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ABSTRACT:  

 

The main goal of this study is to determine whether machine learning can outperform 

analysts in forecasting earnings. Using gradient boosted regression trees (a recursive regression 

tree-building method), this paper concludes that machine learning is unable to beat analysts’ 

predictions for earnings, when comparing median absolute percentage error. The model was 

trained on firms with Wall Street analyst coverage for earnings between years 2013 to 2016. 

Predictors from existing earnings forecasting literature were input for the model’s consideration. 

The model’s performance was compared to analysts’ forecasts on out-of-sample earnings for 

years 2017 to 2019. The results suggest that analysts hold some incremental information that is 

useful for forecasting earnings. This incremental information is either not contained in financial 

statements or has not been researched in existing literature.  
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1. INTRODUCTION 

 

The existing literature on earnings forecasts has used two approaches: time series 

modeling and cross-sectional forecasts. Both approaches require users to specify and fit a model, 

a priori. This paper offers a different approach from existing literature – machine learning.   

For the purpose of this research, a gradient boosted regression tree (GBRT) is trained on 

historical public data to determine whether machine learning can outperform analysts or whether 

analysts offer additional useful information that is not contained in financial statements.  

A GBRT is chosen because of its ubiquitous use in industry for a variety of applications. 

GBRTs forecast by recursively building a series of regression trees that build off the residuals of 

previous trees. In contrast to other machine learning methods, GBRTs cannot consider all 

possible relationships between all predictors; the user must specify features to input into the 

model for consideration. Variables found in existing literature that were predictive of earnings 

are input into the model. The model is trained on firms found in Compustat that are covered by 

Wall Street analysts. Analysts’ forecasts are found in the IBES summary dataset. Due to machine 

limitations, the training data is limited to earnings from years 2013 to 2016. These years were 

arbitrarily chosen by the RAM limits on a 256 GiB machine.    

It is hypothesized that machine learning will not outperform analysts in forecasting 

earnings because analysts have opportunities to learn different information from firms that 

machines cannot learn from a financial statement. For example, analysts may talk to people 

within firms – something a machine cannot do. Additionally, the GBRT model represents the 

best predictors that exist in the literature. It is unlikely that the existing literature has extracted as 

much information for predicting earnings as analysts have.  
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In out-of-sample forecasts (years 2017 to 2019), this research found that the GBRT 

model does not outperform analysts, as determined by median absolute percentage error 

(MdAPE), in predicting earnings. This confirms the initial hypothesis and suggests several 

important implications: (1) analysts still offer incremental-value to forecasting earnings beyond 

information that is available in historical financial statements, and (2) as machine learning 

becomes more widely adopted by industry, stock prices will more efficiently reflect financial 

statement information.  

The rest of the paper is organized as follows. Section 2 will offer a literature review of 

earnings forecasts and machine learning methods used with financial statement data. Section 3 

will discuss the theory and implementation of GBRT and provide a brief discussion of the data. 

Section 4 will present results and offer discussion. Section 5 will highlight the limitations of the 

analysis. Finally, Session 6 will provide future areas of research to consider.  

2. LITERATURE REVIEW 

 

The literature relevant to the analysis can be categorized into three areas: time-series 

models for predicting earnings, financial statement models for predicting earnings, and (3) 

machine learning models.   

2.1 Time-Series Models 

The literature for predicting earnings spans decades. Early research of methodologies for 

predicting earnings consist of autoregressive integrated moving average (ARIMA) models 

combined with the Box-Jenkins (B-J) method to predict quarterly earnings (Foster 1977). After 

these models were established, papers such as Brown and Rozeff (1979) sought to optimize the 

various parameters of the B-J model and recommend them for benchmarking analysts’ forecasts. 

However, these B-J time series models have strict assumptions (survivorship and age 
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requirements). Practically speaking, this limits the sample size to firms with sufficient historical 

data. Additionally, these time series models have shown to be less accurate than analysts’ 

forecasts (Brown, Hagerman, Griffin, and Zmijewski [1987]).  

One potential explanation as to why B-J models cannot beat analysts is because analysts 

are able to incorporate information more frequently into their forecasts. One solution was 

proposed in Ball and Ghysels (2017), which employed mixed data sampling (MIDAS) regression 

methods to predict earnings. This method allows models to use time series data sampled at 

different frequencies. Ball and Ghysels (2017) built their model and compared it to analysts’ 

forecasts. They found that for smaller sized firm and higher forecasts dispersions, their model 

outperformed analysts. Overall, when they combined their model with analysts’ forecasts, they 

were able to outperform analysts alone. However, these alternatives modeling approaches still do 

not employ machine learning.   

2.2 Financial Statement Models 

A large body of literature studies the ability of fundamental analysis to predict 

performance. Lev and Thiagarajan (1993) identified twelve fundamental signals that analysts 

claimed to use and determined whether these variables were useful for predicting persistent 

earnings (measured by ERC and future earnings growth). The signals were: (1) accounts 

receivable, (2) inventory, (3) Capital Expenditure, (4) R&D, (5) Gross Margin, (6) S&A, (7) 

Provision for Doubtful Receivables, (8) Effective Tax, (9) Order Backlog, (10) Labor Force, (11) 

LIFO Earnings, and (12) Audit Qualification. Among their findings, the authors found that 

fundamentals were associated with these two measures. Their analysis also revealed that an 

interaction effect exists between fundamentals and macroeconomic conditions when predicting 

earnings. On their own, several variables were weakly relevant; however, when conditioned 
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under macroeconomic variables (e.g. accounts receivables during high inflation), they were 

strongly correlated with returns. 

Abarbanell and Bushee (1997) responded to Lev and Thiagarjan (1993) by questioning 

the extent to which analysts actually use the signals that they claim. To accomplish this, they 

determined whether analysts effectively use information from fundamental signals. This paper 

concluded that while analysts’ forecasts revisions were aligned with many fundamentals, the 

revisions did not incorporate all the information available from fundamentals. Therefore, this 

paper found that in general, analysts underreact to accounting information.  

To solve for the shortcomings of analysts’ forecasts, recent research uses cross-sectional 

regression models of financial statement data to forecast earnings. The most popular such model 

was built by Hou, Van Dijk, and Zhang (HVZ) (2012). This model estimated pooled regression 

coefficients (using ten years of lagged data). The cross-sectional model regressed total assets, 

dividends, current period's earnings, an indicator variable of loss, and working capital accruals 

on future earnings (1 to 5 years horizon). This model is significant because its cross-sectional 

approach allows researchers to bypass the strict requirements of time series models.  

Numerous papers critique and extend the HVZ model.  

One such paper is Li and Mohanram (2014, LM). LM attempted to build a model that 

could beat HVZ. They used a different approach, a Residual Income (RI) model, to predict future 

EPS. This model emphasized book value and total accruals. The RI model was 28-38% more 

accurate than the HVZ model. Another such paper is So (2013). So (2013) showed that the 

model in HVZ could be extended to predicting analysts EPS forecast error. So (2013) concluded 

that analysts are slow to incorporate historical financial statement information, and that investors 
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overweight analysts’ forecasts and consequently ignore considerable amounts of information 

imbedded in financial statements. 

Gerakos and Gramacy (2013, GG) evaluated various methodological choices in these 

papers. GG found that the best performing model (defined as the one with the least mean-squared 

predictive error) hinged critically on whether the researcher scaled the variables, winsorized the 

variables, and the forecast horizon. In general, they found that parsimonious time-series models 

(random walk and AR(1)) are more robust and generally performed better than cross-sectional 

regressions. 

2.3 Machine Learning with Financial Statement Data 

This paper builds upon recent literature that uses machine learning (ML) to predict 

financial statement fraud. Perols (2011) compares various machine learning to logistic regression 

to predict fraud. The various machine-learning methods studied include neural networks and 

support vector machines (SVMs). Surprisingly, Perols (2011) found that logistic regression and 

SVMs perform the best. Similarly, Bertomeu, Cheynel, Floyd, and Pan (2019) extend Perols 

(2011) by comparing logistic regression and gradient-boosted regression trees. They find 

gradient-boosted regression trees provide considerably more accurate fraud predictions than 

logistic regression. The research in this paper extends those in the literature by applying similar 

machine-learnings techniques to the prediction of earnings. 

The most recent research uses machine learning to determine which fundamentals 

influence performance. Binz (2019) applies a neural network to Nissim and Penman (2001)’s 

equity valuation framework. Binz compares the ability of the neural network to predict 

fundamental values, with the ability of the HVZ earnings forecasts to predict fundamental 

values. Anand, Brunner, Ikegwu, and Sougiannis (2019) use yet another machine learning tool, 
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random forests, to predict profitability. They find their model is significantly more accurate than 

a random walk.  Neither of these studies compared their models to analysts’ forecasts.   

This paper builds upon but is different from the current literature in several ways. First, 

this research employs newer ML methods – gradient-boosted regression trees. These methods are 

widely used in industry. Second, this paper offers a comparison between the performances of 

analysts’ forecasts (‘human forecasts’) and machine (‘AI forecasts’).  

This design and comparison to analysts enables several novel insights into the maximum 

predictive value of financial statements for future earnings and the corresponding value of 

analyst forecasts. Can we produce forecasts at least as accurate as analysts using only historical 

financial statement data? Are human analysts still-value added? Can their forecasts provide 

informational-value beyond that which a machine can extract from historical public data alone? 

If machine learning becomes widely adopted by industry, will that lead to stock prices more 

efficiently reflecting fundamental or less reflecting fundamentals? 

3. DATA AND METHODS  

 

The primary goal of this study is to explore whether machines can outperform humans in 

forecasting earnings. As such, the main response variable is the realization of the earnings 

number being forecasted by analysts. This statistic is commonly referred to as “street earnings” 

as it includes adjustments such as excluding special items.  The actual earnings number and 

consensus estimates will come from the IBES summary dataset which provides observations 

from 1976 to 2019. The machines will be trained on the corpus of historical financial statement 

data available on Compustat.   
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3.1 Predictor Variables 

For a complete list of predictor variables, see table 1. Each predictor variable from 

existing literature was included as well as their value scaled by total assets. For variables with 

ratios, both their numerators and denominators were included. For example, for Current Ratio, 

both Current Assets (the numerator) and Current Liabilities (the denominator) were included on 

their own in addition to the ratio. Finally, for variables representing a percent change in some 

value, the lagged raw value was included. For example, for Percent Change in Gross Margin, 

both the current period’s gross margin and lagged gross margin were included. All these 

transformations for predictors were included to be extensive and provide the algorithm with a 

wide selection to determine which features were most important. Since this research is focused 

on forecasting and machine learning, multicollinearity or other issues relating to causal 

interpretation are not of importance.  

Predictors in the literature with too many missing values were excluded from the model. 

These variables were excluded because too much sparsity (and not enough variation among a 

variable) within the dataset would not add incremental value to the model. This analysis opts for 

parsimony to save on memory limitations of the machine. In total, after all variable 

transformations, there were 268 predictors for the algorithm’s consideration.    

Since this was time series data, in order to prevent future information from being 

predictors of past earnings, all 268 predictors from the past were lagged to the current time. This 

meant that to predict earnings for firms in 2016, all information from before 2016 (but not after 

2016) were included in the model. 
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The model was trained on all firms that had both Compustat information as well as 

analysts’ predictions in the IBES summary dataset between years 2013 and 2016. This totaled 

33,925 observations. For the out-of-sample data, there were 6,536 observations.  

3.2 Gradient Boosted Regression Trees  

Gradient Boosted Regression Trees (GBRT) are an extension of regression trees. Each “tree” 

represents a partition of the sample space into non-overlapping regions based on predictor 

variables (or nodes).1 Nodes are built by minimizing the residual sum of squares which equals 

∑ ∑(𝑦𝑖 − 𝑦𝑖̂)
2

𝑖𝜖𝑅𝑗

𝐽

𝑗=1

 

where J is the number of nodes, and nodes are R1,…,Rj. For each node, the prediction is the 

average of the all response values for training observations in that node. 

GBRT extends regression trees by recursively building one tree after another. Each 

subsequent tree that is built by GBRT uses information from previous trees. The first tree will be 

fit according to the training data. The second tree will then fit to the residuals of the first tree. 

The third tree will then fit to the residuals of the second tree, and so on.  

There are a variety of tuning parameters for GBRTs:  1) nodes per tree, 2) number of 

trees, 3) shrinkage rate (𝜆), 4) minimum number of observations within a leaf, 5) fraction of 

observations used to build a tree, etc. However, for this analysis, a model will be initially built on 

a default set of 4 parameters (rules of thumb):2  

• 𝜆 =  0.01 

 
1 Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. “An Introduction to Statistical Learning with 

Applications in R” (2017), pg. 312 
2 A guide to building generalized boosted models by Greg Ridgeway (although XGBoost is a different package from 

GBM, many of the model building techniques are applicable) : https://cran.r-

project.org/web/packages/gbm/vignettes/gbm.pdf  

https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf
https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf
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• Number of Trees = 500 (will be tuned by cross-validation) 

• Nodes per tree (also known as depth of tree) = 5 

• Min. Child Weight (minimum number of instances required in a child node) = 5 

The optimal number of trees is usually selected first by performing cross-validation 

(usually with three folds) to minimize the in-sample Mean Absolute Error (MAE). After the 

number of trees is chosen, other optimal parameter values will be chosen by sweeping over a 

grid of potential parameter values (see Table 2) and choosing the combination of values that 

minimizes in-sample MAE. While this is not an exhaustive search over every possible 

combination of parameters (because the tuning design table only has discrete values for 

parameters), due to current computational limitations, this is common practice for tuning 

GBRTs. To summarize, our GBRT model is represented by: 

𝒇̂(𝒙) = ∑ 𝜆𝑓𝑏(𝑥)

𝑩

𝒃=𝟏

 

 

𝜆 is the shrinkage rate and will determine how much each subsequent tree learns from the 

previous tree. The shrinkage rate is used to prevent overfitting; therefore, new trees that are 

added will generally be smaller. B represents the number of trees, and 𝑓𝑏 represents the 

collection of trees. Each subsequent tree will update the residuals (𝑟𝑖): 

𝑟𝑖 −  𝜆𝑓𝑏(𝑥𝑖) → 𝑟𝑖 

A small version of each subsequent tree will be added to the collection of trees: 

𝒇̂(𝒙) +  𝜆𝑓𝑏(𝑥) → 𝑓𝑏(𝒙) 

One potential disadvantage of using GBRT, at least relative to neural networks, is that 

GBRT method will not consider non-linear relationships (ratios and interaction effects) 
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automatically. It will only consider what the user inputs. Therefore, there is a need to select 

variables from the existing literature and not every single variable from financial statements.  

3.2 Technical Implementation  

For implementation purposes, the GBRT model will be built using the XGBoost package 

for R.3 This package will automatically use parallelization to take advantage of 32 cores, deal 

with sparse matrices (data sets with lots of missing values) and impose regularization. XGBoost 

handles missing values internally. Any missing values are inferred from any trends in the dataset 

(grouped for a given firm). This allows us to still make some use of predictors with missing 

values. Variables with many missing values are still omitted to retain some accuracy in 

predictions.  

A major limitation in using R is its handling of data frames. To transform variables, R 

would store copies of data frames multiple times – exhausting memory. For example, to 

transform a variable, R makes a copy of the data frame in a new location, modifies the copy, and 

then refers to the new copy each time the old copy is called.4 This inefficient use of memory 

limited the ability to consider the full range of data (years 1980 to 2019).  

4. RESULTS AND DISCUSSION 

The optimal tuning parameters for the model were 500 trees, a tree depth of 5, a 

minimum child weight of 5, and shrinkage of 0.2.  

4.1 Comparison to Analysts 

For the out-of-sample data, analysts had a mean absolute percentage error (MAPE) of 

5.31%. In contrast, the GBRT model had a 1.92% MAPE. While this could suggest that the 

GBRT model is superior to analysts, we should consider the median absolute percentage error 

 
3 See the documentation for XGBoost: https://cran.r-project.org/web/packages/xgboost/xgboost.pdf  
4 See Hadley Wickam’s explanation on Memory in R: http://adv-r.had.co.nz/memory.html#memory  

https://cran.r-project.org/web/packages/xgboost/xgboost.pdf
http://adv-r.had.co.nz/memory.html#memory
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(MdAPE) to be a better indicator of accuracy because it disregards outliers that could be skewing 

the MAPE.  The MdAPE for analysts was 1.80% and 4.48% for the model. Therefore, from this 

metric, the model does not outperform analysts. It is interesting to note that the analysts seem to 

be inferior with outliers but are superior when these outliers are disregarded. It is unclear 

whether this says something about analysts’ ability to predict surprises (whether they are unable 

to forecast that outliers could exist or whether they prefer not to make such risky predictions) or 

whether this result says something about the model’s regularization methods. Despite tuning and 

having shrinkage parameters, it is still possible that the model is overfitting and getting into the 

nook and crannies of all the outliers. Further research would need to be conducted to determine 

why this result exists.  

However, it is interesting to note that the difference in MdAPE between analysts and the 

machine was less than 3%. While the analysts do outperform the model, it is not by much, 

relatively. This is a surprising result as this model only incorporates in the best predictors from 

the current literature. Given that the current literature still has much left to explore, it is 

surprising that the model would come so close to analysts’ forecasts. However, it is unclear 

whether this difference is significant and what the confidence intervals surrounding the MdAPE 

are. Further research should investigate whether this result can be replicated on other time 

periods of data. The 3% difference could be attributable to specific characteristics of this subset 

of the data. However, overall, this implies that while analysts are inefficient, they are still able to 

offer value-added over historical public data. However, if a GBRT could come so close to 

predicting earnings, it might be worthwhile to build a “cyborg” model that combines both 

analysts’ forecasts and machine learning. This cyborg model could overcome the problems 
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associated with outlier values for analysts in addition to offering improvement over the 

machine’s forecasts. 

4.2 Decomposing Variations in APE 

Since this paper is only interested in predictions, learning what variables the model 

considers to be important is not of primary interest. However, learning why the model more 

accurately predicts for some firms over others could be useful. Knowing this information could 

allow for a cyborg model to determine what weights to put on analysts’ forecasts versus machine 

forecasts for certain types of firms. From the model’s feature importance (Figure 1), accruals are 

the most important feature. Since accruals heavily dominates all other feature, the relationship 

between it and APE are examined (Figure 2). There are no obvious relationships because the 

spread of accruals for firms is quite small. Future research should look more into this relationship 

as well as relationships with other features.  

4.3 Comparison to Hou, van Dijk, and Zhang (2012) 

 To offer further insight into the model’s performance, the HVZ model is replicated on the 

out-of-sample data. Recall the HVZ model is a pooled cross-sectional regression built on ten 

years of data (Hou, van Dijk, and Zhang 2012, 507): 

𝐸𝑖,𝑡+𝜏 = 𝛼0 + 𝛼1𝐴𝑖,𝑡 + 𝛼2𝐷𝑖,𝑡 + 𝛼3𝐷𝐷𝑖,𝑡 + 𝛼4𝐸𝑖,𝑡 + 𝛼5𝑁𝑒𝑔𝐸𝑖,𝑡 + 𝛼6𝐴𝐶𝑖,𝑡 + 𝜀𝑖,𝑡+𝜏 

HVZ defined the following variables: 

• Response variable (E): Future Profitability, income before extraordinary items (NOT 

scaled by total assets). This is not the “street” earnings predicted for by the GBRT model.  

• Accruals (AC): Post-1998, defined by cash flow statement method, the difference 

between earnings and cash flows from operation  

• Total Assets (A) 
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• Dividend Payment (D) 

• Dummy variable for Dividend Payers (DD): equals 1 for dividend payers, 0 otherwise 

• Dummy variable for Negative Earnings (NegE): equals 1 for negative earnings, 0 

otherwise 

• Current period’s earnings (E) 

Since HVZ is not built to forecasts pro forma earnings, while the GBRT model and analysts’ 

forecasts are, there must be caution for comparisons between the HVZ and the GBRT. The HVZ 

was replicated on the out-of-sample data to predict Compustat (GAAP) earnings. On this dataset, 

it had a MdAPE of 29.5%. While comparisons cannot directly be made, the HVZ’s performance 

is worse than the GBRT and analysts’ forecasts for pro forma earnings. This result indicates that 

different models may perform differently based on definitions of earnings. The differences 

between the two models could also be driven by the differences between how GAAP and pro 

forma earnings are defined. However, based on the large differences in MdAPE, it is still 

plausible that the GBRT model could outperform the HVZ model on predicting GAAP earnings. 

Further research would have to be conducted to reach this conclusion.  

5. LIMITATIONS 

 

Feature importance can also yield insight into the model’s robustness. This model 

suggests that nearly all the predictions can be made by differences in firms’ accruals. While 

accruals have been shown to be good predictors of earnings in the literature (HVZ 2012, Gerakos 

and Gramacy 2013), it does offer some concern. Even slight differences in accruals could 

drastically change predictions. This indicates a lack of a model’s robustness because it could 

easily change given a different dataset. A possible reason for why the model places too much 

emphasis on accruals may be the sparsity of the data. For many of the predictors, there are many 
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observations with missing values. A high number of missing values may leave many variables to 

be too sparse and have too little variation. This could lead the model to rely on a variable (like 

accruals) that has significant variation among observations. The next most important features are 

pretax income scaled by total assets and then amortizations.  

With bigger RAM capacity or more memory-efficient coding languages, a model should 

be built on a wider range of data (years 1980 to 2019). This will allow us to better analyze the 

robustness of our model. If our model, built on years 2013 to 2016 are truly robust, we should 

find similar results when we build our model on the entire dataset.  

Another limitation in this research is that it does not consider whether this model could 

perform well for firms without analysts’ coverage. One practical reason for developing a 

machine learning model would be to forecast earnings for companies without analysts’ coverage. 

To test this, researchers would need to test this model on such companies and compare how the 

model performs relative to actual earnings.  

6. CONCLUSION AND FURTHER AREAS OF RESEARCH 

This paper built a machine learning GBRT model to compete against analysts’ forecasts 

for earnings. The model was trained on public historical financial statements data. Variables 

found to be predictive of earnings in the literature were used as inputs. While machines could 

beat analysts for earnings that are outliers, overall, the analysts still outperform machine 

learning. This indicates that analysts are still value-added beyond financial statement 

information. However, a combination of machine learning and analysts may perform better 

overall (to capture accuracy for both outliers and non-outliers).  

Further extensions of this research should explore whether a purely “machine” model (as 

opposed to a model that requires user input of predictors) could outperform analysts. For 
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example, a convolutional neural network that could consider deep and non-linear relationships 

between predictors could be used. This model would extract the maximum amount of 

information from financial statements – rather than just considering predictors that already exist 

in the literature. Another model to consider would be a hybrid combination that could combine 

and average both the GBRT and the convolution neural network. This model would offer 

additional insight into which types of machine learning work best for earnings forecasts. It would 

be interesting to understand why such algorithms work better than others.  

Other possible avenues of exploration could look at which industries and what 

characteristics (firms with higher accruals or higher depreciation) machines perform better than 

analysts and vice versa. It would be insightful to understand not only which industries analysts 

are better at but also possible reasons why.  
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Table 1: Predictor Variables  

Variable Compustat Formula Literature 
c DVC   HVZ 
Common Dividend 
scaled by total assets  

DVC / AT   

Dividend Payers 
Indicator 

Dummy variable: 1 - dividend payers, 0 - o/w (DVP) HVZ 

Dividend Payers DVP  

Total Assets  AT HVZ, Gerakos 
and Gramacy 

Negative Earnings  Dummy Variable: 1 - negative earnings, 0 - o/w; 

earnings = income before extraordinary items (IB in 

COMPUSTAT) 

HVZ, EP, RI 
(Li and 
Mohanram) 

Lagged Negative 
Earnings  

Dummy Variable: 1 - negative earnings, 0 - o/w So 

Accruals Δ(ACT-CHE)-Δ(LCT-DLC-TXP)-DP  HVZ, Gerakos 
and Gramacy 

Current Assets - Total ACT   Part of 
Accruals 
(HVZ, 
Gerakos and 
Gramacy) 

Current Assets - Total 
scaled by total assets 

ACT / AT 

Lagged Current Assets 
- Total 

ACT  at t-1 

Lagged Current Assets 
- Total scaled by total 
assets 

(ACT / AT) at t-1 

Cash and Short-Term 
Investments 

CHE   

Cash and Short-Term 
Investments scaled by 
total assets 

CHE / AT 

Lagged Cash and 
Short-Term 
Investments  

CHE at t-1 

Lagged Cash and 
Short-Term 
Investments scaled by 
total assets  

(CHE / AT) at t-1 

Current Liabilities - 
Total 

LCT   

Current Liabilities - 
Total scaled by total 
assets 

LCT / AT 

Lagged Current 
Liabilities - Total  

LCT at t-1 

Lagged Current 
Liabilities - Total scaled 
by total assets  

(LCT / AT) at t-1 

Debt and Current 
Liabilities - Total 

DLC   

Debt and Current 
Liabilities - Total scaled 
by total assets 

DLC / AT 
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Lagged Debt and 
Current Liabilities - 
Total  

DLC at t-1 

Lagged Debt and 
Current Liabilities - 
Total scaled by total 
assets  

(DLC / AT) at t-1 

Income Taxes Payable TXP   
Income Taxes Payable 
scaled by total assets 

TXP / AT 

Lagged Income Taxes 
Payable  

TXP  at t-1 

Lagged Income Taxes 
Payable scaled by total 
assets  

(TXP / AT) at t-1 

Depreciation and 
Amortization 

DP   

Depreciation and 
Amortization scaled by 
total assets 

DP / AT 

Lagged Depreciation 
and Amortization 

DP at t-1 

Lagged Depreciation 
and Amortization 
scaled by total assets  

(DP / AT) at t-1 

Investment and 
Advances - Other 

IVAO 

Investment and 
Advances - Other 
scaled by total assets 

IVAO / AT 

Lagged Investment and 
Advances - Other 

IVAO at t-1 

Lagged Investment and 
Advances - Other 
scaled by total assets 

(IVAO / AT) at t-1 

Liabilities - Total LT 
Liabilities - Total scaled 
by total assets  

LT / AT 

Lagged Liabilities - 
Total  

LT at t-1 

Lagged Liabilities - 
Total scaled by total 
assets  

(LT / AT) at t-1 

Long-Term Debt - Total  DLTT 
Long-Term Debt - Total 
scaled by total assets  

DLTT / AT 

Lagged Long-Term 
Debt - Total  

DLTT at t-1 

Lagged Long-Term 
Debt - Total scaled by 
total assets 

(DLTT / AT) at t-1 

Short-Term 
Investments - Total 

IVST 
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Short-Term 
Investments - Total 
scaled by total assets 

IVST / AT 

Lagged Short-Term 
Investments - Total  

IVST at t-1 

Lagged Short-Term 
Investments - Total 
scaled by total assets 

(IVST / AT) at t-1 

Preferred/Preference 
Stock (Capital) - Total 

PSTK 

Preferred/Preference 
Stock (Capital) - Total 
scaled by total assets 

PSTK / AT 

Lagged binary variable 
indicating negative 
accruals per share; 
where accruals = ΔACT 
+ Δ DLC - Δ CHE - 
ΔLCT  

Dummy variable: 1 - negative lagged accruals per 

share, 0 o/w 

So 

Lagged binary variable 
indicating positive 
accruals per share; 
where accruals = where 
accruals = ΔACT + Δ 
DLC - Δ CHE - ΔLCT 

Dummy variable: 1 - positive lagged accruals per 

share, 0 o/w 

So 

Interaction term of 
Negative Earnings 
Dummy and Earnings  

Negative Earnings*Earnings in year t EP (Li and 
Mohanram) 

Earnings in year t 
scaled by shares 
outstanding 

(IB – SPI) / CSHO Part of 
Interaction 
term of 
Negative 
Earnings 
Dummy and 
Earnings (Li 
and 
Mohanram) 

Book value of equity 
divided by number of 
shares outstanding  

CEQ / CSHO RI (Li and 
Mohanram) 

Common/Ordinary 
Equity - Total 

CEQ Part of Book 
value of 
equity (Li and 
Mohanram) 

Common/Ordinary 
Equity - Total scaled by 
total assets 

CEQ / AT 

Common Shares 
Outstanding 

CSHO 

Common Shares 
Outstanding scaled by 
total assets  

CSHO / AT 

Inventory  Δ inventory (INVT) - Δ SALE Abarbanell 
and Bushee, 
Lev and 
Thiagarajan, 
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Gerakos and 
Gramacy 

Inventories - Finished 
Goods  

INVFG Part of 
Inventory 
(Abarbanell 
and Bushee, 
Lev and 
Thiagarajan, 
Gerakos and 
Gramacy) 

Inventories - Finished 
Goods scaled by total 
assets  

INVFG / AT 

Lagged Inventories - 
Finished Goods   

INVFG at t-1 

Lagged Inventories - 
Finished Goods scaled 
by total assets 

(INVFG / AT) at t-1 

Inventories - Total INVT 
Inventories - Total 
scaled by total Assets 

INVT / AT Ou and 
Penman 

Lagged Inventories - 
Total  

INVT at t-1 Part of 
Inventory 

Lagged Inventories - 
Total scaled by total 
Assets 

(INVT / AT) at t-1 

Sales/Turnover (Net) SALE Gerakos and 
Gramacy 

Sales / Turnover (Net) 
scaled by total assets, 
end-of-year values 

SALE / AT (Ou and Penman calculated using end of year 
value) 

Ou and 
Penman, 
Holthausen 
and Larcker 

Sales / Turnover (Net) 
scaled by total assets, 
averaging  

SALE / AT (Holthausen and Larcker calculated using 
average of total assets -- beginning and end of year) 

Holthausen 
and Larcker 

Change in Accounts 
Receivable - Change in 
Sales  

Δ RECT - Δ SALE Abarbanell 
and Bushee, 
Gerakos and 
Gramacy, Lev 
and 
Thiagarajan 

Accounts Receivable RECT Part of 
Change in 
Accounts 
Receivable - 
Change in 
Sales 

Accounts Receivables 
scaled by total assets  

RECT / AT 

Lagged Accounts 
Receivable  

RECT at t-1 

Lagged Accounts 
Receivables scaled by 
total assets  

(RECT / AT) at t-1 

Lagged Sales/Turnover 
(Net)  

SALE at t-1 

Lagged Sales/Turnover 
(Net) scaled by total 
assets -- Ou and 
Penman way  

SALE at t-1/ AT (Ou and Penman calculated using 

end of year value) 

Lagged Sales/Turnover 
(Net) scaled by total 
assets -- Holthausen 
and Larcker way  

SALE t-1 / AT (Holthausen and Larcker calculated 

using average of total assets -- beginning and end of 

year) 
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Capital Expenditures 
(Firm) 

CAPXV Part of % 
Change in 
Capital 
Expenditure / 
Total Assets( 
Ou and 
Penman, 
Holthausen 
and Larcker( 

Capital Expenditures 
(Firm) scaled by total 
assets 

CAPXV / AT 

Lagged Capital 
Expitures (Firm)  

CAPXV at t-1 

Lagged Capital 
Expenditures (Firm) 
scaled by total assets 

(CAPXV / AT) at t-1 

Change in Sales Minus 
Change in Gross 
Margin  

Δ SALE- Δ Gross Margin (SALE - COGS); Δ SALE = [SALEt - 
E(SALEt)] / E(SALEt) where E(SALEt) = (SALEt-1 + SALEt-2)/2 
 

Abarbanell 
and Bushee, 
Lev and 
Thiagarajan 

Cost of Goods Sold COGS Part of 
Change in 
Sales Minus 
Change in 
Gross Margin 

Cost of Goolds Sold 
Scaled by Total Assets  

COGS / AT 

Lagged Cost of Goods 
Sold  

COGS at t-1 

Lagged Cost of Goolds 
Sold Scaled by Total 
Assets  

COGS / AT at t-1 

Change in SG&A 
Expenses - Change in 
Sales  

Δ XSGA - Δ SALE Abarbanell 
and Bushee, 
Lev and 
Thiagarajan, 
Gerakos and 
Gramacy 

Selling, General and 
Administrative Expense 

XSGA Part of 
Change in 
SG&A 
expenses 
minus 
Change in 
Sales 

Selling, General and 
Administrative 
Expense, scaled by 
total assets  

XSGA / AT 

Lagged Selling, 
General and 
Administrative Expense  

XSGA at t-1 

Lagged Selling, 
General and 
Administrative 
Expense, scaled by 
total assets  

(XSGA / AT) at t-1 

Effective Tax Rate TXT / (PI + AM) Abarbanell 
and Bushee, 
Lev and 
Thiagarajan 

Pretax Income  PI Part of 
Effective Tax 
Rate 

Pretax Income scaled 
by total assets 

PI / AT 

Lagged Pretax Income  PI at t-1 

Lagged Pretax Income 
scaled by total assets  

(PI / AT) at t-1 

Amortization of 
Intangibles 

AM 



22 

 

Amortization of 
Intangibles scaled by 
total assets  

AM / AT 

Lagged Amortization of 
Intangibles  

AM at t-1 

Lagged Amortization of 
Intangibles scaled by 
total assets 

(AM / AT) at t-1 

Labor Force   

  

Abarbanell 
and Bushee, 
Lev and 
Thiagarajan 

Lagged Employees  EMP at t-1 Part of Labor 
Force Lagged Employees 

scaled by total assets  
(EMP / AT)  at t-1 

Employees  EMP at t  
Employees scaled by 
total assets 

EMP at t / AT 

Indicator variable for 
dividends paid  

=1 if dvt > 0; = 0 o/w Gerakos and 
Gramacy 

R&D Expense XRD Gerakos and 
Gramacy 

R&D Expense scaled 
by total assets  

XRD / AT   

Total Liabilities  LT Gerakos and 
Gramacy 

Total Liabilities scaled 
by total assets 

LT / AT   

Shareholder's equity SEQ Gerakos and 
Gramacy 

Shareholder's equity 
scaled by total assets  

SEQ / AT    

Advertising XAD Gerakos and 
Gramacy 

Advertising expense 
scaled by total assets  

XAD / AT   

Extraordinary items and 
discontinued operations 

XIDO Gerakos and 
Gramacy 

Extraordinary items and 
discontinued operations 
scaled by total assets  

XIDO / AT   

Interest expense XINTD  Gerakos and 
Gramacy 

Interest expense scaled 
by total assets  

XINTD / AT   

Market Value of Equity  PRCC_F*CSHO Gerakos and 
Gramacy 

Provision for Doubtful 
Receivables  

Δ Gross Receivables (RECT+RECD) - Δ Doubtful Receivables 
(RECD) 

Lev and 
Thiagarajan 

Gross Receivables RECT+RECD Part of 
Provision for 
Doubtful 

Gross Receivables 
scaled by total assets  

(RECT+RECD) / AT 
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Lagged Gross 
Receivables  

RECT+RECD at t-1 Receivables 

(Lev and 
Thiagarajan) Lagged Gross 

Receivables scaled by 
total assets 

(RECT+RECD) / AT at t-1 

Change in Sales minus 
Change in Order 
Backlog  

Δ Sales - Δ Order Backlog (OB) Lev and 
Thiagarajan 

Order Backlog OB Part of 
Change in 
Sales minus 
Change in 
Order Backlog 
(Lev and 
Thiagarajan) 

Order Backlog scaled 
by total assets  

OB / AT 

Lagged Order Backlog  OB  at t-1 
Lagged Order Backlog 
scaled by total assets 

(OB / AT) at t-1 

Flag for Positive 
Change in Return on 
Assets  

=1 if ΔROA > 0, = 0 otherwise (where ROA = IB / AT) Piotroski 

Cash flow from 
operations 

OANCF Piotroski 

Cash flow from 
operations scaled  

OANCF / AT  

Cash flow from 
operations lagged 

OANCF at t-1  

Cash flow from 
operations scaled, 
lagged 

(OANCF / AT) at t-1  

Flag for Positive Return 
on Assets -- IB / AT = 
return on assets, ROA 
= return on assets 

=1 if ROA >0; = 0 o/w (where ROA = IB / AT) Piotroski 

Flag for positive cash 
flows from operation  

=1 if CFO >0; = 0 o/w (where CFO = OANCF / AT) Piotroski 

ACCRUAL Accrual = current year's net income before extraordinary 
items - cash flow from operations, scaled by beginning-of-
the-year total assets  

Piotroski  

Indicator of Positive 
Accruals 
(F_ACCRUAL) 

=1 if CFO>ROA; = 0 o/w Piotroski 

Ratio of Long-Term 
debt to average assets 
(ΔLEVER) 

DLTT / AT (historical average) Piotroski 

Indicator Variable for 
change in long-term 
debt to average assets 
ratio (F_ΔLEVER) 

=1 if ΔLEVER >0 in year preceding; = 0 o/w Piotroski, Ou 
and Penman, 
Holthausen 
and Larcker 

Change in firm's current 
ratio between current 
and prior year; where 
current ratio is ratio of 
current assets to 
current liabilities at 
fiscal year end  
(ΔLIQUID) 

(ACT/LCT) at t - (ACT/LCT) at t-1 Ou and 
Penman, 
Holthausen 
and Larcker 
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Indicator Variable for 
chane in firm’s current 
ratio (F_ΔLIQUID 

= 1 if ΔLIQUID >0; =0 o/w Piotroski 

Ratio of Long-Term 
debt to average assets  

DLTT / AT (historical average) Piotroski 

Current Ratio  ACT/LCT  

Lagged Current Ratio  (ACT/LCT) at t-1  

Indicator Variable of 
whether common equity 
was issued  

=1 if firm did NOT issue common equity in the year before, 
= 0 otherwise CSHI = common stock issuance 

Piotroski 

Current gross margin 
ratio (gross margin 
scaled by total sales) 
less prior year's gross 
margin ratio (ΔMARGIN 

[(SALE - COGS)/SALE at t] - [(SALE - COGS)/ SALE at t-1]  Piotroski, Ou 
and Penman, 
Holthausen 
and Larcker 

Current Gross Margin 
Ratio    

(SALE - COGS)/SALE Ou and 
Penman, 
Holthausen 
and Larcker 

Prior Year's gross 
margin ratio  

(SALE - COGS)/ SALE at t-1  

Indicator Variable for 
change in gross margin 
ratio (F_ΔMARGIN) 

=1 if  current gross margin ratio less prior year’s gross 
margin ratio is positive, = 0 otherwise 

Piotroski 

Current year asset 
turnover ratio (total 
sales scaled by 
beginning-of-the-year 
total assets) less prior 
year's asset turnover 
ratio (ΔTURN) 

(SALE / AT at t) - (SALE / AT at t-1) Piotroski 

Indicator Variable 
(F_ΔTURN) 

=1 if  ΔTURN is positive, = 0 otherwise Piotroski 

Composite Score 
created by Piotroski  

= F_ROA + F_ΔROA + F_CFO + F_ACCRUAL + F_ΔMARGIN + 
F_ΔTURN + F_ΔLIQUID + F_ΔLEVER + EQ_OFFER 

Piotroski 

Quick Ratio  (ACT - INVT) / LCT Ou and 
Penman, 
Holthausen 
and Larcker 

Current Assets - 
Current Inventory  

ACT - INVT Numerator of 
Quick Ratio 

%Δ in Quick Ratio  ([(ACT - INVT) / LCT at t] - [(ACT - INVT) / LCT at t-1]) / [(ACT 
- INVT) / LCT at t-1] 

Ou and 
Penman, 
Holthausen 
and Larcker 

Lagged Quick Ratio  (ACT - INVT) / LCT at t-1  

Days Sales in Accs. 
Receivable  

RECT*(365/SALE) Ou and 
Penman, 
Holthausen 
and Larcker 
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%Δ in Days Sales in 
Accs. Receivable  

([RECT*(365/SALE) at t] - [RECT*(365/SALE) at t-1]) / 
[RECT*(365/SALE) at t-1] 

Ou and 
Penman, 
Holthausen 
and Larcker 

Lagged Days Sales in 
Accs. Receivable 

RECT*(365/SALE) at t-1  

Inventory Turnover  COGS / INVT Ou and 
Penman, 
Holthausen 
and Larcker 

Lagged Inventory 
Turnover  

(COGS / INVT) at t-1  

%Δ in Inventory 
Turnover  

[(COGS / INVT at t) - (COGS / INVT at t-1)] / (COGS / INVT at 
t) 

Ou and 
Penman, 
Holthausen 
and Larcker 

%Δ (INVT / at)  [(INVT / AT at t) - (INVT / AT at t-1)] / (INVT / AT at t) Ou and 
Penman, 
Holthausen 
and Larcker 

%Δ in Inventory    [(INVT at t) - (INVT at t-1)] / (INVT at t) Ou and 
Penman, 
Holthausen 
and Larcker 

%Δ in sales  [(SALE at t) - (SALE at t-1)] / (SALE at t-1) Ou and 
Penman, 
Holthausen 
and Larcker 

%Δ in depreciation  [(DP at t) - (DP at t-1)] / (DP at t-1) Ou and 
Penman, 
Holthausen 
and Larcker 

Depreciation lagged  DP at t-1  

Dividends per share  DVT / CSHO So 

Dividends per share 
lagged   

(DVT / CSHO) at t-1  

Δ in dividend per share  
[(DVT / CSHO) – (DVT / CSHO at t-1)] / (DVT / CSHO at t-1) 

Ou and 
Penman, 
Holthausen 
and Larcker 

Depreciation / Plant 
Assets  

DP / PPEGT  Ou and 
Penman, 
Holthausen 
and Larcker 

Depreciation / Planet 
Assets lagged  

(DP / PPEGT) at t-1  

%Δ in Depreciation / 
Plant Assets  

(DP / PPEGT at t) - (DP / PPEGT at t-1) / (DP / PPEGT at t-1) Ou and 
Penman, 
Holthausen 
and Larcker 

Return on opening 
equity  

IB at t / SEQ at t-1 Ou and 
Penman, 
Holthausen 
and Larcker 
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Δ in Return on Opening 
Equity  

[(IB at t / SEQ at t-1) – (IB at t - 1 / SEQ at t-2)] / (IB at t-1 / 
SEQ at t – 2)  

Ou and 
Penman, 
Holthausen 
and Larcker 

%Δ in (capital 
expenditure / total 
assets)  

[(CAPXV / AT at t) - (CAPXV / AT at t-1)] / (CAPXV  / AT at t-
1) 

Ou and 
Penman, 
Holthausen 
and Larcker 

%Δ in (capital 
expenditure / total 
assets), lagged 

[(CAPXV / AT at t – 1 ) - (CAPXV / AT at t-2)] / (CAPXV  / AT 
at t-2) 

Ou and 
Penman, 
Holthausen 
and Larcker 

Debt-Equity Ratio  DLC / SEQ Ou and 
Penman, 
Holthausen 
and Larcker 

%Δ in debt to equity 
ratio  

[(DLC / SEQ at t) - (DLC / SEQ at t-1)] / (DLC  / SEQ at t) Ou and 
Penman, 
Holthausen 
and Larcker 

Debt-Equity Ratio 
Lagged  

(DLC / SEQ) at t-1 Part of 
change in 
debt to equity 
ratio 

LT debt to equity  DLTT / SEQ Ou and 
Penman, 
Holthausen 
and Larcker 

LT debt to equity 
lagged  

(DLTT / SEQ) at t-1  

%Δ in LT debt to equity  [(DLTT / SEQ at t) - (DLTT / SEQ at t-1)] / (DLTT  / SEQ at t -
1) 

Ou and 
Penman, 
Holthausen 
and Larcker 

Equity to fixed assets  SEQ / PPEGT Ou and 
Penman, 
Holthausen 
and Larcker 

Gross PPE  PPEGT  

Gross PPE scaled by 
total assets  

PPEGT / AT  

%Δ in Equity to fixed 
assets  

[(PPEGT /AT  at t) - (DLTT / SEQ at t-1)] / (DLTT  / SEQ at t) Ou and 
Penman, 
Holthausen 
and Larcker 

Times interest earned  IB / XINT Ou and 
Penman, 
Holthausen 
and Larcker 

times interest earned 
lagged  

(IB / XINT) at t - 1  

%Δ in times interest 
earned 

[(IB / XINT) – (IB at t -1 / XINT at t-1)] / (IB at t-1 / XINT at t-
1) 

Ou and 
Penman, 
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Holthausen 
and Larcker 

%Δ in sales / total 
assets  

[(SALE / AT at t) - (SALE / AT at t-1)] / (SALE / AT at t-1) Ou and 
Penman, 
Holthausen 
and Larcker 

Return on total assets  IB / AT Ou and 
Penman, 
Holthausen 
and Larcker 

Return on closing 
equity  

IB / SEQ Ou and 
Penman, 
Holthausen 
and Larcker 

Op. profit (before dep.) 
to sales  

OIBDP / SALE Ou and 
Penman, 
Holthausen 
and Larcker 

Op. profit (before dep.) 
to sales lagged  

(OIBDP / SAL)E at t-1  

%Δ in Op. profit (before 
dep.) to sales  

[(OIBDP / SALE) – (OIBDP at t – 1 /SALE at t – 1)] / (OIBDP 
at t – 1 / SALE at t – 1) 

Ou and 
Penman, 
Holthausen 
and Larcker 

Pretax income to sales  PI / SALE Ou and 
Penman, 
Holthausen 
and Larcker 

Pretax income to sales 
lagged  

(PI / SALE) at t-1  

%Δ in pretax income to 
sales  

[(PI/SALE) – (PI at t-1 / SALE at t-1)] / (PI at t-1/SALE at t-1_ Ou and 
Penman, 
Holthausen 
and Larcker 

Net profit margin  SALE / IB Ou and 
Penman, 
Holthausen 
and Larcker 

Net profit margin 
lagged  

(SALE / IB) at t-1  

%Δ in net profit margin  [(SALE / IB) – (SALE at t-1 /IB at t-1)] / (SALE at t-1/IB at t-1) Ou and 
Penman, 
Holthausen 
and Larcker 

Sales to total cash  SALE / CHE  Ou and 
Penman, 
Holthausen 
and Larcker 

Sales to accs. 
Receivable  

SALE / RECT Ou and 
Penman, 
Holthausen 
and Larcker 

Sales to Inventory  SALE / INVT Ou and 
Penman, 
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Holthausen 
and Larcker 

%Δ in Sales to 
Inventory  

[(SALE / INVT at t) - (SALE / INVT at t-1)] / (SALE / INVT at t-
1) 

Ou and 
Penman, 
Holthausen 
and Larcker 

Sales to Inventory 
lagged  

(SALE / INVT) at t-1  

Sales to Working 
Capital  

SALE/WCAP Ou and 
Penman, 
Holthausen 
and Larcker 

Sales to Working 
Capital at t-1  

(SALE/WCAP) at t-1  

%Δ in Sales to Working 
Capital  

[(SALE/WCAP) – (SALE at t-1/WCAP at t-1)] / (SALE at t-
1/WCAP at t-1) 

Ou and 
Penman, 
Holthausen 
and Larcker 

Sales to fixed assets  SALE / PPEGT Ou and 
Penman, 
Holthausen 
and Larcker 

%Δ in R&D  [XRD-(XRD at t-1)] / (XRD at t-1) Ou and 
Penman 

R&D lagged  XRD at t-1 part of change 
in R&D 
expense 
below 

%Δ in (R&D / sales)  [(XRD / SALE) – (XRD at t-1/ SALE at t-1)] / (XRD at t-1/ 
SALE at t-1) 

Ou and 
Penman 

R&D / sales  XRD / SALE  

R&D / sales lagged  (XRD / SALE) at t-1  

%Δ in advertising 
expense  

[XAD -( XAD at t-1)] / (XAD at t-1) Ou and 
Penman 

advertising expense 
lagged  

XAD at t-1  

%Δ in 
(advertising/sales)  

[(XAD / SALE) – (XAD at t-1/ SALE at t-1)] / (XAD at t-1/ 
SALE at t-1) 

Ou and 
Penman 

advertising / sales  XAD / SALE  

advertising / sales 
lagged  

XAD / SALE at t-1  

%Δ in total assets  [AT -( AT at t-1)] / (AT at t-1) Ou and 
Penman, 
Holthausen 
and Larcker,, 
So 

total assets lagged  AT at t-1  

Cash flow to total debt  (OANCF + IVNCF + FINCF) / DLC Ou and 
Penman, 
Holthausen 
and Larcker 
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Cash Flow – Financing 
Activities 

FINCF  

Cash Flow – Investing 
Activities  

IVNCF  

Working capital / total 
assets  

WCAP / AT Ou and 
Penman, 
Holthausen 
and Larcker 

Working capital / total 
assets lagged  

(WCAP / AT) at t-1  

%Δ in (working capital / 
total assets)  

[(WCAP / AT) – (WCAP at t-1/ AT at t-1)] / (WCAP at t-1/ AT 
at t-1) 

Ou and 
Penman, 
Holthausen 
and Larcker 

Operating Income / 
total assets  

OIBDP / AT Ou and 
Penman, 
Holthausen 
and Larcker 

operating income 
scaled by total assets 
lagged  

(OIBDP / AT) at t-1  

%Δ in (operating 
income / total assets)  

[(OIBDP / AT) – (OIBDP at t-1/ AT at t-1)] / (OIBDP at t-1/ 
AT at t-1) 

Ou and 
Penman 

total uses of fund FUSET  

total uses of funds 
lagged  

FUSET at t-1  

%Δ in total uses of fund  [FUSET -( FUSET at t-1)] / (FUSET at t-1) Ou and 
Penman 

total sources of funds FSRCT     

total sources of funds 
lagged  

FSRCT at t-1  

%Δ in total sources of 
fund  

[FSRCT   -( FSRCT   at t-1)] / (FSRCT   at t-1) Ou and 
Penman 

Repayment of LT debt 
as % of total LT debt  

DLTR / DLTT Ou and 
Penman, 
Holthausen 
and Larcker 

Reduction of long-term 
debt 

DLTR   part of 
repayment of 
LT Debt 

Reduction of long-term 
debt, issued by total 
assets  

DLTR / AT  

Issuance of LT debt as 
% of total LT debt  

DLTIS / DLTT Ou and 
Penman, 
Holthausen 
and Larcker 

LT debt issued  DLTIS   part of 
Issuance of 
LT debt as % 
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of total LT 
debt 

LT debt issued scaled 
by assets  

DLTIS / AT  

Purchase of treasury 
stock as % of stock  

(TSTK at t - TSTK at t-1) / (CSTK + PSTK); amount of 
treasury stock / (common stock + preferred stock) 

Ou and 
Penman 

Amount of treasury 
stock 

TSTK   Part of 
purchase of 
treasury stock 
as % of stock 

Lagged amount of 
treasury stock  

TSTK at t-1  

Amount of treasury 
stock scaled by total 
assets  

TSTK / AT  

Funds from operations FOPO  

funds from operations 
lagged  

FOPO at t-1  

Funds from operations 
scaled by total assets 

FOPO / AT  

Funds from operations 
scaled by total assets 
lagged 

(FOPO / AT) at t-1  

%Δ in funds  [FOPO -( FOPO at t-1)] / (FOPO at t-1) Ou and 
Penman, 
Holthausen 
and Larcker 

%Δ in LT debt  [DLTT -( DLTT at t-1)] / (DLTT at t-1) Ou and 
Penman, 
Holthausen 
and Larcker 

Cash dividend as % of 
cash flows  

DV / (OANCF + IVNCF + FINCF) Ou and 
Penman, 
Holthausen 
and Larcker 

Cash Dividend    DV Part of cash 
dividend as % 
of cash flows 

Cash Dividend scaled 
by total assets 

DV / AT  

working capital WCAP  

working capital at t-1  WCAP at t-1  

%Δ in working capital  [WCAP -( WCAP at t-1)] / (WCAP at t-1) Ou and 
Penman, 
Holthausen 
and Larcker 

Net income over cash 
flows  

IB / (OANCF + IVNCF + FINCF) Ou and 
Penman, 
Holthausen 
and Larcker 

Book-to-market  PRCC_C * CSHO / CEQ So 
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End of year fiscal share 
price  

PRCC_F So 
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Table 2: Grid of tuning parameters Searched  

All possible combinations of the following features and levels were searched: 

Learning Rate Max Depth Minimum Child 

Weight 

Number of Trees 

0.01 3 1 100 

0.05 4 3 300 

0.10 5 5 500 

0.15 6 7 1000 

0.20 8   

0.25 10   

0.3    

 

\ 
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Figure 1: Feature Importances from GBRT Model 
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Figure 2: Absolute Percentage Error for Model vs. Accruals 
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