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Abstract  

Muscle bulk in adult healthy humans is highly variable even after accounting for height, age and 

sex. Low muscle mass, due to fewer and/or smaller constituent muscle fibers, would exacerbate 

the impact of muscle loss occurring in aging or disease. Genetic variability substantially influences 

muscle mass differences, but causative genes remain largely unknown. In a genome-wide 

association study (GWAS) on appendicular lean mass (ALM) in a population of 85,750 middle-age 

(38-49 years) individuals from the UK Biobank (UKB) we found 182 loci associated with ALM 

(P<5x10-8). We replicated associations for 78% of these loci (P<5x10-8) with ALM in a population of 

181,862 elderly (60-74 years) individuals from UKB. We also conducted a GWAS on hindlimb 

skeletal muscle mass of 1,867 mice from an advanced intercross between two inbred strains (LG/J 

and SM/J) which identified 23 quantitative trait loci. 38 positional candidates distributed across 5 

loci overlapped between the two species. In vitro studies of positional candidates confirmed 

CPNE1 and STC2 as modifiers of myogenesis. Collectively, these findings shed light on the 

genetics of muscle mass variability in humans and identify targets for the development of 

interventions for treatment of muscle loss. The overlapping results between humans and the 

mouse model GWAS point to shared genetic mechanisms across species.  
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Introduction 

Skeletal muscle plays key roles in locomotion, respiration, thermoregulation, maintenance 

of glucose homeostasis and protection of bones and viscera. The loss of muscle due to aging, 

known as sarcopenia, affects mobility and can lead to frailty and deterioration of quality of life1. The 

risk of disability is 1.5 to 4.6 times higher in the sarcopenic elderly than in the age-matched 

individuals with normal muscle mass2. However, lean mass, a non-invasive proxy for muscle mass, 

differs by more than two-fold between healthy adult individuals of same sex, age and height3. 

Therefore, we hypothesize that differential accretion of muscle mass by adulthood may influence 

the risk of sarcopenia and frailty later in life. 

Genetic factors contribute substantially to the variability in lean mass in humans, with 

heritability estimates of 40 – 80 %4. A continuous distribution of the trait and data obtained from 

animal models5-8 indicates a polygenic causality. However, thus far, genome-wide association 

studies (GWAS) have implicated fewer than a dozen genes, explaining a small fraction of this 

heritability9; 10. Limited sample size in early studies11-15 and the effects of confounders such as 

subject age9, size of the skeleton and lean mass components (non-fat organs and tissues, 

heterogeneity of muscle fibers) have hindered detection of genes. The UK Biobank is a resource of 

demographic, phenotypic and genotypic data collected on ~500,000 individuals16. It includes the 

arm and leg lean mass, body composition and morphometric information, providing a model for 

improving our understanding of the genetic basis for variability in muscle mass. Skeletal muscle 

mass, however, changes over the course of an individual’s lifespan. It reaches a peak around mid-

twenties and remains largely stable through mid-forties, before succumbing to gradual decline, 

which accelerates after about 70 years of age17. There is a substantial degree of individual 

variability in the slope of muscle change across both the increasing and decreasing phases of the 

lifespan trajectory18. Both the trajectory itself and the slope of individual variability may impede 

identification of genes. 

The indirect estimates of lean mass impose limitations because muscle mass is not an 

exclusive contributor to this variable. Furthermore, the cellular basis of variability in muscle mass 

(i.e. if it is caused by the differences in the number of constituent muscle fibers, their size, or both) 
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remains poorly understood. Using the laboratory mouse circumvents a number of those limitations. 

The mouse shares approximately 90% of the genome with humans19, and dissection permits 

analyses of traits that are difficult to study directly in humans, such as the mass of individual 

muscles 6; 7; 20 and whole-muscle fiber characteristics21; 22. The phenotypic differences between the 

LG/J and SM/J mouse strains make them particularly attractive for complex trait analyses23-25. LG/J 

mice were selected for large body size26, while SM/J mice were selected for small body size27. The 

second filial generation (F2) of intercross derived from the LG/J and SM/J strains (LGSM)6; 28 and 

an advanced intercross line (AIL) of the LGSM (LGSM AIL), developed using a breeding strategy 

proposed by Darvasi and Soller29, led to multiple quantitative trait loci (QTLs) for hindlimb muscle 

mass6; 28. However, these QTLs still encompass tens or even hundreds of genes and require 

further prioritizing. We hypothesized that the detection power of a modest sample size of the 

LGSM AIL and the superior resolution of a human cohort will facilitate identification of the 

quantitative trait genes (QTGs) underlying muscle QTLs. 

The aim of this study was to identify the genomic loci and the underlying genes for 

variability in skeletal muscle mass and to assess their effects in the elderly. We addressed this in 

three stages: (1) we conducted a GWAS in a human cohort of middle-aged individuals from the UK 

Biobank and tested the effect of the identified set of loci in an elderly cohort; (2) we conducted a 

GWAS on hindlimb muscle mass in a population of LGSM AIL mice. (3) In the final stage, we 

nominated candidate genes by comparing mouse and human loci and validated the myogenic role 

of selected candidates in vitro. 

 

Methods 

Stage one: Genome mapping in human populations 

UK Biobank cohort 

The population in this study consisted of 316,589 adult individuals of 37 to 74 years of age (project 

ID: 26746). We drew this cohort from the UK Biobank (UKB) project16; all participants recruited 
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were identified from the UK National Health Service (NHS) records and attended a baseline visit 

assessment between 2006 and 2010. During the assessment, participants gave written consent, 

answered a questionnaire, and were interviewed about their health and lifestyle. Blood samples 

and anthropometric measurements were collected from each participant. Assessments were 

conducted at 22 facilities in Scotland, England, and Wales. 

We divided the sample into middle-aged and elderly cohorts. The middle-aged cohort 

consisted of 99,065 adults ranging from 38 to 49 years of age; based on previous studies we 

assumed that these individuals were not affected by sarcopenia30. We excluded 3,520 participants 

that were reported to be ill with cancer, pregnant, or had undergone a leg amputation procedure, 

as well as individuals with discordant genetic sex and self-reported sex records. In addition, we 

excluded non-white Europeans (self-reported) from the analyses (n = 9,599) and individuals 

without imputed genotypes. We retained a total of 85,750 adult individuals (46,353 females and 

39,397 males) for further analyses.  

The elderly cohort consisted of 217,524 adults ranging from 60 to 74 years of age. We 

selected this cohort to test if the effect of the genetic variants identified on middle-aged individuals 

could also influenced phenotypes later in life. We excluded 35,662 individuals based on the same 

criteria used for the middle-aged cohort. After exclusions, the elderly cohort included 181,862 

individuals of 60 to 73 years of age (94,229 females and 87,633 males; Table S1). 

UK biobank traits 

We used the data for standing height (UKB field ID: 50), sitting height (UKB field ID: 20015), whole 

body fat (UKB field ID: 23100), arm lean mass (UKB field ID: 23121 and 23125), and leg lean mass 

(UKB field ID: 23113 and 23117) measured as part of the UK Biobank project. Body composition 

measurements were taken using bioelectric impedance (this was preferred to the DXA scan data 

because of the substantially larger number of phenotyped individuals). We calculated leg length by 

subtracting sitting height from standing height (all measurements were recorded in cm). Because 

lean mass in the limbs primarily consists of skeletal muscle tissue, we used ALM as a proxy for 

muscle mass. We calculated ALM as the sum of the muscle mass of two arms and two legs. We 
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checked that all traits were normally distributed by examining the QQ-plot and histogram of 

residuals from a simple linear model that included sex as a covariate. Residuals were normally 

distributed, and we did not transform any of the traits.  

 

UK biobank genotypes 

We obtained genotype data for all participants from the UKB v3 genotypes release31, which 

includes genotype calls from the Affymetrix UK BiLEVE Axiom array and the Affymetrix UK 

Biobank Axiom array, and imputed genotypes from the UK10K and 1000 Genomes Phase 3 

reference panels32. We kept all imputed genotype data (21,375,087 genetic variants (SNPs, Indels 

and structural variants)) with MAF > 0.001 and imputation quality > 0.30. The software (BOLT-LMM 

v2.3.4) 33 we used to perform GWAS was developed for large data sets (i.e.: UK Biobank cohort) 

and it was only tested for human cohorts, which have different LD patterns from animals; BOLT-

LMM uses a linear mixed model, which have been shown to successfully control for confounding 

due to population structure or cryptic relatedness in individuals (related and unrelated) from the UK 

biobank34-37. For these reasons, we used BOLT-LMM v2.3.4 for the analyses of human data only.  

 

Appendicular lean mass GWAS 

We used BOLT-LMM (v2.3.4)38 to perform a GWAS for ALM in the middle-aged cohort. The linear 

mixed model (LMM) approach implemented in BOLT-LMM is capable of analyzing large data sets 

while also accounting for cryptic relatedness between individuals. Specifically, BOLT-LMM 

calibrates the association statistics using a linkage disequilibrium (LD) score regression 

approach39; this allowed us to evaluate the impact of confounding factors on the GWAS test 

statistics39 and calibrate them accordingly. In the absence of confounding factors, P values should 

not be inflated, and the LD score regression intercept should be equal to 139. The LD Score 

regression intercept in this study was 1.051 ± 0.007, suggesting minimal inflation of P values due 

to linkage between markers. After calibrating the test statistics, the mean 2 of the ALM GWAS 
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was 1.29 and lambda (λGC) or genomic control inflation factor was 1.20 (Figure S1), which 

indicated polygenicity of the trait as described by Bulik-Sullivan and colleagues39.  

We also assessed population structure by running principal component analysis on the 

genotype calls. We included sex, leg length, whole body fat, and the first four principal components 

as fixed effects in the LMM used for the ALM GWAS. Sex was included to account for differences 

in muscle mass caused by higher testosterone levels in males40. Testosterone is a potent 

stimulator of muscle growth and if systematically varied in males, it can also influence muscle 

mass (e.g. as a result of hypogonadism41). However, if there was a common genetic basis for such 

variability it could be captured in the association analysis. It needs to be noted that inclusion of sex 

as a covariate would not permit capturing sex-by-locus interactions. Identification of sex specific 

loci, albeit of interest, was not attempted due to complexity posed by the number of genetic 

markers and the sample size. An outcome of a GWAS would also depend of the complexity of 

mechanisms affecting the phenotype and adjustments included in a model9; 42. Leg length and 

whole body fat were included because they are biologically related to muscle mass: longer bones 

result in longer muscles, while fat shares part of its developmental origin with skeletal muscle 

tissue43. Furthermore, each of these traits is correlated with muscle mass. An association was 

considered statistically significant if its P < 5 × 10-8 (α = 0.05). This threshold is the standard for 

GWAS of complex traits44; 45. 

We obtained variance components and SNP heritability estimates of ALM from the middle-

aged cohort using BOLT-REML38. The BOLT-REML method robustly estimates the variance of 

genotyped SNPs and fixed effects on the LMM. As described by Loh et al. 46, BOLT-REML 

partitions the SNP heritability across common alleles; hence, the additive variance is calculated as 

the cumulative variance of genotyped SNPs.  

 

Phenotypic variance explained by ALM loci  

We defined ALM genomic loci using the web-based platform Functional Mapping and Annotation of 

Genome-Wide Association Studies (FUMA GWAS47). A key feature of this tool is the identification 
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of genomic regions and independent genomic signals based on the provided summary statistics of 

a GWAS depending on LD structure; this process is automated using pairwise LD of SNPs in the 

reference panel (1000 genomes project phase 3 EUR 48) previously calculated by PLINK49. We 

provided to FUMA GWAS the summary statistic of our GWAS on ALM with the following 

parameters: 250kb window (maximum distance between LD blocks), r2 > 0.6 (minimum r2 for 

determining LD with independent genome-wide significant SNPs used to determine the limits of 

significant genomic loci), MAF > 0.001 (minimum minor allele frequency to be included in the 

annotation), P < 5 × 10-8 (threshold of significantly associated variants). We refer to the identified 

regions and the independent signals as loci throughout the text. 

We used the top variant (based on the outcome from FUMA47) of each locus identified to 

estimate the proportion of phenotypic variance explained by each locus. We estimated phenotype 

residuals using a model that included the fixed effects and principal components described above. 

We then regressed the residuals on the genotype of the top SNP in a linear model. We estimated 

the coefficients of determination and reported them as the proportion of phenotypic variance 

explained by each locus.  

 

Genetic effects in the elderly cohort 

We tested the combined effect of all 182 genome-wide significant ALM loci identified in the middle-

aged cohort in the elderly cohort using the top SNP at each locus. We used PLINK249 to extract 

genotype dosages for each variant identified in the middle-aged GWAS in the elderly cohort. We 

then estimated a ‘genetic lean mass score’ for each individual using the following procedure. First, 

we estimated the contribution of each variant on the phenotype as a product of the SNP effect size 

obtained from BOLT-LMM (β, calculated based on the reference allele) and the genotype dosage. 

Second, we calculated the ‘lean mass score’ for each individual as the sum of the products for all 

selected variants. We ranked the resulting distribution of lean mass scores in ascending order and 

partitioned it into five quantiles. We used ALM without any adjustment (raw ALM) because 

estimates of effects size already accounted for sex, whole body fat and leg length differences. 
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However, since the raw ALM did not meet the assumption of normality, we used a Kruskal-Wallis 

test (non-parametrical) to evaluate the difference in the median of the phenotypes between the 

quantiles, and a Wilcoxon test (non-parametrical) for pairwise comparisons between quantiles. We 

conducted five replicates of a negative control test that consisted of randomly selecting a subset (n 

~ 185) of non-significant SNPs in the middle-aged cohort and generating ‘lean mass score’ as 

described above for the elderly cohort; this set of SNPs had MAF > 0.001. 

We also aimed to replicate the individual variants effects on the ALM of the elderly cohort. 

We checked normality of ALM in the elderly cohort as described for the middle-aged cohort. We 

tested a subset of genetic variants (n=17,914,406) selected based on their MAF > 0.001 and 

imputation quality > 0.3, and we used the same LMM, fixed covariates, and genome-wide 

significance threshold (P < 5 × 10-8) as described for the middle-aged cohort. We conducted a 

Fisher’s exact test to evaluate if overlapping loci between the middle-aged and elderly cohorts 

were significantly different from random. The null hypothesis was rejected at P < 0.05 (two-tailed). 

 

Genomic regions tagged by loci 

We used the ‘biomaRT’ package in R50; 51 to retrieve gene and regulatory element annotations at 

the genomic position of each statistically significant SNP (P < 5 × 10-8) and Polyphen 252 and 

SIFT53; 54 to predict the functional consequences of each SNP. We retrieved additional information 

about the positional candidate genes and their expression levels from Ensembl55 (release 94 - 

October 2018) and the Genotype Tissue Expression Project (GTEx) portal56 (See Web 

Resources). 

 

Stage two: LGSM AIL mouse cohort and GWAS 

To maximize QTL detection power, we combined three cohorts of LGSM AIL mice from our 

previous reports6; 8; 28 for the second stage of this study (n = 1,867). The LGSM AIL was initiated by 

Dr. James Cheverud at Washington University in St. Louis 57. Cohort 1 included 490 mice (253 
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males and 237 females) from LGSM filial generation 54 (F34). Phenotype data was collected from 

these mice between 80-102 days of age. Cohort 2 consisted of 506 male mice (~ 84 days of age) 

from filial generation 50-54 (F50-54). Cohort 3 includes 887 mice (447 males and 440 females) from 

filial generation 50-56 (F50-56); between 64 - 111 days of age. Mice were housed at room 

temperature (70 - 72°F) at 12:12 h light-dark cycle, with 1-4 same-sex animals per cage and with 

ad libitum access to standard lab chow and water. All procedures were approved by the 

Institutional Animal Care and Use Committee at the University of Chicago (Cohort 1 and 3) and at 

the Pennsylvania State University (Cohort 2). 

 

Mouse traits and genotypes 

We collected muscle phenotypes after the animals were sacrificed and frozen. We dissected four 

muscles and one long bone (tibia or femur) from each mouse at the Pennsylvania State University 

(n = 584) and the University of Aberdeen (n = 1,283). Each of the four muscles exhibits a different 

proportion of muscle fiber types and often revealed muscle specific QTLs6; 7; 20; 28.The dissection 

procedure involved defrosting the carcasses and removing the muscles (TA, EDL, gastrocnemius 

and soleus) and tibia from the hind limbs under a dissection microscope. We weighed the muscles 

to 0.1-mg precision on a Pioneer balance (Pioneer, Ohaus) and measured long bone length of the 

hindlimb (mm) using an electronic digital calliper (Powerfix, Profi). We quantile normalized all 

LGSM AIL traits before mapping QTLs. 

Cohort 1 was genotyped using a custom SNP genotyping array58. These SNPs (n=2,965) 

were evenly distributed along the autosomes (Mus musculus genome assembly MGSCv36 

(mm8)). The median distance between adjacent SNPs was 446 Kb, and the maximum was 18 Mb. 

Large gaps are due to regions identical by descent between the LG/J and SM/J founders59. Cohort 

2 was genotyped at 75,746 SNPs (73,301 on the autosomes and 2,386 on X and Y) using the 

MEGA Mouse Universal Genotyping Array (MegaMUGA; Mus musculus) genome assembly 

MGSCv37 (mm9)); after removing SNP markers that are not polymorphic between the LG/J and 

SM/J strains we retained 7,168 autosomal SNPs for subsequent analyses. The median distance 

between adjacent SNPs was 126.9 Kb and the maximum distance was 15 Mb for all chromosomes 
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except for chromosomes 8, 10, and 14, which had distances of 19, 16, and 16 Mb, respectively. 

We used a conversion tool in Ensembl to convert SNP positions from mm8 and mm9 to Mus 

musculus genome assembly GRCm38 (mm10). Cohort 3 genotypes were obtained from Gonzales 

and colleagues8. These genotypes were generated using genotyping by sequencing. This 

approach has been recently used and described in detail20. Only autosomal SNPs known to be 

polymorphic in the LG/J and SM/J founder strains (n=523,027; mm10, build 38) were retained for 

subsequent analyses. We combined the genotype data from Cohorts 1-3 using PLINK v.1.9 and 

imputed missing genotypes using BEAGLE v.4.160. For these steps, we used a reference panel 

obtained from whole genome sequencing data of the LG/J and SM/J strains59. Dosage estimates 

(expected allele counts) were extracted from the output and used for the GWAS; these estimates 

captured the degree of uncertainty from the imputation procedure. To ensure the quality of the 

genotype data, we excluded SNP genotypes with MAF < 0.20 (because it is an AIL, almost all 

SNPs have MAF > 0.2) and dosage R2 < 0.70 (dosage R2 corresponds the estimated squared 

correlation between the allele dosage and the “true allele dosage” from the genetic marker, and is 

used as a measure of imputation quality). After applying these filters, we retained 434,249 SNPs. 

 

Mouse association analyses 

Population structure can potentially lead to a rise of false positive associations61; 62. The LMM 

approach is used to map QTLs while dealing with confounding effects due to relatedness58; 63; 64. 

We used the LMM method implemented in the software GEMMA (genome-wide efficient mixed-

model association)65 to analyze the mouse phenotypes. In our LMM model we included the 

genotypes, a set of fixed effects described later in this section, and a polygenic effect to deal with 

population structure. 

The polygenic effect is a random vector which was derived from a multivariate normal 

distribution with mean zero and a n × n covariance matrix σ2λK; where n is the number of samples. 

The relatedness matrix K was defined by the genotypes. The two parameters, σ2 and λ, were 
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estimated from the data by GEMMA; they represent the polygenic and residual variance 

components of the phenotypic variance, respectively. 

 

Relatedness matrix and proximal contamination 

We used the genotype data to estimate the relatedness matrix K, which was part of the covariance 

matrix. Although genotype-based and pedigree-based K matrices yield very similar results66; 67, we 

have shown that in general, genotype-based estimates are more accurate66; 68-70. We constructed 

the relatedness matrix as K = XX′/p, where X is the genotype matrix of entries xijand n × p 

dimensions, p is the number of SNPs. 

The relatedness matrix K was estimated taking into account the potential problem of 

proximal contamination67, which involves loss of power due to including genetic markers in multiple 

components of the LMM equation. Furthermore, because of LD, markers in close proximity to the 

genetic marker that is being tested can also lead to deflation of the P values8; 68. To avoid this 

problem, the K matrix was estimated by excluding from the calculations the SNPs within the 

chromosome that was analyzed (this approach is termed leave one chromosome out (LOCO)), 

therefore, K matrix was slightly different for each chromosome.  

 

Genetic and fixed effects 

We did not include non-additive effects in the LMMs used for GWAS in the LGSM AIL. Our 

previous studies6 suggest that musculoskeletal traits in this population are mostly influenced by 

additive loci, and by ignoring dominance effects we avoid introducing an additional degree of 

freedom, hence potentially avoiding a decrease of power to detect QTLs. 

To analyze the muscle weights of the combined data, we used four fixed effects in the 

LMM: sex, dissector of the samples, age, and long bone length of the hindlimb. We selected these 

variables after using a linear model to estimate their effect on the four muscles; only statistically 

significant effects were included (P < 0.01). Sex and dissector were included as binary variables; 
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whereas age and long bone were included as continuous variables. Including long bone length of 

the hindlimb allowed us to capture genetic effects associated with variation in muscle weight per se 

(as opposed to genetic effects on bone length)20. In other words, failing to include long bone as a 

covariate would yield QTLs that are more likely to be genetic contributors to general growth of the 

skeleton instead of specifically muscle. We used two bones for the long bone variable, for cohort 1 

femur, and for cohorts 2 and 3 tibia. Based on personal communication with Dr. Cheverud, the 

femur and tibia bones were found to be positively and highly correlated (r > 0.8) in LGSM AIL 

(F34). We did not include generation (r = 1) and bone type of each cohort (r = 1) as fixed effects 

since the dissector variable functioned as a proxy for these two variables. Body weight was not 

used as a fixed effect because muscle weight accounts for a considerable amount of the body 

weight. 

 

SNP heritability 

To estimate the SNP heritability or proportion of phenotypic variance explained by all genotypes, 

we used the n × n realized relatedness matrix K, which was constructed using all the available 

genotypes. We extracted the SNP heritability from the QTL mapping outputs of the LGSM AIL 

cohort described before; GEMMA provides an estimate of the heritability and its standard error65. 

The SNPs available to estimate the heritability do not capture all genetic causal variants, hence the 

SNP heritability underestimates the true narrow sense heritability. 

 

Threshold of significance and QTLs intervals 

The P values estimated from the likelihood ratio test statistic performed by GEMMA were 

transformed to –log10 P values. We calculated a threshold to evaluate whether or not a given SNP 

significantly contributes to a QTL. We estimated the distribution of minimum P values under the 

null hypothesis and selected the threshold of significance to be 100(1 –  𝛼)th percentile of this 

distribution, with 𝛼 = 0.05. In order to estimate this distribution, we randomly permuted phenotypes 

1,000 times, as described previously 6; 7; 20; 71. We did not include the relatedness matrix in the 
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permutation tests due to computational restrictions, and because, past studies have found that 

relatedness does not have a major effect on the permutation test6; 7. 

We estimated QTL intervals in three steps. 1) We used Manhattan plots to identify the top 

SNP within each statistically significant region (SNP with highest –log10 P values), which we refer to 

as the peak QTL position. 2) We transformed P values from each analysis to LOD scores (base-10 

logarithm of the likelihood ratio). 3) We applied the LOD interval function implemented in the r/qtl 

package72 to the regions tagged by each peak SNP, and obtained the QTL start and end positions 

based on the 1.5 LOD score interval. 1.5 LOD intervals are commonly used to approximate the ~ 

95% confidence interval of mouse QTLs5; 73. The 1.5 LOD interval estimation is comparable to the 

95% CI in the case of a dense marker map74; hence, its coverage depends on the location of the 

peak QTL marker relative to the adjacent genotyped markers. We estimated the direction of the 

QTL effect by calculating the phenotypic mean of each allele based on the peak SNP of each QTL. 

We adjusted the phenotypic means and standard errors by fitting the fixed effects used in the 

association analyses in a linear model. 

We explored the QTL intervals to identify genes that potentially affect hindlimb muscle 

mass. We retrieved the genomic location of all genes located within the intervals using the BioMart 

database through the ‘biomaRT’ package implemented in R50; 51.  

Meta-analysis in the LGSM AIL mice 

Although we adjusted our GWAS analyses on the LGSM AIL mice for confounding effects, it was 

possible that uncontrolled factors could have affected the phenotypes. Therefore, we conducted an 

additional meta-analysis on the three LGSM AIL cohorts. We first analyzed each cohort separately 

using the same approach as for the combined data, except the dissector variable was not used as 

a covariate because it was largely confounded with the cohort. We extracted P values, estimated 

SNP effects and standard errors at each scanning locus. We considered two popular meta-

analysis approaches: the inverse variance-weighted average and the weighted sum of z-scores75-

77. For weighted sum of z-scores, we tried two weighing schemes, i.e., the sample size and 

squared root of the sample size, and found the results were very similar, and were slightly better 
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than that of the inverse variance-weighted average. Therefore, we chose to report the result of the 

weighted sum of z-scores with the squared root of the sample size being the weight as suggested 

in meta-analysis literature78. The test statistic (𝑍) for each SNP was constructed as follows: 

𝑍 =
𝑧1𝑤1 + 𝑧2𝑤2 + 𝑧3𝑤3

√𝑤1
2 + 𝑤2

2 + 𝑤3
2

  

where 𝑧𝑖 is the z-score that was obtained by transforming the likelihood ratio test P value and 𝑤𝑖 is 

the squared root of the sample size in cohort 𝑖=1 to 3. We compared this result with the combined 

GWAS of the LGSM AIL. This statistical analysis was performed in R79. 

 

Overlap of mouse and human results 

The significantly associated muscle QTLs (mice) and lean mass loci (humans) were compared by 

exploring the genomic regions and genes tagged in each analysis. We used a Fisher’s exact test to 

evaluate whether the number of overlapping loci from the human and mouse analyses exceeded 

the number expected by chance; the null hypothesis was rejected at P < 0.05. 

 

Gene validation using siRNA in C2C12 myoblasts 

To validate efficiency of siRNA-mediated gene knockdown, the C2C12 cells were lysed and RNA 

isolated using RNeasy mini kit (QIAGEN) following manufacturers recommendations. 

Concentration was assessed using NanoDrop (Thermo Scientific) spectrophotometer and ~1.5 µg 

of RNA was applied to 1.5% agarose gel to validate its integrity. The cDNA was synthesized using 

random primers (Invitrogen) and SuperScript II reverse transcriptase (Invitrogen). Quantitative 

PCR for expression of the target Cpne1, Sbf2 and Stc2 and the reference Actb was carried out in 

duplicates on LightCycler 480 II (Roche) using SYBR green Master mix (Roche), 10 ng cDNA and 

0.5 µM forward and reverse primers (Table S2). Quantification of gene expression was performed 

using the comparative Ct method80. 
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C2C12 myoblasts, validated for differentiation, were seeded on 8-chamber slides (Lab-Tek 

II), batch 1, and 13 mm diameter Thermanox Plastic coverslips (Thermo Fisher Scientific), batch 2, 

at 100 cells/mm2 in high glucose growth medium (D5671, Sigma), containing 10% foetal calf serum 

and 2% glutamine. Next day the cells were washed with phosphate-buffered saline (PBS) and 

transferred to differentiation medium (D5671, Sigma) supplemented with 10 nM siRNA and 

Lipofectamine RNAiMAX (Invitrogen) as per manufacturer protocol. We used the following siRNAs 

(Life Technologies): negative control #1, s113938 and 93494 (Cpne1), 151885 and 151886 (Stc2), 

s115441 and s115442 (Sbf2). The treatment achieved expression knockdown by 55-70%. The 

differentiation medium with 10nM siRNA and Lipofectamine RNAiMAX were replaced once, after 3 

days of incubation. After 6 days of incubation, cells were fixed in 4% paraformaldehyde (PFA). We 

examined 8 cultures for Stc2 and 12 for the remaining genes (equally divided between the two 

siRNAs) and negative control that were generated in two batches on separate occasions. 

Cells were washed in PBS, fixed in 4% PFA for 15 min, PBS washed again and 

permeabilized for 6 min with 0.5% Triton X-100 in PBS. The cells were then blocked for 30 min in 

blocking buffer (10% foetal calf serum in PBS) and incubated overnight at 4 ºC with primary anti-

myosin heavy chains antibody (Monoclonal Anti-Myosin skeletal, Fast, Clone My-32, Mouse 

Ascities Fluid, M4276, Sigma-Aldrich) diluted (1:400) in PBS. After three washes in 0.025% 

Tween-20 in PBS at room temperature, secondary donkey anti-mouse IgG H&L antibody 

(ab150109, abcam) conjugated to fluorescent dye (Alexa Fluor 488) in PBS (1:400) were applied 

and incubated for 90 minutes. Following three washes in 0.025% Tween-20 in PBS cells were 

incubated in 300 nM DAPI in PBS for 15 min. After that cells were covered by coverslip using 

Mowiol 4-88 (Sigma-Aldrich), sealed with nail polish, and stored at 4 C in the dark. 

Slides were scanned using Axioscan Z1 slide scanner (Zeiss) using X20 magnification. The 

entire 0.7 cm2 chamber of a slide or a coverslip was imaged using the wavelength spectrum band 

of 353-465 nm and 493-517 nm and exposure time 4 ms and 100 ms for DAPI and Alexa Fluor, 

respectively, at 50% Colibri 7 UV-free LED light source intensity. Alexa Fluor and DAPI channel 

images of a rectangular area free of artefacts and covering at 14-91% of a chamber of batch 1 and 

70% of a coverslip of batch 2 were exported separately for analyses with Fiji81. Note that the 
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rectangle area of the majority of batch 1 samples (88%), covered more than 40% of the cell 

culture. A sensitivity analysis testing the exclusion of small coverage images (14-31%) from the 

statistical analyses described below, showed results comparable to the analysis of all samples; 

therefore, we reported significance values (P values) corresponding to the statistical analysis of all 

samples. 

Three indices characterizing the effect of treatment on myogenesis were quantified in an 

unbiased, automated analysis of the entire exported area: 1) percentage of fluorescent area in the 

Alexa Fluor channel, reflecting the level of myosin expression, and 2) the longest-shortest-path 

reflecting the length and number of myotubes (Figure S2). The longest-shortest-path analysis was 

carried out using the Analyze Skeleton plugin82 and the shortest path calculation function83 

implemented in Fiji81. We carried out the image analyses on a Linux computer and we allocated 

190 GB of RAM for these analyses. The myotube threshold was set at 103.97 µm for batch 1 and 

191.63 µm for batch 2, i.e. the mean (batch 1: 54.34 µm, batch 2:100.95 µm) plus 3 standard 

deviations (batch 1: SD = 16.54 µm, batch 2: SD = 30.23 µm) of the length of mononucleated and 

myosin expressing myocytes (n=35) measured in the negative control #1 cells. The myotube 

length variable did not follow normality, therefore quantile normalization was applied to the 

variable. All statistical analyses were adjusted for the image area of each sample and batch of 

cells, by fitting a linear model on the three indices investigated; all subsequent statistical analyses 

were conducted on the residuals, which met the assumptions of normality and homoscedasticity of 

residuals. The effect of gene knockdown on these indices was assessed using ANOVA. After, a t-

test was carried out to evaluate the mean differences between the control group and the gene 

knockdown groups. In addition, we evaluated the myosin expressing area (as percentage of the 

total) present within each knockdown versus control groups using ANOVA. 

 

Data availability 
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The human data used for this study can be obtained upon application to the UK biobank project16. 

LGSM AIL genotypes (dosages) and phenotypes (raw) are freely and publicly available on 

http://genenetwork.org/ (accession ID 659). 

 

 

Results 

Over 180 genomic loci associated with appendicular lean mass in humans 

The appendicular lean mass (ALM) ranged from 12.2 to 41.6 kg and 15.3 to 54.5 kg in healthy 

middle age females and males, respectively (Table 1). SNP heritability estimates indicated that 

36% of phenotypic variability was due to genetic factors. The GWAS analysis results presented in 

Figure 1 revealed 6,693 autosomal variants (MAF > 0.001) associated (P < 5 x 10-8) with ALM 

(Table S3). The associated variants tagged 331 genes and 753 regulatory elements. We used the 

Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA GWAS47) to 

define genomic regions containing the associated variants, and we identified 77 of them that were 

on average 0.40 Mb long and contained 182 independent signals (Table S4). We refer to the 

identified regions and the independent signals as “loci” throughout the text. The 182 loci identified 

indicate that ALM is influenced by multiple genetic elements. The LD score intercept that we 

estimated during this ALM GWAS (1.05  0.007 (mean  SE)) provides further evidence 

suggesting polygenicity. Cumulative effects of these loci explained 24% of SNP heritability.  

 

78% of the same loci affect appendicular lean mass in older adults  

As expected due to the aging effect on skeletal muscle, the ALM in the cohort of elderly declined 

by 4 and 8% in comparison to the middle-age cohort of females and males, respectively (P < 2×10-

16). A more prominent decline in males is consistent with earlier reports84. We then used a ‘genetic 

lean mass score’ (see Methods for details) to test if the identified 182 loci contributed to ALM 

http://genenetwork.org/
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variability in the elderly population. The genetic lean mass score had a statistically significant 

overall effect (χ2 = 376.13, df = 4, P = 3.99×10-80) on ALM variability in the elderly population 

(Figure 2). On average, individuals with the highest genetic lean mass score had 0.73 kg, or 3.2%, 

more ALM compared to those with the lowest scores (Figure 2). Negative controls showed no 

statistically significant effects (Table S5 and Figure S3). 

We also asked if the variants identified in the middle-aged cohort were associated with ALM 

in the elderly. A GWAS in the elderly cohort replicated 5,291 variants based on their P value (P < 5 

× 10-8) and allelic effect (beta); moreover, the replicated variants tagged 78% of the ALM loci of the 

middle-aged cohort (two tailed Fisher test P value < 2.2  10-16). Overall, the set of genomic loci in 

the elderly cohort appeared similar to that of the middle-aged adults, with the exception of an 

approximately 5 Mb region on chromosome 5 (Figure S4). This region showed a very strong 

association with the ALM variability in older adults (lowest P value = 4.50  10-56, beta = 0.12 ± 

0.01 kg), and had a modest albeit significant association with the ALM of middle-aged individuals 

(lowest P value = 3.30  10-11) with an effect size of 0.07 ± 0.01 kg. 

 

23 QTLs contribute to muscle weight variability in LG/J and SM/J strain-

derived advanced intercross lines  

We examined the weight of four hindlimb muscles of the LGSM AIL (F34 and F50-F56): tibialis 

anterior (TA), extensor digitorium longus (EDL), gastrocnemius and soleus. The LGSM AIL 

muscles showed extensive individual variability (Table 2); furthermore, the SNP heritabilities of the 

TA, EDL, gastrocnemius and soleus muscles were 0.39, 0.42, 0.31 and 0.30, respectively (Table 

2). The genome mapping of LGSM AIL muscles yielded 23 QTLs (P < 6.45 × 10-06). The TA, EDL 

and gastrocnemius QTLs explained more than the 50% of the SNP heritability of each trait (Table 

S6). The soleus muscle phenotypic variability explained by QTLs was 23% of its SNP heritability. 

Three QTLs were shared between the four hindlimb muscles (chromosome 7, 11 and 13; (Figure 

3); the QTL on chromosome 13 resulted in the strongest association (EDL P = 2.95 × 10-21), with 
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its peak position at 104,435,003 bp, and the percentage of phenotypic variance explained by this 

locus was 5.2%; the SM/J allele conferred increased muscle mass (Figure 3). Furthermore, six 

QTLs were shared between two or three hindlimb muscles, while fourteen identified QTLs were 

only associated with one specific hindlimb muscle (Figure 3). 

The mapping resolution was comparable to that attained in the previous study in the LGSM 

AIL cohort8. On average, mouse QTLs spanned 2.80 Mb (based on the 1.5 LOD interval) and 

encompassed 2,267 known genes (Table S7). The median number of genes per QTL was 55; 

more than half of the mouse QTLs contained a modest number of genes; however, 7 QTLs 

contained more than 100 genes each, and a single QTL located on chromosome 7 as many as 644 

genes (Table S6). Although all mouse QTLs identified in the LGSM AIL contained SNPs, at least 

seven QTLs covered long genomic regions characterized as identical by descent between the LG/J 

and SM/J strains59. We also analyzed the LGSM AIL using a meta-analysis approach and identified 

14 QTLs that on average were 3.78 Mb long. The majority of the QTLs from the meta-analysis, 12 

out of the 14, overlapped with the findings of the mega-analysis (Figure S5). The meta-analysis 

results are shown in Table S8. 

 

Interspecies overlap between appendicular lean mass loci and muscle weight 

QTLs  

The ALM mainly consists of the skeletal muscle of the extremities; however, other tissues also 

contribute. To test the hypothesis that ALM-associated genetic variants primarily affect skeletal 

muscle mass, we overlaid human ALM finding with the mouse where skeletal muscle was weighed 

directly. Specifically, we overlaid the captured genomic regions restricted by the significant SNPs 

used in the GWAS of each species. The mouse QTL regions were notably larger, partially due to 

the median distance between adjacent genetic markers of 126.9 Kb. Our analysis identified five 

syntenic regions associated with ALM in humans and hindlimb muscle mass in mice (Table 3). We 

used Fisher’s exact test to discover that the number of overlapping regions significantly (P = 

0.0019; Table S9) exceeded that which could be expected by chance. This analysis permitted us to 
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shorten the list of positional candidates. Assuming the same causative entity for an overlapping 

mouse and human locus, these five loci harbour 38 homologous genes (Table 3). Encouragingly, 

four of these five genomic loci tagged by rs148833559, rs9469775, rs4837613 and rs57153895 

SNPs (Table S3) were replicated in the ALM of the elderly cohort (Table S10). 

 

Modifiers of in vitro myogenesis 

We used siRNA-mediated gene knockdown in C2C12 cells to test if candidate genes affected 

myogenic differentiation. The STC285, CPNE15 and SBF286 were prioritized for this assay because 

they were highlighted by both mouse and human GWAS. We assessed indices of myogenic 

differentiation (the number and length of the myotubes, and expression of myosin) of C2C12 cells. 

In total, 34,989 myotubes were identified and measured in 44 cell cultures (see Methods for 

details). The gene knockdown had a significant effect on myotube length, with Cpne1 (P = 0.001, 

95% confidence interval = 0.019-0.068, effect size = 0.024) and Stc2 (P = 0.015, 95% confidence 

interval= 0.007-0.066, effect size = 0.017) showing an increase in length compared to the control 

cells (Figure 4). There was no significant difference for the Sbf2 gene. The pattern of the effect on 

myosin expressing area was similar to that of myotube length but was not statistically significant (P 

= 0.21). The number of myotubes was also unaffected. 

 

Discussion 

The key findings of the present report are as follows: 1) we identified a set of over 180 loci 

associated with ALM, a substantial expansion in comparison to previous human studies. 2) There 

is a substantial overlap of the genetic effects between middle-aged and elderly subjects. 3) 

Integration of mouse and human GWAS indicates that skeletal muscle is the primary component 

affected by the ALM loci, facilitates prioritization of candidate genes, and helps prediction of their 

effect on cellular mechanisms underlying muscle mass variation. 4) In vitro studies validated two 

genes, CPNE1 and STC2, as modifiers of muscle mass in humans. 
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We estimated SNP heritability for ALM to be of 0.36, which is lower than heritability 

estimates previously reported (0.44) 9, this difference could be due to different fixed effects used to 

estimate variance components. In total, we mapped 182 loci that collectively explain 24% of the 

SNP heritability of ALM. The most recent report, a meta-analysis of 47 independent cohorts 

(dbGAP), comparable in sample size but ranging in subjects aged 18 to 100 years, reported five 

significant associations with lean body mass9. Even fewer associations were detected in the 

earlier, small sample size studies11; 13-15; 87. However, our results indicate that ALM is a highly 

polygenic trait in humans. We hypothesize that multiple factors contributed to the improved locus 

detection in the present GWAS. We restricted subjects’ age to a narrow range, 38 to 49 years, 

minimizing the effects of the developmental and aging-related processes on phenotypic variance. 

The skeletal muscle is a dynamic tissue reaching its peak mass by late 20s, then a trend of decline 

emerges after 40s and accelerates about two decades later1. An estimated 30-50% decline in 

muscle mass can be expected between 40 and 80 years of age88. These developmental and 

aging-related changes are not linear in progression and therefore would hamper detection of loci 

even if accounted for in a linear model. In addition, unlike Zillikens and colleagues9, the data set 

we used was systematically collected as described by the UK Biobank project16 and we only 

employed bioelectric impedance measurements of lean mass. Furthermore, we used a LMM to test 

the effects of > 21 million variants (MAF > 0.001), and our analysis was adjusted for a different set 

of fixed effects than in previous research9; 11; 13; 15. Our analysis captured three loci identified by 

Zillikens and colleagues9, containing the VCAM, ADAMTSL3 and FTO genes, suggesting that their 

effects are not influenced by age. We hypothesize that a combination of a homogeneous age 

group, the optimized genomic coverage and the method used to conduct this association analysis 

contributed to improved detection of loci in the present study. 

The analyses presented here shed light into the complex genetic mechanisms behind the 

appendicular muscle mass of humans. In the past, concern was expressed about the 

reproducibility of association analyses of complex traits; however, an increasing number of human 

GWAS have shown that their findings are remarkably reproducible89. The present study provides 

further support for the reliability of association studies, demonstrating replication of 78% of ALM 



    24 
 

loci in the elderly cohort. Furthermore, we show that the genetic profile characterized by depletion 

of ALM-increasing alleles leads to a lower ALM in elderly individuals (Figure 2). Hence, it is 

conceivable that genetic architecture predisposing individuals to lower muscle mass may lead to 

elevated risk of sarcopenia1. 

Combining two experimental models, mouse and human, facilitated prioritization of 

candidate genes for functional validation and indicated that skeletal muscle is the primary 

component of lean tissues affected by the identified loci. Furthermore, the mouse model revealed 

that genetic effects may not all be uniform across skeletal muscle tissue, instead some of the 

effects can be muscle type- or muscle-specific. To establish the association between the QTGs of 

the identified loci and the muscular phenotype, we focused on the overlapping human and mouse 

results. Integration of results from these two species permitted circumvention of the limitations 

imposed by the individual models. While human GWAS often identify loci containing single genes, 

it is often unclear which tissue is most relevant to the phenotype. Although mouse QTLs often 

contain multiple positional candidate genes, mice can be used as experimental models to identify 

loci specifically associated with skeletal muscle. In this study, we used a mouse model to show that 

the association with hindlimb skeletal muscle mass was specifically related to differences in the 

cross-sectional area of the constituent muscle fibers, rather than to the number of fibers in the 

muscle. This is because between the two founders of the LGSM AIL, the LG/J strain compared to 

the SM/J strain shows over 50% larger cross-sectional area of muscle fibers, but no difference in 

the number of fibers in soleus muscle22. Hence, it is conceivable that the QTGs of the majority of 

the overlapping loci affected hindlimb muscle mass specifically via the hypertrophy of muscle 

fibers. Such prioritization between the two cellular mechanisms of muscle mass variability is 

important because genes specifically influencing cross-sectional area of muscle fibers can be 

targeted pharmacologically to prevent and reverse atrophy of muscle fibers in aging muscle90. In 

humans, the bone, muscle and skin tissues contribute to lean mass determined by bioelectric 

impedance. Approximately 1-2 mm thick skin91 constitutes a rather minor component of lean mass 

compared to the size of human extremities. The long bones determine axial dimensions of a limb 

but we adjusted for that to minimize bone effect on variation of lean mass. Whereas the magnetic 
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resonance imaging (MRI) assessed muscle mass accounts for ~38% of body weight in humans, 

and the MRI data strongly and positively correlates with the estimates of bioelectric impedance92. 

This, collectively with the overlap of the ALM loci and mouse muscle QTLs, provides a strong 

support for the notion that skeletal muscle is the primary tissue affected by the ALM loci. 

For the functional validation we prioritized three candidate genes (STC2, SBF2 and 

CPNE1) implicated by both human and mouse analyses. STC2 had the largest effect size on the 

ALM (beta = 0.88 ± 0.13 kg; Table S3) with the minor allele (A) of a missense SNP (rs148833559 

(A/C) associated with the increase in ALM. Prediction tools (SIFT54, PolyPhen52, CADD93, and 

REVEL94) suggested a detrimental consequence of rs148833559 on STC2 structure. SBF2 has 

been linked to Charcot-Marie-Tooth hereditary motor and sensory neuropathy86, and is expressed 

in skeletal muscle and associated with a cis-eQTL56. Although little is known about CPNE1, it is an 

intriguing candidate because the minor allele of the missense variant (rs12481228) is predicted by 

SIFT54 and PolyPhen53 to be detrimental on the structure of CPNE1. That allele was associated 

with increased ALM in the middle-aged cohort, and a frameshift variant (rs147019139) leading to 

premature stop codon was also associated with an increase in ALM in the elderly cohort (Table 

S10). Furthermore, in a previous GWAS using outbred (CFW) mice5, Cpne1 was implicated in 

hindlimb muscle mass. To validate these QTGs for their effects on skeletal muscle, we tested the 

siRNA-mediated knockdown effect on myogenesis in vitro. A knockdown of two genes, CPNE1 and 

STC2, increased the length of the myotubes. Although it is not completely understood how 

changes in the indices of in vitro myogenesis correlate with the fiber hypertrophy and/or 

hyperplasia in vivo, our findings implicate an upregulation of myogenic differentiation. We interpret 

this in vitro observation as being consistent with the allelic effect of the two loci identified in human 

GWAS. CPNE1 encodes for Copine 1, a soluble calcium-dependent membrane-binding protein95 

expressed in skeletal muscle25. STC2 encodes Stanniocalcin 2, a homodimeric glycoprotein 

hormone abundantly expressed in skeletal56 and cardiac muscle96, and involved in regulation of 

IGF1 through interaction with pregnancy-associated plasma protein-A97. A suppressive role of 

STC2 is consistent with reduced muscle mass in the STC2 overexpressing mice85. Hence, our 
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analyses and recent reports provide support for CPNE1 and STC2 as suppressors of muscle mass 

development and/or maintenance in humans. 

In conclusion, the present study integrated human and mouse GWAS and used in vitro 

validation to further interrogate a subset of the genes implicated in both species. Our results 

revealed over 180 genomic loci contributing to ALM in middle-aged humans. The effects of the 

majority of these loci persist in the elderly human population. Integration of human and mouse data 

also highlighted candidate genes affecting skeletal muscle mass in mammals. Two genes, CPNE1 

and STC2 were confirmed to be modifiers of in vitro myogenesis. 
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Figure legends 

Figure 1. Map of genome associations with the appendicular lean mass (ALM) of humans. 

Genome-wide association study (GWAS) on the ALM of middle-aged adults from the UK Biobank. 

Significance level is presented on the vertical axis, while the chromosomal position of each genetic 

marker is shown on the horizontal axis. Red line across the plot represents the genome-wide 

threshold of significance (P < 5 x 10-8). This plot shows the association of variants with MAF > 

0.001.  

 

Figure 2. Genetic lean mass score affects the appendicular lean mass (ALM) in elderly humans. 

The plot shows the ALM (kg) of the elderly cohort on the vertical axis. The elderly cohort was 

ranked by genetic lean mass score and clustered in five quantiles (Q1 to Q5) (horizontal axis). The 

average genetic lean mass score ( standard error) of each quantile is shown in parenthesis below 

the horizontal axis. The overall quantile effect of the genetic lean mass score on ALM was tested 

with Kruskal-Wallis test and the resulting P value is presented on the top of horizontal line above 

the bars. The ALM median differences between the groups were tested using a Wilcoxon test; the 

significance level of each comparison is presented above the horizontal lines with a Holm adjusted 

P value. 
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Figure 3. Muscle weight QTLs identified in mice of the LGSM AIL and density plot of the 

genotypes. The circle plot (A) shows from the outer to the inner ring the GWAS of the TA, EDL, 

gastrocnemius and soleus muscle weights. Chromosomal position of each SNP is shown in the 

outer black circle of the plot; chromosome names are shown outside as “Chr”. Dots within each 

chromosome space represent the association (–log10 P value) of each SNP tested. Dotted blue 

lines represent the genome-wide threshold (P < 6.45 × 10-06) of significance, and red dots above 

the genome-wide threshold are significantly associated SNPs. (B) Plots of the allelic effect of the 

Skmw34, Skmw55 and Skmw46 QTLs on the EDL muscle mass. These QTLs were identified for 

the four muscles investigated. Vertical axis represents the residual muscle mass adjusted for sex, 

age, dissector and long bone length of the hindlimb, and the horizontal axis shows the genotypes 

(LG/J homozygote, heterozygote and SM/J homozygote). Below the horizontal axis, the number of 

individuals with a given genotype is provided. The violin shapes within the plot area represent the 

distribution of individuals with the genotypes. Box whiskers represent minimum and maximum 

values, distance between a whisker and the top or bottom of the box contains 25% of the 

distribution, the box captures 50% of the distribution, and the bold horizontal line represents the 

median. Pairwise comparison P value (t-test) is shown above horizontal lines at the top of the 

plots.  

 

Figure 4. Gene knockdown effect on C2C12 myotube length. 

This figure shows the gene knockdown effect of the Cpne1, Sbf2 and Stc2 genes on myotube 

length. The overall effect of the gene knockdown on myotube length was tested using ANOVA and 

the resulting P value was 0.00017 (F3, 34985 =6.63). Vertical axis represents the myotube length 

(quantile normalised) residuals (adjusted for area analyzed and batch of cells), and the horizontal 

axis shows control and knockdown gene groups. Boxes represent the distribution of the myotube 

length for each group. Box whiskers represent minimum and maximum values within 1.5-fold 

interquartile range above the 75th percentile and below the 25th percentile; the box captures 50% of 

the distribution, and the bold horizontal line represents the median value of the myotube length 

normalized residuals distribution for each knockdown group. Each red dot represents a single cell 
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culture sample for each knockdown group. Statistically significant t–test P values between control 

and knockdown genes are presented above horizontal lines. Effects without a statistically 

significant difference between the control and gene knockdown are presented as “ns”. Cpne1 and 

Stc2 knockdown groups were not different from each other (P > 0.05). Sbf2 knockdown differed 

from Cpne1 (P = 0.002) and Stc2 (P = 0.043). 

 

Tables 

Table 1. Summary of the middle-aged cohort 

Trait N MIN MAX AVERAGE SD SNP heritability ± SE 

Age (years) 
Females =  46,353 39.67 49.00 44.98 2.43 

n/a 
Males = 39,397 38.83 49.00 44.89 2.46 

ALM (kg) 
Females =  46,307 12.20 41.60 20.05 2.57 

0.36 ± 0.003 
Males = 39,353 15.30 54.50 30.17 3.95 

Arm lean mass (kg) 
Females =  46,314 1.00 5.10 2.29 0.31 

0.32 ± 0.003 
Males =  39,362 1.60 7.10 3.85 0.57 

Leg lean mass (kg) 
Females =  46,323 4.60 16.60 7.77 0.98 

0.36 ± 0.003 
Males =  39,373 6.20 20.00 11.31 1.42 

WBF (kg) 
Females =  46,308 5.00 109.80 25.54 10.63 

0.33 ± 0.006 
Males =  39,171 5.00 88.50 21.12 8.29 

Leg (cm) Females =  46,302 43.00 113.00 76.57 4.27 
0.59 ± 0.010 

  Males =  39,353 40.00 122.00 83.87 4.68 
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Column description from left to right: 1) Trait, 2) Number of records, 3) Minimum value within the 

distribution of each trait, 4) Maximum value within the distribution of each trait, 5) Average value of 

each trait, 6) Standard deviation, 7) SNP heritability of the ALM across sex. All summary statistic 

values were calculated for each sex group. ALM: appendicular lean mass. WBF: whole body fat. n/a: 

no applicable. 

 

Table 2. Summary of the LGSM AIL muscle traits 

Trait N MIN MAX AVERAGE SD SNP heritability ± SE 

Tibialis anterior (mg) Females =    675 26.60 57.20 42.22 5.34 0.39 ± 0.03 

Males     = 1,186 31.60 70.80 50.11 6.73 

Extensor digitorum 

longus (mg) 

Females =    675 4.60 10.40 7.52 0.94 0.42 ± 0.03 

Males     = 1,184 5.90 13.30 9.31 1.30 

Gastrocnemius (mg) Females =    675 64.00 133.00 93.15 10.68 0.31 ± 0.03 

Males     = 1,187 70.20 174.90 119.32 16.32 

Soleus (mg) Females =    671 3.20 10.30 6.34 1.18 0.30 ± 0.03 

Males     = 1,187 4.00 13.50 7.78 1.64 

Column description from left to right: 1) Trait, 2) Number of records, 3) Minimum value within the 

distribution of each trait, 4) Maximum value within the distribution of each trait, 5) Average or mean 

value of each trait distribution, 6) Standard deviation of the mean, 7) SNP heritability for each trait 

across sex. Summary statistic values were calculated for each sex group.  
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Table 3. Syntenic regions between human and mouse QTLs and positional candidate genes 
Human 
locus peak 
pos 

Mouse QTL 
peak pos 
(syntenic to 
human) 

Elderly 
cohort P 

Gene symbol Human gene name Differential 
expression in 
mouse Soleus 

5:64555615 13:104435003 NS ADAMTS6 ADAM 
metallopeptidase with 
thrombospondin type 1 
motif 6  

0.44 

5:172755066 11:31680504 5.6 × 10-11 STC2 stanniocalcin 2  0.97 
6:34335091 17:34968724 7.1 × 10-09 HLA-B major 

histocompatibility 
complex, class I, B  

0.77 

   
HLA-DQB1 major 

histocompatibility 
complex, class II, DQ 
beta 1  

0.76 

   
BTNL2 butyrophilin like 2  n/a    
TSBP1 testis expressed basic 

protein 1  
n/a 

   
PBX2 PBX homeobox 2  n/a    
ATF6B activating transcription 

factor 6 beta  
0.74 

   
TNXB tenascin XB  0.63    
C4B complement C4B 

(Chido blood group)  
0.37 

   
STK19 serine/threonine kinase 

19  
0.43 

   
SKIV2L Ski2 like RNA helicase  0.83    
NELFE negative elongation 

factor complex 
member E  

n/a 

   
AL645922.1 novel complement 

component 2 (C2) and 
complement factor B 
(CFB) protein 

0.99 

   
C2 complement C2  0.43    
EHMT2 euchromatic histone 

lysine 
methyltransferase 2  

0.78 

   
SLC44A4 solute carrier family 44 

member 4  
n/a 

   
NEU1 neuraminidase 1  0.15    
HSPA1L heat shock protein 

family A (Hsp70) 
member 1 like  

0.04 

   
LSM2 LSM2 homolog, U6 

small nuclear RNA and 
mRNA degradation 
associated  

0.93 

   
VARS valyl-tRNA synthetase  0.95    
VWA7 von Willebrand factor A 

domain containing 7  
n/a 

   
MSH5 mutS homolog 5  n/a    
CLIC1 chloride intracellular 

channel 1  
0.48 

   
AL662899.1 novel transcript n/a    
ABHD16A abhydrolase domain 

containing 16A  
0.95 

   
AL662899.2 novel protein n/a    
CSNK2B casein kinase 2 beta  0.43    
GPANK1 G-patch domain and 

ankyrin repeats 1  
0.02 

   
APOM apolipoprotein M  n/a    
BAG6 BCL2 associated 

athanogene 6  
0.86 

   
PRRC2A proline rich coiled-coil 

2A  
0.5 



    37 
 

   
ATP6V1G2 ATPase H+ 

transporting V1 subunit 
G2  

0.88 

   
DDX39B DExD-box helicase 

39B  
0.46 

9:119309525 4:65416188 1.2 × 10-08 ASTN2 astrotactin 2  0.01 
11:10322720 7:109218379 6.6 × 10-17 SBF2 SET binding factor 2  0.76    

ADM adrenomedullin  n/a 

      AMPD3 adenosine 
monophosphate 
deaminase 3  

0.06 

Column description from left to right: 1) ALM Human locus peak position as “chromosome: base 

pair position”, 2) LGSM QTL peak position as “chromosome: base pair position” (syntenic to 

human), 3) Elderly cohort P value (NS – not significant), 4) Human gene symbol, 5) Human gene 

name, 6) Adjusted P value of differential expression between the soleus muscle of the LG/J and 

SM/J mouse strains25. 

 


