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Abstract  14 

Gravitation Field Algorithm (GFA) is a novel optimization algorithm derived from the Solar Nebular 15 

Disk Model (SNDM) in astronomy and inspired by the formation process of planets. Although it has 16 

achieved good performance when solving many unconstrained optimization problems, which 17 

demonstrated its promising application potential in many real-world problems, GFA still has much room 18 

for improvement, especially when it comes to the accuracy and efficiency of the algorithm.  19 

In this research, an improved GFA algorithm called Explosion Gravitation Field Algorithm (EGFA) 20 

is proposed for unconstrained optimization problems, with the introduction of two strategies: Dust 21 

Sampling (DS) and Explosion Operation. The task of DS is to locate the space that contains the optimal 22 

solution(s) by initializing the dust population randomly in the problem search space; while the Explosion 23 

Operator is to improve the accuracy of solutions and decrease the probability of the algorithm falling into 24 

local optima by generating the new population around the center dust to replace the original population.  25 

A comparison of experimental results on six classical unconstrained benchmark problems with 26 

different dimensions demonstrates that the proposed EGFA outperforms the original GFA and several 27 

classical metaheuristic optimization algorithms, such as Genetic Algorithm (GA) and Particle Swarm 28 



Optimization (PSO), in terms of accuracy and efficiency in lower dimensions. Additionally, the 29 

comparison of results on three real datasets indicate that EGFA performs better than the original GFA 30 

and k-means for solving clustering problems. 31 
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1. Introduction 34 

Optimization problems exist in almost all fields of science and engineering, and they can be divided into 35 

two categories in terms of if there exist constrained conditions upon these problems: constrained 36 

optimization problems and unconstrained ones. Unconstrained optimization problems have been studied 37 

extensively for a long time, but we are still facing challenges in acquiring desirable solutions for many 38 

of these problems in terms of accuracy and efficiency. Traditional mathematical methods for solving 39 

these unconstrained optimization problems, such as the steepest descent method [1], the Newton method 40 

[2], the conjugate gradient method [3], and the quasi-Newton method [4], normally require or assume 41 

that the optimization problems are continuous and differentiable and often some prior knowledge is 42 

needed in advance. This makes it challenging for the above traditional algorithms to solve problems of 43 

higher dimensions. 44 

To address the above challenges, many novel computational intelligence (CI) algorithms have been 45 

proposed over the past several decades, some of which have broken through the above rigorous 46 

limitations effectively. The significant advantages enable CI algorithms to be widely adopted to solve 47 

many unconstrained optimization problems. Over the past two decades, there have been many effective 48 

computational intelligence algorithms proposed, which are inspired by natural phenomena. For instance, 49 

Simulated Annealing (SA) algorithm proposed by Metropolis et al. in 1953 was inspired by annealing in 50 

metallurgy. Genetic algorithm (GA) [5][6], originally proposed by Holland in 1975, emulates the natural 51 

evolution selection process, and it is based on the Darwinian biological evolution theory. Ant colony 52 

optimization (ACO) [7][8] proposed by Dorigo in 1992 is based on the heuristic process of ant’s food 53 

discovery and incorporated the communication mechanisms between the colony members. Particle 54 

swarm optimization (PSO) [9][10] proposed by Eberhart and Kennedy in 1995 simulates a simplified 55 



social model [11].  56 

Furthermore, there has been an innovative CI algorithm boom over the last twenty years. In 2013, 57 

Xing et al. [12] identified a vast amount of novel CI algorithms (more specifically, 134 in total) and 58 

grouping them into four large classes, i.e., biology- (99 in total) [13-16], physics- (28 in total) [17-19], 59 

chemistry- (5 in total) [20], and mathematics-based (2 in total) [21] CI algorithms. The core algorithm 60 

concerned in this research is the gravitation field algorithm (GFA), which belongs to the second class 61 

(physics-based CI). GFA [22-24] proposed by Zheng et al. in 2012 simulates the formation process of 62 

planets based on the Solar Nebular Disk Model (SNDM) [25] in astronomy. Based on the original GFA, 63 

we have developed an improved version of GFA called GFA-OD [26] (Optimal Detection). Almost all of 64 

these innovative CI algorithms have good performance and some of them have been successfully applied 65 

in many real-world optimization problems including unconstrained ones.  66 

In this research, based on the original GFA and the earlier version of GFA-OD, we propose an 67 

improved version of GFA, which is called Explosion Gravitation Field Algorithm (EGFA), and we 68 

compare EGFA with popular approaches, including the original GFA, GA and PSO. More specifically, 69 

in EGFA, we develop an improved strategy called Dust Sampling (DS) to locate the space that contains 70 

the optimal solution(s) by initializing dust population randomly in a given problem search space, and this 71 

makes the algorithm more efficient. Additionally, to improve the accuracy of solutions and decrease the 72 

probability of the algorithm falling into local optima, an improved strategy named Explosion Operation 73 

is introduced, the aim of which is to improve the performance of EGFA by generating new dust 74 

population around center dust to replace the original dust. For implementing EGFA, we integrate two 75 

processes: movement and rotation, and modify the formula for updating dust population. From the 76 

experimental results on six complex unconstrained benchmark problems, we find that EGFA is superior 77 

to the original GFA and two other classical optimization algorithms (GA and PSO) in terms of accuracy 78 

and efficiency. In addition, further experiments show that EGFA outperforms the original GFA and k-79 

means on three real datasets. All the experimental results demonstrate the application potential of EGFA 80 

in more complex problems. 81 



2. Explosion Gravitation Field Algorithm 82 

2.1 The Original Gravitation Field Algorithm 83 

The original GFA was proposed in [23] as a novel nature-inspired heuristic search algorithm. The basic 84 

idea of GFA is to simulate the formation process of planets based on SNDM [25]. In GFA, all individuals 85 

can be mimicked as dust with mass, and each of them belongs to a certain group. In each group, the one 86 

with the biggest mass is regarded as the center dust and others are surrounding dust. Based on SNDM, 87 

each center dust attracts its surrounding dust by the gravitation field, and the field makes all surrounding 88 

dust move toward their center dust with heaviest mass. In addition, each dust has four characteristics: 89 

position, mass, group number, and a Boolean flag indicating whether it is a center. The position 90 

corresponds to a solution of the problem, the group number is initialized randomly, and the other two: 91 

mass and flag, are determined by the objective function. The flow chart of GFA is given in Fig.1. The 92 

details of GFA are summarized as follows, and all the parameters are set according to Zheng et al. [23]. 93 

  94 

Fig. 1 The workflow of GFA 95 

 96 

l Step 1: generate  dusts  randomly distributed in the mass function domain 97 

bound to establish the initial solution space when all parameters are set, where the position of the 98 

 dust is defined by Eq. (1). 99 

      (1) 100 

In the above  is the position of the  dust in the  dimension, and  is the number of 101 

dimensions of search space. In addition, every dust (solution)  is assigned a mass , whose values 102 

are calculated based on the objective function or the benchmark function. 103 

l Step 2: divide the search space into several subspaces randomly. Each dust  is allocated to a 104 
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subspace (called a group in GFA) randomly and the group number  is calculated by Eq. (2)，105 

where ceil is a function that rounds the elements to the nearest integers greater than or equal to it. 106 

In each subspace, the dust with the heaviest mass is called the center dust and we assign its flag 107 

, and others are the surrounding dusts and we assign their flags as . 108 

         (2) 109 

l Step 3: move dust. Every surrounding dust move toward its center dust and the center dust remain 110 

stationary. The pace of movement is determined by Eq. (3). 111 

        (3) 112 

where  is the Euclidean distance between the moving surrounding dust and its center dust in 113 

[22] and is also defined as the difference between two vector variables in [23].  is a weight 114 

value for distance [22]. 115 

l Step 4: absorb dust. Some surrounding dusts which are close to their center dust enough are 116 

absorbed by their center dust and therefore eliminated from the initial search space for increasing 117 

the convergence speed of GFA. 118 

l Step 5: perform rotation operation. The introduction of Rotation Operator in [23] is to push the 119 

surrounding dusts away from their center dust, which can decrease the probability of dusts falling 120 

into local optima to some extent. The rotation direction is not the original forward direction, but it 121 

could be any possible random direction. To prevent the surrounding dusts from being pushed too 122 

far, the pace is no greater than the max pace , which is defined by Eq. (4). 123 

         (4) 124 

The rotation operation is performed with the probability of Rotation Factor (RF) [23]. The value of 125 

RF is defined in Eq. (5). 126 

，      (5) 127 

where  is the RF in the  iteration,  is the max value of RF. This value 128 

cannot be too large, and it will gradually increase along with the running process of the algorithm. 129 

In [23], , and after several iterations, the RF will reach its max value and remain 130 

unchanged.  131 
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l Step 6: check the termination criterion. If the algorithm does not meet the stopping condition, GFA 132 

will go to Step 3, otherwise, the algorithm will terminate. 133 

According to the basic steps of GFA described above, every dust can be represented by a quadruple 134 

, and the pseudo-code of the original GFA model is given in Algorithm 1, where  is 135 

the size of the population,  is the number of iterations;  is the number of groups; and bound is a 136 

 matrix that records the boundary of search space. The first five steps of GFA previously mentioned 137 

correspond to five procedures: ‘Initialize’, ‘Group’, ‘Move’, ‘Absorb’ and ‘Rotate’. It is obvious that 138 

these five procedures have a computational complexity of , where  is the size of population, 139 

and the whole GFA model requires an  of time complexity since the number of iteration 140 

is one of the termination criteria. 141 

The original GFA has been used to optimize several unconstrained optimization problems, and it 142 

has demonstrated excellent performance in these problems. It was reported that GFA was very effective 143 

to find approximate optimal solutions for several unconstrained optimization problems. However, there 144 

are still some limitations for the original GFA, as shown below: 145 

1） The solutions that GFA obtains are particularly sensitive to the initial population. It is reported 146 

that the accuracy of solution is closely related to the initial population [26]. GFA tends to find a solution 147 

that usually could not meet the accuracy requirement of problems in given running time in many real-148 

world problems if the initial dust population is generated randomly in the whole search space. 149 

2） GFA may be in stagnation behavior easily during the iteration process because of falling into 150 

local optima, and in these cases the algorithm will return a local optimal solution or even a worse one if 151 

there is no appropriate strategy to jump out from the bad results. 152 
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Algorithm 1: GFA 

1. initialdusts Initialize(bound, N, targetFun, M)   //initial 

2. [groupdusts, center] Group(initialdusts, G)    //divide search space into groups 

3. dusts groupdusts 

4. while the stop condition is not met do

5.     movedusts Move(dusts, center, targetFun)    //move 

6.     absorbdusts Absorb(movedusts)    //absorb 

7.     rotatedusts Rotate(absorbdusts, targetFun)    //rotate 

8.     dusts rotatedusts 

9. end 

10. return best solution(s) 

 

11. return center;   %return the center dusts 

¬
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2.2. Explosion Gravitation Field Algorithm 153 

To address the limitations of GFA presented above, an improved Explosion Gravitation Field Algorithm 154 

(EGFA) was proposed with three aspects of improvement: two of them are two improved strategies called 155 

Dust Sampling (DS) and Explosion Operation in this research, and another one is the integration of the 156 

two processes: move and rotate. DS is performed when the parameter setting is completed and it is no 157 

longer performed once this process is over. It can efficiently locate a small enough search space which 158 

more likely contains the optimal solution(s). The second aspect of improvement, the Explosion Operation, 159 

is performed once one of the pre-specified conditions is met. The Explosion Operation is used to jump 160 

out from a local optimal solution with a certain probability and therefore improve the accuracy of 161 

solutions. Furthermore, to simplify the process of EGFA, there is another improvement: the processes of 162 

movement and rotation are integrated, and the formula for updating the dust population is modified. The 163 

whole core aspects of improvement in EGFA are described below and the workflow of EGFA is given in 164 

Fig. 2. 165 

 166 

 Fig. 2 The workflow of EGFA 167 

2.2.1 Subspace location by dust sampling 168 

As mentioned in Section 2.1, the original GFA starts with dust population being initialized randomly in 169 

a giving search space, this makes it a long iterative process to find a solution that meets the accuracy 170 

requirement for a given problem. The solution that the original GFA finds may be a suboptimal one 171 

whose accuracy could not be comparable to the solutions found by other classical metaheuristic search 172 

algorithms, such as GA and PSO. Therefore, to improve the accuracy and shorten the overall running 173 

time, we proposed a subspace location strategy named Dust Sampling (DS). The DS operator is not only 174 



an important improvement in this research but also the core component of EGFA. The task of DS is to 175 

efficiently locate a small enough search space which more likely contains the optimal solution(s), and 176 

this shares some similarities with our original Optimal Detection (OD) operator [26]. The readers are 177 

referred to [26] for more details about the original OD operation. 178 

 The DS operation begins with all dusts being initialized randomly in the given search space of a 179 

problem, then as shown in Fig. 3.(a), the dusts in the top 20% of the population are selected to calculate 180 

the boundary of the ‘Subspace’, and the solution space containing the other 80% of dusts population is 181 

named ‘Non-Subspace’. The top 20% of dusts are selected based on their mass values calculated from 182 

the mass function, similar with the fitness values in GA and PSO. In the next DS, 80% of dusts are 183 

generated in the ‘Subspace’ and just 20% of the dusts are generated in the ‘Non-Subspace’ randomly, 184 

which is illustrated in Fig. 3.(b). This process will be executed several times until the ‘Subspace’ is small 185 

enough. According to the above description, the pseudo-code of DS can be concluded in Algorithm 2. 186 

 187 

Fig. 3 The distribution of the dusts in Subspace and Non-Subspace 188 

 In [26], the algorithm can obtain a correct solution only when the hypothesis that the ‘Subspace’ 189 

found by OD contains the optimal solution(s) is valid. If OD finds a wrong ‘Subspace’, the algorithm 190 

can only obtain a suboptimal solution. To overcome this limitation and decrease the probability of getting 191 

a suboptimal solution, every dust generated by DS is located in the ‘Non-Subspace’ with the probability 192 

of 20%. Even if the ‘Subspace’ does not contain the optimal solution(s), DS will still have a chance to 193 

locate the position of optimal solution(s) in the ‘Non-Subspace’. The choice of 20% and 80% when 194 

dividing the dusts for subspace and non-subspace is based on the Pareto principle, and in the future work 195 

we could further explore whether and how we can further improve this choice with better division.  196 

The reason for the DS operator shortening the running time is because the main loop of the 197 



algorithm just needs to find the optimal in a smaller search space and avoid a long iterative process to 198 

find a solution that meets the accuracy requirement, and this shares some similarities with our original 199 

OD [26]. However, a key to the original OD is that users have to specify the number of iterations and the 200 

size of the dusts population for the process to acquire a satisfactory ‘Subspace’, but it may be difficult 201 

for inexperienced users to provide such appropriate values. If the values are too large, the OD operation 202 

may take a long time, which lead to the decrease of the algorithm efficiency; if the value is too small, the 203 

algorithm may not be able to find a solution that meets the requirement of accuracy. The DS overcomes 204 

the above limitation and simplify the process of parameter setting for users. This operation provides 205 

default values for the number of iterations and the size of dusts population, according to the dimensions 206 

of the given problems. Specifically, the operation provides larger values for the complex problems with 207 

larger number of dimensions and provides smaller values for the uncomplex problems with smaller 208 

number of dimensions. The number of iterations and the size of population for the process increase with 209 

the increase of the complexity of a given problem. Let  be the number of iterations for this process, 210 

and it is set as the stopping condition; if is the size of population and  is the number of dimensions 211 

of the given problem, the process requires  time complexity. 212 

Obviously, the fact that the number of the iterations and the size of dust population do not need to 213 

be assigned by the users in DS, and this makes the algorithm more robust to problems of different 214 

complexity compared with the original OD operation. 215 
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Algorithm 2: Subspace location by dust sampling 

1. Subspace Solution Space; 

2. Non-Subspace Solution Space - Subspace; 

3. While the stopping conditions are not met do 

4.     if Non-Subspace is null then 

5.      generating all dust population in the Subspace;  

6.     else  

7.         generating 80% dust population in the Subspace; 

8.        generating 20% dust population in the Non-Subspace; 

9.     end 

10.    picking up the top 20% of the population and calculating the boundary of the subspace; 

11.    Subspace  the boundary of the subspace; 

12.    Non-Subspace  Solution space – Subspace; 

13. end 
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2.2.2 Explosion Operation 216 

The algorithm may still fall into local optima or cannot find a solution that meets the accuracy 217 

requirement for the given problem if the ‘Subspace’ identified by Algorithm 2 does not contain the 218 

actual optimal solution. Regarding this, we introduce the Explosion operation to decrease the probability 219 

of dust falling into local optima compared with the original GFA, GA and PSO. The algorithm will 220 

perform the explosion operation when one of the following conditions is triggered.  221 

1） The algorithm is in stagnation behavior. The explosion operation will be executed since the 222 

solutions that the algorithm finds will not be better in the future iteration process.  223 

2） The size of population is less than a pre-specified threshold. The explosion operation is needed 224 

since the solution is less likely to get better in this case. 225 

When one of above two conditions is triggered, all dusts will be removed except the center dust in 226 

each group. Then the algorithm will perform the explosion operation and generate a new population to 227 

replace the original one. The generation of the new population is not random, and it uses the knowledge 228 

from the last population. The process of explosion for one group is illustrated in Fig. 4. 229 

 230 

Fig. 4 One of the centers generate a new population to replace the original one 231 

 232 

As shown in Fig. 4, the biggest blue dot with  in a group is the center dust and other dots 233 

are the surrounding dust with . Obviously, the task of Explosion Operation is to generate a new 234 

population around the center, and then attempt to find a better solution among the new population. The 235 

distribution of the new population is given by Eq. (5). 236 

 ，   (5) 237 

where  is the number of dimensions,  is a positive or negative sign generated randomly in a 238 

mathematical operation,  and  are the upper and lower bounds of the  dimension in search 239 
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space. The Gaussian function  determines how new dust will be distributed in the k-240 

dimensional search space, where , and the mean and standard deviation for the 241 

Gaussian function are 0.025, 0.25, respectively. The coefficient  determines the degree of aggregation 242 

for dusts in each group, where . For each group, the less the value of  is, the more 243 

concentrated the distribution of the dust is; the larger the value of  is, the more dispersed the 244 

distribution of dust is. 245 

The Explosion is performed when one of the following two conditions is triggered: (1) the algorithm 246 

is in the stagnation behavior, and (2) the size of population is less than a pre-specific threshold. Obviously, 247 

the best solution the algorithm gets must be one of the centers. Provided that the algorithm has found an 248 

approximate optimal solution and the size of the population has been less than the pre-specified threshold, 249 

it is reasonable to believe that the better solution exists near one of the center dusts with high probability 250 

and the algorithm needs more dusts to explore the search space. Thus, the above approach can be used 251 

to find a better solution and improve the accuracy of historical best solution quickly. Additionally, if the 252 

algorithm has been in stagnation behavior because of falling into local optima, the algorithm can jump 253 

out from the local optimal solution with the help of surrounding dusts far away from the center dust with 254 

a certain probability. Therefore, the explosion operator introduced in EGFA can also be used to prevent 255 

the algorithm from being in stagnation behavior. 256 

Following the details about Explosion described above, the pseudo-code of one of the centers 257 

generating a new population to replace the original one is presented in Algorithm 3, which is the main 258 

part of Explosion operation. In Algorithm 3,  is the number of groups;  is the size of the 259 

population;  is the size of each group; ;  is the number of dimensions of the search 260 
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Algorithm 3: Explode 

1. for i = 1:C    //C is the size of each group 

2.     for j = 1:G   //for each dust in a group 
3.           

4.         for k = 1:d    %for the kth demonstration 

5.             //the position of new dust 

6.         end 

7.             //7-9 generate new dust 

8.          

9.          

10.    end 

11. end 
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space for a given problem. This process requires an overall of  computations. 261 

Note that only  storage is required for this process.  262 

2.2.3 The Main loop 263 

EGFA proposed in this research is an improved version of GFA, which introduces the DS and Explosion 264 

operations to improve the algorithm performance. In addition, to simplify the process of EGFA, we 265 

integrate the process of movement and rotation, and modify the formula for iteration. As a result, any 266 

dust  in a given search space is described by a quadruple  and the new 267 

generation for the next iteration in the EGFA can be determined by Eq. (6). 268 

 ,       (6) 269 

where  and  are the current pace and position of dust  at time ，respectively, and 270 

 is determined by three components as follows: 271 

，    (7) 272 

where  is the dimension of the search space,  stands for the weight values of the three 273 

parts, respectively, , , (  is equal to 1 when  is a center, otherwise, 274 

 is equal to 0). 275 

l The first component  is the directional difference of the position between the moving 276 

surrounding dust  and its center at time , which is calculated by Eq. (8) in EGFA. 277 

 ,        (8) 278 

Where  and  are the position of dust  and its center at time , respectively. 279 

l The second component  stands for the improvement vector of the global best’s position at 280 

time , and it is calculated by Eq. (9).  281 

  ,           (9) 282 

where  is the position of current global best dust and  is the stored position of the global 283 

best dust from the last generation. The concept of global best in this manuscript is similar to the 284 
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concept of global best Artificial Bee Colony (ABC), and reader can refer to [27] for more details 285 

about the concept. The main objective of this component is to modify the representative point by 286 

taking into account global directional moves so that to attract the path going to optima and reduce 287 

the time for reaching the global optima. 288 

l The third component  is a matrix and produces random movements for all dusts, 289 

including the surrounding dusts and their centers, like all the planets in the universe are always in 290 

motion. As a result, the centers in EGFA are no longer still, and they move randomly toward any 291 

possible direction like surrounding dusts, which could help find a better center and improve the 292 

diversity of the population. 293 

Furthermore, dust recovery is another interesting topic with regards to EGFA due to the fact that 294 

dust may move outside the search space and should be returned. There are many possible dust recovery 295 

methods. A useful one adopted in EGFA is the reposition factor (Frep for short) [19], which plays an 296 

important role in EGFA’s convergence. They are described in Eq. (10) and Eq. (11) as below.  297 

        (10) 298 

 ，           (11) 299 

where  is the current dimension;  is the current time step;  is the current dust index; and  is 300 

a small positive number chosen by the user, typically 0.0005. EGFA uses Eq. (10) to reposition dimension 301 

of dust that have exceeded their minimum values, while Eq. (11) is used to reposition dimensions of dust 302 

that have exceeded their maximum values.  303 

According to the above details of EGFA, the pseudo-code of the main steps of EGFA is given in 304 

Algorithm 4. In the above variable  is a monitor, which is employed to record the number of iterations 305 

of the algorithm being in stagnation behavior during the search process, variable ‘bound’ gives the value 306 

range of  in all dimensions for each solution ,  is the size of population,  is the number 307 

of groups,  is the number of the dimensions of the search space.  308 

The method ‘DustSampling’ corresponds to the process of Dust Sampling presented in Section 309 

2.2.1 and stores the information of ‘Subspace’ with the variable ‘BestBound’. The method 310 

‘MoveAndRotate’ integrates the process of movement and rotation and corresponds to Eq. (6) for 311 

iteration. The method ‘Explode’ corresponds to the process of explosion described in Section 2.2.2 and 312 

there exists a very important threshold variable  in the method, which is usually proportional to the 313 
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number of the iterations. If the condition  is met, the method ‘Explode’ will be performed. The 314 

method ‘Initialize’, ‘Group’, ‘Absorb’ still corresponds to the same processes as in the original GFA. 315 

The method ‘GetCenters’ is used to get the center dust for each group and the method ‘GetBest’ is 316 

devoted to update the historical best solution. Let  be the number of iterations for the main loop and 317 

set as one of the stop conditions. Obviously, the methods ‘Initial’, ‘Group’, ‘MoveAndRotate’, ‘Absorb’, 318 

‘GetCenters’ and ‘GetBest’ just require time complexity. Since ‘DustSampling’ requires 319 

 
time complexity, and ‘Explode’ requires  time complexity, the main loop of 320 

EGFA require an overall of  time complexity. Note that only  space 321 

complexity is required for EGFA.  322 

The two strategies proposed in EGFA overcome the limitations of the original GFA. However, the 323 

introduction of these two strategies is at the cost of running time. It is noted that DS avoids the long 324 

iterative process and shortens the running time, although the time complexity has increased to  325 

. Last but not least, to prove the capacity in theory, the research discusses the 326 

convergence of EGFA in one-dimension simply in the supplementary material. As for the convergence 327 

in higher dimensional search space, it is a part of research in future work. 328 
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Algorithm 4: EGFA 

1. k=0 

2. bestBound DustSampling (N, bound, targetFun);  //dust sampling  

3. initialdusts Initialize (bestBound, N, targeFun)  //initialisation 

4. [groupdusts,center] Group (initialdusts, G)  //group 

5. dust groupdusts                                  

6. while the stop conditions are not met do 

7.       movedust  MoveAndRotate (dust, center, targetFun);    //move and rotate 

8.       absdust  Absorb (center, movedust, bestBound);    //absorb 

9.       dust  absdust 

10.      if pre-condition is met then 

11.          [dust,k] Explode (k, dust, N, bound, targetFun, center);  //explode 

12.     end if  
13.     [center,dust]  GetCenters (G, dust);   //get the center dusts of each group 

14.     [best,k] GetBest (best, center, k);   // the best dust 

15. end 

16. return optimal solution 

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬



3. Experiments 329 

3.1 Experiments on Benchmark problems 330 

To assess the performance of EGFA proposed in this research, the following six benchmark unconstrained 331 

optimization problems in Table 1 are chosen, which are used to test the accuracy, running time of our 332 

algorithm with problems of different dimensions. At the same time, this series of classical test problems 333 

are also solved by the original GFA, GA and PSO to compare with EGFA. 100 trials of each algorithm 334 

are performed for solving these six benchmark problems, and we choose the mean value, the median 335 

value, the mean squared error and the Standard Deviation of solutions to evaluate the performance of the 336 

four algorithms. Finally, we present the experimental results and the discussions upon these results.  337 

3.1.1 Benchmark problems and performance evaluation 338 

The functions listed in Table 1 are some of the most commonly used functions used to assess the 339 

performance of unconstrained optimization algorithms. These benchmark problems are chosen from a 340 

number of significant past studies in unconstrained optimization. The functions [28] are known widely 341 

as the Sphere, Griewangk, Ackley, Zakharov, Rotated Hyper-Ellipsoid and Levy function, and they can 342 

be scaled to any number of variables (dimensions). Table 1 shows the domain, the objective function, 343 

and the global minimum for every benchmark problem. Additionally, the six benchmark problems have 344 

the same global minimum value , and the global minimum values of these six problems are equal 345 

to zero when the variables are equal to zero or one, regardless of the number of variables. The Zakharov, 346 

Sphere, and Rotated Hyper-Ellipsoid functions are continuous, convex, unimodal, and multidimensional. 347 

The first one is plate-shaped and the latter two are Bowl-Shaped in their two-dimensional forms. The 348 

others are multimodal, multidimensional, with a large number of local optima. 349 

 350 

Table 1  351 

The benchmark problems for testing EGFA, GFA, GA and PSO  352 

Name Variable ranges Objective function Optima 
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Griewangk    

Ackley  
 

 

Zakharov     

Rotated Hyper-

Ellipsoid  
   

Levy    

 To investigate the accuracy and efficiency of EGFA, we choose four common performance metrics 353 

for evaluating the performance of EGFA in comparison with the original GFA and two other classical 354 

computational intelligence algorithms, i.e., GA and PSO. Four performance metrics are described as 355 

follows: 356 

1) The mean value of solutions that are found by the four algorithms for 100 different trials.  357 

2) The median value of solutions that are found by the four algorithms for 100 different trials.  358 

3) The Mean squared error (MSE) [29]: it has the general definition as in Eq. (12), where n is the 359 

number of tests,  is the solution of ith run and  is the true global minimum. Obviously, 360 

the lower the Mean squared error (MSE) is, the better performance the algorithm has. 361 

，       (12) 362 

4) The Standard Deviation (STD) [30]: it has the general definition as in Eq. (13), where n is the 363 

number of tests,  is the solution of  run and  is the mean of all . Same as the 364 

Mean squared error (MSE), the lower the Standard Deviation (STD) is, the better performance the 365 

algorithm has. 366 

,       (13) 367 

 The mean value, the median value and the Mean squared error (MSE) are devoted to evaluate the 368 
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accuracy of solutions that are obtained by four different algorithms. The Standard Deviation (STD) is 369 

employed to measure the stability of the performance for the four test algorithms.   370 

3.1.2 Parameter settings 371 

The parameters and their values for the four algorithms are given in Table 2. The size of population is set 372 

as , where d is the number of dimensions of a given search space. Moreover,  373 

has been tested in this research. The maximum number of iterations is set  for the four 374 

algorithms to control their running time in the same dimension. The number of groups is just set as 3 for 375 

EGFA and the original GFA to ensure multi-centers in this research. The parameter TolFun is the average 376 

change in value of the fitness function or mass function and it is changed from the default value of 1.0e-377 

6 to 1.0e-30 to ensure that the optimal solution they acquire is accurate enough. 378 

 379 

Table 2 380 

The parameter settings for EGFA, GFA, GA and PSO 381 

Parameters setting EGFA GFA GA PSO 

Population size 100*d 100*d 100*d 100*d 

The Max number iterations 200*d 200*d 200*d 200*d 

The number of group 3 3 - - 

TolFun 1.0e-30 1.0e-30 1.0e-30 1.0e-30 

 382 

In this research, every test problem shown in Table 1 is scaled to different number of variables, whose 383 

value range of each dimension is also set as in Table 1. The basic parameters of each algorithm are set as 384 

in Table 2. Four performance metrics, the mean value, the median value, MSE, and STD, are employed 385 

to measure the accuracy, efficiency of each algorithm in given running time. In this study, we do not 386 

make any systematic attempt to find the best parameters for EGFA and just focus on the accuracy of each 387 

algorithm in given running time. The higher accuracy of the optimal solution is, the better the 388 

performance the algorithm has.  389 

3.1.3 Parametric statistical test 390 

To compare the performance of EGFA, GFA, GA and PSO on unconstrained optimization problems with 391 

different numbers of dimensions in given running time, six test problems with  dimensions 392 

100*d 2,3,5,10,20d =

200*d

2,3,5,10,20



are used. The comparisons of four algorithms: EGFA, GFA, GA and PSO on the six test problems in 393 

mean value, median value, MSE and STD are shown in Figs. 5~8. More specifically, the results of Figs. 394 

5~8 are the mean value, median value, MSE and the STD of 100 trials, which the size of the population 395 

is set as , where  is the number of dimensions and , the iterations for EGFA , 396 

GFA, GA and PSO is set as . 397 

Fig. 5 shows that EGFA achieves better performance in terms of mean value than GFA, GA and 398 

PSO; Fig. 6 shows that EGFA achieves better performance in terms of median value than GFA, GA and 399 

PSO. Especially in search space of low dimensions, we can see that EGFA outperforms GFA, GA and 400 

PSO in terms of accuracy. Fig. 7 shows that the solution obtained by EGFA has less value of the MSE 401 

than GFA, GA and PSO, therefore we can see that EGFA has less error than the other three algorithms. 402 

Fig. 8 demonstrates that EGFA has more stable performance compared with GFA, GA and PSO since 403 

EGFA has the least value of STD among the four algorithms. In addition, the accuracy of solutions 404 

obtained by EGFA will decrease with the increase of the dimensions of search space like PSO, but EGFA 405 

has better accuracy than PSO as shown in Figs. 5-8. 406 

 407 

   

   
Fig. 5.  A Comparison of EGFA, GFA, GA and PSO in log10(mean) with 2,3,5,10,20 dimensions 408 

 409 

Besides the accuracy, the running time is another very important factor that we should consider in 410 

order to measure the efficiency of an algorithm. It is obvious that the introduction of DS and Explosion 411 

operations are at cost of time, but the optimal space the DS acquires can help to decrease the number of 412 

100*d d 2,3,5,10,20d =

200*d



iterations and shorten the overall running time. The average running time of the four algorithms for 100 413 

trials on the six test problems with the number of dimensions  is demonstrated in Table 414 

3 and Fig. 9. Table 3 shows that the performance of the four algorithms is controlled in similar running 415 

time, when they are executed on the same problem in same dimension. Fig. 9 shows that EGFA has the 416 

best efficiency for solving the six test problems in some content. And Fig. 9 also shows that the running 417 

time of the four algorithms on the test problems increases exponentially with the increase of the 418 

dimensions. All experiments were implemented on a PC (i5-4200M, 8GB, Windows 7, Matlab R2014a). 419 

 420 

   

   
Fig. 6.  A Comparison of EGFA, GFA, GA and PSO in log10(median) with 2,3,5,10,20 dimensions 421 

 422 

   

   
Fig. 7.  A Comparison of EGFA, GFA, GA and PSO in log10(MSE) with 2,3,5,10,20 dimensions 423 

2,3,5,10,20d =



   

   
Fig. 8.  A Comparison of EGFA, GFA, GA and PSO in log10(STD) value with 2,3,5,10,20 dimensions 424 

 425 

Table 3 426 

The average running time for 100 trials of six benchmark functions with dimension d=2,3,5,10,20 427 

Benchmark 

Function 
 2 3 5 10 20 

Sphere EGFA 0.4381s 0.8898s 1.4093s 3.7177s 19.0255s 

GFA 0.5013s 0.9028s 1.4056s 3.7115s 19.0313s 

GA 0.5218s 0.9164s 1.4218s 3.7560s 19.0874s 

PSO 0.4315s 0.8820s 1.4350s 3.7997s 19.4872s 

Griewangk EGFA 0.4074s 0.9803s 1.4993s 3.8174s 17.0395s 

GFA 0.5018s 1.0027s 1.5081s 4.0279s 17.0497s 

GA 0.5225s 1.0276s 1.5361s 3.8566s 17.0977s 

PSO 0.4098s 0.9739s 1.5305s 3.9028s 17.4997s 

Ackley EGFA 0.4839s 0.9627s 1.5041s 4.0129s 16.0337s 

GFA 0.5015s 1.0029s 1.5077s 4.0257s 16.0513s 

GA 0.5186s 1.0221s 1.5372s 4.0426s 16.0824s 

PSO 0.4897s 0.9575s 1.5327s 4.1212s 16.5579s 

Zakharov EGFA 0.4158s 0.9771s 1.5019s 3.9152s 18.0285s 

GFA 0.5013s 1.0014s 1.5345s 4.0141s 19.0296s 

GA 0.4544s 1.0304s 1.5418s 3.9605s 18.1944s 

PSO 0.4081s 0.9750s 1.5384s 3.9908s 18.4605s 

Rotated Hyper-

Ellipsoid 

EGFA 0.4074s 0.9125s 1.3598s 3.7141s 18.0331s 

GFA 0.4021s 0.9031s 1.4052s 3.8168s 18.0481s 

GA 0.4169s 0.9119s 1.4285s 3.7592s 18.1806s 

PSO 0.4080s 0.9125s 1.4314s 3.7941s 18.4442s 

Levy EGFA 0.4558s 0.9560s 1.8099s 4.2267s 19.0550s 

GFA 0.5028s 1.0036s 1.8073s 4.5340s 20.0777s 



GA 0.5303s 1.0303s 1.8448s 4.2536s 19.2646s 

PSO 0.5090s 1.0156s 1.8381s 4.4143s 19.5955s 

 428 

   

  

 

Fig. 9 The average running time for 100 trials of six benchmark functions with dimension d = 2, 3, 5, 10, 20 429 

3.1.4 Non-parametric statistical test 430 

To further verify the conclusion drawn from the part of parametric statistical test in Section 3.2.1, 431 

following [31] we use a non-parametric statistical method, called the Wilcoxon test [32] [33], to compare 432 

the performance of EGFA, GFA, GA and PSO. Table 4 shows the Wilcoxon test results of the 100 trials 433 

for the four algorithms on the six test problems, and readers can refer to [34] for more details about how 434 

to use the Wilcoxon test to compare different metaheuristic algorithms in detail. 435 

In the Wilcoxon test presented in Table 4, we set the significance level p to be 0.05 ( ) and 436 

use the two-tailed hypothesis because the settings of the both are the most commonly. We have 100 trials 437 

(which means the sample size ) for the four algorithms on the six test problems in  438 

dimensions, and calculate both p-value and h-value to compare the performance of each pair of the 439 

algorithms. If the p-value is less than the significance level ( ) and , the results indicate 440 

that there is a significant difference between the performance of the two algorithms. Otherwise, it 441 

indicates that there is not enough evidence to verify the significant difference between the performance 442 

of the two algorithms  443 

Since we know that the performance of the two algorithms is significantly different, to further 444 

determine which algorithm performs better we will focus on the value of the rank sum for the former 445 

0.05p =

100N = 2,3,5,10,20

0.05p = 1h =



algorithm  and the latter algorithm , that is, if  is less than , it indicates that 446 

the former algorithm outperforms the latter one, otherwise, the latter one outperforms the former one.  447 

For each cell in Table 4, the first value is the p-value and is representative of the probability that the 448 

results for the two algorithms obey the same distribution. The second value is the h-value. If the h-value 449 

is equal to 1 ( ), it indicates that the performance of the two algorithms is significantly different. If 450 

there is no significant difference between the two algorithms, the h-value is equal to 0 ( ). A ‘-’ sign 451 

means that the former one outperforms the latter one ( ). Similarly, a ‘+’ sign means 452 

 and indicates that the latter algorithm outperforms the former one. For instance, from the 453 

three rows about the Rotated Hyper-Ellipsoid problem in Table 4, all the p-values are smaller than the 454 

significance level ( ), h-value is 1, and the ‘-’ sign demonstrates that EGFA outperforms GFA, 455 

GA and PSO at  on the Rotated Hyper-Ellipsoid problem in dimensions because 456 

of . The results are consistent with the distribution of the results obtained by the four 457 

algorithms on 100 trials presented in Fig. 10. Fig. 11 presents the distribution of the results for the four 458 

algorithms on Rotated Hyper-Ellipsoid in 20-dimensional search space in detail, which corresponds to 459 

the cell ‘1.1720e-16/1/-’, ‘2.5621e-34/1/-’ and ‘2.1609e-23/1/-’ in the Table 4. 460 

From the results presented in Table 4, as well as in Fig. 10 and Fig. 11, we can see that results 461 

obtained from the Wilcoxon test confirm the conclusions drawn from Section 3.2.1, that is, EGFA 462 

outperforms GFA, GA and PSO on all six test problems in the overall level.  463 

 464 

Table 4  465 

Results of Wilcoxon rank sum test for statistically significance level at for optimal solution over 100 466 

runs on benchmark functions for 2,3,5,10,20 dimensions  467 

Benchmark Function  
2 3 5 10 20 

p/h/zval 

Sphere EGFA vs GFA 3.0199e-11/1/- 3.0199e-11/1/- 3.0199e-11/1/- 3.0199e-11/1/- 3.0199e-11/1/- 

EGFA vs GA 2.5621e-34/1/- 2.5621e-34 /1/- 2.5621e-34 /1/- 2.5621e-34 /1/- 2.5621e-34/1/- 

EGFA vs PSO 0.2241 /0/- 4.9856e-29 /1/- 2.5621e-34 /1/- 2.5621e-34 /1/- 2.5621e-34 /1/- 

Ackley EGFA vs GFA 3.0199e-11/1/- 3.0199e-11/1/- 3.0199e-11/1/- 3.0199e-11/1/- 3.0199e-11/1/- 

EGFA vs GA 2.5621e-34/1/- 2.5621e-34/1/- 2.5621e-34/1/- 2.5621e-34/1/- 2.5621e-34/1/- 

EGFA vs PSO 0.7022/0/- 2.2224e-27/1/- 2.5621e-34/1/- 2.5621e-34/1/- 2.5621e-34 /1/- 

Griewangk EGFA vs GFA 3.0199e-11/1/- 3.1589e-10/1/- 1.0601e-07/1/- 3.1589e-10/1/- 3.0199e-11/1/- 

1Rå 2Rå 1Rå 2Rå

1h =

0h =

1 2R R<å å

1 2R R>å å

0.05p =

0.05p = 2,3,5,10,20

1 2R R<å å

0.05p =



EGFA vs GA 3.7064e-23/1/- 3.2066e-29/1/- 1.3673e-31/1/- 9.6788e-31/1/- 2.5621e-34/1/- 

EGFA vs PSO 1.1068e-07/1/- 4.4804e-09/1/- 2.5074e-33/1/- 6.6802e-34/1/- 2.5621e-34/1/- 

Levy EGFA vs GFA 3.0199e-11/1/- 3.0199e-11/1/- 3.0199e-11/1/- 2.9543e-11/1/- 3.0199e-11/1/- 

EGFA vs GA 2.5621e-34/1/- 2.5621e-34/1/- 2.5621e-34/1/- 2.5306e-34/1/- 1.4447e-22/1/- 

EGFA vs PSO  8.2778e-22/1/- 3.6728e-34/1/- 2.5616e-34/1/- 2.5306e-34/1/- 2.5621e-34/1/- 

Rotated Hyper-

Ellipsoid 

EGFA vs GFA 3.0199e-11/1/- 3.0199e-11/1/- 3.0199e-11/1/- 3.0199e-11/1/- 1.1720e-16/1/- 

EGFA vs GA 2.5621e-34/1/- 2.5621e-34/1/- 2.5621e-34/1/- 2.5621e-34/1/- 2.5621e-34/1/- 

EGFA vs PSO 2.1609e-23/1/- 5.7156e-30/1/- 2.5621e-34/1/- 2.5621e-34/1/- 2.5621e-34/1/- 

Zakharov EGFA vs GFA 3.0199e-11/1/- 3.0199e-11/1/- 8.1527e-11/1/- 9.2113e-05/1/- 6.1210e-10/1/+ 

EGFA vs GA 2.5621e-34/1/- 2.5621e-34/1/- 3.6728e-34/1/- 5.3312e-12/1/- 3.0679e-34/1/+ 

EGFA vs PSO 6.9521e-30/1/- 1.3281e-21/1/- 5.4201e-34/1/- 5.4201e-34/1/- 2.5621e-34/1/- 

 468 

 469 

Fig. 10 The distribution of the results for EGFA, GFA, GA and PSO on Rotated Hyper-Ellipsoid in 2,3,5,10,20 470 

dimensions 471 

 472 

 473 

Fig. 11 The distribution of the results for EGFA, GFA, GA and PSO on Rotated Hyper-Ellipsoid in 20 dimensions 474 

3.2 Experiments on real datasets 475 

Clustering is an important data mining task and it has been explored extensively in different application 476 

areas. To assess the excellent performance of the model in real world applications, the GFA and EGFA 477 



are applied to clustering problems in this research so that we can explore the application potential of GFA 478 

and EGFA on real world problems.  479 

3.2.1 The Encoding of cluster centroid vector 480 

In this research, we applied GFA and EGFA to clustering, based on the original idea of k-means. The 481 

process of clustering can be regarded as the unconstrained optimization problems since its objective 482 

function is constrained. In the context of clustering, a single dust represents the  cluster centroid 483 

vectors. That is, each dust  is constructed in the form of Eq. (14), 484 

 ,                             (14) 485 

where  refers to the  cluster centroid vector of the  dust. Therefore, the dust population 486 

represents candidate cluster centroid vectors.  487 

 The mass function of individual is measured as Eq. (15) [35], which is similar to the objective in k-488 

means clustering algorithm.     489 

 ,                         (15) 490 

where  is the  cluster centroid vector,  is the  sample that belongs to the cluster , and 491 

 is the number of clusters.  492 

 The main loops of GFA and EGFA in data clustering are the same as the description in Section 2.1 493 

and Section 2.2.3.   494 

3.2.2 Datasets and performance evaluation 495 

The datasets listed in Table 5 are the well-known real datasets from the UCI Machine Learning 496 

Repository [36], which are usually used to test the performance of clustering algorithms. These three real 497 

datasets are chosen from a series of past research in clustering. Table 5 shows the number of instances, 498 

the number of attributes, the number of clusters，and the distribution of the three datasets. Specifically, 499 

The Iris dataset consists of 150 instances with 4 attributes. The Seeds dataset consists of 210 instances 500 

with 7 attributes. The Wine dataset consists of 178 instances with13 attributes. There are 3 clusters of the 501 

three real datasets. This paper applies GFA and EGFA in clustering, and compared the results of them 502 

with k-means.  503 
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 504 

Table 5.  505 

The real datasets for testing GFA, EGFA and k-means 506 

Datasets Number of instances Number of attributes Number of clusters distribution 

Iris 150 4 3 50/50/50 

Seeds 210 7 3 70/70/70 

Wine 178 13 3 59/71/48 

  507 

 In order to compare the performance of GFA, EGFA and k-means, The Adjusted Rand index (ARI) 508 

is adopted to assess clustering results of the three algorithms. The adjusted Rand Index is usually used to 509 

measures the agreement between two partitions. It is the corrected-for-chance version of Rand index (RI)， 510 

which is simply defined as  (The range of the Rand index is between 0 and 1. When 511 

the two partition agree perfectly, the Rand index is 1. More details about Rand index are presented in 512 

[37] [38]). The original Adjusted Rand index is defined as Eq. (16). 513 

,          (16) 514 

the bigger value the ARI is, the more agreement of the two partitions have. We adopt the Adjusted Rand 515 

index as the measure of the experimental results, and the Readers can refer [37] [38] for more details 516 

about how Adjusted Rand index assesses the agreement between two partitions. 517 

3.2.3 Parameter settings 518 

The settings of parameters for GFA, EGFA and k-means are showed in Table 6. The size of population is 519 

set as 20 for GFA and EGFA. The maximum number of iterations is set 100 for all three algorithms. 520 

There is a trick to setting the number of clusters in this research. Firstly, EGFA runs several times in 521 

different number of clusters. Then the value of ARI of those results is calculated. Lastly, the number of 522 

clusters is decided according the value of ARI, the one with largest value of ARI is desirable. Fig. 12 523 

shows the average value of ARI for 30 trials on seeds dataset in different number of clusters. As Fig.12 524 

shows the ARI is largest when the number of clusters is 3. In this way, the number of clusters is set 3 for 525 
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datasets: Iris, Seeds and Wine finally.  526 

Table 6.  527 

The parameters setting of GFA, EGFA and k-means 528 

Parameters setting Population Size Max Number of iterations Number of clusters 

GFA 20 100 3 

EGFA 20 100 3 

k-means - 100 3 

 529 

 530 

Fig. 12 The average value of ARI on Seeds dataset in different number of clusters 531 

 532 

3.2.4 Experimental results and analysis 533 

The comparisons of three algorithms: GFA, EGFA and k-means for 30 trials on three real datasets in 534 

average value of Adjusted Rand index (ARI) are shown in Table 7. Table 7 shows that the EGFA 535 

outperforms GFA and k-means on the three real datasets: Iris, Seeds, and Wine. Specifically, EGFA has 536 

the highest value of ARI among the three algorithms, which indicates that EGFA has the best performance 537 

compared with the original GFA and k-means in the three real datasets. In addition, GFA performs better 538 

than k-means on the datasets: Wine and Seeds, and k-means performs better than GFA on dataset Iris. 539 

 540 

 541 

 542 

 543 

Table 7 544 



The results of GFA, EGFA and k-means in ARI 545 

ARI  GFA EGFA k-means 

Iris 0.5791 0.6846 0.6836 

Seeds 0.7027 0.7302 0.6998 

Wine 0.3676 0.3715 0.3499 

4. Conclusions and Future work 546 

In this research, a novel EGFA is presented based on the original GFA. A novel accuracy improvement 547 

strategy called Dust Sampling (DS) is employed to quickly find the so-called optimal space that contains 548 

the optimal solution in search space. Another novel strategy named Explosion Operation is adopted to 549 

decrease the probability of dust falling into local optima, and the formulae for iteration are modified. Six 550 

benchmark problems and three real datasets previously used from literatures in unconstrained 551 

optimization are chosen to evaluate the performance of EGFA. The experimental results demonstrate that 552 

the proposed EGFA has achieved excellent performance in terms of efficiency, accuracy, and the 553 

capability of solving real world problems. All the results indicate that EGFA is of well convergence and 554 

higher search efficiency.   555 

It is noted that the solutions EGFA finds are frequently closer to the actual optimal solutions than 556 

the other three algorithms in the lower dimensions on all the six benchmark problems and three real 557 

datasets, but at the same time, we also notice the fact that all the four optimization algorithms face 558 

challenges when dealing with problems in higher dimensions in terms of in accuracy and running time, 559 

especially when the dimension is larger than 20. This motivates us to make more efforts in our future 560 

research to investigate how to further improve EGFA along this line. The study on complex unconstrained 561 

optimization problems in higher dimensions by EGFA is in progress, and we will also further investigate 562 

how to find more effective methods to adjust the parameters according to the characteristics of specific 563 

problems. 564 
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