 Data Acquisition System (DAQ) ..58

8.2.1 Main System ..59

8.2.2 PLL ..59

8.3 Data Processing ...60

8.4 GUI ...60

9.0 CONCLUSION ..61

ACKNOWLEDGEMENTS ...63

REFERENCES ..64

APPENDIX A – CURRENT PREAMPLIFIER SUPPLEMENTAL INFO A-1

APPENDIX B – DAQ PINOUT TABLE ..B-1

APPENDIX C – PROCESSING MODULE ARGUMENTS C-1

v

TABLES

1 Truth Table for Current Preamplifier Gain-select ...12

2 Frequency Response of Current Preamplifier ..37

3 Noise Response of Current Preamplifier ..39

4 Channel Signals for SPM Tests ..46

5 GUI Use Case Tests ..51

A-1 Annotated Bibliography for Current Preamplifier ... A-1

A-2 Transimpedance Amplifier Noise Phenomena .. A-4

A-3 Input Current Range Mappings .. A-5

vi

FIGURES

1 SPM Cantilever and Tip..3

2 System Block Diagram ..6

3 Simulation Schematic of Current Preamplifier...7

4 General Transimpedance Amplifier Circuit ...8

5 Gain-setting with Analog Switches ...11

6 NI PIXIe-1071 Data Acquisition System...13

7 Flowchart of LabVIEW Data Acquisition Software..14

8 Modified PLL Code Block Diagram ...18

9 Data Processing Flowchart ..18

10 GUI Front Panel ...22

11 GUI During Data Collection ..23

12 Early Preamplifier Design ..27

13 PLL LabVIEW Code with Highlighted Modifications ..31

14 Original GUI Mockup ...35

15 ReactJS GUI Prototype ...36

16 Current Preamplifier Simulated Frequency Response ...38

17 Current Preamplifier Simulated Noise Plot ..39

18 Sine Wave Test on DAQ Analog Input Channel 0 ..42

19 PLL Simulated Test Output ...43

20 Processing Test 1: ProcessingCaller ...45

21 Processing Test 2: getData ...45

22 Processing Test 3: Blocker3...46

23 Processing Test 4: normDFT ...47

24 Processing Test 5: Thresholder ...48

25 Processing Test 6: ClusterFinder...48

26 Processing Test 7: Integration ..49

27 3D Visualization at 400 Hz Frequency Bin ..50

28 Screenshot of One Frame of Colormap Movie ...50

vii

EXECUTIVE SUMMARY

The following technical report describes a novel data acquisition, processing, and visualization
system for a scanning probe microscope. A scanning probe microscope (SPM) is a device that is
often used to measure various aspects of a material’s surface properties, such as topography,
electronic, optical, thermal, electromechanical, and more, to nanoscale resolution. Traditional
SPM systems are limited by low speed - up to 500 kHz - and data processing capabilities that
remove the high resolution necessary to explore time-response data at such high speeds.
However, many physical phenomena often can only be captured at high frequencies, so it is
necessary to improve data collection and processing speeds of SPM systems. We designed,
implemented, tested, and evaluated a system to augment the functionality of an existing SPM,
the Dimension 3100, to collect data at up to 4 MHz speeds and process the collected data in a
reasonable amount of time. The system contains four subsystems: a current preamplifier, a data
acquisition system, a data processing and visualization system, and a graphic user interface. This
executive summary will outline the key specifications, design solution, implementation, testing
results, time and cost, safety and ethics, and recommendations for each subsystem. Due to
COVID-19, we were not able to conduct system-level testing and evaluation; therefore, we have
provided further recommendations on system integration for future researchers to implement.

The current preamplifier is a hardware circuit that is intended to amplify between 100 pA and 1
mA current from the SPM to voltage levels readable by the DAQ at fast enough speeds to ensure
that it is not the bandwidth-limiting factor of the system. These problem statement specifications
imply that the current preamplifier must have a large range of gain values, the ability to choose
the specific gain value that matches the known SPM current, and a target 4 MHz speed. In
addition, based on the DAQ noise specifications, we chose to set the output voltage for each gain
at 500 mV to ensure that the signal was able to be discerned from DAQ or circuit noise.
Together, the problem specifications and the limitations of the DAQ set the hardware
requirements for the current preamplifier. In addition, an extant current preamplifier, the Ithaco
Model 1211 current preamplifier, was given as a reference design to improve upon. The
reference current preamplifier’s specifications gave us a comparison point upon which we could
test and evaluate our preamplifier.

From the hardware specifications and the Ithaco Model 1211, we designed a current preamplifier
consisting of two parts: a transimpedance amplifier and a post-amplifier. The transimpedance
amplifier amplifies the SPM current into a small voltage, and the post-amplifier gives additional
amplification to bring the signal to 500 mV. To set the gain, we employed a novel switching
circuit topology with 8-to-1 analog multiplexers, whose select line values are provided by the
user on the graphic user interface and passed through the DAQ. We also used two first-order RC
filters to minimize the noise produced by the circuit. To ensure safe operation, we included an
on/off rocker switch and power circuitry to ensure that the board and the user would not be
exposed to electrical shock when using the preamplifier. During the design process, we found
that tradeoffs between the gain, bandwidth, noise, and stability limited the final design. The
limitations forced us to make significant decisions on which of the four items were the most
important (noise and gain), and which had to be sacrificed in the final system (usually
bandwidth). To test and evaluate the current preamplifier, we simulated the frequency and noise
response in Multisim 14.1. Our simulations showed that the tradeoffs and design decisions we

viii

had made left us with severely limited bandwidth at high gains, down to 5 kHz at the highest
gain setting. We also optimized several circuit parameters to reduce the noise in the circuit.
While this is a far cry from the 4 MHz target, it is still significantly better than the Ithaco
preamplifier’s 800 Hz bandwidth at the same gain.

The current preamplifier design seemed largely circular, since our final design was an idea that
we had initially come up with but abandoned early on. However, it turned out to be the best
solution. Due to COVID-19, we spent additional money on prototypes that we did not have time
to assemble and parts that eventually got lost in the mail. These issues led us to focus on
simulation results as the main testing and evaluation tool. Future work should fabricate the
current preamplifier circuit and test it in-situ with the SPM system. In addition, future work
should add overvoltage protection and current suppression to ensure that spikes in the SPM
current do not cause saturation in the amplifiers. In all, our current preamplifier offers conceptual
proof that it is possible to tune the gain-bandwidth-noise-stability tradeoffs to obtain optimal
functionality, if not the target functionality.

The data acquisition subsystem uses a NI PXIe-6124 high-speed data acquisition card (DAQ) to
collect and store data from the SPM for analysis. The DAQ is the primary device that enables the
entire system, as it reads multiple hardware signals produced by the SPM and stores it for data
processing. Driving the entire imaging system’s operation is the capability of the DAQ to sample
each of the signals at 4 MHz. However, such a sampling rate demands an efficient way to
manage and store a large amount of data, as average SPM tests can run from a few minutes to
over an hour. The software that accompanies the DAQ is LabVIEW, which allows easy
interfacing between the host computer and DAQ. The DAQ’s primary source of signals is the
signal access module, which contains the SPM tip bias, position, and photodiode signals. The
voltage signal from the current preamplifier is also a signal that may contain useful data for
specific SPM tests. However, since only four are needed at one time, the user is expected to
switch the wire connections as necessary to collect the desired data. In addition, the current
preamplifier relies on the DAQ to convert and pass digital input from the graphic user interface
to set its gains, and the tip bias requires a 4-MHz phase-lock loop (PLL) for frequency and phase
synchronization. Therefore, the data acquisition subsystem must not only acquire and store data
from the four analog channels at 4 MHz, it must also output constant digital signals to the current
preamplifier and a PLL.

Our design solution consists of assigning the signals to the proper ports and writing LabVIEW
code to receive and store the incoming data in real-time. We provide a table for wiring and
pinout in Appendix B. The analog inputs are wired to the four analog channels, and the current
preamplifier outputs are wired on port 2. The phase-locked loop was not completed in time to be
integrated with the primary LabVIEW code. The LabVIEW code was structured in four steps: 1.
read in GUI command-line arguments, process them, and output the corresponding digital
outputs to the current preamplifier, 2. set up the DAQmx task and event loop that samples the
analog channels, 3. poll for the tip position signal indicating that a test has started, and 4. store
every 7816 samples taken by the DAQ into a TDMS data file. Once the test is complete, the user
must stop data collection from the GUI, as we found no signal that could serve as the indication
of a test stopping. We chose to use DAQmx tasks as opposed to other solutions such as producer-
consumer loops because they were fast enough to not overwrite the existing, unstored data. We

ix

also chose the TDMS file type as our output file because it was human-readable, efficient at data
storage, and easily interfaced with the DAQmx task.

Testing and evaluation of the DAQ system was cut short by COVID-19, which restricted our
access to the research labs before we could collect any large datasets. Prior to the quarantine, we
used incremental, successive steps to validate our design as we progressed. First, we connected
the DAQ to the computer to verify communication. Second, we sampled noise from the analog
channels and ensured that the data file was the correct size. Third, we sampled a sine wave signal
from a function generator and reconstructed the sine wave with good resolution. Fourth, once we
programmed the start trigger, we ran additional SPM tests to verify that data began collecting at
the start condition. From the data we gathered, we were able to conclude that the DAQ interface
and LabVIEW code functioned under the test conditions. Additional testing and comparing
against known datasets would be the most ideal next step in testing the system.

Overall, the DAQ subsystem was completed about three weeks later than scheduled but incurred
no major additional costs. However, we identified several safety considerations that were
inherent in the DAQ system and were not able to be fixed. The starting and stopping sequence
requires users to turn on the DAQ before the computer and turn off the DAQ after the computer
to ensure that the LabVIEW drivers interfacing to the DAQ hardware would remain operational.
Additional work on the DAQ interface and LabVIEW program include further testing,
implementing error handling and logging, and automating the input signal switching that is
currently required from the user.

One portion of the DAQ subsystem, the phase-locked loop (PLL), was intended to generate a 4
MHz signal synchronized to the phase of the tip bias. The PLL would aid in providing additional
data about the phase of the signal that could then be combined with frequency to get a more
robust image. While this data is not strictly necessary for our system to function, it yields an
additional dimension of the data that can be explored for potential high-speed phenomena. We
used an open-source existing example from NI that had many of the features we needed already,
such as phase synchronization, but we also needed to implement frequency multiplication and
phase tracking. We were able to implement the frequency multiplication with a small
modification to the example code but realized that the 4 MHz frequency may be too high for the
DAQ PLL. Due to COVID-19, we were only able to make small modifications to the example
code before consolidating our project around the more significant parts of the system.

After the DAQ collects and stores data from the SPM, the data processing and visualization
modules use digital signal processing to analyze and render the data for users to see.
The data processing module needed to be able to determine the position of the tip from the
collected data, correlate each data point to its position, and present the data in the frequency
domain. This is complicated by the sheer volume of data collected by the DAQ. Therefore, signal
processing algorithms that optimize for speed and efficiency needed to be incorporated into the
solution. The output of the processing and visualization modules needed to comprise viewable
3D graphics that stored and showed the frequency response–the data’s evolution in time–with
respect to tip position.

x

We divided the data processing module into five submodules: blocking, fast Fourier transform,
noise thresholding, clustering, and visualization. First, to correlate the position data into discrete
locations of the tip, we implemented a blocking algorithm that included a finite-impulse response
(FIR) filter with windowing and padded the data so that each position contained a time series of
data points that were taken at that position. Second, we took the fast Fourier transform of the
time series at each position. Third, to remove as much noise as possible, we used a noise
thresholding technique that replaced any data points below a certain value with a very small non-
zero number. Fourth, we selected a clustering algorithm, MeanShift, to determine areas and
frequencies that showed large differences between the surrounding positions and/or frequencies.
For example, a position could exhibit differences in signal at different frequencies, or two
adjacent positions could exhibit differences in signal at the same frequency. MeanShift focuses
on areas of high activity that might be interesting to the researcher. Finally, to visualize the data,
the data processing module compiles a video of the data evolving over time that is accessed by
the graphic user interface so that users can examine the collected data in a human-friendly
format. The data processing module was written in Python, which enabled us to utilize a variety
of predefined libraries such as numpy, scipy, sklearn, and matplotlib to execute some of the
computation and visualization without needing to rewrite all of the functions we needed. Due to
the long processing time of the MeanShift algorithm, we also attempted to multiprocess and
parallelize the code, but were not able to successfully implement it in time.

To test the data processing and visualization, we used pre-collected data from the SPM and
passed it into each submodule to ensure that it produced the correct data before passing it onto
the subsequent submodule. Since we did not have time to collect more than two datasets before
the COVID-19 shutdown, we only used the two real datasets to evaluate the module. Our testing
data showed that the module was able to produce a video from a raw input TDMS file generated
an animated color map of the processed data. With respect to time and cost, the processing
module was completed on time with no costs, as all of the materials we used were open-source.
Because the Python libraries are open-sourced, it is possible that they may be deprecated in favor
of newer versions in the future. This may cause unpredictable functionality and distorted data.
Additional test data and larger datasets should be used to characterize and reduce the processing
time, as it currently takes about 32 hours to process a one-minute SPM test.

The final component of the DAQ imaging system is the graphic user interface. The graphic user
interface (GUI) is the primary interaction between the user and the system, and it serves as the
controller to the rest of the submodules. For the system to work, the GUI should display a control
panel where a user can initiate DAQ data collection, set the gain of the current preamplifier, and
visualize the collected data. In addition, the GUI should provide a clean user interface that is
easily navigable, intuitive, and visually appealing. These specifications guided our design and
choice of programming language for the GUI.

The GUI layout is divided into five sections, where the left two sections allow the user to enter
various processing and current preamplifier parameters, and the right three sections contain
buttons for the user to initiate tests, run the processing module, and visualize the data. Behind the
scenes, a main class calls various functions depending on the button pressed and the parameters
in the text box. When the “Start Test” button is pressed, the GUI will open a command line
window, run the LabVIEW executable file that contains the DAQ data acquisition and storage

xi

code, and pass it the necessary command-line arguments to set the gain of the current
preamplifier. Similarly, the “Start Processing” button initiates the Python scripts for the data
processing module and passes it user-entered parameters via the command line. The GUI also
has two buttons for displaying processed data. The first, “Display Blob,” displays blobs in a
particular frequency bin from processed data. The second, “Generate Movie” creates and
displays an animation of the data created by the data processing module. The GUI was initially
built in ReactJS, a common GUI-building platform. However, a bug in the ReactJS GUI that
made it unable to start processes using the command line was encountered, and a solution to the
bug was never found. As a result, we switched to JavaFX, a Java library for GUI-building.
For testing, the GUI simulated several common use cases and used logging to indicate whether a
command was passed properly or a button’s functionality was executed. However, due to
COVID-19, we were unable to rigorously test the GUI on the lab computer. While there were no
additional costs associated with the GUI, there were two key setbacks in the design
implementation. First, starting with ReactJS rather than JavaFX without knowledge of the
command-line bug set us back about two weeks. Second, one of our team members, the expert
on GUI building, became sick for two weeks. During the design implementation, to prevent data
overwrite and data loss, the GUI prevents the user from initiating multiple tests at once. We also
made sure to avoid plagiarizing code by using open-source Java libraries. Further work includes
adding warnings and popups that contain information on each component of the imaging
system.

While we were unable to fully integrate the system due to COVID-19, all of the components
necessary for a fully functioning system have been developed and demonstrated to work based
on the specifications, fundamental or inherent limitations notwithstanding. System integration
would require interfacing each subsystem to the other subsystem as well as connecting the SPM
signal inputs to the appropriate subsystems. The current preamplifier needs to be wired to the
ports of the DAQ so that both the voltage output and digital select line input can communicate
data. The DAQ must be wired to the current preamplifier and the SPM’s signal access module to
ensure that position, frequency, voltage, and current data are all recorded for the data processing
module to interpret and reconstruct. The data processing module must be provided with the GUI
commands and DAQ-acquired data to produce the visual results from an SPM test. The GUI
must interface with the host computer and the DAQ and processing module to pass commands
and data to and from the user. Furthermore, full system testing would require successive
debugging to ensure that each subsystem works as intended when fully integrated and, once fully
functional, evaluating it against the original system in the lab by comparing data from the same
source collected by the two systems.

Overall, we were able to design, implement, test, and evaluate all the necessary components for a
fully functioning high-speed nanoscale imaging system. While we were unable to meet all of the
specifications due to fundamental physical or technological limitations out of our control, we
were able to construct our system by prioritizing the main goal of the project: to collect and
analyze good-quality, high-speed data from a scanning probe microscope. During the
implementation process, we made novel innovations in both hardware and software to achieve
the project specifications, such as using state-of-the-art operational amplifiers in the current
preamplifier, implementing a start trigger to indicate to the DAQ when to begin collecting data,
and processing the massive amounts of collected data to identify and visualize the most

xii

important and interesting pieces of data. We designed many safety features into our system and
considered the ethics of our implementation. In addition, we completed the project on time with
few additional costs: the main additional cost came in the sourcing and component purchases of
the current preamplifier. Future work still needs to integrate all the individual components
together, test, and evaluate the fully functioning system. Once the system is fully working, we
expect it to contribute to many novel discoveries in the exploration of nanoscale phenomena.

1.0 INTRODUCTION

For our senior design project, our team aimed to design, construct, and demonstrate a high-speed

data acquisition and processing interface that will interact with a scanning probe microscope and

output nanoscale images on a graphic user interface for analysis. To do this, we modified an

existing scanning probe microscopy (SPM) system to allow it to collect data at a rate on the

order of megahertz and generate time series using that data in order to achieve high sensitivity

and dynamic readings at those scales. A scanning probe microscope is a microscope that

measures nanoscale phenomena. These modifications include adding a current preamplifier, an

external data acquisition system (DAQ), various data processing and machine learning

techniques, and a graphical user interface (GUI).

First, the preamplifier was necessary to allow the signals from the SPM to be amplified to a

readable level for the DAQ. Available current amplifiers did not support the bandwidth we

needed for our data collection rate of 4 MHz. As a result, we designed and implemented several

prototype preamplifier boards. Unfortunately, due to COVID-19, we were unable to assemble all

of our prototypes, and as a result, we were only able to test our designs through simulation. We

recommend that the prototypes are assembled and tested in the lab environment in the future.

The DAQ subsystem was needed to collect and store data from the SPM for analysis. The

subsystem consists of a NI PXIe-6124 high-speed data acquisition card that is controlled with

LabVIEW code. While we were able to gather preliminary test data to show that the DAQ and

LabVIEW code work together in basic test conditions, we were unable to test the subsystem as

thoroughly as we desired due to COVID-19. When the lab reopens, further tests need to be run to

prove that the DAQ works as intended.

The data processing subsystem consists of Python scripts that analyze and display data collected

by the DAQ. The processing software was intended to to quickly and efficiently make sense of

the data collected. While we were able to show our processing software worked on a small data

set, we were unfortunately unable to vet our processing software on larger data sets due to the lab

closure caused by COVID-19. Furthermore, due to the sheer amount of data our system collects,

our processing software can take over a day to process a minute’s worth of collected data. To

2

solve this, we attempted to parallelize our processing, but the parallelized version remains

largely untested. We recommend future work be done on the parallelization of the code.

Finally, our GUI is intended to provide users with an easy way to interact with our system to

collect, process, and visualize data. The GUI was built in JavaFX. While the GUI was proven to

work in simulated use cases, it needs to be tested with the entirety of the system. Furthermore, in

the future, new warnings and safety features will have to be added to the GUI as new

components are integrated into the system.

All in all, all of the components of our system have been proven to function adequately on their

own. Unfortunately, the system still needs to be integrated, and the full system still needs to be

vetted in the lab environment once it is possible for us to return to the lab.

2.0 DESIGN PROBLEM

We will be modifying a commercially-available SPM system--the Dimension 3100--to allow it to

collect data at a rate on the order of megahertz, as well as generate time series using that data to

achieve high sensitivity and dynamic readings at those scales. In general, SPM systems work by

continuously repositioning a piezoelectric cantilever that interacts with the test sample surface to

take nanoscale measurements (Figure 1) [1]. Normally, SPM measurement techniques are

constrained by data averaging and slow sampling rates that makes close observations in time

impossible. We intend to address these shortcomings by utilizing the National Instruments (NI)

PXI-Based Data Acquisition (DAQ) System that can sample at megahertz speeds with top-of-

the-line 16-bit precision [2]. Data acquisition systems turn real world signals into computer-

readable digital signals. The SPM system has a breakout box that the data acquisition system can

use to access signals generated during measurements. Some of these signals will require a large

amount of amplification before they can be accurately sampled. Once samples are taken with the

data acquisition, they must be filtered, visualized, and analyzed with digital signal processing

algorithms. Finally, a graphic user interface will help the user interact with the system. In this

section, we will discuss the design’s specifications and the details of each subsystem. By the end

of this project, we implemented a system that uses a DAQ to gather fast, high-quality nanoscale

measurements with an SPM.

3

Figure 1. SPM Cantilever and Tip [1]

2.1 Current Preamplifier

The preamplifier designed for this project is intended to replace the DL Instruments/Ithaco

Model 1211 Current Preamplifier with a high-speed solution that is able to meet the sampling

rate of the DAQ. The Ithaco preamplifier has a bandwidth of up to 60 kHz at its smallest gain

setting, which drops to 400 Hz at its largest gain setting [3]. The Ithaco preamplifier is

inadequate for our design solution because the DAQ samples at 4 million samples per second, or

4 MHz. Therefore, an ideal current preamplifier should be able to amplify SPM current levels

between 100 pA and 100 uA to DAQ-detectable voltages (above 30 mV) for frequencies

between 0 Hz and 4 MHz with minimal noise and good stability.

2.2 Data Acquisition System (DAQ)

As a whole, the DAQ must sample and record four analog signals in phase with the current

preamplifier signal and at 4 MHz frequency. The system must also output four digital signals

selected by the user to be used by the current preamplifier circuit. This is accomplished with a

main file and a phase-lock loop implemented separately.

2.2.1 Main System

The DAQ system must sample and record four analog signals simultaneously at 4 MHz each

while outputting four digital signals to act as multiplexer select lines for the current preamplifier

circuit. The DAQ needs to sample four of the five analog signals at a time between -10 V to +10

V at 4 MHz each. Because the DAQ has only four analog input channels available, analog

channel zero will need to be manually rewired to the current preamplifier signal or the vertical

photodiode signal depending on the kind of test being run. Rewiring the channel will not degrade

performance because each kind of test requires either the current preamplifier signal or the

4

vertical photodiode signal but not both. Data collection must start as soon as a test starts, save the

data to a TDMS file format in a location specified by the user, and stop collection reasonably

soon after the end of a test. The DAQ also needs to output four digital multiplexer select lines to

the current preamplifier with values determined by the user to choose the gain. By sampling four

analog signals at 4 MHz each only around when a test is running and outputting four multiplexer

select lines for the current preamplifier, the DAQ system will allow smooth and accurate data

collection during an SPM test for later analysis.

2.2.2 Phase-Locked Loop (PLL)

The phase-locked loop (PLL) is a piece of LabVIEW code that simulates a PLL for triggering

each DAQ measurement. The measurements of the signal need to be taken at consistent points in

the waveform of the input signal to get usable data. If one was to measure a sine wave at

inconsistent points in its period, the resulting output signal will look different in every period,

even though it was originally a perfect sine wave. This causes a phase error and unusable data.

The PLL is meant to output a square wave at 4 MHz with the same phase as the analog signal

from the preamplifier to give the DAQ hardware an accurate and consistent matching signal and

provide a sharp edge on which to take DAQ measurements for both the current from the tip and

readings from the photodetectors, depending on the test. The PLL should be a part of the rest of

the LabVIEW code that runs in the DAQ to synchronize measurement signals to the output from

the SPM.

2.3 Data Processing

The data processing algorithm must be able to handle filtering, processing, and displaying large

amounts of data in a reasonable timescale. The processing must extract and handle meaningful

information from the incoming data. To do this, the algorithm needs to be able to track the

position of the test as the data is constantly being sampled from the DAQ. To extract meaningful

information from the massive amounts of data, the processing algorithm should also condense

and simplify the output of the DAQ. Once the data is processed it is important to be able to

visualize it in a well understood manner such that the user can parse through different

frequencies to see the different responses. The purpose of the visualization feature is to present

the processed data in a manner that allows the user to obtain the information easily and

5

accurately. Since the data collected changes with time and frequency this requires displaying the

data in a movie format. The movie format would create a visualization method which allows the

user to easily determine which frequencies displayed the most interesting features and patterns.

2.4 Graphic User Interface (GUI)

Since this system is meant to be used by a variety of researchers in a lab setting, a simple

interface for the user to interact with is required. As such, the system needed a basic GUI that

allows the user to quickly and easily collect data with the DAQ, process the raw data, and

visualize and interact with the data. To accomplish this, the GUI must include the following

features:

 A way to easily visualize and manipulate data gathered by the system.

 The ability to control the existing Dimension 3100 SPM system and manipulate its

settings to facilitate data collection.

 A method of processing data using user-defined parameters.

To be considered successful, the GUI must be installed and tested on the lab computer, and its

design and functionality must be approved by all team members.

3.0 DESIGN SOLUTION

Our design gathers amplified and normal signals from the SPM system at a rate of up to 4 MHz,

then uses processing algorithms to find features of interest within the raw data. All of this

functionality is offered to users through a friendly and easy-to-understand user interface. Our

solution for the system design problem encompasses four key subsystems: the current

preamplifier, the data acquisition system, the signal processing module, and the software GUI.

The current preamplifier consists of two stages: a transimpedance amplifier and a voltage

amplifier, and two low-pass filters to reduce noise. The data acquisition system uses LabVIEW

to read in signals from the photodiodes, current preamplifier, function generator, and a position

output. The signal processing module uses Python to extract desired information from the

collected data and has been optimized to ensure processing time efficiency. The GUI uses

JavaFX to provide a clean interface to visualize the collected data as well as control the SPM

system.

6

3.1 Design Concept

The block diagram below (Figure 2) illustrates the interactions between each of the mentioned

subsystems. The SPM outputs several signals that will be sent either to the current preamplifier

or the NI DAQ. Once the data points are captured by the DAQ, it will put the collected data in a

file for the signal processing module, which will then output visual and analysis data to the GUI.

Figure 2. System Block Diagram

3.2 Current Preamplifier

Figure 3 shows a simplified schematic of the re-designed current preamplifier. The SPM current

input is modeled as an AC current in parallel with a 50 pF capacitor. The 50 pF capacitor

represents the BNC cable capacitance (1 ft BNC cable = about 25 pF). There are two main stages

of the current preamplifier: a transimpedance stage and a voltage amplification stage. Additional

RC (resistance-capacitance) filters remove noise generated by the circuit. The transimpedance

stage amplifies the input current to either 10 mV or 100 mV using a variable feedback, or gain-

setting, resistor controlled by switching circuitry. A feedback capacitor, whose value is

dependent on the resistor, is used to prevent instability issues (e.g. ringing and peaking)

associated with purely resistive circuits at high frequencies. As recommended by the

manufacturer, an additional RC network is added to the positive input terminal of the

transimpedance amplifier. The post-amplifier stage is a traditional non-inverting op amp circuit

7

that amplifies the voltage output of the transimpedance amplifier to 500 mV. The variable gain is

controlled by several analog multiplexers with select lines tied to digital pins on the DAQ. Due

to the tradeoffs between gain, bandwidth, stability, and noise, it was impossible with current

state-of-the-art technologies to achieve the goal of 4 MHz bandwidth at all desired gains and

frequencies. By carefully selecting op amps and designing filters to optimize the tradeoffs, the

re-designed current preamplifier design boasts a dynamic range of 10 -11 to 10-3 A and a minimum

bandwidth of 5 kHz at the highest gain, an order of magnitude increase in bandwidth than the

Ithaco preamplifier. In this section, we develop the theory of operation behind the current

preamplifier and its various characteristics, drawing heavily on [4] and [5]. Supplemental

references can be found in the annotated references list in Table A-1 of Appendix A.

Figure 3. Simulation Schematic of Current Preamplifier

A transimpedance amplifier converts input current signals into output voltage signals (Figure 4).

Transimpedance amplifiers work by application of Ohm’s law: in Figure 4, the gain is given by

 𝑉 = −𝑅 𝐼 . (1)

Because the inverting terminal of the op amp has high impedance, a negligible current is passed

into the op amp, and the remainder of the current travels through the feedback branch. When the

current passes through the feedback resistance, a voltage develops across the terminals of 𝑅 ,

8

which sets the output voltage. The feedback resistance is called the transimpedance gain, which

is different from the voltage gain. A transimpedance amplifier is limited to an inverting topology

because the op amp must use negative feedback; there is no simple way to design a

transimpedance amplifier that both uses positive feedback and remains stable. As a result, the

transimpedance amplifier inverts and amplifies the input signal.

Figure 4. General Transimpedance Amplifier Circuit

Three main considerations framed the design of the preamplifier: the gain-bandwidth product,

stability, and noise analysis. In linear circuits such as the preamplifier, the gain-bandwidth

product is a constant that defines the maximum speed an amplifier can run at a gain of 1.

Mathematically, it is defined as

 𝐺𝐵𝑊 = 𝐺 ∗ 𝑓, (2)

where G is the voltage gain of the amplifier and f is the bandwidth of the system. For example, in

our circuit, we use the THS4021 as the post-amplifier device, which has a gain-bandwidth

product of 3.5 GHz. Therefore, with a gain of 500, the maximum bandwidth it will be able to

amplify is 3.5 GHz/500 = 7 MHz, which is above our frequency threshold of 4 MHz. In practice,

the gain-bandwidth product is not a constant, as high gains and non-idealities in the circuit may

lower the gain-bandwidth product. The AD8067, which is our transimpedance amplifier, has a

gain-bandwidth product of 540 MHz, which means that at 4 MHz, the highest stable achievable

gain is 135 V/V. However, because we are using it in a transimpedance configuration, the gain-

bandwidth product does not directly apply to the circuit. Instead, for a transimpedance

configuration, the maximum frequency at which the gain will be greater than 70.7% of its

theoretical gain, also called the cutoff frequency, is set by the equation:

9

𝑓 =

𝐺𝐵𝑊

2𝜋𝑅 𝐶
, (3)

where 𝑅 is the feedback resistance and 𝐶 is the input capacitance. The input capacitance is the

capacitance of the input cable added to the stray capacitances at the op amp terminals and is a

source of noise. The gain-bandwidth relationship for transimpedance amplifiers is an inverse-

square root relation, meaning that increasing the gain by a factor of four will result in halving the

possible bandwidth. It is therefore exceedingly difficult to achieve full gain over the entire

bandwidth for signals smaller than a few micro-amps with current state-of-the-art amplifier

technology. In addition, stability and noise compensation will limit the practical frequency

response to only a fraction of the theoretical response.

The transimpedance amplifier circuit, like many other amplifier circuits, also has stability issues

stemming from the pole in the frequency domain that is formed between the feedback resistor

and the input capacitance. This pole will cause a large spike in transimpedance gain near the

cutoff frequency, which is called overshoot or peaking. Overshoot may cause ringing at the

amplifier output, where a large amount of noise from harmonics and higher frequencies enter the

output signal and cause it to oscillate. To cancel this pole, we add a compensation capacitor, or

feedback capacitor, in the feedback loop of the transimpedance amplifier to create a zero in the

frequency domain at the cutoff frequency. An estimate for the feedback capacitor can be

calculated by setting the desired zero to the cutoff frequency pole:

𝑓 =

𝐺𝐵𝑊

2𝜋𝑅 𝐶
=

1

2𝜋𝑅 𝐶
→ 𝐶 =

𝐶

2𝜋𝑅 𝐺𝐵𝑊
 (4)

In practice, the compensation capacitor is optimized based on simulation and prototyped results,

as other factors such as board wire capacitance and wire inductance add a small amount of

capacitance to each trace, which may cause significant changes in the frequency response.

Noise analysis determines the contribution of various sources of noise to the circuit’s

performance. Noise can be treated as input-referred or output-referred, where all the noise of the

system is treated as one noise source either at the input or the output of the circuit, respectively.

For the current preamplifier, the dominant source of noise is the transimpedance stage. The

10

transimpedance amplifier has several sources of noise, including input offset voltage, input offset

current, input voltage noise, and input current noise. Table A-2 in Appendix A describes the

source and effect of each type of noise in detail. Input offset voltage and input offset current are

DC noise sources that result from mismatches in the transistor characters at the inputs of the op

amp terminals. Input voltage and current noise are frequency-dependent noise sources from both

the transistors and the environment. The noise level at the output of the transimpedance amplifier

is on the order of 100 uV, which places a lower threshold on the output voltage of the

transimpedance amplifier. The gain of the transimpedance amplifier must then be determined by

dividing the lower threshold of the output voltage (set to 1 mV) by the input current signal.

Because noise analysis is often difficult and involved, we used simulation software to calculate

noise characteristics for the preamplifier system. To reduce noise in the system overall, we added

two lowpass filters, one on the transimpedance amplifier output and one on the post-amplifier

output. The filters remove noise from higher frequencies that may be present in the signal.

After the transimpedance amplifier, the post-amplifier amplifies the output signal from the

transimpedance amplifier to 500 mV by providing either 50 V/V gain for large input SPM

currents or 500 V/V for small input SPM currents. Because the gain-setting resistor on the

transimpedance amplifier effectively sets the frequency response of the system due to its size, the

post-amplifier only needs to have a gain-bandwidth product greater than the gain of the post-

amplifier times the cutoff frequency of the transimpedance amplifier. For example, a gain of 105

on the transimpedance amplifier (corresponding to 10 nA input reference current) has a

bandwidth of only 2 MHz. As long as the post-amplifier has a gain-bandwidth product of about 1

GHz, the post-amplifier will only minimally reduce the bandwidth of the entire system. In the

current preamplifier design, if the gain is set to a small enough value that the bandwidth of the

transimpedance amplifier is 4 MHz, the post-amplifier will have a gain of 50 V/V so that the

maximum gain-bandwidth product necessary is 200 MHz at high speeds. The THS4021 has a

gain-bandwidth product of 3.5 GHz, suitable for the preamplifier.

Gain-setting is the final operating principle of the current preamplifier. The gains of the

transimpedance amplifier and post-amplifier are set with analog multiplexers (also called analog

switches). The MUX36S08 is an 8-to-1 multiplexer used to select between the eight different

11

possible gains on the transimpedance amplifier, and the TMUX6136 is a 2-to-1 multiplexer that

selects between the 50 V/V and 500 V/V options on the post-amplifier. The switch on-resistance

(the resistance when the switch is nominally closed) can change desired gains if the switch is

placed in the feedback loop of the amplifiers, as it can add to the nominal feedback resistance

already present. To prevent this, two multiplexers are used outside the feedback path to control

the signal path: one between the output terminal of the op amp and the feedback node, and one

between the feedback node and the next stage of the circuit (Figure 5). The op amp still drives

current through its output terminal to maintain the voltage of the feedback nodes to -RfIin by

Ohm’s Law regardless of the analog switch on-resistance, hence the analog switch on-resistance

does not affect the value of the gain anymore [6]. However, this design results in a non-planar

circuit for more than two feedback resistance paths, meaning that the circuit will require at least

a two-sided printed circuit board to implement.

Figure 5. Gain-setting with Analog Switches

The analog multiplexers use four analog select lines to control the gains, which are controlled by

digital ports on the NI DAQ. The digital ports create four constant voltages that are passed to the

current preamplifier through the dual BNC jacks on the top of the PCB. The port assignments

and truth table are listed in Table 1. The MUX36S08 has three select lines labeled A0, A1, and

A2. The post-amplifier has one select line.

12

Table 1. Truth Table for Gain-select

Signal Range Reference
Current

TIA Gain
(V/A)

Post-amp Gain
(V/V)

A0
P2.4

A1
P2.6

A2
P2.0

Post-amp
P2.7

0.1 mA – 10 mA 1 mA 101 50 0 0 0 0
10 uA – 1mA 100 uA 102 50 0 0 1 0
1uA – 100 uA 10 uA 103 50 0 1 0 0

100 nA – 10 uA 1 uA 104 50 0 1 1 0
10 nA – 1 uA 100 nA 105 50 1 0 0 0

5 nA – 100 nA 10 nA 105 500 1 0 0 1
0.5 nA – 10 nA 1 nA 106 500 1 0 1 1
50 pA – 1 nA 100 pA 107 500 1 1 0 1

10 pA – 100 pA 10 pA 108 500 1 1 1 1
Note. DAQ digital ports P2.4 (pin 2) and P2.6 (pin 1) should be grounded to pin 35, and ports

P2.0 (pin 37) and P2.7 (pin 39) should be grounded to pin 36.

Due to the fundamental tradeoffs between gain, bandwidth, stability, and noise, we were not able

to achieve the initial target goal of creating a current preamplifier that could amplify 1 nA

currents to 500 mV at 4 MHz. However, we were able to improve on the Ithaco preamplifier by

providing at least 5 kHz bandwidth at the highest gain setting, compared to the Ithaco’s reported

800 Hz. Furthermore, we tested and optimized the passive components, the resistors and

capacitors, to meet the bandwidth and stability requirements in Multisim, which we discuss later.

Short from actually milling and testing a printed circuit board (which was thwarted by COVID-

19), these results indicate that our re-designed current preamplifier satisfies the specifications to

the greatest extent possible.

3.3 DAQ

Sampling all the necessary data and control signals will be accomplished by the NI PXIe-1071

DAQ using a NI PXIe-6124 DAQ card, shown in Figure 6. This high performance data

acquisition solution will take the place of the computer-SPM interface from the existing system.

With a sampling rate of 4 MHz for 16-bit conversions, we will be able to read signals moving as

fast as 2 MHz and as small as 153 μV. The DAQ will be controlled using native LabVIEW

software. Using the DAQ, we will output four digital multiplexer select lines to the current

preamplifier circuit, and sample five analog signals using the four built-in analog to digital

converters in the PXIe-6124 running at up to 4 MHz each. The five analog signals are: the signal

13

from the current preamplifier circuit, two photodiode signals from the SPM taken from the signal

access module, a tip voltage signal taken from the signal access module, and the x-position of the

SPM tip taken from the signal access module. In order to meet the physical limitation of only

four analog input channels in the PXIe-6124, the analog input channel zero must be manually

switched between the current preamplifier signal and the vertical photodiode signal depending on

the type of test being run. The PLL is implemented in LabVIEW code and allows the sampling

of the four analog signals to be synchronized to the phase of the current preamplifier signal.

Using the PXIe-1071 DAQ with the PXIe-6124 card controlled by LabVIEW software, we will

be able to meet all the required performance specifications.

Figure 6. NI PXIe-1071 Data Acquisition System

3.3.1 Main System

The DAQ will be wired into the existing system and controlled using LabVIEW software to meet

the necessary performance specifications of outputting four digital select lines to the current

preamplifier circuit, sampling four analog signals at up to 4MHz each, and storing that analog

data accurately to a TDMS file format that can be accessed by the data processing software. A

TDMS file is organized primarily by a hierarchy of file, group, and channel. The file is

whichever data file you created, a group is the set of signals taken at one time (only one group

will exist in our case unless a data file was appended to), and a channel represents individual

signals that are read in on available DAQ input channels. A table of the pin mapping is given in

14

Appendix B. Figure 7 shows at a high level what the LabVIEW software will do with the DAQ

using a flow-chart format. The LabVIEW software will be called by other parts of the software

system, namely the GUI, for use in the final user interface.

Figure 7. Flowchart of LabVIEW Data Acquisition Software

The calling software will send the LabVIEW program command line arguments indicating the

gain value the user has selected for the current preamplifier circuit and the file location the user

has selected for the TDMS data file. The DAQ will then output the gain value using four digital

15

signals to control multiplexer select lines in the current preamplifier circuit. The digital signals

will be output using pins on digital port 2 of the DAQ which can be controlled to output logic 1

or logic 0 individually. These outputs will meet the first performance specification.

In parallel with outputting the digital multiplexer select lines, the LabVIEW software will also

set up a software task for the DAQ by adding all four analog input channels, setting up the

sample clock settings, creating an event loop, and setting up the TDMS file logging. First, each

of the four analog input channels will need to be added to the DAQ task with the information that

each channel is sampling a voltage signal between -10 V and + 10 V and which channel in the

task corresponds to which physical channel in the PXIe-6124 DAQ card. Second, the sample

clock settings are added to the DAQ task with information about which internal clock the DAQ

should use to sample and how many samples per second the DAQ should take. Third, the

LabVIEW software will use the fifth and last command line argument to set the file location

when turning on the native TDMS file logging settings in the DAQ task. Fourth, the LabVIEW

software will indicate that a start trigger will be used to start running the event loop. The final

step in setting up the DAQ task is creating an event loop to trigger a block of LabVIEW code

every time 7,816 samples are gathered into the DAQ hardware buffer. These setup steps will

allow the DAQ task to smoothly gather data once the start trigger is recognized.

 A start trigger is set up in the LabVIEW code to correspond exactly to the beginning of an SPM

test. Using the data gathered in the fourth analog input channel from the SPM tip x-position, the

software will start logging data when the tip begins moving as the SPM begins a test. Before a

test, the tip x-position hovers in a noise window of +/- 10 mV around 0 V. During a test,

however, the tip x-position signal is a consistent triangle wave from + 400 mV to - 400 mV at 1

Hz. Using this information, a start trigger can be set to trigger on the moment when the signal on

the fourth analog channel leaves a window from - 20 mV to + 20 mV. Doubling the noise

window means that noise on the tip x-position signal will not accidentally cause data acquisition

to trigger prematurely. In this way, data collection in the event loop code will only begin once

the SPM has begun its test.

16

Once the start trigger is received, the event loop code can start being triggered every time 7,816

samples are gathered into the DAQ hardware buffer. Each time the event loop code is triggered,

it reads in all unread samples in the buffer and logs them to the previously specified TDMS file.

The number is 7,816 samples because this number divides evenly into the total 2,000,896 spaces

in the DAQ hardware buffer without being so small that the DAQ event loop triggers too

frequently or so large that the DAQ code cannot finish reading and logging the samples before

too many more samples are gathered and cause the buffer to overflow. This cycle of triggering

and logging continues throughout an SPM test until the GUI sends a kill signal to the LabVIEW

executable after the SPM test has finished. At that point, the LabVIEW program is terminated.

The captured signals in the end will be saved on the computer running LabVIEW as a TDMS file

which can later be opened for processing by the next stage in the signal chain. Saving the data in

a TDMS file meets the specification that the data processing software must be able to view and

manipulate accurate data from the file format used by the DAQ. It also means that users will

easily be able to open and view the raw data. The TDMS file format is very efficient at storing

data in less memory due to the encoding of raw data into memory. The control of the DAQ using

this LabVIEW software structure will meet all of the necessary performance specifications for

this part of the system.

3.3.2 PLL

To create the PLL, we used a modified version of NI’s example code for a LabVIEW PLL [7]

(Figure 8). A PLL is a circuit that has a single input and a single output, with four basic parts in

between. The first is a phase detector which reads two input waves and creates an error signal

proportional to the difference in phase between them. The next part is a low-pass filter, which

forwards a filtered version of the error signal from the phase detector to an oscillator. The design

of this filter is what determines most of the characteristics of the PLL, including the stability and

reactivity of the output and frequency range of the input. The oscillator, often a voltage-

controlled device, is the third piece of the PLL and generates the periodic output signal with a

frequency dependent on its control input from the filter. Finally, the last part of the PLL is a

feedback loop from the output of the oscillator back to the second input of the phase detector.

The loop can add the functionality of a frequency multiplier to the PLL, but mainly, it provides

17

the function of negative feedback. The negative feedback is important to maintain the stability of

the output signal. As the input signal fluctuates, the filter will send a slight response to the

oscillator to nudge the output signal closer to the input to stabilize the output frequency while

preserving the phase difference between the two signals.

In order to maximize ease of user control, we implemented our PLL in LabVIEW. This

implementation allowed any parameters to be more easily adjustable between design iterations,

and later will allow parameters to be adjusted between SPM tests. The challenge in developing a

PLL in software is to model all of the critical elements of a real PLL. In some ways, a software

PLL is easier to implement, as the computer can give ideal and perfect data, but in another sense,

we are now constrained by the limitations of software and, potentially, the machine on which the

software runs. As stated before, our PLL code is based on the example software PLL from NI.

We made a few modifications, which include adding a frequency multiplier and adjusting

parameters to both the proportional–integral–derivative (PID) blocks and the debug interface to

add user control. The output of the PLL can be realized on one of the digital output pins of the

DAQ as a 4 MHz clock signal. Then, that output signal can be input back into the DAQ to be

used as the clock signal for taking samples. The DAQ would be configured to trigger the

measurement of all signals on the rising edge of the PLL square wave in order to eliminate phase

error and measure at a consistent point of the SPM output waveforms.

Figure 8 on the next page shows the code that implements the PLL. The leftmost blocks in the

code create two simulated sine waves with a random phase and a user-selected frequency, one

for the input and one for the output. These signals are each fed into the section on the bottom of

the loop labeled “Random Phase”. This part of the code implements both the phase detector and

part of the feedback control loop, using a PID controller. The controller adjusts the phase of the

output signal to keep it constant relative to the input. The top part simulates the function of the

low-pass filter, but instead of simply adjusting an oscillator, like it would in a hardware PLL,

there is another PID controller which implements the frequency part of the feedback loop. In the

figure, the frequency controller is set to maintain a constant 4 MHz, but the infrastructure is there

to allow for frequency adjustment to be implemented in the future.

18

Figure 8. Modified PLL Code Block Diagram

3.4 Data Processing

The next step in our signal chain was moving from raw data to an informative representation of

the test using processing. Our processing algorithm shown in Figure 9 turns the raw data from

the DAQ into spatially clustered frequency responses. At the end of data acquisition, we will

have access to a spreadsheet of SPM measurements and positions. The information is gathered as

an adjustable X-Y spatial grid, so we will separate the data into the same dimensions, creating a

three-dimensional data structure of two spatial directions and a time series at each location of

space. The main hurdle to overcome in working with data from the DAQ was the constant

sampling during the SPM tests with no way of knowing the exact position it was taken on the

surface. We conquered this problem by using the X position sensors to dictate where the current

data arises from. After the data was oriented into its correct position, a Fourier Transform was

taken on all the data in a given position to create the frequency response of the location. From

there, a hard threshold was applied in order to create a new data structure containing only the

response likely not to be noise, and a clustering of the reduced set of points was taken to identify

interesting regions of the sample’s frequency response.

Figure 9. Data Processing Flowchart

19

3.4.1 Processing Submodules

Once the data was available in the processing software, the data must be spatially and temporally

oriented to match how it was sampled by the SPM test. After this first step of the algorithm, we

used the X position sensor accessed through the SPM’s signal breakout box to establish the

location of the data. The X position goes from its maximum to its minimum in a triangle wave,

reflecting a trace and retrace of the SPM’s tip within a user defined time on the order of 1 Hz.

The X position sensor also suffers from thermal noise with a large high order harmonic. Due to

the I/O limitations of the DAQ only one position sensor is available, so X-Y must both be found

from the behavior of X.

First, filtered the incoming X position with a Finite Input Response (FIR) windowing filter with

the following specifications. The order, which specifies the number of reactive elements

contributing to the filter, was set to 200. The cutoff frequency was set to 5Hz to start attenuating

the spectrum above 5Hz because this was twice as fast as the fastest trace signal we witnessed

with the existing system.

 Order: 200

 Cutoff: 5Hz

 Sampling Rate: 4MHz

 Constant Group Delay

Next, we placed each X position into its appropriate pixel bin based on the number X pixels set

in the GUI. The filtered and placed X position is downsampled by rate L to ensure it is

monotonic during a trance or retrace. Downsampling by L refers to the use of only every Lth

sample. From there, a two-coefficient high pass filter shows when the tip changes direction. We

incremented the Y position everytime X goes from a negative to positive slope indicating it has

moved to the next line. The user specified how many Y positions there were at the beginning of

the test, so the tip moves up the sample once that last position is reached. The Y position must

also decrement when the test exceeds the specified number of y positions before starting the next

forward Y trace. Data with the same position was stored sequentially at that position reflecting

an array evolving in time. To uniformize the data stored at this stage, zeros were added to the end

of each position array, so each position array is the maximum length.

20

The normalized Fast Fourier Transform (FFT) of the data is taken at each XY location. The FFT

is the discrete frequency version of the data. Normalizing in this case includes

 Dividing all measurements by N/2

 Using only first half of the result

 Outputting in log scale with the largest value as reference

Zero padding the data during the blocking stage made taking the Fourier transform more

complicated, especially if more than half of the data was zero. The complication arises during the

log normalization because the log of zero is undefined. In these cases a very small number close,

but not equal to, zero was chosen as padding.

A threshold is necessary to narrow the data down the pieces that are likely to contain the most

information. Due to noise in the SPM measurements, we can define a power level where data

would otherwise be insignificant in our clustering algorithm. The FFT is normalized so that the

largest point is set at 0 dB. As a rough number for the thermal noise, the measured SPM Signal

to Noise Ratio (SNR) is adjusted to include the quantization error and noise spreading across the

FFT buckets. Quantization error is the noise added to the signal by quantizing it in the ADC.

Noise spreading happens in an FFT when normally distributed noise is evenly spread across all

frequency bins. While the threshold does not directly translate to the relation of signal peak to

noise peak, the signal is approximately uniformly distributed with the noise normally distributed.

The peaks of the signal can therefore be translated to the likelihood of the noise peak. We added

this correction to the threshold into the SNR as a distribution adjustment. Further testing is

required to determine the usefulness of this noise model and system SNR for a given test.

At each frequency bin in the Fourier transform, the XY plane can be clustered so that the areas of

activity are captured. We used the Meanshift clustering algorithm to assign a center and a radius

to each point. Each point is assigned a center and a radius. The radius is originally placed at the

location of the point. A radius based on the distance between each point is drawn around the

center. If neighboring centers are inside this radius, then the center for that point moves to the

averaged position of all points within the radius. The center is now closer to the neighboring

point rather than on top of the original point. This process of moving the center continues until

no new points are added to the inside of the radius. Each point goes through this process. If

21

multiple points have the same center by the end of the process, they are clustered. These final

centers are centers of the clusters, and a researcher should gain insight in their high speed

experiment by the location of the clusters for a given frequency.

3.4.2 Visualization

A video displaying the clusters at each frequency is the most beneficial to determining

interesting areas. This video iterates through each frequency and displays the clusters at their

location in the XY-plane while linking the amplitude of the clustered frequency response to a

color on a colorbar. This allows the user to easily tell the range of values that the frequency

cluster is located in while the video is played. The movie visualization can be realized using the

animation and colormap functions within the matplotlib library in Python. Once the user finds

frequencies they deem interesting, they can further examine a particular frequency cluster by

visualizing the data as a three-dimensional object. Continuing to use the matplotlib library in

Python, a 3D plot can be generated at a user-determined frequency. Once the plot is generated,

the user can hover over each of the cluster centers to see the coordinates at that point.

3.5 GUI

The GUI will allow the user to easily define test parameters for the DAQ and data processing

software, collect and process data, and visualize test results. The GUI is built using JavaFX, a

Java-based GUI library. JetBrains’ IntelliJ IDEA was used to edit code for the GUI’s

functionality, and Gluon’s Scene Builder was used to create the GUI’s layout. The code for the

GUI is contained in four primary files: Main.java, style.css, UI.fxml,and

Controller.java. Main.java is the launching point for the GUI. In it, the GUI is

initialized, and the GUI window is launched. All custom styling for the GUI is contained in

style.css. The GUI’s layout is defined in UI.fxml. Finally, Controller.java

contains all of the implementation for the GUI’s functionality.

3.5.1 GUI Layout and Usage

The GUI, shown in Figure 10 on the next page, can be divided into two parts. The left side of the

GUI is dedicated to entering parameters for collecting and processing data, and the right side

allows users to collect, process, and visualize data.

22

Figure 10. GUI Front Panel

The left side of the GUI lists all options and parameters that a user can use while running a test

or processing data. These parameters are divided into two categories: hardware parameters used

by the DAQ and the preamplifier, and processing parameters used by the processing software. In

the hardware parameters section, users can choose to enable or disable the preamplifier during a

test via a checkbox. The user can also set the expected current range for the preamplifier’s input

current. In the processing parameters section, users can set the measured SNR values for

components of the SPM, the image size of the raw data, and the DAQ sampling rate for the

processing software to use while it processes data.

The right side of the GUI allows users to run tests, process data, and launch the visualization

scripts. To run a test, the user must first fill in any necessary parameters on the left hand side of

the GUI. Next, the user must choose whether or not they want to choose a custom destination for

the test results. If the user chooses to use a default destination, a folder named with the current

timestamp will be created in the GUI’s home folder and used. The user can also choose whether

or not to automatically launch the data processing software and create a movie of the processed

data after data has been collected. After this, the user can click the “Run Test” button to launch

23

the test. The test begins by launching the DAQ’s LabVIEW executable and collecting data.

When this happens, the button will become red and read “Stop Test”. Figure 11 shows the GUI

during this phase of the test. After the SPM test has finished, the user must click the button again

to stop the DAQ. The GUI will then process the data and launch the data visualization software

as needed. The raw data collected, the processed data, and any visualization files will be put into

the selected destination folder. Similarly, a user can process data that has already been collected.

Again, they must first fill in any necessary parameters on the left-hand side of the GUI. Then,

they can select a TDMS data file to process. Finally, the user can launch the processing software

with the “Start Processing” button. The processed data file will be generated and placed in the

same directory as the raw data file. Lastly, the user can generate and view a movie of processed

data from a CSV file with the “Generate Movie” button or view a particular cluster of data from

the CSV using the “Display Blob” button.

Figure 11. GUI During Data Collection

24

3.5.2 GUI Functionality

The functionality of the GUI is contained in the Controller.java file. When each button in

the GUI is clicked, a corresponding function written in the Controller class is triggered. We

discuss the specific functionality of each button. The first set of buttons handle filepaths, the

“Start Test” button handles tests, and the last set of buttons handle processing and visualization.

The “Select Directory” button launches a function called handleSelectCustomDataPath.

This function launches a file selector that allows a user to choose a destination directory. After

the user selects the directory, the directory’s absolute file path is written to the text box to the left

of the button. The “Select File” button in the Processing Data section of the GUI launches a

function called handleSelectProcessFile. Similar to the “Select Directory” button’s

function, a file selector is launched, and a user can select a TDMS file they would like to

process. The file’s absolute path is then written to the text box on the left of the button. The

“Select File” button in the Visualizer section of the GUI launches a function called

“handleSelectVisualFile,” which works the same as handleSelectProcessFile.

However, the user must instead select a CSV file, and the absolute file path of the selected file

will be written to the text box to the left of this button.

The “Start Test” button launches a function called handleRunTest. If a test is not currently

running, the GUI will change the button color and text, so the button is red and reads “Stop

Test.” Next, the destination path for collected data is chosen. If the user has provided a custom

path, it is used. If the user did not specify a path, a default directory is generated using the

current timestamp and then selected. Then, the command line arguments for the DAQ are chosen

based on the parameters defined by the user. If the preamplifier is not enabled, the first four

command line arguments will be +0, +0, +0, and +0. If the preamplifier is enabled, the selected

input current range value will be translated according to Table A-3 of Appendix A. The final

command line argument will be the directory selected earlier. Finally, the DAQ executable is

launched with the command line arguments. However, if a test is currently running and data is

still being collected, handleRunTest will reset the button to its default appearance. Then, if

the user enabled processing, the processing software will be launched with the processing

parameters defined by the user. These parameters will be used as is and do not require special

25

mapping like the preamplifier’s input current range. Finally, once the processing finishes, the

visualization software will be launched if enabled.

The last set of buttons control the processing and visualization modules. The “Start Processing”

button launches a function called handleRunProcessing. This function launches the

processing software and passes it the path to the TDMS file selected in the textbox above it and

the parameters the user entered as command line arguments. The “Display Blob” button launches

a function called handleDisplayBlob. This function launches the Python script

visualizing_blob.py and passes the file and blob number selected in the Visualizer

section of the GUI. Finally, the “Generate Movie” button launches a function called

handleGenerateMovie. In this function, the file selected in the Visualizer section of the

GUI is passed to visualing_movie.py, and the script is executed. The resulting movie is

played and will be saved to the same file path as the data source file with the MP4 extension.

4.0 DESIGN IMPLEMENTATION

When implementing the system as a whole, there were many tradeoffs between subsection

requirements and implementations. For the current preamplifier, a circular design process was

used to optimize part choice and tradeoffs in gain, bandwidth, stability, and noise performance.

With the DAQ system, the LabVIEW software had many iterations of test and debugging, as

well as many changes in file-format choices and code structure meant to accommodate

performance specifications. To implement the data processing software, after Python was chosen

as the language, implementations based on different papers were attempted and adjusted as

needed. The GUI went through a couple choices of programming languages because earlier

languages were found to not include necessary functionality before the final implementation was

decided.

4.1 Current Preamplifier

As mentioned in Section 3.1, the dominant issue in implementing the current preamplifier was

optimizing the tradeoffs between gain, bandwidth, stability and noise. However, we went

through many different designs before coming to this conclusion. Our initial design consisted of

a three-stage voltage amplifier circuit in which the analog switches were placed inside the

26

feedback loops of the amplifier (Figure 12, next page). This design did not consist of a

transimpedance amplifier; instead, it used a voltage divider to generate the voltage that would be

amplified. This was problematic for several reasons. First, the bandwidth of the input voltage

would be limited to the RC circuit formed by the voltage divider resistors, input BNC

capacitance, and input capacitances at the first op amp. Second, each amplifier was limited to a

stable closed-loop gain of 100, after which significant rolloff would occur. We went through

several variations on this design until we discovered the transimpedance amplifier circuit. The

transimpedance amplifier circuit solved the problem of the input-limited bandwidth and provided

better frequency response. To maximize the bandwidth, we initially distributed the gain of the

system relatively equally across the transimpedance and the post-amplifier; however, noise

became a significant issue. The first amplifier in a cascaded amplifier system often generates the

most noise on the output because its noise gets amplified through the subsequent amplifiers. As a

result, it is generally better to place as much gain as possible on the first amplifier and then filter

noise out before the signal is passed on. In the equal-gain system, both the transimpedance

amplifier and post-amplifier contributed equally to the noise. Therefore, our final design front-

loaded as much gain as possible onto the transimpedance amplifier and reserved the post-

amplifier for an additional boost of 50 or 500. Thus, the transimpedance amplifier gain can range

from 10 V/A to 100 MV/A. We also removed the analog switches from the feedback loop

because their on-resistance would distort the precision of the gain, instead using the novel gain-

switching mechanism described in Section 3.1 with two analog switches instead of one.

27

Figure 12. Early Preamplifier Design

Throughout the implementation process, we evaluated many different components on the

amplifier market because it was crucial to choose the right parts for the amplifier design. The

transimpedance amplifier needed to have high speed, wide power supplies to accommodate the

DAQ’s 10 V voltage limits, low input bias current so the signal would not be absorbed by the op

amp terminals, and good noise characteristics. The post-amplifier had less strict requirements

but still needed an input offset voltage that was either low enough to remain less than 10 mV

after being amplified by 500 or could be nulled so that it was reduced to zero. To do this, we

evaluated numerous amplifiers before settling on the state-of-the-art AD8067 and THS4021.

Other amplifiers, such as the OPA846, LMH6629, LTC6268, and MAX477 had better noise

characteristics but had either single-supply terminals or narrow supply rails, making them

unsuitable to capture a wide range of signals. In addition, the LT1222, LT1226, LM7171,

OPAx192, and THS4021 all featured wide power supply rails but had high input bias currents,

making them unsuitable for sensitive measurements below 100 nA. Choosing analog switches

was also important because of their wide power supply, leakage current, and number of

terminals. In our case, we needed an 8x1 analog switch and a 2x1 analog switch with leakage

current below 10 pA. The 10 pA limit is necessary to ensure that when a switch is “off,” it does

not provide current that could distort the signal. We settled on the MUX36S08 and the

28

TMUX6136. The MUX36S08 has a leakage current of 1 pA, and the TMUX6136 has a leakage

current of 0.5 pA, making these switches the most suitable for our application.

4.2 DAQ

The DAQ system, particularly the LabVIEW code, went through several design changes before

the final solution was reached. LabVIEW was chosen as the programming language because it is

generally the best to program NI products, but it was difficult to learn quickly. The first designs

included producer/consumer loops and logging to CSV or LVM files, but we ended in the

finished design using an event loop structure and TDMS file logging because of the improved

writing time. We also initially planned to include a stop trigger similar to our start trigger, but

realized that was not possible using our DAQ hardware and opted to include the functionality to

stop data collection in the GUI instead. For the PLL code, the design was based on example code

provided by NI, then modified to suit our needs.

4.2.1 Main System

 We chose the LabVIEW programming language to control the DAQ because it is the standard

programming language for NI products. Programming in LabVIEW presented an unique

challenge because none of our team members had used LabVIEW beyond one class we had

taken four years before. We used the main tutorials provided on the NI website to begin our

learning. We also found many online articles on the NI website detailing how to set up and

control a DAQ task in LabVIEW. Though we ran into a few difficulties using the new language,

we were able to get suggestions from various professors and eventually found an example

program provided with the installation of LabVIEW that demonstrated most of the functionality

we required. The structure of the LabVIEW code changed significantly once the example

program was found.

In the first iterations of the LabVIEW code design we planned to use a producer/consumer

structure to allow for latency in writing to the data file, but decided against it because that

structure was slowing down the DAQ system such that samples were being overwritten in the

hardware buffer before they could be read. Also, we initially planned to write the data to a CSV

file and then a LVM file, but ended with the TDMS format because TDMS is easily human-

29

readable, efficient at data storage, and can be natively added to the DAQ task in the software

without causing extra delays. In the first designs of the LabVIEW software, a producer/consumer

structure was used with the producer loop sampling the data and pushing it into a queue, and the

consumer loop reading data out of the queue and logging it to a data file. This structure was used

both to prevent the hardware buffer in the DAQ from overwriting unread samples and to prevent

the latency of writing to a data file from slowing down the DAQ sampling to below 4 MHz.

However, we found during initial testing that the producer/consumer structure still led to both of

the problems and could not be made sufficiently faster to prevent interference with accurate data

collection. The previously mentioned example program installed with LabVIEW presented a

solution: an event loop can be created with the DAQ task that triggers a buffer read every x

number of samples while the DAQ task continues to constantly sample at the correct rate in the

background. The event loop structure alleviated timing issues and allowed the DAQ code to

smoothly read in data at the required rate of 4 MHz. Another change from initial LabVIEW code

was the data file format. Both CSV and LVM files were tried as formats to log data, but adding

code into the event loop reintroduced too much latency and samples were again lost. In the end,

the example program again provided a solution. The DAQ task can be set up to natively log data

into a TDMS file as it is read from the hardware buffer. Once a Python library was found that

allowed our data processing software to read data out of a TDMS file, the format was finalized.

Switching to TDMS files added two bonuses: TDMS files are very user friendly so raw SPM

data is easily viewable, and TDMS files store data very efficiently so our large data files are a bit

smaller than they would have been otherwise. Changing the structure of the LabVIEW code to an

event loop structure and changing the data file format to TDMS means that the end user

experience is accurate and smooth.

At the beginning of the DAQ work, we planned to use some signal from the SPM system as a

trigger to stop data gathering at the end of a test. After consultation with NI engineers, the

implementation of this proved impossible with our hardware, so we decided instead to have the

GUI ask the user to stop the test once finished. We had initially planned to use a signal to stop

data collection in the same way as we start it. An idea was formed that met all constraints to use

when the SPM tip X position stopped varying by more than +/-10 mV as our stop trigger.

However, detecting this moment is very hard to implement with the DAQ hardware in our PXIe-

30

6124 DAQ card. After consulting with two NI engineers, we realized that this kind of stop

trigger is, in fact, impossible to implement with our hardware. We then needed a solution besides

a stop trigger because no other SPM signals that had clear behavior associated only with the end

of a test could be read into the DAQ. We decided that having the user press a button in the GUI

after a test finishes to end the LabVIEW program was the best solution. Though a small amount

of extra data will be collected at the end of each test, the GUI button is better than our other

option of simply having an automated timeout because SPM tests vary in length. The GUI button

will still allow users to end data collection in a reasonable amount of time after an SPM test

finishes.

In the final design of the DAQ system, LabVIEW software is used with an event loop structure

to log data into a TDMS file during an SPM test. To stop data collection, there is a button in our

GUI that will allow a user to end the LabVIEW program. The end product of the DAQ system

meets all the design specifications and allows the user to accurately gather the correct data

during an SPM test while logging that data into a file that can later be used by our data

processing software.

4.2.2 PLL

Figure 13 on the next page shows the PLL LabVIEW file with our modifications highlighted in

the yellow box. The modification sets the target frequency of the frequency PID controller to 4

MHz. Because the PID controller in a traditional PLL in LabVIEW takes in two inputs and

effectively tries to match the output frequency to the input frequency, all we had to do was

modify one of the terminals to input a constant of 4,000,000 to set it as our desired frequency.

However, to ensure that the PID would be able to adjust to various frequencies of the input

signal, we added a multiplier on the 4,000,000 constant in case future users wanted to modify the

output frequency of the PLL signal.

31

Figure 13. PLL LabVIEW Code with Highlighted Modifications

The code in the figure is separate from the rest of the LabVIEW code because it is easier to

develop and debug with more display outputs and manual controls. This form allows for simpler

manipulation of individual parameters, instant feedback to the programmer, and less load on the

computer when running. In the future, this code could be slimmed down to include only the

direct PLL functionality and cut out the real-time outputs to the user. All of the manual controls

mentioned previously will instead be controlled by the DAQ code, calculated automatically, or

directly governed by the user through the GUI.

4.3 Data Processing

The data processing underwent several iterations ranging from changes in language to changes in

the structure of the code. We decided to use Python instead of MATLAB to write the data

processing code due to the added speedup from the Python SKlearn library. To obtain

information regarding the Y position, the XY positioning code had to manipulate the X position

waveform. The thresholding algorithm was adjusted after performing the risk reduction to

implement an initial thresholding algorithm which had sparse information regarding the method.

After running the sequential processing code we found that a significant speedup would occur if

portions of the data processing were multi-processed, despite the added complexity. Finally, the

32

visualization was adjusted from having just the points on the plot to being capable of visualizing

the specific values at each cluster to better obtain information regarding the data points.

The algorithms to block, Fourier transform, threshold, cluster, and visualize data stored in TDMS

files by the NI DAQ were implemented in Python3. Python was our final platform after staying

open during the first half of our development because of the available libraries for clustering and

visualization over its competitor MATLAB. When deciding between Python and Matlab, we

compared the MeanShift algorithm because our implementation requires a sort that is O(n2).

After testing both languages, Matlab was found to have a O(n2) algorithm; whereas, the SKlearn

library in Python had a O(nlogn) time. Because the program runs this algorithm 18000 times in

our small one minute example, and encompasses an X pixel by Y pixel number of points per run,

we chose to implement the remainder of the processing in the same language. Useful tests may

extend for much longer than one minute, so big-oh is a crucial consideration for the processing.

Once the language had been chosen, positioning the data was the next implementation hurdle. As

described in Section 3, the data comes into the processing as a continuous channel that must be

broken up into positions. The data placed at the same position will be treated sequentially as a

time series. These discrete X-Y position determinations must be made off of the analog position

waveform for only the X position. The tip moves in a raster pattern sliding across a row and

moving back across that same row again before transitioning to the next column and repeating

the process. At the last row, the tip moves back up the scanning pattern to finish the scan. The

consistent behavior allows us to detect when a new Y position is reached by registering the X

position as it moves left to right as indicated by the sign of the X position waveform.

Unfortunately, the X position waveform is not monotonic when it is moving in either direction.

The X position waveform experiences a small high-order nonlinearity and thermal noise. To

isolate the sign change further, the signal is downsampled. The downsampling lowers the

chances of a false new line, and lowers the amount of times we have to check for a new Y

position because the data will not be sensitive to delays in updating the Y position under our

chosen clustering analysis. Positioning is now one of the most reliable aspects of our processing

chain, and it is suited for future works if different analysis methods are chosen after our project.

33

The thresholding aspect of the code was originally to be based off of an example code from [8]

as one of the risk reduction activities. After attempting to replicate the code from [8], not enough

information had been provided to use their method. Thus, we used a simpler but effective

method of thresholding the data, which finds the threshold using an assumption that the noise

produced by the amplifier was negligible compared to the noise produced by the SPM and the

DAQ. When the thresholding algorithm was being integrated into the subsequent processing

algorithm, we found that it would be best to return the data structure differently from the original

3D array being passed. Therefore, we decided to reformat the output data as a 3D array which

iterates through frequency bins instead of X,Y points. We integrated this into the thresholding

loop to minimize time delays going into the next segment of the processing algorithm.

Adding parallelism to the code was necessary to process large datasets on the order of megabytes

or terabytes in a reasonable amount of time. After some initial testing of the code on real

datasets, we decided to add multi-processing to the already-working, but sequential, data

processing code in order to reduce the runtime. We decided that using a “pool” of processes that

tasks could be submitted to was better than explicitly starting multiple processes, since the multi-

processing was added to a finished product. Many of the long-running for-loops in the code were

turned into multi-processed code using this pool of processes. This allowed multiple indices of

the data to be manipulated in parallel, reducing the amount of time it took to run each for-loop by

a factor equal to the number of CPUs on a particular machine. It was difficult to find ways to

pass data back and forth between processes without using too much extra memory. However, by

using a new pool of processes for each multi-processed for-loop, Python was able to free up

unused memory faster. In the end, the added complexity of multiple processes is much worth the

gained speed-up of the processing code.

A colormap was used to easily access the information about frequencies in the movie format.

The visual color will give the user a quicker way of determining which values are interesting

without having to individually read each value. The single images produced allow the user to see

the x, y, and z components of each cluster at specific frequencies. We later determined it would

be convenient to be able to hover over each cluster and see the x, y, and amplitude of the

34

frequency response, because the specific values on the plot were not easy to read. Hovering over

each cluster will let the user easily obtain information regarding the data values.

4.4 GUI

During the design process, we had to decide what language to write the GUI in, how to structure

the GUI’s implementation, and what the GUI should look like. We initially meant to use JavaFX.

However, due to requirement changes, we decided to instead use ReactJS and Electron to build

the application, and we built our first prototype using these tools. Unfortunately, this prototype

was abandoned, and our final GUI was built in JavaFX as originally planned. The

implementation of the final JavaFX GUI was kept simple to facilitate future maintenance and

expansion. Finally, our GUI layout evolved through several iterations to allow its design to be

simpler while allowing users greater flexibility in their defined parameters.

The first step in the GUI’s implementation process was choosing a language in which to write

the GUI. The team initially decided to use JavaFX, as we planned to do all of the data

visualization in the GUI. Because of the amount of data we would need to display, we decided

that we would need to use a compiled language, like Java, for the GUI to ensure it would be fast

enough to handle all the data. As several members of the team had some experience using

JavaFX, we decided to use it. However, the GUI and data visualization were later decoupled, as

we decided that the visualization component was better suited to our data processing team.

Therefore, the requirement for our GUI to be written in a compiled language was dropped. Since

the GUI team had extensive experience building JavaScript GUIs, it was decided that the GUI

would instead be built using a combination of ReactJS--a JavaScript framework--and Electron--a

framework that allows a JavaScript application to run as a desktop application. A mockup of the

GUI layout was created, and a prototype of the GUI was implemented in ReactJS. Unfortunately,

a bug that prevented the ReactJS GUI from launching child processes was encountered.

Although our research indicated that an application built with ReactJS and Electron should be

able to launch a child process, our particular configuration was unable to. Unfortunately, a

solution to this issue could not be found. As a result, the ReactJS GUI was scrapped, and the

GUI was built using JavaFX.

35

Since the team did not have much experience developing in JavaFX--and since it is unlikely that

future users and developers of this system will have extensive JavaFX development experience--

the structure of the GUI was kept simplistic. First, IntelliJ IDEA was used to generate a “Hello

World” JavaFX application. This application was used as a basic template for the structure of our

GUI that we then modified as needed. Due to this approach, the GUI consists of four main

software files: a controller class written in Java, a main program written in Java, a style sheet

written in CSS, and a layout file written in FXML. First, the controller class contains all code

related to the functionality of the GUI. This includes handling all button clicks, file selections,

and parameter parsing. Next, the main program handles the initialization of the GUI and

launches the GUI’s window. The CSS class holds basic styling needed to make the GUI easy-to-

read and attractive. Finally, the FXML file contains code for the actual layout of the GUI and

serves to decouple the layout of the GUI from the functionality implemented in the controller.

IntelliJ IDEA was used to write the main file, the controller class, and our style sheet. However,

to simplify designing the GUI’s layout, Scene Builder was used to create our FXML file.

Lastly, the GUI layout went through multiple iterations before we finalized it. Figure 14 shows

our original GUI mockup. The mockup organized all the test parameters that the user needed to

be able to enter and provided a way to collect, process, and visualize data without having to

manually launch the corresponding scripts via the command line. However, this design was

complex and included extra features, such as a way to minimize and maximize parameter

sections and live progress trackers.

Figure 14. Original GUI Mockup

36

Using this mockup, the first prototype of the GUI, shown in Figure 15, was created using

ReactJS and Electron. While developing this prototype, the extra features discussed were

dropped, as they added unnecessary complexity to the GUI’s implementation that would make

maintenance of the GUI harder than necessary. However, as previously discussed, this prototype

was ultimately abandoned, and JavaFX was used for our final product.

Figure 15. ReactJS GUI Prototype

Finally, the JavaFX version of the GUI was created. First, a default “hello world” JavaFX

application was generated by IntelliJ IDEA. Next, the default FXML file was modified with

Scene Builder to create the layout for the GUI. The layout was largely copied from the ReactJS

GUI. However, a few new options were added, and the format of a few fields was changed for

ease of use. Finally, the default controller class was modified to add functionality to the buttons

on the GUI. Figure 10 in Section 3.5 shows the resulting final product.

5.0 TEST AND EVALUATION

An important aspect of the design project is having a test plan that will ensure that the

subsystems work accurately and effectively as a cohesive system. To test the current

preamplifier, simulations were run in Multisim. The DAQ system was tested first using a

37

function generator, and then using signals from the real SPM system. The data processing

software was tested by coding individual testbenches for each function before putting the entire

program together to test. The GUI was tested manually using simulated user use cases. Due to

the COVID-19 outbreak, testing of the whole integrated system is delayed.

5.1 Current Preamplifier

Due to COVID-19, instead of fabricating and testing an actual printed circuit board, we used

Multisim 14.1 to validate and optimize our current preamplifier in Figure 3. For frequency and

noise response, we conducted simulations using Multisim’s AC Sweep and Noise SPICE tools to

generate amplitude and phase curves, as well as noise values for the current preamplifier. The

feedback capacitor and lowpass filter values were reoptimized for each gain setting. The

simulation results show that our design solution improves on the Ithaco preamplifier by

providing larger bandwidth at comparable noise. However, the limitations of the model may

cause an eventual decrease in the current preamplifier’s performance to about the same as the

Ithaco in a functional board.

Table 2 and Figure 16 on the next page show the frequency response of the current preamplifier.

An AC sweep was run from 1 kHz to 5 MHz for each gain. C2 and C3 are optimized to minimize

the overshoot and bandwidth in the transimpedance amplifier. An input source capacitance of 50

pF (~2 ft BNC cable) was included in the model.

Table 2. Frequency Response of Current Preamplifier

Signal Range Reference
Current

TIA
Gain

C2 C3 TIA
Bandwidth

Post-amp
Bandwidth

Overshoot

0.1 mA – 10 mA 1 mA 101 1.5p 1.5p >4 Mhz >4 Mhz <0.5%
10 uA – 1mA 100 uA 102 1.5p 1.5p >4 Mhz >4 Mhz <0.6%
1uA – 100 uA 10 uA 103 1.5p 1.5p >4 Mhz >4 Mhz 4%

100 nA – 10 uA 1 uA 104 2.2p 2.2n >4 Mhz >4 Mhz 9%
10 nA – 1 uA 100 nA 105 .75p 68p 3.1 MHz 2.7 MHz 4%

5 nA – 100 nA 10 nA 105 .75p 68p 3.1 MHz 1 MHz 4%
0.5 nA – 10 nA 1 nA 106 0.3p 75p 750 kHz 200 kHz None
50 pA – 1 nA 100 pA 107 0.3p 0.3p 55 kHz 35 kHz None

10 pA – 100 pA 10 pA 108 0.3p 0.3p 5 kHz 5 kHz None

38

The amplitude response curves, generated from Multisim, were plotted and used to calculate the

simulated cutoff frequency for each nominal gain. The cutoff frequencies were reported in the

table. The current preamplifier shows large bandwidths, with some exceeding 4 MHz at low

gains, as evidenced by the amplitude response curve in Figure 16. However, for nominal gains

greater than 5 MV/A, the current preamplifier began to suffer significant bandwidth loss from 4

MHz to 5 kHz. For comparison, the Ithaco preamplifier’s bandwidth loss was from 60 kHz to

400 Hz. The current preamplifier also shows good stability in the frequencies of operation,

before the cutoff frequency. In a stable system, the phase should drop to zero after the cutoff

frequency, which was true for all gains.

Figure 16. Current Preamplifier Simulated Frequency Response

Table 3 and Figure 17 on the next page show the noise characteristics of the current preamplifier

as reported by Multisim. The noise appears to peak at the transition when the transimpedance

amplifier is set to a gain of 100 kV/A, which may indicate that when the transimpedance

amplifier gain resistor is close to within an order of magnitude of the post-amplifier back

resistor, the noise may be significantly amplified. However, the overall noise characteristics

remain close under 50 mV at low gains and under 150 mV at high gains. While this almost

certainly can be minimized further, it is still below the desired signal of 500 mV on the output.

39

Table 3. Noise Response of Current Preamplifier

Signal Range Reference
Current

Total Gain
(V/A)

RF CF Bandwidth Integrated
Total Noise

0.1 mA – 10 mA 1 mA 5x102 5.1 kΩ 2.2 pF >4 Mhz 2 mV
10 uA – 1mA 100 uA 5x103 5.1 kΩ 2.2 pF >4 Mhz 2 mV
1uA – 100 uA 10 uA 5x104 5.1 kΩ 2.2 pF >4 Mhz 3 mV

100 nA – 10 uA 1 uA 5x105 5.1 kΩ 2.2 pF >4 Mhz 20 mV
10 nA – 1 uA 100 nA 5x106 5.1 kΩ 4.7 pF 2.7 MHz 37 mV

5 nA – 100 nA 10 nA 5x107 5.1 kΩ 15 pF 1 MHz 115 mV
0.5 nA – 10 nA 1 nA 5x108 5.1 kΩ 0.1 nF 200 kHz 120 mV
50 pA – 1 nA 100 pA 5x109 5.1 kΩ 0.47 nF 35 kHz 87 mV

10 pA – 100 pA 10 pA 5x1010 5.1 kΩ 2.2 nF 5 kHz 68 mV

Figure 17. Current Preamplifier Simulated Noise Plot

There are several limitations with the Multisim model. The inability for Multisim to model the

behavior of the analog switches we selected makes it difficult to understand their effects on

noise. Because the analog switches are directly in the signal path, they can contribute significant

amounts of noise and are the most important noise source that is not present in the model. In

addition, the Multisim model does not account for offset-nulling circuitry or bypass circuitry.

Offset-nulling circuitry on the THS4021 would enable the reduction of input offset voltage,

increasing the signal quality at low frequencies. Bypass circuitry is circuitry that ensures that

40

constant power is continuously supplied to the integrated circuits. It is relatively inconsequential

to the current preamplifier response but is closely related to the non-ideality of the power

sources. The model assumes that all sources are ideal and that all resistors have exact values,

which is not the case in real life. All components have various tolerances that must be accounted

for. In addition, the printed circuit board may have parasitic capacitances that may cause

significant differences between the simulated bandwidth and actual bandwidth if not designed

properly.

5.2 DAQ

The DAQ was tested first by connecting the system to the computer and verifying

communication, then by sampling noise on all four analog input channels and verifying data file

size. Then we sampled a sine wave at three different frequencies on each analog input channel

and verified that the wave was read in correctly, and then we tested the start trigger by running

the DAQ system with the SPM system and verifying when data collection began. Ideally, one

more kind of test can be performed, once COVID-19 has passed, with the SPM running tests on

samples with known or expected responses so that the DAQ data collection can be

comprehensively verified. The PLL was tested only in simulation due to COVID-19.

5.2.1 Main System

The initial DAQ system testing began when the DAQ was connected with the computer and we

ensured that communication occurred correctly. The very first tests of the controlling LabVIEW

software were ensuring that the file sizes were what we expected after running the software for a

particular amount of time and using a multimeter to check that all digital multiplexer select lines

were correctly 1 or 0 based on user input. During the initial connection between the DAQ

hardware and the lab computer, there were some communication issues, but after an extra NI

driver was installed, communication between the two devices was consistent. The first tests of

the analog input sampling involved sampling noise on all four analog input channels for a timed

interval (usually 10 seconds) and then checking to see that the output data file was the expected

size for data collection of that length of time. This test initially showed the error that the DAQ

was not taking enough samples because the data files were significantly smaller than they should

have been. However, after some debugging and design changes, this test yielded correctly sized

41

data files. In parallel with this file size test, the digitally output multiplexer select lines were also

tested by running through all sixteen possible 1/0 combinations on each select line and verifying

correct voltage output from the DAQ with a multimeter. With comparatively minimal debugging,

the LabVIEW software was passing this multimeter test. These initial tests helped uncover early

bugs in the controlling DAQ software so that later stages of programming were smoother.

Once the system passed initial tests, more stringent tests were devised to ensure that each analog

input channel correctly read in a sine wave generated by a function generator at different

frequencies. Then, we began testing while the SPM system was running to verify that the start

trigger worked correctly. To verify that data collection on each of the four analog input channels

occurred often enough and accurately, we began to sample sine waves of three different

frequencies from a function generator on one channel at a time and then plotting the raw data, as

in the example shown in Figure 18 on the next page, to verify that no distortions or data loss

occurred. With minimal extra debugging, the DAQ system passed these sine wave tests almost

immediately. Though we planned to later also run tests using very high-frequency sine waves to

strenuously test 4 MHz data collection, we were unable due to lab access closing because of

COVID-19. Once accurate data collection was verified as much as possible without the SPM

running, we began running the DAQ while the SPM was running a test. Before access to the

SPM system was cut off, we were able to verify that the start trigger correctly begins data

collection at the point an SPM test begins. We did this by starting the LabVIEW software, and

then waiting an arbitrary amount of time before starting an SPM test and watching the LabVIEW

software begin data collection immediately after. Though more thorough testing will need to be

done using the SPM system and the DAQ system in conjunction, these finished tests are enough

to be fairly confident that the DAQ system will perform within design specifications.

42

Figure 18. Sine Wave Test on DAQ Analog Input Channel 0

In the future, once the lab at Pickle Research Campus reopens, formal testing against known

datasets will need to be run with the DAQ system and the SPM system running. These tests

would involve taking data on a sample with a known response using the SPM and then verifying

that the raw data taken during the test by the DAQ system is as expected. Preferably, this can be

done on several samples. After this last testing step, the functionality of the DAQ system would

be fully verified and guaranteed (within tolerances) to be correct.

Tests of the connection between the DAQ and the computer, the data sampling rate on noise, the

data sampling rate and the data sampling accuracy on sine waves, and the start trigger feature

have verified the DAQ system to a level of reasonable expectation of correct functionality. Extra

tests on known samples using the SPM system will further ensure correct data collection.

5.2.2 PLL

In the testing phase, the PLL was not successful in outputting a consistent 4 MHz square wave.

The test involved feeding a computer-generated square wave into the input, with the output

settings configured to produce a 4 MHz square wave with the phase held constant to maintain a

constant phase difference. The output of this test was not a square wave, and can be seen in

43

Figure 19 below. The red waveform is the sample input waveform, and the white waveform is

the PLL output.

Figure 19. PLL Simulated Test Output

This output signal cannot be used as the square wave clock on which to base the rising edge

triggers because it is not a good square wave. The edges of this signal are both inconsistent and

poorly shaped. At high frequencies nearing 4 MHz, the output waveform alternated – sometimes

randomly, and sometimes uniformly – between a square wave and a triangle wave. This is an

unusually regular pattern in the output wave, which led us to believe that the test is failing not

fully because of the code design and may have something to do with the computer that it was run

on.

The software PLL also took around 60-90 seconds to establish the phase-stable output signal

when tested with a lower frequency input signal at around 400 kHz. This long time makes the

PLL unsuitable for the purpose of triggering measurements in its current state. There is a

parameter of PLLs called “lock time”, which describes the length of time between the moment

that the input signal is started and the moment that the PLL establishes the steady output signal

“locked” to the input. Normally, this time is a few cycles or less. The whole minute of lock time

we experienced during testing, as well as the performance of the software during the test led us

to another limitation of the PLL software. The computer needs to have the necessary processing

power to be able to keep up with the high frequency signal. We suspect the computer was the

bottleneck during the tests. At low frequencies below 10 kHz, the PLL was very responsive,

locking in only seconds. At higher frequencies, even after the PLL was established, the entire

44

computer was slow and unresponsive. Dependency on the machine’s hardware specifications not

only causes the lock time to be much longer, it also makes the lock time unpredictable and

inconsistent between runs. While a long lock time can be worked around, the inconsistency is

difficult to reconcile with programming or user procedures. Though the PLL has not been tested

directly on the lab computer because of COVID-19, it is unlikely that the software could perform

much better than the computer on which we ran the tests.

5.3 Data Processing

The processing testing is performed using a one-minute example TDMS file collected with

photodetector and position channels. Some of the tests were also accomplished with synthetic

data sets created in Excel, MATLAB, or Python. The main processing is written in Python 3

using the following libraries: NumPy, sys, os, npTDMS, SciPy, math, sklearn, csv, and

multiprocessing. Some of the testing requires using matplotlib, which we use and

recommend, for plotting the results to visually confirm the processing stage in question.

5.3.1 Individual Module Testing

The processing is started through the GUI using a command-line call to a Python executable. The

command-line call will pass in the location, name of the input raw data file, relevant statistics

from the measurement equipment and user selections, output filepath and filename, and

arguments. An example call, which should be given all in one line, is shown below:

Python3 ProcessingCaller.py "InputPath" fourChannelMinute 128 128

"OutputPath" processedData 1 1 10 1 10 1 10

The command-line command will call FreqClusterer with 13 arguments, tabulated in

Appendix C. ProcessingCaller starts the data processing and notifies the user by printing

“Start getData” to the console as it opens the TDMS file. The screen capture below shows the

test bench being run as “main” with the piece of processing under test as a function within the

same document. The results of the test were printed to the right as shown in Figure 20 on the

next page.

45

Figure 20. Processing Test 1: ProcessingCaller

To open the large amounts of data produced by the NI DAQ, our processing software uses the

NI-native TDMS format, supported by the npTDMS library in Python, to open the file and

extract each channel’s information. The channels are stored together as a NumPy-type array of

size 4xn samples. The testbench opens the designated TDMS file, stores it in a np.array, and

reads out the shape of the created array, as seen in Figure 21.

Figure 21. Processing Test 2: getData

46

The channel data is organized from the np.array as shown in Table 4. We want to organize

the selected data channel according to the spatial and time location where it was taken. This

organization, or blocking, is the first processing step.

Table 4. Channel Signals for SPM Tests

Channel 0 Channel 1 Channel 2 Channel 3

Conductive Tests Current Preamplifier Not Connected Tip Bias X Position

Non-conductive Tests Photodetector 1 Photodetector 2 Tip Bias X Position

With a small sinusoidal containing an offset input, the testbench was run to export a selected

XY-location as a plot. The large phase in the middle of the nonzero data arises from half of the

data coming from the AFM’s second pass across the location. Each location is zero-padded to

maintain consistency for the later processing, such as the normalized fast Fourier transform

shown in Figure 22.

Figure 22. Processing Test 3: Blocker3

The Fourier transform implementation is in the NumPy Python library, but the normalization

requires some validation. The normalization is done using the normDFT function shown in

Figure 23. The testbench applies a sine wave with good period relevance to the number of

samples for the FFT to pick out.

47

Figure 23. Processing Test 4: normDFT

In order to evaluate points across multiple Fourier transforms, each FFT was normalized such

that projected signal power would be above a given negative decibel. The data must then be

reorganized a second time for a more specially driven analysis if the points are above the

threshold. The thresholder testbench in Figure 24 creates a random array of decibel values,

evaluates the input statistics to generate a thresholder, and then restores the array with only the

values above the threshold.

48

Figure 24. Processing Test 5: thresholder

Finding spatially dense high points of frequency responses is our primary processing goal based

on the prior art and our stakeholder’s interest. ClusterFinder picks out the centers of these

highpoints, as shown in Figure 25. The testbench creates two sets of dummy centers with a

random scatter around them in the figure below. After returning, the centers are exported to a

CSV file.

Figure 25. Processing Test 6: ClusterFinder

49

5.3.2 Integration

Because of the long run times of the data sets, most integration testing has been done with

simulated data, but individual tests, as seen above, have largely been accomplished with both

simulated and real data. With a simulated data set as small as a few points, Figure 26 shows how

the data processing is capable of thresholding the raw data and extracting clusters of interest.

Figure 26. Processing Test 7: Integration

5.3.3 Visualization

After using artificial data to test the visualization code, the data from the DAQ and process

integration were used to test the visualization software. We immediately noticed that the output

data was in a different format than was readable by the visualization code, so this format had to

be adjusted before testing was finished. The visualization will be called by the GUI when the

user requests. Before integrating the GUI and the visualization, the command prompt was used to

call and test the visualization. To run the 3D cluster visualization, the command is:

python visualizing_cluster.py data_file.csv frequencybin_number

50

where data_file.csv contains the datafile to be visualized and frequencybin_number

indicates the frequency bin containing clusters of interest. Figure 27 shows a screen capture of

the output of the 3D cluster visualization using the sample processed data as the first argument

and choosing 400 as the frequency bin of interest.

Figure 27. 3D Visualization at 400 Hz Frequency Bin

The visualization script that generates a movie was tested by running a command in the

command prompt, although in reality the script will be called from the GUI with the command

python visualizing_movie.py data_file.csv movie_name.mp4

where data_file.csv is the data clusters to be visualized and movie_name.mp4 is the

name of the file the movie is being saved to. Figure 28 shows one frame from a generated

colormap movie.

Figure 28. Screenshot of One Frame of Colormap Movie

51

5.4 GUI

Due to its simplicity in functionality, the GUI did not undergo formal testing. Instead, it was

largely tested via manual inspection. To accomplish this, we simulated several common use

cases for the GUI and, through inspection and logging, verified that the GUI behaved as

expected in each case. Table 5 outlines these test cases and the expected behavior. Unfortunately,

we were unable to test the GUI in a lab setting due to COVID-19, and testing of the GUI in the

lab environment should be conducted when the lab reopens. However, we believe that the GUI

should behave as expected in the lab as well.

Table 5. GUI Use Case Tests

Use Case Expected Behavior

User clicks the “Start
Test” button.

The LabVIEW exe for the DAQ is launched with the correct
parameters, and the button turns red and reads “Stop Test.”

User clicks the “Start
Test” button when it
reads “Stop Test.”

The DAQ exe is successfully exited. Then, if enabled, the Python
processing script is launched with the correct parameters. Finally,
the movie generating script is launched upon processing
completion.

User clicks the “Start
Processing” button.

The processing software is launched with the correct parameters
and exits with code 0.

User clicks the “Display
Blob” button.

The blob visualization Python script is launched with the correct
file and blob number. The visualization is displayed properly.

User clicks the “Generate
Movie” button.

The movie generation Python script is launched with the correct
file. The movie is successfully generated and opened. The mp4 file
of the movie is saved to the specified location.

5.5 System-Level Testing

Following the individual subsystem tests, the integrated system should be tested thoroughly to

ensure we are receiving accurate data and are processing it correctly. It is important that each

subsystem documents their debugging so that when we test the system as a whole, we can more

easily pinpoint the source of the issue based on comparing the problem we encounter to the

previously documented problems. The unforeseen COVID-19 pandemic hindered our system

integration testing by prohibiting our access to the laboratory where the SPM system is located.

52

We were unable to test the integration of the current preamplifier into the SPM system because

of this.

In the future, when access to the lab and the SPM system is possible, the methods going forward

include testing the system by first comparing the new system acquisition and processing to a test

measurement from the current SPM setup. This can be done by acquiring a reference sample and

measuring the test sample on the original SPM system, then measuring the sample again but

using our system. Comparing the two datasets should give a general idea on whether the

measurements are being acquired and processed accurately. It may also be helpful to consult

prior art to find examples with which to compare our processing algorithms. We will then try to

replicate the processes described in the prior art and compare the results. While there is no way

for these results to completely confirm the accuracy of our measurements, these comparisons

will allow us to run multiple trials and see if we are getting similar results to the prior art, which

implies we are processing the data correctly as well.

6.0 TIME AND COST CONSIDERATIONS

Overall, the system developed mostly in line with planned time and cost projections. However,

the COVID-19 outbreak severely delayed testing in most cases, causing significant time delays.

Testing for the current preamplifier was one of the most delayed, and some extra costs were also

incurred due to COVID-19. The DAQ system met cost projections but was delayed several

weeks due to unforeseen errors in the controlling LabVIEW code. The data processing software

had no cost considerations but was also delayed in testing because of the COVID-19 outbreak.

The GUI software also had no cost considerations and was delayed because of necessary changes

to the programming language choice.

6.1 Current Preamplifier

The current preamplifier, in many ways, developed in a circular fashion; in fact, the final design

was one of the first ideas that we proposed but had scrapped at the time because we thought there

was something better that we had not discovered yet. It was only through understanding all of the

different gain, bandwidth, stability, and noise considerations that we could truly comprehend not

only the key issues affecting preamplifier design, but also why and how the Ithaco preamplifier

53

was so limited in its bandwidth, and why the simple solution was the best. Since the Ithaco

preamplifier was designed in the 1980s, it was limited by state-of-the-art amplifiers at the time.

Our only real innovation was to replace the amplifiers in the Ithaco circuit topology with current

state-of-the-art high-speed amplifiers that could handle 4 MHz signals. Even though the circuit

turned out to be very simple and could have taken less than a month to get right had we just

followed the Ithaco design, taking an entire school year to learn about and document all of the

tradeoffs in amplifier design for the specific application of the SPM will be useful for future

students to continue this work.

The current preamplifier was also the part of the project most affected by COVID-19. Due to the

emergence of COVID-19 first in China, and then its spread over the world, we were unable to

get functioning prototypes from either Chinese or US-based circuit board manufacturers before

COVID-19 shut all the research labs. We made several pivots, first ordering from Chinese

manufacturers, then from US-based manufacturers. This incurred additional costs that could have

been saved if we could have predicted the eventual quarantine. By the time all the boards arrived,

it was already spring break, and we did not have fabrication equipment at home. As a result, we

solely relied on Multisim to test and evaluate the circuit.

6.2 DAQ

The DAQ system as a whole was plagued by extra time costs. The main system required much

more debugging than the original schedule planned for. In addition, both the main system and the

PLL were affected by having access to the hardware and the lab at Pickle Research Center closed

by COVID-19.

6.2.1 Main System

The DAQ system met budget considerations but missed schedule considerations by about three

weeks due to many errors in the LabVIEW code. Cost for the DAQ system matched what was

expected since no extra parts were required beyond the initial purchase of the PXIe-6124 DAQ

card, the PXIe-1071 DAQ, and the TB-2706 for wiring. Time constraints for the DAQ system

were less accurate. Due to the unforeseen challenges of programming with LabVIEW, the

software took much longer than expected to finish. Dr. Heath and NI engineers were very helpful

54

with resolving errors and debugging so that the system was finished only approximately three

weeks behind the original schedule. The other issue with the DAQ system schedule is that

exhaustive testing will not be able to take place at all by our team due to the Pickle Campus

being shut because of COVID-19. However, the code has been tested in simulation and some

testing was done involving using the function generator as previously mentioned. We expect that

the DAQ system will function as intended when the Pickle Research Campus is reopened and

available for use.

6.2.2 PLL

The PLL was initially considered a stretch goal and became viable in the first half of the spring

semester, and it represented good progress in the other components of the project. However,

because it was only started later in the design process, we did not complete it on schedule along

with all of the other components. The time between the moment we began the PLL and the

COVID-19 pandemic was not enough to work through the iterations of design and testing,

especially because the team lost the ability to perform tests in the lab on the actual hardware.

After the labs reopen, the design and testing process of the PLL can continue.

6.3 Data Processing

The data processing did not have any budget constraints since all the software applications were

publicly available. While further, more complex analysis would have been advantageous to

rigorously test the processing, the predetermined schedule to develop the processing algorithm

and visualization was met. The visualization took a few weeks longer than intended due to

overcoming the Python learning curve and a slow computer, however it was able to be completed

before the final showcase. COVID-19 did not conflict with the design and development of the

software due to software being a remote-friendly task; however, portions of the testing were not

completed since we did not have access to the SPM system after the shelter in place for Austin

was enacted.

6.4 GUI

The development of the GUI took about a month longer than intended, after its completion was

delayed twice. First, due to the previously discussed bug that prevented the ReactJS-based GUI

55

from launching the LabVIEW executable and the Python scripts, the ReactJS-based GUI

ultimately had to be scrapped, and a new GUI in JavaFX had to be built. Second, Katherine, the

lead GUI developer, got sick while attempting to address the bug, which meant the start of the

JavaFX-based GUI was delayed. However, the GUI was ultimately completed successfully in

time for the project video to be produced.

7.0 SAFETY AND ETHICAL ASPECTS OF DESIGN

Several kinds of ethical and safety considerations apply to our design. For the current

preamplifier, safety concerns included ways to limit injury to the user and components from

current or voltage. For the DAQ system, there are concerns for error handling in the code and the

specific power-on and power-off sequences so as not to mess up the installed driver software.

The main safety concerns for the data processing software are documentation and outputting

error messages to the user at correct times. The main ethical concern for the GUI software was to

avoid plagiarizing existing code.

7.1 Current Preamplifier

In our design, we have several circuits that protect both the circuit and the user from sustaining

injury. First, in the production schematic, we implemented a rocker switch to turn the device on

and off. The rocker switch breaks the power circuit from the rest of the circuit when the device is

not in use so that the sensitive op amp components will not be annihilated by a power surge.

Bypass capacitors also ensure that the op amp power rails remain constant and resilient to

changes in the power provided by the power circuit. Second, we chose to use a wall plug to

convert AC electrical power from the grid to usable DC values. Coupled with an isolated DC-DC

converter, the power circuit provides a safe, constant 9 V DC power supply to the op amps in the

preamplifier. The 9 V supply sets the power rails of the op amps, so that they cannot maintain

output voltages larger than 9 V.

There are several aspects of the current preamplifier that we did not have time to implement that

could contribute to the safety of the device. First, there is no input overvoltage protection or

current suppression. Spikes in SPM current may saturate the op amps and give unreliable

readings. Large spikes may cause the transimpedance amplifier to try to output above its power

56

rating and burn out. Second, due to the sensitivity of the op amp components, the op amps may

experience drifts in gain and response over the course of a year or two. The manufacturers

recommend replacing the components or just buying a new board once a year to two years to

maintain good response.

7.2 DAQ

As a system, the main safety concerns for the DAQ are related to the correctness of the software.

Neither the software for the main system nor for the PLL implements any error checking or

correction. Also, the driver software installed on the interfacing computer for the DAQ system

requires a specific power-up sequence. The PLL needs considerations for the time it takes to start

up.

7.2.1 Main System

The main safety concerns for the DAQ system are software related: the driver software installed

in the lab computer requires the two parts of the system to be powered in a certain sequence, and

error handling/checking is not yet implemented in the current version of the LabVIEW software.

The first safety consideration for the DAQ system is that the two systems must be powered on

and off in a specific order so as not to ruin the installed driver software: the DAQ must be

powered on, and then the lab computer, and then the lab computer must be powered off before

the DAQ is powered off. Essentially, the DAQ must be on the entire time the lab computer is on.

The second safety consideration is error handling within the LabVIEW software in case a fatal

error occurs during operation. Currently, if a fatal error arises, the LabVIEW program will

simply crash. Due to complications introduced by COVID-19, error handling is not implemented

in the current version of the LabVIEW software but could be added later when access to the

SPM system is again available. The DAQ system is safe for users and best practices to prevent

software errors are documented.

7.2.2 PLL

Special considerations for use must be taken into account because of the PLL lock time. Too

long of a lock time means that the DAQ will not begin to take usable measurements until long

after the SPM test begins. The system could deal with a longer lock time simply by starting the

57

SPM test before the measurements and discarding the data taken before accurate measurements

began, even if the time is long, and the test could be repeated to collect any data missed the first

time around. The more difficult problem comes from the inconsistent lock times. Even if the

software is adjusted to only take data a minute after the PLL is started, some deviation in the

input or in the parameters could cause the lock time to take even longer. Any data taken before

the PLL is locked is inaccurate and should be discarded; however, it would be unfeasible for the

user to know the difference between the good and bad data, so the test would either have to be

repeated, or written off as unobtainable.

7.3 Data Processing

The data processing needed to consider the documentation of libraries used, assumptions made to

ensure easy debugging and reliable information for future users, and outputting error messages

which indicate when a projected error will occur. The safety concerns for the data processing are

related to the version of Python and the Python libraries utilized. Mismatch in the Python and

Python library versions can be prevented by documenting the versions currently used to write the

code. Ethically, the biggest concern is to output as accurate as possible information from the data

processing. Where assumptions were made, documentation should be prominently placed such

that the user will understand how the clusters were developed and what they mean. By making

this information readily available, the researcher operating the system will be able to more easily

assess the validity and importance of the results they are receiving. The main safety precaution

for the visualization is that there will be an error message displayed if a user inputs a frequency

that is out of the range of the data set. This will prevent the user from having debug issues in the

future.

7.4 GUI

The only ethical concerns we faced while developing the GUI is to avoid plagiarizing code and

cite any sources we frequently referenced. We also designed font sizes to be large enough to be

accessible to those with visual impairments. While other steps, such as designing stylesheets

with contrasting colors, in the final GUI could have been taken and should be taken in the future,

we decided to focus on testing the GUI’s functionality with the rest of the system. In addition,

other accessibility features that we considered but did not have time to implement include audio

58

buttons reading the on-screen text as well as interfacing with speech recognition software to

make the GUI hands-free. These should be included in the next iteration of the GUI.

8.0 RECOMMENDATIONS

There are many future recommendations for our project, some because of plans that were pushed

back due to COVID-19. For the current preamplifier, more testing must be done, and some extra

circuitry could be implemented. For the DAQ system, more testing should be done, the

LabVIEW code could be structured better, and more automation of tasks could be added. For the

data processing code many more libraries and extra kinds of processing can be integrated. For

the GUI, more user features can be added for safety and ease-of-use.

8.1 Current Preamplifier

Future work on the current preamplifier, besides ordering boards and testing, should implement

overvoltage and current suppression circuitry to prevent large spikes in SPM current from

destroying sensitive op amp components. Some suggestions on how to approach overvoltage

protection and current suppression are given in the Ithaco preamplifier manual. In addition,

future designers should investigate higher-order and active filters to continue to decrease the

noise in the preamplifier output and re-optimize the current filters based on data from an actual

hardware printed circuit board. Finally, future users should consider building a metal chassis and

enclosure for the device to keep electromagnetic interference from entering the circuit.

Alternative wiring solutions may also improve input and output signal quality, which will be

useful for better data processing.

8.2 DAQ

For the DAQ system in the future, more testing should be done on both the main system and the

PLL. Also, the PLL code should be integrated with the main system code, which will then

require other tests to ensure correctness and reliability. For the main system code, more

modularity and user configuration could be achieved. Also, it would be nice to design an

automated solution to switch signals on analog input channel 0. For the PLL, a hardware solution

might need to be designed to replace the current software solution.

59

8.2.1 Main System

In the future, another category of tests should be done on the DAQ system, the code can be made

more modular and allow for more runtime customization, and an automated system can be

designed to make switching signals on analog input channel 0 easier. As mentioned previously,

one more kind of test involving sampling on known samples with the SPM system is

recommended. This can be completed once access to the Pickle Research Campus lab is allowed.

It would also be a nice feature for users and anyone maintaining the LabVIEW code for the

LabVIEW code to be more modular, and possibly for more settings to be customizable at run

time by the user through command line arguments from the GUI. In addition, a system to

automate the switching of the analog input channel 0 wiring from the tip bias signal to the

vertical photodiode signal would be very useful. Mainly, future work on the DAQ system

includes one more kind of test, a more customizable user experience, and an automated solution

for switching the input signal on analog input channel 0.

8.2.2 PLL

In the future, the PLL code should be modified to more efficiently create a stable square wave to

output on one of the DAQ’s digital output lines. Once there is a sharp enough rising edge in the

system, the signal can be fed back into an input to be used as a sampling trigger. Some more

code would have to be written to use this sampling trigger signal as the clock to synchronize

DAQ sampling. After the lab is reopened, a true hardware test can be run where the PLL output

is confirmed to be a sufficiently accurate and consistent signal relative to the input from the

amplifier. This can be verified with an oscilloscope connected to both the tip signal and the PLL

output signal. It would also be good to take into account the possibility that the desired

functionality of the PLL as designed is not achievable in the system, either because of software

design or, more likely, the technical specifications of our computer or DAQ hardware. In the

case that the desired functionality is impossible, the responsiveness of the software PLL with all

its user and software adjustability might be sacrificed for a consistent but rigid hardware option.

Designing the PLL as a hardware component alongside the preamplifier could give the reliable 4

MHz square wave that we need, at the cost of the ability to easily configure the PLL in software.

60

8.3 Data Processing

The recommendations for the data processing modules include expanding the processing

algorithm to include other types of measurements, integration of machine learning to determine

interesting patterns in frequency response over time, updated visualization features, and

continuation of the multiprocessing integration. Going forward there are numerous other

methods that can be integrated into our system to gather interesting data from various other types

of measurements, for example capacitance and surface charge information. There are a number

of experiments that can be run on the SPM system, such as Kelvin Probe Microscopy. In

addition, it could be interesting to integrate further machine learning aspects into the data

processing. If the system could gather the processed data and find patterns in the frequency

response that change with time, for instance, then that eases the burden on the user. Instead of

watching the video and finding patterns that relate to each cluster as frequency changes, the

machine will be able to find and pinpoint these interesting patterns. In addition, as these new

algorithms are developed, new scripts will need to be integrated in order to visualize the data.

One interesting idea is to have the functionality of hovering over a cluster's amplitude on the

colorbar and developing a movie that will play showing all the frequency clusters at the chosen

frequency bin. Playing a movie that shows specific frequency clusters would help the user find

frequency bins with similar characteristics. Finally, it would also be helpful to put more research

and time into integrating the multiprocessing more fully into the data processing code.

Restructuring the code to allow for much more multiprocessing would allow significant speed up

to be achieved even on the largest datasets, particularly since many of the data processing

algorithms are made up mostly of matrix manipulation and multiple indices can be modified at

the same time without interfering with each other.

8.4 GUI

As new features--namely, the preamplifier and the PLL--are incorporated into the system as a

whole, new features will need to be added to the GUI. First, several warnings should be added to

protect the preamplifier when it is incorporated into the system. These warnings include:

 A warning that appears when the preamplifier is enabled that tells the user to turn the

preamplifier off if not using it for current measurements.

 A warning that currents greater than 10mA may damage the amplifier board.

61

 A warning that appears when “10pA to 2nA” or “10pA to 200pA” are selected that

notifies the user that noise may obscure true measurements for currents these small.

 A warning that indicates the bandwidth of the selected amplifier gains and tells the user

not to sample over this frequency.

Further, after the PLL is incorporated into the system, a countdown timer that tells the user when

the DAQ has been initialized and is ready to begin collecting data is recommended. Because the

PLL can take several minutes to initialize, and the DAQ cannot begin collecting data until after

the PLL finishes initializing; a fixed time greater than the PLL initialization time can be chosen

for this countdown. After the timer has finished, the GUI can indicate to the user that it is safe to

start the SPM. Finally, designing for accessibility, discussed in Section 7.4, should be included

as a priority in later iterations of the GUI.

9.0 CONCLUSION

During the course of this project, our team aimed to design, construct, and demonstrate a high-

speed data acquisition and processing interface that interacts with a scanning probe microscope

to generate nanoscale images for analysis. We modified an existing SPM system to collect data

on the order of megahertz and generate time series to achieve highly dynamic and sensitive

readings at the nanoscale. These modifications included adding a current preamplifier, an

external DAQ, data processing and visualization modules, and a GUI. While we were able to

design prototypes for each of these subsystems, we were unfortunately unable to build and

thoroughly test all of them due to COVID-19. As a result, there is much work we recommend be

done on the project in the future.

First, our system was not integrated and rigorously tested, as we had set out to do at the

beginning of the year. Each subsystem was designed, implemented, and tested to the best of our

abilities, given the COVID-19 crisis. However, while we were able to show our preamplifier

design worked in simulations, a completed preamplifier board was never assembled.

Furthermore, the PLL was never tested within the DAQ software in a lab setting. We were also

unable to integrate our subsystems into a complete system, due to the lab being closed because of

COVID-19. As a result, we were unable to do system-level testing on our system, and we have to

62

rely on the results of our subsystem-level testing to prove our implementation will work as

expected.

In the future, there is much work to still be done on the project to complete each subsystem and

ultimately integrate the system. First, the preamplifier prototypes need to be assembled and

tested. Next, the PLL needs to be integrated into the DAQ code, and the DAQ subsystem needs

to be further tested in the lab environment. The multiprocessing work needs to continue on the

processing software to make it more efficient, and the processing software should be tested on

more data sets. As the PLL and the preamplifier are integrated into the system, new warnings and

popups need to be added to the GUI for safety purposes. Finally, the entire system needs to be

assembled in the lab and rigorously tested.

All in all, given the unexpected complexity of our project, the unforeseen technical challenges

we encountered, and the unprecedented circumstances caused by COVID-19, our team is

extraordinarily proud of the work we have been able to accomplish this semester. We are

thankful for the opportunity to work on such a project, and we greatly appreciate all the

resources and support we received along the way. In the future, we hope that other teams will

continue and build upon the work we have done, and our system will one day be used to further

nanoscale research.

63

ACKNOWLEDGEMENTS

Over the course of two semesters, we encountered many people in our lives who supported us,

aided us, counseled us, and advised us as we progressed in our project. We would like to thank

Dr. Edward T. Yu for proposing and initiating the senior design project in the first place and

guiding us through the project even when there was no clear sight of the end. We would also like

to thank Dr. Yu’s graduate students, particularly Ted Kim, for mentoring us in our initial

exposures to the SPM, training us, and collecting all the usable data for us because we were too

scared put a really expensive machine out of commission for six months. In addition to Dr. Yu

and his research assistants, our technical teaching assistants, Javier Rodriguez-Fernandez and

Kassandra Perez, and our year-long writing teaching assistant, Hanan Hashem, formed the

backbone of our support network in terms of the yearlong senior design course and provided

valuable feedback to the project and the paper. We would also like to thank Dr. Robert Heath

and Dr. Bill Fagelson for providing a framework and structure to approach a truly massive

intellectual and technical endeavor. Along the way, we also had many valuable conversations

with National Instruments engineers, Dr. Brian Evans, and Dr. Vijay Garg, who aided in various

aspects of the project. Mark Innmon, technical staff in the ECE labs, also provided tremendous

support through the soldering lab and his many years’ wisdom and experience soldering pesky

integrated circuit chips with and without a reflow oven. Lastly, and perhaps most importantly,

we cannot forget all the cats, memes, and cat memes that helped us remain at least somewhat

sane throughout the senior design course and the course of the project. God bless the internet.

64

REFERENCES

[1] Solares D. Santiago, “Subsurface Imaging of Soft Matter by AFM”, Imaging &
Microscopy, Mar. 16, 2015. [Available Online]. https://www.imaging-
git.com/science/scanning-probe-microscopy/subsurface-imaging-soft-matter-afm

[2] “NI 6124/6154 User Manual”, PXIe-6124 Refrence Material, National Instruments. Aug.
2018. [Available Online]. http://www.ni.com/pdf/manuals/372613a.pdf

[3] Model 1211 Current Preamplifier, DL Instruments, Ithaca, NY, USA, 2000.

[4] H. Hashemi, “Transimpedance Amplifiers (TIA): Choosing the Best Amplifier for the

Job,” Texas Instruments Incorporated, Dallas, TX, Application Report SNOA942A, Nov.
2015.

[5] X. Ramus, “Transimpedance Considerations for High-Speed Amplifiers,” Texas
Instruments Incorporated, Dallas, TX, Application Report SBOA122, Nov. 2009.

[6] L. Orozco, “Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in
Spectroscopy Systems,” Analog Dialogue, vol. 47, no. 5, pp. 1-5, May 2013.

[7] “PLL - Phased Locked Loop,” NI Community, National Instruments 30-Jan-2017.

[Available Online]. https://forums.ni.com/t5/Example-Code/PLL-Phased-Locked-Loop/ta-
p/3492731?profile.language=en

[8] L. Collins, A. Belianinov, S. Somnath, N. Balke, S. V. Kalinin, and S. Jesse, “Full Data

Acquisition in Kelvin Probe Force Microscopy: Mapping Dynamic Electric Phenomena in
Real Space Scientific Reports”, Oak Ridge National Laboratory. 12 August 2016.

A-1

APPENDIX A – SUPPLEMENTAL INFORMATION FOR CURRENT PREAMPLIFIER

A-2

APPENDIX A – SUPPLEMENTAL INFORMATION FOR CURRENT PREAMPLIFIER

Table A-1. Annotated Bibliography

[1] H. Hashemi, “Transimpedance Amplifiers (TIA): Choosing the Best Amplifier for the

Job,” Texas Instruments Incorporated, Dallas, TX, Application Report SNOA942A,
Nov. 2015.

This application report from Texas Instruments contains a good high-level overview of
how to choose an op amp to use in a TIA circuit and gives an example of the decision
process with three of TI’s own amplifiers. It also discusses post-TIA amplification in
greater detail. Most of the theoretical content in this user guide (and the final preamp
design) was developed from this article.

[2] X. Ramus, “Transimpedance Considerations for High-Speed Amplifiers,” Texas
Instruments Incorporated, Dallas, TX, Application Report SBOA122, Nov. 2009.

This source is similar to [1], except that it takes a slightly more mathematical approach
to choosing a good op amp for a TIA circuit. It is also a good summary of key
considerations for TIA design.

[3] P. C. D. Hobbs, “Photodiode Front Ends: The REAL Story,” Optics & Photonics News,
vol. 12, no. 4, pp. 44-47, Apr. 2001.

This article gives various ideas and circuit topologies for increasing bandwidth using
non-traditional circuit topologies. The author discusses bootstrapping, cascodes, and
other non-linear devices that may improve bandwidth and SNR. It may provide other
ideas to increase bandwidth without sacrificing gain.

[4] Model 1211 Current Preamplifier, DL Instruments, Ithaca, NY, USA, 2000.

This manual is the original Ithaco current preamplifier in the lab. It contains a block
diagram of the preamp, diagrams for most of the internal circuitry, a bill of materials,
and more on the device, but not a lot on the theory of operation. Another datasheet lists
the main features of the Ithaco preamp, but does not have as much detail.

[5] J. Ardizzoni, "A Practical Guide to High-Speed PCB Layout", Analog Dialogue, vol.
39, no. 9, Sept 2005.

This article gives many practical considerations for high-speed PCB layout. For high-
speed amplifier circuits, bypass capacitors on power rails and short trace lengths
(smaller distance for signal to travel) were the main takeaways from this article. Other
ideas, such as using surface-mount (SMD/SMT) components, ground planes, and vias
were also useful.

A-3

[6] D. Kleijer, Op-amp noise calculator. Accessed on: Apr. 20, 2020. [Online]. Available:
http://dicks-website.eu/noisecalculator/index.html

This website is an op amp noise calculator. It gives various common op amp topologies
and lists the formulas for the noise contribution of each component. The site does not
include a transimpedance topology, but it does include a non-inverting and inverting op
amp. It is most useful for calculating the noise figure of the post-amplifier, which can
then be used to calculate the resulting SNR of the entire current preamplifier with Friis’
Formula.

[7] M. Steffes, “Noise Analysis in High-Speed Op Amps,” Texas Instruments Incorporated,
Dallas, TX, Application Report SBOA066A, Oct. 1996.

This application report from TI gives a comprehensive overview of noise analysis for
high-speed operational amplifiers. It contains much of the theory and modeling
techniques used to calculate spectral noise density and integrated noise.

[8] J. Karki, “Active Low-Pass Filter Design,” Texas Instruments Incorporated, Dallas, TX,
Application Report SLOA049B, Sep. 2002.

This application report from TI gives several suggestions for active low-pass filters. It
goes into the theory and proposes several types and topologies for higher-order low-pass
filters, including the Sallen-Key and multiple feedback (MFB) architectures. Higher-
order filters may be able to reduce current preamplifier noise to below DAQ-detectable
levels.

[9] L. Orozco, “Programmable-Gain Transimpedance Amplifiers Maximize Dynamic
Range in Spectroscopy Systems,” Analog Dialogue, vol. 47, no. 5, pp. 1-5, May 2013.

This application report from Analog Devices outlines the theory of operation behind the
gain-setting circuit used in the current preamplifier design. The article also notes that
parasitic switch capacitances can reduce the bandwidth of the current preamplifier and
proposes different solutions to reduce the effect of parasitic capacitances in the analog
multiplexers.

A-4

Table A-2. Transimpedance Amplifier Noise Phenomena

Type of Noise Definition Source Effect
Input offset
voltage

Voltage difference between
input terminals of op amp

Op amp transistor
non-idealities

DC offset voltage on
output; can be nulled with
circuits

Input offset
current

Current difference between
input terminals of op amp

Op amp transistor
non-idealities

Generally not important
for TIAs

Input bias
voltage

Voltage necessary to bias
internal op amp transistors

Op amp transistor
non-idealities

Generally not important
for TIAs

Input bias
current

Current necessary to bias the
internal op amp transistors,
flows into terminals of op
amp

Op amp transistor
non-idealities

Some of the input current
signal has to go into op
amp, so less current going
through feedback path,
which causes output error

Input voltage
noise

Small voltage fluctuations at
input terminals
(Flicker aka 1/f noise at low
freq; shot noise at high freq)

Op amp transistor
non-idealities

Disproportionately affects
frequencies less than 100
Hz; distorted AC
response

Input current
noise

Small current fluctuations at
input terminals

Op amp transistor
non-idealities

Disproportionately affects
frequencies less than 100
Hz; distorted AC
response

Output
voltage noise

Small voltage fluctuations at
output terminal

Op amp transistor
non-idealities

Usually not dominant
source of noise, eclipsed
by other noise sources

Thermal noise Thermal excitation of charge
carriers in resistors

Feedback resistor 𝑅 is inversely
proportional to thermal
noise

Input
Capacitance

Capacitance on the input
terminals

Op amp terminals,
PCB capacitance,
input wire (e.g.
BNC) capacitance

Reduces bandwidth

A-5

Table A-3. Input Current Range Mappings

Input Current Range Arg 1 Arg 2 Arg 3 Arg 4

0.1 mA to 10 mA +0 +0 +0 +0

10 uA to 1 mA +0 +0 +255 +0

1 uA to 100 uA +0 +255 +0 +0

100 nA to 10 uA +0 +255 +255 +0

10 nA to 1 uA +255 +0 +0 +0

5 nA to 100 nA +255 +0 +0 +255

0.5 nA to 10 nA +255 +0 +255 +255

50 pA to 1 nA +255 +255 +0 +255

10 pA to 100 pA +255 +255 +255 +255

B-1

APPENDIX B – DAQ PINOUT TABLE

B-2

APPENDIX B – DAQ PINOUT TABLE

 Pin Name Pin Number Signal Connected To

ANALOG IN

AI0 + 68
Tip Bias OR Vertical

Photodiode
Current Preamplifier OR Signal Access
Module

AI0 - 34 Vertical Photodiode Signal Access Module

AI0 GND 67 Tip Bias Current Preamplifier

AI1 + 33 Lateral Photodiode Signal Access Module

AI1 - 66 Lateral Photodiode Signal Access Module

AI2 + 65 Tip Voltage Signal Access Module

AI2 - 31 Tip Voltage Signal Access Module

AI3 + 30 X Tip Position Signal Access Module

AI3 - 63 X Tip Position Signal Access Module

DIGITAL
OUT

P2.0 37 Mux Select 2 Current Preamplifier

DGND 36 Mux Select 2 GND Current Preamplifier

P2.4 2 Mux Select 0 Current Preamplifier

DGND 35 Mux Select 0 GND Current Preamplifier

P2.6 1 Mux Select 1 Current Preamplifier

DGND 35 Mux Select 1 GND Current Preamplifier

P2.7 39 Mux Select 3 Current Preamplifier

DGND 36 Mux Select 3 GND Current Preamplifier

C-1

APPENDIX C – PROCESSING MODULE ARGUMENTS

C-2

APPENDIX C – PROCESSING MODULE ARGUMENTS

Argument Number Description

0 Path to the labview generated TDMS raw data file

1 Name of the TDMS file

2 Number of X pixels in spm text

3 Number of Y pixels in spm text

4 Path to save created files

5 Name for created files (will be used for CSV and video outputs)

6 Test being ran (0=current, 1=photodetector)

7 Tested noise current

8 Expected SNR of current

9 Tested noise photodetector 1

10 Expected SNR of photodetector 1

11 Tested noise photodetector 2

12 Expected SNR of photodetector 2

