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Zusammenfassung
Die Bildsegmentierung ist ein grundlegendes Problem im Bereich der Bildverarbei-
tung. In dieser Arbeit präsentieren wir jeweils einen neuen Ansatz zur Maximum A
Posteriori (MAP) Inferenz und zum Lernen der Modellparameter für die Bildsegmen-
tierung. Beide Ansätze werden in einem glatten geometrischen Rahmen formuliert,
deren jeweiliger Lösungsraum eine einfache Riemannsche Mannigfaltigkeit ist. Nu-
merische Optimierungsschritte bestehen aus multiplikativen Updates, die den re-
sultierenden Riemannschen Gradientenfluss geometrisch integrieren.

Unser neuer Ansatz zur MAP-Inferenz basiert auf diskreten graphischen Modellen.
Mittels lokaler Wasserstein Distanzen koppeln wir an jeder Kante die Zuordnungs-
maße des zugrunde liegenden Graphen. Dadurch wird die gegebene diskrete Ziel-
funktion glatt approximiert und auf die Zuordnungs-Mannigfaltigkeit beschränkt.
Ein entsprechendes Diskretisierungsschema kombiniert die geometrische Integrati-
on des resultierenden Gradientenflusses mit der Rundung zu integralen Lösungen,
die zulässige Segmentierungen darstellen. Diese Formulierung stellt eine innere Re-
laxierung des diskreten Segmentierungsproblems dar, bei der die lokalen Margina-
lisierungsnebenbedingungen, die aus der etablierten Relaxierung der linearen Pro-
grammierung bekannt sind, jederzeit erfüllt sind.

Desweiteren untersuchen wir das inverse Problem des Modellparameter-Lernens
unter Verwendung des linearen Zuordnungsflusses und Trainingsdaten, bei denen
die Segmentierung bekannt ist. Dies wird durch einen Riemannschen Gradienten-
fluss auf der Mannigfaltigkeit der Parameter, welche die Regularisierungseigenschaf-
ten des Zuordnungsflusses bestimmen, erreicht. Diese glatte dynamische Formulie-
rung ermöglicht es das Problem des Modellparameter-Lernens aus der Perspektive
der Parameterschätzung dynamischer Systeme anzugehen. Mit Hilfe von symplek-
tisch partitionierten Runge–Kutta Methoden zur numerischen Integration wird ge-
zeigt, dass die Herleitung der Sensitivitätsbedingungen des Parameter-Lernproblems
und dessen Diskretisierung kommutieren. Eine wichtige Konsistenzeigenschaft un-
seres Ansatzes ist, dass das Lernen auf exakter Inferenz basiert.
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Abstract
Image labeling is a fundamental problem in the area of low-level image analysis. In
this work, we present novel approaches to maximum a posteriori (MAP) inference
and model parameter learning for image labeling, respectively. Both approaches are
formulated in a smooth geometric setting, whose respective solution space is a sim-
ple Riemannian manifold. Optimization consists of multiplicative updates that geo-
metrically integrate the resulting Riemannian gradient flow.

Our novel approach to MAP inference is based on discrete graphical models. By
utilizing local Wasserstein distances for coupling assignment measures across edges
of the underlying graph, we smoothly approximate a given discrete objective func-
tion and restrict it to the assignment manifold. A corresponding update scheme
combines geometric integration of the resulting gradient flow, and rounding to in-
tegral solutions that represent valid labelings. This formulation constitutes an in-
ner relaxation of the discrete labeling problem, i.e. throughout this process local
marginalization constraints known from the established linear programming relax-
ation are satisfied.

Furthermore, we study the inverse problem of model parameter learning using the
linear assignment flow and training data with ground truth. This is accomplished by
a Riemannian gradient flow on the manifold of parameters that determine the regu-
larization properties of the assignment flow. This smooth formulation enables us to
tackle the model parameter learning problem from the perspective of parameter es-
timation of dynamical systems. By using symplectic partitioned Runge–Kutta meth-
ods for numerical integration, we show that deriving the sensitivity conditions of the
parameter learning problem and its discretization commute. A favorable property
of our approach is that learning is based on exact inference.
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Chapter 1
Introduction
1.1 Motivation
Image labeling is a thoroughly investigated problem in the area of low-level image
analysis. The task is to segment a given image into coherent regions, where all pixels
belonging to the same region should share certain characteristics. This is an im-
portant step in the analysis of the image content and has many different practical
applications, e.g. object detection, medical imaging or pattern recognition. Never-
theless, this thesis focuses on basic mathematical research for image analysis with
no specific application in mind.

input image labeling

Figure 1.1: Image labeling example. LEFT: Exterior view of the Alte Universität in
Heidelberg, Germanya. RIGHT: This image shows the labeling result consisting of 11
colors which served as labels.

aAußenansicht der Universität Heidelberg - © Achim Mende, https://m.tourismus-bw.de/Media/
Attraktionen/Universitaet-Heidelberg.

For example, consider the image labeling scenario depicted in Fig. 1.1. We would
like to assign a label of a predefined set (11 colors) to each pixel. The left image

1
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CHAPTER 1 INTRODUCTION

shows the input image consisting of many different colors, whereas the right image
demonstrates a labeling result consisting of 11 colors.

How do we judge whether a given labeling is good or bad? From a purely visual
perspective, the labeling should be close to the input data and should have locally
the same labels. Locally means that the label assignment should not jump back and
forth in a local window of the labeling. From a mathematical perspective, the answer
to this question depends on the chosen model. In any case these visual objectives
should be taken into account when designing a suitable mathematical model.

Nearly all models have parameters that can be set differently in order to adjust the
respective model to a given scenario. In case the parameters are given, the task is to
infer a labeling from a given image. That is why this task is commonly called infer-
ence. In contrast, the second task is the other way around, i.e. the model parameters
are unknown, and both an input image and a corresponding ground truth labeling
are given. We then wish to learn the model parameters from this data. Therefore,
this scenario in which both the image and a ground truth labeling are given is com-
monly called supervised learning. In order to specify the research objectives of this
thesis, we introduce in the subsequent sections the tasks of inference and learning
in mathematical terms.

1.1.1 Inference
A prominent model for tackling the inference task is the discrete graphical model.
The model uses a graph G = (V ,E) to represent the observed image data. Each node
i ∈V indexes a pixel location xi which takes a value from a discrete set of labels

xi ∈X = {`1, . . . ,`n}. (1.1)

Now, the image labeling problem is formulated as minimization problem of the dis-
crete energy function

min
x∈Xm

E(x), E(x) = ∑
i∈V

θi (xi )+ ∑
i j∈E

θi j (xi , x j ), (1.2)

where the variables θi and θi j denote the given model parameters. The energy
function E(x) has the format of variational problems comprising a data term and
a regularizer. From a Bayesian perspective, therefore, minimizing E corresponds to
Maximum A Posteriori inference with respect to the probability distribution p(x) =
1
Z exp(−E(x)).

2



INTRODUCTION CHAPTER 1

Since (1.2) is a combinatorially hard problem, a major class of algorithms for ap-
proximately solving (1.2) is based on the linear programming relaxation (see Sec-
tion 2.2.4 for details)

min
µ∈LG

〈θ,µ〉. (1.3)

The globally optimal solution of the linear program (LP) (1.3) is the relaxed indicator
vector µ whose components take values in [0,1]. If µ is a binary vector, then it corre-
sponds to a solution of the discrete problem (1.2). However, in realistic applications
this is not the case, and the relaxed solution µ has to be rounded to an integral solu-
tion in a post-processing step.

In this thesis, we present an alternative inference algorithm that deviates from the
traditional two-step process above: convex relaxation and rounding. It is based on
the geometric approach [8] to image labeling. The basic idea of [8] is to follow vec-
tor fields on the the relative interior of the probability simplex, equipped with the
Fisher-Rao metric, and to regularize label assignments by computing Riemannian
means. This results in a parallel and multiplicative update scheme that converges to
an integral solution (see Chapter 3 for details).

Adopting the smooth geometric approach [8], our research objectives are:

• Extend the approach [8] to efficiently compute a high-quality (low-energy) so-
lution for an arbitrary given instance of the discrete labeling problem (1.2).

• Develop a novel inference algorithm which combines both relaxation and
rounding to an integral solution in a single process.

• Overcome the inherent non-smoothness of convex relaxations by sticking to
the smooth geometric model [8].

1.1.2 Learning
While the inference task of discrete graphical models (1.2) is well understood, the
task of learning the model parameters of such models is less explored and has re-
mained elusive. Especially for models with higher connectivity of the underlying
graph the learning task becomes hard. In particular the relation between approxi-
mations of the learning problem on the one hand, and approximations of the under-
lying inference subproblem on the other hand, is less understood.

3



CHAPTER 1 INTRODUCTION

Based on the problem formulation of a general parameter estimation problem

min
p∈P

C
(
x(T )

)
(1.4a)

s.t. ẋ(t ) = f (x(t ), p, t ), t ∈ [0,T ], (1.4b)

x(0) = x0, (1.4c)

our research objectives are:

• Solve the inference (labeling) subroutine exactly by means of numerically solv-
ing (1.4b). The advantage is that errors of approximate inference as they occur
with graphical models are absent and cannot compromise the effectiveness of
parameter learning.

• Show that the operations of (i) deriving the adjoint sensitivity conditions of
(1.4) and (ii) problem discretization commute if a proper numerical scheme is
used.

• Design a prediction map that maps features extracted from novel data to proper
weights as regularization parameters.

1.2 RelatedWork
1.2.1 Image Labeling
In typical applications of image labeling the problem sizes of the linear program (LP)
(1.3) are too large to use standard LP codes. In particular, the theoretically and prac-
tically most efficient interior point methods based on self-concordant barrier func-
tions [49, 57] are infeasible due to the dense linear algebra steps required to deter-
mine search and update directions.

Therefore, the need for dedicated solvers for the LP relaxation (1.3) has stimulated
a lot of research. A prominent example is constituted by subclasses of objective func-
tions (1.2) as studied in [43], in particular binary submodular functions, that allow
for reformulating the labeling problem as maximum-flow problem in an associated
network and the application of discrete combinatorial solvers [15, 14].

Since the structure of such algorithms inherently limits parallel implementations,
belief propagation and variants [80] have been popular in the literature. These fixed
point schemes in terms of dual variables iteratively enforce the so-called local poly-
tope constraints that define the feasible set of the LP relaxation (1.3). They can be

4
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efficiently implemented using message passing and exploit the structure of the un-
derlying graph. Although convergence is not guaranteed on cyclic graphs, the per-
formance in practice may be good [79]. These theoretical deficiencies of basic belief
propagation stimulated research on convergent message passing schemes, either us-
ing heuristic damping or utilizing in a more principled way convexity. Prominent ex-
amples of the latter case are [75, 33]. We refer to [38] for many more references and
a comprehensive experimental evaluation of a broad range of algorithms for image
labeling.

The feasible set of the relaxation (1.3) is a superset of the original feasible set of
(1.2). Therefore, globally optimal solutions to (1.3) generally do not constitute valid
labelings but comprise non-integral components µi (xi ) ∈ (0,1), xi ∈ X , i ∈ V . Ran-
domized rounding schemes for converting a relaxed solution vector µ to a valid la-
beling x ∈Xm , along with suboptimality bounds, were studied in [40, 19]. The prob-
lem of inferring components x∗

i of the unknown globally optimal combinatorial la-
beling that minimizes (1.2), through partial optimality and persistency, was stud-
ied in [71]. We refer to [77] for more information about the LP relaxation of label-
ing problems, and to [74] for connections to discrete probabilistic graphical models
from the variational viewpoint.

The approach [56] applies the mirror descent scheme [48] to the LP (1.3). This
amounts to sequential proximal minimization [60], yet using a Bregman distance
as proximity measure instead of the squared Euclidean distance [18]. A key tech-
nical aspect concerns the proper choice of entropy functions related to the under-
lying graphical model, that qualify as convex functions of Legendre type (cf. [10]).
The authors of [56] observed a fast convergence rate. However, the scheme does not
scale up to the typically large problem sizes used in image analysis, especially when
graphical models with higher edge connectivity are considered, due to the memory
requirements when working entirely in the primal domain.

Optimal transport and the Wasserstein distance have become a major tool of sig-
nal modeling and analysis [44]. In connection with the metric labeling problem,
using the Wasserstein distance (also known as optimal transport costs, earthmover
metrics) was proposed before by [1] and [19]. These works study bounds on the inte-
grality gap of an earthmover LP and performance guarantees of rounding procedures
applied as post-processing. While the earthmover LP corresponds to our approach
(4.7) without smoothing, the authors do not specify how to solve such LPs efficiently,
especially when the LP relates to a large-scale graphical models as in image analysis.
Moreover, the bounds derived by [1] become weak with increasing numbers of vari-
ables, which are fairly large in typical problems of image analysis. In contrast, the fo-
cus of the present paper is on a smooth geometric problem reformulation that scales

5



CHAPTER 1 INTRODUCTION

well with both the problem size and the number of labels, and performs rounding
simultaneously. If and how theoretical guarantees regarding the integrality gap and
rounding carry over to our setting, is an interesting open problem of future research.

Regarding the finite-dimensional formulation of optimal discrete transport in terms
of linear programs, the design of efficient algorithms for large-scale problems re-
quires sophisticated techniques [66]. The problems of discrete optimal transport
studied in this thesis, in connection with the local Wasserstein distances of (4.7),
have a small or moderate size (n2: number of labels squared). We apply the stan-
dard device of enhancing convexity through entropic regularization, which increases
smoothness in the dual domain. We refer to [68] and [16, Ch. 9] for basic related
work and the connection to matrix scaling algorithms. If entropic regularization is
very weak or the problem sizes are large, the related fixed point iteration suffers from
numerical instability. Dedicated methods for handling these instabilities have been
proposed [67]. Smoothing of the Wasserstein distance and Sinkhorn’s algorithm has
become popular in machine learning due to [20]. The authors of [52, 21] comprehen-
sively investigated barycenters and interpolation based on the Wasserstein distance.
Our approach to image labeling, in conjunction with the geometric approach of [8],
is novel and elaborates on [7].

Since our approach is defined on a graph and works with data on a graph, our
work may be assigned to the broad class of nonlocal methods for image analysis
on graphs, from a more general viewpoint. Recent major related work includes [12]
on the connection between the Ginzburg-Landau functional for binary regularized
segmentation and spectral clustering, and [11] on generalizing PDE-like models on
graphs to manifold-valued data. We refer to the bibliography in these works and to
the seminal papers [4] on regularized variational segmentation using Γ-convergence
and to [26, 25] on nonlocal variational image processing on graphs, that initiated
these fast evolving lines of research. However, the focus of this thesis is on discrete
graphical models and the corresponding labeling problem, in terms of any discrete
objective function of the form (1.2).

1.2.2 Parameter Estimation for Dynamical Systems
The task of optimizing parameters of a dynamical system (1.4) is a familiar one in the
communities of scientific computing and optimal control [73, 17], but may be less
known to the imaging community.

Geometric numerical integration of ordinary differential equations (ODEs) on
manifolds is a mature field as well [31]. Here we have to distinguish between the
integration of the assignment flow [81] and integration schemes for numerically

6
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solving (1.4). The task of designing the latter schemes faces the differentiate-then-
discretize vs. discretize-then-differentiate dilemma. Conditions and ways to resolve
this dilemma have been studied in the optimal control literature [28, 61]. See also
the recent survey [62] and references therein.

From a more distant viewpoint, our work ties in with research on networks from a
dynamical systems point of view, that emanated from [34] in computer science and
has also recently been promoted in mathematics [24]. The recent work [27], for ex-
ample, studied stability issues of discrete-time network dynamics using techniques
of numerical ODE integration. The authors adopted the discretize-then-differentiate
viewpoint on the parameter estimation problem and suggested symplectic numer-
ical integration in order to achieve better stability. As mentioned above, our work
contrasts in that inference is always exact during learning, unlike the more involved
architecture of [27] where learning is based on approximate inference. Furthermore,
in our case, symplectic numerical integration is a consequence of making the dia-
gram of Figure 2.2 (page 30) commute. This property qualifies our approach as a
proper (though rudimentary) method of optimal control (cf. [61]).

1.3 Outline and Contribution
The main contributions of this thesis are:

• A novel approach to MAP inference for discrete graphical models.
This approach fits well into the smooth geometric framework [8] and its key
ingredient is a smooth approximation

Eτ(µV ) = 〈θV ,µV〉+
∑

i j∈E
dθi j ,τ(µi ,µ j ), τ> 0 (1.5)

of the LP-relaxation (1.3), where dθi j ,τ denotes the smoothed Wasserstein dis-
tance between the discrete label assignment measuresµi ,µ j coupled along the
edge i j of the underlying graph. These Wasserstein distances properly take
into account the pairwise regularization parameters θi j of the labeling prob-
lem (1.2). Our approach restricts the function Eτ to the so-called assignment
manifold and iteratively determines a labeling by tightly combining geomet-
ric optimization with rounding to an integral solution in a smooth fashion.
This formulation constitutes an inner relaxation of the discrete labeling prob-
lem, i.e. throughout this process local marginalization constraints are satis-
fied. This novel inference approach is worked out in detail in Chapter 4.

7



CHAPTER 1 INTRODUCTION

• A novel approach to model parameter learning for the assignment flow.
We tackle the parameter learning problem for image labeling by focusing on
the smooth geometric approach [8] and ignore the connection to discrete
graphical models. This problem was raised in [8, Section 5 and Fig. 14], and
we present a detailed solution. The key idea is to formulate the learning prob-
lem for image labeling as a specific instance of the general parameter estima-
tion problem (1.4). Thereby, the parameters p determine the linear assign-
ment flow (1.4b) [81] whose solution is evaluated by a suitable loss function
(1.4a) at some point of time T . Since the formulation (1.4) is well-known in
the communities of scientific computing and optimal control, we can draw
on a rich literature to study and solve this problem. The output of optimizing
(1.4) are optimal parameters which determine the regularization property of
the assignment flow. By construction, the objective (1.4a) is based on given
ground truth images. In order to tackle novel images (no ground truth labeling
is given) we propose a simple predictor map that is based on the solution of
(1.4). This function takes unseen data and predicts the regularization parame-
ters for the linear assignment flow, i.e. no optimization is involved. All details
of this novel approach are worked out in detail in Chapter 5.

This thesis is organized as follows: After this outline follows an introduction of the
basic notation (Section 1.4).

In Chapter 2 we collect the relevant mathematical background material for this
thesis. We start by recalling the basic definitions, ideas and theorems from differ-
ential geometry that serve as reference for Chapter 3 (Section 2.1). Afterwards, we
continue with the introduction of probabilistic graphical models (Section 2.2). In
particular we highlight the details of the linear programming (LP) relaxation (Sec-
tion 2.2.4) and the corresponding loopy belief propagation inference algorithm (Sec-
tion 2.2.5). We end this chapter by providing the necessary background on param-
eter estimation of dynamical systems (Section 2.3). Hereby, we focus on sensitivity
analysis from a continuous perspective (Section 2.3.1) as well as on the practical per-
spective (Section 2.3.3), i.e. the numerical approximation.

Chapter 3 summarizes the basic ideas of the smooth geometric approach of [8] for
image labeling. Since this chapter provides the basis for the two subsequent chap-
ters (4 & 5) containing our main contributions, we collect the material in detail. In
particular we recall the definition of the so-called assignment manifold (Section 3.1),
and present the general framework of [65] for numerically integrating vector fields
on the assignment manifold (Section 3.2). Image labeling is performed by following

8
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the so-called assignment flow. We present the main components of this flow (Sec-
tion 3.3), followed by numerical experiments (Section 3.4). We end this chapter by a
brief overview of several extensions (Section 3.5).

In Chapter 4 we present how a given discrete graphical model can be evaluated
in the smooth geometric setting explained in Chapter 3. We start by reformulating
the LP-relaxation (1.3) onto the assignment manifold and smoothly approximate the
resulting functional (Section 4.1). The explicit expressions of the corresponding gra-
dient are provided afterwards (Sections 4.2 & 4.3). We continue with the details of
combining relaxation and rounding into a single process (Section 4.4.1) and discuss
the connections to established belief propagation (Section 4.4.2). We end this chap-
ter by discussing the results of four different types of experiments (Section 4.5).

Chapter 5 is devoted to our second main contribution, namely a novel approach
to model parameter learning for the assignment flow. We start by proposing our
problem formulation (Section 5.1), calculating the expressions of the corresponding
gradients and differentials (Section 5.2) and continuing with our optimization strat-
egy (Section 5.3). Finally, we discuss the results of two experiments that highlight the
model expressiveness of the assignment flow as well as limitations that result from
learning constant parameters (Section 5.4).

1.4 Notation
In this section we introduce the basic notation, sorted by subject area. A list of sym-
bols can be found in the nomenclature on p. 153.

Indexing and Operations. All vectors are regarded as column vectors, and x> de-
notes transposition of a vector x. We ignore transposition however when vectors are
explicitly specified by their components; e.g. we write x = (y, z) instead of the more
cumbersome x = (y>, z>)>. We set [n] = {1,2, . . . ,n} for n ∈N. Given a matrix

A =

 A1
...

Am

= (
A1 . . . An

) ∈Rm×n , (1.6)

we denote the row vectors by Ai , i ∈ [m] and the column vectors by A j , j ∈ [n],
whereas superscripts in brackets, e.g. A(k)

i , index iterative steps.

The functions exp and log apply component-wise to strictly positive vectors x ∈
Rn++, e.g. ex = (ex1 , . . . ,exn ), and similarly for strictly positive matrices. Likewise, if

9
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x, y ∈Rn++, we simply write

x · y = (x1 y1, . . . , xn yn),
x

y
=

( x1

y1
, . . . ,

xn

yn

)
, (1.7)

for the component-wise multiplication and division.

If A is a m×n matrix and B is a p ×q matrix, then the Kronecker product A⊗B is a
mp ×nq block matrix of the form:

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 . (1.8)

The canonical matrix inner product is 〈A,B〉 = tr(A>B), where tr denotes the trace
of a matrix, i.e.

tr(A>B) = ∑
i∈[m]

〈Ai ,Bi 〉 =
∑

j∈[n]
〈A j ,B j 〉 = ∑

i∈[m], j∈[n]
Ai j Bi j . (1.9)

The inner product 〈x, y〉 =∑
i∈[n] xi yi denotes the Euclidean inner product.

Graphs. An undirected graph G = (V ,E) consists of a set of vertices V and a set of
edges E . The adjacency relation i ∼ j means that vertices i and j are connected by
an undirected edge i j ∈ E , where the latter denotes the unordered pair {i , j } = i j = j i .
The graph G is turned into a directed graph by assigning an orientation to every edge
i j , which then form ordered pairs (i , j ) 6= ( j , i ). By abuse of notation we sometimes
write (i , j ) = i j in the oriented case, however, the exact meaning will be clear from
context. We only consider graphs without multiple edges between any pair of nodes
i , j ∈V . The neighborhood of vertex i is given by the set

N (i ) = { j ∈V : i ∼ j } (1.10)

of all vertices adjacent to i , and its cardinality d(i ) = |N (i )| is the degree of i .

Differentials and Jacobian. Let (M, g ) be a Riemannian manifold with metric g , and
a smooth function f : M→ R, the Riemannian gradient of f is denoted by grad f .
The differential of f is denoted by d f . More generally, for a map F : M→N between
manifolds, we write dFp [v] ∈ TF (p)N , p ∈M, v ∈ TpM, if the base point p matters.

In the Euclidean case f : Rn → R, the gradient is a column vector and denoted by
∇ f . For F : Rn →Rm , we identify the differential dF ∈Rm×n with the Jacobian matrix.

10
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If x = (x1, x2)> ∈Rn =Rn1 ×Rn2 with n = n1+n2, then the Jacobian of F (x) = F (x1, x2)
with respect to the parameter vector xi is denoted by dxi F , for i = 1,2.

Coupling measure. We set 1n = (1,1, . . . ,1)> ∈ Rn . The probability simplex ∆n = {p ∈
Rn+ : 〈1n , p〉 = 1} contains all discrete distributions on [n]. A doubly stochastic matrix
µi j ∈ Rn×n+ , also called coupling measure in this thesis in connection with discrete
optimal transport, has the property: µi j 1n ∈ ∆n and µ>

i j 1n ∈ ∆n . We denote the two
marginal distributions of µi j by µi and µ j , respectively, and the linear mapping for
extracting them by

A : Rn×n →R2n , µi j 7→Aµi j =
(
µi j 1n

µ>
i j 1n

)
=

(
µi

µ j

)
. (1.11a)

Its transpose is given by

A> : R2n →Rn×n , (νi ,ν j ) 7→A>
(
νi

ν j

)
= νi 1

>
n + 1nν

>
j . (1.11b)

The kernel (nullspace) of the linear mapping A is denoted by ker(A) and its image by
im(A).

Convex Analysis. A subset C ⊂Rn is convex if

(1−λ)x +λy ∈C , ∀x, y ∈C , ∀λ ∈ [0,1]. (1.12)

The affine hull of some set C ⊂Rn is the set of all affine combinations of its points,

aff C = {
λ1x1 +·· ·+λd xd :λ1 +·· ·+λd = 1, x1, . . . , xd ∈C

}
. (1.13)

The relative interior of a non-empty convex set C is defined by

relint(C ) = {x ∈ aff C : ∃ε> 0 such that (x +εB(0))∩aff C ⊂C }. (1.14)

Various orthogonal projections onto a convex set are generally denoted by Π and
distinguished by a corresponding subscript, likeΠC ,ΠP , · · · , etc.

The log-exponential function logexpε ∈F0 is defined as

logexpε(x) := ε log
( ∑

i∈[n]
e

xi
ε

)
. (1.15a)

11
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It uniformly approximates the function vecmax ∈F0 [59, Ex. 1.30], i.e.

lim
ε↘0

logexpε(x) = vecmax(x) = max{xi }i∈[n]. (1.15b)

We use the following basic result from convex analysis, where ∂ f (x) denotes the sub-
differential of a function f ∈F0 at x.

Theorem 1.1 (inversion rule for subgradients; [59, Prop. 11.3])
Let f ∈F0. Then

p̂ ∈ ∂ f (x̂) ⇔ x̂ ∈ ∂ f ∗(p̂) ⇔ f (x̂)+ f ∗(p̂) = 〈p̂, x̂〉. (1.16)
4

In Section 4.3.1 we apply the following classical theorem of Danskin and its extension
by Rockafellar.

Theorem 1.2 ([22, 58])
Let f (z) = maxw∈W g (z, w), where W is compact and the function g (·, w) is differ-
entiable and ∇z g (z, w) is continuously depending on (z, w). If in addition g (z, w) is
convex in z, and if z is a point such that argmaxw∈W g (z, w) = {w}, then f is differ-
entiable at z with

∇ f (z) =∇z g (z, w). (1.17)
4

12



Chapter 2
Mathematical Background
In this chapter, we collect background material that is used throughout this thesis.
First, we summarize the basic definitions and concepts of differential geometry (Sec-
tion 2.1). We continue with the introduction of probabilistic graphical models (Sec-
tion 2.2). Especially, we focus on discrete graphical models and the corresponding
inference and learning problem. This section ends with the derivation of the LP re-
laxation and a brief sketch of loopy belief propagation that is an approximated algo-
rithm for the inference task. The last topic of this chapter is the study of parameter
estimation of dynamical systems (Section 2.3). We explain the problem of analyzing
the sensitivity of dynamical systems with respect to parameter, as well as symplectic
partitioned Runge–Kutta methods that are well-suited numerical integration tech-
niques for this problem.

2.1 Elements of Differential Geometry
We briefly summarize the relevant material on differential geometry. We refer the
reader for a broad introduction to this field to the standard works [45, 46, 47] which
served as reference for this section. For a more algorithm focused line we refer the
reader to [2].

Let M be a topological space. If M is paracompact, Hausdorff, second countable
and locally homeomorphic to Rd , then we call M a topological d-manifold.

A chart on M is a pair (U ,φ), where U ⊂ M is a subset and φ : U → Rd is a
homeomorphism. The component functions (x1, . . . , xd ) of map φ, with φ(p) =
(x1(p), . . . , xd (p)), are called local coordinates of p ∈U .

A smooth atlas A is a collection of charts (Ui ,φi ) whose domains cover M, i.e.⋃
i Ui =M. In addition, the charts have to be smoothly compatible, that is for two

charts (Ui ,φi ) and (U j ,φ j ) with Ui ∩U j 6= ; the transition map φ j ◦φ−1
i is a diffeo-

morphism. A smooth atlas A on M is maximal if any chart which is smoothly com-
patible with every chart in A is already in A. We call a maximal smooth atlas A a
smooth structure on M.

13
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A smooth manifold consists of a pair (M, A), where M is a topological manifold
and A is a smooth structure on M.

For any point p ∈M, the tangent space to M at point p is a real vector space and
denoted by TpM⊂Rn . The tangent bundle TM of a smooth manifold M is defined
as

TM= ∐
p∈M

TpM, (2.1)

which is the disjoint union of the tangent spaces at all points of M.
Let M and N be smooth manifolds and φ : M → N a smooth map. Then, the

pushforward (differential) of φ at p ∈M is a linear map

dφp : TpM→ Tφ(p)N , (2.2)

and is defined by using a velocity vector

dφp [v] = d

d t
φ(γ(t ))

∣∣∣∣
t=0

, (2.3)

where γ : (−ε,ε) →M is a smooth curve with γ(0) = p, γ̇(0) = v ∈ TpM.
Suppose M and N are smooth manifolds and φ : M→N is a differentiable map.

If φ is a bijection and its inverse φ−1 : N → M is differentiable, then φ is called a
diffeomorphism. If there exists a diffeomorphism φ between smooth manifolds M
and N , then we say that M and N are diffeomorphic or simply write M∼=N .

2.1.1 Vector Fields and Integral Curves
A vector field on M is a smooth map

X : M→ TM, p 7→ Xp , (2.4)

with the property that Xp ∈ TpM. The collection of all smooth vector fields on M is
denoted by X(M).

Suppose φ : M→N is a smooth map, X a vector field on M and Y a vector field
on N such that for each point p ∈M:

dφp [Xp ] = Yφ(p). (2.5)

Then, we say that the vector fields X and Y are φ-related.
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Proposition 2.1 ([45, Proposition 8.19])
Suppose φ : M → N is a diffeomorphism between smooth manifolds M and N ,
and X be a vector field on M. Then, there exists a unique smooth vector field on N
which is φ-related to X . This unique vector field is called pushforward of X by φ and
is given by

(φ∗X )q := dφφ−1(q)
[

Xφ−1(q)
]

. (2.6)

This formula originates from the following diagram

M TM

N TN
φ

X

dφ

φ∗X

4

If X ∈X(M), an integral curve of X is a differentiable curve γ : J →M whose ve-
locity at each point is equal to the value of X at that point:

γ′(t ) = Xγ(t ), ∀t ∈ J . (2.7)

For 0 ∈ J , the point γ(0) is called initial point of γ. We also use the term trajectory of
X for the curve γ(t ).

Proposition 2.2 (Naturality of Integral Curves; [45, Proposition 9.6])
Suppose M and N are smooth manifolds and φ : M→N is a smooth map. Then
X ∈ X(M) and Y ∈ X(N ) are φ-related if and only if φ takes integral curves of X to
integral curves of Y , i.e. for each integral curve ψ of X , φ◦ψ is an integral curve of
Y . 4

2.1.2 Connections
Connections are rules for taking derivatives of vector fields in a coordinate-independent
fashion.

Let X ,Y be smooth vector fields on a smooth manifold M, and let f : M→R be a
smooth function. Then, the Lie bracket is defined by

[X ,Y ] f = X Y f −Y X f , (2.8)

and the operator [X ,Y ] is again a vector field.
An affine connection on M is a map

∇ : X(M)×X(M) →X(M), (X ,Y ) 7→ ∇X Y , (2.9)
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satisfying

(i) ∇X Y is linear over C∞(M) in X : for f1, f2 ∈C∞(M) and X1, X2 ∈X(M),

∇ f1 X1+ f2 X2 Y = f1∇X1 Y + f2∇X2 Y . (2.10)

(ii) ∇X Y is linear over R in Y : for a1, a2 ∈R and Y1,Y2 ∈X(M),

∇X (a1Y1 +a2Y2) = a1∇X Y1 +a2∇X Y2. (2.11)

(iii) ∇ satisfies the following product rule: for f ∈C∞(M),

∇X ( f Y ) = f ∇X Y + (X f )Y . (2.12)

The expression ∇X Y denotes the covariant derivative of Y in the direction X .
If an affine connection ∇ satisfies the following product rule

∇X (g (Y , Z )) = g (∇X Y , Z )+ g (Y ,∇X Z ) , (2.13)

for all vector fields X ,Y , Z , we say that it is compatible with g .
If the torsion of an affine connection ∇ vanishes, i.e.

∇X Y −∇Y X ≡ [X ,Y ], (2.14)

where [X ,Y ] denotes the Lie bracket, we say that ∇ is symmetric.
Suppose M is a smooth manifold, and γ : I →M is a smooth curve. Then, a vector

field along curve γ is a continuous map

V : I → TM such that V (t ) ∈ Tγ(t )M, ∀t ∈ I . (2.15)

A connection ∇ induces a unique operator which takes the covariant derivative
along curve γ (see [46, Theorem 4.24] for more details).

Geodesics and ExponentialMaps
If a smooth curve γ has zero acceleration, i.e.

∇γ̇γ̇≡ 0 (2.16)

then γ is called a geodesic. In order to see the dependency of γ with respect to the
chosen metric g , we rewrite (2.16) in terms of local coordinates (xi ). Then, it follows
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that γ(t ) = (
x1(t ), . . . , xn(t )

)
is a geodesic if and only if its components satisfy

ẍk (t )+ ẋi (t )ẋ j (t )Γk
i j (x(t )) = 0. (2.17)

This system of second-order ODEs is called geodesic equation. The coefficients Γk
i j

are commonly called Christoffel symbols or connection coefficients. These coeffi-
cients depend on the metric g and are given by

Γk
i j =

1

2
g kl (

∂i g j l +∂ j gi l −∂l gi j
)

, (2.18)

where gi j are called metric coefficients and g kl (with superscripts) denotes the cor-
responding inverse matrix.

The exponential map is defined by

Expp : Vp →M, v 7→ Expp (v) = γv (1), p ∈M. (2.19a)

with domain

Vp = {
v ∈ TpM : γv (t ) ∈M, t ∈ [0,1]

}
, (2.19b)

and geodesic γ with γv (0) = p and γ̇v (0) = v .

2.1.3 Riemannian Geometry
A Riemannian manifold (M, gM) is a smooth manifold M whose tangent spaces
are endowed with a smoothly varying inner product gM which is called Riemannian
metric. If the Riemannian manifold is clear from the context, we simplify notation
and write gp (u, v) = 〈u, v〉p . We will use interchangeably the notation gM

p (u, v) =
〈u, v〉Mp .

Suppose φ : M→N is a diffeomorphism between smooth manifolds M and N ,
where (N is equipped with a Riemannian metric gN ). Then, we can define a Rie-
mannian metric on M by pulling back the metric gN . This is why the metric(

φ∗gN
p

)
(·, ·) : TpM×TpM→R, (u, v) 7→

(
φ∗gN

p

)
(u, v) := gN

φ(p)

(
dφ(u),dφ(v)

)
,

(2.20)

is called the pullback metric for all u, v ∈ TpM.
An isometry is a diffeomorphism φ : (M, gM) → (N , gN ) between Riemannian

manifolds which pulls back the metric, i.e. φ∗gN = gM.
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Theorem 2.3 (Fundamental Lemma of Riemannian Geometry; [47, Theorem 5.4.])
Let (M, g ) be a Riemannian manifold. There exists a unique affine connection ∇ on
M that is compatible with g and symmetric. This connection is called Riemannian
connection or the Levi–Civita connection of g . 4

If f : M→R is a smooth function on a smooth Riemannian manifold (M, g ), then
the Riemannian gradient gradM f ∈X(M) is the vector field defined by

〈gradM f , v〉p = d fp [v], ∀v ∈ TpM, p ∈M. (2.21)

Geodesics and exponentials maps, which are constructed by using the Levi–Civita
connection, are called Riemannian geodesic and Riemannian exponential map, re-
spectively.

2.2 Probabilistic GraphicalModels
A probabilistic graphical model uses a graph G = (V ,E) to model the conditional de-
pendencies between random variables. As this representation is very flexible, these
models are used in many different disciplines. A treatment of this topic from the
variational viewpoint can be found in [74].

2.2.1 Discrete GraphicalModels
An important classical family of probabilistic models is the exponential model

p(x|θ) = exp
(〈θ,φ(x)〉−ψp (θ)

)= 1

Z (θ)
exp

(〈θ,φ(x)〉) , (2.22)

where θ are called the canonical parameters and φ(x) are known as the potential
functions or sufficient statistics. The normalizing constant Z (θ) is called partition
function and is given by

Z (θ) =
∫
X

exp〈θ,φ(x)〉. (2.23)

The functionψp (θ) is the log-partition function. As the name suggests, it is given by

ψp (θ) = log Z (θ). (2.24)

We obtain a related energy of the probability (2.22) by

E(x) = log p(x|θ) = 〈θ,φ(x)〉−ψp (θ). (2.25)
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Next, we introduce an important member of the class of models (2.22), namely the
discrete graphical model. Let the variables x = (xi )i∈[m], with m := |V |, be indexed by
the vertex set V . The edge set E models the conditional dependencies between these
variables, i.e. if the edge i j ∈ E exists, the variables xi and x j explicitly dependent on
each other. In discrete graphical models, the variables take values from the discrete
set

xi ∈X = {`1, . . . ,`n}, (2.26)

which we call labels or prototypes. A global assignment of these variables is denoted
by

x ∈Xm = ∏
i∈[m]

Xi , (2.27)

with Xi given by (2.26). In this setting, we associate with the joint probability p(x|θ)
the energy function

p(x|θ) = 1

Z (θ)
exp(−E(x)), E(x) = ∑

i∈V
θi (xi )+ ∑

i j∈E
θi j (xi , x j ), (2.28)

where the potentials θ are scalar functions consisting of unary potentials

θi : X →R, xi 7→ θi (xi ), (2.29a)

and pairwise potentials

θi j : X ×X →R, (xi , x j ) 7→ θi j (xi , x j ). (2.29b)

The potentials assign a scalar cost to the chosen label xi ∈ X at node i ∈ V , and to
the edge i j ∈ E with chosen label xi , x j ∈X , respectively. We call the values of θ the
model parameters of p(x|θ).

2.2.2 Inference

Suppose the model parameters θ of a discrete graphical model p(x|θ) are given.
Then, the term inference corresponds to the following two problems:
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1. Marginalization: We wish to compute the marginal distribution for some sub-
set A⊂V , i.e. we are interested in

p(xA|θ) = ∑
x∈XV\A

p(x|θ), (2.30)

where A defines a subset of variables xA .

2. Maximum a posteriori (MAP) inference: In order to find the most probable
configuration of p(x|θ) we consider the problem

x∗ = argmax
x∈Xm

p(x|θ). (2.31a)

Maximizing the probability p(x|θ) corresponds to minimizing the associated
discrete energy

x∗ = argmin
x∈Xm

E(x), E(x) = ∑
i∈V

θi (xi )+ ∑
i j∈E

θi j (xi , x j ). (2.31b)

Since for given parameters θ the log-partition function ψp (θ) is constant, we
dropped the term in (2.31b).

The difficulty of these problems highly depends on the underlying graph structure
G = (V ,E). In general, the pairwise interactions of the discrete energy function makes
(2.31b) a combinatorially hard task.

Remark 2.1 For discrete graphical models the integral in the partition function (2.23)
becomes a sum. Unfortunately, the combinatorially large number of summands
makes the exact evaluation of the partition function Z (θ) and log-partition function
ψ(θ) intractable. If the underlying graph is acyclic, the exact evaluation of Z (θ) and
ψ(θ) is tractable. 4

2.2.3 Learning
The counter problem to inference is learning. The learning task deals with the setting
that the empirical mean parameters

µ̂ := 1

n

n∑
i=1

φ(xi ) (2.32)
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are given, and we wish to learn the model parameters θ. In other words, µ̂ corre-
sponds to given example data and we wish to learn the parameters of our model in
such a way that the observed data (2.32) is well represented by our model.

More specifically, the corresponding log-likelihood of (2.22) reads

1

n
log

n∏
i=1

p(xi |θ) = 1

n

n∑
i=1

(〈
θ,φ(xi )

〉−ψp (θ)
) (2.32)= 〈θ, µ̂〉−ψp (θ). (2.33)

Then, the model parameter learning problem consists of maximizing (2.33) with re-
spect to the model parameters θ, i.e.

θ∗ = argmax
θ∈Θ

{〈θ, µ̂〉−ψp (θ)
}

, (2.34)

whereΘ denotes the parameter space.

Remark 2.2 (Inference effects learning) The learning problem (2.34) is related to
the MAP inference problem (2.31a), but with a crucial difference: the log-partition
function ψp (θ) has to be evaluated. In view of Remark 2.1, this makes learning a
difficult problem for general graphs. In addition to this, a subroutine of solving the
learning problem is inference. If the underlying inference problem can not be solved
exactly, but only approximatively, the learning process is definitely effected. 4

2.2.4 Linear Programming Relaxation
In this thesis we focus on the MAP inference problem (2.31b). Since this problem is
a combinatorially hard problem, a major class of algorithms is based on the linear
programming (LP) relaxation [78]. This relaxation technique consists of two steps:
The first step is to reformulate (2.31b) as an integer linear program, and the second
step is to replace the integer constraints with linear ones. Thus, the NP-hard problem
(2.31b) is transformed into a solvable linear program.

To make these steps in detail, we introduce additional notation needed in subse-
quent sections. First, we encode the values of the discrete objective function (2.31b)
by defining local model parameter vectors and matrices

θi := (
θi (`k )

)
k∈[n] ∈Rn , θi j := (

θi j (`k ,`r )
)

k,r∈[n] ∈Rn×n , (2.35)

with `k ,`r ∈X , and where the indices are given by the vertices i ∈V and edges i j ∈ E
of the underlying graph G = (V ,E). Likewise, we assemble all these local terms into
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the vectors

θ := (θV ,θE ), where θV := (θi )i∈V , and θE := (θi j )i j∈E , (2.36)

where we interchangeably regard θi j ∈ Rn2
either as local vector or as local matrix

θi j ∈Rn×n , depending on the context. Next we define local indicator vectors

µi := (
µi (`k )

)
k∈[n] ∈ {0,1}n , µi j := (

µi j (`k ,`r )
)

k,r∈[n] ∈ {0,1}n×n , (2.37)

with `k ,`r ∈X , and indexed in the same way as (2.35) and assembled into the vectors

µ := (µV ,µE ), where µV := (µi )i∈V , and µE := (µi j )i j∈E . (2.38)

To ensure that µ consistently represents valid labelings, the variables have to satisfy
the so-called marginalization constraints∑

xi∈X
µi (xi ) = 1, ∀i ∈V , (2.39a)∑

x j∈X
µi j (xi , x j ) =µi , ∀i j ∈ E ,∀xi ∈X , (2.39b)∑

xi∈X
µi j (xi , x j ) =µ j , ∀i j ∈ E ,∀x j ∈X . (2.39c)

These constraints define with the integer constraints (2.37) the marginal polytope

MG := conv
{
µ : µ satisfies (2.37) and (2.39)

}
. (2.40)

The combinatorial optimization problem (2.31b) is now in the form of an integer
linear program: minµ∈MG 〈θ,µ〉.

As mentioned above, the LP relaxation consists of replacing the integrality con-
straints (2.37) by the convex polyhedral sets

µi ∈∆n , µi j ∈Π(µi ,µ j ), i ∈V , i j ∈ E , (2.41a)

Π(µi ,µ j ) := {
µi j ∈Rn×n

+ : µi j 1=µi , µ>
i j 1=µ j , µi ,µ j ∈∆n

}
. (2.41b)

The resulting relaxation of problem (2.31b) reads

min
µ∈LG

〈θ,µ〉 = min
µ∈LG

〈θV ,µV〉+〈θE ,µE 〉, (2.42)
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where the so-called local polytope LG is the set of all vectors µ of the form (2.38) with
components ranging over the sets specified by (2.41). The term “local” refers to the
local marginalization constraints (2.41b).

Remark 2.3 The marginal polytope MG ⊆LG is a subset of the local polytope. It can
be shown that if the underlying graph G is acyclic, the local polytope LG is identical
to the marginal polytope MG . We refer to [50] for background and details. 4

2.2.5 Loopy Belief Propagation
In this section we briefly sketch belief propagation (BP) and the origin of correspond-
ing messages. For a detailed derivation of BP we refer the reader to Appendix B and
for background and more details we refer to [80, 74]. A study of inference techniques
for solving the discrete minimization problem (2.31b) can be found in [39].

Starting point is the primal linear program (LP) (2.42) written in the form

min
µ∈LG

〈θ,µ〉 = min
µ

〈θ,µ〉 subject to Aµ= b, µ≥ 0, (2.43)

where the constraints represent the feasible set LG which is explicitly given by the
local marginalization constraints (2.39). The corresponding dual LP reads

max
ν

〈b,ν〉, A>ν≤ θ, (2.44)

with dual (multiplier) variables

ν= (νV ,νE ) = (. . . ,νi , . . . ,νi j (xi ), . . . ,νi j (x j ), . . . ), i ∈V , i j ∈ E (2.45)

corresponding to the affine primal constraints. In order to obtain a condition that
relates optimal vectors µ and ν without subdifferentials that are caused by the non-
smoothness of these LPs, we consider the smoothed primal problem

min
µ∈LG

〈θ,µ〉−εH(µ), ε> 0, H(µ) = ∑
i j∈E

H(µi j )− ∑
i∈V

(
d(i )−1

)
H(µi ) (2.46)

with smoothing parameter ε> 0. The function H(µ) denotes the Bethe entropy with
degree d(i ) = |N (i )| of vertex i and with local entropy functions

H(µi ) =− ∑
xi∈X

µi (xi ) logµi (xi ), H(µi j ) =− ∑
xi ,x j∈X

µi j (xi , x j ) logµi j (xi , x j ). (2.47)
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Setting temporarily ε = 1, and evaluating the optimality condition ∇µL(µ,ν) = 0
based on the corresponding Lagrangian

L(µ,ν) = 〈θ,µ〉−H(µ)+〈ν, Aµ−b〉 (2.48)

yields the relations connecting µ and ν,

µi (xi ) = eνi e−θi (xi )
∏

j∈N (i )
eνi j (xi ), xi ∈X , i ∈V , (2.49a)

µi j (xi , x j ) = eνi+ν j e−θi j (xi ,x j )−θi (xi )−θ j (x j )
∏

k∈N (i )\{ j }
eνi k (xi )

∏
k∈N ( j )\{i }

eν j k (x j ),

(2.49b)

for xi , x j ∈ X , i j ∈ E . The terms eνi ,eνi+ν j normalize the expressions on the right-
hand side whereas the so-called messages eνi j (xi ) enforce the local marginalization
constraints µi j ∈Π(µi ,µ j ). Invoking these latter constraints enables us to eliminate
the left-hand side of (2.49) to obtain after some algebra (cf. Appendix B) the fixed
point equations

eνi j (xi ) = eν j
∑

x j∈X

(
e−θi j (xi ,x j )−θ j (x j )

∏
k∈N ( j )\{i }

eν j k (x j )
)
, i j ∈ E , xi ∈X , (2.50)

solely in terms of the dual variables, commonly called sum-product algorithm or
loopy belief propagation by message passing. Repeating this derivation, after weight-
ing the entropy function H(µ) of (2.48) by ε as in (2.46), and taking the limit limε↘0,
yields relation (2.50) with the sum replaced by the max operation. This is a con-
sequence of taking the log of both sides and relation (1.15b) of the log-exponential
function. This fixed point iteration is called max-product algorithm in the literature.

2.3 Parameter Estimation of Dynamical Systems

Throughout this section we provide the necessary background on the optimization
of the following parameter estimation problem

min
p∈P

C
(
x(T )

)
(2.51a)

s.t. ẋ(t ) = f (x(t ), p, t ), t ∈ [0,T ], (2.51b)

x(0) = x0, (2.51c)
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where C : Rnx → R is a smooth objective function. The constraints are given by a
general initial value problem (IVP), which consist of a system of ordinary differential
equations (ODEs) (2.51b) that is parametrized by a vector p ∈P ⊂Rnp , and an initial
value x0 ∈ Rnx (2.51c). To ensure existence, uniqueness and continuous differentia-
bility of the solution trajectory x(t ) on the whole time horizon [0,T ], we assume that
f (·, p, ·) of (2.51c) is Lipschitz continuous on Rnx × [0,T ], for any p.

By assuming the initial value x0 and the time horizon [0,T ] to be fixed, the objec-
tive function (2.51a) effectively is a function of the parameter p, i.e.

Φ : Rnp →R, Φ(p) := C(x(T, p)). (2.52)

In order to minimize (2.52) with a gradient based method, we have to compute the
gradient

∇pΦ(p) = dp x(T, p)>∇xC(x(T, p)). (2.53)

The term dp x(T, p) is called sensitivity, hence it measures the sensitivity of the the
solution trajectory x(t ) at time T with respect to changes in the parameter p. Two ba-
sic approaches for determining (2.53) are stated in Section 2.3.1, and we briefly high-
light why using one of them, the adjoint approach, is advantageous for computing
sensitivities. In Section 2.3.2, we recall symplectic Runge-Kutta methods and condi-
tions for preserving quadratic invariants. The latter property relates to the derivation
of a class of numerical methods such that evaluating (2.53), which derives from the
time-continuous problem (2.51), is identical to first discretizing (2.51) followed by
computing the corresponding derived expression (2.53). In Section 2.3.4 we derive
two specific instances of the general numerical scheme in detail.

2.3.1 Sensitivity Analysis
This section shows how the sensitivity dp x(T, p) in (2.53) can be determined by solv-
ing one of the two initial value problems defined below: the variational system and
the adjoint system.

Theorem 2.4 (Variational System; [32, Chapter I.14, Theorem 14.1])
Suppose the derivatives dx f and dp f exist and are continuous in the neighborhood
of the solution x(t ) for t ∈ [0,T ]. Then the sensitivity with respect to the parameters

dp x(T, p) =: δ(T ) (2.54)
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exists, is continuous and satisfies the variational system

δ̇(t ) = dx f (x(t ), p, t )δ(t )+dp f (x(t ), p, t ), t ∈ [0,T ], (2.55a)

δ(0) = 0 ∈Rnx×np , (2.55b)

with δ(t ) ∈ Rnx×np . If the initial value x(0) of (2.51c) depends on the parameters p,
the initial value (2.55b) has to be adjusted as δ(0) = dp x(0).

Proof See Appendix A.1. �

For the computation of the variational system (2.55) the solution x(t ) is required.
The variational system (2.55) is a matrix-valued system of dimension nx ×np , and
therefore the size of the system grows with the number of parameters np . Neverthe-
less, for small np the variational system can simultaneously be integrated numeri-
cally with system (2.51b).

Theorem 2.5 (Adjoint System)
Suppose the derivatives dx f and dp f exist and are continuous in the neighborhood
of the solution x(t ) for t ∈ [0,T ]. Then the sensitivity with respect to the parameters
is given by

dp x(T, p)> =
∫ T

0
dp f (x(t ), p, t )>λ(t )d t , (2.56)

where λ(t ) ∈Rnx×nx solves the adjoint system

λ̇(t ) =−dx f (x(t ), p, t )>λ(t ), t ∈ [0,T ], (2.57a)

λ(T ) = I ∈Rnx×nx . (2.57b)

Proof This proof is elaborated on in a broader context in Section 2.3.3. �

Similar to the variational system of Theorem 2.4, solving the adjoint system (2.57)
requires the solution x(t ). The adjoint system is matrix-valued of dimension nx ×nx ,
in contrast to the variational system which is of dimension nx ×np . Thus, if np À
nx , as will be the case in our scenario, it is more efficient to solve (2.57) instead of
(2.55). Another major difference is that the adjoint system is defined backwards in
time, starting from the endpoint T . This has important computational advantages
for our setting. In view of the required gradient (2.53), we are not interested in the
full sensitivity but rather in the derivative along the direction η := ∇xC(x(T, p)), i.e.
dp x(T, p)>η. This can be achieved by exploiting the structure of the adjoint system,
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by multiplying (2.57) from the right by η and settingλ(t ) :=λ(t )η. The resulting IVP is
again an adjoint system, no longer being matrix-valued but vector-valued λ(t ) ∈Rnx

with λ(T ) = η ∈ Rnx . Therefore, we consider the latter case and denote λ(t ) again by
λ(t ), which is vector-valued.

Remark 2.4 As a consequence, we will focus on the adjoint system (2.57) in the re-
mainder of this section. In particular, (2.56) will be used to estimate parameters p
by solving (2.51) using a gradient descent flow. This requires to solve the adjoint sys-
tem numerically. However, a viable alternative to this differentiate-then-discretize
approach is to reverse this order, that is to discretize problem (2.51) first, and then to
derive a corresponding time-discrete adjoint system (differentiate). It turns out that
both ways are equivalent if a proper class of numerical integration scheme is chosen
for discretizing the system in time. This will be shown in Section 2.3.3 after collecting
required background material in Section 2.3.2. 4

2.3.2 Symplectic Partitioned Runge–KuttaMethods
In this section we recall basic concepts of numerical integration from [31, 62] in order
to prepare Section 2.3.3. Symplectic schemes are typically applied to Hamiltonian
systems in order to conserve certain quantities, often with a physical background.
The pseudo-Hamiltonian defined below by (2.68) will play a similar role, albeit there
is no physical background for our concrete scenario to be studied in subsequent
sections.

A general s-stage Runge–Kutta (RK) method with s ∈N is given by [30, Ch. II]

xn+1 = xn +hn

s∑
i=1

bi kn,i , hn = tn+1 − tn , (2.58a)

kn,i = f (Xn,i , p, tn + ci hn), (2.58b)

Xn,i = xn +hn

s∑
j=1

ai j kn, j . (2.58c)

The coefficients ai j ,bi ,ci ∈R can be arranged in a so-called Butcher tableau (Fig. 2.1),
with entries ai j defining the Runge–Kutta matrix A.
Suppose the Runge–Kutta matrix A is lower-triangular (see Fig. 2.1, RIGHT), i.e.

ai j = 0 for j ≥ i , (2.59)

then the resulting RK schemes is called explicit, since (2.58b) can be evaluated ex-
plicitly. In contrast, if A is not lower triangular, (2.58b) can not be solved explicitly
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c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass

b1 b2 . . . bs

=
c A

bT
,

c1

c2 a21

c3 a31 a32
...

...
...

. . .

cs as1 as2 . . . ass−1

b1 b2 . . . bs−1 bs

Figure 2.1: Butcher tableau of a Runge–Kutta method. LEFT: Tableau of a general
s-stage RK method. RIGHT: Tableau of an explicit s-stage RK method.

as a system of algebraic equations has to be solved. Therefore, these methods are
called implicit RK methods. They are well-suited for the numerical integration of
stiff ODEs, but are also significantly more complex than explicit ones. For more de-
tails on these methods we refer the reader to [30, Ch. II.7] and for a thorough treat-
ment of stiff problems we refer to [29, Ch. IV]. The following theorem specifies a
condition to the step-size h under which a solution of the equations (2.58b) exists.

Theorem 2.6 (Existence of a Numerical Solution; [30, Ch. II, Theorem 7.2])
For any p ∈Rnp let f (·, p, ·) of (2.51c) be continuous and satisfy a Lipschitz condition
on Rnx × [0,T ] with constant L, independent of p. If

h < 1

L maxi=1,...,s
∑s

j=1 |ai j |
, (2.60)

then there exists a unique solution of (2.58), which can be obtained by iteration. If
f (x, p, t ) is q times differentiable, the functions ki (as functions of h) are also in C q .

Proof A detailed proof can be found in [30, Chapter II, Theorem 7.2]. �

Suppose a given system (2.51b) is partitioned into two parts with x = (q>, p>)>,
f = ( f >

1 , f >
2 )> and

q̇ = f1(q, p, t ), (2.61a)

ṗ = f2(q, p, t ). (2.61b)

Then we can integrate this system by using two different sets of coefficients

ai j ,bi ,ci ∈R for (2.61a), ai j ,bi ,c i ∈R for (2.61b). (2.62)
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These methods are commonly called partitioned Runge–Kutta methods. The theo-
rems 2.7 and 2.8 state conditions under which those methods preserve certain quan-
tities that should be invariant under the flow of the given system. In this sense such
RK schemes are called symplectic.

Theorem 2.7 (Symplectic Runge–Kutta Method; [31, Ch. VI, Theorems 7.6 & 7.10])
Assume that system (2.51b) has a quadratic invariant I , i.e. I (·, ·) is a real-valued bi-
linear mapping such that (d/d t )I (x(t ), x(t )) = 0, for each t and x0. If the coefficients
of a Runge–Kutta method (2.58) satisfy

bi ai j +b j a j i −bi b j = 0, (2.63)

then the value I (xn , xn) does not depend on n. 4

Theorem 2.8 (Symplectic Partitioned RK Method; [62, Theorems 2.4 and 2.6])
Assume that S(·, ·) is a real-valued bilinear mapping such that (d/d t )S(q(t ), p(t )) = 0
for each t and x0 of the solution x(t ) = [q(t )>, p(t )>]> of (2.61). If the coefficients of
the partitioned Runge–Kutta method (2.62) satisfy

bi ai j −bi b j +b j a j i = 0, bi = bi , c i = ci , (2.64)

then the value S(qn , pn) does not depend on n. 4

Remark 2.5 Assume the first set of Runge–Kutta coefficients are given by ai j ,bi ,ci

with indices i , j ∈ [s] and are used for the first n-variables (2.61a). Furthermore, let
bi 6= 0 for all stages i ∈ [s]. Then in view of condition (2.64) we can construct a sym-
plectic PRK method by choosing

ai j := b j −b j a j i /bi , bi := bi , c i := ci , (2.65)

as coefficients for the second n-variables (2.61b). This construction results in an
overall symplectic PRK method of the partitioned system (2.61). 4

2.3.3 Computing Adjoint Sensitivities
In this section we come back to Remark 2.4 about two basic approaches for comput-
ing the adjoint sensitivity (2.53), namely the differentiate-then-discretize approach
and the discretize-then-differentiate approach. Figure 2.2 illustrates both approaches
by paths colored with blue and violet, respectively. We work out the details of each
path in this section. Thereby, our main objective is to make this diagram commuta-
tive by adopting a class of numerical schemes as outlined in the preceding section.
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dynamical system adjoint system

discretization numerical sensitivity

differentiate

discretize discretize

differentiate

Figure 2.2: Computing adjoint sensitivities. By adopting a class of Runge–Kutta
methods, we show that the diagram commutes, i.e. identical results are obtained ei-
ther if the continuous problem is differentiated first and than discretized (blue path),
or the other way around (violet path).

In order to simplify notation, we drop the dependency of x(t ) on the parameter p
and just write x(t ). The following theorem details the blue path of Figure 2.2.

Theorem 2.9 (Adjoint Sensitivity: Differentiate-then-Discretize)
The gradient (2.53) of objective function (2.52) with respect to the parameter p is
given by

∇Φ(p) =
∫ T

0
dp f (x(t ), p, t )>λ(t )d t , (2.66)

where x(t ),λ(t ) solve the two-point boundary value problem (BVP)

ẋ(t ) = f (x(t ), p, t ), x(0) = x0, (2.67a)

λ̇(t ) =−dx f (x(t ), p, t )>λ(t ), λ(T ) =∇C(x(T )). (2.67b)

In terms of the pseudo-Hamiltonian

H(x,λ, p, t ) = 〈 f (x, p, t ),λ〉, (2.68)

the system has the following form

ẋ(t ) = dλH(x,λ, p, t ), x(0) = x0, (2.69a)

λ̇(t ) =−dx H(x,λ, p, t ), λ(T ) =∇C(x(T )). (2.69b)

Proof See Appendix A.1. �
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Remark 2.6 The presence of the pseudo-Hamiltonian (2.68) suggests to use either
a symplectic RK method or a symplectic PRK method to integrate the BVP (2.67). In
view of Remark 2.5, we can use a general RK method with coefficients ai j ,bi ,ci for

i , j ∈ [s] for the first variables (2.67a), and another RK method with ai j ,bi ,c i for i , j ∈
[s] satisfying (2.65) for the second variables (2.67b). Again, this construction results
in an overall symplectic PRK method of the BVP (2.67). 4

Now we consider the alternative violet path of Figure 2.2. The application of a RK
method with step-sizes hn = tn+1 − tn > 0 to problem (2.51) results in the nonlinear
optimization problem

min
p∈P

C
(
xN (p)

)
(2.70a)

s.t. xn+1 = xn +hn

s∑
i=1

bi kn,i , n = 0, . . . , N −1, x0 = x(0), (2.70b)

kn,i = f (Xn,i , p, tn + ci hn), i ∈ [s], (2.70c)

Xn,i = xn +hn

s∑
j=1

ai j kn, j , i ∈ [s]. (2.70d)

Next, we differentiate this problem and state the result in the following theorem.

Theorem 2.10 (Adjoint Sensitivity: Discretize-then-Differentiate Approach)
Suppose the step-size hn satisfies condition (2.60). Then, the gradient of the objec-
tive function Φ(p) = C(xN (p)) from (2.70) with respect to parameter p is given by

∇Φ(p) =
N−1∑
n=0

hn

s∑
i=1

bi
(
dp f (Xn,i , p, tn + c i hn)

)>
Λn,i , (2.71)

where the discrete adjoint variables are given by

λn+1 =λn +hn

s∑
i=1

bi`n,i , hn = tn+1 − tn , n = 0, . . . , N −1, (2.72a)

`n,i =−dx f (Xn,i , p, tn + c i hn)>Λn,i , i ∈ [s] (2.72b)

Λn,i =λn +hn

s∑
j=1

ai j`n, j , i ∈ [s], (2.72c)

with initial value λN =∇C(xN ) and the internal stages Xn,i are given by (2.70d). This
scheme is a general Runge–Kutta method (2.58a)-(2.58c) applied to the adjoint sys-
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tem (2.67b) with bi 6= 0, i = 1, . . . , s, and coefficients

ai j = b j −
a j i b j

bi
, bi = bi , c i = ci , for i , j = 1, . . . , s. (2.73)

Proof An outline of the proof can be found in [62, Theorem 3.6]. Following the sug-
gested outline, we provide a detailed proof in Appendix A.1. �

The proof of this theorem is based on the following lemma, which is a slightly dif-
ferent version of Lemma 3.5 in [62]. The strategy is to state the Lagrangian of the
nonlinear problem (2.70) and derive all formulas of Theorem 2.10 by a straightfor-
ward application of the lemma. Again, for a detailed proof we refer the reader to
Appendix A.1.

Lemma 2.11 (cf. [62, Lemma 3.5])
Suppose the mappingφ : Rnp×d ′ →Rd ′

is such that the Jacobian matrix dγφ is invert-

ible at a point (p0,γ0) ∈ Rnp ×Rd ′
, that is in the neighborhood of p0, the equation

φ(p,γ) = 0 defines γ as a function of p. For some given function C : Rnp×d ′ → R con-
sider the induced function of the formΦ : Rnp →R, defined byΦ(p) := C(p,γ(p)). We
introduce the Lagrangian

L(p,γ,λ) = C(p,γ)+〈φ(p,γ),λ〉. (2.74)

Then the Euclidean gradient ofΦwith respect to p at p0 is given by

∇Φ(p0) =∇pL(p0,γ0,λ0), (2.75)

where the vectors γ0 = γ(p0) ∈Rd ′
and λ0 ∈Rd ′

are uniquely determined by

0 =∇λL(p0,γ0,λ0) =φ(p0,γ0), (2.76a)

0 =∇γL(p0,γ0,λ0) ⇐⇒ ∇γC(p0,γ0) =−dγφ(p0,γ0)>λ0. (2.76b)

Proof See Appendix A.1. �

Remark 2.7 Comparing the statements of Theorem 2.9 and Theorem 2.10, we see
that the formula of the discrete sensitivity (2.71) is an approximation of the integral
(2.66) with quadrature weights bi . Furthermore, we observe that the coefficients of
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the constructed PRK method (2.65) coincides with the derived coefficients (2.73).
Thus, by restricting the class of numerical schemes to symplectic PRK methods sat-
isfying (2.64), the approaches due to the Theorem 2.9 (and Remark 2.6) and Theo-
rem 2.10 are mathematically identical, and the diagram depicted by Figure 2.2 com-
mutes. 4

2.3.4 Adjoint Sensitivity: Two Specific Numerical Schemes
In this section we complement and illustrate the general results of the preceding
section by specifying two numerical schemes in detail.

Explicit Eulermethod
First, we consider the explicit Euler method [32] for the forward integration of the
dynamics (2.67a). The straightforward use of (2.65) leads to another set of Runge–
Kutta coefficients for integrating the adjoint system (2.67b). In combination these
forward and backward coefficients form an overall symplectic partitioned Runge–
Kutta method and are given by Table 2.1.

c1 a11

b1
=

0
1

c1 a11

b1
=

0 1
1

forward coefficients backward coefficients

Table 2.1: Symplectic PRK coefficients induced by the explicit Euler method.

We derive concrete formulas for the integration of the adjoint system by substitut-
ing the backward coefficients a11,b1 and c1 from Table 2.1 into (2.72), which gives

λn+1 =λn +hn`n,1 (2.77a)

`n,1 =−∂x f (Xn,1, tn)>Λn,1 (2.77b)

Λn,1 =λn +hn`n,1. (2.77c)

Since (2.77c) coincides with (2.77a), we can plug (2.77b) into (2.77a) and rewrite the
overall schemes (2.77) by traversing from n + 1 to n. Then the resulting scheme is
given by

λn =λn+1 +hndx f (Xn,1, tn)>λn+1, (2.78)
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which is an explicit method traversing backwards from n +1 to n. Since b1 = 1 and
s = 1 (number of stages), the formula of the discrete gradient (2.71) reads

∇Φ(p) =
N−1∑
n=0

hndp f (Xn,1, tn)>λn+1. (2.79)

Heun’smethod
Now, we integrate the dynamics (2.67a) with Heun’s method [32]. Again, the straight-
forward use of (2.65) leads to another Runge–Kutta method for integrating the ad-
joint system (2.67b). Both forward and backward coefficients of the overall symplec-
tic partitioned Runge–Kutta method are given by Table 2.2. Although the butcher
tableau of the backward coefficients (see Table 2.2, right matrix) is completely dense,
the final update formulas are explicit, as we show below.

c1 a11 a12

c2 a21 a22

b1 b2

=
0
1 1

1/2 1/2

c1 a11 a12

c2 a21 a22

b1 b2

=
0 1/2 -1/2
1 1/2 1/2

1/2 1/2

forward coefficients backward coefficients

Table 2.2: Symplectic PRK coefficients induced by Heun’s method.

Again, we derive the concrete formulas of the PRK method by substituting the
backward coefficients from Table 2.2 into (2.72)

λn+1 =λn +hn
(1

2`n,1 + 1
2`n,2

)
(2.80a)

`n,1 =−dx f (Xn,1, tn)>Λn,1 (2.80b)

`n,2 =−dx f (Xn,2, tn +hn)>Λn,2 (2.80c)

Λn,1 =λn +hn
(1

2`n,1 − 1
2`n,2

)
(2.80d)

Λn,2 =λn +hn
(1

2`n,1 + 1
2`n,2

)
. (2.80e)

Note, that (2.80e) coincides with (2.80a), which implies the equations

λn+1 =Λn,2 and `n,2 =−dx f (Xn,2, tn +hn)>λn+1. (2.81)

Using (2.81), we reformulate (2.80d)

Λn,1 = λn +hn
(1

2`n,1 − 1
2`n,2

)=λn +hn
(1

2`n,1 − 1
2`n,2

)+ (hn`n,2 −hn`n,2)
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= λn +hn
(1

2`n,1 + 1
2`n,2

)−hn`n,2
(2.80a)= λn+1 −hn`n,2

(2.81)= λn+1 +hndx f (Xn,2, tn +hn)>λn+1. (2.82a)

Formula (2.82a) is an explicit Euler step traversing backwards from n +1 to n. Thus,
we can rewrite the overall scheme (2.80) as

λ̃n =λn+1 +hndx f (Xn,2, tn +hn)>λn+1 (2.83a)

λn =λn+1 + hn

2

(
dx f (Xn,1, tn)>λ̃n +dx f (Xn,2, tn +hn)>λn+1

)
, (2.83b)

which is again an explicit method traversing backwards from n +1 to n. By plugging
the coefficients b1 = b2 = 1 and s = 2 (number of stages) into (2.71) we obtain the
formula of the discrete gradient

∇pΦ(p) =
N−1∑
n=0

hn

2

(
dp f (Xn,1, tn)>λ̃n +dp f (Xn,2, tn +hn)>λn+1

)
. (2.84)
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Chapter 3
Image Labeling by Assignment
In this chapter we summarize the work of [8] which tackles the image labeling prob-
lem by a smooth geometric approach. Since this approach forms the basis of Chap-
ter 4 & 5, we present the ideas and concepts in detail. We start by introducing the
main mathematical object, the so-called assignment manifold (Section 3.1), and ex-
plain afterwards how a given flow on this manifold can be transformed onto the tan-
gent space (Section 3.2). The image labeling task is performed by following the so-
called assignment flow, which is a smooth flow evolving on the assignment manifold.
We present the main components of this flow (Section 3.3), followed by numerical
experiments (Section 3.4). We end this chapter by a brief overview of several exten-
sions (Section 3.5). For summarizing recent work based on the assignment flow and
a discussion of further aspects we refer to [69] .

The work [8] was primarily introduced to perform image labeling, but it is not lim-
ited to that task. More precisely, all objects and components are defined locally, i.e.
in terms of the local graph structure G. Therefore, the approach is directly applicable
to arbitrary graph structures G = (V ,E) without further modifications.

3.1 TheAssignmentManifold
In this section we introduce the main mathematical object of this thesis: the so-
called assignment manifold that consists of smaller building blocks, namely the rel-
ative interior of the probability simplex. We summarize without proofs the relevant
material on the geometry of the probability simplex (Section 3.1.1) and continue af-
terwards with the definition of the assignment manifold (Section 3.1.2). All proofs of
Section 3.1.1 can be found in the respective appendix of [8].

3.1.1 Local Object: Relative Interior of the Probability Simplex
The image labeling task consists of assigning to each node i ∈V one of n predefined
labels X . By taking a probabilistic view of this assignment we model the decision for
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each node i ∈V as a point on the relative interior of the probability simplex

Sn := relint(∆n) = {p ∈∆n : pi > 0 for i = 1, . . . ,n} (3.1)

with constant tangent space

TpSn = {v ∈Rn : 〈v,1n〉 = 0} =: Tn ⊂Rn , p ∈Sn . (3.2)

Since 〈v,1n〉 = 0 for all v ∈ Tn , there is an orthogonal decomposition Rn = Tn ⊕R1n .
The orthogonal projection onto Tn is given by

ΠTn : Rn → Tn , x 7→ΠTn (x) = x − 1

n
〈1n , x〉1n =

(
I − 1

n
1n1

>
n

)
x. (3.3)

In this setting each vertex j ∈ [n] of Sn corresponds to the unique decision of one
specific label x j ∈X , j ∈ [n]. The barycenter of Sn is given by the uniform distribu-
tion 1

n 1n ∈Sn and is denoted by 1Sn := 1
n 1n .

By endowing the probability space Sn at each p ∈Sn with the Fisher–Rao metric

gSn
p : Tn ×Tn →R, (u, v) 7→ gSn

p (u, v) := 〈 up
p

,
vp
p
〉, ∀u, v ∈ Tn , (3.4)

it becomes a differentiable Riemannian manifold (Sn , gSn ).

In order to get a sense for the induced geometry of Sn , we consider the scaled
sphere N = 2Sn−1 which can be regarded as a manifold with the Riemannian metric
induced by the Euclidean inner product of Rn . The manifolds Sn and N are diffeo-
morphic with the following map

ψ : Sn →N , p 7→ s =ψ(p) := 2
p

p. (3.5)

We call the diffeomorphism (3.5) sphere-mapψ. This map is illustrated in Fig. 3.1 for
the 2-dimensional simplex S2.

For (Sn , gSn ) and (N , gN ), where gN denotes the Riemannian metric induced by
the standard Euclidean inner product of Rn , it can be shown that the sphere-map ψ
(3.5) is also an isometry (see [8, Appendix 2]). That is, the mapψ preserves lengths of
tangent vectors and curves. Furthermore, by recalling the definition of an isometry,
we can understand the Fisher–Rao metric (3.4) as the induced pullback metric of the
Euclidean inner product, i.e. ψ∗gN = gSn .

The Riemannian gradient of a smooth function f : Sn → R is defined as follows.
Let f : Sn → R be a smooth function on Sn . The Riemannian gradient of f at p ∈ Sn
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Figure 3.1: Sphere map for the 2-dimensional simplex S2 (cf. [8, Fig. 2]). The trian-
gle encloses the image ψ(S2) ⊂ 2S2 of the probability simplex S2 under the sphere
map (3.5).

is given by

gradSn
f (p) = p

(∇ f (p)−〈p,∇ f (p)〉1) . (3.6)

By using the so-called replicator operator, given by the linear map

Rp : Rn → Tn , x 7→ Rp [x] := (
Diag(p)−pp>)

x, p ∈Sn , (3.7)

the Riemannian gradient (3.6) can be written as

gradSn
f (p) = Rp

[∇ f (p)
]

. (3.8)

Remark 3.1 (Domain of Rp ) The replicator operator Rp is turned into an isomor-
phism by restricting the domain to the tangent space Tn

Rp : Tn → Tn , x 7→ Rp [x] = (
Diag(p)−pp>)

x, p ∈Sn , (3.9a)

R−1
p : Tn → Tn , x 7→ R−1

p [x] =ΠTn Diag
( 1

p

)
x, p ∈Sn . (3.9b)

In addition, the operator satisfies the relation

Rp = RpΠTn =ΠTn Rp , (3.10)

whereΠTn denotes the orthogonal projection (3.3) onto the tangent space Tn . 4
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The exponential map of the Riemannian (Levi-Civita) connection on Sn is as fol-
lows.

Proposition 3.1 (Geodesic and Exponential map on Sn ; [8, Proposition 2])
The Riemannian geodesic is given by

γv (t ) = 1

2

(
p +

v2
p∥∥vp
∥∥2

)
+ 1

2

(
p −

v2
p∥∥vp
∥∥2

)
cos

(∥∥vp
∥∥ t

)+ vp∥∥vp
∥∥pp sin

(∥∥vp
∥∥ t

)
(3.11a)

with t = 1, vp = v/
p

p,γv (0) = p, γ̇v (0) = v and

Vp = {
v ∈ TpSn : γv (t ) ∈Sn , t ∈ [0,1]

}
. (3.11b)

The corresponding exponential map reads

Expp : Vp →Sn , v 7→ Expp (v) = γv (1), p ∈Sn . (3.11c)
4

Adopting the e-connection from information geometry [3, Section 2.3], [9], the ex-
ponential map based on the corresponding affine geodesics reads

Expe
p : Sn ×Tn →Sn , (p, v) 7→ Expe

p (v) = pe
v
p

〈p,e
v
p 〉

, (3.12a)

Expe,−1
p : Sn ×Sn → Tn , (p, q) 7→ Expe,−1

p (q) = Rp log
q

p
. (3.12b)

Specifically, we define

expp : Sn ×Tn →Sn , (p, v) 7→ Expe
p ◦Rp (v) = pev

〈p,ev 〉 , (3.13a)

exp−1
p : Sn ×Sn → Tn , (p, q) 7→ exp−1

p (q) =ΠTn log
q

p
. (3.13b)

The expp -map has the following properties.

Lemma 3.2
For p, q ∈Sn and x, y ∈Rn we have

expp (x + y) = expexpp (x)(y) (3.14a)
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Figure 3.2: First-order approximation of geodesic γv (t ) (cf. [8, Fig. 5]). The solid
lines display various geodesics γvi (t ), i ∈ [k], t ∈ [t , tmax], given by (3.11a), emanating
from p (red points) with the same speed ‖vi‖p = ‖v j‖p ,∀i , j ∈ [k]. The dashed lines
display the approximations Expe

p (vi t ), i ∈ [k], t ∈ [t , tmax] satisfying (3.15).

and the differentials are given by

dq expp (q)[v] = Rexpp (q)[v] (3.14b)

dp exp−1
p (q)[v] =ΠTn

v

q
(3.14c)

The application of the map expp to a vector in Rn = Tn ⊕R1n does not depend on the
R1n component of the argument due to (3.10).

Proof See Appendix A.2. �

Remark 3.2 Since the mappings Expe
p and expp do not correspond to the Rieman-

nian connection, the maps (3.12a) and (3.13a) are not length-minimizing with re-
spect to the Riemannian structure. Nevertheless, they provide locally a close ap-
proximation (summarized shortly in Proposition 3.3 & illustrated by Fig. 3.2) and are
more convenient for numerical computations. 4

Proposition 3.3 (First-order approximation of geodesic γv (t ); [8, Proposition 3])
The exponential map of the e-connection Expe

p (v t ) given by (3.12a) provides locally
a first-order approximation of the geodesic γv (t ) from (3.11a)

‖γv (t )−Expe
p (v t )‖ =O(t 2). (3.15)

4

Next, we define the Riemannian mean (also known as Karcher mean or Fréchet
mean) of a given set of points.
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Definition 3.4 (Riemannian mean)
The Riemannian mean p̄ of a set of points {pi }i∈[N ] ⊂ Sn with weights ω ∈ ∆N is
defined as the minimizer of the objective function

1

2

∑
i∈[N ]

ωi d 2
Sn

(p, pi ), with dSn (p, q) = 2 arcos
( ∑

i∈[n]

p
pi qi

)
∈ [0,π). (3.16a)

The mean p̄ satisfies the optimality condition∑
i∈[N ]

ωi Exp−1
p̄ (pi ) = 0, (3.16b)

where Exp−1
p̄ : Sn → TpSn is the inverse of the exponential map (3.11c). We also use

the notation

meanSn ,ω(P), ω ∈∆N−1, P = {p1, . . . , pN }, (3.16c)

for the Riemannian mean. 4

Lemma 3.5 ([8, Lemma 3])
The Riemannian mean (3.16c) defined as the minimizer of (3.16a) is unique for any
data P = {pi }i∈[N ] ⊂Sn and weights ω ∈∆N . 4

In view of Remark 3.2, we can approximate the Riemannian mean (3.16c) by re-
placing Exp−1

p (exponential map of Riemannian connection (3.11c)) with Expe,−1
p (ex-

ponential map of e-connection (3.12b)). The advantage of using Expe,−1
p lies in the

fact that we can obtain the following simple closed-form solution of the approxi-
mated mean based on (3.16b).

Lemma 3.6 (Approximation of the Riemannian mean; [8, Lemma 5])
LetP = {p1, . . . , pN } be a given set of points andω ∈∆N corresponding weights. Then,

by replacing the exponential map Exp−1
p in (3.16b) with Expe,−1

p , given by (3.12b),
yields the following approximation of the Riemannian mean (3.16c)

meanSn ,ω(P) ≈ exp1Sn

( ∑
i∈[N ]

ωi exp−1
1Sn

(pi )

)
= meang ,ω(P)

〈1,meang ,ω(P)〉 , (3.17a)

where meang ,ω(P) denotes the weighted geometric mean

meang ,ω(P) = ∏
i∈[N ]

pωi

i . (3.17b)
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(a) (b)

Figure 3.3: Geometry of the probability simplex induced by the Fisher–Rao met-
ric. (cf. [8, Fig. 3]) (a) shows the geodesics from the barycenter (red) to various
points (blue). The black lines are Euclidean geodesics and the brown lines are non-
Euclidean geodesics. The points along these lines correspond to the Euclidean and
Riemannian mean, respectively. (b) The contour lines denote the points which have
the same Riemannian distance from the respective center point (black dots).

Proof See Appendix A.2. �

This lemma enables us to approximate the Riemannian mean with a closed-form
expression, namely the normalized weighted geometric mean (3.17a). This result will
be extremely useful for numerical computations (Section 3.3).

3.1.2 Global Object: AssignmentManifold
The main mathematical object of this thesis is the so-called assignment manifold,
given by the product manifold

W :=Sn ×·· ·×Sn︸ ︷︷ ︸
m-times

(3.18)

with constant tangent space

TW := Tn ×·· ·×Tn︸ ︷︷ ︸
m-times

(3.19)

and Riemannian structure (W , gW ) given by the Riemann product metric

gW
W : TW×TW →R, (U ,V ) 7→ gW

W (U ,V ) :=
m∑

k=1
gSn

Wk
(Uk ,Vk ), ∀U ,V ∈ TW . (3.20)
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We identify W with the embedding into Rm×n

W = {W ∈Rm×n : W 1n = 1m and Wi j > 0 for all i ∈ [m], j ∈ [n]}. (3.21)

In words, a point W ∈W is a row-stochastic matrix W ∈ Rm×n representing global
label assignments on the whole set of nodes V . Each row vector Wi ∈Sn lives on the
probability simplex Sn and represents local label assignments for every node i ∈ V .
Due to this embedding of W , the tangent space TW can be identified with

TW = {V ∈Rm×n : V 1n = 0}. (3.22)

Therefore, every row vector Vi is contained in Tn for every i ∈V . The global uniform
distribution, given by the uniform distribution in every row, again called barycenter,
is denoted by

1W := (1Sn , . . . ,1Sn ) = 1m1Sn
> ∈W , (3.23)

where the second equality is due to the embedding (3.21).

The maps and operators defined on the probability simplex Sn , have naturally ex-
tensions on the product manifold W . The orthogonal projection onto TW is given by

ΠTW : Rm×n → TW , X 7→ΠTW [X ] =

ΠTn [X1]
...

ΠTn [Xm]

 , (3.24)

whereΠTn is the orthogonal projection (3.3) onto Tn . The replicator operator is given
by

RW : Rm×n → TW , X 7→ RW [X ] =

 RW1 [X1]
...

RWm [Xm]

 , W ∈W , (3.25)

where RWi is the replicator operator (3.7). The lifting map is defined by

expW (V ) : W ×TW →W , (W,V ) 7→ expW (V ) =

 expW1
(V1)

...
expWm

(Vm)

 , (3.26)

44



IMAGE LABELINGBYASSIGNMENT CHAPTER 3

where Wi ,Vi for i ∈V are the row vectors of matrices W,V , respectively, and expWi
(Vi )

is the lifting map (3.13a). The mappings exp−1
W ,Expe

W ,Expe,−1
W are similarly defined

based on (3.13b), (3.12a) and (3.12b).
Due to (3.8), the Riemannian gradient of a smooth function f : W →R is given by

grad f (W ) = RW [∇ f (W )] for W ∈W . (3.27)

3.2 Vector Fields on the AssignmentManifold
In this section we summarize the main idea of [65]: Any given vector field X ∈X(W)
on W can be transformed onto the tangent space TW . The advantage of using this
transformation lies in the fact that TW ⊂ Rm×n is a vector space of matrices, where
established numerical integration methods can be applied.

The next theorem states the main result for general vector fields X ∈X(W).

Theorem 3.7 (Transformation of Vector Fields on W)
Let exp1W : TW →W be the lifting map (3.26) at the barycenter 1W := 1m1Sn

> ∈W ,
X ∈ X(W) be a given vector field, and J ⊂ R be an open interval with 0 ∈ J . Then,
a curve W : J → W solves (3.28a) if and only if the curve V : J → TW with W (t ) =
exp1W ◦V (t ) solves (3.28b).

Ẇ (t ) = XW (t ), (3.28a)

V̇ (t ) = R−1
exp1W (V (t ))

[
Xexp1W (V (t ))

]
. (3.28b)

Proof See Appendix A.2. �

The above setting works for general vector fields and metrics on the assignment
manifold W . In the remainder of this section we restrict this setting to Riemannian
gradients and the Fisher–Rao metric (3.20). Suppose f : W → R is a general smooth
objective function given on the assignment manifold W . Our strategy is to minimize
this function by following the Riemannian gradient descent flow

Ẇ (t ) =−gradW f (W (t )). (3.29)

Applying Theorem 3.7 with XW (t ) =−gradW f (W (t )) transforms (3.29) onto the tan-
gent space TW . This transformation is summarized by the following corollary.

45



CHAPTER 3 IMAGE LABELINGBYASSIGNMENT

Corollary 3.8 (Transformation of Riemannian Gradient Flows on W)
Let exp1W : T m →W be the lifting map (3.26) at the barycenter 1W := 1m1Sn

> ∈W ,
gradW f (W (t )) the Riemannian gradient of a general smooth objective function
f : W →R, and the manifold W is equipped with the Fisher–Rao metric (3.20). Then,
the integral curves W (t ),V (t ) of the following gradient flows

Ẇ (t ) =−gradW f (W (t )), W (0) = 1W , (3.30a)

V̇ (t ) =−∇ f (exp1W (V (t ))), V (0) = 0m×n . (3.30b)

can be transformed into each other via the lifting map

W (t ) = exp1W
(
V (t )

)
. (3.31)

Proof See Appendix A.2. �

3.3 Image Labeling on the AssignmentManifold
A given image can be modeled by an undirected graph G = (V ,E) with m := |V | ver-
tices. Let

f : V →F , i 7→ fi ∈F , f (V) =:FV ⊂F (3.32)

be data on the graph given in a metric space (F ,d). We call FV image data given
by features fi extracted from a raw image at pixel i ∈ V . Along with f we assume
prototypical data

X = {`1, . . . ,`n} ⊂F (3.33)

which we call labels. Assume a suitable distance function

dF : F ×X →R, (3.34)

is given which measures the similarity between features and labels. The image la-
beling problem consists of finding an assignment V →X that assigns class labels to
nodes depending on the image data FV and the local context encoded by the graph
structure G. These global assignments are modeled as points W ∈W on the assign-
ment manifold W .
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More precisely, we are interested in the posterior probability of assigning label ` j

to vertex i given the datum fi , which is given by the element

Wi j = Pr(` j | fi ), i ∈ [m], j ∈ [n], (3.35)

of the assignment matrix W . Thus, the assignments of to each vertex i ∈ V is repre-
sented by the row vector

Wi ∈Sn , i ∈V . (3.36)

G may be a grid graph (with self-loops) as in low-level image processing or a less
structured graph, with arbitrary connectivity in terms of the neighborhoods

Ni = {k ∈V : i k = ki ∈ E}∪ {i }, i ∈V , (3.37)

where i k is a shorthand for the undirected edge {i ,k} ∈ E . We require these neigh-
borhoods to satisfy the relations

k ∈Ni ⇔ i ∈Nk , ∀i ,k ∈V . (3.38)

We associate with each neighborhood Ni from (3.37) weights ωi k ∈ R for all k ∈Ni ,
satisfying

ωi k > 0 and
∑

k∈Ni

ωi k = 1, for all i ∈V . (3.39)

These weights parametrize the regularization property of the assignment flow below.

3.3.1 Assignment Flow
Based on the given data (3.32) and labels (3.33), we define the distance matrix

D ∈Rm×n , Di , j := dF ( fi ,` j ), i ∈ [m], j ∈ [n]. (3.40)

This distance information is lifted onto the manifold W by the likelihood matrix

L = L(W ) ∈W , L(W ) := expW

(−D/ρ
)

, ρ > 0, (3.41)

where ρ is a scaling parameter for the distance matrix D , and expW is the lifting map
(3.26). This representation of the data is regularized by the approximation of the
Riemannian mean (3.17a) in the local neighborhoods (3.37) using the weights (3.39).
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Thus, the similarity matrix is given by

S = S(W ) ∈W , Si (W ) := exp1Sn

( ∑
k∈Ni

wi k exp−1
1Sn

(Lk (Wk ))
)
, i ∈V , (3.42)

where N (i ) is the local neighborhood (3.37).

The similarity matrix induces the assignment flow through a system of spatially
coupled nonlinear ODEs which evolves the assignment vectors

Ẇ (t ) = RW (t )
[
S(W (t ))

]=W (t ) (S(W (t ))−〈W,S(W (t ))〉1) , (3.43a)

W (0) = 1W ∈W , (3.43b)

where 1W denotes the global uniform distribution, given by (3.23). Integrating this
flow numerically yields curves Wi (t ) ∈ Sn for every pixel i ∈ V that emanate from
Wi (0) = 1Sn and approach some vertex (unit vector) of Sn = ∆n . Hence, a unique
label assignment is obtained after a trivial rounding Wi (t ) for sufficiently large t > 0.
The overall geometric approach is summarized and illustrated by Fig. 3.4.

3.3.2 Numerical Integration of the Flow
Theorem 3.7 shows how a given vector field on W can be transformed onto the tan-
gent space TW via the lifting map exp1W . Accordingly, for the assignment flow (3.43)
this transformation is as follows. The integral curves of the following ODEs

Ẇ (t ) = RW (t )
[
S(W (t ))

]
, W (0) = 1W ∈W , (3.44a)

V̇ (t ) = S
(

exp1W (V (t ))
)
, V (0) = 0 ∈ TW , (3.44b)

are equivalent via the parametrization W (t ) = exp1W (V (t )). The flow (3.44b) purely
evolves on the vector space TW , where standard Runge-Kutta methods (cf. Sec-
tion 2.3.2) can be used for numerical integration.

In general, for an arbitrary ODE

V̇ (t ) = F
(
W (t )

)= F
(

exp1W (V (t ))
)
, V (0) = 0, (3.45)

evolving on the vector space TW , we mainly use explicit Runge–Kutta methods (2.58)
for the numerical integration, i.e.

V (n+1) =V (n) +h(n)
s∑

i=1
bi kn,i , V (0) = 0, (3.46)
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Figure 3.4: Overview of the geometric approach [8]. In a feature space F , the dis-
tance D between given data FV and labels X is computed by a suitable distance
measure. These information is lifted to the assignment manifold W which gives the
likelihood L(W ). In order to obtain spatial coherent assignments, the similarity ma-
trix S(W ) is computed by geometric averaging over spatial neighborhoods. The re-
sulting inference corresponds to following the assignment flow, that is a replicator
dynamic which is induced from S(W ).

with step-size h(n) ∈ R>0. The stages kn,i depend on the right hand side F of (3.45),
and are defined in (2.58a)-(2.58c). By using the parametrization W = exp1W (V ), this
update scheme translates to a multiplicative update formula on W

W (n+1) = exp1W
(
V (n+1)) (3.46)= exp1W

(
V (n) +h(n)

s∑
i=1

bi kn,i

)
(3.47a)

(3.14a)= expW (n)

(
h(n)

s∑
i=1

bi kn,i

)
= W (n)eh(n) ∑s

i=1 bi kn,i〈
W (n),eh(n)

∑s
i=1 bi kn,i

〉 , (3.47b)

with initial value W (0) = 1W .

Remark 3.3 The construction of the geometric Runge-Kutta schemes (3.47b) can be
viewed from a different perspective. Setting Λ(V ,W ) := expW (V ) gives an Lie-group
action Λ : TW ×W →W of the vector space TW viewed as an additive group on the
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assignment manifold W . In [81] this action is used to numerically integrate the as-
signment flow by applying geometric Runge-Kutta methods (3.47b). 4

Using the explicit Runge–Kutta method on TW gives the geometric explicit Euler
update on W

W (n+1) = W (n)eh(n)F (W (n))〈
W (n),eh(n)F (W (n))

〉 , W (0) = 1W ∈W . (3.48)

Definition 3.9 (Linear assignment flow)
The linear assignment flow approximates the mapping (3.42) as part of the assign-
ment flow (3.43) by

Ẇ = RW

[
S(W0)+dS(W0)

[
exp−1

1W
(W )

]]
, W0 =W (0) = 1W ∈W . (3.49)

Although, this flow is still nonlinear on W , its transformed flow (Theorem 3.7)

V̇ = S(W0)+dS(W0)[V ], V (0) = 0, (3.50)

is linear and defined on the vector space TW . 4

The differential dS(W )[V ] of the similarity map is stated in the following lemma.

Lemma 3.10
The i -th component of the differential dS(W ) : TW → TW is given by

dSi (W ) : TW → Tn , dSi (W )[V ] = ∑
k∈Ni

ωi k RSi (W )

[
Vk

Wk

]
, (3.51)

for all V ∈ TW and i ∈V .

Proof See Appendix A.2. �

Remark 3.4 (Linearity of (3.50) with respect to parameter) By fixing S(W0), the right
hand side of (3.50) is linear with respect to both the tangent vector V and the param-
eters ωi k in the differential dS(W0) (see (3.51)), that makes this approach attractive
for parameter estimation (investigated in Chapter 5). 4

Remark 3.5 (Parametrization using Expe
p ) The work of [81] introduced the linear

assignment flow by using the exponential map Expe
p , given by (3.12a), with respect to
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the e-connection

Ẇ = RW

[
S(W0)+dS(W0)

[
Expe,−1

1W
(W )

]]
, W0 =W (0) = 1W ∈W , (3.52)

and with parametrization [81, Prop. 4.2]

W (t ) = Expe
W0

(V (t )), V̇ = RW0 [S (W0)+dS (W0) [V ]] , V (0) = 0 (3.53)

It can be shown that the parametrization (3.49) and (3.53) differ only by a factor. 4

3.4 Experiments
3.4.1 Implementation Details
Assignment Normalization
Each vector Wi approaches some vertex ei of the simplex and thus some entries of
Wi converge to zero. However, due to our optimization scheme every vector Wi

evolves on the interior of the simplex S , that is, all entries of Wi have to be posi-
tive all the time. Since there is a limit for the precision of representing small positive
numbers on a computer, we avoid numerical problems by adopting the normaliza-
tion strategy of [8]. After each iteration, we check all Wi and whenever an entry drops
below ε= 10−10, we rectify Wi by

Wi ← 1

〈1,W̃i 〉
W̃i , W̃i =Wi − min

j=1,...,n
{Wi , j }+ε , ε= 10−10 . (3.54)

Thus, the constant ε plays the role of 0 in our implementation. Our numerical ex-
periments showed that this operation avoids numerical issues.

Termination Criterion
In all experiments, the normalized averaged entropy

1

m log(n)
H(W ) =− 1

m log(n)

∑
i∈V

n∑
k=1

Wi ,k log
(
Wi ,k

)
, for W ∈W , (3.55)

was used as a termination criterion, i.e. if the value drops below a certain threshold
the algorithm is terminated. Due to this normalization, the value does not depend
on the number of labels and thus the threshold is comparable across different mod-
els with a varying number of pixels and labels.
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For example, a threshold of 10−3 means in practice that, up to a small fraction of
nodes i ∈ V , all rows Wi of the assignment matrix W are very close to unit vectors
and thus indicate an almost unique assignment of the prototypes or labels to the
observed data.

3.4.2 Parameter Influence
In this section we illustrate the parameter influence of the scaling parameter ρ and
the spatial scale |N | on the assignment (cf. Fig. 3.5). By using uniform weights for
regularization, i.e. ωi = 1

|Ni |1|Ni | for every node i ∈ V , the similarity matrix (3.42)
simplifies to the normalized geometric mean (3.17b).

The task is to label a RGB-image f : V → [0,1]3 on the grid graph G = (V ,E) with
different neighborhood size |N (i )| ∈ {3 × 3,5 × 5,7 × 7}, i ∈ V . Prototypical colors
X = {`1, . . . ,`12} ⊂ [0,1]3 serve as labels (cf. Fig. 3.5, top right). The distance matrix is
computed by using the ‖ ·‖1 norm and a scaling factor ρ > 0 by

Di = 1

ρ

(‖ f (i )−`1‖1, . . . ,‖ f (i )−`12‖1
)
, i ∈V . (3.56)

We use a constant step-size of h = 1 for the numerical integration of the assignment
flow (3.44b), and set the threshold for the normalized average entropy termination
criterion (3.55) to 10−3.

Fig. 3.5 shows the influence of the scaling parameter ρ and the spatial scale |N | on
the assignment. Increasing the strength of the data (smaller ρ) leads to a faster de-
crease in entropy (cf. Fig. 3.6) and therefore to an earlier convergence of the process
to a specific labeling. Thus, a stronger weighted data term yields a less regularized
result due to the rapid decision for a labeling at an early stage of the algorithm.

3.5 Extensions
In this section we briefly list several extensions of the geometric approach explained
in this chapter. For more details we refer the reader to the respective references.

Mathematical aspects [63, 64]. In [63] a variational formulation of the assignment
flow is studied leading to an natural extension from graphs to the continuous do-
main in the “zero-scale limit”. The work of [64] presents a more classical additive
variational reformulation related to the continuous cut approach, using Riemannian
distances induced by the Fisher–Rao metric for regularization.
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Geometric numerical integration [81]. The work presents a comprehensive study of
geometric integration techniques for the numerical integration of the assignment
flow in a stable, efficient and parameter-free way.

Unsupervised label learning [82, 83]. This work extends the geometric approach
to unsupervised scenarios where no labels are given. The work determines labels
in a completely unsupervised way by data self-assignment. This results in a self-
assignment flow which has connections to low-rank matrix factorization and dis-
crete optimal mass transport.

Evaluation of discrete graphical models [6, 36]. This extension introduces a novel ap-
proach to maximum a posteriori (MAP) inference based on discrete graphical models
and the assignment manifold. The idea is to smoothly approximate the LP relaxation
and restrict it to the assignment manifold. In this work, the integration of the corre-
sponding Riemannian gradient flow and a rounding mechanism to integral solutions
is combined. We present and elaborate this approach in Chapter 4 in detail.

Parameter learning [35, 37]. This work studies the inverse problem of model param-
eter learning for pixelwise image labeling. Based on given training data with ground
truth, the weights of the weighted geometric mean that parametrize the adaptivity
of the assignment flow are learned. This is accomplished by a Riemannian gradient
flow on the manifold of parameters that determine the regularization properties of
the assignment flow. We present and discuss this approach in Chapter 5 in detail.

53



CHAPTER 3 IMAGE LABELINGBYASSIGNMENT

Original data Labels

|N | = 3×3 |N | = 5×5 |N | = 7×7

ρ
=

0.
01

ρ
=

0.
1

ρ
=

1

Figure 3.5:Parameter influence of the scaling parameter ρ and the spatial scale N
on the assignment. This plot shows the parameter influence of ρ and |N | on the
assignment of 12 prototypical labels to the input data. Uniform weights are used for
regularization, i.e. ωi = 1

|Ni |1|Ni | for every node i ∈ V . Increasing size of the spatial
scale |N | leads to more regularized labelings. In contrast, a stronger weighted data
term (smaller values of ρ) yields a less regularized result due to the rapid decision for
a labeling at an early stage of the algorithm (cf. Fig. 3.6).
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Figure 3.6:Averaged entropy (3.55) for different values of ρ and |N |. This plot shows
the corresponding values of the normalized average entropy (3.55) for the experi-
ments of Fig. 3.5. The curves are sorted according to parameter ρ, i.e. ρ = 1 (red
curves), ρ = 0.1 (green curves) and ρ = 0.01 (blue curves ). By increasing the strength
of the data term (smaller values of the scaling parameter ρ), the entropy drops more
rapidly and hence converges faster to an integral labeling. A different size of the spa-
tial scale |N | has no significant influence on the number of iterations.
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Chapter 4
Inference based on GraphicalModels andAssignment
In this chapter we introduce a novel approach to maximum a posteriori (MAP) in-
ference based on discrete graphical models (2.31b) and the assignment manifold
(3.18). The main idea is to restrict the LP relaxation (2.42) to the assignment manifold
and then smoothly approximate the resulting objective function. Thereby, we com-
bine the integration of the corresponding Riemannian gradient flow, and a rounding
mechanism to integral solutions. In order to not disturb the overall line of reason-
ing all technical proofs are collected as Appendix A.3. If a proof gives insights into a
certain formula or structure, we include it in the main text.

This chapter is based on the joint work with Fabrizio Savarino, Judit Recknagel,
Freddie Åström and Christoph Schnörr, that was published as a conference paper
[6] and as a more elaborated journal version [36].

4.1 Objective Function
Suppose observed image data is modeled by a grid graph G = (V ,E), |V | = m, and
each node i ∈V indexes a pixel location, to which a label from the discrete set

xi ∈X = {`1, . . . ,`n} (4.1)

is assigned. Again, we call this finite set X labels or prototypes. Then, the image
labeling problem can be formulated in terms of the discrete energy function

min
x∈Xm

E(x), E(x) = ∑
i∈V

θi (xi )+ ∑
i j∈E

θi j (xi , x j ). (4.2)

As we have seen in Section 2.2.2, this problem corresponds to MAP-inference based
on discrete graphical models (2.31b). The variables θi denote the given unary po-
tentials and θi j the given pairwise potentials. If not otherwise specified, we use the
following unary potentials

θi (xi ) ∈ {
dF ( fi ,`1), . . . ,dF ( fi ,`n)

}
, i ∈ [m], (4.3)
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where dF is a suitable distance function, and as pairwise potentials the so-called
Potts prior

θi j (xi , x j ) =
{
λ, if xi 6= x j

0, otherwise
, with λ> 0. (4.4)

The function E(x) has the format of variational problems comprising a data term
and a regularizer.

4.1.1 Smooth Approximation of the LP Relaxation
In order to conform to the smooth geometric setting explained in Chapter 3, we pro-
ceed in two steps: First, we reformulate the LP relaxation (2.42) in terms of the node
variables µV , and afterwards smooth the resulting objective function.

Our first step is summarized in the following Lemma.

Lemma 4.1 (Reformulation of the LP-relaxation (2.42))
The LP-relaxation (2.42) is equivalent to the problem

min
µV∈∆m

n

( ∑
i∈V

〈θi ,µi 〉+
∑

i j∈E
dθi j (µi ,µ j )

)
(4.5a)

involving the local Wasserstein distances

dθi j (µi ,µ j ) := min
µi j∈Π(µi ,µ j )

〈θi j ,µi j 〉 , (4.5b)

defined for every edge i j ∈ E with Π(µi ,µ j ) due to (2.41b). These distances take the
pairwise model parameters θi j into account. 4

Proof The claim follows by reformulating the LP-relaxation based on the local poly-
tope constraints (2.41)

min
µ∈LG

〈θ,µ〉 = min
µ∈LG

〈θV ,µV〉+〈θE ,µE 〉

= min
µV∈∆m

n

(
〈θV ,µV〉+min

µE

∑
i j∈E

(〈θi j ,µi j 〉+δΠ(µi ,µ j )(µi j )
))

= min
µV∈∆m

n

( ∑
i∈V

〈θi ,µi 〉+
∑

i j∈E
min

µi j∈Π(µi ,µ j )
〈θi j ,µi j 〉

)
= min
µV∈∆m

n

( ∑
i∈V

〈θi ,µi 〉+
∑

i j∈E
dθi j (µi ,µ j )

)
. �
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The function (4.5a) is formulated in terms of µV , but it is non-smooth. Therefore,
we smooth the convex but non-smooth (piecewise-linear (cf. [59, Def. 2.47])) local
Wasserstein distances (4.5b) with a general convex smoothing function Fτ,

dθi j ,τ(µi ,µ j ) = min
µi j∈Π(µi ,µ j )

{〈θi j ,µi j 〉+Fτ(µi j )
}
, i j ∈ E , Fτ ∈F0, τ> 0, (4.6)

with smoothing parameter τ. Based on Lemma 4.1 and the regularized local Wasser-
stein distances (4.6), we study the objective function

Eτ(µV ) = 〈θV ,µV〉+
∑

i j∈E
dθi j ,τ(µi ,µ j ), τ> 0, (4.7)

which is a smooth approximation of the LP relaxation (2.42) of the original labeling
problem (4.2), with the local polytope constraints (2.41) built in.

Remark 4.1 (Role of smoothing) The influence of the smoothing parameter τ will
be examined in detail in the remainder of this chapter. However, we wish to point out
from the beginning that the ability of our smooth geometric approach to compute
integral labelings does not necessarily imply values of τ ≈ 0 close to zero, because
the rounding mechanism to integral assignments is a different one, as will be shown
in Section 4.4. As a consequence, larger feasible values of τ weaken the nonlinear
relation (4.6) and considerably speed up the convergence of numerical algorithm for
iterative label assignment. 4

Remark 4.2 (Validity of the local polytope constraints) Using the regularized local
Wasserstein distances (4.6) implies that the local marginalization constraints (2.41)
are always satisfied. This is in sharp contrast to loopy belief propagation, were these
constraints are gradually enforced during the iteration and are guaranteed to hold
only after convergence of the entire iteration process. We discuss this fact in Sec-
tion 4.4.2 in more detail. 4

In order to get an intuition about suitable smoothing functions Fτ, we inspect the
smoothed local Wasserstein distance (4.6) in more detail. To this end, we pick out
and fix any pair of vertices i , j ∈ V connected by an edge i j ∈ E and simplify our
notation in the remainder of this section by dropping indices as follows.

M =µi j ∈Rn×n , (coupling measure) (4.8a)

Θ= θi j ∈Rn×n , (transportation costs) (4.8b)

µ=
(
µi

µ j

)
=

(
M1n

M>1n

)
, (stacked marginals) (4.8c)
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ν=
(
νi

ν j

)
, (stacked dual vectors) (4.8d)

In this notation, the local (non-smooth) Wasserstein distance (4.5b) reads

dΘ(µi ,µ j ) = min
M∈Π(µi ,µ j )

〈Θ, M〉, (4.9)

for any edge i j ∈ E . Using the linear map A defined by (1.11a), we rewrite expression
(4.9) as

dΘ(µi ,µ j ) = min
M∈Rn×n

〈Θ, M〉 s.t. AM =
(
µi

µ j

)
, M ≥ 0 . (4.10)

The corresponding dual LP of (4.10) is given by

max
ν∈R2n

〈µ,ν〉 s.t. A>ν≤Θ . (4.11)

So we do the same for the smoothed local Wasserstein distance (4.6) which is given
by

dΘ,τ(µi ,µ j ) := min
M∈Rn×n

〈Θ, M〉+Fτ(M) s.t. AM =
(
µi

µ j

)
, M ≥ 0,

= min
M∈Rn×n

〈Θ, M〉+Fτ(M)+δRn×n+ (M)+δ{0}
(
AM − (µi

µ j

))
,

(4.12)

for Fτ ∈F0 and τ> 0, and the corresponding dual problem is given by

max
ν∈R2n

〈µ,ν〉−G∗
τ

(
A>ν−Θ)

, (4.13)

where G∗
τ is the conjugate function of

Gτ(M) = Fτ(M)+δRn×n+ (M). (4.14)

Suitable candidates of functions Gτ for smoothing dΘ suggest themselves by com-
paring the dual LPs (4.11) and (4.13). Rewriting the constraints of (4.11) in the form

δRn×n− (A>ν−Θ) (4.15)

and comparing with (4.13) shows that G∗
τ should be a smooth approximation of the

indicator function δRn×n− . We get back to this point in Section 4.3.2.
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4.2 Global Euclidean Gradient
In this section we compute the Euclidean gradient ∇Eτ of the objective function
(4.7). In general, if the pairwise model parameters θE are not symmetric, then the
smoothed local Wasserstein distances are not symmetric either:

θi j 6= θ>i j =⇒ dθi j ,τ(µi ,µ j ) 6= dθi j ,τ(µ j ,µi ), i j ∈ E . (4.16)

Therefore, we introduce an arbitrary fixed orientation (i , j ) (ordered pair) of all edges
i j ∈ E , which means i j ∈ E =⇒ j i 6∈ E . As a consequence, (4.7) reads

Eτ(µV ) = ∑
i∈V

(
〈θi ,µi 〉+

∑
j : (i , j )∈E

dθi j ,τ(µi ,µ j )
)

. (4.17)

The following proposition specifies the gradient ∇Eτ in terms of the local gradients
of the smoothed Wasserstein distances dθi j ,τ. These latter gradients are studied in
Section 4.3.1 (Theorem 4.5).

Proposition 4.2 (Euclidean gradient of (4.7))
Suppose the edges E have an arbitrary fixed orientation. Then, the i -th row of the
Euclidean gradient ∇Eτ(µV ) ∈ T m at µV ∈W of the objective function (4.7) is given
by

∇i Eτ(µV ) =ΠT (θi )+ ∑
j : (i , j )∈E

∇1dθi j ,τ(µi ,µ j )+ ∑
j : ( j ,i )∈E

∇2dθ j i ,τ(µ j ,µi ) , (4.18)

where ∇1dθi j ,τ(µi ,µ j ) ∈ T and ∇2dθ j i ,τ(µ j ,µi ) ∈ T are the Euclidean gradients of the
smoothed Wasserstein distances

dθi j ,τ(·,µ j ) : S →R, and dθ j i ,τ(µ j , ·) : S →R. (4.19)

Proof See Appendix A.3. �

Now, we consider the specific case that all pairwise model parameters are symmet-
ric, i.e. θi j = θ>i j (cf. Corollary 4.4). Due to definition (2.41b), the set Π(·, ·) of cou-
pling measures has marginals as arguments. We start with the following preparatory
Lemma.

Lemma 4.3
Suppose the convex smoothing function Fτ, which defines the regularized local
Wasserstein distances (4.6), satisfies Fτ(M) = Fτ(M>) for all M ∈ Π(Wi ,W j ). Then,
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the Wasserstein distance satisfies

dθi j ,τ(µi ,µ j ) = dθ>i j ,τ(µ j ,µi ). (4.20)
4

Proof See Appendix A.3. �

As a consequence of Lemma 4.3, if all pairwise model parameters θi j are symmetric
and the assumption Fτ(M) = Fτ(M>) holds for all M ∈ [0,1]n×n , then we do not need
to choose an edge orientation as was done in connection with (4.17). By using the
set N (i ), which denotes all neighbor vertices of vertex i (1.10), we can rewrite (4.17)
as

Eτ(µV ) = ∑
i∈V

(
〈θi ,µi 〉+ 1

2

∑
j∈N (i )

dθi j ,τ(µi ,µ j )
)
. (4.21)

The following corollary reformulates Proposition 4.2 accordingly.

Corollary 4.4 (Euclidean gradient of (4.7): Symmetric case)
Suppose Fτ(M) = Fτ(M>) for all M ∈ [0,1]n×n and θi j is symmetric for all i j ∈ E .
Then, the i -th row of the Euclidean gradient ∇Eτ is given by

∇i Eτ(µV ) =ΠT (θi )+ ∑
j∈N (i )

∇1dθi j ,τ(µi ,µ j ). (4.22)

Proof See Appendix A.3. �

4.3 LocalWasserstein Gradient
4.3.1 Formula of the LocalWasserstein Gradient
In this section we check the differentiability of the smoothed Wasserstein distance
dθi j ,τ(µi ,µ j ), i j ∈ E , and specify an expression for the corresponding gradient. The
following theorem formulates the main results of this section. Note, that we again
use the simplified notation (4.8).

Theorem 4.5 (Euclidean gradient of Wasserstein distance)
Consider S ⊂Rn as an Euclidean submanifold with tangent space T defined by (3.2),
and let

g (µ,ν) = 〈µ,ν〉−G∗
τ (A>ν−Θ) (4.23)
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denote the dual objective function (4.27). Then the smoothed Wasserstein distance
dΘ,τ : S ×S → R is differentiable, and the Euclidean gradient of dΘ,τ at p = (p1, p2) ∈
S×S is given by

∇dΘ,τ(p) =∇dΘ,τ(p1, p2) = νT :=ΠT×T (ν) =
(
ΠT (ν1)
ΠT (ν2)

)
, (4.24)

where

ν=
(
ν1

ν2

)
∈ argmax

ν∈R2n
g (p,ν). (4.25)

Proof See Appendix A.3. �

The basic idea of the proof of Theorem 4.5 (see Appendix A.3) is to apply Theo-
rem 1.2. In order to do so, we have to check if the premises of Theorem 1.2 hold in
our situation. We start with some preparatory lemmas, that also clarify the structure
of the dual solution set. In particular, this set restricted to im(A) is a singleton, i.e.
the set consists of exactly one element (Lemma 4.10). The overall line of reasoning
continues on in Section 4.3.2.

Lemma 4.6 (Dual problem of Wasserstein distance)
Let Gτ(M) = Fτ(M) + δRn×n+ (M) with the convex smoothing function Fτ of Equa-
tion (4.6), and assume the conjugate function G∗

τ is continuously differentiable.
Then the dual problem of

min
M∈Π(µi ,µ j )

{〈Θ, M〉+Fτ(M)
}

(4.26)

is given by

max
ν1,ν2

{〈µ,ν〉−G∗
τ (A>ν−Θ)

}
. (4.27)

Furthermore, assuming that strong duality holds, the conditions for optimal primal
M and dual ν= (ν1,ν2) solutions are

M =∇G∗
τ

(
A>ν−Θ)

, A>ν−Θ ∈ ∂Gτ(M) (4.28a)

together with the affine constraint

AM =µ. (4.28b)
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Proof See Appendix A.3. �

Remark 4.3 (Smoothness of G∗
τ) The smoothness assumption with respect to G∗

τ en-
ables to compute conveniently the gradient of the smoothed Wasserstein distance
dΘ,τ. It corresponds to a convexity assumption on Gτ. These aspects are further dis-
cussed in Section 4.3.2 as well. 4

Remark 4.4 (Strong duality) The condition of strong duality (cf. [13, Section I.5])
made by Lemma 4.6 is crucial for what follows. This condition will be satisfied later
on when working in a geometric setting with local measures M ,µi ,µ j with full sup-
port, as introduced in Section 3.1.2. 4

The following Lemma characterizes the kernel of the linear mapping A>, defined
by (1.11b).

Lemma 4.7 (Kernel of linear map (1.11b))
Let the linear mapping A> be defined by (1.11b). Then, its kernel is given by

ker(A>) =
{
λ

(
1n

−1n

)
∈R2n : λ ∈R

}
(4.29a)

and its orthogonal complement by

ker(A>)⊥ =
{

x ∈R2n :
〈

x,

(
1n

−1n

)〉
= 0

}
. (4.29b)

Proof See Appendix A.3. �

The following Lemma characterizes the set of optimal dual solutions of problem
(4.27).

Lemma 4.8 (Set of optimal dual solutions)
Let the function G∗

τ of the dual objective function (4.27) resp. (4.23) be continuously
differentiable and strictly convex, and let p ∈R2n++. Then the set of optimal dual solu-
tions has the form

argmax
ν∈R2n

g (p,ν) =


{ν}, if

〈
p,

(
1n
−1n

)〉
6= 0,

ν+ker(A>), if
〈

p,
(
1n
−1n

)〉
= 0.

(4.30a)

(4.30b)
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Proof See Appendix A.3. �

In view of Theorem 1.2, the set of maximizers has to be a single element. As char-

acterized by the previous Lemma 4.8, this is only the case if
〈

p,
(
1n
−1n

)〉
6= 0. In our

situation, i.e. the case
〈

p,
(
1n
−1n

)〉
= 0, we still have work to do. We ensure uniqueness

of the dual maximizer by further restricting the set of optimal dual solutions which
is clarified by Lemma 4.10.

Lemma 4.9 (Orthogonal decomposition of R2n )
Let the linear mappings A and A> be defined by (1.11a) and (1.11b), respectively.
Then, the following orthogonal decomposition

R2n = ker(A>)⊕ im(A) (4.31)

into linear subspaces applies. We denote the corresponding components of a vector
ν ∈R2n by ν= νker +νim.

Proof See Appendix A.3. �

Lemma 4.10 (Restricted set of optimal dual solutions)
Consider the orthogonal decomposition (4.31) and denote the corresponding com-

ponents of a vector ν ∈R2n by ν= νker +νim. Then, for p ∈R2n++ satisfying 〈p,
(
1n
−1n

)
〉 =

0, we have

argmax
νim∈im(A)

g (p,νim) = {νim}, (4.32a)

where νim =Πim(A)(ν) for any ν ∈ argmaxν∈R2n g (p,ν). Furthermore, the correspond-
ing objective value satisfies

g (p,νim) = max
νim∈im(A)

g (p,νim) = max
ν∈R2n

g (p,ν). (4.32b)

In other words, a dual maximizer νim exists and is unique in the subspace im(A).

Proof See Appendix A.3. �

4.3.2 Computation of the LocalWasserstein Gradient
A core subroutine of our approach concerns the computation of the local Wasser-
stein gradients as part of the overall gradient (4.18). In this section we show why
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the negative entropy function, that we use in our implementation for smoothing the
local Wasserstein distances, plays a distinguished role.

Using again the simplified notation (4.8), the smooth entropy regularized Wasser-
stein distance (4.6) reads

dΘ,τ(µi ,µ j ) = min
M∈Rn×n

〈Θ, M〉−τH(M) s.t. AM =
(
µi

µ j

)
, M ≥ 0 , (4.33a)

with the entropy function

H(M) =−∑
i , j

Mi , j log Mi , j . (4.33b)

As derived in the previous section and formulated in Theorem 4.5, the gradients
of (4.33) are the maximizer of the corresponding dual problem. This dual problem is
given by

max
ν∈R2n

〈µ,ν〉−τ∑
k,l

exp
[1

τ

(
A>ν−Θ

)
k,l

]
. (4.34)

In view of the general form (4.13) of this dual problem, the indicator function (4.15)
is smoothly approximated by τexp( 1

τx). Figure 4.1 compares this approximation
and the classical logarithmic barrier − log(−x) function for approximating the in-
dicator function δR− of the non-positive orthant. Log-barrier penalty functions are
the method of choice for interior point methods [49, 72], which strictly rule out vio-
lations of the constraints. While this is essential for many applications where con-
straints represent physical properties that cannot be violated, it is not essential in the
present case for calculating the Wasserstein messages. Moreover, the bias towards
interior points by log-barrier functions, as Figure 4.1 clearly shows, is detrimental in
the present context and favours the formulation (4.34).

We now derive how the local Wasserstein gradients (4.24) are computed based on
the formulation (4.33) and examine numerical aspects depending on the smoothing
parameter τ. It is well known that doubly stochastic matrices as solutions of convex
programs like (4.33) can be computed by iterative matrix scaling [70, 68], [16, Ch. 9].
This has been made popular in the field of machine learning by [20].

For the entropy regularization, the optimality condition (4.28) takes the form

M = exp
[1

τ

(
A>ν−Θ

)]
, (4.35)
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Figure 4.1: Approximations of the indicator function δR− of the non-positive or-
thant. The log-barrier function (black curves) strictly rules out violations of the con-
straints but induce a bias towards interior points. Our formulation (blue curves)
is less biased and reasonable approximates the δ-function (red curve) depending on
the smoothing parameter τ. Displayed are the approximations of δR− for τ= 1

5 , 1
10 , 1

50 .

and rearranging yields the connection to matrix scaling:

M = exp
[1

τ

(
A>ν−Θ

)]
(1.11b)= exp

[1

τ

(
ν11

>
n + 1nν

>
2 −Θ

)]
= (

exp(νi
τ )exp(

ν j

τ )T ) ·exp
(− 1

τΘ
)

= Diag
(

exp(νi
τ )

)
exp

(− 1
τΘ

)
Diag

(
exp(

ν j

τ )
)
,

(4.36)

where Diag(·) denotes the diagonal matrix with the argument vector as entries. For
given marginals µ = (µi ,µ j ) due to (4.33) and with the shorthand K = exp

(− 1
τΘ

)
,

the optimal dual variables ν= (ν1,ν2) can be determined by the Sinkhorn’s iterative
algorithm [70], up to a common multiplicative constant. Specifically, we have

Lemma 4.11 ([20, Lemma 2])
For τ > 0 and K = exp

(− 1
τΘ

)
, the solution M of (4.33) is unique and has the form

M = diag(vi )K diag(v j ), where the two vectors vi , v j ∈Rn are uniquely defined up to
a multiplicative factor.

Proof See [20, Lemma 2]. �
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Accordingly, by setting

vi := exp(ν1
τ ), v j := exp(ν2

τ ), (4.37)

Sinkhorn’s fixed point iterations [70] read

v (k+1)
i = µi

K
(

µ j

K >v (k)
i

) , v (k+1)
j = µ j

K >
(

µi

K v (k)
j

) , (4.38)

which are iterated until the change between consecutive iterates is small enough.
Denoting the iterates after convergence by v i , v j , resubstitution into (4.37) deter-
mines the optimal dual variables

νi = τ log v i , ν j = τ log v j . (4.39)

Due to Theorem 4.5, the local Wasserstein gradients then finally are given by

∇dΘ,τ(µi ,µ j ) =
(
ΠT (νi )
ΠT (ν j )

)
, (4.40)

where the projection ΠT due to (3.3) removes the common multiplicative constant
resulting from Sinkhorn’s algorithm.

While the linear convergence rate of Sinkhorn’s algorithm is known theoretically
[41], the numbers of iterations required in practice significantly depends on the
smoothing parameter τ. In addition, for smaller values of τ, an entry of the matrix
K = exp

(− 1
τΘ

)
might be too small to be represented on a computer, due to machine

precision. As a consequence, the matrix K might have entries which are numerically
treated as zeros and Sinkhorn’s algorithm does not necessarily converge to the true
optimal solution.

Fortunately, our approach does allow larger values of τ because merely a suffi-
ciently accurate approximation of the gradient of the Wasserstein distance is re-
quired, rather than an approximation of the Wasserstein distance itself, to obtain
valid descent directions. Figures 4.2 and 4.3 demonstrate that this indeed holds for
relatively large values of τ, e.g. τ ∈ { 1

5 , 1
10 , 1

15 }, no matter if the number of labels is
n = 10 or n = 1000.
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Figure 4.2: Entropy-regularized Wasserstein distance dΘ,τ(c,γ(t )) for varying pa-
rameter τ and increasing numbers n of labels. The plots show the entropy-
regularized Wasserstein distance dΘ,τ(c,γ(t )) for varying parameter τ and increasing
numbers n of labels. The line segment γ(t ) = t (e1 − c)+ c ∈ ∆n , with t ∈ [0,1], con-
nects the barycenter c = 1

n 1 and the vertex e1 on the simplex ∆n . The cost matrix
Θ is given by the Potts prior (4.4). In all three plots the parameter τ is set to τ = 1

5
(cyan), τ= 1

10 (green), τ= 1
20 (blue), τ= 1

50 (red) and τ= 1
100 (black). Even though the

values of the approximation of the distance itself differ considerably, the slope of the
distance is already approximated quite well for larger values of τ (uniformly for both
small and large numbers n of labels).
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Figure 4.3: Wasserstein distance with Potts prior (4.4) on probability simplex ∆3.
The plot shows the exact Wasserstein distance (top) compared to the entropy-
regularized Wasserstein distance with the Potts prior (4.4) from the barycenter to
every point on ∆3 for different values of τ: (a) τ = 1

5 , (b) τ = 1
10 , (c) τ = 1

20 and (d)
τ = 1

50 . These plots confirm that even for relatively large values of τ, e.g. 1
10 and 1

20 ,
the gradient of the Wasserstein distance is sufficiently accurate approximated so as
to obtain valid descent directions for distance minimization.
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4.4 GraphicalModels on the AssignmentManifold
In this section we explain how image labeling, based on a given graphical model, can
be performed on the assignment manifold (3.18) using the global and local gradients
derived in sections 4.2 and 4.3, respectively. The graphical model is given in terms of
an energy function E(x) of the form (4.2). The basic idea for determining a labeling x
with low energy E(x) is to combine minimization of the convex relaxation (2.42) and
non-convex rounding to an integral solution in a single smooth process. This idea is
worked out in Section 4.4.1 and is realized by restricting the smooth approximation
(4.7) of the objective function to the assignment manifold. The numerical integra-
tion of the corresponding Riemannian gradient flow is combined with a rounding
mechanism to integral solutions. In order to highlight the essential properties of our
approach as a novel way of belief propagation using dually computed local Wasser-
stein gradients, we complement in Section 4.4.2 our preliminary observations, stated
as Remarks 4.1 and 4.2.

4.4.1 Combination ofMinimizing and Rounding
We recall how regularization is performed by the assignment approach of [8]: dis-
tance vectors (3.40) representing the data term of classical variational approaches
are lifted to the assignment manifold by (3.41) and geometrically averaged over spa-
tial neighborhoods (3.42).

Given a graphical model in terms of an energy function (4.2), regularization is al-
ready defined by the pairwise model parameters θi j (`k ,`r ), so that evaluating the
gradient of the regularized objective function (4.7) implies averaging over spatial
neighborhoods, as (4.18) clearly displays. Minimizing the corresponding Rieman-
nian gradient flow on the assignment manifold with the explicit Euler method leads
to the update of the assignment matrix

W (k+1)
i = W (k)

i ·e−h∇i Eτ(W (k))

〈W (k)
i ,e−h∇i Eτ(W (k))〉

, i ∈ [m], h > 0, W (0) = 1

n
1m1

>
n , (4.41)

where h is a step-size parameter and the partial gradients ∇i Eτ(W (k)) are given by
(4.18). The sequence (W (k)) is initialized in an unbiased way at the barycenter W (0) ∈
W .

Remark 4.5 (Notation: W vs. µV ) The assignment matrix W ∈ W plays the role of
the node variables µV of the basic LP relaxation as defined by (2.38), with relaxed
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domain due to (2.41). Unlike µi , however, vectors Wi ∈Rn++ always have full support
and live on the manifold S . 4

This update step minimizes the function Eτ, given by (4.7), on the assignment
manifold W . In order to converge to an integral solution, i.e. a valid labeling, we
consider an extended objective function

fτ,α(W ) := Eτ(W )+αh H(W ), αh = α

h
, (4.42)

where Eτ is given by (4.7) and H(W ) denotes the entropy of the assignment matrix
W by

H(W ) =−〈W, logW 〉. (4.43)

The following proposition shows that numerically integrating the Riemannian gra-
dient flow of the extended objective function (4.42) results in a flexible multiplicative
update combining minimization and rounding.

Proposition 4.12
Numerically integrating the Riemannian gradient descent flow of fτ,α, given by (4.42),
by geometric Euler steps results in

W (k+1)
i = (W (k)

i )1+α ·e−h∇i Eτ(W (k))

〈(W (k)
i )1+α,e−h∇i Eτ(W (k))〉

, α≥ 0. (4.44)

where a rounding mechanism is incorporated by a rounding parameter α.

Proof See Appendix A.3. �

Remark 4.6 (Continuous DC programming) Equation (4.42) admits to interpret the
update rule (4.44) as a continuous difference of convex (DC) programming strategy.
Unlike the established DC approach [53, 54], however, which takes large steps by
solving to optimality a sequence of convex programs in connection with updating
an affine upper bound of the concave part of the objective function, our update rule
(4.44) differs in two essential ways: geometric optimization by numerically integrat-
ing the Riemannian gradient flow tightly interleaves with rounding to an integral so-
lution. The rounding effect is achieved by minimizing the entropy term of (4.42)
which steadily sparsifies the assignment vectors comprising W . 4
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4.4.2 Connection to Belief Propagation
In this section we discuss the connection of our approach to belief propagation (BP),
as already stated in Remarks 4.1 and 4.2. A derivation of BP can be found in Sec-
tion 2.2.5 and a more detailed version in Appendix B.

From the viewpoint of BP, our alternative approach (4.42) emerges as follows, start-
ing at the smoothed primal LP (2.46) and following the idea of the proof from Lemma
4.1.

min
µ∈LG

〈θ,µ〉−εH(µ) (4.45a)

= min
µ∈LG

〈θ,µ〉−ε
( ∑

i j∈E
H(µi j )− ∑

i∈V

(
d(i )−1

)
H(µi )

)
(4.45b)

= min
µ∈LG

〈θV ,µV〉+〈θE ,µE 〉−ε
∑

i j∈E
H(µi j )+ε∑

i∈V

(
d(i )−1

)
H(µi ) (4.45c)

= min
µV∈∆m

n

Eε(µV )+ε∑
i∈V

(
d(i )−1

)
H(µi ). (4.45d)

Formulation (4.42) results from replacing εby a smoothing parameter τwhich can be
set to a value not very close to 0 (cf. Remark 4.1), and we absorb the second nonnega-
tive factor weighting the entropy term by a second parameter α. As demonstrated in
Section 4.5, this latter parameter enables to control precisely the trade-off between
accuracy of labelings in terms of the given objective function Eτ of (4.42), that ap-
proximates the original discrete objective function (4.2), and the speed of conver-
gence to an integral (labeling) solution.

Regarding the resulting term Eτ, a key additional step is to use the reformulation
(4.7), because all edge-based variables are locally “dualized away”, as done glob-
ally with all variables when using established belief propagation (cf. (2.50)). In this
way, we can work in the primal domain and with graphs having higher connectivity,
without suffering from the enormous memory requirements that would arise from
merely smoothing the LP and solving (2.46) in the primal domain. Furthermore,
the messages defined by our approach have a clear interpretation in terms of the
smoothed Wasserstein distance between local marginal measures.

We summarize this discussion by contrasting the following observations of estab-
lished belief propagation and our approach. Regarding belief propagation, we have:

1. Local non-convexity. The negative −H(µ) of the so-called Bethe entropy func-
tion H(µ) is non-convex in general for graphs G with cycles [74, Section 4.1],
due to the negative sign of the second sum of (2.46).
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2. Local rounding at each step. The max-product algorithm performs local round-
ing at every step of the iteration so as to obtain integral solutions, i.e. a labeling
after convergence. This operation results as limit of a non-convex function,
due to (1).

3. Either non-smoothness or strong nonlinearity. The latter max-operation is in-
herently non-smooth. Preferring instead a smooth approximation with 0 <
ε¿ 1 necessitates to choose ε very small so as to ensure rounding. This, how-
ever, leads to strongly nonlinear functions of the form (1.15) that are difficult
to handle numerically.

4. Invalid constraints. Local marginalization constraints are only satisfied after
convergence of the iteration. Intuitively it is plausible that, by only gradu-
ally enforcing constraints in this way, the iterative process becomes more sus-
ceptible to getting stuck in unfavourable stationary points, due to the non-
convexity according to (1).

In contrast, our geometric approach defines message passing with respect to ver-
tex i ∈ V by evaluating the local Wasserstein gradients of (4.18) for all edges inci-
dent to i . We therefore call these local gradients Wasserstein messages which are
passed along edges. Similarly to (2.50), each such message is given by dual variables
through (4.24), that solve the regularized local dual LPs (4.23). As a consequence,
local marginalization constraints are always satisfied, throughout the iterative pro-
cess.

In addition, we make the following observations in correspondence to the points
(1)-(4) above:

1. Local convexity. Wasserstein messages of (4.18) are defined by local convex
programs (4.23). This contrasts with loopy belief propagation and holds true
for any pairwise model parameters θi j of the prior of the graphical model and
the corresponding coupling of µi and µ j .

2. Smooth global rounding after convergence. Rounding to integral solutions is
gradually enforced through the Riemannian flow induced by the extended ob-
jective function (4.42). In particular, repeated aggressive local max operations
of the max-product algorithm are replaced by a smooth flow.

3. Smoothness and weak nonlinearity. The role of the smoothing parameter τ of
(4.7) differs from the role of the smoothing parameter ε of (2.46). While the lat-
ter has to be chosen quite close to 0 so as to achieve rounding at all, τ merely
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mollifies the dual local problems (4.23) and hence should be chosen small, but
may be considerably larger than ε. In particular, this does not impair round-
ing due to (2), which happens due to the global flow which is smoothly driven
by the Wasserstein messages. This decoupling of smoothing and rounding en-
ables to numerically compute labelings more efficiently. The results of Sec-
tion 4.5 demonstrate this fact.

4. Valid constraints. By construction, computation of the Wasserstein messages
enforces all local marginalization constraints throughout the iteration. This is
in sharp contrast to belief propagation where this generally holds after conver-
gence only. Intuitively, it is plausible that our more tightly constrained iterative
process is less susceptible to getting stuck in poor local minima. The results of
Section 4.5.2 provide evidence of this conjecture.

4.5 Experiments
In this section we demonstrate and discuss the results of our approach using four
types of experiments:

1. Parameter influence. The dependency of the smoothing parameter τ and the
rounding parameter α on the assignment is illustrated (Section 4.5.1).

2. Cyclic graphical models on K3. We comprehensively explore the space of bi-
nary graphical models defined on the minimal cyclic graph, the complete
graph with three vertices K3, whose LP relaxation is known to have a substan-
tial part of non-binary vertices. The results exhibit a relationship between α

and τ so that in fact a single effective parameter only controls the trade-off be-
tween accuracy of optimization and the computational costs (Section 4.5.2).

3. Comparison to other methods. A evaluation of our approach together with two
established and widely applied approaches, sequential tree-reweighted mes-
sage passing (TRWS) [42] and loopy belief propagation, reveals similar perfor-
mance of our approach (Section 4.5.3).

4. Non-Potts prior. We demonstrate for a graphical model with non-uniform pair-
wise model parameters (non-Potts prior) that our geometric approach accu-
rately takes them into account (Section 4.5.4).

All experiments are selected to illustrate properties of our approach instead of
working out a particular application. In all experiments we use the following setting.
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• Assignment Normalization. The rounding mechanism addressed by Propo-
sition 4.12 and Remark 4.6 will be effective if αh in (4.42) is chosen large
enough to compensate the influence of the function Fτ that regularizes the
local Wasserstein distances (4.6). In this case we avoid numerical problems by
the normalization strategy (3.54).

• Update Schemes. We use the numerical update scheme (4.44) in our imple-
mentation, which reads

W (k+1)
i = (W (k)

i )1+α ·e−h∇i Eτ(W (k))

〈(W (k)
i )1+α,e−h∇i Eτ(W (k))〉

, W (0)
i = 1Sn =

1

n
1n , i ∈V ,k ∈N

whereα≥ 0 is the rounding parameter, h > 0 the step-size and τ the smoothing
parameter for the local Wasserstein distances.

• Termination Criterion. As explained in Section 3.4.1, in all experiments we use
the normalized averaged entropy as a termination criterion.

4.5.1 Parameter Influence

This experiments illustrates the parameter influence of the rounding parameter α
and the smoothing parameter τ on the assignment. The task is to label a noisy RGB-
image f : V → [0,1]3, depicted in Fig. 4.4, on the grid graph G = (V ,E) with minimal
neighborhood size |N (i )| = 3 × 3, i ∈ V . As labels we use the prototypical colors
X = {`1, . . . ,`8} ⊂ [0,1]3 (Fig. 4.4, left panel) and as unary potentials

θi = 1

ρ

(‖ f (i )−`1‖1, . . . ,‖ f (i )−`8‖1
)
, i ∈V , (4.46)

with ‖ · ‖1 distance. The scaling factor is set to ρ = 0.3. For the pairwise potentials
of the model we use a Potts prior (4.4) with λ = 1. Furthermore, we use a constant
step-size h = 0.1 for numerically integrating the Riemannian descent flow, and we
set the threshold for the normalized average entropy termination criterion (3.55) to
10−4.
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Original data

Noisy data
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τ= 0.5 0.1 0.05

0 ∗ ∗ ∗
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1 ∗
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5

1
α
=

2

Figure 4.4: Influence of the rounding parameter α and the smoothing parameter
τ on the assignment. This plot shows the parameter influence of α and τ on the
assignment of 8 prototypical labels to noisy input data. All images marked with an
’∗’ do not show integral solutions due to smoothing too strongly the Wasserstein
distance in terms of τ relative to α, which overcompensates the effect of round-
ing. Likewise, smoothing too strongly the Wasserstein distance (left column, τ= 0.5)
yields poor approximations of the objective function gradient and to erroneous la-
bel assignments. The remaining parameter regime, i.e. smoothing below a reason-
ably large upper bound τ = 0.1, leads to fast numerical convergence, and the label
assignment can be precisely controlled by the rounding parameter α.
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Fig. 4.4 shows the influence of the rounding parameter α and the smoothing pa-
rameter τ for the Wasserstein distance on the labeling result. All images marked with
’∗’ in the lower right corner do not constitute an integral solution, which means that
the normalized average entropy (3.55) of the assignment vectors Wi did not drop be-
low the threshold during the iterations. Thus, even though the assignments show a
clear tendency, they are not close to an integral solution. This is not a deficiency of
our approach but must happen if either no rounding is performed (α = 0) or if the
influence of rounding is too small compared to the smoothing of the Wasserstein
distance (e.g. α = 0.1 and τ = 0.5). Increasing the strength of rounding (larger α)
leads to a faster decrease in entropy (cf. Fig. 4.5 for the case of τ= 0.1) and therefore
to an earlier convergence of the process to a specific labeling. Thus, a more aggres-
sive rounding scheme yields a less regularized result due to the rapid decision for a
labeling at an early stage of the algorithm.

The empirical convergence rate depending on the rounding parameter α is dis-
played by Fig. 4.5, top. A fixed value of the smoothing parameter τ = 0.1 ensures a
sufficiently accurate approximation of the Wasserstein distance gradients and hence
of the Riemannian descent flow. In addition, the interplay between minimizing the
smoothed energy Eτ (4.7) and the rounding mechanism, induced by the entropy
H (4.43) in fτ,α (4.42), is illustrated by Fig. 4.5, bottom. Less aggressive rounding
(smaller values of α) leads to a more accurate numerical integration of the flow us-
ing a larger number of iterations, and thus to higher quality label assignments with
a lower energy of the objective function. We demonstrate this latter aspect quanti-
tatively in Section 4.5.2. For too small values of the rounding parameter α, the algo-
rithm does naturally not converge to an integral solution.

On the other hand, choosing the smoothing parameter τ too large lead to poor ap-
proximations of the Wasserstein distance gradients and consequently to erroneous
non-regularized labelings, as displayed by Fig. 4.4 (left column) corresponding to
τ = 0.5. Once τ is small enough (in our experiments: τ < 0.1) the Wasserstein dis-
tance gradients are properly approximated, and the label assignment is regularized
and can be controlled by α. In particular, this upper bound on τ is sufficiently
large to ensure very rapid convergence of the fixed point iteration for computing
the Wasserstein distance gradients.

Fig. 4.6 shows the connection between the objective function fτ,α (4.42) and the
discrete energy E (4.2) of the underlying graphical model. Minimizing fτ,α (yellow
curve) using our approach also minimizes the discrete energy E (violet curve), which
is calculated by rounding the assignment vectors after each iterative step. Further-
more, the interplay between the smoothed energy (4.7) Eτ (orange curve) and the
entropy H (4.43) (blue curve) of fτ,α = Eτ+αH is shown. These curves illustrate (i)
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Figure 4.5: Normalized average entropy (3.55) and smoothed energy Eτ (4.7). The
normalized average entropy (3.55) (TOP) and the smoothed energy Eτ (4.7) (BOTTOM)
with smoothing parameter τ = 0.1 are shown. TOP: By increasing the rounding pa-
rameter α, the entropy drops more rapidly and hence converges faster to an integral
labeling. BOTTOM: Two phases of the algorithm depending on the values for α are
clearly visible. In the first phase, the smoothed energy Eτ is minimized up to the
point where rounding takes over in the second phase. Accordingly, the sequence of
energy values first drops down to lower values corresponding to the problem relax-
ation and then adopts a higher energy level corresponding to an integral solution.
For smaller α, the algorithm spends more time on minimizing the smoothed energy.
This generally results in lower energy values even after rounding, i.e. in higher qual-
ity labelings.
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Figure 4.6: Connection between the objective function fτ,α (4.42) and the discrete
energy E (4.2) of the underlying graphical model. For this plot the rounding pa-
rameter was fixed α= 0.5. Minimizing fτ,α (yellow) by our approach also minimizes
E (violet), which was calculated for this illustration by rounding the assignment vec-
tors at every iterative step. Additionally, as already discussed in more detail in con-
nection with Fig. 4.5, the interplay between the two terms of fτ,α = Eτ+αH is shown,
where Eτ (orange) denotes the smoothed energy (4.7) and H (blue) the entropy (4.43)
causing rounding.

the smooth combination of optimization and rounding into a single process, and (ii)
that the original discrete energy (4.2) is effectively minimized by this smooth process.

4.5.2 Cyclic GraphicalModels onK3

In this experiment we explore all possible binary models, i.e. X = {0,1}, on the
minimal cyclic graph K3 (Fig. 4.7, left panel). Due to the single cycle, models exist
where the LP relaxation (2.42) returns a non-binary solution (red part of Fig. 4.7, right
panel). As a consequence, evaluating such models with our geometric approach for
minimizing (4.7) enables to check two cases:

1. Binary solution. Whenever solving the LP relaxation (2.42) by convex program-
ming returns the global binary minimum of (4.2) as solution, we assess if our
geometric approach based on the smooth approximation (4.7) returns this so-
lution as well.
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2. Non-binary solution. Whenever the LP relaxation has a non-binary vector as
global solution, which therefore is not optimal for the labeling problem (4.2),
we assess the rounding property of our approach by comparing the result with
the correct binary labeling globally minimizing (4.2).

The graph K3 enables us to specify the marginal polytope MK3 whose vertices
are the feasible binary combinatorial solutions that correspond to valid labelings
(cf. Section 2.2.4), and to examine the difference to the local polytope LK3 whose
representation only involves a subset of the constraints corresponding to MK3 .

Figure 4.7: The minimal binary cyclic graphical model K3. LEFT: The minimal bi-
nary cyclic graphical model K3 = (V ,E) = ({1,2,3}, {12,13,23}). RIGHT: The 8 vertices
(white background) of the minimally represented marginal polytope MK3 ⊂R6+ and
the 4 additional non-integer vertices (red background) of the minimally represented
local polytope LK3 ⊂R6+.

The constraints are more conveniently stated using the so-called minimal repre-
sentation of binary graphical models [74, Sect. 3.2], that involves the variables1

µi :=µi (1), i ∈V , µi j :=µi (1)µ j (1), i j ∈ E (4.47)

and encodes the local vectors (2.41) by

(
1−µi

µi

)
←

(
µi (0)
µi (1)

)
,


(1−µi )(1−µ j )

(1−µi )µ j

µi (1−µ j )
µi j

 ←


µi j (0,0)
µi j (0,1)
µi j (1,0)
µi j (1,1)

 . (4.48)

1We reuse the symbol µ for simplicity and only “overload” in this subsection the symbols µi ,µi j for
local vectors (2.41) by the variables on the left-hand sides of (4.47)
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Thus, it suffices to use a single variable µi for every node i ∈ V instead of two vari-
ables µi (0),µi (1), and also a single variable µi j for every edge i j ∈ E instead of
four variablesµi j (0,0),µi j (0,1),µi j (1,0),µi j (1,1). Then the local polytope constraints
(2.41) take the form

0 ≤µi j , µi j ≤µi , µi j ≤µ j , µi +µ j −µi j ≤ 1, ∀i j ∈ E . (4.49)

The marginal polytope constraints additionally involve the so-called triangle in-
equalities [23]∑

i∈V
µi −

∑
j k∈E

µ j k ≤ 1, (4.50a)

µ12 +µ13 −µ23 ≤µ1, µ12 −µ13 +µ23 ≤µ2, −µ12 +µ13 +µ23 ≤µ3.
(4.50b)

The right panel of Figure 4.7 lists the 8 vertices of MK3 and the 4 additional vertices
of LK3 that arise by dropping the subset of constraints (4.50).

We evaluate 105 models generated by randomly sampling the model parameters
(2.35): With U [a,b] denoting the uniform distribution on the interval [a,b] ⊂ R, we
set

θi =
(
1−p

p

)
− 1

2

(
1
1

)
, p ∼U [0,1], θi j =

(
p1 p2

p3 p4

)
, pi ∼U [−2,2], i ∈ [4]. (4.51)

Note the different scale, θi ∈ [−1
2 ,+1

2 ]2, θi j ∈ [−2,+2]2×2, which results in a larger
influence of the pairwise terms and hence make inference more difficult. Suppose,
for example, that the diagonal terms of θi j are large, which favours the assignment of
different labels to the nodes 1,2,3 ∈ V . Then assigning labels 0 and 1 to the vertices
1 and 2, respectively, will inherently lead to a large energy contribution due to the
assignment to node 3, no matter if this third label is 0 or 1, because it must agree
with the assignment either to node 1 or to 2.

Every binary vertex listed by Fig. 4.7 (right panel) is the global optimum of both
the LP relaxation (2.42) and the original objective function (4.2) in approximately
≈ 11.94% of the 105 scenarios, whereas every non-binary vertex is optimal in ap-
proximately ≈ 1.12%.
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An example where a non-binary vertex is optimal for the LP relaxation (2.42) is
given by the model parameter values

θ1 =
(−0.2261

0.2261

)
, θ12 =

(−0.9184 −1.6252
−1.8891 −0.9807

)
,

θ2 =
(−0.4449

0.4449

)
, θ13 =

(
0.3590 0.0958
−1.8668 1.5193

)
,

θ3 =
(−0.3202

0.3202

)
, θ23 =

(
1.2147 −1.5215
−0.3302 −0.0459

)
.

(4.52)

The corresponding solutions of the marginal polytope MK3 , the local polytope LK3

and our method are listed in Table 4.1. Since the LP-relaxation returns a non-binary
solution, rounding in a post-processing step amounts to random guessing. In con-
trast, our method is able to determine the optimal solution because rounding is
smoothly integrated into the overall optimization process.

µ1 µ2 µ3 Iterations

Marginal Polytope MK3 1 0 0 -

Local Polytope LK3 0.5 0.5 0.5 -

Our Method
α= 0.2 0.999 0.258e−3 0.205e−3 108

(τ= 1
10 )

α= 0.5 0.999 0.161e−3 0.114e−4 14

α= 0.9 0.999 0.239e−4 0.546e−6 8

Table 4.1: Minimal cyclic graphical model on K3: Solutions µ = (µ1,µ2,µ3) of the
marginal polytope MK3 , the local polytope LK3 and our method. We use (4.52) as
the parameter values for the triangle model. Our method was applied with threshold
10−3 as termination criterion (3.55), step-size h = 0.5, smoothing parameter τ = 0.1
and three values of the rounding parameter α ∈ {0.2,0.5,0.9}. By definition, min-
imizing over the marginal polytope returns the globally optimal discrete solution.
The LP relaxation has a fractional solution for this model, so that rounding in a post-
processing step amounts to random guessing. Our approach returns the global op-
timum in each case up to numerical precision.

Fig. 4.8 presents the results of the experiments for the minimal cyclic graphi-
cal model K3. In order to assess the influence of the rounding parameter α and
the smoothing parameter τ, we evaluate all 105 models for each pair of (τ,α), with
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Figure 4.8: Evaluation of the minimal cyclic graphical model K3. For every pair
of parameter values (τ,α), we evaluated 105 models, which were generated as ex-
plained in the text. In each experiment, we terminated the algorithm when the av-
erage entropy dropped below 10−3 or if the maximum number of 600 iterations was
reached. In addition, we chose a constant step-size h = 0.5. LEFT: The plot shows the
percentage of experiments where the energy returned by our algorithm had a relative
error smaller then 1% compared to the minimal energy of the globally optimal inte-
gral labeling. In agreement with Fig. 4.5 (bottom), less aggressive rounding yielded
labelings closer to the global optimum. RIGHT: This plot shows the correspond-
ing average number of iterations. The black region indicates experiments where the
maximum number of 600 iterations was reached, because too strong smoothing of
the Wasserstein distance (large τ) overcompensated the effect of rounding (smallα),
so that the convergence criterion (3.55) which measures the distance to integral so-
lutions, cannot be satisfied. In the remaining large parameter regime, the choice of
α enables to control the trade-off between high-quality (low-energy) solutions and
computational costs.

τ ∈ { 1
2 , 1

2.5 , . . . , 1
6.5 , 1

7 } and α ∈ {0.1,0.11, . . . ,0.99,1}. These statistics show that our algo-
rithm converges to integral solutions, except for very unbalanced parameter values:
strong smoothing with large τ, weak rounding with small α. Within the remaining
broad parameter regime, parameter α enables us to control the influence of round-
ing. In particular, in agreement with Fig. 4.5 (bottom), less aggressive rounding com-
putes labelings closer to the global optimum.

Tab. 4.2 displays the success rate and the number of iterations for three different
parameter configurations from Fig. 4.8. For instance, using α= 0.22 and τ= 0.2, our
algorithm finds in 97.35% of the experiments an energy with relative error smaller
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then 1% with respect to the optimal energy. In addition, the algorithm requires
on average 45 iterations to converge. By using instead more aggressive rounding
(α= 0.58 and τ= 0.15) in each iteration step (4.44), the average number of iterations
reduces to 9, but the accuracy also drops down to 88.6%.

Overall, these experiments clearly demonstrate the ability to control the trade-off
between high-quality (low energy) labelings and computational costs in terms of α,
for all values of τ below a reasonably large upper bound. In addition, a small number
of iterations is required to converge depending on the rounding parameter α.

α τ Success rate Iterations
0.22 0.2 97.35% 45
0.5 0.33 93.41% 15

0.58 0.15 88.6% 9

Table 4.2:Minimal cyclic graphical model on K3: Three different parameter con-
figurations and corresponding results. The table shows three different parameter
configurations extracted from Fig. 4.8. The comparison of the success rate and the
number of iterations until convergence clearly demonstrates the trade-off between
accuracy of optimization and convergence rate, depending on the rounding param-
eter α and the smoothing parameter τ. Overall, the number of iterations is signifi-
cantly smaller than for first-order methods of convex programming for solving the
LP relaxation, that additionally require rounding as a post-processing step to obtain
an integral solution.

4.5.3 Comparison toOtherMethods
In this section we compare our geometric approach to established inference algo-
rithms, namely sequential tree-reweighted message passing (TRWS) [42] and loopy
belief propagation (Loopy-BP) [76] based on the OpenGM package [5].

For this comparison, we consider the noisy binary labeling scenario depicted by
Fig. 4.9 (TOP ROW). Let f : V → [0,1] denote the noisy image data given on the grid
graph G = (V ,E) with a 4-neighborhood and X = {0,1} denote the labels. We use the
following data term and Potts prior,

θi =
(

f (i )
1− f (i )

)
for i ∈V and θi j =

(
0 1
1 0

)
for i j ∈ E . (4.53)

The threshold 10−3 is used for the normalized average entropy termination crite-
rion (3.55). Figure 4.9 shows the visual reconstruction as well as the corresponding
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discrete energy values and percentage of correct labels for all three methods. Our
method has similar accuracy and returns a slightly better optimal discrete energy
level than TRWS and Loopy-BP.

We investigate again the influence of the rounding mechanism by repeating the
same experiment, but using different values of the rounding parameterα ∈ {0.1,1,2,5}.
As shown by Fig. 4.9, the results confirm the findings of the preceding experiment:
More aggressive rounding (α large) leads to faster convergence but yields less regu-
larized results with higher energy values.

We wish to point out that the listed runtimes in Fig. 4.9 highly depend on the
respective implementation. Our implementation was neither optimized nor paral-
lelized. Parallelizing our approach is relatively simple, unlike TRWS which is sequen-
tial by design.

4.5.4 Non-Potts Prior
This experiment demonstrates that pre-specified pairwise model parameters (reg-
ularization) of a graphical model are properly taken into account by our approach.
We apply our approach based on a non-Potts prior to a non-binary labeling problem
with noisy input data, as depicted by Fig. 4.10.

As labels we use the following colors

X = {
`1 = , `2 = , `3 = , `4 = , `5 =

}⊂ [0,1]3 , (4.54)

which correspond to the five RGB-colors of the original image (Fig. 4.10). Let f : V →
[0,1]3 denote the noisy input image (Fig. 4.10, TOP ROW, center panel) given on the
grid graph G = (V ,E) with a 4-neighborhood. This image is created by randomly
selecting 40% of the original image pixels and uniformly sampling a label at those
positions. As unary term we use the ‖ ·‖1 distance with scaling factor ρ > 0

θi = 1

ρ

(‖ f (i )−`1‖1, . . . ,‖ f (i )−`5‖1
)
, i ∈V . (4.55)

Assuming we had prior knowledge of the image labeling problem. For example,
let the RGB-colors encode the image direction of the respective pixel, i.e. = "top",

= "bottom", = "center", = "left", and = "right" (Fig. 4.10 TOP ROW, left).
Hence, we know in advance that it makes no sense if "top" and "bottom" as well
as "left" and "right" are adjacent to each other, because they are separated by the
"center". This prior knowledge can be taken into account by specifying the non-
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Ground truth Noisy data

Geometric TRWS Loopy-BP
4977.24 / 98.38% 4979.61 / 98.07% 4977.75 / 98.38%
82.4 sec 0.206 sec 81.4 sec

α= 0.1 α= 1 α= 2 α= 5

4977.24 / 98.38% 5071.25 / 98.49% 5472.71 / 97.01% 7880.64 / 91.27%
82.4 sec 13.1 sec 9.17 sec 6.12 sec

Figure 4.9:Comparison to other methods. TOP ROW: Noisy image labeling problem:
a binary ground truth image (LEFT) to be recovered from noisy input data (RIGHT).
MIDDLE ROW: Results for the noisy labeling problem using a standard data term and
Potts prior (4.4) with discrete energy / accuracy / runtime. Parameter values for the
geometric approach: smoothing τ = 0.1, step-size h = 0.2 and rounding strength
α = 0.1. The threshold for the termination criterion is 10−3. All methods show sim-
ilar performance. BOTTOM ROW: Labeling results of the geometric approach using
different values of the rounding parameter α ∈ {0.1,1,2,5} with discrete energy / ac-
curacy / runtime: more aggressive rounding (α large) leads to less regularized results
with higher energy values. Parameter values of the geometric approach: smoothing
τ= 0.1, step size h = 0.2 and threshold 10−3 for termination.
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uniform pairwise term as follows

θi j = 1

10


0 10 1 1 1

10 0 1 1 1
1 1 0 1 1
1 1 1 0 10
1 1 1 10 0

 , i j ∈ E , (4.56)

which penalizes the unlikely label transitions by a factor of 10. In words, the entries
of θi j with a penalty value 1 correspond to the unlikely label transitions `1 ↔ `2

and `4 ↔ `5, whereas all other natural transitions are endowed with smaller penalty
values of 0 and 0.1, respectively.

The unlikely transitions `1 ↔ `2 ( ↔ ) and `4 ↔ `5 ( ↔ ) can be easily con-
fused by the unary term (4.55), due to the small distance of the colors representing
these labels. We would like to emphasize that no color embedding is used to fa-
cilitate this regularization task. The prior knowledge about the labeling problem is
exclusively used in the definition of the non-uniform prior (4.56) which was consid-
ered as given in terms of some discrete graphical model.

We show the influence of these non-uniform parameters on the labeling by com-
paring this model with a model where the pairwise terms are replaced by a Potts prior
(4.4) with λ = 1

10 . We use the scaling factor ρ = 15 for the unaries, a constant step-
size h = 0.1, rounding parameter α = 0.01, smoothing parameter τ = 0.01 and 10−4

as threshold for the normalized average entropy termination criterion (3.55).
The results depicted in Fig. 4.10 (BOTTOM ROW) clearly show the positive influence

of the non-Potts prior (labeling accuracy 99.34%) whereas using the Potts prior low-
ers the accuracy to 87.12%. This is due to the fact that the color labels `1 and `2 as
well as `4 and `5 have a relatively small ‖ · ‖1 distance and are therefore not easy to
distinguish using both the data term and a Potts prior. On the other hand, the addi-
tional knowledge about valid label configurations encoded by the non-uniform prior
(4.56) is sufficient to overcome this difficulty, despite using the same data term, and
to separate the regions correctly.
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`1

`2

`3

`4

`5

original image noisy image labels

Potts non-Potts
Acc : 87.12% Acc : 99.34%

Figure 4.10:Non-Potts prior example. TOP ROW: Original image (left), encoding the
image directions "top", "bottom", "center", "left" and "right" by the RGB-color la-
bels `1,`2,`3,`4 and `5 (right). The noisy test image (middle) is created by ran-
domly selecting 40% of the original image pixels and uniformly sampling a label
at those positions. Unlikely label transitions `1 ↔ `2 and `4 ↔ `5 are represented
by color (feature) vectors that are close to each other and hence can be easily con-
fused. BOTTOM ROW: Results of the labeling problem using the Potts and non-Potts
prior model together with accuracy values (Acc). Parameters for this experiment are
ρ = 15, smoothing τ = 0.01, step-size h = 0.1 and rounding strength α = 0.01. The
threshold for the termination criterion (3.55) is 10−4.
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Chapter 5
Model Parameter Learning for Adaptive Regularization
The focus of the present chapter is on the inverse problem of inference, the model
parameter learning problem. As discussed in Section 2.2.3, learning the canonical
parameters of a discrete graphical model with an underlying cyclic graph is quite
challenging for the following reasons.

• The evaluation of the partition function (2.23) is intractable and must be ap-
proximated.

• The inference subroutine of the learning framework can only be carried out
approximatively.

Since these approximation errors definitely influence the effectiveness of the learn-
ing procedure, we take another way by learning the parameters for the assignment
flow directly. Thereby, we ignore the connection to discrete graphical models derived
in the previous chapter. In contrast to graphical models, this strategy has the benefit
that the underlying inference task is solved exactly by following the assignment flow
which drives the learning process of the parameters.

Our proposed problem formulation (Section 5.1) has the convenient property that
the solution space of the parameters has again the form of an assignment manifold
(Section 5.1.1). Thus, all definitions, maps and integration schemes derived in Chap-
ter 3 can directly be transferred and applied. Afterwards, we provide the expressions
of the corresponding gradients and differentials (Section 5.2) and explain our opti-
mization strategy (Section 5.3). We end this chapter by numerically evaluating our
approach with two different types of experiments (Section 5.4).

The chapter is based on joint work with Fabrizio Savarino, Stefania Petra and
Christoph Schnörr, that was published as a conference paper [35] and as a more de-
tailed journal paper [37].

5.1 Problem Formulation
The parameter learning problem (5.1) is a specific instance of the general parameter
estimation formulation (1.4). The goal is to adapt the weights (3.39) of the linear
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assignment flow (3.49) so as to preserve important image structure in a supervised
manner. More specifically, we propose the following problem

min
Ω∈P

C
(
V (T,Ω)

)
(5.1a)

s.t. V̇ (t ) = F (V (t ),Ω), t ∈ [0,T ], V (0) = 0, (5.1b)

with components

P denotes the parameter manifold which represents the weights ωi k from
(3.39), in the following collectively denoted byΩ (see Section 5.1.1).

C is a objective function which measures the discrepancy between ground
truth labeling W ∗ and the labeling induced by V (T ) =V (T,Ω) at fixed
time T (see Section 5.1.2).

F (V ,Ω) denotes the vector field generating the modified linear assignment flow
(see Section 5.1.3).

Remark 5.1 It is important to note that the dependency of C(V (T,Ω)) on the weights
Ω is only implicitly given through the solution V (T ) = V (T,Ω) of the flow (5.1b).
Therefore, we present in Section 5.3 a numerical first-order scheme for optimizing
(5.1) where the gradient of C(V (T,Ω)) with respect to the parameter Ω is calculated
using the sensitivity analysis from Section 2.3. 4

5.1.1 The ParameterManifold
The parameter manifold represents the weights ωi k from (3.39) associated to the
neighborhood Ni , i ∈ V . To simplify the exposition, we assume that all neighbor-
hoods Ni have the same size

N := |Ni | for all i ∈V . (5.2)

Due to the constraints (3.39), the weight vector Ωi := (ωi 1, . . . ,ωi N )> can be viewed
as a point in SN . Accordingly, we define the parameter manifold

P :=SN × . . .×SN︸ ︷︷ ︸
m-times

(5.3)

as feasible set for learning the weights, which has the form of an assignment man-
ifold (3.18). Following the line of Section 3.1.2, P becomes a Riemannian manifold
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(P , g ) with the Fisher-Rao metric g and is identified with the embedding into Rm×N

P = {Ω ∈Rm×N : Ω1N = 1m andΩi k > 0 for all i ∈ [m],k ∈ [N ]}. (5.4)

Each point Ω ∈ P represents a global choice of weights with Ωi representing the
weightsωi k associated to the neighborhoodNi in (3.39). The constant tangent space
of P is denoted by TP and the corresponding orthogonal projection by

ΠP : Rm×N → TP , M 7→ΠP [M ] = (ΠTN [M1], . . . ,ΠTN [Mm])>. (5.5)

The global uniform weights are given by the barycenter

1P := (1SN , . . . ,1SN ) = 1m1
>
SN

∈P , (5.6)

where the second equality is due to the embedding (5.4).

Remark 5.2 Based on this parametrization, we compute a global expression of the
differential dS(W0) and describe the linear assignment flow (3.50) on the tangent
space by a corresponding expression in (5.15). 4

5.1.2 Objective Function
In the supervised setting, an image and a corresponding ground truth labeling are
given. We denote this ground truth labeling by W ∗ where every row W ∗

i is some
unit basis vector eki of Rn representing the ground truth label `ki at node i ∈ V . In
addition, the state V ∈ TW of the assignment flow (5.1b) parametrizes an assignment
W = exp1W (V ) ∈W .

Our objective function consists of accumulating the KL-divergence between the
ground truth W ∗

i and the assignment Wi for every node i ∈V ,

KL(W ∗
i ,Wi ) = ∑

j∈[n]
W ∗

i j log

(
W ∗

i j

Wi j

)
= 〈W ∗

i , log(W ∗
i )〉−〈W ∗

i , log(Wi )〉, (5.7)

which results in a measure of the global deviation between W parametrized by V
and the ground truth W ∗

C(V ) := ∑
i∈V

KL(W ∗
i ,exp1Sn

(Vi )) = 〈W ∗, log(W ∗)〉−〈W ∗, log
(

exp1W (V )
)〉. (5.8)
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Remark 5.3 Again, C does not explicitly depend on the weights Ω ∈P . In the prob-
lem formulation (5.1a), this dependency is only given implicitly through the evalu-
ation of C at V (T,Ω), where V (T,Ω) depends on the parametersΩ as solution of the
modified linear assignment flow (5.9).

5.1.3 Modified Linear Assignment Flow
In our supervised formulation (5.1), the data is represented by the likelihood matrix
(3.41). Depending on the initial choice of weights Ω0, the similarity matrix (3.42)
comprises the averaged data information. Hence, the data only influences the linear
assignment flow (3.50) through the constant similarity matrix S(W0). However, since
the initial weightsΩ0 are in general not adapted to any specific image structure, this
can lead to a loss of desired structural information through S(W0) at the outset, that
cannot be recovered afterwards.

To avoid this problem, we slightly modify the linear assignment flow (3.50) to ob-
tain an explicit data term, independent of the choice of initial weights. This is done
by replacing the constant term S(W0) with the lifted distances L(W0), which results
in the modified linear assignment flow

V̇ =ΠTW
[
L(W0)

]+dS(W0)[V ], V (0) = 0, W (t ) = exp1W
(
V (t )

)
. (5.9)

Remark 5.4 We wish to point out that the similarity matrix S(W0) is also involved in
the expression RS(W0) of the differential dS(W0) (see (5.14) below). However, the ef-
fect of this with respect to the initial weights is negligible. By keeping S(W0) constant
the right hand side of (5.9) is linear with respect to both the tangent vector V and the
parametersΩ. 4

5.2 Gradients andDifferentials
In Section 5.3 we calculate the gradient of C(V (T,Ω)) with respect to the parameters
Ω by using the sensitivity analysis from Section 2.3. In view of the formula for the
adjoint sensitivity (see Theorem 2.9 & 2.10), we need the following expressions that
we collect in this section:
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∇C Euclidean gradient of objective function (5.8) w.r.t. the states V .

dV F (V ,Ω) differential of the right-hand side (5.9) w.r.t. the states V .

dΩF (V ,Ω) differential of the right-hand side (5.9) w.r.t. the parametersΩ.

Proposition 5.1 (Euclidean gradient of C)
The Euclidean gradient of objective (5.8) for fixed W ∗ ∈W is given by

∇C(V ) = exp1W (V )−W ∗ for V ∈ TW . (5.10)

Proof See Appendix A.4. �

In order to simplify the following formulas and calculations, we calculate a global
expression for the differential dS(W ). To do so, we define the averaging matrix AΩ ∈
Rm×m depending on the weightsΩ ∈P by

(AΩ)i k := δk∈NiΩi k =
{
Ωi k , for k ∈Ni

0, else
, (5.11)

where δk∈Ni takes the value 1 if k ∈ Ni and 0 otherwise. Note that the averaging
matrix AΩ linearly depends on the weight parameters Ω. Thus, AΩ parametrizes
averages with respect to the underlying graph structure G in terms of the given the
neighborhoods (3.37). Then, the averages of the row vectors of a matrix M ∈ Rm×n

with weightsΩ are given by the matrix multiplication AΩM , with the i -th row vector
given by

(AΩM)i =
∑

k∈Ni

ωi k Mk . for all i ∈V . (5.12)

For later use, we record the following formula for the adjoint of AΩ as a linear map
with respect toΩ.

Lemma 5.2
If the averaging matrix is viewed as a linear map A : Rm×N → Rm×m , Ω 7→ AΩ, then
the adjoint map A> : Rm×m →Rm×N , B 7→ A>

B is given by(
A>

B )i j = Bi j for i ∈V , j ∈Ni . (5.13)
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Proof See Appendix A.4. �

By plugging AΩ (5.11) into the definition of the differential (3.51) we obtain the
global expression

dS(W )[V ] = RS(W )

[
AΩ

(
V

W

)]
, for all V ∈ TW , W ∈W , (5.14)

for the differential of the similarity matrix (3.42). Accordingly, the linear assignment
flow (5.9) on the vector space TW takes the form

V̇ (t ) =Π[L(W0)]+RS(W0)

[
AΩ

(
V (t )

W0

)]
, V (0) = 0, W (t ) = exp1W (V (t )). (5.15)

Remark 5.5 Equation (5.15) highlights the importance to fix S(W0) in order to obtain
a model that is linear in both the state vector V and the parametersΩ. 4

The following proposition collects the differentials of the right hand side of (5.15).

Proposition 5.3 (Differentials of the right hand side F )
The differentials of the map F : TW ×P → TW of the right-hand side of (5.9) with
respect to the first and second argument are given by

dV F (V ,Ω) : TW → TW , X 7→ dV F (V ,Ω)[X ] = RS(W0)[AΩX ], (5.16a)

dΩF (V ,Ω) : TP → TW , Ψ 7→ dΩF (V ,Ω)[Ψ] = RS(W0)[AΨV ]. (5.16b)

The corresponding adjoint mappings with respect to the standard Euclidean struc-
ture of Rm×n are

dV F (V ,Ω)> : TW → TW , X 7→ dV F (V ,Ω)>[X ] = A>
ΩRS(W0)[X ], (5.17a)

dΩF (V ,Ω)> : TW → TP , X 7→ dΩF (V ,Ω)>[X ] =ΠP
[

A>
(RS(W0)[X ])V >

]
, (5.17b)

with the adjoint A>
(·) from Lemma 5.2.

Proof See Appendix A.4. �
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5.3 Numerical Optimization

Summarizing the previous sections, the optimization problem (5.1) for adapting the
weights of the modified linear assignment flow (5.9) takes explicitly the form

min
Ω∈P

∑
i∈V

KL
(
W ∗

i ,Wi (T )
)

with W (T ) = exp1W
(
V (T )

)
(5.18a)

s.t. V̇ (t ) =Π[L(W0)]+RS(W0)

[
AΩ

(
V

W0

)]
, t ∈ [0,T ], V (0) = 0. (5.18b)

Our strategy for parameter learning is to follow the Riemannian gradient descent flow
on the parameter manifold P minimizing the potential

Φ : P →R, Ω 7→Φ(Ω) := C(V (T,Ω)) = ∑
i∈V

KL(W ∗
i ,Wi (T,Ω)). (5.19)

Due to (3.27), the Riemannian gradient flow on P takes the form

Ω̇(t ) =−gradPΦ
(
Ω(t )

)=−RΩ
[∇Φ(

Ω(t ))
)]

, with Ω(0) = 1P , (5.20)

where RΩ is given by (3.25) andΩ(0) = 1P represents an unbiased initialization (5.6),
i.e. uniform weights for every node i ∈V .

We use the geometric explicit Euler scheme (3.48) with constant step-size h′ > 0
for numerically discretizing (5.20) (see Algorithm 5.1). A subroutine of this proce-
dure is the computation of the Euclidean gradient ∇Φ(Ω) (see Algorithm 5.2) that we
explain next. Since Φ(Ω) = C(V (T,Ω)) depends only implicitly on Ω given through
the solution V (t ,Ω) of the modified linear assignment flow (5.9), and according to
(2.53), the gradient ofΦ decomposes as

∇Φ(Ω) = dΩV (T,Ω)>
[∇C(V (T,Ω))

]
, (5.21)

where dΩV (T,Ω)> is the sensitivity of the solution V (T,Ω) with respect to Ω and
∇C(V (T,Ω)) can be interpreted as an adjoint direction (see the paragraph below The-
orem 2.5).

We determine the adjoint sensitivity (5.21), which drives the Riemannian gradi-
ent descent flow and in turn adapts the weights Ω, by choosing the discretize-then-
differentiate approach (2.71). Recall the commutative diagram of Fig. 2.2 and rela-
tions summarized as Remark 2.7. We use an explicit Euler method with constant
step-size h > 0, which results in Algorithm 5.2.

97



CHAPTER 5 MODEL PARAMETER LEARNING FORADAPTIVE REGULARIZATION

Algorithm 5.1: Explicit Euler discretization of the Riemannian flow (5.20).

Data: Initial weightsΩ(0) = 1P , objective functionΦ(Ω) = C
(
V (T,Ω)

)
, step-size h′

Result: Weight parameter estimatesΩ∗

// geometric Euler integration

for k = 0, . . . ,K do
compute ∇Φ(Ω(k)) ; // Algorithm 5.2

Ω(k+1) = expΩ(k)

(−h′RΩ(k)

[∇Φ(Ω(k))
])

;

Algorithm 5.2: Computation of the Euclidean gradient ∇Φ(Ω(k)) (5.21).

Data: Current weightsΩ(k), step-size h
Result: Objective valueΦ(Ω(k)) = C(V (N )(Ω(k))), adjoint sensitivity ∂Φ(Ω(k))
// forward Euler integration

for j = 0, . . . , N −1 do
V ( j+1) =V ( j ) +hF

(
V ( j ),Ω(k)

)
;

compute λ(N ) =∇C(V (N )(Ω(k)));
set ∇Φ(Ω) = 0;
// backward Euler integration

for j = N −1, . . . ,0 do

λ( j ) =λ( j+1) +hdV F
(
V ( j ),Ω(k)

)>
λ( j+1);

∇Φ(Ω) += hdΩF
(
V ( j−1),Ω(k)

)>
λ( j ) ; // summand of (5.21)

5.4 Experiments
In this section, we demonstrate and evaluate our approach using two types of exper-
iments:

1. Adaptive Regularization of Curvilinear Line Structures: We consider a scenario
with 3 labels and curvilinear line structure that has to be detected and labeled
explicitly in noisy data. Just using uniform weights for regularization must fail.
In addition to the noise, the actual image structure is randomly generated as
well and defines a class of images. We demonstrate empirically that learning
the weights to adapt within local neighborhoods from example data solves this
problem (Section 5.4.1).

2. Pattern Formation by Label Transport: The second experiment adopts a dif-
ferent viewpoint and focuses on pattern formation, rather than on pattern de-
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tection and recovery. We demonstrate the modeling expressiveness of the as-
signment flow with respect to pattern formation. In fact, by using the linear
assignment flow as in the present chapter, label information can be flexibly
transported across the image domain under certain conditions. These exper-
iments just indicate what can be done, in principle, and stimulate further re-
search directions (Section 5.4.2).

5.4.1 Adaptive Regularization of Curvilinear Line Structures
We consider a collection of images containing line structures induced by random
Voronoi diagrams (Fig. 5.1, panel (a)). The goal is pixel-accurate labeling of any given
image with three labels

X = {
`1 = , `2 = , `3 =

}⊂ [0,1]3 , (5.22)

which represent = "thin line structure", = "homogeneous regions" and =
"texture". As usual in supervised machine learning, we first apply our approach dur-
ing a training phase in order to learn weight adaptivity from ground truth labelings,
and subsequently evaluate it in a test phase using novel unseen data.

Training Phase
We use 20 randomly generated images together with ground truth as training data:
Figure 5.1(a) shows one of these images and Figure 5.1(b) the corresponding ground
truth. Using these data we learn how to adapt the regularization parameter of the
modified linear assignment flow (5.9) by solving problem (5.1), with the specific form
given by (5.18).

Feature Vectors. The basis of our feature vectors are the outputs of simple 7×7 first-
and second-order derivative filters, which are tuned to orientations at 0,15, . . . ,180
degrees (we took absolute values of filter outputs to eliminate the 180 ∼ 360 degree
symmetry). We reduce the dimension of the resulting feature vectors from 24 to 12
by taking the maximum of the first-order and second-order filter outputs, for each
orientation. To incorporate more spatial information, we extract 3×3 patches from
this 12-dimensional feature vector field. Thus, our feature vectors fi , i ∈ V have di-
mension 3×3×12 = 108 and are given as a point set in the Euclidean feature space
F =R108.

Label Extraction. Using ground truth information, we divide all feature vectors
extracted from the training data into three classes: thin line structure, homogeneous
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(a) input scene (b) ground truth

Figure 5.1: Training data. The training data consist of 20 pairs of randomly gener-
ated images: (a) an input scene, and (b) the corresponding ground truth. The ground
truth images encode the labels with colors

{
, ,

}
= {line, homogeneous, texture}.

Even though the global image structure can be easily assessed by the human eye, as-
signing correct labels pixelwise by an algorithm requires context-sensitive decisions,
as the close-up view illustrates.

region and texture. We compute 200 prototypical feature vectors `c j ∈F , j ∈ [200], in
each class c ∈ {line,homogeneous,texture} by k-means clustering. Thus, each label
(`1,`2,`3) of (5.22) is represented by 200 feature vectors in F .

Distance Matrix. Even though in the original formulation of D (3.40) labels are
represented by a single feature vector, multiple representatives can be taken into ac-
count as well by modifying the distance matrix (3.40) accordingly. Again, by using
c ∈ {line,homogeneous,texture} = {1,2,3}, we define the entries of the distance ma-
trix Di c , for every i ∈V , as the distance between fi and the best fitting representative
`c j for class c, i.e.

Di c := min
j∈[200]

‖ fi −`c j‖2. (5.23)

The quality of this distance information is illustrated by Figure 5.2(b) that shows the
labeling obtained by local rounding, i.e. by assigning to each pixel i the label c =
minc̃ Di c̃ . Although the result looks similar to the ground truth (see Fig. 5.1(b)), it
is actually quite noisy when looking to single pixels in the close-up view of Figure
5.2(b).

Optimization. For each input image of the training set, we solve problem (5.1)
using Algorithms 5.1 and 5.2 and the following parameter values: |Ni | = 9×9 (size
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(a) random input data
(b) local rounding of
the distances (5.23)

Figure 5.2: Input data and local label assignments. The plots illustrate the input
data and the quality of the distances (5.23) between extracted feature vectors. Panel
(a) shows a randomly generated input image from which features are extracted, as
described in the text. Panel (b) shows the labeling obtained by local rounding, i.e. by
assigning the label, that minimizes the corresponding distance, to each respective
pixel. Comparing the close-up views of panel (b) and Fig. 5.1(b) (ground truth) shows
that label assignments to individual pixels are noisy and incomplete. ({ , , } =
{line, homogeneous, texture})

of local neighborhoods, for every i ), ρ = 1 (scaling parameter for distance matrix,
cf. (3.41)), h = 0.5 (constant step-size for computing the gradient with Alg. 5.2), and
T = 6 (end of time horizon). As for numerical optimization on the parameter man-
ifold P through the Riemannian gradient flow (Alg. 5.1), we use an initial value of
h′ = 0.0125 together with backtracking for adapting the step-size, for a maximal
number of 100 iterations, and we terminate the iteration once the relative change

|Φ(Ω(k))−Φ(Ω(k−1))|
h′|Φ(Ω(k))| (5.24)

of the objective functionΦ
(
Ω(k)

)= C
(
V (N )(Ω(k))

)
drops below 0.001.

Results. Figure 5.3 shows two results obtained during the training phase. They
illustrate that non-adaptive regularization using uniform weights results in blurred
partitions and fails completely to detect and label the line structures (panel (c)). On
the other hand, the adapted regularizer preserves and restores the structure nearly
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(a) input scene (b) local rounding of
distance information

(c) labeling with
uniform weights

(d) labeling with
optimal weights

Figure 5.3:Training phase: Labeling results. This figure shows results of the training
phase. Panel (a) shows the given input scene and panel (b) the corresponding lo-
cally rounded distance information. The labeling with uniform regularization (panel
(c)) returns smoothed over regions and completely fails to preserve the line struc-
tures. The adaptive regularizer preserves the line structure nearly perfect (panel (d)),
i.e. the optimal weights are able to steer the linear assignment flow successfully to-
wards the given ground-truth labeling. ({ , , } = {line, homogeneous, texture})

perfect (panel (d)), i.e. the optimal weights steered the linear assignment flow to-
wards the given ground-truth labeling.

Figure 5.4 shows a close-up view of a 10× 10 pixel region together with the cor-
responding 10×10 optimal weight patches, extracted from Ω∗. The top row depicts
(a) the training data, (b) the corresponding ground truth, (c) the local label assign-
ments, and (d) the labeling obtained by using the learned weightsΩ∗. Plot (e) shows
the corresponding optimal weight patches Ω∗

i = (ωi 1, . . . ,ωiN )> associated to every
pixel i in the 10×10 pixel region, where small and large weights are indicated by dark
and bright gray values, respectively. These weight patches illustrate the result of the
learning process for adapting the weights. Close to the line structure, the regularizer
increases the influence (with larger weights) of neighbors whose distance informa-
tion matches the prescribed ground truth label. Away from the line structure, the
regularizer has learned to suppress (with small weights) neighbors that belong to a
line structure.
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(a) training data (b) ground truth
(c) local rounding of

distance information

(d) labeling with

optimal weights

(e) Optimal weight patches

Figure 5.4: Training phase: Optimal weight patches. TOP ROW: (a) Close-up view of
training data (10×10 pixel region). (b) The corresponding ground truth section. (c)
Local label assignments. (d) Correct labeling using adapted optimal weights. BOT-
TOM ROW: (e) The corresponding optimal weight patches (10× 10 grid), one patch
for each pixel. Close to the line structure, the regularizer increases the influence of
neighbors on the geometric averaging of assignments whose distances match the
prescribed ground truth labels. Away from the line structure, the regularizer has
learned to suppress with small weights neighbors belonging to a line structure.
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Test Phase
During the training phase, optimal weights were associated with all training features
through optimization, based on ground truth and a corresponding objective func-
tion. In the test phase with novel data and features, appropriate weights have to be
predicted because ground truth is no longer available. We realize this by extracting
a coreset [55] from the output generated by Algorithm 5.1 during the training phase,
and constructing a map from novel features to weights, as described next.

Coreset. Let Ω∗ ∈ P denote the set of optimal weight patches generated by Algo-
rithm 5.1, and let P∗ denote the set of all 15×15 patches of local label assignments
based on the corresponding training features and distance (5.23). We partition P∗

into three classes: thin line structures, homogeneous regions and texture, and ex-
tracted for each class separately 225 prototypical patches by k-means clustering. To
each of these patches and the corresponding cluster, a prototypical weight patch was
assigned, namely the weighted geometric mean of all optimal weight patches in Ω∗

belonging to that cluster. As weights for the averaging we used the Euclidean dis-
tance between the respective patches of local label assignments and the correspond-
ing cluster centroid.

Figure 5.5 depicts 10 pairs of patches of prototypical label assignments and weights,
for each of the three classes: line, homogeneous, texture. Comparing these weight
patches with the optimal patches depicted by Figure 5.4, we observe that the former
are regularized (smoothed) by geometric averaging and, in this sense, summarize
and represent all optimal weights computed during the training phase.

Mapping features to weights. For each novel test image, we extract features using
the same procedure as done in the training phase and compute at each pixel i the
patch of local label assignments. For the latter patch, the closest patch of local la-
bel assignments of the coreset is determined, and the corresponding weight patch is
assigned to pixel i .

Note that the patch size 15×15 of local label assignments is chosen larger as the
patch size 9×9 of the weights that is used during training and testing. The former
larger neighborhood defines the local ‘feature context’ that is used to predict weights
for novel data.

Inference (labeling novel data). In the test phase, we use the modified linear as-
signment flow and all parameter values in the same way, as was done during train-
ing. The only difference is that predicted weight patches are used for regularization,
as described above.
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Results. Figure 5.6 shows a result of the test phase. The top row shows the input
data (panels (a) and (c)), whereas ground truth (b) is only shown for visual com-
parison. The bottom row shows the results obtained using uniform weights (d) and
predicted weights (e). The latter result clearly demonstrated the impact of weight
adaptivity. This aspect is further illustrated in panel (f).

Figure 5.7 shows predicted weight patches for novel test data in the same format as
Figure 5.4 depicts optimal weight patches computed during training. The similarity
of predicted and optimal weights for pixels close and away from local line structure,
demonstrates that the approach generalizes well to novel data. Since all data are ran-
domly generated, the results of Fig. 5.6 and Fig. 5.7 are representative for the entire
image class.

5.4.2 Pattern Formation by Label Transport
In this section we illustrate the model expressiveness of the assignment flow. Specif-
ically, we choose quite different labelings as input and target data, respectively, and
show that our learning approach can determine weights that ‘connect’ these pat-
terns by the assignment flow. This shows that the weights which determine the regu-
larization properties of the assignment flow actually encode information for pattern
formation. Finally, we briefly point out and illustrate limitations of our approach.

Pattern Completion
The top row of Figure 5.8 shows input and target labelings. The second row illus-
trates our approach to weight parameter learning using the linear assignment flow:
Starting with uniform weights and imposing the very sparse information of the in-
put labeling as constraint, the weights are adapted by the Riemannian gradient flow
on the parameter manifold and effectively steer the assignment flow to the target
labeling. After convergence we obtain the optimal weights Ω∗ and insert them into
the original nonlinear assignment flow. The evolution corresponding label assign-
ments is shown by the third row of Figure 5.8. The fact that the label assignment
at the final time T is close to the target labeling which the linear assignment flow
reaches exactly, confirms the close approximation of the nonlinear flow by the linear
assignment flow, as already demonstrated in [81] in a completely different way.

The rightmost panel of the top row shows, for each pixel, the deviation of the op-
timal weight patch from uniform weights. While it is obvious that the ‘source label-
ing’ of the input data receive large weights, the spatial arrangement of weights at all
other locations is hard to predict beforehand, by humans. This is why learning them
is necessary.
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(a) line

(b) homogeneous

(c) texture

Figure 5.5: Coreset visualization. This plot shows 3×10 prototypical patches of lo-
cal label assignments and the corresponding weight patches of the coreset, for each
of the 3 classes. (a) 10 prototypical pairs of the class line. Weight patches ‘know’ to
which neighbors large weights have to be assigned, such that the local line structure
is labeled correctly. (b) Weight patches of the homogeneous label class are almost
uniform, which is plausible, because the noisy assignments can be filtered most ef-
fectively. (c) The weight patches of the texture label are comparable to the homoge-
neous ones and almost uniform, for the same reason. (Color code

{
, ,

}
= {line,

homogeneous, texture}).
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(a) novel (test) data (b) ground truth
(c) local rounding of

distance information

(d) labeling with uniform weights
(e) labeling with

adaptive weights
(f ) difference to uniform weights

Figure 5.6: Test phase: Labeling results. TOP ROW: (a) Randomly generated novel
input data, (b) the corresponding ground truth and (c) the local label assignments.
BOTTOM ROW: (d) Labeling using uniform weights fails to detect and label line struc-
tures. (e) Adaptive regularizer based on predicted weights yields a labeling that
largely agrees with the ground truth. Panel (f ) illustrates weights adaptivity at each
pixel in terms of the distance of the predicted weight patch to the uniform weight.

Transporting and Enlarging Label Assignments
We repeat the experiment of the previous section using the academic scenario illus-
trated by Figure 5.9. A major difference is that locations of the input labeling do not
form a subset of the locations of the target labeling. As a consequence, the corre-
sponding ‘mass’ of assignments has to be both transported and enlarged.

The results shown by Figure 5.9 are quite similar to those of Figure 5.8, such that
the corresponding comments apply likewise. Looking at the optimal weight patches
in terms of their deviation from uniform weights (rightmost panel of Fig. 5.9, top row)
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it is both interesting and not too difficult to understand – after convergence and in-
formally by visual inspection – how these weights encode this particular ‘label trans-
port’. However, predicting these weights and certifying their optimality beforehand,
seems to be an infeasible task. For example, it is hard to predict that the creation
of intermediate locations where assignment mass temporarily accumulates (clearly
visible in Fig. 5.9), effectively optimizes the constrained functional (5.1). Learning
these weights, on the other hand, just requires to apply our approach.

Parameter Learning vs. Optimal Control
The limitations of our parameter learning approach are illustrated by Fig. 5.10. In
this experiment, we simply exceed the time horizon in order to inspect labelings in-
duced by the linear assignment flow after the point of time T , that was used for de-
termining optimal weights in the training phase. Starting with T , Figure 5.10 shows
these labelings for both experiments corresponding to Figures 5.8 and 5.9.

Unlike the fern pattern (top row) where the initial label locations form a subset
of the target locations and are imposed as constraints, the ‘moving mass pattern’
(bottom row) is unsteady in the following quite natural sense: the linear assignment
flow simply continues transporting mass beyond time T . As a result, assignments to
the white label are transported to locations of the black target pattern. Hence, the
target pattern is first created up to time T and destroyed afterwards.

This behavior is not really a limitation, but a consequence of merely learning con-
stant weight parameters. Due to the formulation of the optimization problem (5.1),
optimal weights not only encode the ‘knowledge’ how to steer the assignment flow
in order to solve the problem, but also the time period after which the task has to be
completed. Fixing this issue requires a higher-level of adaptivity: weight functions
depending on time and the current state of assignments would have to be estimated,
that may be adjusted online through feedback in order to control the assignment
flow in a more flexible way.
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(a) novel (test) data (b) ground truth (c) rounded distance (d) adaptive labeling

(e) predicted weight patches

Figure 5.7: Test phase: Predicted weight patches. TOP ROW: (a) Close-up view of
novel data (10×10 pixel window). (b) Corresponding ground truth section (just for
visual comparison, not used in the experiment). (c) Local label assignment. (d)
Labeling result using adaptive regularization with predicted weights. BOTTOM: (e)
Corresponding predicted weight patches (10× 10 grid), one patch for each pixel of
the test data (a). The predicted weight patches behave similar to the optimal weight
patches depicted by Fig. 5.4, that were computed during the training phase (for dif-
ferent data). This shows that our approach generalizes to novel data.
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Figure 5.8: Pattern completion. This figure illustrates the model expressiveness of
the assignment flow. TOP ROW: Input and target labelings. The task is to estimate
weights in order to steer the assignment flow to the target labeling. The rightmost
panel illustrates, for each pixel, the distance of the optimal weight patch from uni-
form weights. MIDDLE ROW: Label assignments of the linear assignment flow dur-
ing weight parameter estimation. The Riemannian gradient flow on the parameter
manifold effectively steers the flow to the target labeling. BOTTOM ROW: Label as-
signments of the nonlinear assignment flow using the optimal weights that were es-
timated using the linear assignment flow. Closeness of both labeling patterns at the
final point of time T = 5 demonstrates that the linear assignment flow provides a
good approximation of the full nonlinear flow.
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Figure 5.9: Transporting and enlarging label assignments. We use the same set-up
as in Fig. 5.8. TOP ROW: Label locations of the input data do not form a subset of
the target locations. Thus, ‘mass’ of label assignments has to be both transported
and enlarged. Rightmost panel: Distance of the optimal weight patch from uniform
weights, for every pixel. MIDDLE ROW: Applying our approach to (5.1) effectively
solves the problem. BOTTOM ROW: Inserting the optimal weights that are computed
using the linear assignment flow, into the nonlinear assignment flow, gives a simi-
lar result and underlines the good approximation property of the linear assignment
flow. It is interesting to obverse that computing the Riemannian gradient flow on the
parameter manifold entails ‘intermediate locations’ where assignment mass accu-
mulates temporarily. This underlines the necessity of learning, since it seems hard
to predict such an optimal regularization strategy beforehand.
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t = T t = T +0.5 t = T +1 t = T +1.5 t = T +2

t = T t = T +1.5 t = T +3 t = T +4 t = T +5

Figure 5.10: Parameter learning vs. optimal control. The plots show label assign-
ments by computing the assignment flow beyond the final point of time T used
during training, for the experiments corresponding to Figures 5.8 and 5.9. Unlike
the pattern completion experiment (top row) where few locations of initial label as-
signments are imposed as constraint, the target pattern (bottom row, at time T ) of
the moving-mass experiment is unsteady in the following sense: at time T , the flow
continues to transport mass which eventually erases the target pattern with assign-
ments of the white background label. The reason is that constant parameters are
only learned that not only encode the ‘knowledge’ how to steer the flow to the tar-
get pattern but also the time period [0,T ] for accomplishing this task. In order to
overcome this limitation, weight functions depending on time and the current state
of the assignments would have to be estimated by applying techniques of optimal
control.
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Chapter 6
Conclusion
Summary. With the present work we hope to have contributed to the rich literature
on algorithms for graphical models. Hopefully, the interplay of different research
areas (image processing, differential geometry, optimal control theory and machine
learning) and the corresponding different perspectives have provided new insights
into the recent advances in hierarchical architectures. Especially, we think it is worth
to investigate deep networks whose parametrizations and internal representations
are not fully understood from the perspective of optimal control theory. We hope
that this thesis and possible extensions of it further the understanding of these ar-
chitectures.

In Chapter 3 we have presented the work of [8] in detail as it serves as the basis for
our main contributions presented in Chapter 4 and 5.

Based on this smooth geometric setting, we presented in Chapter 4 a novel MAP
inference approach to the evaluation of discrete graphical models. The coupling
measures between adjacent nodes are incorporated by regularized Wasserstein dis-
tances. The novel algorithm propagates in parallel the corresponding local gradi-
ents – called Wasserstein messages – along edges. These messages are lifted to the
assignment manifold and drive a Riemannian gradient flow that terminates at an in-
tegral labeling. In contrast to established belief propagation, the local marginaliza-
tion constraints are satisfied throughout the process. A single parameter facilitates
the trade-off between accuracy of optimization and speed of convergence.

Conversely, in Chapter 5 we introduced a parameter learning approach for im-
age labeling based on the assignment flow. In a supervised setting, we estimated
weights for geometric averaging of label assignments in order to steer the flow to
prescribed ground truth labelings. By using a class of symplectic partitioned Runge–
Kutta methods, we have shown that this task can be accomplished by numerically
integrating the adjoint system in a consistent way. Consistent means that discretiza-
tion and differentiation for the computation of the adjoint sensitivity commute. An
additional convenient property of our approach is that the parameter manifold has
the mathematical structure of an assignment manifold, such that Riemannian gra-
dient descent can be used for efficiently solving the training problem.
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The output of the training phase served as a core set that consists of features ex-
tracted from training images and the respective optimal weights. In order to label
novel data, a mapping has to be specified that predicts optimal weights for this un-
seen data. We solved this task by nearest-neighbor prediction after partitioning the
core set using k-means clustering and geometric averaging of the weights, separately
for each cluster. We evaluated this approach for a class of images involving line struc-
tures where just using uniform weights inevitably fails. We additionally conducted
experiments that highlight the model expressiveness of the assignment flow and also
limitations caused by merely learning constant parameters.

Future Work. The inference approach presented in Chapter 4 motivates the follow-
ing research directions:

• Generalizing our approach to tighter relaxations. Investigate if our approach
can be generalized to relaxations based on hypergraphs and corresponding
entropy approximations [80, 51].

• Designing more advanced numerical schemes. A possible direction is to ad-
vance the numerical schemes by using multiple spatial scales.

• Addressing applications using graphical models with higher edge connectivity.
Since established inference algorithms based on convex programming notice-
ably slow down with increasing edge connectivity, it is worth investigating how
our approach scales for these applications.

The main insights of Chapter 5 include the following; Regarding numerical opti-
mization for parameter learning in connection with image labeling, our approach
is more satisfying than working with discrete graphical models, where parameter
learning requires evaluating the partition function, which is a much more involved
task when working with cyclic grid graphs. This latter problem of computational
statistics shows up in our scenario in similar form as the problem of designing the
prediction map from features to weight parameters. An essential difference between
these two scenarios is that by restricting the scope to statistical predictions at a lo-
cal scale, i.e. only within small windows, the prediction task becomes manageable,
since, regarding numerical optimization, no further approximations are involved at
all.

Nevertheless, the approach is by no means finished and should be seen as a first
step towards more advanced and expressive architectures. In particular, the ap-
proach could be extended in the following promising research directions:
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• Building a parametrized prediction map into the learning framework. The idea
is to design a parametrized prediction map that is learned during the learning
process. This would cast our two-step approach into a single process, com-
monly called end-to-end learning. This would have the benefit that the num-
ber of parameters can be reduced to a minimal but sufficient parametrization.
However, this could make the learning task much more involved depending
on the given image data.

• Learning weight functions instead of constant parameters. In order to con-
trol the assignment flow in a more flexible way and to reach a higher-level of
adaptivity, weight functions depending on time and the current state of as-
signments would have to be estimated and adjusted online through feedback.

• Composing several assignment flows in a hierarchical fashion. Intuitively, this
results in components which evolve on different time scales. The design of
such complex flows, their proper numerical integration over all scales and a
good understanding of suitable data representations at intermediate scales
define challenging research tasks.
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Appendix A
Proofs

A.1 Proofs of Chapter 2

Proofs of Section 2.3.1

Proof (Theorem 2.4) A detailed proof can be found in [32, Chapter I.14, Theorem
14.1]. In order to make this chapter self-contained, a sketch follows.

The integral representation of the solution to (2.51c) is given by x(t , p) = x0 +∫ t
0 f (x(s), p, s)d s. Differentiating with respect to p and exchanging integration and

differentiation by the theorem of Lebesgue yields

dp x(t , p) = dp x0 +
∫ t

0
dp f (x(s), p, s)d s (A.1a)

= dp x0 +
∫ t

0
dx f (x(s), p, s)dp x(s, p)+dp f (x(s), p, s)d s. (A.1b)

Substituting δ(t ) = dp x(t , p), gives

δ(t ) = δ0 +
∫ t

0
dx f (x(s), p, s)δ(s)+dp f (x(s), p, s)d s, (A.2)

which is the integral representation of the trajectory δ(t ) solving (2.55). �

Proofs of Section 2.3.3

Proof (Theorem 2.9) A proof can be found, e.g., in [17]. However, in order to make
this thesis self-contained, we include a proof here. Setting up the Lagrangian

L(x, p,λ) = C(x(T ))−
∫ T

0
〈λ,F (ẋ, x, p, t )〉d t (A.3)
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with multiplier λ(t ) and F (ẋ, x, p, t ) := ẋ − f (x, p, t ) ≡ 0, we get with Φ(p) = C(x(T ))
from (2.52)

∇Φ=∇pL= dp x(T )>∇C(
x(T )

)−∫ T

0

(
dẋ F dp ẋ +dx F dp x +dp F

)>
λ d t , (A.4)

where integration applies componentwise. By using dẋ F = I , where I denotes the
identity matrix, we partially integrate the first term under the integral,∫ T

0
dp ẋ>λ d t = dp x>λ

∣∣∣T

t=0
−

∫ T

0
dp x>λ̇ d t . (A.5)

We further obtain with dp F =−dp f and dx F =−dx f

∇Φ= dp x(T )>∇C(x(T ))−dp x>λ
∣∣∣T

t=0
+

∫ T

0
dp x>λ̇ d t +

∫ T

0

(
dx f dp x +dp f

)>
λ d t

(A.6a)

= dp x(T )>∇C(x(T ))−dp x(T )>λ(T )+dp x(0)>λ(0)

+
∫ T

0
dp x>λ̇+dp x>dx f >λ+dp f >λ d t .

(A.6b)

We consider systems where the initial value x0 is independent of the parameter p,
i.e. dp x(0) = 0. Additionally factoring out the unknown Jacobian dp x, we obtain

= dp x(T )>
(
∇C(x(T ))−λ(T )

)
+

∫ T

0
dp x>

(
λ̇+dx f >λ

)
+dp f >λ d t . (A.6c)

Now, by choosing λ(t ) such that conditions (2.67b) are fulfilled, i.e.

λ̇(t ) =−dx f >λ(t ), λ(T ) =∇xC(x(T )),

we finally obtain

∇Φ=
∫ T

0
dp f >λ(t ) d t . (A.7)

�

Proof (Lemma 2.11) Since we evaluate all occurring functions and their derivatives
at the same points p0, γ0 and λ0, we drop them as arguments in the following, to
simplify notation.
(i) Equation (2.76a) directly follows by differentiatingLwith respect toλ at (p0,γ0,λ0).
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(ii) Equation (2.76b) is immediately obtained by differentiating L with respect to γ

at (p0,γ0,λ0). Since dγφ is invertible at (p0,γ0), the resulting linear system uniquely
determines the vector λ0.
(iii) Next, we show that this λ0 also satisfies the first equation (2.75). By differentiat-
ing φ(p,γ) = 0 with respect to p at (p0,γ0), we obtain

dγφdpγ0 +dpφ= 0
dγφ is invertible⇐⇒ dpγ0 =−(dγφ)−1dpφ. (A.8)

We will make use of this identity for dpγ0 in the following. Differentiating Φ with
respect to p at p0 and by the chain rule, we obtain

∇Φ = ∇pC+dpγ
>
0 ∇γC

(2.76b)= ∇pC−dpγ
>
0 dγφ

>λ0 (A.9a)

(A.8)= ∇pC+ (
(dγφ)−1dpφ

)>dγφ
>λ0 =∇pC+dpφ

>λ0 (A.9b)

= ∇L, (A.9c)

which shows (2.75). �

Proof (Theorem 2.10) We begin by stating the Lagrangian of problem (2.70)

L(x, p,λ) = C
(
xN

)−λ>
0 (x0 −x(0))−

N−1∑
n=0

λ>
n+1

[
xn+1 −xn −hn

s∑
i=1

bi kn,i

]
−

N−1∑
n=0

hn

s∑
i=1

biΛ
>
n,i

[
kn,i − f (Xn,i , p, tn + ci hn)

]
.

(A.10)

In order to apply Lemma 2.11, we explain which role the variables γ,λ,φ play in this
situation:

1. Intermediate stages: The vector γ represents all intermediate stages related to
the evaluation of the function Φ(p) = C(xN (p)), i.e. all intermediate values xi

and stages ki of the Runge–Kutta method. These variables are stacked and
arranged as follows

γ=


x0

γ0

γ1
...

γN−1

 ∈Rd ′
, with γn =

[
kn

xn+1

]
∈R(s+1)nx , and kn =

kn,1
...

kn,s

 ∈Rsnx .

(A.11)
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2. Lagrange multiplier: The vector λ contains all Lagrange multipliers in (A.10)
belonging to the constraints (2.70b)-(2.70d). The multipliers are stacked and
arranged as follows

λ=



−λ0

−Λ0
...

−λN−1

−ΛN−1

−λN


∈Rd ′

, with Λn =

hnb1Λn,1
...

hnbsΛn,s

 ∈Rsnx . (A.12)

3. Intermediate mappings: Analogously, the vector φ contains all intermediate
mappings φn , for n = 1, . . . , N − 1 of the computation of Φ(p) = C(xN (p)). In
our situation, φ is the concatenation of the forward Runge–Kutta evaluation,
which we express using the Kronecker-product as

φ=


x0 −x(0)
Ψ1

Ψ2
...

ΨN−1

 ∈Rd ′
, with Ψn =

[
kn −Fn(Xn , p)

xn+1 −xn −hn(b>⊗ Inx )kn

]
=

[
Ψn,1

Ψn,2

]
∈R(s+1)nx ,

(A.13)

whereΨn,1 ∈Rsnx andΨn,2 ∈Rnx , as well as

Fn(Xn , p) =

 f (Xn,1, p, tn + c1hn)
...

f (Xn,s , p, tn + cshn)

 , Xn = 1s ⊗xn +hn(A⊗ Inx )kn =

Xn,1
...

Xn,s

 .

(A.14)

We proceed by computing the Jacobian dγφ. Note that the intermediate variables γn

(A.11) are only contained in the intermediate mappingsΨn (A.13), which results in a
sparse block structure of the overall Jacobian dγφ.
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1. Small block matrices: Each small block matrix represents the derivative of the
n-th iteration stepΨn and is given by

d(xn ,kn ,xn+1)Ψn =
[

dxnΨn,1 dknΨn,1 dxn+1Ψn,1

dxnΨn,2 dknΨn,2 dxn+1Ψn,2

]
=

[
Dn An

−Inx B>
n Inx

]
, (A.15)

with

An = Isnx −hndx Fn(Xn , p)(A⊗ Inx ), (A.16a)

B>
n =−hnb>⊗ Inx , (A.16b)

Dn =−dx Fn(Xn , p)(1s ⊗ Inx ), (A.16c)

where A and b are the Runge-Kutta coefficients given by the left tableau of
Fig. 2.1.

2. Sparse block structure: The overall Jacobian dγφ consists of N −1 blocks (one
for each iteration) of the form (A.15) and is given by

dγφ=



Inx

D1 A1

−Inx B>
1 Inx

D2 A2

−Inx B>
2 Inx

. . .
. . .

. . .

DN−1 AN−1

−Inx B>
N−1 Inx


. (A.17)

3. Invertibility of dγφ: A matrix M is invertible if det M 6= 0. Since the matrix dγφ
is lower block diagonal, its determinant is given by

detdγφ= det A1 · . . . ·det AN−1 (A.18)

Thus, we only need to show that det An 6= 0 for all n = 1, . . . , N − 1. Equation
(A.16a) reads in a more compact form

An = (Isnx −hn M), with M := dx Fn(Xn , p)(A⊗ Inx ). (A.19)
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We show det An 6= 0 by using the equivalent statement ker(An) = {0}. Now, let
x ∈Rsnx \{0}, then

‖x‖ ≤ ‖x −hn M x‖+‖hn M x‖ ≤ ‖An x‖+‖hn M‖‖x‖. (A.20)

By using the row-sum norm ‖ ·‖∞, we have

‖hn M‖∞ (A.19)= hn‖dx Fn(Xn , p)(A⊗ Inx )‖∞ ≤ hn‖dx Fn(Xn , p)‖∞‖(A⊗ Inx )‖∞
< hnL max

i=1,...,s

s∑
j=1

|ai j |
(2.60)< 1, (A.21)

where L denotes the Lipschitz constant of f and the step-size hn satisfies the
assumption (2.60). Substituting (A.21) into (A.20) gives

‖x‖ < ‖An x‖+‖x‖ ⇐⇒ 0 < ‖An x‖ ⇐⇒ x 6∈ ker(An). (A.22)

Since, the kernel of An is trivial, An is invertible and consequently the overall
Jacobian dγφ as well.

Now we are in a position to apply Lemma 2.11. More precisely, (2.76b) tells us
that the vector λ is uniquely determined by the linear system dγφ>λ=−∇γC. In our
situation, this system is given by

Inx D>
1 −Inx

A>
1 B1

Inx D>
2 −Inx

A>
2 B2

. . .

Inx

. . .

. . . D>
N−1 −Inx

A>
N−1 BN−1

Inx





−λ0

−Λ0

−λ1

−Λ1

...

−λN−1

−ΛN−1

−λN



=−



0

0

0

0
...

0

0

∇xC(xN )



.

(A.23)

We determine the exact identity of λ by backward substitution:
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1. From the last row of (A.23), we immediately obtain

λN =∇xC(xN ). (A.24)

2. Next, we prove equation (2.72a). For each n = 0, . . . , N −1, we obtain

0 = [
Inx D>

n −Inx

] λn

Λn

λn+1

=λn +D>
nΛn −λn+1 (A.25a)

=λn − (dx Fn(Xn , p)(1s ⊗ Inx ))>

hnb1Λn,1
...

hnbsΛn,s

−λn+1 (A.25b)

=λn − (1>s ⊗ Inx )dx Fn(Xn , p)>

hnb1Λn,1
...

hnbsΛn,s

−λn+1 (A.25c)

=λn −hn

s∑
i=1

bi dx f (Xn,i , p, tn + ci hn)>Λn,i −λn+1. (A.25d)

λn+1 =λn +hn

s∑
i=1

bi`n,i , with `n,i =−dx f (Xn,i , p, tn + ci hn)>Λn,i .

(A.25e)

3. The last equation (2.72c) follows by

0 = [
0 A>

n Bn
] λn

Λn

λn+1

 (A.26a)

= A>
nΛn +Bnλn+1 (A.26b)

= (
Isnx −hndx Fn(Xn , p)(A⊗ Inx )

)>
Λn −hn(b ⊗ Inx )λn+1 (A.26c)

= (
Isnx −hn(A>⊗ Inx )dx Fn(Xn , p)>

)
Λn −hn(b ⊗ Inx )λn+1. (A.26d)

In the following, we consider the i -th entry of the previous equation, i.e.
hnbiΛn,i ofΛn with i = 1, . . . , s.

0 = hnbiΛn,i −h2
n

s∑
j=1

a j i b j∂x f (Xn, j , p, tn + c j hn)>Λn, j −hnbiλn+1

(A.27a)
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Λn,i = λn+1 +hn

s∑
j=1

a j i b j

bi
dx f (Xn, j , p, tn + c j hn)>Λn, j (A.27b)

(A.25e)= λn +hn

s∑
i=1

bi`n,i −hn

s∑
j=1

a j i b j

bi
`n, j (A.27c)

= λn +hn

s∑
j=1

(
b j −

a j i b j

bi

)
`n, j , (A.27d)

with `n, j =−dx f (Xn, j , p, tn + c j hn)>Λn, j in (A.27c) and (A.27d).

Finally, we show the formula of the gradient (2.71), which is given by (2.75)

∇Φ=∇pC+dpφ
>λ0

∇pC=0= dpφ
>λ0. (A.28)

The Jacobian dpφ
> consists of the following building blocks: For the n-th iteration

stepΨn the local Jacobian with respect to parameter p reads

dpΨn =
[

dpΨn,1

dpΨn,2

]
=

[
D̄n

0

]
, with D̄n =−dp Fn(Xn , p)(1s ⊗ Inp ). (A.29)

By concatenating N − 1 of these blocks (one for each iteration n = 1, . . . , N − 1) of
(A.29), the overall Jacobian is given by

dpφ
> = [

0 D̄>
0 0 D̄>

1 0 . . . 0 D̄>
N−1 0

]
. (A.30)

Now, formula (2.71) is explicitly given by

∇Φ= dpφ
>λ0 (A.31a)

= [
0 D̄>

0 0 . . . 0 D̄>
N−1 0

]


−λ0

−Λ0

−λ1
...

−λN−1

−ΛN−1

−λN


=−

N−1∑
n=0

D̄>
nΛn (A.31b)

=
N−1∑
n=0

(dp Fn(Xn , p)(1s ⊗ Inp ))>Λn =
N−1∑
n=0

((1s ⊗ Inp ))dp Fn(Xn , p)>Λn (A.31c)
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(A.12)=
N−1∑
n=0

hn

s∑
i=1

bi dp f (Xn,i , p, tn + ci hn)>Λn,i . (A.31d)
�

A.2 Proofs of Chapter 3
Proofs of Section 3.1.1
Proof (Lemma 3.2) The first property follows by a direct calculation

expp (x + y) = pex+y〈
p,ex+y

〉 =
(
pex

)
e y〈(

pex
)

,e y
〉 =

(
pex

〈p,ex〉
)

e y〈(
pex

〈p,ex〉
)

,e y
〉

=
expp (x)e y〈
expp (x),e y

〉 = expexpp (x)(y).

Next we show the second property. Let γ : (−ε,ε) → S be a smooth curve with
γ(0) = p ∈S , γ̇(0) = v ∈ T . Then, the differential reads

dq expp (q)[v] = d

d t

peγ(t )

〈p,eγ(t )〉
∣∣∣∣

t=0

= γ̇(0) ·peγ(0) · 〈p,eγ(0)〉−peγ(0) · 〈p, γ̇(0) ·eγ(0)〉
〈p,eγ(0)〉2

= v ·peq · 〈p,eq〉−peq · 〈p, v ·eq〉
〈p,eq〉2

= v · peq

〈p,eq〉 −
peq

〈p,eq〉 · 〈v,
peq

〈p,eq〉 〉

=
(
diag

(
expp (q)

)
−expp (q)expp (q)T

)
v = Rexpp (q)[v]

Again, let γ : (−ε,ε) → S be a smooth curve with γ(0) = p ∈ S , γ̇(0) = v ∈ T . Then,
the last property follows by

d exp−1
p (q)[x] = d

d t
ΠTn log

q

γ(t )

∣∣∣∣
t=0

=ΠTn

γ(0)

q

γ̇(0)

γ(0)
=ΠTn

v

q
. �

Proof (Lemma 3.6) By using Expe,−1
p , the optimality condition (3.16b) reads

0 = ∑
i∈[N ]

ωi Expe,−1
p (pi )

(3.12b)= ∑
i∈[N ]

ωi Rp log
pi

p
(A.32a)
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= Rp

[ ∑
i∈[N ]

ωi log pi

]
−Rp

[
log p

]
. (A.32b)

According to Remark 3.1, with Rp = RpΠTn =ΠTn Rp , we have

=ΠTn Rp

[ ∑
i∈[N ]

ωi log pi

]
−ΠTn Rp

[
log p

]
. (A.32c)

= Rp

[ ∑
i∈[N ]

ωiΠTn log pi

]
−Rp

[
ΠTn log p

]
(A.32d)

Now, multiplying by R−1
p and using the identity exp−1

1Sn
(p) = ΠTn log p (A.32d) be-

comes

0 = ∑
i∈[N ]

ωi exp−1
1Sn

(pi )−exp−1
1Sn

(p). (A.32e)

Solving for p establishes the ‘≈’-relation in (3.17a)

p = exp1Sn

( ∑
i∈[N ]

ωi exp−1
1Sn

(pi )

)
. (A.32f)

We obtain the right hand side of (3.17a) by simply plugging the definitions of expp

and exp−1
p into (A.32f). This results in

p
(3.17a)= exp1Sn

( ∑
i∈[N ]

ωi exp−1
1Sn

(pi )

)
(3.13b)= exp1Sn

(
ΠTn

∑
i∈[N ]

ωi log pi

)
(A.33a)

= exp1Sn

(
ΠTn log

( ∏
i∈[N ]

pωi

i

)) (3.13a)=
(3.17b)

meang ,ω(P)

〈1,meang ,ω(P)〉 , (A.33b)

which establishes the formula. �

Proofs of Section 3.2
Proof (Theorem 3.7) The theorem is a direct consequence of Prop. 2.2. First of all,
the inverse lifting map exp−1

1W
: W → TW at the barycenter 1W ∈ W is a diffeomor-

phism between the smooth manifolds W and TW . By Prop. 2.1 we can construct a
unique φ-related vector field to X on TW with the pushforward of X via φ= exp−1

1W
.

Eq. (3.28b) follows directly as the unique φ-related vector field with φ= exp−1
1W

V̇ (t )
(2.6)= d exp−1

1W
(exp1W (V (t )))

[
Xexp1W (V (t ))

]
(A.34a)
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(i )= R−1
exp1W (V (t ))

[
Xexp1W (V (t ))

]
, (A.34b)

where we used in (i ) the following relation

d exp−1
1W

(W )[X ]
(3.14c)= ΠT

X
W

(3.9b)= R−1
W [X ]. (A.35)

Thus, by construction the vector fields Ẇ (t ) and V̇ (t ) are φ-related. Therefore, a
direct application of Prop. 2.2 gives that the integral curves of both vector fields can
be transformed into each other via the exp1W map: If V (t ) is an integral curve of
(3.28b), the curve exp1W ◦V (t ) is an integral curve of (3.28a). �

Proof (Corollary 3.8) This corollary is a direct consequence of Theorem. 3.7. By in-
serting the Riemannian gradient XW (t ) = −gradW f (W (t )) into (3.28b), we obtain
(3.30b):

V̇ (t )
(3.28b)= R−1

exp1W (V (t ))

[−gradW f (exp1W (V (t )))
]

(A.36a)

(3.8)= R−1
exp1W (V (t ))

[
−Rexp1W V (t )

[∇ f (exp1W (V (t )))
]]

(A.36b)

=−∇ f (exp1W (V (t ))). (A.36c)

The initial point V (0) in (3.30b) follows from

V (0) = exp−1
1W

(W (0))
(3.13b)= ΠT log( W (0)

1W
)

W (0)=1W= ΠT log(1m×n) = 0m×n . (A.37)
�

Proofs of Section 3.3.2
Proof (Lemma 3.10) With the following relation

exp−1
1Sn

(Lk (Wk ))
(3.41)= exp−1

1Sn

(
expWk

(−Dk /ρ)
)

(A.38)

(3.14a)= exp−1
1Sn

(
exp1Sn

(
exp−1

1Sn
(Wk )−Dk /ρ

))
(A.39)

= exp−1
1Sn

(Wk )−ΠTn (Dk /ρ) (A.40)

the similarity matrix (3.42) reads

Si (W ) = exp1Sn

( ∑
k∈Ni

wi k exp−1
1Sn

(Wk )−ΠTn (Dk /ρ)
)
. (A.41)
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Thus, the corresponding differential factorizes by the chain rule as follows

dSi (W )[V ] = d exp1Sn

( ∑
k∈Ni

wi k exp−1
1Sn

(Lk (Wk ))
)[ ∑

k∈Ni

wi k d exp−1
1Sn

(Wk )[Vk ]
]

(A.42)

(3.14b)= RSi (W )

[ ∑
k∈Ni

wi k d exp−1
1Sn

(Wk )[Vk ]
]

(A.43)

(3.14c)= RSi (W )

[ ∑
k∈Ni

wi kΠTn

Vk

Wk

]
(3.10)= ∑

k∈Ni

ωi k RSi (W )

[
Vk

Wk

]
(A.44)

This establishes formula (3.51). �

A.3 Proofs of Chapter 4
Proofs of Section 4.2
Proof (Proposition 4.2) Let γ : (−ε,ε) →W be a smooth curve, with ε> 0, γ(0) =µV
and γ̇(0) =V . We then have

〈∇Eτ(µV ),V 〉 = d

d t
Eτ

(
γ(t )

)∣∣∣
t=0

(A.45a)

(4.17)= ∑
i∈V

(
〈ΠT (θi ),Vi 〉+

∑
j : (i , j )∈E

d

d t
dθi j ,τ(γi (t ),γ j (t ))

∣∣∣
t=0

)
, (A.45b)

where γk (t ) denotes the k-th row of the matrix γ(t ) ∈W ⊂Rm×n . Since

d

d t
dθi j ,τ(γi (t ),γ j (t ))

∣∣∣
t=0

= 〈∇1dθi j ,τ(µi ,µ j ),Vi 〉+〈∇2dθi j ,τ(µi ,µ j ),V j 〉 , (A.46)

the r.h.s. of (A.45) becomes

〈∇Eτ(µV ),V 〉 = ∑
i∈V

(
〈ΠT (θi ),Vi 〉+

∑
j : (i , j )∈E

〈∇1dθi j ,τ(µi ,µ j ),Vi 〉
)

+ ∑
i∈V

∑
j : (i , j )∈E

〈∇2dθi j ,τ(µi ,µ j ),V j 〉 ,
(A.47)

where we separated the outer sum over the nodes i ∈ V into two parts. Then, the
second sum of (A.47) reads∑

i∈V

∑
j : (i , j )∈E

〈∇2dθi j ,τ(µi ,µ j ),V j 〉 =
∑
i∈V

∑
j∈V

δ(i , j )∈E 〈∇2dθi j ,τ(µi ,µ j ),V j 〉 (A.48a)
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= ∑
j∈V

∑
i∈V

δ(i , j )∈E 〈∇2dθi j ,τ(µi ,µ j ),V j 〉 (A.48b)

= ∑
j∈V

∑
i : (i , j )∈E

〈∇2dθi j ,τ(µi ,µ j ),V j 〉 (A.48c)

= ∑
i∈V

∑
j : ( j ,i )∈E

〈∇2dθ j i ,τ(µ j ,µi ),Vi 〉 , (A.48d)

where δ(k,l )∈E is the indicator function with value 1 if (k, l ) ∈ E and 0 if (k, l ) ∉ E . The
last equation (A.48d) follows by renaming the indices of summation. Substitution
into (A.47) gives

〈∇Eτ(µV ),V 〉 = ∑
i∈V

〈
ΠT (θi )+ ∑

j : (i , j )∈E
∇1dθi j ,τ(µi ,µ j )+ ∑

j : ( j ,i )∈E
∇2dθ j i ,τ(µ j ,µi ),Vi

〉
(A.49a)

= ∑
i∈V

〈∇i Eτ(µV ),Vi 〉 (A.49b)

which proves (4.18). �

Proof (Lemma 4.3) Let M∗ ∈ Π(µi ,µ j ) be a minimizer of (4.12). Then, due to the
assumption on Fτ, we have

dθi j ,τ(µi ,µ j ) = 〈θi j , M∗〉+Fτ(M∗) = 〈θ>i j , M>
∗ 〉+Fτ(M>

∗ ) . (A.50)

Now, let M̃ ∈Π(µ j ,µi ) be an arbitrary coupling measure. Then, M̃> ∈Π(µi ,µ j ) and
we have

〈θ>i j , M̃〉+Fτ(M̃) = 〈θi j , M̃>〉+Fτ(M̃>) ≥ 〈θi j , M∗〉+Fτ(M∗) = 〈θ>i j , M>
∗ 〉+Fτ(M>

∗ ) .

(A.51)

This shows that M>∗ ∈Π(µ j ,µi ) is a minimizer of dθ>i j ,τ(µ j ,µi ) and establishes equa-

tion (4.20). �

Proof (Corollary 4.4) Due to Lemma 4.3, we have ∇2dθ j i ,τ(µ j ,µi ) = ∇1dθi j ,τ(µi ,µ j )
and obtain

∇i Eτ(µV )
(4.18)= ΠT (θi )+ ∑

j : (i , j )∈E
∇1dθi j ,τ(µi ,µ j )+ ∑

j : ( j ,i )∈E
∇1dθi j ,τ(µi ,µ j )

(A.52a)

= ΠT (θi )+ ∑
j∈N (i )

∇1dθi j ,τ(µi ,µ j ), (A.52b)
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which proves (4.22). �

Proofs of Section 4.3
Proof (Theorem 4.5) The proof is divided into three steps:

1. Relate the orthogonal decomposition R2n = ker(A>) ⊕ im(A) to the tangent
space Tp (S×S) = T ×T ⊂R2n for any p = (p1, p2) ∈S×S .

2. Show the existence of a global isometric chart for the manifold S×S . The goal
is to represent the smoothed Wasserstein distance dΘ,τ and the dual objective
function g (µ,ν) in a convenient way.

3. End the proof by applying Theorem 1.2.

We proceed by subsequently doing the steps mentioned above:

1. Consider the unique decomposition ν = νker +νim ∈ ker(A>)⊕ im(A) of any
point ν ∈R2n . Then we have

ΠT×T (νim) = νT =ΠT×T (ν). (A.53)

At first, we show T ×T ⊆ im(A). For this, take an arbitrary v = ( vi
v j

) ∈ T ×T . Due

to the definition of T , we have 〈1n , vi 〉 = 〈1n , v j 〉 = 0 and thus 〈v,
(
1n
−1n

)
〉 = 0,

which according to Lemma 4.7 means v ∈ ker(A>)⊥ = im(A). As a conse-
quence of T ×T ⊆ im(A), we have ΠT×T (νker) = 0 and therefore (A.53) follows
from

ΠT×T (ν)−ΠT×T (νim) =ΠT×T (ν−νim) =ΠT×T (νker) = 0. (A.54)

2. There exists an open subset U ⊂ R2(n−1) and an isometry φ : U → S ×S such
thatφ−1 is a global isometric chart of the manifold S×S . φ can be constructed
as follows. Choose an orthonormal basis {vi , . . . , v2(n−1)} of the tangent space

T ×T , set b = 1
n

(
1n
1n

)
and define the isometry

ψ : R2(n−1) → (
T ×T

)+b, x 7→ψ(x) := B x +b, B x =
2(n−1)∑

i=1
xi vi . (A.55)

Because S×S is an open subset of
(
T ×T

)+b andψ an isometry, we have that
the set U :=ψ−1(S×S) ⊂R2(n−1) is also open and

φ :=ψ|U : U →S×S (A.56)
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the desired isometric mapping. Furthermore, since the basis {vi }2(n−1)
i=1 is or-

thonormal, the orthogonal projection reads

ΠT×T = BB>. (A.57)

3. Using φ given by (A.56), we obtain the coordinate representations

dΘ,τ := dΘ,τ ◦φ, g (x,ν) := g
(
φ(x),ν

)
(A.58)

of the smoothed Wasserstein distance dΘ,τ and the dual objective function
g (p,ν). Since we assume strong duality, that is equality of the optimal values
of (4.26) and (4.27), we have dΘ,τ(p) = maxν∈R2n g (p,ν). Setting xp = φ−1(p),
this equation translates in view of Lemma 4.10 to

g (xp ,νim) = max
νim∈im(A)

g (xp ,νim) = g (xp ,ν) = max
ν∈R2n

g (xp ,ν) = dΘ,τ(xp ), (A.59)

with unique maximizer νim = Πim(A)(ν). Let Bδ ⊂ im(A) be a compact neigh-
borhood of νim. Then (A.59) remains valid after restricting im(A) to Bδ. Be-
cause g , given by (4.23), is linear in the first argument and the mapping φ is
affine, the function g is convex in the first argument and differentiable. Hence
g satisfies the assumptions of Theorem 1.2.

In order to compute the gradient ∇x g (x,νim), it suffices to consider the first
term 〈φ(x),νim〉 of g , which only depends on x. Using (A.56), we have

〈φ(x),νim〉 = 〈B x +b,νim〉 = 〈x,B>νim〉+〈b,νim〉. (A.60)

Thus, ∇x g (x,νim) = B>νim which continuously depends on νim. As a conse-
quence, we may apply Theorem 1.2 and obtain due to (1.17)

∇dΘ,τ(xp ) =∇x g (xp ,νim) = B>νim. (A.61)

Using the differential Dφ(x) = B , we finally get

∇dΘ,τ(p) = B∇dΘ,τ(xp ) = BB>νim
(A.57)= ΠT×T (νim)

(A.53)= νT , (A.62)

which proves (4.24). �
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Proof (Lemma 4.6) Taking into account (2.41b), we write the right-hand side of
(4.12) in the form

min
M∈Rn×n

〈Θ, M〉+Gτ(M) s.t. AM =µ, M ≥ 0. (A.63)

Let ν= (ν1,ν2) ∈R2n denote the dual variables corresponding to the affine constraint
of (A.63). Then problem (A.63) rewritten in Lagrangian form reads

min
M∈Rn×n

{〈Θ, M〉+Gτ(M)+max
ν

〈ν,µ−AM〉} (A.64a)

⇔ min
M∈Rn×n

{
max
ν

〈ν,µ〉+Gτ(M)−〈A>ν−Θ, M〉}. (A.64b)

Since strong duality holds by assumption, interchanging min and max yields the dual
problem (4.27). Moreover, the optimal primal and dual objective function values are
equal, which gives with (A.64a) and (4.27)

−〈M ,A>ν−Θ〉+Gτ(M)+G∗
τ (A>ν−Θ) = 0. (A.65)

This implies (4.28a) by the subgradient inversion rule (see Theorem 1.1), whereas the
primal constraint (4.28b) is obvious. �

Proof (Lemma 4.7) Let z = ( x
y
) ∈R2n with z ∈ ker(A>). Applying A, we get

0 =AA>z
(1.11b)= A(x1>)+A(1y>)

(1.11a)=
(

nx +〈y,1n〉1n

〈x,1n〉1n +ny

)
(A.66)

and solving this equation to z gives (4.29a)

z =
(

x
y

)
=− 1

n

(〈y,1n〉1n

〈x,1n〉1n

)
(i )= λ

(
1n

−1n

)
, with λ := 1

n
〈x,1n〉 ∈R. (A.67)

Note, that we have exploited in step (i ) that 〈x,1n〉 = −〈y,1n〉 applies. Conversely,
in view of the definition (1.11b), it is clear that any vector from the set (4.29a) is in
ker(A>). The characterization of ker(A>)⊥ directly follows from the definitions. �

Proof (Lemma 4.8) We first show „⊆“ in (4.30b), i.e. if ν is an optimal dual solution,
then

argmax
ν∈R2n

g (p,ν) ⊆ ν+ker(A>). (A.68)
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Let ν′ 6= ν be another optimal dual solution, that is g (p,ν) = g (p,ν′). By (4.23), this
equation reads

G∗
τ (A>ν−Θ)−G∗

τ (A>ν′−Θ) = 〈p,ν−ν′〉 . (A.69)

Moreover, due to the optimality conditions (4.28), ν′ satisfies

M
′ =∇G∗

τ (A>ν′−Θ), AM
′ = p, (A.70)

where M
′

is the corresponding primal optimal solution. Hence

〈p,ν−ν′〉 = 〈AM
′
,ν−ν′〉 = 〈M

′
,A>(ν−ν′)〉 (A.70)= 〈∇G∗

τ (A>ν′−Θ),A>(ν−ν′)〉 . (A.71)

Using the shorthands w =A>ν−Θ and w ′ =A>ν′−Θ, we have

w ′−w =A>(ν′−ν) (A.72)

and therefore

G∗
τ (w ′)−G∗

τ (w)
(A.69)= 〈p,ν′−ν〉 (A.71)= 〈∇G∗

τ (w ′), w ′−w〉. (A.73)

Since G∗
τ is strictly convex, this equality can only hold if

0 = w ′−w
(A.72)= A>(ν′−ν) =⇒ ν′−ν ∈ ker(A>). (A.74)

This shows that ν and ν′ can only differ by a nullspace vector, i.e. we have shown
relation (A.68).

Next, we show „⊇“ in (4.30b), that is vectors characterized by the right-hand side
of (4.30b) maximize the dual objective function g (p,ν). Let again ν be an optimal
dual solution, and let ν′ ∈ ν+ker(A>) be an arbitrary vector. Lemma 4.7 implies that
ν′ takes the form

ν′ = ν+λ
(
1n
−1n

)
, λ ∈R. (A.75)

Then, since
〈

p,
(
1n
−1n

)〉
= 0 and A>ν′ =A>ν, we have

g (a,ν′) = 〈p,ν+λ
(
1n
−1n

)
〉−G∗

τ

(
A>(

ν+λ
(
1n
−1n

))−Θ)
(A.76a)

= 〈p,ν〉−G∗
τ (A>ν−Θ) = g (a,ν), (A.76b)
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that is ν′ ∈ argmaxν∈R2n g (p,ν).

Finally, we show (4.30a): Suppose
〈

p,
(
1n
−1n

)〉
6= 0, ν is an optimal dual solution and

ν′ is another optimal dual vector of the form (A.75) shown above. Inserting (A.75)
into (A.69) yields

0 = 〈p,ν′−ν〉 =λ〈p,
(
1n
−1n

)
〉 =⇒ λ= 0, (A.77)

since
〈

p,
(
1n
−1n

)〉
6= 0. Thus, ν′ = ν by (A.75), which shows uniqueness of ν as claimed

by (4.30a). �

Proof (Lemma 4.9) We first recall that for any subspace U ⊂ V of a finite dimen-
sional vector space V the orthogonal decomposition V =U ⊕U⊥ applies.

Now, let F : V → W be linear map between finite dimensional vector spaces. The
statement follows by the basic linear algebra formula

im(F ) = ker(F>)⊥. (A.78)

By setting V =R2n and U = ker(A>) we have

R2n = ker(A>)⊕ker(A>)⊥ (A.78)= ker(A>)⊕ im(A), (A.79)

which proofs statement (4.31). �

Proof (Lemma 4.10) We first show (4.32b). Let ν be an optimal dual solution. Since〈
p,

(
1n
−1n

)〉
= 0, (4.30b) of Lemma 4.8 yields

argmaxν∈R2n g (p,ν) = ν+ker(A>) = νker +νim +ker(A>).

This shows νim ∈ ν+ ker(A>), that is νim ∈ im(A) is a maximizer, which implies
(4.32b).

Now, we show (4.32a). Let ν′im ∈ im(A) be another maximizer. As before, we use
the representation ν′im ∈ ν+ ker(A>), that is ν′im = νker +νim + ν̃ker, for some ν̃ker ∈
ker(A>). This implies ν′im = νim, i.e. uniqueness (4.32a) of the dual maximizer in
im(A). �
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Proofs of Section 4.4.1

Proof (Proposition 4.12) An Euler-step for following the Riemannian gradient de-
scent flow of fτ,α on the tangent space reads (with ∇i =∇Wi )

V (k+1)
i =V (k)

i −h∇i f (W (k)) =V (k)
i −h∇i Eτ(W (k))−α∇i H(W (k)), i ∈ [m], (A.80)

where the i -th row of W (k) is given by W (k)
i = exp1Sn

(V (k)
i ), 1Sn = 1

n 1n .

In order to compute the gradient of the entropy, we consider a smooth curve
γ : (−ε,ε) →W with γ(0) =W and γ̇(0) = X . Then

d

d t
H(γ(t ))|t=0 =−〈X , log(W )〉−〈W,

1

W
·X 〉 =−〈X , log(W )〉−〈11>, X 〉. (A.81)

Since 〈log(W ), X 〉 = 〈ΠT m
(
log(W )

)
, X 〉 and 〈11>, X 〉 = 〈1, X 1〉 = 〈1,0〉 = 0, we have

〈∇H(W ), X 〉 = d

d t
H(γ(t ))|t=0 = 〈−ΠT m

(
log(W )

)
, X 〉. (A.82)

Thus, usingΠT (log(Wi )) = exp−1
1Sn

(Wi ) from (3.13b), we obtain

∇i H(W (k)) =−ΠT

(
log(W (k)

i )
)
=−exp−1

1Sn

(
exp1Sn

(V (k)
i )

)=−V (k)
i . (A.83)

Substitution into (A.80) gives

V (k+1)
i = (1+α)V (k)

i −h∇i Eτ(W (k)) (A.84)

and in turn the update

W (k+1)
i = exp1Sn

(V (k+1)
i ) = e(1+α)V (k)

i ·e−h∇i Eτ(W (k))

〈1n ,e(1+α)V (k)
i ·e−h∇i Eτ(W (k))〉

(A.85a)

= (eV (k)
i )(1+α) ·e−h∇i Eτ(W (k))

〈1n , (eV (k)
i )1+α ·e−h∇i Eτ(W (k))〉

= (W (k)
i )(1+α) ·e−h∇i Eτ(W (k))

〈1n , (W (k)
i )1+α ·e−h∇i Eτ(W (k))〉

(A.85b)

= (W (k)
i )(1+α) ·e−h∇i Eτ(W (k))

〈(W (k)
i )1+α,e−h∇i Eτ(W (k))〉

(A.85c)

which is (4.44). �
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A.4 Proofs of Chapter 5
Proofs of Section 5.2
Proof (Proposition 5.1) Let V ∈ TW . Note that for every i ∈V

〈W ∗
i , log

(
exp1Sn n(Vi )

)〉 = 〈W ∗
i ,Vi − log(〈1,eVi 〉)1〉 = 〈W ∗

i ,Vi 〉+ log(〈1,eVi 〉). (A.86)

Hence the KL-divergence between W ∗
i and the induced assignment Wi = exp1Sn n(Vi )

takes the form

KL
(
W ∗

i ,Wi
)= 〈W ∗

i , log(W ∗
i )〉−〈W ∗

i ,Vi 〉+ log(〈1,eVi 〉) (A.87)

and results in the following expression for C from (5.8),

C(V ) = 〈W ∗, log(W ∗)〉−〈W ∗,V 〉+ ∑
i∈[m]

log(〈1,eVi 〉). (A.88)

Take X ∈Rm×n and set γ(t ) :=V + t X for t ∈R. Then, the above formula for C implies

〈∂C (V ), X 〉 = d

d t
C (γ(t ))|t=0 =−〈W ∗, X 〉+ ∑

i∈[m]

1

〈1,eVi 〉 〈e
Vi , Xi 〉 = 〈exp1W (V )−W ∗, X 〉.

(A.89)

Since X ∈Rm×n was arbitrary, the expression (5.10) follows. �

Proof (Lemma 5.2) For arbitrary B ∈ Rm×m and Ω ∈ Rm×N , we obtain 〈AΩ,B〉 =∑
i , j∈V δ j∈NiΩi k Bi k = 〈Ω, A>

B 〉 due to (5.11). �

Proof (Proposition 5.3) Let V , X ∈ TW and set γ(t ) :=V + t X ∈ T0 for all t ∈R. Then

dV F (V ,Ω)[X ] = d

d t
F (γ(t ),Ω)|t=0 = RS(W0)[AΩγ̇(0)] = RS(W0)[AΩX ]. (A.90)

Similarly, for Ω ∈P and Ψ ∈ TP , let η(t ) :=Ω+ tΨ ∈P be a curve with t ∈ (−ε,ε) for
sufficiently small ε> 0. The linearity of the averaging operator AΩ with respect toΩ
gives

dΩF (V ,Ω)[X ] = d

d t
F (V ,η(t ))|t=0 =

d

d t
RS(W0)[Aη(t )V ]|t=0 = RS(W0) AΨ[V ]. (A.91)
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We now determine the adjoint differentials. Consider arbitrary X ,Y ∈ TW and note
that the linear map RS(W0) is symmetric, since every component map RSi (W0) is sym-
metric by (3.7). Thus,

〈dV F (V ,Ω)[Y ], X 〉 = 〈RS(W0) [AΩY ] , X 〉 = 〈Y , A>
ΩRS(W0)[X ]〉 (A.92)

and therefore dV F (V ,Ω)>[X ] = A>
ΩRS(W0)[X ]. Now let arbitrary Ψ ∈ TP and X ∈ TP

be given. Then

〈dΩF (V ,Ω)[Ψ], X 〉 = 〈RS(W0) [AΨV ] , X 〉 = 〈AΨ, (RS(W0)[X ])V >〉 (A.93a)

= 〈Ψ, A>
(RS(W0)[X ])V >〉 = 〈Ψ,ΠP

[
A>

(RS(W0)[X ])V >
]〉, (A.93b)

which proves the expression for the corresponding adjoint. �
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Appendix B
Derivation of Loopy Belief Propagation
As stated in Section 2.2.5, loopy belief propagation by message passing is given by the
fixed point equation (2.50). In this section we derive equation (2.50) in detail.

We start by considering the smoothed primal linear program (2.46) written in the
form

min
µ

〈θ,µ〉−εH(µ) (B.1a)

s.t.
∑

xi∈X
µi (xi ) = 1, ∀i ∈V , (B.1b)∑

x j∈X
µi j (xi , x j ) =µi , ∀i j ∈ E ,∀xi ∈X , (B.1c)∑

xi∈X
µi j (xi , x j ) =µ j , ∀i j ∈ E ,∀x j ∈X , (B.1d)

µ≥ 0, (B.1e)

with smoothing parameter ε> 0, Bethe entropy function

H(µ) = ∑
i j∈E

H(µi j )− ∑
i∈V

(
d(i )−1

)
H(µi ), (B.2a)

degree d(i ) := |N (i )| of vertex i and local entropy functions

H(µi ) =− ∑
xi∈X

µi (xi ) logµi (xi ), (B.2b)

H(µi j ) =− ∑
xi ,x j∈X

µi j (xi , x j ) logµi j (xi , x j ). (B.2c)

The constraints (B.1b)-(B.1d) represent the feasible set LG .

As already pointed out in Section 2.2.5, we obtain a relation between µ and ν by
evaluating the optimality condition ∇µL(µ,ν) = 0 based on the corresponding La-
grangian of (B.1). In order to derive explicit formulas, we rewrite the Bethe entropy
function (B.2a) in terms of the mutual information which is summarized in the fol-
lowing lemma.
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Lemma B.1
Suppose µ satisfies the marginalization constraints (2.39). Then, the Bethe entropy
(B.2a) can be rewritten in the form

H(µ) = ∑
i∈V

H(µi )− ∑
i j∈E

Ii j (µi j ) (B.3)

where Ii j is the mutual information

Ii j (µi j ) := KL
(
µi j ,µiµ j

)= ∑
xi ,x j∈X

µi j (xi , x j ) log
µi j (xi , x j )

µi (xi )µ j (x j )
. (B.4)

Proof The proof is straightforward. First, we rewrite the mutual information

Ii j (µi j )
(B.4)= ∑

xi ,x j∈X
µi j (xi , x j ) log

µi j (xi , x j )

µi (xi )µ j (x j )
(B.5)

= ∑
xi ,x j∈X

µi j (xi , x j )
(
logµi j (xi , x j )− logµi (xi )− logµ j (x j )

)
(B.6)

= ∑
xi ,x j∈X

µi j (xi , x j ) logµi j (xi , x j )

− ∑
xi ,x j∈X

µi j (xi , x j ) logµi (xi )− ∑
xi ,x j∈X

µi j (xi , x j ) logµ j (x j ).
(B.7)

The last two summands can be rewritten as follows

− ∑
xi ,x j∈X

µi j (xi , x j ) logµi (xi ) = − ∑
xi∈X

logµi (xi )
∑

x j∈X
µi j (xi , x j ) (B.8)

(i )= − ∑
xi∈X

logµi (xi )µi (xi )
(B.2b)= H(µi ). (B.9)

In (i ) we have taken into account that the marginalization constraints (2.39) have to
hold. Consequently, (B.7) reads

Ii j (µi j )
(B.2c)= −H(µi j )+H(µi )+H(µ j ). (B.10)

Inserting (B.10) into (B.3) gives

H(µ) = ∑
i∈V

H(µi )− ∑
i j∈E

Ii j (µi j ) (B.11a)

= ∑
i∈V

H(µi )+ ∑
i j∈E

H(µi j )− ∑
i j∈E

H(µi )− ∑
i j∈E

H(µ j ) (B.11b)
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and by plugging the following identity∑
i j∈E

H(µ j ) = 1
2

∑
i∈V

∑
j∈N (i )

H(µi ) = 1
2

∑
i∈V

H(µi )
∑

j∈N (i )
1 = 1

2

∑
i∈V

H(µi )d(i ) (B.11c)

into (B.11b) gives

H(µ) = ∑
i∈V

H
(
µi

)+ ∑
i j∈E

H(µi j )− 1
2

∑
i∈V

H(µi )d(i )− 1
2

∑
j∈V

H(µ j )d( j )

= ∑
i∈V

H
(
µi

)+ ∑
i j∈E

H(µi j )− ∑
i∈V

H(µi )d(i ) (B.11d)

= ∑
i j∈E

H(µi j )− ∑
i∈V

(
d(i )−1

)
H(µi ). (B.11e)

This establishes formula (B.2a). �

Now, in order to find an expression for the derivative of the Bethe entropy we com-
pute

d

dµi (xi )
Ii j (µi j )

(B.4)= d

dµi (xi )

( ∑
xi ,x j∈X

µi j (xi , x j ) log
µi j (xi , x j )

µi (xi )µ j (x j )

)
(B.12a)

= ∑
x j∈X

µi (xi )µ j (x j )
d

dµi (xi )

(
µi j (xi , x j )

µi (xi )µ j (x j )

)
(B.12b)

= ∑
x j∈X

µi (xi )µi j (xi , x j )

(
− 1

µ2
i (xi )

)
(i i )= −1, (B.12c)

whereby in (i i ) we again have taken into account that the marginalization con-
straints (2.39) have to hold, and

d

dµi j (xi , x j )
Ii j (µi j )

(B.4)= d

dµi j (xi , x j )

( ∑
xi ,x j∈X

µi j (xi , x j ) log
µi j (xi , x j )

µi (xi )µ j (x j )

)
(B.12d)

= log
µi j (xi , x j )

µi (xi )µ j (x j )
+µi (xi )µ j (x j )

1

µi (xi )µ j (x j )
(B.12e)

= log
µi j (xi , x j )

µi (xi )µ j (x j )
+1. (B.12f)
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By using

d

dµi (xi )
H(µi )

(B.2b)= d

dµi (xi )

(
− ∑

xi∈X
µi (xi ) logµi (xi )

)
=− logµi (xi )−1, (B.13)

the derivatives of the Bethe entropy are given by

d

dµi (xi )
H(µ)

(B.3)= d

dµi (xi )

(∑
i∈V

H(µi )

)
− d

dµi (xi )

( ∑
i j∈E

Ii j (µi j )

)
(B.14a)

(B.12c)=
(B.13)

− logµi (xi )−1+1 =− logµi (xi ) (B.14b)

d

dµi j (xi , x j )
H(µ)

(B.3)= − d

dµi j (xi , x j )

( ∑
i j∈E

Ii j (µi j )

)
(B.14c)

(B.12f)= − log
µi j (xi , x j )

µi (xi )µ j (x j )
−1. (B.14d)

Finally, setting temporarily ε= 1, the corresponding Lagrangian of (B.1) reads

L(µ,ν) = 〈θ,µ〉−H(µ)+ ∑
i∈V

νi
(
1− ∑

xi∈X
µi (xi )

)
+ ∑

i j∈E

∑
xi∈X

νi j (xi )
( ∑

x j∈X
µi j (xi , x j )−µi

)
+ ∑

i j∈E

∑
x j∈X

νi j (x j )
( ∑

xi∈X
µi j (xi , x j )−µ j

)
,

(B.15)

and its partial derivatives with respect to µ are given by

d

dµi (xi )
L(µ,ν) = θi (xi )+ logµi (xi )−νi (xi )− ∑

j∈N (i )
νi j (xi ), (B.16a)

d

dµi j (xi , x j )
L(µ,ν) = θi j (xi , x j )+ log

µi j (xi , x j )

µi (xi )µ j (x j )
+1+ vi j (xi )+ vi j (x j ).

(B.16b)

Evaluating the optimality condition ∇µL(µ,ν) = 0 and solving for logµi and logµi j

respectively, we have

logµi (xi ) =−θi (xi )+νi (xi )+ ∑
j∈N (i )

νi j (xi ) (B.17a)
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logµi j (xi , x j ) =−θi j (xi , x j )+ logµi (xi )+ logµ j (x j )−1− vi j (xi )− vi j (x j ),
(B.17b)

and by inserting logµi , logµ j from (B.17a) into (B.17b) gives

logµi j (xi , x j ) =−θi j (xi , x j )−θi (xi )−θ j (x j )+νi (xi )+ν j (x j )

+ ∑
k∈N (i )\{ j }

νi k (xi )+ ∑
k∈N ( j )\{i }

ν j k (x j )−1 (B.17c)

Finally, the primal variables µ and the dual variables ν are connected by the opti-
mality conditions

µi (xi )
(B.17b)= eνi e−θi (xi )

∏
j∈N (i )

eνi j (xi ), xi ∈X , i ∈V , (B.18a)

µi j (xi , x j )
(B.17c)= eνi+ν j e−θi j (xi ,x j )−θi (xi )−θ j (x j )

∏
k∈N (i )\{ j }

eνi k (xi )
∏

k∈N ( j )\{i }
eν j k (x j ),

(B.18b)

for xi , x j ∈ X , i j ∈ E . Note, that the constant e−1 in (B.18b) is absorbed in the dual
variables νi ,ν j , with slight abuse of notation. Equations (B.18a) and (B.18b) estab-
lish (2.49a) and (2.49b), respectively.

Assume µ is an optimal primal variable, then we can eliminate this variable by
marginalization∑

x j∈X
µi j (xi , x j )

(B.18b)= eνi e−θi (xi )
∏

k∈N (i )\{ j }
eνi k (xi )

∑
x j∈X

(
eν j e−θi j (xi ,x j )−θ j (x j )

∏
k∈N ( j )\{i }

eν j k (x j )

)
,

(B.19a)

(2.39)= µi (xi )
(B.18a)= eνi e−θi (xi )

∏
k∈N (i )

eνi k (xi ), (B.19b)

and obtain a fixed point equation only in terms of the dual variables by solving
(B.19b) for νi j

eνi j (xi ) = eν j
∑

x j∈X

(
e−θi j (xi ,x j )−θ j (x j )

∏
k∈N ( j )\{i }

eν j k (x j )
)
, i j ∈ E , xi ∈X . (B.20)

This equation establishes loopy belief propagation by message passing given by for-
mula (2.50) and sketched in Section 2.2.5.
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List of Symbols
4 End of a definition, remark or assumption
� End of a proof
In Identity matrix in Rn×n

[n] Set of natural numbers, [n] = {1,2, . . . ,n}
diag v Diagonal matrix with the entries of the vector v on the diagonal

Blackboard Symbols
0n Zero Element of Rn

1n Vector of length n with all components equal to 1
N Set of natural numbers excluding zero
R Set of real numbers
Rn Space n-vectors with elements from R

Rm×n Space of (m ×n)-matrices with elements from R

Rn+ Positive orthant, Rn+ = {p ∈Rn : p ≥ 0}
Rn++ Set of strictly positive vectors, Rn++ = {p ∈Rn : p > 0}

Calligraphic Symbols
A Linear map extracting marginals of a double stochastic matrix
A> Transposed mapping of A
E Set of edges of a given graph G
F Feature space
G Graph
L Local polytope
Ni Local neighborhood of pixel i ∈V
N Scaled sphere, N = 2Sn−1

P Parameter manifold, P =S× . . .×S
X Prototypes/Labels
S Relative interior of probability simplex ∆n−1

V Set of vertices of a given graph G
W Assignment manifold, W =S× . . .×S
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Greek Symbols
α Rounding parameter of fτ,α

∆n−1 Probability simplex, ∆n−1 = {p ∈Rn+ : 〈1n , p〉 = 1}
∆̊n−1 Relative interior of probability simplex, ∆̊n−1 =∆n−1 ∩Rn++
λ Adjoint state
ωi Weight vector consisting of |Ni | elements with ωi ∈ ∆̊|Ni |
ρ Scaling parameter for distance matrix D
τ Smoothing parameter of Wasserstein distance

Roman Symbols
dF Distance function in feature space F
D Distance matrix
L Likelihood matrix
S Similarity matrix
W Assignment matrix
V Tangent space matrix
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