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Asymptotically Exact Unweighted Particle Filter
for Manifold-Valued Hidden States and

Point Process Observations
Simone Carlo Surace , Anna Kutschireiter , and Jean-Pascal Pfister

Abstract—The filtering of a Markov diffusion process
on a manifold from counting process observations leads
to ‘large’ changes in the conditional distribution upon an
observed event, corresponding to a multiplication of the
density by the intensity function of the observation pro-
cess. If that distribution is represented by unweighted
samples or particles, they need to be jointly transformed
such that they sample from the modified distribution. In
previous work, this transformation has been approximated
by a translation of all the particles by a common vector.
However, such an operation is ill-defined on a manifold, and
on a vector space, a constant gain can lead to a wrong
estimate of the uncertainty over the hidden state. Here,
taking inspiration from the feedback particle filter (FPF),
we derive an asymptotically exact filter (called ppFPF) for
point process observations, whose particles evolve accord-
ing to intrinsic (i.e., parametrization-invariant) dynamics
that are composed of the dynamics of the hidden state
plus additional control terms. While not sharing the gain-
times-error structure of the FPF, the optimal control terms
are expressed as solutions to partial differential equa-
tions analogous to the weighted Poisson equation for the
gain of the FPF. The proposed filter can therefore make
use of existing approximation algorithms for solutions of
weighted Poisson equations.

Index Terms—Filtering, estimation, stochastic systems,
mean field games, stochastic optimal control.

I. INTRODUCTION

ALARGE number of natural and engineered systems and
datasets have states that are naturally described as ele-

ments of smooth manifolds. Classical cases are the motion
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of a body constrained by equality constraints, motion on
the surface of the earth, or the attitude of a rigid body.
Increasingly, the systems are very high-dimensional, whereas
data points often lie on relatively low-dimensional manifolds,
whose structure can be exploited for filtering and estimation
problems.

In filtering, the state of the system (called the hidden state)
needs to be estimated from the history of observations. In
practise, observations often arrive sparsely, randomly and in
digital form. One example is when observations are simple
event counts. Such counting or point process observations
arise in a variety of applications of time series models, e.g.,
neuroscience, geosciences, or finance.

The exact solution of the filtering problem is intractable
in most cases and requires numerical approximation. One
approach has been the class of interacting particle algorithms,
in which an unweighted ensemble of N particles is prop-
agated based on the known dynamics of the hidden state
and the incoming observations. The feedback particle fil-
ter (FPF) [1]–[2] is such an algorithm that is based on
mean-field optimal control, with a gain×error structure that is
reminiscent of the Kalman filter. The gain is given by the solu-
tion of a partial differential equation (PDE), which makes the
FPF exact in the limit of large N even for nonlinear problems.
Although in practise the gain has to be estimated from the par-
ticles, unweighted approaches hold the promise of scaling to
high-dimensional problems, in contrast to particle algorithms
with importance weights [3].

In this letter, we consider the problem of finding an FPF-like
algorithm for systems whose hidden states evolve continuously
in time on a known smooth manifold and observations are
given by a conditional Poisson process. The FPF for manifold-
valued hidden states and diffusion observations has been
introduced in [4]. A filter for a hidden state in Rn and point
process observations was introduced in [5], called EKSPF.
While it is reminiscent of the FPF, having a gain×error struc-
ture, it uses a constant gain. As a result, the filter is exact
only to first order and does not properly reflect higher-order
statistics. For example, when particles are initially spread out
and an incoming event confers evidence that the hidden state
is in some narrow region of the state space, we should find the
updated particles concentrated in that region. However, upon
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Fig. 1. (a) In Euclidean space, a constant gain for the update associ-
ated to an event leads to a translation of all the particles by a common
translation vector. This leads to the correct mean but over-estimates the
variance. (b) By contrast, the optimal gain also takes into account the
reduction of uncertainty, and performs a scaling in addition to the trans-
lation. (c, d) Event-induced update on S1. (c) Before the event, particles
are uniformly distributed on the circle. (d) An event indicates that the
hidden state is likely to be found in the upper right quadrant (black line).
The optimal gain should transform the particle ensemble such that it
becomes concentrated in the appropriate region after the event. This
cannot be accomplished by a ‘constant’ update, which would simply lead
to identical (i.e., independently of their position) rotation of all the par-
ticles, preserving the uniform distribution. (e, f) In addition, the notion
of constancy on a manifold may depend on its embedding. (e) S1 in
its standard embedding in R2, with a tangent vector field of constant
Euclidean length. (f) S1 in a non-standard embedding. The same vector
field from (e) is now of non-constant Euclidean length. An intrinsic notion
of constancy is needed in order to avoid these ambiguities.

an event the EKSPF translates all particles by the same vector,
see Figures 1a-1b.

The reliance on this uniform translation also leads to dif-
ficulties in extending the EKSPF to hidden states evolving
on a manifold. In fact, when the EKSPF is applied naïvely
on some arbitrary chart of the manifold, filtering performance
can be poor (see Section IV for an example). This is because
the meaning of a ‘translation’ is fundamentally ill-defined on
a manifold. Since a translation in coordinate chart A does
not necessarily correspond to a translation in coordinate chart
B, the performance of the EKSPF depends on the choice of
coordinates. However, the filtering problem on a manifold
is intrinsic, i.e., independent of the choice of coordinates.
It would therefore be desirable for a particle filter, and the
transformation of particles in particular, to be defined in a
coordinate-independent way. This would be advantageous even
if the state space carries additional structure, such as the vector

space structure on Rn. A large class of estimation problems
in Rn, such as, e.g., satellite tracking, are naturally described
in curvilinear coordinates.

For infinitesimal motion of particles, the notion of constancy
of a vector field,1 and thus of a constant gain approximation,
depends on additional structure on the manifold, namely a
connection; a mathematical structure that prescribes how to
parallel transport a vector between different points. This can be
visualised for the example of the unit circle S1 that (regarded
as a smooth manifold) can be embedded in different ways
in, say, R2 (see Figures 1e-1f). If the constancy of a tan-
gent vector field is made to depend on the embedding, then
we obtain different vector fields for different embeddings. On
many manifolds, there are no nontrivial parallel vector fields,
which precludes the choice of a nontrivial constant gain. While
this problem also affects a constant gain approximation of
the FPF gain, the problem can be circumvented by seeking
a non-constant gain estimate. Meanwhile, the constant gain
assumption is ‘baked’ into the EKSPF.

In this letter, we derive an exact FPF-like filter on a man-
ifold for point process observations, called ppFPF, from first
principles, addressing the limitations of a constant gain in the
EKSPF. The result is a filter whose control terms are given
by solutions of PDEs analogous to the Poisson equation for
the gain of the FPF. However, the gain×error structure of the
FPF is not strictly preserved. Instead, for the conceptual rea-
sons stated above, the control term associated to an event is
fundamentally distinct and treated separately from the term
in-between events.

The remainder of this letter is structured as follows: in
Section II, we introduce the mathematical notation, review
the filtering problem for the Gaussian white noise observation
case, and re-derive the FPF in the manifold setting, making
some observations regarding the symmetry of the problem. In
Section III, we present our main contribution: we derive the
ppFPF, which is an adaptation of the FPF to point-process
observations. In Section IV, we present numerical examples
that illustrate the differences in performance and uncertainty
quantification (UQ) between the ppFPF and other filters.

II. PRELIMINARIES AND BACKGROUND

A. Notations and Conventions

Tangent vectors at a point p ∈ M are written in a local chart
as ai∂i|p, where Einstein’s summation convention is used. A
vector field X ∈ Vect(M) is a smooth section of the tangent
bundle TM and is written locally as a first-order differential
operator Xi∂i. The Lie derivative with respect to the vector
field V is denoted by L V and acts on sections of tensor prod-
uct bundles of TM. If ϕ ∈ C∞(M), then its differential dϕ is
a one-form or smooth section of the cotangent bundle T∗M.
More generally, a differential form of degree k is a smooth
section of �k(M) := ∧k T∗M, where the wedge denotes the
exterior product. Top degree forms are elements of �n(M),
where n is the dimension of M. A nowhere-vanishing element
of �n(M) is an orientation; if such an element exists then M

1As we will explain in the next section, the control terms in the FPF can
be viewed as vector fields.
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is called orientable, and we can then distinguish positive top
degree forms, which we call volume forms. Normalized vol-
ume forms will be used to describe smooth nowhere-vanishing
distributions on M. This letter d is used for exterior derivatives
on differential forms ω ∈ �k(M) as dω, and for stochastic
differentials on stochastic processes Xt as dXt. The interior
derivative on ω ∈ �k(M) wrt. X ∈ Vect(M) is written as iXω.
The notation F Y

t is used for the filtration generated by the
process (Yt)t≥0.

B. Filtering Problem and Filtering Equations

We consider a filtering problem in which the hidden state
Xt evolves as a Markov diffusion process on an n-dimensional
manifold2 M, described by a Stratonovich stochastic differen-
tial equation (SDE) of the form

dXi
t = Vi

0dt + Vi
j ◦ dBj

t (1)

in local coordinates, where B1, . . . , Br are mutually indepen-
dent standard Brownian motions.3 We will use the index-free
notation dXt = V0dt + Vj ◦ dBj

t for such an SDE on M. This
SDE corresponds to an infinitesimal generator

A = V0 + 1

2

r∑

j=1

V2
j , (2)

where V0, V1, . . . , Vr are vector fields on M. This is a second-
order differential operator, which can be expressed in local
coordinates as A = Vi

0∂i + 1
2

∑r
k=1 Vi

k∂iV
j
k∂j.

The classical observation model in nonlinear filtering is
a diffusion process with additive noise, also referred to as
observations in Gaussian white noise, i.e.,

dYt = h(Xt)dt + dWt, (3)

where Wt is a Brownian motion independent of Xt. Although
this letter is concerned with point process observations, in
order to explain the background of this letter this section will
focus exclusively on the model in Eq. (3). Later, in Section III,
we shall consider point process observations, adapting an
approach that has been used in the case of Gaussian white
noise.

Probability distributions over the manifold M will be
described by positive top-degree forms μ (volume forms) that
integrate to one, i.e.,

∫
M μ = 1. This convention avoids the

superfluous appearance of a reference measure on M, and
therefore emphasizes the metric-independent nature of the
filtering problem. Of course, for concreteness, it is always pos-
sible to pick a reference volume form λ (for example, take the
riemannian volume measure with respect to some riemannian
metric on M, e.g., the Lebesgue measure for M = Rn), and
then to express μ in terms of a density p as μ = pλ.

If the distribution of X0 is described in terms of a vol-
ume form μ0, the conditional distribution μt of Xt, given
observations F Y

t , evolves according to the equation

dμt = (A †μt) dt +
(

h− ĥt

)
μt(dYt − ĥtdt), (4)

2To avoid further complications, we assume M to be connected and
orientable.

3We use Einstein’s summation convention.

where ĥt =
∫

M hμt and A † is the adjoint of A with respect to
the dual pairing 〈μϕ〉 of volume forms and smooth functions,
i.e., for all bounded ϕ ∈ C∞(M) and all volume forms μ we
have

∫

M
ϕA †μ =

∫

M
(Aϕ)μ. (5)

Eq. (4) is known as the Kushner-Stratonovich equation, see,
e.g., [6].

C. Unweighted Particle Filters

In unweighted particle filtering, the goal is to find a Monte-
Carlo approximation of μt, i.e., for any N = 1, 2, . . . ,, the
objective is to find processes S(i)

t , i = 1, . . . , N, called parti-
cles such that μt ≈ 1

N

∑N
i=1 δ

S(i)
t

. The processes S(i)
t should be

adapted to F N,Z
t , where Z is a vector-valued process indepen-

dent of X and N that can capture additional noise in the particle
dynamics. Usually, one is interested in ‘symmetric’ particle
representations in which all S(i)

t have identical distributions.
The problem thus is to specify dynamics for a representative
process St that depend on the particle ensemble.

D. Feedback Particle Filter

For Gaussian white noise observations, a recipe for build-
ing such a particle filter is known. Let us briefly review the
derivation of the feedback particle filter (FPF) [2] (see [4] for
the manifold setting). The FPF uses particle dynamics given
by the prior dynamics plus a feedback control term dUt that
is chosen such that the Fokker-Planck equation for a single
particle gives the same change in distribution as the filtering
equation. An ansatz of dUt = Kt ◦ dYt +�tdt gives

dSt = V0dt + Vj ◦ dZj
t + Kt ◦ dYt +�tdt, (6)

where Zj
t is an independent copy of Bj

t. A corresponding equa-
tion for the conditional distribution of St given F Y

t , denoted by
μ̄t, can be derived by an integration-by-parts argument using
Lie derivatives:

d
∫

M

ϕμ̄t =
∫

M

(Aϕdt + Ktϕ ◦ dYt +�tϕdt)μ̄t

=
∫

M

ϕ
(
A †μ̄tdt −L Kt μ̄t ◦ dYt −L �t μ̄tdt

)

+ boundary terms. (7)

In the first line, the Stratonovich chain rule is used. In the
second line, directional derivatives are replaced by Lie deriva-
tives,4 and we performed integration by parts, reducing exact
top-degree forms to boundary terms using Stokes’ theorem. It
is customary to demand that K,� be tangent to the bound-
ary of M (if ∂M is nonempty), or even completely vanish on
∂M. This assumption implies iKμ = 0 on ∂M, such that the
boundary terms can be discarded. After switching back to Itô
calculus, one obtains

dμ̄t =
(
A †μ̄t −L �t μ̄t + 1

2L 2
Kt

μ̄t

)
dt − (L Kt μ̄t)dYt. (8)

4On smooth functions, the Lie derivative agrees with the directional
derivative, i.e., L Xϕ = Xϕ = dϕ(X) for all ϕ ∈ C∞(M), X ∈ Vect(M).
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Matching the terms of Eq. (8) with Eq. (4) (conditioned on
μ̄t = μt) leads to the system of equations5

L Ktμt = −(h− ĥt)μt, (9)

L �tμt = 1

2

(
h2 − ĥ2 − Kth

)
μt. (10)

Given a vector field Kt solving Eq. (9), called a gain for the
FPF, setting

�t = − 1
2 (h+ ĥ)Kt (11)

gives an associated solution to Eq. (10).6

E. Uniqueness, Approximation, and Estimation of
the Gain

The solutions of Eqs. (9) and (10) are not unique, as any pair
(Kt,�t) of solutions can be modified by adding an arbitrary
divergence-free7 vector field V , i.e., such that L Vμt = 0.
Uniqueness can be obtained by fixing a riemannian metric
g, and then demanding that the gain take the form Kt =
grad φt. This leads to the equation L grad φtμt = −(h− ĥt)μt.
Moreover, if volg denotes the riemannian volume form and μt

is expressed in terms of the density pt as μt = ptvolg, Eq. (9)
reduces to a (weighted) Poisson equation

divvolg(pt grad φt) = −(h− ĥt)pt. (12)

Existence and uniqueness of a solution is guaranteed under
mild assumptions on pt and h (see [7, Th. 2.2]), and Kt =
grad φt minimizes the functional K 
→ ∫

M g(K, K)μ among
all solutions of Eq. (9) (see [8, Lemma 8.4.2]). In the case
M = Rn, Euclidean g, Gaussian pt, and linear h, this gain
reduces to the Kalman gain.

Sometimes it is desirable to approximate the vector field
Kt = grad φt, where φt solves Eq. (12), by a constant. As
mentioned in the introduction, in order to define the notion
of constancy on a manifold, an additional structure ∇, called
connection, has to be defined. One may choose the Levi-Civita
connection corresponding to some (already given) g, but other
choices are possible. A constant gain KCG can then be defined
as the minimum of

∥
∥K − grad φ2

∥
∥ over all parallel K (i.e.,

∇K = 0). For example, when M = Rn, g is the Euclidean
metric, and ∇ its Levi-Civita connection,

KCG =
∫

Rn

(grad φ)μ =
∫

Rn

x(h(x)− ĥ)μ(dx). (13)

The right-hand representation is obtained by multiplying the
Eq. (12) by x, integrating by parts, and using grad xi = ∂xi .
Eq. (13) is convenient because the RHS can be estimated by a

5Kth = dh(Kt) = iKt dh denotes the directional derivative of h in the direc-
tion of the vector field Kt , whereas hKt is the vector field Kt scaled point-wise
by the function h.

6This can be shown by using Cartan’s magic formula and the graded prod-
uct rule for the interior derivative, or simply by observing that L ϕXμ =
ϕL Xμ+ (Xϕ)μ for all ϕ ∈ C∞(M), X ∈ Vect(M), and μ ∈ �n(M).

7The divergence of a vector field V with respect to a volume form μ is
the function divμV defined implicitly by L Vμ = (divμV)μ. Using Cartan’s
magic formula and the fact that dμ = 0, the divergence can also be written
as divμV = diV μ

μ . It follows that for f > 0 we have f divf μV = divμ(fV) =
df (V)+ f divμV .

sample, but on some manifolds, topological obstructions make
this approach infeasible. On S1 with the standard metric and
connection, a constant vector field cannot be a gradient of a
smooth function. Insisting and performing the calculation on a
chart leads to KCG = ∫ 2π

0 θ(h(θ)− ĥ)p(θ)dθ+2πK(0)p(0). It
is unclear how to estimate the additional term that depends on
the exact gain. In other cases the situation is still worse: many
manifolds with connection do not have any nontrivial paral-
lel vector fields (a common example is S2 with its standard
connection).

In practise, the gain Kt = grad φt has to be estimated from
a finite number of particles S(i)

t ∈ M, i = 1, . . . , N, thought
to be i.i.d. samples from μt. If only the gain at the particle
locations is needed, we denote the mapping particles→gains
by Kt = G(St, h), where Kt = ((Kt)S(i)

t
)N
i=1 and St = (S(i)

t )N
i=1.

This is called the gain estimation problem. For the purposes of
this letter, the question of how to optimally estimate the gain
shall be left aside and we refer to, e.g., [9], [10], [11] and the
references therein. The aim is to show that the construction of
an FPF-like algorithm for point processes can be fully reduced
to the same types of equations as for the FPF gain, i.e., to
equations of the following form:

Definition 1: For every positive volume form μ with∫
M μ = 1 and every smooth function ϕ we denote by E(μ, ϕ)

the equation

E(μ, ϕ): L Vμ = −
(

ϕ −
∫

M
ϕμ

)

μ, (14)

whose unknown quantity is the vector field V .

III. FPF FOR POINT PROCESS OBSERVATIONS

Now, we consider the case where the hidden state Xt is a
diffusion on a manifold as in Section II, but the observation
process is now a counting process8 Nt, counting the number of
events since time t = 0, with intensity function h(Xt), where
h : M→ (0,∞) is called the observation function. Here, the
observations are corrupted by Poisson noise.

An equation for the optimal filter is known also in this
setting. If the distribution of X0 is described in terms of a
volume form μ0, the conditional distribution μt of Xt given
observations F N

t evolves according to the equation

dμt = (A †μt) dt +
(

h

ĥti
− 1

)

μt−(dNt − ĥtdt), (15)

where t− denotes left limits. Eq. (15) will be referred to as the
filtering equation for point process observations. It is some-
times called Kushner-Stratonovich-Poisson equation (see [5]
for further references).

The goal of the present section is to carry out the deriva-
tion of an FPF for point process observations. We will call
the resulting filter feedback particle filter for point process
observations, or ppFPF for short.

In the following two subsections, we will separately derive
the drift and the jump terms of the particle dynamics. The
separation of these two aspects is necessary because the drift

8By convention, Nt is right-continuous with left limits (càdlàg).
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term is infinitesimal, i.e., a vector field, whereas the event
term is an instantaneous transformation of the particles from
the prior to the posterior. Since a vector field (infinitesimal)
and a finite transformation cannot be easily mixed, the ppFPF
lacks the gain×error structure of the FPF, with a common
prefactor. This will be shown below.

A. Derivation of the Drift Term

We first consider the terms proportional to dt in Eq. (15),
describing the evolution of the conditional distribution in-
between events, and make the following ansatz for the particle
dynamics:

dSt = V0dt + Vi
j ◦ dZj

t +�tdt. (16)

Since the modification is deterministic, the corresponding
equation for the conditional distribution of St given F Y

t simply
reads

dμ̄t =
(
A †μ̄t −L �t μ̄t

)
dt. (17)

Matching this to Eq. (15) (again, setting μ̄t = μt) yields the
relation

L �tμt = (h− ĥt)μt, (18)

which is E(μt,−h), up to a sign the same as Eq. (9) for the
gain of the FPF. Thus, up to divergence-free terms, the drift of
the ppFPF is identical to the negative gain of the corresponding
FPF (i.e., with the same h).

B. Derivation of the Jump Term

Upon an event, Eq. (15) prescribes a change of the condi-
tional distribution as follows:

μt− 
→ μt = h

ĥt−
μt− , (19)

i.e., the distribution is multiplied by the observation function
and subsequently renormalized. This requires a corresponding
instantaneous change of the particle positions, i.e., St− 
→ St =
Tt−(St−), where Tt : M→ M satisfies the constraint

(Tt−)∗μt− = h

ĥt−
μt− , (20)

where ∗ denotes the pushforward. In rare cases, such as for
Gaussian p and exponential h, this functional equation has
exact closed-form solutions. In the absence of an exact solu-
tion, a solution Tt− to Eq. (20) can be approximated by an
iterative procedure, also used in [12], [13], by an adapta-
tion of Moser’s classical result [14]. The idea is to define
an interpolation9 μ̃t,s of μt = μt− and h

ĥt−
μt− :

μ̃t,s = hsμt−∫
M hsμt−

, 0 ≤ s ≤ 1. (21)

9The chosen interpolation is sometimes called log-homotopy and has the
virtue of producing a PDE analogous to the one for the drift term. Other
smooth interpolations can be used as needed.

Algorithm 1 Log Homotopy Particle Flow (Deterministic)
Input: S0, n, log h
G = gain estimation method (see Section II-E)
Set ds = 1/n
for i = 1 to n do

Estimate vector field: Vi·ds := G(S(i−1)ds, log h)
for j = 1 to N do

Sj
i·ds ← Sj

(i−1)ds + Vj
i·dsds

end for
end for
return S1

Algorithm 2 point-process feedback particle filter

Input: dt, T = ndt,A , μ0, h, (Nt)
T
t=0, N

G = gain estimation method (see Section II-E)
EM = Euler-Maruyama method
Sample Sj

0 from μ0 for j = 1 to N
for i = 1 to n do

t = i · dt
Sample dZk

t from N (0, dt) for k = 1 to r
Estimate gain: �t := G(S(i−1)dt,−h)
for j = 1 to N do

Predict: Sj
t ← EM(Sj

(i−1)dt,A , dt, dZt)

Correct: Sj
t ← Sj

t +�
j
tdt

k := Nt − Nt−dt
while k > 0 do

Transform: Sj
t ← Tt(S

j
t) (e.g. by Algorithm 1)

k← k − 1
end while

end for
end for
return (Si·dt)

n
i=0

We then match this flow of probability distributions with a
flow of particles, i.e., the flow of an s-dependent vector field
Vt,s satisfying

L Vt,sμ̃t,s = − d

ds
μ̃t,s = −

(

log h−
∫

M
(log h)μ̃t,s

)

μ̃t,s, (22)

which is equation E(μt,s, log h) in Definition 1. This procedure
results in Algorithm 1.

C. Exactness of the Particle Filter

Thus, the ppFPF is defined in terms of the following
dynamics, yielding a càdlàg process:

in-between events: dSt = V0dt + Vi
j ◦ dZj

t +�tdt, (23)

event at time t: St = Tt−(St−), (24)

where �t is a vector field that solves Eq. (18) and Tt− is
the diffeomorphism constructed in Section III-B. The PDEs
to be solved for both steps are of the forms E(μ,−h) and
E(μ, log h), and are therefore analogous to the PDE for the
gain of the FPF. As a result, all considerations in Section II-E
apply to the ppFPF. By construction, the ppFPF has the
following property of being exact:

Theorem 1: Let μt denote the conditional distribution of Xt

given F N
t . Under assumption A, if the distribution of S0 coin-

cides with μ0, and if the process (St)t≥0 is defined according
to Eqs. (23)-(24), then the conditional distribution of St given
F N

t coincides with μt for all t ≥ 0.
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Fig. 2. Comparison of filter performance and UQ for the model
dXt = −Xt dt + √2dWt and h(x) = 2ex on M = R (BPF: bootstrap
particle filter, EKSPF: filter from [5], ADF: Gaussian assumed-density
filter [15], ppFPF: this letter). Simulations used dt = 0.01 and were run
for 108 time-steps. BPF, EKSP, and ppFPF used N = 200 particles.
The gain estimation method for the ppFPF used parameters ε = 10
and λ = 10−7. While all filters have comparable performance (first-
order statistics), the uncertainty is more strongly under-estimated for the
EKSPF and ADF compared to the asymptotically exact filters (BPF and
ppFPF).

Fig. 3. Comparison of filters on M = S1 (see Fig. 2). The model
is Brownian motion on S1 and observations are independent Poisson
processes with intensity functions hi (θ ) = 20 exp (10( cos (θ−iπ/2)−1)),
i = 1, . . . , 4. The Riemannian distance d(θ1, θ2) = π − ||θ1 − θ2| − π | is
used to compute riemannian barycenters and errors. The gain estima-
tion method for the ppFPF used λ = 10−2 and a von Mises kernel with
κ = 0.1. Simulations used dt = 0.01, N = 200, and were run for 105

time-steps. In this example, both performance and UQ is compromised
for the EKSPF.

Algorithms 1 & 2 additionally require the choice of a
specific gain estimation algorithm.

IV. NUMERICAL RESULTS

Simulations were conducted in order to study the
performance (in terms of mean-squared error) and UQ (in
terms of posterior variance) of the ppFPF in comparison to
other well-known approximate filters for a filtering problem
on M = R (see Fig. 2) as well as M = S1 (Fig. 3). The ppFPF
was implemented with the differential loss reproducing kernel
Hilbert space method from [16] (see figure captions for param-
eters). The bootstrap particle filter (BPF) was resampled when
Neff/N dropped below 1/2, where Neff = 1/

∑N
i=1(w

(i))2. For
M = S1, the EKSPF was naïvely10 applied to the chart on the
interval [0, 2π).

10We emphasize that the EKSPF was not intented/designed to be used in
this way. This example only serves to illustrate that a naïve application can
lead to poor performance, which is to be expected due to the conceptual
reasons outlined in the introduction.

V. CONCLUSION

In this letter, we reviewed the problem of designing
unweighted particle filters for a manifold-valued hidden pro-
cess observed in Poisson noise. We provided conceptual
arguments as well as numerical illustrations that the existing
approach from [5] (EKSPF) is limited by an intrinsic constant
gain approximation, which compromises higher-order statis-
tics as well as the ability to be extended to manifolds. We
then derived an asymptotically exact unweighted particle fil-
ter, called ppFPF, by matching the particle forward equation
with the equation for the optimal filter. This approach starts
from first principles and is analogous to the derivation of the
FPF. The resulting filter does not have the gain×error structure
of the FPF, but can otherwise be reduced to partial differen-
tial equations that are completely analogous to the ones in the
FPF. This makes it possible to leverage existing and future
approaches to gain estimation in the FPF. As an unweighted
filter, the ppFPF is expected to scale to high-dimensional
problems [3].
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