
Explosion Gravitation Field Algorithm with Dust Sampling for 1

Unconstrained Optimization 2

Xuemei Hu1, Lan Huang1,2,Yan Wang1,*,Wei Pang3,4* 3

1College of Computer Science and Technology, Jilin University. Changchun, 130012, China. 4

Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin 5

University. Changchun, 130012, China. 6

2Zhuhai Laboratory of Key Laboratory of Symbolic Computation and Knowledge Engineering of 7

Ministry of Education, Department of Computer Science and Technology, Zhuhai College of Jilin 8

University, Zhuhai, 519041, China. 9

3Department of Computing Science, University of Aberdeen, AB24 3UE, United Kingdom. 10

4Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi’an 11

710048, China 12

Corresponding authors: wy6868@jlu.edu.cn; pang.wei@abdn.ac.uk 13

Abstract 14

Gravitation Field Algorithm (GFA) is a novel optimization algorithm derived from the Solar Nebular 15

Disk Model (SNDM) in astronomy and inspired by the formation process of planets. Although it has 16

achieved good performance when solving many unconstrained optimization problems, which 17

demonstrated its promising application potential in many real-world problems, GFA still has much room 18

for improvement, especially when it comes to the accuracy and efficiency of the algorithm. 19

In this research, an improved GFA algorithm called Explosion Gravitation Field Algorithm (EGFA) 20

is proposed for unconstrained optimization problems, with the introduction of two strategies: Dust 21

Sampling (DS) and Explosion Operation. The task of DS is to locate the space that contains the optimal 22

solution(s) by initializing the dust population randomly in the problem search space; while the Explosion 23

Operator is to improve the accuracy of solutions and decrease the probability of the algorithm falling into 24

local optima by generating the new population around the center dust to replace the original population. 25

A comparison of experimental results on six classical unconstrained benchmark problems with 26

different dimensions demonstrates that the proposed EGFA outperforms the original GFA and several 27

classical metaheuristic optimization algorithms, such as Genetic Algorithm (GA) and Particle Swarm 28

Optimization (PSO), in terms of accuracy and efficiency in lower dimensions. Additionally, the 29

comparison of results on three real datasets indicate that EGFA performs better than the original GFA 30

and k-means for solving clustering problems. 31

Key words： 32

Explosion gravitation field algorithm; Unconstrained optimization; Dust Sampling; Explosion operation 33

1. Introduction 34

Optimization problems exist in almost all fields of science and engineering, and they can be divided into 35

two categories in terms of if there exist constrained conditions upon these problems: constrained 36

optimization problems and unconstrained ones. Unconstrained optimization problems have been studied 37

extensively for a long time, but we are still facing challenges in acquiring desirable solutions for many 38

of these problems in terms of accuracy and efficiency. Traditional mathematical methods for solving 39

these unconstrained optimization problems, such as the steepest descent method [1], the Newton method 40

[2], the conjugate gradient method [3], and the quasi-Newton method [4], normally require or assume 41

that the optimization problems are continuous and differentiable and often some prior knowledge is 42

needed in advance. This makes it challenging for the above traditional algorithms to solve problems of 43

higher dimensions. 44

To address the above challenges, many novel computational intelligence (CI) algorithms have been 45

proposed over the past several decades, some of which have broken through the above rigorous 46

limitations effectively. The significant advantages enable CI algorithms to be widely adopted to solve 47

many unconstrained optimization problems. Over the past two decades, there have been many effective 48

computational intelligence algorithms proposed, which are inspired by natural phenomena. For instance, 49

Simulated Annealing (SA) algorithm proposed by Metropolis et al. in 1953 was inspired by annealing in 50

metallurgy. Genetic algorithm (GA) [5][6], originally proposed by Holland in 1975, emulates the natural 51

evolution selection process, and it is based on the Darwinian biological evolution theory. Ant colony 52

optimization (ACO) [7][8] proposed by Dorigo in 1992 is based on the heuristic process of ant’s food 53

discovery and incorporated the communication mechanisms between the colony members. Particle 54

swarm optimization (PSO) [9][10] proposed by Eberhart and Kennedy in 1995 simulates a simplified 55

social model [11]. 56

Furthermore, there has been an innovative CI algorithm boom over the last twenty years. In 2013, 57

Xing et al. [12] identified a vast amount of novel CI algorithms (more specifically, 134 in total) and 58

grouping them into four large classes, i.e., biology- (99 in total) [13-16], physics- (28 in total) [17-19], 59

chemistry- (5 in total) [20], and mathematics-based (2 in total) [21] CI algorithms. The core algorithm 60

concerned in this research is the gravitation field algorithm (GFA), which belongs to the second class 61

(physics-based CI). GFA [22-24] proposed by Zheng et al. in 2012 simulates the formation process of 62

planets based on the Solar Nebular Disk Model (SNDM) [25] in astronomy. Based on the original GFA, 63

we have developed an improved version of GFA called GFA-OD [26] (Optimal Detection). Almost all of 64

these innovative CI algorithms have good performance and some of them have been successfully applied 65

in many real-world optimization problems including unconstrained ones. 66

In this research, based on the original GFA and the earlier version of GFA-OD, we propose an 67

improved version of GFA, which is called Explosion Gravitation Field Algorithm (EGFA), and we 68

compare EGFA with popular approaches, including the original GFA, GA and PSO. More specifically, 69

in EGFA, we develop an improved strategy called Dust Sampling (DS) to locate the space that contains 70

the optimal solution(s) by initializing dust population randomly in a given problem search space, and this 71

makes the algorithm more efficient. Additionally, to improve the accuracy of solutions and decrease the 72

probability of the algorithm falling into local optima, an improved strategy named Explosion Operation 73

is introduced, the aim of which is to improve the performance of EGFA by generating new dust 74

population around center dust to replace the original dust. For implementing EGFA, we integrate two 75

processes: movement and rotation, and modify the formula for updating dust population. From the 76

experimental results on six complex unconstrained benchmark problems, we find that EGFA is superior 77

to the original GFA and two other classical optimization algorithms (GA and PSO) in terms of accuracy 78

and efficiency. In addition, further experiments show that EGFA outperforms the original GFA and k-79

means on three real datasets. All the experimental results demonstrate the application potential of EGFA 80

in more complex problems. 81

2. Explosion Gravitation Field Algorithm 82

2.1 The Original Gravitation Field Algorithm 83

The original GFA was proposed in [23] as a novel nature-inspired heuristic search algorithm. The basic 84

idea of GFA is to simulate the formation process of planets based on SNDM [25]. In GFA, all individuals 85

can be mimicked as dust with mass, and each of them belongs to a certain group. In each group, the one 86

with the biggest mass is regarded as the center dust and others are surrounding dust. Based on SNDM, 87

each center dust attracts its surrounding dust by the gravitation field, and the field makes all surrounding 88

dust move toward their center dust with heaviest mass. In addition, each dust has four characteristics: 89

position, mass, group number, and a Boolean flag indicating whether it is a center. The position 90

corresponds to a solution of the problem, the group number is initialized randomly, and the other two: 91

mass and flag, are determined by the objective function. The flow chart of GFA is given in Fig.1. The 92

details of GFA are summarized as follows, and all the parameters are set according to Zheng et al. [23]. 93

 94

Fig. 1 The workflow of GFA 95

 96

l Step 1: generate dusts randomly distributed in the mass function domain 97

bound to establish the initial solution space when all parameters are set, where the position of the 98

 dust is defined by Eq. (1). 99

 (1) 100

In the above is the position of the dust in the dimension, and is the number of 101

dimensions of search space. In addition, every dust (solution) is assigned a mass , whose values 102

are calculated based on the objective function or the benchmark function. 103

l Step 2: divide the search space into several subspaces randomly. Each dust is allocated to a 104

n ()1,2,iD i n= !

ith

(),1 ,2 , ., , , , , , 1, 2, ,i i i i k i dX x x x x i N= =! ! !

,i kx ith kth d

iD iM

iD

subspace (called a group in GFA) randomly and the group number is calculated by Eq. (2)，105

where ceil is a function that rounds the elements to the nearest integers greater than or equal to it. 106

In each subspace, the dust with the heaviest mass is called the center dust and we assign its flag 107

, and others are the surrounding dusts and we assign their flags as . 108

 (2) 109

l Step 3: move dust. Every surrounding dust move toward its center dust and the center dust remain 110

stationary. The pace of movement is determined by Eq. (3). 111

 (3) 112

where is the Euclidean distance between the moving surrounding dust and its center dust in 113

[22] and is also defined as the difference between two vector variables in [23]. is a weight 114

value for distance [22]. 115

l Step 4: absorb dust. Some surrounding dusts which are close to their center dust enough are 116

absorbed by their center dust and therefore eliminated from the initial search space for increasing 117

the convergence speed of GFA. 118

l Step 5: perform rotation operation. The introduction of Rotation Operator in [23] is to push the 119

surrounding dusts away from their center dust, which can decrease the probability of dusts falling 120

into local optima to some extent. The rotation direction is not the original forward direction, but it 121

could be any possible random direction. To prevent the surrounding dusts from being pushed too 122

far, the pace is no greater than the max pace , which is defined by Eq. (4). 123

 (4) 124

The rotation operation is performed with the probability of Rotation Factor (RF) [23]. The value of 125

RF is defined in Eq. (5). 126

， (5) 127

where is the RF in the iteration, is the max value of RF. This value 128

cannot be too large, and it will gradually increase along with the running process of the algorithm. 129

In [23], , and after several iterations, the RF will reach its max value and remain 130

unchanged. 131

iG

1iF = 0iF =

()[0,1] _iG ceil rand group num= *

= ,i iPace w dis´

idis

w

maxwithdraw

max 2 0.0618withdraw dis= ´ ´

max max1

max

, 0.03

0.03, 0.03

t
t

t t

factor factor factor
factor

factor factor factor
+

ì ³ -ï= í
+ < -ïî

1tfactor + ()1t th+ maxfactor

0 0factor =

l Step 6: check the termination criterion. If the algorithm does not meet the stopping condition, GFA 132

will go to Step 3, otherwise, the algorithm will terminate. 133

According to the basic steps of GFA described above, every dust can be represented by a quadruple 134

, and the pseudo-code of the original GFA model is given in Algorithm 1, where is 135

the size of the population, is the number of iterations; is the number of groups; and bound is a 136

 matrix that records the boundary of search space. The first five steps of GFA previously mentioned 137

correspond to five procedures: ‘Initialize’, ‘Group’, ‘Move’, ‘Absorb’ and ‘Rotate’. It is obvious that 138

these five procedures have a computational complexity of , where is the size of population, 139

and the whole GFA model requires an of time complexity since the number of iteration 140

is one of the termination criteria. 141

The original GFA has been used to optimize several unconstrained optimization problems, and it 142

has demonstrated excellent performance in these problems. It was reported that GFA was very effective 143

to find approximate optimal solutions for several unconstrained optimization problems. However, there 144

are still some limitations for the original GFA, as shown below: 145

1） The solutions that GFA obtains are particularly sensitive to the initial population. It is reported 146

that the accuracy of solution is closely related to the initial population [26]. GFA tends to find a solution 147

that usually could not meet the accuracy requirement of problems in given running time in many real-148

world problems if the initial dust population is generated randomly in the whole search space. 149

2） GFA may be in stagnation behavior easily during the iteration process because of falling into 150

local optima, and in these cases the algorithm will return a local optimal solution or even a worse one if 151

there is no appropriate strategy to jump out from the bad results. 152

(), , ,i i i iX M G F N

M G

*2d

()O N N

()O M N´ M

Algorithm 1: GFA

1. initialdusts Initialize(bound, N, targetFun, M) //initial

2. [groupdusts, center] Group(initialdusts, G) //divide search space into groups

3. dusts groupdusts

4. while the stop condition is not met do

5. movedusts Move(dusts, center, targetFun) //move

6. absorbdusts Absorb(movedusts) //absorb

7. rotatedusts Rotate(absorbdusts, targetFun) //rotate

8. dusts rotatedusts

9. end

10. return best solution(s)

11. return center; %return the center dusts

¬

¬

¬

¬

¬

¬

¬

2.2. Explosion Gravitation Field Algorithm 153

To address the limitations of GFA presented above, an improved Explosion Gravitation Field Algorithm 154

(EGFA) was proposed with three aspects of improvement: two of them are two improved strategies called 155

Dust Sampling (DS) and Explosion Operation in this research, and another one is the integration of the 156

two processes: move and rotate. DS is performed when the parameter setting is completed and it is no 157

longer performed once this process is over. It can efficiently locate a small enough search space which 158

more likely contains the optimal solution(s). The second aspect of improvement, the Explosion Operation, 159

is performed once one of the pre-specified conditions is met. The Explosion Operation is used to jump 160

out from a local optimal solution with a certain probability and therefore improve the accuracy of 161

solutions. Furthermore, to simplify the process of EGFA, there is another improvement: the processes of 162

movement and rotation are integrated, and the formula for updating the dust population is modified. The 163

whole core aspects of improvement in EGFA are described below and the workflow of EGFA is given in 164

Fig. 2. 165

 166

 Fig. 2 The workflow of EGFA 167

2.2.1 Subspace location by dust sampling 168

As mentioned in Section 2.1, the original GFA starts with dust population being initialized randomly in 169

a giving search space, this makes it a long iterative process to find a solution that meets the accuracy 170

requirement for a given problem. The solution that the original GFA finds may be a suboptimal one 171

whose accuracy could not be comparable to the solutions found by other classical metaheuristic search 172

algorithms, such as GA and PSO. Therefore, to improve the accuracy and shorten the overall running 173

time, we proposed a subspace location strategy named Dust Sampling (DS). The DS operator is not only 174

an important improvement in this research but also the core component of EGFA. The task of DS is to 175

efficiently locate a small enough search space which more likely contains the optimal solution(s), and 176

this shares some similarities with our original Optimal Detection (OD) operator [26]. The readers are 177

referred to [26] for more details about the original OD operation. 178

 The DS operation begins with all dusts being initialized randomly in the given search space of a 179

problem, then as shown in Fig. 3.(a), the dusts in the top 20% of the population are selected to calculate 180

the boundary of the ‘Subspace’, and the solution space containing the other 80% of dusts population is 181

named ‘Non-Subspace’. The top 20% of dusts are selected based on their mass values calculated from 182

the mass function, similar with the fitness values in GA and PSO. In the next DS, 80% of dusts are 183

generated in the ‘Subspace’ and just 20% of the dusts are generated in the ‘Non-Subspace’ randomly, 184

which is illustrated in Fig. 3.(b). This process will be executed several times until the ‘Subspace’ is small 185

enough. According to the above description, the pseudo-code of DS can be concluded in Algorithm 2. 186

 187

Fig. 3 The distribution of the dusts in Subspace and Non-Subspace 188

 In [26], the algorithm can obtain a correct solution only when the hypothesis that the ‘Subspace’ 189

found by OD contains the optimal solution(s) is valid. If OD finds a wrong ‘Subspace’, the algorithm 190

can only obtain a suboptimal solution. To overcome this limitation and decrease the probability of getting 191

a suboptimal solution, every dust generated by DS is located in the ‘Non-Subspace’ with the probability 192

of 20%. Even if the ‘Subspace’ does not contain the optimal solution(s), DS will still have a chance to 193

locate the position of optimal solution(s) in the ‘Non-Subspace’. The choice of 20% and 80% when 194

dividing the dusts for subspace and non-subspace is based on the Pareto principle, and in the future work 195

we could further explore whether and how we can further improve this choice with better division. 196

The reason for the DS operator shortening the running time is because the main loop of the 197

algorithm just needs to find the optimal in a smaller search space and avoid a long iterative process to 198

find a solution that meets the accuracy requirement, and this shares some similarities with our original 199

OD [26]. However, a key to the original OD is that users have to specify the number of iterations and the 200

size of the dusts population for the process to acquire a satisfactory ‘Subspace’, but it may be difficult 201

for inexperienced users to provide such appropriate values. If the values are too large, the OD operation 202

may take a long time, which lead to the decrease of the algorithm efficiency; if the value is too small, the 203

algorithm may not be able to find a solution that meets the requirement of accuracy. The DS overcomes 204

the above limitation and simplify the process of parameter setting for users. This operation provides 205

default values for the number of iterations and the size of dusts population, according to the dimensions 206

of the given problems. Specifically, the operation provides larger values for the complex problems with 207

larger number of dimensions and provides smaller values for the uncomplex problems with smaller 208

number of dimensions. The number of iterations and the size of population for the process increase with 209

the increase of the complexity of a given problem. Let be the number of iterations for this process, 210

and it is set as the stopping condition; if is the size of population and is the number of dimensions 211

of the given problem, the process requires time complexity. 212

Obviously, the fact that the number of the iterations and the size of dust population do not need to 213

be assigned by the users in DS, and this makes the algorithm more robust to problems of different 214

complexity compared with the original OD operation. 215

1M

N d

()1O M N d´ ´

Algorithm 2: Subspace location by dust sampling

1. Subspace Solution Space;

2. Non-Subspace Solution Space - Subspace;

3. While the stopping conditions are not met do

4. if Non-Subspace is null then

5. generating all dust population in the Subspace;

6. else

7. generating 80% dust population in the Subspace;

8. generating 20% dust population in the Non-Subspace;

9. end

10. picking up the top 20% of the population and calculating the boundary of the subspace;

11. Subspace the boundary of the subspace;

12. Non-Subspace Solution space – Subspace;

13. end

¬

¬

¬

¬

2.2.2 Explosion Operation 216

The algorithm may still fall into local optima or cannot find a solution that meets the accuracy 217

requirement for the given problem if the ‘Subspace’ identified by Algorithm 2 does not contain the 218

actual optimal solution. Regarding this, we introduce the Explosion operation to decrease the probability 219

of dust falling into local optima compared with the original GFA, GA and PSO. The algorithm will 220

perform the explosion operation when one of the following conditions is triggered. 221

1） The algorithm is in stagnation behavior. The explosion operation will be executed since the 222

solutions that the algorithm finds will not be better in the future iteration process. 223

2） The size of population is less than a pre-specified threshold. The explosion operation is needed 224

since the solution is less likely to get better in this case. 225

When one of above two conditions is triggered, all dusts will be removed except the center dust in 226

each group. Then the algorithm will perform the explosion operation and generate a new population to 227

replace the original one. The generation of the new population is not random, and it uses the knowledge 228

from the last population. The process of explosion for one group is illustrated in Fig. 4. 229

 230

Fig. 4 One of the centers generate a new population to replace the original one 231

 232

As shown in Fig. 4, the biggest blue dot with in a group is the center dust and other dots 233

are the surrounding dust with . Obviously, the task of Explosion Operation is to generate a new 234

population around the center, and then attempt to find a better solution among the new population. The 235

distribution of the new population is given by Eq. (5). 236

 ， (5) 237

where is the number of dimensions, is a positive or negative sign generated randomly in a 238

mathematical operation, and are the upper and lower bounds of the dimension in search 239

1iF =

0iF =

() [0,1] , 1,2, ,
i

k k
i k k centerX s ub lb c normrnd X k d= ´ + =´ …-´

d s

kub klb kth

space. The Gaussian function determines how new dust will be distributed in the k-240

dimensional search space, where , and the mean and standard deviation for the 241

Gaussian function are 0.025, 0.25, respectively. The coefficient determines the degree of aggregation 242

for dusts in each group, where . For each group, the less the value of is, the more 243

concentrated the distribution of the dust is; the larger the value of is, the more dispersed the 244

distribution of dust is. 245

The Explosion is performed when one of the following two conditions is triggered: (1) the algorithm 246

is in the stagnation behavior, and (2) the size of population is less than a pre-specific threshold. Obviously, 247

the best solution the algorithm gets must be one of the centers. Provided that the algorithm has found an 248

approximate optimal solution and the size of the population has been less than the pre-specified threshold, 249

it is reasonable to believe that the better solution exists near one of the center dusts with high probability 250

and the algorithm needs more dusts to explore the search space. Thus, the above approach can be used 251

to find a better solution and improve the accuracy of historical best solution quickly. Additionally, if the 252

algorithm has been in stagnation behavior because of falling into local optima, the algorithm can jump 253

out from the local optimal solution with the help of surrounding dusts far away from the center dust with 254

a certain probability. Therefore, the explosion operator introduced in EGFA can also be used to prevent 255

the algorithm from being in stagnation behavior. 256

Following the details about Explosion described above, the pseudo-code of one of the centers 257

generating a new population to replace the original one is presented in Algorithm 3, which is the main 258

part of Explosion operation. In Algorithm 3, is the number of groups; is the size of the 259

population; is the size of each group; ; is the number of dimensions of the search 260

[0,1]normrnd

0 [0,1] 1normrnd< <

c

0 1c< < c

c

G N

C N C G= ´ d

Algorithm 3: Explode

1. for i = 1:C //C is the size of each group

2. for j = 1:G //for each dust in a group
3.

4. for k = 1:d %for the kth demonstration

5. //the position of new dust

6. end

7. //7-9 generate new dust

8.

9.

10. end

11. end

()1index i G j¬ - * +

() [0,1]
j

k k
i k k centerX s ub lb c normrnd X´ ´- ´ +¬

()index indexM f X¬

indexG j¬
0indexF ¬

space for a given problem. This process requires an overall of computations. 261

Note that only storage is required for this process. 262

2.2.3 The Main loop 263

EGFA proposed in this research is an improved version of GFA, which introduces the DS and Explosion 264

operations to improve the algorithm performance. In addition, to simplify the process of EGFA, we 265

integrate the process of movement and rotation, and modify the formula for iteration. As a result, any 266

dust in a given search space is described by a quadruple and the new 267

generation for the next iteration in the EGFA can be determined by Eq. (6). 268

 , (6) 269

where and are the current pace and position of dust at time ，respectively, and 270

 is determined by three components as follows: 271

， (7) 272

where is the dimension of the search space, stands for the weight values of the three 273

parts, respectively, , , (is equal to 1 when is a center, otherwise, 274

 is equal to 0). 275

l The first component is the directional difference of the position between the moving 276

surrounding dust and its center at time , which is calculated by Eq. (8) in EGFA. 277

 , (8) 278

Where and are the position of dust and its center at time , respectively. 279

l The second component stands for the improvement vector of the global best’s position at 280

time , and it is calculated by Eq. (9). 281

 , (9) 282

where is the position of current global best dust and is the stored position of the global 283

best dust from the last generation. The concept of global best in this manuscript is similar to the 284

() ()O C G d O N d´ ´ = ´

()O N

iD (), , ,i i i i iD X M G F=

1t t t
i i iX X Pace+ = +

t
iPace t

iX iD t

t
iPace

() () ()1 2 3* * * 1 * 1,t t t
i i iPace w dis w Ibest F w rand d= + - +

d 1 2 3, ,w w w

2 0iw w> > 3 0w > { }0,1iF Î iF iD

iF

t
idis

iD t

Gi

t t t
i center idis X X= -

t
iX ()

Gi

t

centerX t iD t

tIbest

t

1t t t
best bestIbest X X -= -

t
bestX 1t

bestX -

concept of global best Artificial Bee Colony (ABC), and reader can refer to [27] for more details 285

about the concept. The main objective of this component is to modify the representative point by 286

taking into account global directional moves so that to attract the path going to optima and reduce 287

the time for reaching the global optima. 288

l The third component is a matrix and produces random movements for all dusts, 289

including the surrounding dusts and their centers, like all the planets in the universe are always in 290

motion. As a result, the centers in EGFA are no longer still, and they move randomly toward any 291

possible direction like surrounding dusts, which could help find a better center and improve the 292

diversity of the population. 293

Furthermore, dust recovery is another interesting topic with regards to EGFA due to the fact that 294

dust may move outside the search space and should be returned. There are many possible dust recovery 295

methods. A useful one adopted in EGFA is the reposition factor (Frep for short) [19], which plays an 296

important role in EGFA’s convergence. They are described in Eq. (10) and Eq. (11) as below. 297

 (10) 298

 ， (11) 299

where is the current dimension; is the current time step; is the current dust index; and is 300

a small positive number chosen by the user, typically 0.0005. EGFA uses Eq. (10) to reposition dimension 301

of dust that have exceeded their minimum values, while Eq. (11) is used to reposition dimensions of dust 302

that have exceeded their maximum values. 303

According to the above details of EGFA, the pseudo-code of the main steps of EGFA is given in 304

Algorithm 4. In the above variable is a monitor, which is employed to record the number of iterations 305

of the algorithm being in stagnation behavior during the search process, variable ‘bound’ gives the value 306

range of in all dimensions for each solution , is the size of population, is the number 307

of groups, is the number of the dimensions of the search space. 308

The method ‘DustSampling’ corresponds to the process of Dust Sampling presented in Section 309

2.2.1 and stores the information of ‘Subspace’ with the variable ‘BestBound’. The method 310

‘MoveAndRotate’ integrates the process of movement and rotation and corresponds to Eq. (6) for 311

iteration. The method ‘Explode’ corresponds to the process of explosion described in Section 2.2.2 and 312

there exists a very important threshold variable in the method, which is usually proportional to the 313

()1,rand d 1 d´

()1
, ,min , ,min
t t
i k k i k kX X X Xe -= + -

()1, ,max ,max ,
t t
i k k k i kX X X Xe -= - -

k t i e

k

iX iD N G

d

thf

number of the iterations. If the condition is met, the method ‘Explode’ will be performed. The 314

method ‘Initialize’, ‘Group’, ‘Absorb’ still corresponds to the same processes as in the original GFA. 315

The method ‘GetCenters’ is used to get the center dust for each group and the method ‘GetBest’ is 316

devoted to update the historical best solution. Let be the number of iterations for the main loop and 317

set as one of the stop conditions. Obviously, the methods ‘Initial’, ‘Group’, ‘MoveAndRotate’, ‘Absorb’, 318

‘GetCenters’ and ‘GetBest’ just require time complexity. Since ‘DustSampling’ requires 319

time complexity, and ‘Explode’ requires time complexity, the main loop of 320

EGFA require an overall of time complexity. Note that only space 321

complexity is required for EGFA. 322

The two strategies proposed in EGFA overcome the limitations of the original GFA. However, the 323

introduction of these two strategies is at the cost of running time. It is noted that DS avoids the long 324

iterative process and shortens the running time, although the time complexity has increased to 325

. Last but not least, to prove the capacity in theory, the research discusses the 326

convergence of EGFA in one-dimension simply in the supplementary material. As for the convergence 327

in higher dimensional search space, it is a part of research in future work. 328

thk f>

2M

()O N

()1O M N d´ ´ ()O N d´

()()1 2O M M N d+ ´ ´ ()O N

()()1 2O M M N d+ ´ ´

Algorithm 4: EGFA

1. k=0

2. bestBound DustSampling (N, bound, targetFun); //dust sampling

3. initialdusts Initialize (bestBound, N, targeFun) //initialisation

4. [groupdusts,center] Group (initialdusts, G) //group

5. dust groupdusts

6. while the stop conditions are not met do

7. movedust MoveAndRotate (dust, center, targetFun); //move and rotate

8. absdust Absorb (center, movedust, bestBound); //absorb

9. dust absdust

10. if pre-condition is met then

11. [dust,k] Explode (k, dust, N, bound, targetFun, center); //explode

12. end if
13. [center,dust] GetCenters (G, dust); //get the center dusts of each group

14. [best,k] GetBest (best, center, k); // the best dust

15. end

16. return optimal solution

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

3. Experiments 329

3.1 Experiments on Benchmark problems 330

To assess the performance of EGFA proposed in this research, the following six benchmark unconstrained 331

optimization problems in Table 1 are chosen, which are used to test the accuracy, running time of our 332

algorithm with problems of different dimensions. At the same time, this series of classical test problems 333

are also solved by the original GFA, GA and PSO to compare with EGFA. 100 trials of each algorithm 334

are performed for solving these six benchmark problems, and we choose the mean value, the median 335

value, the mean squared error and the Standard Deviation of solutions to evaluate the performance of the 336

four algorithms. Finally, we present the experimental results and the discussions upon these results. 337

3.1.1 Benchmark problems and performance evaluation 338

The functions listed in Table 1 are some of the most commonly used functions used to assess the 339

performance of unconstrained optimization algorithms. These benchmark problems are chosen from a 340

number of significant past studies in unconstrained optimization. The functions [28] are known widely 341

as the Sphere, Griewangk, Ackley, Zakharov, Rotated Hyper-Ellipsoid and Levy function, and they can 342

be scaled to any number of variables (dimensions). Table 1 shows the domain, the objective function, 343

and the global minimum for every benchmark problem. Additionally, the six benchmark problems have 344

the same global minimum value , and the global minimum values of these six problems are equal 345

to zero when the variables are equal to zero or one, regardless of the number of variables. The Zakharov, 346

Sphere, and Rotated Hyper-Ellipsoid functions are continuous, convex, unimodal, and multidimensional. 347

The first one is plate-shaped and the latter two are Bowl-Shaped in their two-dimensional forms. The 348

others are multimodal, multidimensional, with a large number of local optima. 349

 350

Table 1 351

The benchmark problems for testing EGFA, GFA, GA and PSO 352

Name Variable ranges Objective function Optima

Sphere

()f x*

[50,50]ix Î - () 2

1

d

i
i

f x x
=

=å
()

()
0, ,0

0

x

f x

*

*

=

=

!

Griewangk

Ackley

Zakharov

Rotated Hyper-

Ellipsoid

Levy

 To investigate the accuracy and efficiency of EGFA, we choose four common performance metrics 353

for evaluating the performance of EGFA in comparison with the original GFA and two other classical 354

computational intelligence algorithms, i.e., GA and PSO. Four performance metrics are described as 355

follows: 356

1) The mean value of solutions that are found by the four algorithms for 100 different trials. 357

2) The median value of solutions that are found by the four algorithms for 100 different trials. 358

3) The Mean squared error (MSE) [29]: it has the general definition as in Eq. (12), where n is the 359

number of tests, is the solution of ith run and is the true global minimum. Obviously, 360

the lower the Mean squared error (MSE) is, the better performance the algorithm has. 361

， (12) 362

4) The Standard Deviation (STD) [30]: it has the general definition as in Eq. (13), where n is the 363

number of tests, is the solution of run and is the mean of all . Same as the 364

Mean squared error (MSE), the lower the Standard Deviation (STD) is, the better performance the 365

algorithm has. 366

, (13) 367

 The mean value, the median value and the Mean squared error (MSE) are devoted to evaluate the 368

[5,5]ix Î - ()
2

11
cos 1

4000

d d
i i

ii

x xf x
i==

æ ö= -Õ +ç ÷
è ø

å
()

()
0, ,0

0

x

f x

*

*

=

=

!

[50,50]ix Î -
()

()2

1 =1

1 10.2 cos 2

20 20

d d

i i
i i

x xd df x e e e
p

=

æ ö æ öç ÷- ç ÷ç ÷ ç ÷
è ø è ø

å å
= + - -

()
()
0, ,0

0

x

f x

*

*

=

=

!

[10,10]ix Î - ()
2 4

2

1 1 1
0.5 0.5

d d d

i i i
i i i

f x x ix ix
= = =

æ ö æ ö
= + +ç ÷ ç ÷

è ø è ø
å å å

()
()
0, ,0

0

x

f x

*

*

=

=

!

[50,50]ix Î - () 2

1 1

d i

j
i j

f x x
= =

=åå
()

()
0, ,0

0

x

f x

*

*

=

=

!

[10,10]ix Î -

() ()

() ()

() ()

2
1

1
2 2

1
2 2

sin

1 1 10sin 1

1 1 sin 2

1, 1
4

d

i i
i

d d

i
i

f x w

w w

w w

xwhere w

p

p

p

-

=

= +

é ù- + + +ë û

é ù- +ë û
-

= +

å ()
()
1, ,1

0

x

f x

*

*

=

=

!

()if x ()optf x

() ()()2
1

1 n

i opt
i

MSE f x f x
n =

= -å

()if x ith ()f x ()if x

() ()()()
2

1

1
1

n

i
i

STD f x f x
n =

= -
- å

accuracy of solutions that are obtained by four different algorithms. The Standard Deviation (STD) is 369

employed to measure the stability of the performance for the four test algorithms. 370

3.1.2 Parameter settings 371

The parameters and their values for the four algorithms are given in Table 2. The size of population is set 372

as , where d is the number of dimensions of a given search space. Moreover, 373

has been tested in this research. The maximum number of iterations is set for the four 374

algorithms to control their running time in the same dimension. The number of groups is just set as 3 for 375

EGFA and the original GFA to ensure multi-centers in this research. The parameter TolFun is the average 376

change in value of the fitness function or mass function and it is changed from the default value of 1.0e-377

6 to 1.0e-30 to ensure that the optimal solution they acquire is accurate enough. 378

 379

Table 2 380

The parameter settings for EGFA, GFA, GA and PSO 381

Parameters setting EGFA GFA GA PSO

Population size 100*d 100*d 100*d 100*d

The Max number iterations 200*d 200*d 200*d 200*d

The number of group 3 3 - -

TolFun 1.0e-30 1.0e-30 1.0e-30 1.0e-30

 382

In this research, every test problem shown in Table 1 is scaled to different number of variables, whose 383

value range of each dimension is also set as in Table 1. The basic parameters of each algorithm are set as 384

in Table 2. Four performance metrics, the mean value, the median value, MSE, and STD, are employed 385

to measure the accuracy, efficiency of each algorithm in given running time. In this study, we do not 386

make any systematic attempt to find the best parameters for EGFA and just focus on the accuracy of each 387

algorithm in given running time. The higher accuracy of the optimal solution is, the better the 388

performance the algorithm has. 389

3.1.3 Parametric statistical test 390

To compare the performance of EGFA, GFA, GA and PSO on unconstrained optimization problems with 391

different numbers of dimensions in given running time, six test problems with dimensions 392

100*d 2,3,5,10,20d =

200*d

2,3,5,10,20

are used. The comparisons of four algorithms: EGFA, GFA, GA and PSO on the six test problems in 393

mean value, median value, MSE and STD are shown in Figs. 5~8. More specifically, the results of Figs. 394

5~8 are the mean value, median value, MSE and the STD of 100 trials, which the size of the population 395

is set as , where is the number of dimensions and , the iterations for EGFA , 396

GFA, GA and PSO is set as . 397

Fig. 5 shows that EGFA achieves better performance in terms of mean value than GFA, GA and 398

PSO; Fig. 6 shows that EGFA achieves better performance in terms of median value than GFA, GA and 399

PSO. Especially in search space of low dimensions, we can see that EGFA outperforms GFA, GA and 400

PSO in terms of accuracy. Fig. 7 shows that the solution obtained by EGFA has less value of the MSE 401

than GFA, GA and PSO, therefore we can see that EGFA has less error than the other three algorithms. 402

Fig. 8 demonstrates that EGFA has more stable performance compared with GFA, GA and PSO since 403

EGFA has the least value of STD among the four algorithms. In addition, the accuracy of solutions 404

obtained by EGFA will decrease with the increase of the dimensions of search space like PSO, but EGFA 405

has better accuracy than PSO as shown in Figs. 5-8. 406

 407

Fig. 5. A Comparison of EGFA, GFA, GA and PSO in log10(mean) with 2,3,5,10,20 dimensions 408

 409

Besides the accuracy, the running time is another very important factor that we should consider in 410

order to measure the efficiency of an algorithm. It is obvious that the introduction of DS and Explosion 411

operations are at cost of time, but the optimal space the DS acquires can help to decrease the number of 412

100*d d 2,3,5,10,20d =

200*d

iterations and shorten the overall running time. The average running time of the four algorithms for 100 413

trials on the six test problems with the number of dimensions is demonstrated in Table 414

3 and Fig. 9. Table 3 shows that the performance of the four algorithms is controlled in similar running 415

time, when they are executed on the same problem in same dimension. Fig. 9 shows that EGFA has the 416

best efficiency for solving the six test problems in some content. And Fig. 9 also shows that the running 417

time of the four algorithms on the test problems increases exponentially with the increase of the 418

dimensions. All experiments were implemented on a PC (i5-4200M, 8GB, Windows 7, Matlab R2014a). 419

 420

Fig. 6. A Comparison of EGFA, GFA, GA and PSO in log10(median) with 2,3,5,10,20 dimensions 421

 422

Fig. 7. A Comparison of EGFA, GFA, GA and PSO in log10(MSE) with 2,3,5,10,20 dimensions 423

2,3,5,10,20d =

Fig. 8. A Comparison of EGFA, GFA, GA and PSO in log10(STD) value with 2,3,5,10,20 dimensions 424

 425

Table 3 426

The average running time for 100 trials of six benchmark functions with dimension d=2,3,5,10,20 427

Benchmark

Function
 2 3 5 10 20

Sphere EGFA 0.4381s 0.8898s 1.4093s 3.7177s 19.0255s

GFA 0.5013s 0.9028s 1.4056s 3.7115s 19.0313s

GA 0.5218s 0.9164s 1.4218s 3.7560s 19.0874s

PSO 0.4315s 0.8820s 1.4350s 3.7997s 19.4872s

Griewangk EGFA 0.4074s 0.9803s 1.4993s 3.8174s 17.0395s

GFA 0.5018s 1.0027s 1.5081s 4.0279s 17.0497s

GA 0.5225s 1.0276s 1.5361s 3.8566s 17.0977s

PSO 0.4098s 0.9739s 1.5305s 3.9028s 17.4997s

Ackley EGFA 0.4839s 0.9627s 1.5041s 4.0129s 16.0337s

GFA 0.5015s 1.0029s 1.5077s 4.0257s 16.0513s

GA 0.5186s 1.0221s 1.5372s 4.0426s 16.0824s

PSO 0.4897s 0.9575s 1.5327s 4.1212s 16.5579s

Zakharov EGFA 0.4158s 0.9771s 1.5019s 3.9152s 18.0285s

GFA 0.5013s 1.0014s 1.5345s 4.0141s 19.0296s

GA 0.4544s 1.0304s 1.5418s 3.9605s 18.1944s

PSO 0.4081s 0.9750s 1.5384s 3.9908s 18.4605s

Rotated Hyper-

Ellipsoid

EGFA 0.4074s 0.9125s 1.3598s 3.7141s 18.0331s

GFA 0.4021s 0.9031s 1.4052s 3.8168s 18.0481s

GA 0.4169s 0.9119s 1.4285s 3.7592s 18.1806s

PSO 0.4080s 0.9125s 1.4314s 3.7941s 18.4442s

Levy EGFA 0.4558s 0.9560s 1.8099s 4.2267s 19.0550s

GFA 0.5028s 1.0036s 1.8073s 4.5340s 20.0777s

GA 0.5303s 1.0303s 1.8448s 4.2536s 19.2646s

PSO 0.5090s 1.0156s 1.8381s 4.4143s 19.5955s

 428

Fig. 9 The average running time for 100 trials of six benchmark functions with dimension d = 2, 3, 5, 10, 20 429

3.1.4 Non-parametric statistical test 430

To further verify the conclusion drawn from the part of parametric statistical test in Section 3.2.1, 431

following [31] we use a non-parametric statistical method, called the Wilcoxon test [32] [33], to compare 432

the performance of EGFA, GFA, GA and PSO. Table 4 shows the Wilcoxon test results of the 100 trials 433

for the four algorithms on the six test problems, and readers can refer to [34] for more details about how 434

to use the Wilcoxon test to compare different metaheuristic algorithms in detail. 435

In the Wilcoxon test presented in Table 4, we set the significance level p to be 0.05 () and 436

use the two-tailed hypothesis because the settings of the both are the most commonly. We have 100 trials 437

(which means the sample size) for the four algorithms on the six test problems in 438

dimensions, and calculate both p-value and h-value to compare the performance of each pair of the 439

algorithms. If the p-value is less than the significance level () and , the results indicate 440

that there is a significant difference between the performance of the two algorithms. Otherwise, it 441

indicates that there is not enough evidence to verify the significant difference between the performance 442

of the two algorithms 443

Since we know that the performance of the two algorithms is significantly different, to further 444

determine which algorithm performs better we will focus on the value of the rank sum for the former 445

0.05p =

100N = 2,3,5,10,20

0.05p = 1h =

algorithm and the latter algorithm , that is, if is less than , it indicates that 446

the former algorithm outperforms the latter one, otherwise, the latter one outperforms the former one. 447

For each cell in Table 4, the first value is the p-value and is representative of the probability that the 448

results for the two algorithms obey the same distribution. The second value is the h-value. If the h-value 449

is equal to 1 (), it indicates that the performance of the two algorithms is significantly different. If 450

there is no significant difference between the two algorithms, the h-value is equal to 0 (). A ‘-’ sign 451

means that the former one outperforms the latter one (). Similarly, a ‘+’ sign means 452

 and indicates that the latter algorithm outperforms the former one. For instance, from the 453

three rows about the Rotated Hyper-Ellipsoid problem in Table 4, all the p-values are smaller than the 454

significance level (), h-value is 1, and the ‘-’ sign demonstrates that EGFA outperforms GFA, 455

GA and PSO at on the Rotated Hyper-Ellipsoid problem in dimensions because 456

of . The results are consistent with the distribution of the results obtained by the four 457

algorithms on 100 trials presented in Fig. 10. Fig. 11 presents the distribution of the results for the four 458

algorithms on Rotated Hyper-Ellipsoid in 20-dimensional search space in detail, which corresponds to 459

the cell ‘1.1720e-16/1/-’, ‘2.5621e-34/1/-’ and ‘2.1609e-23/1/-’ in the Table 4. 460

From the results presented in Table 4, as well as in Fig. 10 and Fig. 11, we can see that results 461

obtained from the Wilcoxon test confirm the conclusions drawn from Section 3.2.1, that is, EGFA 462

outperforms GFA, GA and PSO on all six test problems in the overall level. 463

 464

Table 4 465

Results of Wilcoxon rank sum test for statistically significance level at for optimal solution over 100 466

runs on benchmark functions for 2,3,5,10,20 dimensions 467

Benchmark Function
2 3 5 10 20

p/h/zval

Sphere EGFA vs GFA 3.0199e-11/1/- 3.0199e-11/1/- 3.0199e-11/1/- 3.0199e-11/1/- 3.0199e-11/1/-

EGFA vs GA 2.5621e-34/1/- 2.5621e-34 /1/- 2.5621e-34 /1/- 2.5621e-34 /1/- 2.5621e-34/1/-

EGFA vs PSO 0.2241 /0/- 4.9856e-29 /1/- 2.5621e-34 /1/- 2.5621e-34 /1/- 2.5621e-34 /1/-

Ackley EGFA vs GFA 3.0199e-11/1/- 3.0199e-11/1/- 3.0199e-11/1/- 3.0199e-11/1/- 3.0199e-11/1/-

EGFA vs GA 2.5621e-34/1/- 2.5621e-34/1/- 2.5621e-34/1/- 2.5621e-34/1/- 2.5621e-34/1/-

EGFA vs PSO 0.7022/0/- 2.2224e-27/1/- 2.5621e-34/1/- 2.5621e-34/1/- 2.5621e-34 /1/-

Griewangk EGFA vs GFA 3.0199e-11/1/- 3.1589e-10/1/- 1.0601e-07/1/- 3.1589e-10/1/- 3.0199e-11/1/-

1Rå 2Rå 1Rå 2Rå

1h =

0h =

1 2R R<å å

1 2R R>å å

0.05p =

0.05p = 2,3,5,10,20

1 2R R<å å

0.05p =

EGFA vs GA 3.7064e-23/1/- 3.2066e-29/1/- 1.3673e-31/1/- 9.6788e-31/1/- 2.5621e-34/1/-

EGFA vs PSO 1.1068e-07/1/- 4.4804e-09/1/- 2.5074e-33/1/- 6.6802e-34/1/- 2.5621e-34/1/-

Levy EGFA vs GFA 3.0199e-11/1/- 3.0199e-11/1/- 3.0199e-11/1/- 2.9543e-11/1/- 3.0199e-11/1/-

EGFA vs GA 2.5621e-34/1/- 2.5621e-34/1/- 2.5621e-34/1/- 2.5306e-34/1/- 1.4447e-22/1/-

EGFA vs PSO 8.2778e-22/1/- 3.6728e-34/1/- 2.5616e-34/1/- 2.5306e-34/1/- 2.5621e-34/1/-

Rotated Hyper-

Ellipsoid

EGFA vs GFA 3.0199e-11/1/- 3.0199e-11/1/- 3.0199e-11/1/- 3.0199e-11/1/- 1.1720e-16/1/-

EGFA vs GA 2.5621e-34/1/- 2.5621e-34/1/- 2.5621e-34/1/- 2.5621e-34/1/- 2.5621e-34/1/-

EGFA vs PSO 2.1609e-23/1/- 5.7156e-30/1/- 2.5621e-34/1/- 2.5621e-34/1/- 2.5621e-34/1/-

Zakharov EGFA vs GFA 3.0199e-11/1/- 3.0199e-11/1/- 8.1527e-11/1/- 9.2113e-05/1/- 6.1210e-10/1/+

EGFA vs GA 2.5621e-34/1/- 2.5621e-34/1/- 3.6728e-34/1/- 5.3312e-12/1/- 3.0679e-34/1/+

EGFA vs PSO 6.9521e-30/1/- 1.3281e-21/1/- 5.4201e-34/1/- 5.4201e-34/1/- 2.5621e-34/1/-

 468

 469

Fig. 10 The distribution of the results for EGFA, GFA, GA and PSO on Rotated Hyper-Ellipsoid in 2,3,5,10,20 470

dimensions 471

 472

 473

Fig. 11 The distribution of the results for EGFA, GFA, GA and PSO on Rotated Hyper-Ellipsoid in 20 dimensions 474

3.2 Experiments on real datasets 475

Clustering is an important data mining task and it has been explored extensively in different application 476

areas. To assess the excellent performance of the model in real world applications, the GFA and EGFA 477

are applied to clustering problems in this research so that we can explore the application potential of GFA 478

and EGFA on real world problems. 479

3.2.1 The Encoding of cluster centroid vector 480

In this research, we applied GFA and EGFA to clustering, based on the original idea of k-means. The 481

process of clustering can be regarded as the unconstrained optimization problems since its objective 482

function is constrained. In the context of clustering, a single dust represents the cluster centroid 483

vectors. That is, each dust is constructed in the form of Eq. (14), 484

 , (14) 485

where refers to the cluster centroid vector of the dust. Therefore, the dust population 486

represents candidate cluster centroid vectors. 487

 The mass function of individual is measured as Eq. (15) [35], which is similar to the objective in k-488

means clustering algorithm. 489

 , (15) 490

where is the cluster centroid vector, is the sample that belongs to the cluster , and 491

 is the number of clusters. 492

 The main loops of GFA and EGFA in data clustering are the same as the description in Section 2.1 493

and Section 2.2.3. 494

3.2.2 Datasets and performance evaluation 495

The datasets listed in Table 5 are the well-known real datasets from the UCI Machine Learning 496

Repository [36], which are usually used to test the performance of clustering algorithms. These three real 497

datasets are chosen from a series of past research in clustering. Table 5 shows the number of instances, 498

the number of attributes, the number of clusters，and the distribution of the three datasets. Specifically, 499

The Iris dataset consists of 150 instances with 4 attributes. The Seeds dataset consists of 210 instances 500

with 7 attributes. The Wine dataset consists of 178 instances with13 attributes. There are 3 clusters of the 501

three real datasets. This paper applies GFA and EGFA in clustering, and compared the results of them 502

with k-means. 503

K

iX
®

(),1 ,2 , ,,i i i i j i KX x x x x
®

= ! !

,i jx j-th i-th

2

1 2

max
i

K

i
i s C

massFunction s m
®

= Î

= - -åå

im
®

i-th s i-th iC

K

 504

Table 5. 505

The real datasets for testing GFA, EGFA and k-means 506

Datasets Number of instances Number of attributes Number of clusters distribution

Iris 150 4 3 50/50/50

Seeds 210 7 3 70/70/70

Wine 178 13 3 59/71/48

 507

 In order to compare the performance of GFA, EGFA and k-means, The Adjusted Rand index (ARI) 508

is adopted to assess clustering results of the three algorithms. The adjusted Rand Index is usually used to 509

measures the agreement between two partitions. It is the corrected-for-chance version of Rand index (RI)， 510

which is simply defined as (The range of the Rand index is between 0 and 1. When 511

the two partition agree perfectly, the Rand index is 1. More details about Rand index are presented in 512

[37] [38]). The original Adjusted Rand index is defined as Eq. (16). 513

, (16) 514

the bigger value the ARI is, the more agreement of the two partitions have. We adopt the Adjusted Rand 515

index as the measure of the experimental results, and the Readers can refer [37] [38] for more details 516

about how Adjusted Rand index assesses the agreement between two partitions. 517

3.2.3 Parameter settings 518

The settings of parameters for GFA, EGFA and k-means are showed in Table 6. The size of population is 519

set as 20 for GFA and EGFA. The maximum number of iterations is set 100 for all three algorithms. 520

There is a trick to setting the number of clusters in this research. Firstly, EGFA runs several times in 521

different number of clusters. Then the value of ARI of those results is calculated. Lastly, the number of 522

clusters is decided according the value of ARI, the one with largest value of ARI is desirable. Fig. 12 523

shows the average value of ARI for 30 trials on seeds dataset in different number of clusters. As Fig.12 524

shows the ARI is largest when the number of clusters is 3. In this way, the number of clusters is set 3 for 525

a bRI
a b c d

+
=

+ + +

/
222 2

1 /
22 2 22 2

ij ji
i

i j

j ji i

i j i j

n ba n

Index ExpectedIndexARI
MaxIndex ExpectedIndex b ba a n

é ùæ ö æ öæ ö æ ö
- ê úç ÷ ç ÷ç ÷ ç ÷

- ê ú è øè øè ø è øë û= =
- é ù é ùæ ö æ öæ ö æ ö æ ö

+ -ê ú ê úç ÷ ç ÷ç ÷ ç ÷ ç ÷
ê ú ê ú è øè ø è øè ø è øë û ë û

å å å

å å å å

datasets: Iris, Seeds and Wine finally. 526

Table 6. 527

The parameters setting of GFA, EGFA and k-means 528

Parameters setting Population Size Max Number of iterations Number of clusters

GFA 20 100 3

EGFA 20 100 3

k-means - 100 3

 529

 530

Fig. 12 The average value of ARI on Seeds dataset in different number of clusters 531

 532

3.2.4 Experimental results and analysis 533

The comparisons of three algorithms: GFA, EGFA and k-means for 30 trials on three real datasets in 534

average value of Adjusted Rand index (ARI) are shown in Table 7. Table 7 shows that the EGFA 535

outperforms GFA and k-means on the three real datasets: Iris, Seeds, and Wine. Specifically, EGFA has 536

the highest value of ARI among the three algorithms, which indicates that EGFA has the best performance 537

compared with the original GFA and k-means in the three real datasets. In addition, GFA performs better 538

than k-means on the datasets: Wine and Seeds, and k-means performs better than GFA on dataset Iris. 539

 540

 541

 542

 543

Table 7 544

The results of GFA, EGFA and k-means in ARI 545

ARI GFA EGFA k-means

Iris 0.5791 0.6846 0.6836

Seeds 0.7027 0.7302 0.6998

Wine 0.3676 0.3715 0.3499

4. Conclusions and Future work 546

In this research, a novel EGFA is presented based on the original GFA. A novel accuracy improvement 547

strategy called Dust Sampling (DS) is employed to quickly find the so-called optimal space that contains 548

the optimal solution in search space. Another novel strategy named Explosion Operation is adopted to 549

decrease the probability of dust falling into local optima, and the formulae for iteration are modified. Six 550

benchmark problems and three real datasets previously used from literatures in unconstrained 551

optimization are chosen to evaluate the performance of EGFA. The experimental results demonstrate that 552

the proposed EGFA has achieved excellent performance in terms of efficiency, accuracy, and the 553

capability of solving real world problems. All the results indicate that EGFA is of well convergence and 554

higher search efficiency. 555

It is noted that the solutions EGFA finds are frequently closer to the actual optimal solutions than 556

the other three algorithms in the lower dimensions on all the six benchmark problems and three real 557

datasets, but at the same time, we also notice the fact that all the four optimization algorithms face 558

challenges when dealing with problems in higher dimensions in terms of in accuracy and running time, 559

especially when the dimension is larger than 20. This motivates us to make more efforts in our future 560

research to investigate how to further improve EGFA along this line. The study on complex unconstrained 561

optimization problems in higher dimensions by EGFA is in progress, and we will also further investigate 562

how to find more effective methods to adjust the parameters according to the characteristics of specific 563

problems. 564

Acknowledgement 565

This research was funded by the National Natural Science Foundation of China (Nos.61572227, 566

61772227, 61702214), the Development Project of Jilin Province of China (Nos 20170101006JC, 567

20180414012GH, 20170203002GX, 20190201293JC), Zhuhai Premier-Discipline Enhancement 568

Scheme (Grant 2015YXXK02) and Guangdong Premier Key-Discipline Enhancement Scheme (Grant 569

2016GDYSZDXK036). This work was also supported by Jilin Provincial Key Laboratory of Big Date 570

Intelligent Computing (No. 20180622002JC). 571

References 572

[1] B. Chatterjee, Steepest Descent Method: Springer US, 2013. 573

[2] F. Ahmad, E. Tohidi, and J. A. Carrasco, "A parameterized multi-step Newton method for solving 574

systems of nonlinear equations," Numerical Algorithms, vol. 71, pp. 1-23, 2016. 575

[3] J. Zhao, E. A. H. Vollebregt, and C. W. Oosterlee, "A fast nonlinear conjugate gradient based method 576

for 3D concentrated frictional contact problems," Journal of Computational Physics, vol. 288, pp. 577

86-100, 2015. 578

[4] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer, "A Stochastic Quasi-Newton Method for Large-579

Scale Optimization," Siam Journal on Optimization, vol. 26, 2015. 580

[5] M. A. Salido, J. Escamilla, A. Giret, and F. Barber, "A genetic algorithm for energy-efficiency in 581

job-shop scheduling," The International Journal of Advanced Manufacturing Technology, vol. 85, 582

pp. 1303-1314, 2016. 583

[6] E. Elyan and M. M. Gaber, "A Genetic Algorithm Approach to Optimising Random Forests Applied 584

to Class Engineered Data," Information Sciences, 2016. 585

[7] T. Liao, K. Socha, M. A. M. D. Oca, and T. Stützle, "Ant Colony Optimization for Mixed-Variable 586

Optimization Problems," IEEE Transactions on Evolutionary Computation, vol. 18, pp. 503-518, 587

2014. 588

[8] Z. Wang, H. Xing, T. Li, and Y. Yang, "A Modified Ant Colony Optimization Algorithm for Network 589

Coding Resource Minimization," IEEE Transactions on Evolutionary Computation, vol. 20, pp. 1-590

1, 2015. 591

[9] J. Kennedy and R. Eberhart, Particle swarm optimization: Springer US, 2011. 592

[10] X. L. Wen, J. C. Huang, D. H. Sheng, and F. L. Wang, "Conicity and cylindricity error evaluation 593

using particle swarm optimization," Precision Engineering, vol. 34, pp. 338-344, 2010. 594

[11] J. Kennedy and R. Eberhart, "Particle swarm optimization," IEEE International Conference on 595

Neural Networks, vol. 4, pp. 1942-1948, 1995. 596

[12] B. Xing and W. J. Gao, Innovative Computational Intelligence: A Rough Guide to 134 Clever 597

Algorithms: Springer Publishing Company, Incorporated, 2013. 598

[13] D. Karaboga and B. Basturk, "A powerful and efficient algorithm for numerical function 599

optimization: artificial bee colony (ABC) algorithm," Journal of Global Optimization, vol. 39, pp. 600

459-471, 2007. 601

[14] C. J. A. B. Filho, F. B. D. L. Neto, A. J. C. C. Lins, A. I. S. Nascimento, and M. P. Lima, Fish School 602

Search: Springer Berlin Heidelberg, 2009. 603

[15] K. M. Passino, Bacterial Foraging Optimization: IGI Global, 2010. 604

[16] S. C. Chu and P. W. Tsai, "Computational intelligence based on the behavior of cats," International 605

Journal of Innovative Computing Information & Control Ijicic, vol. 3, pp. 163-173, 2006. 606

[17] O. K. Erol and I. Eksin, A new optimization method: Big Bang-Big Crunch: Elsevier Science Ltd., 607

2006. 608

[18] R. A. Formato, "Central Force Optimization: a New Metaheuristic with Applications in Applied 609

Electromagnetics," vol. 77, pp. 425-491, 2007. 610

[19] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, "GSA: A Gravitational Search Algorithm," 611

Intelligent Information Management, vol. 4, pp. 390-395, 2012. 612

[20] A. Y. S. Lam and V. O. K. Li, "Chemical-Reaction-Inspired Metaheuristic for Optimization," IEEE 613

Transactions on Evolutionary Computation, vol. 14, pp. 381-399, 2010. 614

[21] S. A. Salem, "BOA: A novel optimization algorithm," in International Conference on Engineering 615

and Technology, pp. 1-5, 2012. 616

[22] M. Zheng, G. Liu, C. Zhou, Y. Liang, and Y. Wang, "Gravitation field algorithm and its application 617

in gene cluster," Algorithms for Molecular Biology, vol. 5, pp. 1-11, 2010. 618

[23] M. Zheng, Y. Sun, G. Liu, Y. Zhou, and C. Zhou, "Improved Gravitation Field Algorithm and Its 619

Application in Hierarchical Clustering," PloS One, vol. 7, p. e49039, 2012. 620

[24] M. Zheng, G. X. Liu, Y. Zhou, and C. G. Zhou, "Reconstruction of gene regulatory network based 621

on gravitation field algorithm," Journal of Jilin University, vol. 44, pp. 427-432, 2014. 622

[25] V. S. Safronov, "Evolution of the protoplanetary cloud and formation of the earthand planets," Trans. 623

NASA TT F-677, 1972. 624

[26] L. Huang, X. Hu, Y. Wang, F. Zhang, Z. Liu, and W. Pang, "Gravitation field algorithm with optimal 625

detection for unconstrained optimization," in International Conference on Systems and Informatics, 626

2017, pp. 1411-1416. 627

[27] G. P. Zhu and S. Kwong, "Gbest-guided artificial bee colony algorithm for numerical function 628

optimization," Applied Mathematics and Computation, vol. 217, pp. 3166-3173, Dec 1 2010. 629

[28] D. E. Goldberg. ''Genetic Algorithms in Search, Optimization and Machine Learning '', Addison-630

Wesley Pub. Co. pp. 2104–2116, 1989. 631

[29] G. Steenackers and P. Guillaume, "Bias-specified robust design optimization: A generalized mean 632

squared error approach," Computers & Industrial Engineering, vol. 54, pp. 259-268, 2008. 633

[30] A. Majumder, "Application of Standard Deviation Method Integrated PSO Approach in 634

Optimization of Manufacturing Process Parameters," Handbook of Research on Artificial 635

Intelligence Techniques & Algorithms, 2015. 636

[31] W. Pang and G. M. Coghill, "QML-AiNet: An immune network approach to learning qualitative 637

differential equation models," Applied Soft Computing, vol. 27, pp. 148-157, 2015. 638

[32] S. Siegel and N. J. J. Castellan, "Non-Parametric Statistics for Behavioral Sciences," American 639

Catholic Sociological Review, vol. 18, 1957. 640

[33] G. W. Corder and D. I. Foreman, Nonparametric Statistics for Non-Statisticians: A Step-by-Step 641

Approach, 2009. 642

[34] S. García, D. Molina, M. Lozano, and F. Herrera, "A study on the use of non-parametric tests for 643

analyzing the evolutionary algorithms’ behavior: a case study on the CEC’2005 Special Session on 644

Real Parameter Optimization," Journal of Heuristics, vol. 15, pp. 617-644, 2009. 645

[35] R. Duwairi and M. Abu-Rahmeh, "A novel approach for initializing the spherical K-means clustering 646

algorithm," Simulation Modelling Practice and Theory, vol. 54, pp. 49-63, May 2015. 647

[36] D. Dua and C. Graff, "UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. " Irvine, 648

CA: University of California, School of Information and Computer Science, 2019. 649

[37] D. Steinley, M. J. Brusco, and L. Hubert, "The Variance of the Adjusted Rand Index," Psychological 650

Methods, vol. 21, pp. 261-272, Jun 2016. 651

[38] R. Brouwer, "Extending the rand, adjusted rand and jaccard indices to fuzzy partitions," Journal of 652

Intelligent Information Systems, vol. 32, pp. 213-235, Jun 2009. 653

