
C O N V O L U T I O N A L N E U R A L N E T W O R K S F O R J O I N T O B J E C T
D E T E C T I O N A N D P O S E E S T I M AT I O N I N T R A F F I C S C E N E S

by

carlos guindel gómez

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in

Electrical Engineering, Electronics and Automation

Universidad Carlos III de Madrid

Advisors:

José María Armingol Moreno
David Martín Gómez

Tutor:

José María Armingol Moreno

December 2019

This thesis is distributed under license Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Spain.

https://creativecommons.org/licenses/by-nc-nd/3.0/es/
https://creativecommons.org/licenses/by-nc-nd/3.0/es/

By far the greatest danger of AI
is that people conclude too early

that they understand it.

— Eliezer Yudkowsky

A C K N O W L E D G M E N T S / A G R A D E C I M I E N T O S

I beg the English-speaking readers to understand my decision to write these
lines in my native language, Spanish. Before that, however, I would like to
thank Prof. Stiller and the other members of the MRT team for the four months
that I spent there. Also, thanks to the members of the scientific community
who made this thesis possible by publicly releasing databases and source code.

Por fin toca escribir estas líneas, y eso significa que una etapa muy
importante de mi vida está a punto de cerrarse. Es mucho lo que me
llevo de ella, y lo más importante no forma parte del plano académico.

El origen de todo puede fijarse en aquel lejano 2011, cuando dos
asustadizos proyectantes entran en el 1.3.B16 de la mano de Basam.
Parte de la culpa de esto es suya, aunque he de reconocer tanto él
como Dani fueron fundamentales para entender muchas cosas.

Durante estos años, he visto pasar varias generaciones de com-
pañeros por el laboratorio. Desde los que estaban entonces hasta
los actuales chavalitos ha pasado mucha gente estupenda, imposible
de citar en su totalidad. A todos ellos quiero agradecerles el haber
contribuido a que el día a día fuera un placer, más que un trabajo.

Espero que nadie se ofenda si hago una mención especial a un
grupo de tres con los que me lo he pasado muy bien estos años: Pili
Jorge, María y Noelia, compañeros de alegrías y desgracias, y también
grandes amigos. Ah, por cierto, el agradecimiento a Jorge va por
partida doble, porque tengo que reconocer que sus siempre brillantes
ideas son una parte importante de esta tesis.

No puedo dejar de mencionar a mis directores de tesis, José María
y David, con los que he aprendido durante estos años lecciones muy
valiosas para la vida; ni tampoco a Arturo y, especialmente, Nando,
que bien podría aparecer, también, en la portada de este documento.

Tampoco me olvido de la gente que conocí en la estancia, especial-
mente los otros dos miembros del Spanisches Team, Carlos y Edu, que
me ayudaron mucho durante esos meses. Ein herzliches Dankeschön!

Hay otro grupo que merece una mención especial: los que siempre
me han apoyado pero han sufrido los daños colaterales de la tesis.
Hablo de mi familia, mis padres y mi hermana, que por fin me van a
ver terminar, y mi otro hermano, Dani, que es otro distinto al que era
cuando empezó esto, pero sigue y seguirá ahí. Gracias a todos.

Finalmente... ¿se ha percatado el lector del detalle de que en el
segundo párrafo se menciona a una segunda persona? Nunca le gustó
esto de la tesis, pero es el alfa y el omega de ella. Gracias por todo,
Irene. De corazón. Ahora, vamos a por la nueva etapa que comienza.

Carlos Guindel
Leganés, septiembre de 2019

v

P U B L I S H E D A N D S U B M I T T E D C O N T E N T

Some ideas, figures, and tables used in this thesis have appeared
previously in the following publications:

published content

Journal articles

• C. Guindel, D. Martin, and J. M. Armingol, “Fast joint object
detection and viewpoint estimation for traffic scene understand-
ing,” IEEE Intelligent Transportation Systems Magazine, vol. 10,
no. 4, pp. 74–86, 2018, issn: 1939-1390. doi: 10.1109/MITS.2018.
2867526 [111].

Partially included in the thesis: Chapters 4 and 5. The inclusion
in the thesis of material from this source is specified in a footnote
to each chapter where an inclusion occurs. The material from this
source included in this thesis is not singled out with typographic
means and references.

• C. Guindel, D. Martín, and J. M. Armingol, “Traffic scene aware-
ness for intelligent vehicles using convnets and stereo vision,”
Robotics and Autonomous Systems, vol. 112, pp. 109–122, 2019, issn:
0921-8890. doi: 10.1016/j.robot.2018.11.010 [114].

Partially included in the thesis: Chapters 3, 4, 5 and 6. The
inclusion in the thesis of material from this source is specified
in a footnote to each chapter where an inclusion occurs. The
material from this source included in this thesis is not singled
out with typographic means and references.

Conference articles

• C. H. Rodríguez-Garavito, C. Guindel, and J. M. Armingol, “Sis-
tema de asistencia a la conducción para detección y clasificación
de carriles,” in Actas de las XXXVI Jornadas de Automática, Bilbao,
Spain, 2015, pp. 26–31, isbn: 978-84-15914-12-9 [219].

Partially included in the thesis: Annex A. The inclusion in the
thesis of material from this source is specified in a footnote to
each chapter where an inclusion occurs. The material from this
source included in this thesis is not singled out with typographic
means and references.

vii

https://doi.org/10.1109/MITS.2018.2867526
https://doi.org/10.1109/MITS.2018.2867526
https://doi.org/10.1016/j.robot.2018.11.010

• C. Guindel, D. Martín, and J. M. Armingol, “Joint object detection
and viewpoint estimation using cnn features,” in Proceedings of
the 2017 IEEE International Conference on Vehicular Electronics and
Safety (ICVES), 2017, pp. 145–150. doi: 10.1109/ICVES.2017.
7991916 [110].

The extended version of this paper, published in the IEEE Intelli-
gent Transportation Magazine [111], is partially included in the
thesis, as stated before.

• C. Guindel, J. Beltrán, D. Martín, and F. García, “Automatic
extrinsic calibration for lidar-stereo vehicle sensor setups,” in
Proceedings of the 2017 IEEE 20th International Conference on In-
telligent Transportation Systems (ITSC), 2017, pp. 674–679. doi:
10.1109/ITSC.2017.8317829 [109].

Partially included in the thesis: Chapter 3. The inclusion in the
thesis of material from this source is specified in a footnote to
each chapter where an inclusion occurs. The material from this
source included in this thesis is not singled out with typographic
means and references.

• C. Guindel, D. Martín, and J. M. Armingol, “Stereo vision-based
convolutional networks for object detection in driving environ-
ments,” in Computer Aided Systems Theory – EUROCAST 2017, R.
Moreno-Díaz, F. Pichler, and A. Quesada-Arencibia, Eds., Cham:
Springer International Publishing, 2018, pp. 427–434, isbn: 978-3-
319-74727-9. doi: 10.1007/978-3-319-74727-9_51 [113].

Partially included in the thesis: Chapter 4. The inclusion in the
thesis of material from this source is specified in a footnote to
each chapter where an inclusion occurs. The material from this
source included in this thesis is not singled out with typographic
means and references.

• C. Guindel, D. Martín, and J. M. Armingol, “Modeling traffic
scenes for intelligent vehicles using cnn-based detection and
orientation estimation,” in ROBOT 2017: Third Iberian Robotics
Conference, A. Ollero, A. Sanfeliu, L. Montano, N. Lau, and C.
Cardeira, Eds., Cham: Springer International Publishing, 2018,
pp. 487–498, isbn: 978-3-319-70836-2. doi: 10.1007/978-3-319-
70836-2_40 [112].

The extended version of this paper, published in the Robotics
and Autonomous Systems journal [114], is partially included in
the thesis, as stated before.

• A. Barrera, C. Guindel, F. García, and D. Martín, “Análisis, eval-
uación e implementación de algoritmos de segmentacion semán-
tica para su aplicación en vehículos inteligentes,” in Actas de las

viii

https://doi.org/10.1109/ICVES.2017.7991916
https://doi.org/10.1109/ICVES.2017.7991916
https://doi.org/10.1109/ITSC.2017.8317829
https://doi.org/10.1007/978-3-319-74727-9_51
https://doi.org/10.1007/978-3-319-70836-2_40
https://doi.org/10.1007/978-3-319-70836-2_40

XXXIX Jornadas de Automática, Badajoz, Spain, 2018, pp. 983–990,
isbn: 978-84-09-04460-3 [11].

Partially included in the thesis: Annex A. The inclusion in the
thesis of material from this source is specified in a footnote to
each chapter where an inclusion occurs. The material from this
source included in this thesis is not singled out with typographic
means and references.

• J. Beltrán, C. Guindel, F. M. Moreno, D. Cruzado, F. García, and
A. D. L. Escalera, “BirdNet: A 3d object detection framework
from lidar information,” in Proceedings of the 2018 21st Interna-
tional Conference on Intelligent Transportation Systems (ITSC), 2018,
pp. 3517–3523. doi: 10.1109/ITSC.2018.8569311 [15].

Partially included in the thesis: Chapter 6. The inclusion in the
thesis of material from this source is specified in a footnote to
each chapter where an inclusion occurs. The material from this
source included in this thesis is not singled out with typographic
means and references.

• C. Fernández, C. Guindel, N. Salscheider, and C. Stiller, “A deep
analysis of the existing datasets for traffic light state recognition,”
in Proceedings of the 2018 21st International Conference on Intelligent
Transportation Systems (ITSC), 2018, pp. 248–254. doi: 10.1109/
ITSC.2018.8569914 [76].

Partially included in the thesis: Annex A. The inclusion in the
thesis of material from this source is specified in a footnote to
each chapter where an inclusion occurs. The material from this
source included in this thesis is not singled out with typographic
means and references.

• C. Guindel, D. Martín, J. M. Armingol, and C. Stiller, “Analysis
of the influence of training data on road user detection,” in
Proceedings of the 2018 IEEE International Conference on Vehicular
Electronics and Safety (ICVES), 2018, pp. 21–26. doi: 10.1109/
ICVES.2018.8519510 [115].

Partially included in the thesis: Chapters 4 and 5. The inclusion
in the thesis of material from this source is specified in a footnote
to each chapter where an inclusion occurs. The material from this
source included in this thesis is not singled out with typographic
means and references.

ix

https://doi.org/10.1109/ITSC.2018.8569311
https://doi.org/10.1109/ITSC.2018.8569914
https://doi.org/10.1109/ITSC.2018.8569914
https://doi.org/10.1109/ICVES.2018.8519510
https://doi.org/10.1109/ICVES.2018.8519510

third-party material

Material not authored or co-authored by the author of this thesis

• Fig. 1.8 was reprinted from [227], which is an open access article
distributed under the Creative Commons Attribution (CC BY)
license1.

• Figs. 2.1 (from [261]) and 2.2 (from [265]) were reprinted with
permission of the copyright holder, John Wiley and Sons.

• Figs. 2.3, 2.4, 2.5, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 5.1, 6.3 were
reprinted with permission from the copyright holder, the IEEE.

• Fig. 2.6 was reprinted by permission from Springer Nature
Customer Service Centre GmbH: Springer Nature, Nature 521,
436-444, "Deep learning," Y. LeCun, Y. Bengio, and G. Hinton,
© Springer Nature 2015.

• Fig. 3.1 was reprinted from https://commons.wikimedia.org/

wiki/File:Epipolar_geometry.svg and is licensed under the
Creative Commons Attribution-Share Alike 3.0 Unported (CC
BY-SA) license2.

• Fig. 4.7 was reprinted from a Bachelor’s Degree supervised by
the author of this thesis [6] and is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivs 3.0 Spain (CC
BY-NC-ND) license3.

• Fig. 5.2 was reprinted by permission from Springer Nature Cus-
tomer Service Centre GmbH: Springer Nature, Springer eBook,
"Stereo Vision-Based Semantic 3D Object and Ego-Motion Track-
ing for Autonomous Driving," Peiliang Li, Tong Qin, and Shaojie
Shen, © Springer Nature Switzerland AG 2018.

Material authored or co-authored by the author of this thesis

• Figs. 3.2, 3.3, 5.14, 5.15, 6.4, 6.7, 6.8, 6.9, and 6.10, and Tables 4.1
and 5.10 were reprinted from [114] (Robotics and Autonomous
Systems journal) with permision of the copyright holder, Else-
vier.

• Figs. 3.7, 3.8, and 3.9 (partially) (from [109]); Figs.5.4, 5.7, 5.8, 5.9,
5.11, 5.12, and 5.13, and Tables 5.2 (partially), 5.3, and 5.4 (from
[111]); Figs. 5.10, 5.17, and 5.18, and Tables 4.11, 4.13, 5.7, 5.11,

1 http://creativecommons.org/licenses/by/4.0/

2 https://creativecommons.org/licenses/by-sa/3.0/

3 https://creativecommons.org/licenses/by-nc-nd/3.0/es/deed.en

x

https://commons.wikimedia.org/wiki/File:Epipolar_geometry.svg
https://commons.wikimedia.org/wiki/File:Epipolar_geometry.svg
http://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/es/deed.en

5.12, 5.13, and 5.14 (from [115]); Figs. 6.13 and 6.14, and Tables
6.5, 6.6, 6.8, and 6.9 (from [15]); and Tables A.2, A.3, A.4, and A.5
(from [76]) were reprinted with permission from the copyright
holder, the IEEE.

• Figs. 4.5 and 4.6, and Tables 4.5 and 4.10 (from [113]) were
reprinted by permission from Springer Nature Customer Service
Centre GmbH: Springer Nature, Springer eBook, "Stereo Vision-
Based Convolutional Networks for Object Detection in Driv-
ing Environments," C. Guindel, D. Martín and J. M. Armingol,
© Springer International Publishing AG 2018.

• Fig. A.4 and Tables A.6 and A.7 were reprinted from [9] and are li-
censed under the Creative Commons Attribution-NonCommercial
3.0 Unported (CC BY-NC) license4.

4 https://creativecommons.org/licenses/by-nc/3.0/

xi

https://creativecommons.org/licenses/by-nc/3.0/

O T H E R R E S E A R C H M E R I T S

additional published content

Conference articles

• P. Marín-Plaza, A. Hussein, C. Guindel, F. García, D. Martín, and
A. de la Escalera, “Arquitectura basada en ros para el vehículo
icab (intelligent campus automobile),” in Actas de las XXXVII
Jornadas de Automática, Madrid, Spain, 2016, pp. 639–644, isbn:
978-84-617-4298-1

• J. Beltrán, I. Cortés, A. Barrera, J. Urdiales, C. Guindel, F. García,
and A. de la Escalera, “A method for synthetic LiDAR gen-
eration to create annotated datasets for autonomous vehicles
perception,” in 2019 IEEE International Conference on Intelligent
Transportation Systems (ITSC) (to be presented)

research visits

• Research visit to the MRT group at Karlsruhe Institute of Tech-
nology (KIT), Germany, under the supervision of Prof. Christoph
Stiller, from 05/03/2018 to 24/06/2018.

supervised academic works

Master’s Theses

• C. B. Jaraquemada, “Paralelización de algoritmos de visión es-
téreo para análisis de entornos de tráfico en GPU mediante
CUDA,” Co-supervised with José María Armingol, Master’s
Thesis (TFM). Master in Robotics and Automation, Universidad
Carlos III de Madrid, Mar. 2017

• A. Barrera, “Estudio de algoritmos de segmentación semán-
tica basados en deep learning para su aplicación en vehículos
inteligentes,” Co-supervised with Fernando García, Master’s
Thesis (TFM). Master in Robotics and Automation, Universidad
Carlos III de Madrid, Sep. 2018

• D. Plaza, “Aplicación de técnicas de visión por computador y
SVM para el reconocimiento de líneas en la carretera utilizando
imágenes transformadas a vista de pájaro,” Co-supervised with

xiii

David Martín, Master’s Thesis (TFM). Master in Robotics and
Automation, Universidad Carlos III de Madrid, Jun. 2019

Bachelor’s Theses

• D. Cabo, “Plataforma integrada de visión estéreo para la recon-
strucción 3D de la escena con procesamiento paralelo en GPU,”
Bachelor’s Thesis (TFG), Bachelor’s Degree in Industrial Elec-
tronics and Automation Engineering, Universidad Carlos III de
Madrid, Sep. 2016. [Online]. Available: http://hdl.handle.net/
10016/27085

• I. Barredo, “Entrenamiento de algoritmos de deep learning para
la detección de objetos con la base de datos Cityscapes,” Bache-
lor’s Thesis (TFG), Bachelor’s Degree in Industrial Electronics
and Automation Engineering, Universidad Carlos III de Madrid,
Jul. 2017. [Online]. Available: http://hdl.handle.net/10016/
27520

• P. Rueda, “Implementación de algoritmo de modelado de car-
riles en la arquitectura de software del vehículo inteligente ivvi
2.0,” Bachelor’s Thesis (TFG), Bachelor’s Degree in Industrial
Electronics and Automation Engineering, Universidad Carlos III
de Madrid, Sep. 2017. [Online]. Available: http://hdl.handle.
net/10016/27858

• L. Díaz, “Sistema de detección y clasificación de señales de tráfico
basado en deep learning,” Bachelor’s Thesis (TFG), Bachelor’s
Degree in Industrial Electronics and Automation, Universidad
Carlos III de Madrid, Sep. 2017

xiv

http://hdl.handle.net/10016/27085
http://hdl.handle.net/10016/27085
http://hdl.handle.net/10016/27520
http://hdl.handle.net/10016/27520
http://hdl.handle.net/10016/27858
http://hdl.handle.net/10016/27858

A B S T R A C T

Few any longer question that autonomous vehicles will be a key
element of transportation in the coming decades. Reliable perception
of the surroundings of the vehicle is today one of the remaining
technical challenges that must be addressed to ensure safe autonomous
navigation, especially in crowded environments. This functionality
usually relies on onboard sensors, which provide data that must be
appropriately processed.

Among the different tasks assigned to the perception suite of an
automated vehicle, the detection of other road users that can poten-
tially interfere with the trajectory of the vehicle is particularly critical.
However, the identification of agents in sensor data is only the first
step. Planning and control modules down the pipeline demand trust-
worthy information about how the objects are arranged in space. In
particular, their orientation and location on the road plane are usually
attributes of utmost importance to build a purposeful model of the
environment.

This thesis aims to provide close-to-market solutions to these issues
taking advantage of the dramatic breakthrough seen in deep neural
networks in the past decade. The methods proposed in this thesis
are built on top of a popular detection framework, Faster R-CNN,
which features high detection accuracy at near real-time rates. Some
proposals to enhance the performance of the algorithm in images
obtained from onboard cameras are introduced and discussed.

One of the central contributions of the thesis is the extension of the
Faster R-CNN framework to estimate the orientation of the detected
objects based exclusively on appearance information, which makes
the method robust against the different sources of error present in
traffic environments. As a natural next step, two algorithms exploiting
this functionality to perform 3D object localization are proposed. As
a result, the combination of the methods described throughout this
thesis leads to a procedure able to provide situational awareness of
the potential hazards in the surroundings of the vehicle.

All the proposed methods are analyzed and validated through
systematic experimentation using a well-recognized public dataset (the
KITTI Vision Benchmark Suite), where notable results were obtained.
The viability of the implementation of the solutions in a real vehicle is
also discussed.

keywords : object detection; computer vision; convolutional neural
networks; autonomous driving systems

xv

R E S U M E N

Pocos cuestionan ya que los vehículos autónomos serán un elemento
clave del transporte en las próximas décadas. La percepción fiable
del entorno del vehículo es, hoy en día, uno de los retos técnicos que
hay que afrontar para garantizar una navegación autónoma segura,
especialmente en entornos con muchos agentes. Esta funcionalidad se
basa, normalmente, en sensores embarcados, que proporcionan datos
que deben ser procesados de forma adecuada.

Entre las diferentes tareas asignadas al sistema de percepción de
un vehículo automatizado, la detección de otros usuarios de la vía
que puedan interferir potencialmente con la trayectoria del vehículo es
particularmente crítica. Sin embargo, la identificación de los agentes
en los datos de los sensores es sólo el primer paso. Los módulos de
planificación y control del vehículo exigen información fiable sobre la
disposición de los objetos en el espacio. En particular, su orientación
y ubicación en el plano de la carretera suelen ser atributos de suma
importancia para construir un modelo del entorno significativo.

Esta tesis tiene como objetivo proporcionar soluciones comercial-
mente viables para estos problemas, aprovechando el impresionante
avance que han experimentado las redes neuronales profundas en
la última década. Los métodos propuestos en esta tesis se basan en
un marco de detección popular, Faster R-CNN, que ofrece una alta
precisión de detección a velocidades cercanas al tiempo real. Así, se
presentan y discuten algunas propuestas para mejorar el rendimiento
del algoritmo en las imágenes obtenidas de las cámaras a bordo.

Una de las aportaciones centrales de la tesis es la ampliación de la
arquitectura Faster R-CNN para estimar la orientación de los objetos
detectados basándose exclusivamente en la información de apariencia,
lo que hace que el método sea robusto frente a las diferentes fuentes de
error presentes en los entornos de tráfico. Como siguente paso natural,
se proponen dos algoritmos que aprovechan esta funcionalidad para
realizar la localización de objetos en 3D. Como resultado, la combina-
ción de los métodos descritos a lo largo de esta tesis permite construir
un procedimiento capaz de proporcionar conciencia situacional de los
peligros potenciales en los alrededores del vehículo.

Todos los métodos propuestos son analizados y validados mediante
experimentación sistemática utilizando una reconocida base de datos
pública (KITTI Vision Benchmark Suite), donde se han obtenido resulta-
dos notables. También se discute la viabilidad de la implementación
de las soluciones en un vehículo real.

palabras clave : detección de objetos; visión por computador; redes
neuronales convolucionales; sistemas de conducción autónoma

xvii

C O N T E N T S

i problem statement and literature review

1 introduction 3

1.1 Motivation . 4

1.1.1 Traffic accidents 4

1.1.2 Air pollution and climate change 8

1.1.3 Congestion . 9

1.2 Automated driving . 9

1.2.1 Driver assistance systems 10

1.2.2 Autonomous driving 11

1.3 Perception systems . 14

1.3.1 Sensors . 14

1.3.2 Algorithms . 16

1.4 Objectives . 18

1.5 Outline of the dissertation 19

2 related works 21

2.1 Historical autonomous driving platforms 21

2.2 Datasets . 24

2.2.1 Object recognition 24

2.2.2 Driving environments 25

2.2.3 Synthetic datasets 27

2.3 Sensor calibration . 28

2.3.1 Camera intrinsic parameters 28

2.3.2 Extrinsic parameters 29

2.4 Convolutional neural networks 30

2.4.1 Historical evolution 31

2.4.2 Fundamentals . 32

2.4.3 Architectures for image recognition 33

2.5 Object detection in images 35

2.5.1 Historical evolution 36

2.5.2 Meta-architectures 37

2.5.3 Training . 40

2.5.4 Inference . 42

2.6 Perception on automotive platforms 42

2.6.1 Object classification and detection 43

2.6.2 Viewpoint estimation 44

2.6.3 Obstacle 3D localization 46

2.6.4 Multi-tasking and scene understanding 48

2.7 Conclusion . 49

ii proposed approaches and experimental results

3 sensor setup 53

3.1 Fundamentals . 53

xix

xx contents

3.1.1 Monocular cameras 53

3.1.2 Stereo cameras 56

3.1.3 Lidar . 57

3.2 Data representation . 58

3.2.1 Stereo matching 58

3.2.2 Lidar . 62

3.3 Sensor calibration . 63

3.3.1 Intrinsic calibration 64

3.3.2 Extrinsic calibration 65

3.4 Automatic stereo-lidar extrinsic calibration 66

3.4.1 Introduction . 66

3.4.2 Feature extraction from stereo data 67

3.4.3 Registration . 71

3.4.4 Experimental results 71

3.4.5 Additional remarks 73

3.5 Conclusion . 74

4 object detection 75

4.1 Faster R-CNN paradigm 75

4.1.1 Design principles 76

4.1.2 Training . 77

4.2 Tuning for traffic environments 81

4.2.1 KITTI object detection benchmark 81

4.2.2 Hyperparameter tuning of the detection frame-
work . 84

4.2.3 Experimental setup and preliminary assessment 89

4.3 Enhanced detection using stereo vision 92

4.3.1 Depth information encoding 92

4.3.2 Experimental results 94

4.4 Analysis of the influence of training data 95

4.4.1 Experimental setup 96

4.4.2 Analysis . 98

4.5 Conclusion . 99

5 viewpoint estimation 101

5.1 Problem formulation . 101

5.1.1 Orientation in the KITTI dataset 104

5.2 Viewpoint estimation within Faster R-CNN 106

5.2.1 Interpretation of the probability distribution . . 107

5.2.2 Training . 108

5.2.3 Experimental results 109

5.3 Identification of factors affecting the performance . . . 116

5.3.1 Training hyperparameters 118

5.3.2 Number of proposals 119

5.3.3 Viewpoint bins resolution 121

5.3.4 Feature extractor architecture, input scale, and
combinations . 122

5.3.5 Training data . 126

contents xxi

5.4 Improvements in the baseline solution 131

5.4.1 Hybrid viewpoint estimation 132

5.4.2 Validation of the general approach in modern
frameworks . 136

5.5 Conclusion . 139

6 object localization 141

6.1 Object localization based on stereo data 141

6.1.1 Extrinsic auto-calibration 143

6.1.2 Object 3D localization 144

6.1.3 Experimental results 147

6.1.4 Scene modeling 150

6.2 Object detection and localization based on lidar data . 153

6.2.1 Detection and yaw estimation in lidar data . . . 153

6.2.2 Experimental results 155

6.3 Conclusion . 160

iii concluding remarks

7 conclusion and future work 165

7.1 Conclusion . 165

7.2 Future work . 167

iv appendix

a additional cues for scene understanding 173

a.1 Lane detection and classification 173

a.2 Road signaling classification 175

a.2.1 Detection . 175

a.2.2 Traffic sign classification 176

a.2.3 Traffic light classification 177

a.3 Semantic segmentation 180

bibliography 185

L I S T O F F I G U R E S

Figure 1.1 Vehicles in use for the period 2005–2015, worldwide 4

Figure 1.2 Estimated deaths due to road injuries for the pe-
riod 2000–2016, worldwide 5

Figure 1.3 Road traffic fatalities per 100 000 population, by
world region (2013) 5

Figure 1.4 Road traffic deaths by type of road user, world-
wide (2013) . 6

Figure 1.5 Road traffic fatalities, EU (2015) 7

Figure 1.6 Road traffic collisions with victims and deaths by
type of accident, Spain (2017) 7

Figure 1.7 Road traffic collisions and deaths by factor in-
volved, Spain (2017) 8

Figure 1.8 Features of the sensor modalities used in envi-
ronment perception systems 16

Figure 2.1 Lidar-based terrain detection featured by Stanley
(Stanford University) during the 2005 DARPA
Grand Challenge 22

Figure 2.2 Sensor setup featured by Boss (Carnegie Mellon
University) during the 2007 DARPA Urban Chal-
lenge . 23

Figure 2.3 Sensor setup featured by TerraMax (Vislab and
others) during the 2007 DARPA Urban Challenge 23

Figure 2.4 Recording platform, trajectory, disparity and op-
tical flow maps, and 3D object labels from the
KITTI dataset . 26

Figure 2.5 Calibration setup used by Geiger et al. 30

Figure 2.6 Convolutional Neural Network (CNN) 32

Figure 2.7 Residual block . 35

Figure 2.8 Region-based Convolutional Neural Networks (R-
CNN) . 38

Figure 2.9 Fast R-CNN . 39

Figure 2.10 Faster R-CNN . 39

Figure 2.11 Estimation results of the Deep3DBox method . . 46

Figure 2.12 Multi-View 3D object detection network (MV3D) 47

Figure 2.13 3D intersection understanding problem and cues
employed by Geiger et al. 49

Figure 3.1 Epipolar geometry 58

Figure 3.2 Stereo matching and disparity maps obtained
with two different methods 59

Figure 3.3 3D point clouds obtained with two different stereo
matching algorithms 61

xxii

list of figures xxiii

Figure 3.4 Three different representations of the lidar infor-
mation on a scene from the KITTI dataset 64

Figure 3.5 Checkerboard pattern used for intrinsic calibra-
tion as seen from a camera with a high positive
radial distortion (barrel distortion) 65

Figure 3.6 Calibration target used by the proposed calibra-
tion method . 67

Figure 3.7 Proposed approach to extract the reference points
from the stereo point cloud 68

Figure 3.8 Accuracy of the proposed calibration approach in
comparison with other existing methods 73

Figure 3.9 Examples of the calibration result in real scenes . 74

Figure 4.1 Faster R-CNN overview 77

Figure 4.2 Histograms of sizes (W ×H) for Hard samples in
the KITTI training subset 87

Figure 4.3 Histograms of ratios (H/W) for Hard samples in
the KITTI training subset 87

Figure 4.4 Custom RPN anchors 88

Figure 4.5 Proposed approach to incorporate stereo infor-
mation into the Faster R-CNN framework 92

Figure 4.6 Example of the processed disparity maps on a
frame from the KITTI dataset 94

Figure 4.7 Example of the conversion from pixel-wise to
bounding box labels 96

Figure 5.1 Illustration of the difference between yaw angle
and viewpoint . 102

Figure 5.2 Representation of different viewpoints 102

Figure 5.3 Definition of yaw (φ) and viewpoint (θ) angles . 103

Figure 5.4 Example of viewpoint quantization with 8 bins
(Nb = 8) . 104

Figure 5.5 Relationship between orientation similarity and
error in orientation estimation 105

Figure 5.6 Proposed approach to incorporate viewpoint esti-
mation capabilities into the Faster R-CNN frame-
work (FRCNN+Or) 106

Figure 5.7 Precision-recall and Recall-IoU curves of the pro-
posed approach on the KITTI Moderate validation
subset with and without viewpoint estimation . 113

Figure 5.8 Orientation similarity vs. recall of the proposed
approach on the KITTI Moderate validation sub-
set for three alternative viewpoint estimation ap-
proaches . 114

Figure 5.9 Examples of joint detection and viewpoint esti-
mation on scenes from the KITTI testing set using
the proposed approach 116

xxiv list of figures

Figure 5.10 Detection and viewpoint estimation performance
(mAP % and mAOS %) of the proposed approach
vs. number of training iterations on the KITTI
validation subset 118

Figure 5.11 Performance (Average Recall, mAP % and mAOS
%) and run time (s) of the proposed approach vs.
the number of proposals on the KITTI Moderate
validation subset 120

Figure 5.12 Recall of the proposed approach vs. max. dis-
tance from the ego-car on the KITTI Hard valida-
tion subset for different numbers of proposals . . 120

Figure 5.13 Orientation similarity (OS)-recall and MPPE-recall
curves of the proposed approach on the KITTI
Moderate validation subset for different values of
Nb . 122

Figure 5.14 Detection and viewpoint estimation performance
(mAP % and mAOS %) of the proposed approach
vs. run time on the KITTI Moderate validation
subset for different numbers of proposals, archi-
tectures and input scales 124

Figure 5.15 Detection and viewpoint estimation performance
(mAP % and mAOS %) of the proposed approach
vs. run time on the KITTI Moderate validation
subset with the VGG-16 backbone for different
numbers of bins and input scales 125

Figure 5.16 Images obtained by applying each data augmen-
tation technique to the same Cityscapes frame . 129

Figure 5.19 Example of residual angle (ρ) 132

Figure 6.1 Proposed stereo vision-based object localization
method . 142

Figure 6.2 Definition of coordinate frames for obstacle local-
ization . 143

Figure 6.3 Stereo rig and ground plane in a typical setup . 143

Figure 6.4 Example showing the extrinsic auto-calibration
procedure . 144

Figure 6.5 Area considered by the proposed object localiza-
tion approach within an object’s bounding box . 145

Figure 6.6 Schematic representation of the BEV of a sample
scene with a detected object 146

Figure 6.7 Absolute Euclidean error (m) in the location esti-
mation from the proposed approach for the differ-
ent categories, using two different stereo match-
ing algorithms . 148

Figure 6.8 Absolute Euclidean error (m) in the location esti-
mation from the proposed approach vs. distance
from the ego-car using two different stereo match-
ing algorithms . 149

Figure 6.9 Localization error (detection minus ground-truth,
m) along the depth axis when estimating the
center of the object for two different localization
methods . 149

Figure 6.10 Examples of detections and local scene models
obtained from the proposed approach for differ-
ent values of Nb 151

Figure 6.11 Examples of detections and local scene models
obtained from the proposed approach in our IVVI
2.0 platform . 152

Figure 6.12 Proposed approach for 3D object detection in lidar
data (BirdNet), based on the joint detection and
viewpoint estimation network 153

Figure 6.13 Recall of the proposed BEV detection approach
on the KITTI validation subset at different IoU
thresholds using 300 proposals 159

Figure 6.14 Example of 3D detection results on scenes from
the KITTI testing set using the proposed method 161

Figure A.1 Bird’s Eye View (BEV) for lane detection 174

Figure A.2 Example of line and lane detections using the
proposed approach 175

Figure A.3 Examples of lane detection and classification re-
sults using the proposed approach 176

Figure A.4 Examples of semantic segmentation results for
each of the studied models 183

L I S T O F TA B L E S

Table 1.1 Summary of levels of driving automation, as de-
fined by the SAE International 13

Table 2.1 Classification error rates (%) on the ImageNet val-
idation set for different classification models . . . 36

Table 2.2 Orientation estimation performance (AOS %) of
selected methods on the KITTI object detection
benchmark . 46

Table 2.3 BEV and 3D detection performance (AP %) of se-
lected object localization methods on the KITTI
object detection benchmark 48

xxv

xxvi list of tables

Table 3.1 Error rates and run times of selected stereo match-
ing methods on the KITTI dataset 61

Table 3.2 Parameters for reference points extraction from
stereo data . 70

Table 4.1 Object occurrence statistics for the custom train
and validation KITTI subsets 82

Table 4.2 Definition of the levels of difficulty from the KITTI
dataset . 83

Table 4.3 Number of car, ped, and cyc instances meeting
the requirements of the Hard difficulty level in the
KITTI dataset . 84

Table 4.4 Weights in the infogain matrix for two different
sets of categories 86

Table 4.5 Modified settings for RPN anchors 88

Table 4.6 Training hyperparameters for the tuned Faster R-
CNN . 90

Table 4.7 Detection performance (AP %) of the tuned Faster
R-CNN on the KITTI validation subset 91

Table 4.8 NVIDIA Titan Xp GPU specifications 91

Table 4.9 Training hyperparameters for the proposed stereo-
vision-capable Faster R-CNN 94

Table 4.10 Comparison of the performance (AP % and AOS
%) of the proposed stereo-vision-capable Faster R-
CNN with other methods on the KITTI validation
subset . 95

Table 4.11 Object occurrence stats for the KITTI and Cityscapes
subsets used in the analysis 97

Table 4.12 Training hyperparameters for the analysis of the
influence of training data on the detection perfor-
mance . 98

Table 4.13 Detection performance (AP %) of Faster R-CNN
on the KITTI validation subset for different sets of
training data . 99

Table 5.1 Set 1 of training hyperparameters for the proposed
approach . 110

Table 5.2 Detection and viewpoint estimation performance
(AP % and AOS %) of the proposed approach
on the KITTI validation subset with and without
onboard-oriented tuning 111

Table 5.3 Detection and viewpoint estimation performance
(AP % and AOS %) of the proposed approach on
the KITTI validation subset for different alterna-
tives for viewpoint estimation refinement 112

Table 5.4 Comparison of the performance (AP % and AOS
%) of the proposed approach with other methods
on the KITTI testing set 115

list of tables xxvii

Table 5.5 Set 2 of training hyperparameters for the proposed
approach . 117

Table 5.6 Set 3 of training hyperparameters for the proposed
approach . 117

Table 5.7 Detection and viewpoint estimation performance
(mAP % and mAOS %) of the proposed approach
on the KITTI validation subset with and without
dropout . 119

Table 5.8 Detection and viewpoint estimation performance
(AP % and AOS %) of the proposed approach on
the KITTI validation subset for different numbers
of viewpoint bins (Nb) 123

Table 5.9 Faster R-CNN hyperparameters for each of the
studied feature extractors 123

Table 5.10 Detection and viewpoint estimation performance
(AP % and AOS %) of the proposed approach on
the KITTI validation subset for different scales and
difficulty levels . 126

Table 5.11 Detection and viewpoint estimation performance
(AP % and AOS %) of the proposed approach on
the KITTI validation subset using different sets of
training data . 127

Table 5.12 Viewpoint classification performance (MPPE %)
of the proposed approach on the KITTI validation
subset using different training data sets 128

Table 5.13 Detection and viewpoint estimation performance
(mAP % and mAOS %) of the proposed approach
on the KITTI validation subset with and without
pre-training on ImageNet 128

Table 5.14 Detection and viewpoint estimation performance
(AP % and AOS %) of the proposed approach on
the KITTI validation subset with and without data
augmentation . 130

Table 5.15 Mapping of the extended set of categories to the
original labels in KITTI and Cityscapes 131

Table 5.16 Training hyperparameters for the residual regres-
sion proposal . 134

Table 5.17 Detection and viewpoint estimation performance
(AP % and AOS %) of the proposed approach on
the KITTI validation subset using different alter-
natives for viewpoint refinement 135

Table 5.18 Orientation performance (AOS % / AP % ratio)
of the proposed approach on the KITTI validation
subset using different alternatives for viewpoint
refinement . 136

xxviii list of tables

Table 5.19 Set of training hyperparameters for the implemen-
tation of the proposed approach in Detectron . . . 137

Table 5.20 Detection and viewpoint estimation performance
(AP % and AOS %) of the baseline implementation
and the enhanced implementation of the proposed
approach on the KITTI validation subset 138

Table 6.1 Dimensions of the cuboids assigned to each KITTI
category . 146

Table 6.2 BEV detection performance (AP %) of the pro-
posed object localization approach 150

Table 6.3 Modified RPN anchors for BEV detection 155

Table 6.4 Training hyperparameters for the proposed BEV
detection network 156

Table 6.5 BEV and 3D detection performance (AP BEV %
and AP 3D %) of the proposed BEV detection
approach on the KITTI validation subset using
different weight initialization strategies 156

Table 6.6 BEV detection performance (AP BEV %) on the
KITTI validation subset for different variants of
the proposed BEV detection approach 157

Table 6.7 BEV detection performance (AP BEV %) of the
proposed BEV detection approach on the KITTI
validation subset using different data as an input 158

Table 6.8 2D detection and viewpoint estimation perfor-
mance (AP % and AOS %) of the proposed BEV
detection approach on the KITTI testing set 158

Table 6.9 3D detection and BEV detection performance (AP
3D % and AP BEV %) of the proposed BEV detec-
tion approach on the KITTI testing set 159

Table 6.10 Comparison of the BEV Car detection performance
(AP 3D % and AP BEV %) of the proposed BEV
detection approach with other methods on the
KITTI validation subset with IoU 0.5 160

Table A.1 Classification performance (accuracy %) of three
architectures tested for traffic sign classification . 177

Table A.2 Classification performance (mean F1 score) on dif-
ferent validation sets of traffic light color classifi-
cation using the custom ResNet model 178

Table A.3 Classification performance (F1-score) of traffic light
color classification on the combined dataset for the
different training sets and models with and with-
out data augmentation 179

Table A.4 Confusion matrix of the MobileNet network for
traffic light classification trained and tested on the
combined dataset using six labels 180

Table A.5 Confusion matrix of the ResNet model for traf-
fic light classification trained and tested on the
combined dataset using six labels 181

Table A.6 Semantic segmentation performance (mean IOU
%) of ERFNet for different configurations 182

Table A.7 Comparison of the performance of the studied
semantic segmentation methods on the Cityscapes
validation set . 182

A C R O N Y M S

ADAS Advanced Driver-Assistance Systems

AI Artificial Intelligence

AOS Average Orientation Similarity

AP Average Precision

AR Average Recall

BN Batch Normalization

BEV Bird’s Eye View

CNN Convolutional Neural Network

COCO Common Objects in COntext

DGT Dirección General de Tráfico

DL Deep Learning

DNN Deep Neural Network

EU European Union

FC Fully-Connected

FCN Fully-Convolutional Network

FOV Field Of View

FPN Feature Pyramid Network

GPU Graphics Processing Unit

HFOV Horizontal Field Of View

IoU Intersection over Union

xxix

xxx acronyms

ITS Intelligent Transportation System

KIT Karlsruhe Institute of Technology

LSI Laboratorio de Sistemas Inteligentes

mAOS mean Average Orientation Similarity

mAP mean Average Precision

MPPE Mean Precision in Pose Estimation

NMS Non-Maximum Suppression

RANSAC RAndom SAmple Consensus

ReLU Rectified Linear Unit

ROI Region Of Interest

ROS Robot Operating System

RPN Region Proposal Network

R-CNN Region-based Convolutional Neural Networks

R-FCN Region-based Fully Convolutional Networks

SGBM Semi-Global Block Matching

SGD Stochastic Gradient Descent

SGM Semi-Global Matching

SSD Single Shot Detector

TLR Traffic Light Recognition

TSR Traffic Sign Recognition

VFOV Vertical Field Of View

VRU Vulnerable Road User

WHO World Health Organization

YOLO You Only Look Once

Part I

P R O B L E M S TAT E M E N T A N D L I T E R AT U R E
R E V I E W

1
I N T R O D U C T I O N

Private transportation has been taken as granted in modern societies.
Millions of people use the car daily, not only when commuting to work,
but also for their convenience and leisure trips. Human beings are still
the fundamental part of the control loop of vehicles; however, in the
last decades, advances in automation technologies are reaching the
transportation field, and the aspiration to build autonomous vehicles
that dispense with an actual driver is getting closer and closer. Jointly
with advances in alternative powertrains, a paradigm shift is expected
in the coming years, with beneficial effects on the mitigation of the
numerous problems linked to transportation.

Nevertheless, there are still several challenges to be solved. Driving
a vehicle in traffic is a complex activity involving a wide range of
human skills. The actuation on the vehicle controls (e. g., steering
wheel, throttle, or brake) must be carried out concurrently with the
processing of high amounts of data that the driver receives through the
senses and utilizes to be aware of the conditions of the environment.
Therefore, driving decisions are the result of a non-trivial procedure
comprising the building of an internal representation of the environ-
ment based on this information intake. Since driving environments
lack a well-defined structure, and are packed with diverse agents with
unpredictable behaviors, these kinds of tasks are beyond the scope of
classical automation techniques.

Fortunately enough, artificial intelligence and computer vision are
currently experiencing one of the biggest bloomings in history, pushed
by recent advances in hardware and, more specifically, in Graphics Pro-
cessing Units (GPUs). Deep Neural Networks (DNNs), whose training
has been enabled by this progress, have changed how data from sen-
sors is processed and apprehended by automated systems. Intelligent
Transportation Systems (ITSs) cannot be alien to this trend; on the
contrary, this set of methods provide unprecedented opportunities to
close the gap between machines and humans in this regard.

This thesis aims to be a step towards a real understanding of the
traffic scene by automated systems. The focus will be on the study
of different possibilities for object detection, classification, and local-
ization, with an emphasis on systems geared towards traffic scene
understanding from onboard processing units. The investigation will
show the enormous potential of DNNs to provide decision elements
to higher-level driving modules. Analysis and conclusions will be
supported by extensive experimentation using real-world data from
different sensor modalities.

3

4 introduction

1.1 motivation

Transport, as it is understood today, is associated with several prob-transport

sustainability lems affecting health and the economy around the world, such as
traffic accidents, congestion, air pollution, and contribution to climate
change. Experts coincide in underscoring the fact that the current
model is undeniably unsustainable [201], particularly given that the
number of people owning a private vehicle is steadily increasing. Ac-
cording to data from the International Organization of Motor Vehicle
Manufacturers (OICA) [135], the number of vehicles in use in the
world reached 1282 million in 2015, which is an increase of 43.7% in
the vehicle fleet from 2005 (Fig. 1.1).

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
Year

850

900

950

1000

1050

1100

1150

1200

1250

1300

W
or

ld
 v

eh
ic

le
s

in
 u

se
 (m

illi
on

s)

Figure 1.1: Vehicles in use for the period 2005–2015, worldwide. Data from
the International Organization of Motor Vehicle Manufacturers
(OICA) [135]

The most significant contribution to this increment came from de-
veloping countries. While the motorization rate (vehicles per 1000

inhabitants) in the European Union (EU) reaches 581, the number
decreases to 105 in the Asia/Oceania/Middle East region and 41 in
Africa. Naturally, the total number of vehicles will likely continue to
grow in the future in line with the expected economic development in
those regions.

This scenario leads to a worsening of the problems resulting fromtransport

problems transportation, whose current impact is analyzed in this section.

1.1.1 Traffic accidents

According to the World Health Organization (WHO) [278], road-relatedsituation in

the world injuries were responsible for 1.4 million deaths globally in 2016. This
number represents an increase of 23.4% in the death toll since 2000, as
reported in Fig. 1.2. Overall, road traffic injuries are the 8th cause of
death in the world and the first cause of death in the 15-29 age group.

1.1 motivation 5

2000 2002 2004 2006 2008 2010 2012 2014 2016
Year

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

D
ea

th
s

du
e

to
 ro

ad
 in

ju
rie

s
(m

illi
on

s)

Figure 1.2: Estimated deaths due to road injuries for the period 2000–2016,
worldwide. Data from the WHO [278]

Most of the world’s road traffic deaths (90%) take place in low- and
middle-income countries, despite having only half of the world’s vehi-
cles. The impact of the economic level on the death rate is especially
notorious when the data is broken down into world regions, as shown
in Fig. 1.3. Africa is leading the death rate statistic by a large margin,
even though its motorization rate is the lowest in the world. This
disparity can be explained by poorly designed roads, vehicles that do
not meet proper safety standards, and inadequate safety legislation.

African

Eastern Mediterranean

Western Pacific

South-east Asian
Americas

European

Region

0

5

10

15

20

25

30

Tr
af

fic
 fa

ta
lit

y
ra

te
 p

er
 1

00
 0

00
 p

op
ul

at
io

n

World

Figure 1.3: Road traffic fatalities per 100 000 population, by world region
(2013). Data from the WHO [277]

It is also noteworthy that almost half of all deaths due to road
traffic injuries are among the so-called Vulnerable Road Users (VRUs);
i. e., traffic participants with limited protection, such as motorcyclists,

6 introduction

cyclists, and pedestrians. Fig. 1.4 depicts the distribution of road traffic
deaths by type of road user.

Cyclists (4%)

Pedestrians (22%)

Motorized 2-3 wheelers (23%) Car occupants (31%)

Other (21%)

Figure 1.4: Road traffic deaths by type of road user, worldwide (2013). Data
from the WHO [277]

The proportion varies by world region, with Africa having the
highest proportion of pedestrian and cyclist deaths (43%) and the
South-East Asia region, the lowest (16%). Cultural reasons are behind
these numbers: whereas walking and cycling are the predominant
forms of mobility in the African region, motorcycles are more prevalent
in the South-East Asia region.

Focusing on the EU, the European Commission set an ambitioussituation in

europe objective for the period 2010-2020: halving the number of road deaths
throughout the Union [67]. Although the number has been declining
at a rapid pace (Fig. 1.5), progress has stagnated since 2013, and the
European Commission has admitted the difficulty to achieve the target
[69]. The latest data available at the time of writing, corresponding
to 2017, gives a total of 25 300 deaths and 135 000 severe injuries on
European roads. Most fatalities occurred on rural roads (55%) and
urban areas (37%), while only 8% of them took place on motorways. It
should be noted that the European legislation regarding safety equip-
ment in vehicles is one of the most stringent in the world, requiring
the mandatory fitment of a large number of active safety systems.

Spain is a prime example of the situation in Europe. Althoughsituation in

spain the mortality rate is low in comparison with other countries on the
continent (8th lowest mortality rate in the EU), recent years have seen
an increase in the number of deaths [60]. Most fatalities in 2017 (1013,
55%) took place in conventional roads (undivided highways), while
almost half of the deceased (46%) were VRUs. On the other hand, more
common types of accidents include angle or side impacts, rear-end
collisions, run-off-road collisions (which are particularly lethal), and
collisions with pedestrians (Fig. 1.6).

Factors frequently involved in accidents with deaths on the Spanish
roads were distractions (33%), inappropriate speed (29%), and driving
under the influence of alcohol (26%). Full statistics are presented in
Fig. 1.7.

1.1 motivation 7

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Year

25

30

35

40

45

D
ea

th
s

du
e

to
 ro

ad
 in

ju
rie

s
(th

ou
sa

nd
s)

Figure 1.5: Road traffic fatalities, EU (2015). Data from the European Com-
mission [68]

Head-on
Angle Rear

Run-off-ro
ad

Rollovers

Pedestria
ns

Other

Type of collision

0

10000

20000

30000

Ac
ci

de
nt

s

3071

29867

23302

14729

3611

13439 14214

Accidents with victims

Head-on
Angle Rear

Run-off-ro
ad

Rollovers

Pedestria
ns

Other

Type of collision

0

500

1000

D
ea

th
s

327
259

144

601

20

338

141

Deaths

Figure 1.6: Road traffic collisions with victims and deaths by type of accident,
Spain (2017). Data from the DGT [60]

Various studies around the world have shown that human errors are causes

the primary cause of an overwhelming majority of traffic accidents. For
instance, the National Highway Traffic Safety Administration (NHTSA)
showed that 94% of the accidents in the United States between 2005

and 2007 were due to human errors, with a higher prevalence of
recognition (41%) and decision (33%) errors [245]. Studies concerning
other countries give similar estimations; for instance, 90% of accidents
in Spain are reportedly caused by human errors [39].

Apart from the high social cost of traffic accidents, they are also economic cost

estimated to cause economic losses of around 3% of Gross Domestic
Product (GDP) globally [277].

8 introduction

Distractions Speed Alcohol
Factor

0

5000

10000

15000

20000

Ac
ci

de
nt

s

19658

6507

2797

Accidents with victims

Distractions Speed Alcohol
Factor

0

100

200

300

400
D

ea
th

s
397

345

218

Deaths

Figure 1.7: Road traffic collisions and deaths by factor involved, Spain (2017).
Data from the DGT [60]

1.1.2 Air pollution and climate change

The WHO estimates that around 7 million people die annually fromsituation in

the world exposure to fine particles in polluted air [276], which leads to differ-
ent diseases such as stroke, lung cancer, and respiratory infections.
According to this organization, more than 80% of people living in
urban areas where air pollution is monitored are exposed to air qual-
ity levels below the recommendations, and 97% of cities in low- and
middle-income countries do not meet the air quality guidelines.

One of the main contributors to ambient fine particulate pollution
is exhaust fume from diesel vehicles. Whereas emission standards for
diesel vehicles in developed countries are getting more and more strict
(e. g., Euro standards in the EU), the situation is dramatically different
in developing countries, where growth in road traffic outpaces the
emission regulation.

In addition to the human cost, air pollution has a substantial eco-
nomic cost. In China, India, and the OECD1 countries, the estimated
cost is $3 500 000 million, half of which results from road transport
pollution [264].

On the other hand, transport is responsible for 23% of the global
energy-related greenhouse gas emissions [264]. Emissions from the
sector have increased by 1.7% per year on average since 2000, and this
increase has been even faster than economic growth [201]. Non-OECD
emissions have increased by more than 60% since 2000, and total

1 Organization for Economic Co-operation and Development. Most OECD members
are developed countries.

1.2 automated driving 9

emissions from transport are projected to rise 70% by 2050. Almost all
this growth will take place in developing countries.

In addition to CO2, diesel engines emit other pollutants (e. g., black
carbon) that have also been shown to have a high effect on climate
change.

1.1.3 Congestion

The congestion of road networks is a daily problem in many cities. The situation in

the worldtrivial approach to this issue, namely the expansion of network capac-
ity, is ineffective; actually, the Braess’s paradox [27] states that adding
a road to a congested road traffic network can indeed increase overall
journey time. Costs produced by congestion include the increase in
the costs of transport of goods, the decrease in the fuel efficiency of
vehicles, and the loss of leisure time, among others. Congestion is a
major problem in big cities; for instance, it has been estimated that,
in Los Angeles (United States), a driver spends 102 hours a year in
congestion, with a total cost for the city of $19.2 billion [134]. Overall,
total (direct and indirect) costs of congestion in the United States alone
exceed $304 billion (more than 1% of the GDP). Likewise, the total
cost of congestion in the top five German cities was over €16.4 billion
in 2017, and it is estimated at 2% of GDP in Europe [264].

1.2 automated driving

Since the invention of motor vehicles , technology has been used to human driver

limitationsovercome the shortcomings of human drivers. It has been shown that,
due to natural limits, human beings are little suitable to perform
specific tasks involved in driving, such as [150]:

• Routine tasks.

• Simple but time-critical tasks.

• Vision at night and in adverse weather conditions.

• Estimation of distance and speed differences.

• Maintaining a safe and appropriate distance from other road
users.

As an example, research conducted by Mercedes-Benz in 1992

showed that more than 90% of drivers fail to brake with enough
force in the case of an emergency2 [48].

2 The findings of the research led to the development of the Emergency Brake Assist
(EBA) or Brake Assist (BA) system, which increases automatically braking pressure
when the driver is trying to execute an emergency stop.

10 introduction

1.2.1 Driver assistance systems

Technology has been used over the years to improve comfort, efficiency,active safety

systems and, particularly, the safety of transportation. Advances in electronics
were vital to enable the development of systems that use an under-
standing of the vehicle condition to avoid, or at least minimize, the
effects of an accident. These systems, encompassed under the name
of active safety systems, were gradually introduced in vehicles; some
noteworthy examples are3 [93]:

• Anti-lock Braking System (ABS) (1966).

• Traction control (1971).

• Stability control (1995).

The first active safety systems were mainly devoted to improvingadas

the capabilities of the vehicle in case of a dangerous situation, thus
helping the driver to manage it safely. However, the final years of
the 20th century saw the emergence of new kinds of technological
systems with a more ambitious target: helping the driver in the driving
process so that dangerous situations could be prevented ahead in
time. These Advanced Driver-Assistance Systems (ADAS) were based
on exteroceptive sensors able to acquire information from outside
the vehicle, differently from the proprioceptive sensors featured by
previous solutions, which were aimed at the measurement of the
internal status of the vehicle [18]. Further discussion about automotive
sensors is deferred until Sec. 1.3.1.

Among the different ADAS developed over the years, the following
milestones can be highlighted:

parking assistance systems : Using ultrasonic sensors and, oc-
casionally, cameras, these systems have evolved from warning
devices aimed to prevent collisions, to solutions able to relieve
the driver of lateral vehicle control during the maneuver.

adaptive cruise control (acc): The development of radar tech-
nology enabled the emergence of ACC systems, which are in-
tended to adjust the vehicle speed to maintain a safe distance
from vehicles ahead.

forward collision prevention systems : Lidar (for low-speed
applications) and radar sensors (for long-range) are used to avoid
head-on collisions by making the driver aware of an impending
collision and, eventually (if the driver does not react), activating
the vehicle brakes by itself.

3 Note that the provided dates refer to the earliest version of the systems, which can
vary significantly from their current implementations.

1.2 automated driving 11

lane departure warning (ldw) systems : Cameras were first
applied to the mobility sector to provide information to LDW
systems and active lane-keeping assistance systems, derived
from them. These systems are responsible for letting the driver
know when the vehicle is unintentionally leaving the current
lane.

A useful compendium of ADAS and the main technical challenges
associated with them can be found in [273].

1.2.2 Autonomous driving

The current trend in the development of automotive systems is natu- use cases

rally and imminently inclined to take a step forward towards eliminat-
ing the weakest link in the chain of vehicle control; namely, the driver.
Autonomous driving, where decision-making systems take over as
drivers without requiring any human intervention, is a future goal
on every stakeholder’s mind. Some typical use cases for autonomous
driving are [269]:

interstate pilot : The system takes over the driving task only on
interstate-like expressways.

autonomous valet parking : The car can park itself at a remote
location after the passengers have gotten off and cargo has been
unloaded.

full automation : In permitted areas, the “driver” can devote
her/his attention to activities different than driving, although
she/he can retake control at any time.

vehicle on demand : The robot car can drive itself in all scenarios
with occupants, but also without any payload. This way, the
vehicle is available on request at any location.

Widespread adoption of autonomous vehicles as a mode of mobility forecasts

would probably have profound effects on society. Firstly, it could facili-
tate the development of ride-sharing and vehicle-sharing services [184]
due to the reduction of operational costs. Mobility levels equivalent to
the current ones could be reached with up to 90% fewer vehicles in
the streets.

Litman [170] has recently evaluated the expected overall impact.
He divides the effects into two types: internal, which affect directly
to the user, and external, which impact on others. Beneficial effects
belonging to the first group are:

• Reduced drivers’ stress and increased productivity due to the
ability to rest, play, or work on the move.

12 introduction

• Mobility for non-drivers, including the elderly and people with
travel-restrictive medical conditions.

• Reduced driver costs. Paid drivers for taxis and commercial
transport would be unnecessary.

On the other hand, the group of external effects includes the follow-
ing benefits:

• Increased safety. Reduced crash risks since the human factor is
removed.

• Increased road capacity and reduced costs. Roadway capacity
could be doubled or tripled because of the reduced headways;
insurance and fuel costs would be lower.

• Reduced parking costs. Autonomous taxis could reduce parking
demand by 90%.

• Increased fuel efficiency and reduced pollution, particularly on
platooning schemes.

• Car sharing will be made possible: vehicle-sharing and ride-sharing
will appear as new business models.

According to the experts’ opinion [170], autonomous vehicles will
likely be expensive novelties during the 2020s and 2030s, interest-
ing only for non-drivers or long-distance drivers. However, they are
expected to become widespread by the late 2030s or 2040s.

In any case, the process is always seen as a gradual change to beclassification

completed over many years (or perhaps decades) until achieving a
system capable of driving autonomously in all conceivable situations.
In this regard, SAE International4 proposed a taxonomy intended to
understand the process that is needed, from a technical point of view,
for the transition towards the new paradigm [233]. The classification
relies on the following definitions:

dynamic driving task (ddt): All of the real-time operational and
tactical functions required to operate a vehicle in on-road traffic
(e. g., steering control, acceleration, and deceleration).

object and event detection and response (oedr): Subtask
of the DDT that consists of monitoring the driving environment
(detecting, recognizing, and classifying objects and events and
preparing to respond as needed).

ddt fallback : The response to perform the DDT or, at least, a
minimal risk condition after the occurrence of a system failure.

4 SAE International is a United States-based automotive standardization body formerly
known as the Society of Automotive Engineers (until 2006).

1.2 automated driving 13

ddt

l . name motion oedr fallback odd

0 No Driving
Automation

Driver Driver Driver n/a

1 Driver
Assistance

Driver &
system

Driver Driver Limited

2 Partial Driving
Automation

System Driver Driver Limited

3 Conditional
Driving
Automation

System System Fallback-
ready
user

Limited

4 High Driving
Automation

System System System Limited

5 Full Driving
Automation

System System System Unlimited

Table 1.1: Summary of levels of driving automation, as defined by SAE
International [233]

operational design domain (odd): The set of specific condi-
tions under which a given driving automation system is de-
signed to function (e. g., geographic limitations or particular
driving modes).

Automated driving systems are classified into different levels accord-
ing to the degree of automation reached regarding these definitions.
A summary is reported in Table 1.1.

Some ADAS, such as adaptive cruise control or lane-keeping as-
sistance, are classified as Level 1 systems, provided that can act on
any vehicle control (i. e., acceleration, brake, or steering). If the con-
trol can be performed over all controls at once, thus taking full re-
sponsibility for lateral and longitudinal vehicle motion control, the
system is rated as Level 2. Some autopilot systems have emerged
recently on commercially-available vehicles, such as Tesla Autopilot5

and Mercedes-Benz Drive Pilot6.
However, as of the date of writing, there are no Level 3 production

vehicles available to consumers. Audi aims to offer its Audi AI Traf-
fic Jam Pilot7 system in the new A8 sedan, but they are reportedly
waiting for legal approval in many countries [133]. Level 4 is currently

5 https://www.tesla.com/autopilot

6 https://www.mercedes-benz.com/en/mercedes-benz/innovation/

the-new-e-class-on-the-road-to-autonomous-driving-video/

7 https://www.audi-technology-portal.de/en/electrics-electronics/

driver-assistant-systems/audi-a8-audi-ai-traffic-jam-pilot

https://www.tesla.com/autopilot
https://www.mercedes-benz.com/en/mercedes-benz/innovation/the-new-e-class-on-the-road-to-autonomous-driving-video/
https://www.mercedes-benz.com/en/mercedes-benz/innovation/the-new-e-class-on-the-road-to-autonomous-driving-video/
https://www.audi-technology-portal.de/en/electrics-electronics/driver-assistant-systems/audi-a8-audi-ai-traffic-jam-pilot
https://www.audi-technology-portal.de/en/electrics-electronics/driver-assistant-systems/audi-a8-audi-ai-traffic-jam-pilot

14 introduction

restricted to some prototypes, whereas Level 5 remains a long-term
goal.

The gap between Levels 2 and 3 (and above) is determined by the
capability to perform the OEDR tasks; in other words, the ability to
monitor the environment and deliver this information in such a way
that it can be useful for vehicle control. The current effort is therefore
geared towards perception systems with the capability to understand
the traffic environment by making the most of data from exteroceptive
sensors.

For a more in-depth reflection on autonomous driving concerning
its technical, legal, and social dimensions, the reader is referred to the
exhaustive 2016 open-access book Autonomous driving [180].

1.3 perception systems

Machine perception is a critical enabler for autonomous driving. The
vehicle must be able to perceive and interpret its surroundings and
use this information to carry out safe actions. These tasks are the
responsibility of the perception system. The perception system is com-
posed of two types of components: sensors (hardware) and algorithms
(software).

1.3.1 Sensors

A wide variety of sensors are used in automotive applications toclassification

obtain meaningful information about the vehicle and its environment.
Proprioceptive sensors measure the internal status of the vehicle, such
as the wheel velocity, acceleration or rotational velocity [18], and are
essential for almost every active assistance method. However, this
thesis focuses on exteroceptive sensors, which are used to acquire
information from outside the vehicle.

Typical exteroceptive sensors used for environment perception intechnologies

automotive applications are described below [273]:

radar : Its operating principle is based on the emission and subse-
quent reception of radio beams. Not only is it able to measure
distances to obstacles, but it also can take advantage of the
Doppler effect to measure their speed. Moreover, radar technol-
ogy is highly robust to weather conditions. On the negative side,
radar permits only low solid angle resolution with an acceptable
antenna size [272].

lidar : Conceptually similar to radar systems, lidar8 devices use ul-
traviolet, infrared, or beams within the visible light spectrum

8 ‘Lidar’ is the acronym of LIght Detection And Ranging; however, we will use the
lowercase notation lidar throughout this document by analogy with similar words
such as radar or sonar.

1.3 perception systems 15

to localize and measure the distance of objects in space [101].
Lidar beams are more strongly attenuated by atmospheric con-
ditions such as fog and rain. The introduction of 360°-capable
laser rangefinders [238] was a huge leap forward for this technol-
ogy and implied its widespread introduction in virtually every
autonomous driving research platform. Despite its relatively
limited resolution and high cost, lidar devices offer a precise dis-
tance estimation and a decent working range. However, concern
has been raised that lidar cost and impact on the vehicle design
could prevent its adoption for off-the-shelf production [35].

cameras : Humans perceive about 90% of the information required
for driving visually [251]. Some of this information has been
indeed designed for visual perception and cannot be recognized
by any other technology; e. g., traffic signs and lane markings.
It, therefore, appears reasonable to use a system similar to the
human eye for machine perception of the environment. Cameras,
contrarily to the previous technologies, are passive devices that
project the light reflected by objects in the 3D space onto a 2D
image, thus reducing the available data by a dimension. Despite
that and their low robustness against illumination, weather, and
other external factors, cameras are inexpensive devices that can
provide almost all the information relevant for vehicle control.

stereo cameras : While stereoscopic vision systems are indeed a
subset of the previous category, they merit separate mention
since they provide geometrical information on top of the appear-
ance data that is common to all vision systems. These devices
leverage epipolar geometry [116] to obtain the 3D coordinates
of visible points when two views are available. If the two views
are retrieved from two cameras facing the same direction and
separated a known distance (baseline), calculations are simplified,
and the depth coordinate can be straightforwardly obtained. It
should be noted, though, that accuracy in the depth estimation is
far from perfect and, moreover, depends heavily on the distance
from the camera.

A summary of sensor technologies used in autonomous driving
can be found in [227]. Fig. 1.8, extracted from that survey, represents
the properties of the different sensor technologies cited above in
comparison with a hypothetical perfect sensor fulfilling all the desirable
characteristics.

Generally, sensor setups in vehicles feature a combination of devices sensor fusion

aimed to take advantage of the complementary properties of the dif-
ferent sensor modalities, on the one hand, and to provide redundancy,
on the other hand. Data fusion techniques are then used to exploit the
advantages obtained by having several sources of information [194].

16 introduction

(a) Radar (b) Lidar

(c) Camera

Figure 1.8: Features of the sensor modalities used in environment perception
systems. Figure by Rosique et al. from [227] (license CC BY 4.0)

1.3.2 Algorithms

The result of the perception system is usually seen as a dynamic vehicleenvironment

models environment model in which individual dynamic motion models
represent the vehicle itself and all other road users [58]. This model
should also include all pertinent elements of the infrastructure, such
as traffic signs/lights, as well as structuring elements such as road
markings, crosswalks, or curbs.

In general, information retrieved by perception systems can be
represented in two different ways [59]:

object-based representations : This kind of representation de-
scribes the dynamics of all relevant objects and infrastructure
elements in the proximity of the ego vehicle. Each object is as-
signed a set of variables that usually include position, speed,
and 3D object dimensions, and these variables are updated con-
tinuously using sensor measurements and filtering (tracking)
processes [275].

1.3 perception systems 17

grid-based representations : They use grid maps to divide the
environment into fixed, identically-sized cells. The vehicle nav-
igates across this grid, and the perception system provides in-
formation on which cells are free and which ones are occupied
by an obstacle, providing valuable insight for the subsequent
planning algorithms [179].

Whichever model representation is used, detection and localization obstacle

detectionof objects (namely, road users and infrastructure elements) in the
surroundings of the vehicle is perhaps the most critical task of the
perception system. For a proper situational awareness, objects should
be not only acknowledged but also assigned a semantic meaning; that
is, a classification.

Humans can perform this task effortlessly, even at an early age. challenges

Machine perception systems, on the other hand, encounter many diffi-
culties with the current state of the technology. Although computer
vision is a well-established discipline that has experienced signifi-
cant advances since its foundation in the 1960s [232], traffic scenarios
remain as one of the most challenging applications due to their com-
plexity and lack of structure. Additionally, automotive applications
impose tight requirements that increase the intricacy of the problems.

Particularities of these kinds of applications are countless; to men-
tion but one example, Schiele and Wojek [236] established a list of
requirements that must be taken into account when designing an
onboard pedestrian detection system. The list can be straightforwardly
applied to almost every application involving perception in vehicles,
especially those using computer vision:

resolution and scale : Resolution and Field Of View (FOV) of
sensors determine the amount of representable information.
High-resolution data facilitate the perception tasks and enhance
their performance; however, there is a limit on the amount of
information that can be processed in order to provide an imme-
diate response.

robustness : Functionality should be achieved in various weather
and visual conditions. Furthermore, different instances of the
same entity can present dramatic differences in appearance in
their representations on sensor data.

viewpoint invariance : The angle of the camera relative to the
instances of interest is variable, and the performance should not
be severely affected by this fact.

partial occlusion : Occlusions between objects are unavoidable
in traffic scenarios, especially in complex urban situations.

pose estimation : Meaningful decisions regarding the control of
the vehicle often require determining not only the presence of

18 introduction

traffic elements and road users but also a precise estimation of
their pose.

2d versus 3d modeling : While visual information is necessarily
represented on a 2D space, global 3D coordinates providing the
exact position relative to the own vehicle are often needed.

Machine perception is currently based on relatively complex modelsmachine

learning

techniques

of the entities of interest. These models are, in almost every case,
learned from examples using machine learning techniques, which
are aimed at optimizing the performance of the inference process
according to the available samples.

Machine learning, in particular, and Artificial Intelligence (AI), in
general, is currently evolving at an unprecedented and most likely
increasing rate. Medium- and long-term consequences are still to be
determined, but automated systems have been already able to match
human performance for some specific tasks (e. g., large-scale classifi-
cation [119]) that were labeled as virtually impossible for a machine
barely a decade ago. Therefore, it is only natural that perception sys-
tems aimed at automated driving can benefit from these advances
in order to build reliable, accurate environment models to underpin
decision making.

1.4 objectives

This thesis is framed within the context of perception systems for
automated vehicles. The main goal is to investigate the possibilities
of DNNs to advance towards a full understanding of the scene around
the vehicle by automated driving systems.

Among the different cues required to that end, this thesis focus on
object recognition, which is recognized as one of the most critical tasks.
This work intends to bring two worlds together: AI, where DNNs have
brought dramatic advances, and ITS, which will inevitably come into
the spotlight in the decades to come.

To that end, the following objectives are set:

• To address some issues associated with vehicle sensor setups,
such as calibration and information representation, allowing an
adequate use of the obtained data.

• To study the adequacy of existing all-purpose detection methods
for onboard object detection in images.

• To propose specific tuning intended to optimize the performance
of these algorithms and deal with the specific challenges posed
by traffic scenarios.

• To enhance the detection framework with additional inference
tasks that extend the capacities of the perception subsystem to
meet the requirements of higher-level navigation modules.

1.5 outline of the dissertation 19

• To perform an extensive analysis of the parameters of the inte-
grated approach to offer different operating points according to
the required trade-off between performance and speed.

• To explore creative alternatives to enlarge the available training
data and to quantify their effect on the accuracy of the approach.

• To map the information about the obstacles from sensor data
to the real 3D space around the vehicle, introducing spatial rea-
soning from capable sensor modalities. This way, meaningful
information is made available for further planning and naviga-
tion reasoning.

• To push the detection framework to the limit by using data
from sources significantly different from images as input, thus
enabling redundancy and robustness in the perception function-
ality.

These tasks will be addressed from the point of view of their fit
into the rest of the applications in the perception stack, as well as the
actual needs of the planning and navigation modules.

As the subject of study has a clear applied nature, conclusions are
mainly based on experimental analysis. Real-world data will be exten-
sively used, principally from publicly available datasets, which allow
fair evaluation and comparison with other state-of-the-art methods.

1.5 outline of the dissertation

This document is structured in seven chapters, including this one, and
one appendix. Each chapter (except this one) begins with a brief intro-
duction and ends with some concluding remarks putting together the
key findings in that phase. The content of each chapter is summarized
below:

• chapter 1 has given an introduction to the thesis by presenting
the problems associated with transportation and introducing
automated vehicles as a possible solution. The objectives have
also been set.

• chapter 2 provides some historical background of automated
driving, on the one hand, and a survey of state-of-the-art works
related to the matter of research of this thesis, on the other hand.

• chapter 3 deals with the sensors which provide the data from
which useful information is inferred. Management of raw data,
as well as sensor calibration (including an original calibration
method), are discussed.

• chapter 4 introduces the detection meta-architecture that will
be used in the remaining chapters. Some novel ideas to enhance

20 introduction

its performance are proposed, along with a study of the influence
of training data.

• chapter 5 is devoted to one of the main contributions of the
thesis: an extension of the detection framework intended for
viewpoint estimation. Extensive experimental results are pro-
vided to assess the joint detection and orientation estimation
performance, and to analyze its sensitivity against different fac-
tors.

• chapter 6 presents two different approaches to introduce
spatial reasoning into the detection framework: one based on
stereo vision and the other, which is complementary to the
central development, on lidar data.

• chapter 7 draws some conclusions from the presented work
and proposes future lines of research based on the findings of
the research.

• appendix a briefly introduces some applications aimed to
provide complementary information for autonomous driving,
to which the author of this thesis contributed. Although they
fall outside the scope of the central theme of this work, these
developments give an overview of additional functionalities that
must be considered for autonomous driving.

2
R E L AT E D W O R K S

Machine perception for vehicles has been a strong focus of attention
for researchers since the end of the 20th century. Computer vision
was soon applied to the problems that arose in the development of
automated vehicles [20], and advances in sensor technology led to the
integration of new sources of data, such as radar or lidar devices.

The identification of the obstacles relevant to the proper opera-
tion of the vehicle has always been a primary line of research in the
field of perception systems for vehicles. Methods have been evolving
over the years, fed by the progress in computer vision and AI. After
years of narrowly application-tailored approaches, the landscape is
currently dominated by Deep Neural Networks (DNNs), which enable
representation learning without relying on specific-domain priors [17].

An accurate representation of the location and semantic meaning of
the relevant instances around the vehicle permits higher-level reason-
ing and, ultimately, decision-making about control commands to be
sent to the actuators.

Supervised learning approaches, which are the basis of almost every
machine perception approach today, require a set of samples represen-
tative of the real-world use of the function. Feature learning methods,
such as DNNs, are even more data-intensive since the complexity (or
capacity) of the models makes them particularly prone to have low
bias but high variance within the classic bias-variance tradeoff [138]. In
this regard, the appearance of public datasets has been instrumental
in the progress of machine perception and, not least, has allowed fair
benchmarking between methods developed all around the world.

In this chapter, a review of the issue of object perception in traffic
environments is provided, along with a survey of relevant approaches
proposed in the literature to address it. A comprehensive view of
methods is given, along with a mention of the technical aspects that
must be taken into account in the process, covering from the sensor
selection to the dataset availability.

2.1 historical autonomous driving platforms

A significant number of autonomous driving projects have been de-
veloped over the years, featuring different design philosophies for the
perception stack. This section provides a brief review, with a particular
focus on the sensor selection and the motivation behind it.

This chapter includes content from [109].

21

22 related works

The idea of autonomous driving has been pursued for decades. The
first projects in the 1980-90s included Navlab [260], by the Carnegie
Mellon University, and PROMETHEUS, funded by the European Com-
mission [283]. However, the field gained its real momentum in the
2000s, during the Grand Challenges held by the Defense Advanced
Research Projects Agency (DARPA) of the United States in 2004, 2005,
and 2007.

The 2005 DARPA Grand Challenge, the first one to be successfullydarpa

challenge finished, proclaimed Stanley, from Stanford University, the winner.
Stanley’s sensor setup included five laser rangefinders pointing for-
wards along the driving direction of the vehicle (Fig. 2.1), a color
camera for long-range road perception, and two radar sensors [261].
The perception system aimed to identify drivable surfaces in the desert
surface; computer vision was used to perform the detection in the
far range [51]. Other teams used vision sensors as well; for instance,
the TerraMax truck1 relied on a three-camera variable-baseline stereo
system to identify obstacles in front of the vehicle [33].

Figure 2.1: Lidar-based terrain detection featured by Stanley (Stanford Uni-
versity) during the 2005 DARPA Grand Challenge [261] © 2006

Wiley Periodicals, Inc.

Boss, from the Carnegie Mellon University, was the winner vehicle
of the 2007 DARPA Urban Challenge [265]. The sensor setup was made
of four kinds of lidar devices with different characteristics (including
a 360°-FOV, 64-layer Velodyne HDL-64), radars, and High Dynamic
Range (HDR) cameras with a 45° FOV. The mounting location of the
sensors is depicted in Fig. 2.2.

Regarding other participants, the TerraMax vehicle took part in this
edition as well and was again heavily dependent on vision algorithms
[41]. The vehicle was endowed with a vast set of cameras [31]: a
trinocular stereo system to perform obstacle and lane detection, two
twin stereo systems to monitor the area close to the truck, two lateral
cameras to detect oncoming vehicles at intersections [32], and a rear-
view system to monitor the lanes next to the vehicle looking for

1 The TerraMax vehicle was developed by a team composed by Oshkosh Corporation,
a military vehicle manufacturer from the USA, and the VisLab of the University of
Parma, Italy, among other industrial companies. Unlike the rest of participants, the
TerraMax team entry was a 30 000 pound truck.

2.1 historical autonomous driving platforms 23

Figure 2.2: Sensor setup featured by Boss (Carnegie Mellon University) dur-
ing the 2007 DARPA Urban Challenge. The set of sensors included
GPS/IMU (APLX), lidar (LMS, HDL, ISF, and XT), radar (ARS),
and cameras (PGF) [265] © 2008 Wiley Periodicals, Inc.

overtaking vehicles. FOVs corresponding to the different cameras are
shown in Fig. 2.3. Another significant approach was the AnnieWAY
entry, which was based on the use of a high-resolution Velodyne
HDL-64 lidar supported by some complementary lidar devices for
specific maneuvers [144].

Figure 2.3: Sensor setup featured by TerraMax (Vislab and others) during the
2007 DARPA Urban Challenge [31] © 2010 IEEE

The VisLab research group (established in Parma, Italy) was respon- broggi’s
research groupsible for the design of the perception system of the TerraMax vehicle

in both entries, but their expertise dates back to the 1990s [20]. One of
their most recent prototypes is the BRAiVE automobile, where cam-
eras were extensively used over other options, such as lidar devices,
in an attempt to deliver a close-to-market approach [30]. BRAiVE’s
sensor suite is based on ten cameras mounted all around the vehicle:
four in the frontal part, looking forward; two over the front wheels,
looking sideways; two in the rear-view mirrors, facing backward; and

24 related works

two over the license plate, also looking backward. Cameras are used to
perform various tasks such as traffic sign recognition, lane detection,
vehicle detection, and blind-spot monitoring. The BRAiVE platform
completed a 13 km public demonstration on public urban roads and
freeways in Parma in 2013: the PROUD test [34].

Another primary focus on autonomous vehicle research is the re-stiller’s
research group search group lead by Christoph Stiller at the Karlsruhe Institute of

Technology (KIT), responsible for the AnnieWay entry on the 2007

DARPA Grand Challenge. The BERTHA prototype, developed in col-
laboration with Daimler AG, dispensed with the lidar device and
featured instead six radar devices, a 35 cm-baseline stereo camera, and
two wide-angle monocular color cameras, one looking forward and
the other one looking backward [80]. The stereo system was used for
lane recognition and 3D scene analysis; the forward-looking wide-
angle camera was aimed at traffic light and pedestrian recognition
in turning maneuvers; and finally, the backward-looking camera was
employed for feature-based localization [299]. A 103 km public test on
the Bertha Benz Memorial Route, linking the German cities Mannheim
and Pforzheim, was driven autonomously using this sensor setup
[298]. Based on the same platform, BerthaOne is additionally endowed
with vehicle-to-everything (V2X) communication capabilities [257].

2.2 datasets

Automating the driving-related tasks requires the design and imple-
mentation of algorithms able to represent reality through a model. As
mentioned in Sec. 1.3.2, the creation of this model often involves the
use of labeled samples provided by one, or more, datasets. In addition
to enabling the re-use of labels, avoiding the duplication of the tedious
labeling effort, public datasets are a convenient way to benchmark
algorithms by introducing a common assessment framework. Indeed,
it is now common that authors of datasets provide the means (e. g.,
evaluation servers) to promote the comparison of algorithms in the
scientific community.

The spreading of deep learning techniques, whose models are en-
dowed with a high degree of complexity and, therefore, require more
training data, has led to the introduction of different datasets, created
by researchers around the world, and focused on different tasks. Below
are some of the most significant datasets currently in use for training
and evaluation of perception algorithms.

2.2.1 Object recognition

Classical object classification algorithms were based on handcraftedpre-deep

learning

datasets

features and were, often, specific to a single kind of object. Among
the different kinds of objects, pedestrians have been frequently a focus

2.2 datasets 25

of interest in the computer vision literature due to their importance
and relative difficulty to be detected. Typical pedestrian datasets for
methods of this kind included INRIA [53], Caltech [61], and Daimler
[65], among others. Datasets have been proposed even for the problem
of detection at nighttime, as the LSI FIR dataset [196], which provides
images from an infrared camera. Pedestrian datasets usually featured
cropped image patches containing pedestrians in different poses and
backgrounds, intended to be used as positive examples for a pedestrian
detection system.

The last years have seen the rise of a panoply of benchmarks with modern

datasetsa more global orientation, aimed to provide data of a variety of cate-
gories. Thus, the Pascal Visual Object Classes (VOC) Challenge [71],
organized annually from 2005 to 2012, evolved from 4 classes in its
first iteration to 20 classes and more than 11 000 images in its last
version. This set of classes included a wide variety of labels such as
aeroplane, dog, table, and person. A leaderboard with the top-performing
algorithms was provided [70], enabling a fair comparison.

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
[231] was the first in a new generation of datasets with a massive num-
ber of classes. It includes object category classification and detection
on hundreds of object categories (up to 1000) and millions of images.
The challenge has been run annually since 2010 and has arguably
enabled the progress of deep learning because of its vastness [154],
which allows for the generation of general-purpose features. Due
to the magnitude of the dataset, crowdsourcing was used to collect
large-scale annotations.

Sponsored by Microsoft and Facebook, among others, Common
Objects in COntext (COCO) [169] is one of the latest additions to this
group of massive datasets. It features per-instance segmentations of
91 different object types in 328 000 images, enabling assessment of
bounding box and segmentation detection algorithms.

Open Images Dataset [153] is probably the most extreme case of this
trend. It consists of approximately 9 million images annotated with
image-level labels and object bounding boxes for 600 classes.

A handful of datasets have gone a step further and have included
spatial reasoning in 3D; for instance, PASCAL3D+ [282], an extension
of the original Pascal VOC dataset; SUN RGB-D [247], which provides
data from an RGB-D sensor; or Flying Chairs [62], synthetic data aimed
at training of DNNs.

2.2.2 Driving environments

Although general-purpose datasets provide an extensive set of samples
which is valid to train onboard algorithms, autonomous driving poses
specific challenges that are not entirely taken into consideration in
catch-all computer vision datasets.

26 related works

The KITTI Vision Benchmark Dataset [89], created by the KIT and thekitti

Toyota Institute, contains data recorded from a moving vehicle while
driving around the German mid-size city of Karlsruhe. Data include
RGB images and lidar points that are profusely annotated to enable
benchmarking of algorithms performing stereo matching, scene flow,
odometry, object detection, and object tracking [90] (Fig. 2.4). It has
been later extended to include road segmentation [83] and semantic
segmentation [2]; besides, the scene flow evaluation has been updated
[182]. The impact of the KITTI dataset on the ITS research community
is immeasurable, as evidenced by the fact that it is still today the
baseline for a variety of critical tasks such as object 3D localization.

Figure 2.4: Recording platform, trajectory, disparity and optical flow maps,
and 3D object labels featured from the KITTI dataset [90] © 2012

IEEE

Following the recent progress on semantic segmentation techniques,cityscapes

the Cityscapes dataset [49] provides pixel-level and instance-level se-
mantic annotations of images recorded from a moving vehicle in 50

different Central Europe cities. With 5000 finely-labeled images, the
dataset has marked a milestone in semantic segmentation research.
On the other hand, CityPersons [294] is built on top of the Cityscapes
dataset and provides bounding-box labels for the set of pedestrians,
whereas the EuroCity Persons Dataset [28] seeks to increase the di-
versity of CityPersons regarding places (around different European
countries) and times of the year.

The last two years have seen the arrival of a multitude of largeothers

datasets tailored to autonomous driving. Inspired by Cityscapes, the
Mapillary Vistas dataset [191] provides pixel-wise labeled images from
all around the world, taken with different devices (e. g., mobile phones
or action cameras). Oxford RobotCar [176] contains 100 repetitions
of the same route through Oxford, captured throughout a year, thus

2.2 datasets 27

encouraging the robustness of the algorithms against weather and
illumination conditions. The ApolloScape dataset [132], sponsored by
Baidu, features a broad set of images labeled for scene parsing, car
instance detection, lane segmentation, and self-localization. Finally,
the Berkeley Deep Drive (BDD) 100K [290] dataset claims to be the
largest and most diverse driving video dataset and is annotated with
image tags, object bounding boxes, drivable areas, lane markings, and
full-frame instance segmentation.

Some datasets are focused on particular tasks within the ITS field. For
instance, Yang et al. [288] dealt with the particular case of fine-grained
classification and model verification of vehicles. On the other hand,
a dataset developed in the Laboratorio de Sistemas Inteligentes (LSI),
Semantic Annotated University Campus Environment (SAUCE) [16],
is aimed at the specific case of navigation on off-road environments
using pixel-wise-labeled images obtained in the surroundings of a
Spanish university campus. On a different level, TorontoCity [270] of-
fers different perspectives of the Toronto metropolitan area, including
airborne data captured from airplanes and drones.

The specific task of road sign recognition is of particular interest. In road signaling

recognitionthis line, traffic light detection and classification has been nourished by
different datasets such as LaRA [54], WPI [47], VIVA [140], and Bosch
[12]. DriveU [81] is the latest addition to the group and shows that
the interest on the topic remains undiminished. Likewise, traffic signs
have also been the subject of some datasets such as the German Traffic
Sign Recognition Benchmark (GTSRB) [250] or its detection-oriented
counterpart, the GTSDB [129].

2.2.3 Synthetic datasets

Most existing datasets are built upon data obtained from real sensors,
which must be annotated afterward. However, image labeling is a
cumbersome and time-consuming task. Advances in the video games
industry have fostered the use of virtual worlds to generate datasets
that are subsequently used to train AI algorithms. Since worlds are
generated by a visual engine, ground-truth labels are straightforwardly
available so, once the framework setup is finished, virtually unlimited
samples can be obtained. However, the usefulness of these approaches
in the computer vision field remains an open question due to the
inevitable difference compared to the data obtained with real sensors.
This is formally acknowledged as the domain adaptation problem [174].

One of the most relevant works regarding autonomous driving synthia and

carlaresearch is the SYNTHetic collection of Imagery and Annotations
(SYNTHIA) dataset [226], aimed at semantic segmentation. Authors
claim that virtual images can be used to enlarge real datasets and,
therefore, improve the performance of DNN-based algorithms. The set
of samples was later extended with the SYNTHIA-SF dataset [121],

28 related works

representing extreme cases of road slopes. The simulator used to
generate the samples in SYNTHIA was recently released with the
name of Car Learning to Act (CARLA) [63]. Based on the Unreal
Engine 4 graphical engine, CARLA offers boundless possibilities for
researchers to recreate different road conditions (e. g., weather or
illumination) and sensor modalities (e. g., cameras or lidars) in order
to train and test their perception and control algorithms.

Several works have been devoted to the extension of the real-worldkitti

extensions KITTI dataset [89]. Virtual KITTI [84] tried to replicate the existing
frames and create new ones to enlarge the extension of the dataset.
On the other hand, KITTI-360 [3] uses augmented reality to populate
the uncrowded frames of the KITTI dataset with additional instances
of objects.

COmputer GRAphic generated synthetic Traffic Scenes (COnGRATS)others

[22] uses Blender to generate annotated frames with depth, motion,
and semantic labels. Authors claim that the dataset can be used to
evaluate the performance of computer vision algorithms, without an
apparent difference with real-world data [23]. Richter et al. [215] took
advantage of the Grand Theft Auto V video game to automatically
generate labeled frames aimed at semantic segmentation, instance
segmentation, 3D scene layout, visual odometry, and optical flow.

Lately, DNNs have been used to generate realistic virtual frames that
could be eventually used to train vision algorithms. An example is the
Cascaded Refinement Network [42].

2.3 sensor calibration

Most perception algorithms assume that an accurate estimation of the
sensor calibration is available. This prerequisite enables establishing a
relationship between the real-world objects and their projections onto
the image (intrinsic calibration), on the one hand, and combining data
from different sensors that are inevitably located at different positions
within the vehicle (extrinsic calibration), on the other hand. Calibra-
tion is, generally, a cumbersome and time-consuming task; however,
the performance of every application making use of spatial reason-
ing depends strongly on the accuracy of the estimated calibration
parameters.

2.3.1 Camera intrinsic parameters

Most calibration frameworks currently available, such as the Bouguet’s
Camera Calibration Toolbox for Matlab2 and its C implementation in-
cluded in OpenCV [26], rely on the method proposed by Zhang [295].
A fiducial pattern is used to estimate the set of intrinsic parameters
through a procedure involving a closed-form solution (analytical solu-

2 http://www.vision.caltech.edu/bouguetj/calib_doc/

http://www.vision.caltech.edu/bouguetj/calib_doc/

2.3 sensor calibration 29

tion) and a maximum-likelihood estimation (non-linear optimization
technique). The method requires a set of images where the pattern is
detected and the coordinates for each corner extracted. The problem
is then posed as a series of homographies between the 2D pattern and
its projection on the image.

Zhang’s algorithm can also be applied to other fiducial patterns dif-
ferent from the classic checkerboard, such as squared planar markers
(e. g., ArUco [223]) or a circles grid, in this latter case reportedly reduc-
ing the number of pattern snapshots required to form a well-posed
equation system [198].

2.3.2 Extrinsic parameters

Vehicle sensor setups are usually composed of sensors belonging
to different modalities (e. g., cameras and lidar/radar rangefinders)
whose data must be combined to perceive the environment. Frequently,
sensors have overlapping fields of view, and the advantages conferred
by their joint use come from the ability to make correspondences
between both data representations. To that end, the relative pose of
the sensors, given by their extrinsic parameters, must be accurately
determined through a calibration process.

The camera-to-range calibration problem is, probably, the most
frequently addressed. In the most usual approach, calibration is seen
as a process to be performed in a controlled environment, using
fiducial markers. Early methods required manual annotation to some
extent [235]; however, such a laborious and repetitive task has been
naturally a subject of intense research aimed at its full automation.

Most automatic methods are based on establishing correspondences calibration

patternsbetween data from different sensors and, therefore, unambiguous
pattern instruments have been used as calibration targets: polygonal
boards [199], triangular boards [55], spheres [204], and others. Never-
theless, planar targets are frequent [165], since they are easily visible
in both range and intensity data.

Although early methods were designed to deal with limited range multi-layer

lidar devicesinformation [157], advances in lidar technology have led to devices
with the capability to provide a dense 3D point cloud, and calibration
methods have advanced accordingly. Assuming a common field of
view for the sensors, Geiger et al. [91] presented a calibration method
based on a single shot per sensor using a setup made of multiple
planar checkerboards. The method was tested with two cameras and
a multi-layer range sensor. While accurate enough, the setup needed
to perform the procedure is rather unwieldy, as shown in Fig. 2.5.

On the other hand, Velas et al. [266] use a custom calibration target
composed of a plane with four circular holes to provide an estimate of
the extrinsic calibration relating a scanner device and a camera. The
shape of the target was chosen so that it could be easily detected in

30 related works

Figure 2.5: Calibration setup used by Geiger et al. [91] © 2012 IEEE

both the camera image and the data from a commercial 360° lidar
device.

Recently, several methods that perform calibration in the absence oftargetless

methods fiducial targets have been proposed. These methods extract features
from natural environments; for instance, Moghadam et al. [186] use
linear features to determine the transformation between sensors. The
method is aimed at indoor environments, where linear landmarks are
plentiful. In vehicular applications, the ground plane and traffic users
have been used to perform camera-lidar calibration [217]. The particu-
lar case of non-overlapping fields of view has also been considered
[239], [240].

DNNs have been employed lately to perform camera-lidar calibrationdeep learning

methods with little or no supervision. RegNet [237] and CalibNet [137] are two
of the flag-bearers of this trend. The networks used by these methods
are trained to detect and correct miscalibrations using real data where
near-ground-truth extrinsic parameters are available (e. g., the KITTI
dataset).

A related issue is the assessment of calibration methods. Determin-assessment

ing the ground-truth parameters expressing the relative transform be-
tween sensors is impractical, and evaluation is often based on custom
metrics and inaccurate manual annotations. In this respect, Levinson
and Thrun [161] proposed a measure expressing the degree of mis-
calibration based on the identification of discontinuities in a natural
scene.

2.4 convolutional neural networks

Data from sensors is not straightforwardly interpretable by computers.
A non-trivial processing stage is necessary to extract useful informa-
tion from the raw data and feed the system higher-level modules.

For decades, this processing has been mostly based on machine-
learning methods, which build a mathematical model of sample data
in order to make predictions or decisions on unseen data [24]. However,
conventional machine-learning technologies are bad at processing data
in their raw form; they generally require an intermediate step, built
by humans with proper domain expertise, to map the raw data into a
suitable representation.

In contrast, representation learning methods aim at building mech-
anisms able to learn how to deal with raw data and automatically

2.4 convolutional neural networks 31

discover the representations that are the most useful for the machine
[17]. Progress in this field has been painfully slow until the emergence
of Deep Learning (DL). This term is used to describe a set of repre-
sentation learning techniques with multiple levels of representation,
increasingly abstract, built with simple but non-linear mathematical
operations.

DL has represented a significant step forward, not only for repre-
sentation learning itself but, above all, for machine learning: repre-
sentations discovered by DNNs have proved far more effective than its
hand-crafted counterparts.

2.4.1 Historical evolution

Although multilayer neural networks, trainable through backpropaga- first neural

networkstion, had been widely understood since the mid-1980s, the research
community lost interest due to their proneness to get trapped in poor
local minima [158]. In practice, poor local minima are not a problem
in large networks, and this is one of the reasons why DNNs gained
traction again around 2006, being applied to tasks such as digit classi-
fication [123]. The use of deep structures was made possible by the
advances in GPUs, which accelerated the backpropagation process by
10 or even 20 times.

However, it was soon discovered that there was a particular type convolutional

networksof DNN that was relatively easy to train and had an excellent general-
ization ability: the Convolutional Neural Network (CNN), sometimes
referred to as ConvNet. Although structures similar to the CNN have
been successfully used since 1990 [159], the turning moment took place
in 2012, when Krizhevsky et al. [154] achieved performance levels for
image recognition never seen before during the ILSVRC competition,
mentioned before in Sec. 2.2.1. They proposed a CNN design, currently
referred to as AlexNet, based on the efficient use of two GPUs and
Rectified Linear Units (ReLUs) as non-linearities. The extraordinary
performance showed by CNNs in this paper precipitated the rapid
adoption of deep learning by the computer vision community.

CNNs are currently the method of choice for virtually all recognition
and detection tasks, from image/video captioning [267] to cell segmen-
tation in biomedical images [224]. Most major technology companies
in the world are investing heavily in DL projects, and resulting prod-
ucts are already reaching the market (e. g., Google’s computational
photography3).

CNNs have a neuroscientific basis as some of the fundamental design
principles of neural networks came from the brain function [100]. Thus,
the primary visual cortex (V1) is arranged in a spatial map, contains
many simple cells (non-linearities) and also contains many complex
cells (pooling units), similar to the CNNs.

3 https://ai.googleblog.com/search/label/Computational%20Photography

https://ai.googleblog.com/search/label/Computational%20Photography

32 related works

2.4.2 Fundamentals

CNNs are arrangements suitable to work with data that has an explicitbasic

structure grid-structured topology and to scale such models to larger sizes;
therefore, they have been the most successful on a two-dimensional,
image-like topology.

From an architectural point of view, CNNs are similar to conventional
neural networks. The basic unit is the neuron. Neurons have weights
and biases that are learned through an optimization procedure. Each
neuron receives an input, performs a dot product (using the weights
and bias), and, usually, is followed by a non-linearity (e. g., ReLU) [145].

The general architecture of a CNN is made of a series of stages, as
depicted in Fig. 2.6. The earliest stages are made of convolutional
layers, on the one hand, and pooling layers, on the other hand. Both
structures are usually stacked together:

Figure 2.6: Convolutional Neural Network (CNN) [158]

convolutional layers : They produce feature maps from their in-
put, which can be either another feature map or the raw RGB
image. These feature maps are generated by discrete convolu-
tion of the input data with learnable filters banks (or kernels),
whose size is typically limited to a small fraction of the spatial
dimensions (height and width) of the incoming data. Each unit
of a feature map is, therefore, the result of applying the weights
in the filter bank to a local patch in the input matrix, and all
units share the same filter bank. This design choice is supported
by two facts [158]: firstly, local groups of values are frequently
correlated since they form distinctive patterns; and secondly,
kernels must be invariant to location, since patterns can appear
anywhere on the image. Convolutional layers are followed by a
non-linearity (e. g., ReLU).

pooling layers : They compute the maximum of local patches of
each feature map. Adjacent pooling units use inputs shifted
by more than one row or column, thus effectively decreasing

2.4 convolutional neural networks 33

the size (height/width) of the feature maps. Pooling layers are
intended to merge semantically similar features into one, so that
differences in the relative position of patterns are omitted [158].

Generally, a CNN is made of various stages of “convolution + non-
linearity + pooling” blocks, followed by several Fully-Connected (FC)
layers, which perform as a regular neural network; that is, each learn-
able unit performs a weighted sum of the inputs (all of them). This
implies, on the one hand, that the 2D structure of the input data is lost
at this stage, and, on the other hand, that the last feature map (i. e.,
the input of the FC layers) must have a fixed size.

Finally, most CNNs perform a softmax operation at the last layer. The
softmax function normalizes the output vector so that resulting values
(σj) are in the interval (0, 1), and they add up to 1, thus becoming
a probability distribution. To that end, the following operation is
performed over every element zj of the K-length output vector, z:

σ(z)j =
ezj∑K

k=1 e
zk

(2.1)

2.4.3 Architectures for image recognition

CNNs can be straightforwardly applied to classification tasks; in this models

scheme, the output vector is aimed to represent the probability distri-
bution over the possible categories. Therefore, the prediction provided
by the network (i. e., the maximum element of the output) is the class
label corresponding to the input image.

The model proposed by Krizhevsky et al. [154], now referred to as alexnet

AlexNet, paved the way for a manifold of variations proposed to the
very same end. AlexNet was a relatively simple model that consisted of
11× 11, 5× 5 and 3× 3 convolutions, max pooling, dropout, Stochastic
Gradient Descent (SGD) with momentum, and, last but not least, ReLU

activations, instead of the tanh or sigmoid functions that were used
traditionally in neural networks. ReLU units are non-linear functions
defined as the positive part of its argument:

f(x) = max (0, x) (2.2)

DNNs with ReLUs can be trained much faster than their equivalents
with other non-linearities. On the other hand, AlexNet was designed
to cope with the memory limitations of the GPUs at the time: the
network was divided into two symmetrical parts aimed to be trained
in different GPUs.

After AlexNet, numerous models were proposed. They are, to a large other popular

modelsextent based on the same principles, but introduce variations aimed
to increase the accuracy. Generally, as the complexity of the model
increases, inference and training times grow, and more data is required

34 related works

to train the model while avoiding the occurrence of overfitting. Some
popular models nowadays are described below:

zf : The Zeiler and Fergus (ZF) model [291] is a slight variation on the
original AlexNet model that modifies the first and second con-
volutional layers to improve the quality of the resulting features.
The proposed changes were based on a study of the features
obtained at different levels that makes use of a deconvolutional
network.

vgg : VGG models [244] are named after the research group where
they were developed, the Visual Geometry Group from the Uni-
versity of Oxford. VGG models are an evolution from the original
AlexNet that replaced the large kernel filters at the earliest layers
with multiple 3× 3 filters stacked one after another. This uniform
structure enables the generation of more complex representa-
tions; however, it also increases the number of parameters. VGG
networks can adopt different configurations, being the 16 weight
layers version (VGG-16) the most popular one.

mobilenet : Efficient models specifically designed for mobile ap-
plications, MobileNets [130] introduce the concept of depthwise
separable convolutions, which factorize a standard convolution
into a depthwise convolution and a pointwise convolution, in-
creasing the efficiency in the use of parameters. MobileNets have
two hyperparameters to control the trade-off between computa-
tion time and accuracy, thus adapting to a range of applications.
An enhanced iteration, MobileNetV2, was recently presented
[234]. They make use of inverted residual structures to further
increase the efficiency in memory usage.

inception : The Inception family of models was designed to explore
the limits of the sophistication by using heavily engineered
concepts and specific gimmicks to push the performance. The
model has undergone several iterations. The main contribution of
the original Inception [254] was the Inception module, which was
made of several filters with multiple sizes operating on the same
level. The idea was against the mainstream trend of increasing
the depth of the models; they tried to increase their width,
instead. Batch Normalization (BN) was later adopted [136] to
smooth out the training procedure. Inception-v2 and Inception-
v3 [255] were improvements over the baseline model based on
the factorization of convolutions and the use of solutions such
as an RMSProp optimizer or BatchNorm. Finally, Inception-
v4 and Inception-ResNet [253] were an attempt to slim down
the complexity of the model, on the one hand, and to include
residual connections to improve the performance of the model,

2.5 object detection in images 35

on the other hand. The latter is inspired by the ResNet model
described just below.

resnet : Residual Neural Networks (ResNets) presented by He et
al. [120] introduced the novel concept of shortcut connections to
reformulate the network as residual functions with reference to
the input layers, instead of unreferenced functions. The building
block of the network, the residual block, is shown in Fig. 2.7.
The idea was intended to solve the degradation phenomenon
observed on very deep models, when increasing the number of
layers leads to a drop in performance. The most popular variants
are the 50-layer (ResNet-50) and 101-layer (ResNet-101) models.

Figure 2.7: Residual block [120] © 2016 IEEE

Classification algorithms are typically evaluated on the ImageNet benchmark

dataset [231], described in Sec. 2.2.1. A summary of the performance of
the models described in this section is presented in Table 2.1, using the
Top-1 and Top-5 errors as established by the ILSVRC challenge. Hence,
the Top-1 error takes into account all the cases where the ground-truth
class has not been predicted as the most probable one, whereas the
Top-5 error relaxes the requirement for the ground-truth class to be
among the five most probable categories.

Included results are purposely extracted from the corresponding
original papers, and therefore the available metrics are not entirely
homogeneous; for instance, results for modern networks are provided
for the average of the classification probabilities over multiple (10–12)
crops on the original frames, thus requiring several executions per
image. Nevertheless, the evolution of the performance from the early
AlexNet/ZF models is notorious.

Further details concerning CNNs will be described in Secs. 2.5.3 and
2.5.4, in regards to their application on detection frameworks.

2.5 object detection in images

Image classification aims to provide a single class label (e. g., car, problem

statementpedestrian, or cyclist) when given an input image. However, limitations
inherent to this task significantly restrain its applicability to real im-
ages: only one object is expected to be present in the image, and there

36 related works

model crops top-1 err . top-5 err .

AlexNet [154] 1 40.7 18.2

ZF [291] 1 33.1 16.5

VGG-16 [244] 1 24.8 7.5

MobileNet [130] 1 29.4 —

MobileNetV2 [234] 1 28 —

BN-Inception [136] 1 25.2 7.82

Inception-v3 [255] 12 19.47 4.48

Inception-v4 [253] 12 18.7 4.2

Inception-ResNet-v2 [253] 12 18.7 4.1

ResNet-50 [120] 10 22.85 6.71

ResNet-101 [120] 10 21.75 6.05

Table 2.1: Classification error rates (%) on the ImageNet validation set for
different classification models

is no information about its location within the frame. Object localiza-
tion goes a step further and intends to estimate a set of coordinates
determining the position of the object unambiguously. However, the
limitation concerning the number of objects in the image still holds.

Meanwhile, object detection is intended to offer an estimate of the
position and category of the objects represented in the image. As
follows from the definitions above, object detection entails a higher
degree of complexity than classification and requires the use of algo-
rithms specifically designed for the application.

Until a few years ago, detection algorithms were based on classifica-
tion methods applied sequentially over patches from the input image.
However, the emergence of CNNs brought new methods where the
search space was reduced, and others where the processing can be
performed concurrently over all the areas in the image.

A brief review of the most relevant aspects considered in the lit-
erature about this issue is provided below, including some specific
concerns regarding training and inference. For further insight, the
reader is referred to the comprehensive review by Agarwal et al. [1],
which covers almost every aspect of CNN-based object detection.

2.5.1 Historical evolution

Before the widespread adoption of CNNs, detection algorithms reliedpre-deep

learning

approaches

on the sliding window approach: crops of fixed size were extracted
from all positions and scales of the image and fed to a classifier to
determine the presence of an object.

Classical detectors used together with this approach were based on
hand-crafted features, whose complexity remained tractable. Because

2.5 object detection in images 37

of this, they were suitable for repeated application, as required by the
sliding-window procedure.

As feature selection was deemed as the most critical stage of a
classification algorithm, a manifold of different features were proposed
over the years. Two of them can be highlighted because of its relevance:

haar-like features : First proposed by Viola and Jones in the
popular Viola–Jones face detection framework [268], Haar-like
features sum up the pixel intensities in adjacent rectangular
regions and compute the difference between these sums.

histograms of oriented gradients (hog): They were intro-
duced by Dalal and Triggs for human detection [53], but showed
compelling performance for other classification tasks, becoming
the dominant approach for several years. The method consists of
counting occurrences of gradient orientation in local areas of the
image and is based on the intuition that local object appearance
and shape is described by the distribution of intensity gradients
and edge directions.

The Deformable Part-based Model (DPM) proposed by Felzen-
szwalb et al. [74] embedded HOG features into a structure that takes
into account the relative positions of the different parts that make
up an object. Since it solved some pressing problems related to the
little robustness of HOG features against changes in pose, it was
rapidly adopted and become the last widespread approach before the
introduction of CNNs.

These and other features were used to perform classification through
machine learning algorithms such as boosting [82], which seeks to
convert a set of weak learners to a final strong classifier, and, mainly,
Support Vector Machines (SVM) [50], aimed to find a representation
where samples belonging to different categories can be easily dis-
criminated. Classical detection algorithms were generally targeted
to a single kind of object, so the detection was posed as a binary
classification problem.

Since the groundbreaking work by Krizhevsky et al. [154] in image modern

detection

approaches

classification, the focus was on applying CNNs to object detection, thus
avoiding the need for manually designing features. CNNs were first
integrated into sliding-window approaches [241], but that paradigm
led to suboptimal solutions. It soon became evident the necessity of
designing tailored approaches to exploit the representation power of
CNNs in object detection.

2.5.2 Meta-architectures

A large number of methods have been proposed in the computer vision taxonomy

literature to take advantage of CNNs in object detection. However,

38 related works

Huang et al. [131] realized that virtually all modern convolutional
detection systems were based on the same underlying principles.
Hence, they can be analyzed as meta-architectures making use of a CNN

acting as a feature extractor, often referred to as the backbone.
The feature extractor is, as its name implies, responsible for comput-

ing the features used for detection and classification. These features are
gathered from the feature maps generated by a plain CNN, like those
described in Sec. 2.4. However, the different methods differ in their use
of the feature maps. Huang et al. found three main meta-architecture
designs: R-CNN, R-FCN, and single-shot detectors.

2.5.2.1 R-CNN

The Region-based Convolutional Neural Networks (R-CNN) paradigmr-cnn

was proposed in 2014 by Girshick et al. [96]. The method is based
on the classification of previously proposed image patches using a
CNN. The initial approach required to run the whole CNN for every
image patch or Region Of Interest (ROI) [97], as depicted in Fig. 2.8. The
proposals came from a classic segmentation method (selective search
[263]) and were abundant. Unsurprisingly, the computational cost of
the algorithm was prohibitive.

Figure 2.8: Region-based Convolutional Neural Networks (R-CNN) [97]
© 2016 IEEE

Soon after, the algorithm was largely improved to become Fast R-CNNfast r-cnn

[95]. Fast R-CNN was an important step forward since it only required
to compute the feature maps once, and therefore all the objects could
be classified with a single execution of the feature extractor, as shown
in Fig. 2.9. The only layers that were not shared and therefore required
as many executions as proposals were the FC layers. As described
in Sec. 2.4, FC layers require a fixed input size; because of this, one
of the most significant contributions of Fast R-CNN is the ROI pooling
layer, which computes a fixed-length feature vector using an arbitrary
size image patch as input. As a result, execution times became more
tractable.

Finally, in 2015, Ren et al. proposed Faster R-CNN [213], an end-to-endfaster r-cnn

framework that dispenses with the external proposal generator. Faster
R-CNN introduced the idea of Region Proposal Network (RPN), which

2.5 object detection in images 39

Figure 2.9: Fast R-CNN [95] © 2015 IEEE

is a small network responsible for determining which proposal boxes
contain objects. As the RPN is extremely lightweight, a large number
of proposals covering the whole image at different scales and aspect
ratios are used, but only those containing objects are subsequently
classified using the Fast R-CNN approach (Fig. 2.10). Faster R-CNN

features a multi-task loss function that allows training both the RPN
and the classification head simultaneously [214].

Figure 2.10: Faster R-CNN [214] © 2015 IEEE

The Faster R-CNN approach was recently extended to provide a
semantic mask of the object within the detection box. The resulting
method, known as Mask R-CNN [118], is currently one of the top-
performing methods for instance semantic segmentation. Mask R-CNN

also replaced the classic ROI pooling layer by an ROI align layer, which
solved the problems of misalignments caused by the ROI pooling
computations using bilinear interpolation.

2.5.2.2 R-FCN

Region-based Fully Convolutional Networks (R-FCN) [52] is another meta-
architecture, based on Faster R-CNN, which aimed to reduce the per-ROI

computation to a minimum. To that end, it got rid of the FC layers and
therefore performed the pooling at the last layer of features prior to

40 related works

prediction. The cropping mechanism was position-sensitive to incor-
porate translation variance, thus preventing the loss of information at
the ROI pooling stage in Faster R-CNN.

2.5.2.3 Single-shot detectors

In contrast with the previous methods, where classification was per-
formed in two stages, there is another family of approaches that avoid
the proposal-specific stage and therefore pose the classification prob-
lem as an end-to-end computation where raw pixels are converted to
bounding box coordinates and class probabilities.

The first single-stage method was You Only Look Once (YOLO) [210].yolo

YOLO modeled the detection problem as a regression by dividing
the image into a grid and letting the network estimate bounding
boxes and class probabilities for each of the grid cells. YOLO has been
further improved as YOLOv2 [211], which used multi-scale training,
and YOLOv3 [212], where several design tweaks were added.

In the same spirit, Single Shot Detector (SSD) [171] adopted the struc-ssd

ture of the RPN introduced in Faster R-CNN and extended it to provide
a proper classification, instead of the objectness score for which the RPN

was designed. This way, the per-region classification could be entirely
removed. To handle objects of different sizes, they also added addi-
tional convolutional layers to the feature extractor so that multi-scale
feature maps were computed.

Generally, single-stage detectors are much faster than their double-comparison

with two-stage

methods

stage counterparts, but their detection performance is notably worse.
The drop in performance is particularly noticeable in small objects,
which single-shot detectors struggle to find [131].

2.5.3 Training

Training is the process through which network weights are learned
from labeled samples. The training procedure critically determines
the quality of the resulting model. Several approaches concerning
different aspects of the training process have been proposed in the
literature; some of them are particular to the detection problem, but
others are common to every method using DNNs.

For instance, the pre-training of CNNs was soon identified as one oftransfer

learning the critical aspects to improve the performance of recognition algo-
rithms. The underlying concept behind this is that features generated
by CNNs are so powerful that they can be useful for tasks different
from the one for which they were trained. Transfer learning was quickly
exploited for classification [209], and it is used in virtually every detec-
tion method to initialize the network weights of the feature extractor
before starting the optimization process. However, recent works [117]
have questioned this practice since similar results can be reportedly
obtained by increasing the number of training iterations.

2.5 object detection in images 41

Those layers which are not initialized from a previous model should weight

initializationbe assigned random values, as usual in neural networks. The most
straightforward approach consists of drawing the random values from
either a uniform or a Gaussian distribution. Parameters of the source
distributions can be selected according to policies such as Xavier (or
Glorot) [98] or MSRA (or He) [119] to guarantee the adequacy of the
values.

Optimization, on the other hand, can make use of different strategies; optimization

methodshowever, SGD [230] and Adam [147] are still the most popular. Most
training hyperparameters, such as the learning rate or the training
schedule, are still selected by hit-and-trial. So is batch size, although
the vast majority of detection algorithms use small batches to keep the
GPU memory usage under control.

Some techniques have been proposed to improve the effectiveness class

balancingof input data. Most datasets have imbalanced classes; that is, there are
many more samples from some categories than others. More impor-
tantly, detection algorithms are based on the classification of a large
number of proposals, most of whom correspond to the background.
Therefore, the imbalance is often a problem since the resulting model
risks being biased towards the majority class. In this regard, Online
Hard Example Mining (OHEM) [243] selects the worst-performing
samples (hard examples) to calculate the gradients. On the other hand,
focal loss [168] improved the detection performance by penalizing hard
examples more strongly than the easy ones.

CNNs are generally large networks prone to overfitting. Regulariza- regulariza-
tiontion methods try to avoid this phenomenon by discouraging learn-

ing an overcomplicated model. For instance, dropout [248] randomly
removes units from the network during training. Batch Normaliza-
tion (BN) [136] normalizes the layer inputs by the mean and variance
computed within a training batch; this way, the internal covariate shift
is reduced, and the gradients are less dependent on the scale of the
parameters or their initial values, which can benefit generalization.
Group Normalization (GN) [279] solves some drawbacks of BN, such
as the dependency on the batch sizes, by dividing the channel into
groups and computing the mean and variance within each group.

Increasing the amount of training data has a positive effect on the data

augmentationgeneralization ability of the models and prevents overfitting. In order
to enhance the available data without using additional annotation
efforts, data augmentation strategies can be adopted. These techniques
apply transformations over the training images to artificially enlarge
the existing dataset. The original AlexNet paper employed data aug-
mentation by applying random translations, horizontal mirroring, and
pixel-wise addition of multiples of the principal components of the im-
ages [154]. In general, typical transformations for data augmentations
can be divided [258] into geometric (e. g., scale, resize, translation,

42 related works

rotation, or mirroring) and photometric (e. g., contrast, color, hue, or
saturation).

2.5.4 Inference

Object detection pipelines perform classification of a large numbernon-maximum

suppression of proposals or anchors which are, to a greater or lesser extent, over-
lapped. Because of this, several bounding boxes are labeled as positive
for each real instance in the image. A post-processing stage is, there-
fore, necessary to filter out all those boxes corresponding to the same
entity except for one, which provides the most accurate representation
of the real entity. This step is crucial to avoid the existence of dupli-
cate detections that might degrade the performance of other modules
down the pipeline (e. g., tracking).

Most approaches are based on the greedy Non-Maximum Suppres-
sion (NMS) method employed by Dalal and Triggs on their HOG-based
person detection system [53]. The NMS algorithm selects the prediction
box with the highest confidence and rules out all the other boxes that
are overlapped with an Intersection over Union (IoU) higher than a
fixed threshold. It should be noted that the threshold value is selected
manually, and the optimal setting usually varies depending on the
dataset.

Some attempts have been made recently to learn NMS in a CNN.
Hosang et al. showed its feasibility, first using results from a greedy
NMS as input [127], and later getting rid of the NMS and taking into
account double and neighboring detections [128]. They reportedly
achieved non-negligible gains of performance in the object detection
task.

On the other hand, Soft-NMS [25] aimed to increase the performance
of greedy NMS with minimal changes. Detections are rescored ac-
cording to a Gaussian function of overlap, instead of discarded. This
approach does not require training and can be easily implemented, so
it was rapidly adopted by the object detection community.

Generally, the performance of detection methods can be improvedtest-time

augmentation on inference time by aggregating the results of several feed-forward
passes, each performed on a different image scale or crop. Detections
must be later aggregated using some variant of NMS. This technique
can be used when the inference running time is not a limiting factor;
for instance, it is widely used nowadays in competitions such as those
discussed in Sec. 2.2.1.

2.6 perception on automotive platforms

Autonomous driving modules are one of the most demanding appli-
cations of perception algorithms. The construction of the environment
representation is a complex task that requires a high level of reasoning

2.6 perception on automotive platforms 43

ability, as discussed in Sec. 1.3.2. For this reason, new methods devel-
oped within the computer vision and AI fields are always welcomed
and rapidly adopted.

As the reader may have noted, methods introduced in previous
sections were mainly designed to handle 2D images from cameras.
However, these approaches can be applied to other data sources, such
as lidar, provided that the information is conveniently represented.

Apart from coping with the specific challenges of traffic scenes (see
the list by Schiele and Wojek in Sec. 1.3.2), algorithms intended for au-
tomotive applications should be designed with a particular emphasis
on efficiency. Results must be computed under real-time constraints
on onboard processing platforms (e. g., embedded computers) with
limited computation capabilities.

The following sections are devoted to reviewing modern techniques
for traffic scene understanding. The focus is on the analysis of methods
geared towards an object-based representation.

2.6.1 Object classification and detection

Before the emergence of DNNs, methods based on hand-crafted fea- pre-deep

learning

approaches

tures (as those cited in Sec. 2.5.1) were extensively used in object
detection for autonomous applications, often focused on the detection
of cars [86], [195], [289] and pedestrians [19], [200]. The reader is re-
ferred to [246] and [65] for a review of onboard vehicle and pedestrian
detection algorithms before the emergence of DL.

Nevertheless, the performance of these approaches was generally
subpar due to the difficulties involved in traffic scenarios (e. g., oc-
clusions), which classical algorithms could not deal with adequately.
Modern techniques based on DNN brought significant improvements
in performance that were promptly leveraged to tackle the problems
which stem from the lack of structure of traffic environments.

CNNs have a straightforward application on specific, well-defined road signaling

recognitiontasks such as Traffic Light Recognition (TLR) and Traffic Sign Recogni-
tion (TSR). Classical image processing methods, where features were
often based on color or shape [54], [185], gave way to CNN-based
methods [142] soon after the influential work by Krizhevsky et al. [154].
As feature extraction was now embedded into the learning process,
these methods featured enhanced robustness against variations such
as illumination.

Whereas the application of CNNs to provide a classification of the
kind of the traffic sign or the status of the traffic light (i. e., red, yellow
or red) is straightforward, ROIs to be classified can be obtained through
several approaches: digital maps [143], external proposal generation
methods [297] or as an output of the method itself [175], [271]. In any
case, the well-defined structure of road signaling generally facilitates
that stage.

44 related works

When the aim of the system is the detection of all kinds of objects,object

detection including dynamic agents, the complexity of the problem increases
as no size or shape assumptions can be easily made. Object detection
methods have been profusely applied to this problem, but the particu-
lar characteristics of the traffic environments are a source of additional
problems that must be often approached through specific solutions.

Prominent among these challenges is the adequacy of the proposalsproposal

generation sent to the classification stage on two-stage methods, such as Faster
R-CNN [213]. In this regard, Yang et al. introduced scale-dependent
pooling and cascade rejection classifiers to improve the detection
performance on different scales [285]. The former aimed to exploit
different convolutional features for each proposal depending on its
size, whereas the latter was introduced to avoid the duplication of
computations by removing the easy negatives early in the process.
Similarly, MS-CNN [38] tried to overcome the limitations of the fixed
receptive field of the Faster R-CNN’s RPN by extracting features at
different levels of the backbone network.

Based on those and other similar works, Lin et al. proposed the
Feature Pyramid Network (FPN) [167] as an efficient solution to detect
objects at different scales based on the use of different features maps
in a top-down architecture with lateral connections.

Another group of works employs stereo or lidar information tomethods using

lidar enhance the proposal generation. Such is the case of 3DOP [44], which
generate 3D proposals using object size priors, ground plane, and
depth-informed features, taking advantage of the information from a
stereo system. DeepStereoOP [205] uses a simplified version of 3DOP
and re-ranks the resulting proposals using the disparity map from the
stereo system.

Nonetheless, information demanded by planning and control mod-
ules usually exceeds the scope of conventional object detection meth-
ods. The following sections deal with the pose estimation and 3D
localization of objects. It should be noted, however, that these methods
often built upon reliable detection methods such as those presented
above.

2.6.2 Viewpoint estimation

Apart from object detection, estimation of the 3D pose of objects isproblem

statement another matter of interest when dealing with traffic scenes. Although
the concept of pose usually includes both the position and orientation
of objects in space, the study of the former will be delayed to the
next section and, therefore, focus here is on the determination of the
orientation.

In the most general case, the description of the orientation of objects
in space needs three angles; e. g., pitch (rotation around the transversal
axis), roll (rotation around the longitudinal axis), and yaw (rotation

2.6 perception on automotive platforms 45

around the vertical axis). However, the road surface can be reasonably
approximated by a plane on which dynamic objects (e. g., other cars)
move. Under this assumption, pitch and roll angles are negligible and,
in any case, irrelevant to describe the dynamics of the objects. The same
cannot be said of the yaw angle; knowing the orientation of objects,
e. g., pedestrians [78], on the 2D plane defined by the road provides
valuable information about their current and future movements and,
therefore, has been a subject of study in the literature.

When information comes from a single camera, the estimation of the viewpoint

estimationpose must be done using only appearance features. In that particular
case, it is more reasonable to estimate the relative orientation between
the camera and the object instead of the absolute yaw. This magnitude
is, in fact, the viewpoint or observation angle. A more detailed discussion
about this issue will be provided in Chapter 5.

Both López-Sastre et al. [173] and Pepik et al. [202], [203] explored
the possibilities to enrich a conventional part-based detector with
the ability to estimate the viewpoint of the objects. The former also
introduced a measure of the accuracy of the orientation prediction,
the Mean Precision in Pose Estimation (MPPE).

The problem of the estimation of the pose of objects got renewed deep learning

approachesinterest with the emergence of DNNs. It was soon evident that con-
volutional features could be useful for this task [94]. However, the
availability of training data is one of the main concerns of these meth-
ods. Rendered 3D models are used in some cases to obtain different
views of the objects [252].

In general, the viewpoint estimation problem can be posed in two continuous vs .
discreteways: as classification into discrete bins resulting from the quantization

of the full circle, as is the case with the works shown above, or as
a continuous regression aimed at providing the exact value of the
viewpoint [177], [259]. Yang et al. [287] proposed a CNN for discrete
viewpoint estimation that was further enhanced by performing a
regression based on the scores obtained for each bin and the Kullback-
Leibler distance.

Pose-RCNN [29] extends the R-CNN architecture to handle the ori-
entation estimation. Proposals are generated using clustering on lidar
data or stixels on stereo data. On the other hand, SubCNN [281] pro-
poses a subcategory-aware CNN and embed the viewpoint into it as a
subcategory to be predicted along with the detections.

Later works are, generally, more ambitious, and aim to estimate cuboid

estimationfull 3D boxes (or cuboids) enclosing the object. An example of this is
Deep3DBox [188], represented in Fig. 2.11, which takes 2D detection
bounding boxes and enhance them to become oriented 3D bounding
boxes. Murthy et al. [189] go even further and try to reconstruct the
3D shape of cars using a single frame. When spatial information (i. e.,
stereo or lidar) is added, the estimation of the location of objects
becomes more affordable, as will be discussed in the next section.

46 related works

Figure 2.11: Estimation results of the Deep3DBox method [188] © 2017 IEEE

method aos car aos ped. aos cyc .

DPM-VOC+VP [203] 63.27 39.83 23.22

Pose-RCNN [29] 75.35 59.89 62.25

SubCNN [281] 88.43 66.28 63.41

Deep3DBox [188] 88.56 — 59.37

Table 2.2: Orientation estimation performance (AOS %) of selected methods
on the KITTI object detection benchmark. Results are given for the
Moderate difficulty level on the testing set5

A summary of the performance of some of the cited methods can bebenchmark

found in Table 2.2. Results are expressed in terms of the Average Ori-
entation Similarity (AOS) measure, proposed by the KITTI dataset [90]
as a way to jointly evaluate the detection and orientation estimation
performance4.

2.6.3 Obstacle 3D localization

The object detection problem is usually formulated as the localizationproblem

statement of the visible instances within the image frame. However, important
though it is, this task does not provide a complete picture of the scene.
Navigation through a traffic environment requires precise information
not only about the presence of objects, but also about their dimensions
and, particularly, their 3D location. As with the orientation, road
environments usually allow assuming that objects move along the
ground plane and, therefore, effort focus on the estimation of the 2D
coordinates within that plane, together with the dimensions of the 3D
bounding box.

The last couple of years has seen the proliferation of a large numbervision-based

methods of methods designed to provide 3D detections. The information can
be extracted from different data modalities. Although some methods,
such as Mono3D [43] or MonoPSR [156], have shown that geomet-

4 AOS will be described in detail in Sec. 5.1.1.
5 http://www.cvlibs.net/datasets/kitti/eval_object.php

http://www.cvlibs.net/datasets/kitti/eval_object.php

2.6 perception on automotive platforms 47

rical information can be inferred from monocular data, additional
sources are usually employed. For instance, spatial information can be
retrieved from a set of monocular images [228] through Structure from
Motion (SfM) techniques. Spatial reasoning can also be obtained from
stereo data, as in the 3DOP approach [44], [45], which employs a CNN

that exploits context and depth information to obtain 3D bounding
boxes.

Nevertheless, most of the works aimed at 3D detection nowadays lidar-based

methodsmake use of lidar data. In this line, VeloFCN [163] and later 3D FCN
[162] employed Fully-Convolutional Networks (FCNs) on the data
obtained by the lidar to generate 3D detections. The former used
a representation later known as front view (FV), in which the 3D
points are projected onto a cylinder plane, whereas the latter used 3D
convolutions.

Generally, the key issue is the representation of the 3D lidar data lidar data

representationin such a way that it can be correctly handled by CNNs. In this regard,
one of the most influential works was the one by Chen et al., MV3D
[46]. They used the front view from VeloFCN and complemented it
with a Bird’s Eye View (BEV), which is a grid map built using the lidar
information6. The RGB image was also used as an input, and features
were extracted from the three different representations. The approach
is depicted in Fig. 2.12.

Figure 2.12: Multi-View 3D object detection network (MV3D) [46] © 2017

IEEE

Since then, a wide array of works have adopted the BEV representa- bev-based

methodstion [166], [274], [292], each of them making use of different features
per cell (e. g., max height or intensity). The vast majority of works in
this group focus on car detection; this is because VRUs are generally
smaller and, therefore, more scarcely represented on the BEV. An ex-
ception is AVOD [155], which uses features extracted separately from

6 A detailed description of the BEV representation will be provided in Sec. 3.2.2

48 related works

method ap bev ap 3d

TopNet [274] 53.71 12.58

RT3D [292] 42.10 21.27

MV3D [46] 76.90 62.35

UberATG-ContFuse [166] 85.83 66.22

F-PointNet [208] 84.00 70.39

AVOD-FPN [155] 83.79 71.88

PC-CNN [64] 86.10 73.80

PointRCNN [242] 86.04 75.42

Table 2.3: BEV and 3D detection performance (AP %) of selected object local-
ization methods on the KITTI object detection benchmark. Results
are given for the Car category and the Moderate difficulty level on
the testing set8

the RGB image and the lidar BEV to generate 3D proposals (using a
modified RPN) and classify them7.

Some approaches deal with the raw point cloud, dispensing with3d-cloud-based

methods the necessity to engineer 2D representations manually [242]. Voxel-
Net [296] divides the point cloud into equally-spaced 3D voxels and
represents the points within each one using a specific encoding.

Another group of methods use the 2D detections to extract thepreviously

detected

instances

corresponding 3D points and then estimate the 3D box and its location.
F-PointNet [208] uses various stages to filter the points located inside
the detection frustum and provide an estimate of the geometry of
the object. On the other hand, Du et al. [64] propose a model-fitting
algorithm followed by a refinement CNN to provide the 3D detections.

Results obtained by most of the cited algorithms on the KITTIbenchmark

dataset are reported in Table 2.3. The measure chosen is the Average
Precision (AP), as introduced in [71]. AP BEV takes into account 2D
detections on the BEV, whereas AP 3D is more restrictive since it
considers all the dimensions of the 3D bounding boxes.

A comprehensive revision on this matter can be found in the recent
review by Arnold et al. [4].

2.6.4 Multi-tasking and scene understanding

The ultimate goal of onboard perception systems is the generation ofmulti-task

frameworks an environment model, as mentioned in Sec. 1.3.2. The building of this
representation requires knowledge about different cues describing the
environment. These data are usually obtained by different modules,

7 It should be noted, however, that the authors of AVOD use a different model for
each category; for instance, three models were trained for evaluation on the KITTI
benchmark, each corresponding to one of the three main categories of the dataset.

8 http://www.cvlibs.net/datasets/kitti/eval_object.php

http://www.cvlibs.net/datasets/kitti/eval_object.php

2.7 conclusion 49

such as the ones described so far in this chapter, and combined after-
ward. However, it is sometimes useful to combine different tasks into
the same reasoning process so that they can make use of the same
medium-level information.

For instance, Hoiem et al. [125] showed that object detection and
scene geometry recovery are coupled and should be faced together.
Some recent works making use of CNNs have tried to extend their ca-
pabilities to perform various tasks simultaneously. For instance, Deep
MANTA uses several cascaded CNNs [40] to carry out 3D detection in
images; the system is ultimately designed to provide several outputs,
including 2D box regression, parts visibility estimation, or template
similarity measurement.

In general, multi-task is well suitable for onboard perception tasks,
since it performs several inference tasks at the same time, avoiding
duplications and, therefore, optimizing the processing requirements.
In this line, the work by Oeljeklaus et al. aims to provide different cues
using a single feed-forward run of a CNN. They have shown the viabil-
ity of the multi-task approach in two use cases: simultaneous semantic
segmentation and road topology [192], and joint road segmentation,
object detection, and pose estimation [193]. The performance obtained
in both cases is on par with algorithms performing the different tasks
separately.

A small group of works aimed at extracting higher-level information scene

understandingfrom the different cues available. For instance, Geiger et al. [88] offered
jointly reasoning about the 3D scene layout of intersections, as well as
the location and orientation of vehicles in them, using a probabilistic
model. Fig. 2.13 shows the cues employed and the expected outcome
of the approach. Zhang et al. [293] went a step forward and included
high-level semantics in the form of traffic patterns to avoid unfeasible
combinations.

Figure 2.13: 3D intersection understanding problem and cues employed by
Geiger et al. [88] © 2014 IEEE

2.7 conclusion

A survey covering the different lines of research that will be addressed
in this thesis has been introduced. A historical review of autonomous

50 related works

driving and foundational techniques in computer vision was pre-
sented, together with an up-to-date selection of works whose scope
overlaps, to a greater or lesser extent, with the approaches proposed
in this thesis.

Based on the conducted literature review, object recognition has at-
tracted considerable attention in recent years, pushed by the advances
in DNNs. Autonomous vehicles, which have made use of computer
vision techniques since the initial prototypes, are still one of the largest
consumers of these kinds of methods.

The specific challenges which arise in traffic environments have led
to the emergence of a large number of methods tailored to onboard
perception systems. In this context, onboard detection frameworks
usually face additional requirements, such as the estimation of the
pose of the objects, which have been widely discussed in the ITS

literature.
This thesis is intended to tackle some daunting challenges that are

still pending. Among them are automatic calibration, efficient and
robust object detection, and accurate object localization. The final goal
is enabling the creation of complete scene understanding methods
that make vehicle navigation safer and more comfortable.

Part II

P R O P O S E D A P P R O A C H E S A N D
E X P E R I M E N TA L R E S U LT S

3
S E N S O R S E T U P

This chapter addresses some fundamental issues that must be borne
in mind when designing and implementing an onboard perception
system, as a prerequisite to obtain meaningful input data for the
algorithms. Among the automotive-ready sensor modalities discussed
in Sec. 1.3, the radar is set aside as it is out of the scope of this thesis,
so the analysis focus instead on vision and lidar devices.

Data from each modality have specific characteristics that determine
the processing approaches that must be adopted down the pipeline
to extract useful information and feed it to the medium- and high-
level navigation modules. In this chapter, an overview of the existing
approaches to interpreting raw sensor data and making it suitable for
subsequent processing is provided.

First of all, models that explain the relationship between real-world
entities and their respective representations on sensor data are intro-
duced. Later, different strategies for data representation, depending
on the source, are discussed. Throughout this dissertation, it will be
shown that this issue is of paramount importance and, therefore, must
be carefully chosen to optimize the performance of the perception
algorithms. Finally, the topic of sensor calibration will be addressed.
Within that context, a novel approach to process 3D data to perform
automatic lidar-camera calibration will be presented and validated on
both synthetic and real data.

3.1 fundamentals

Sensors provide input data to the different algorithms in the percep-
tion stack. However, in order to make valuable reasoning about the
environment, the relationship between real points in the environment
and their representation on sensor data must be known. Different
models can be used depending on the modality in use; a summary is
provided below.

3.1.1 Monocular cameras

Cameras are endowed with CCD or CMOS sensors that capture the vision devices

light beams reflected by the objects in their field of view and transform
them into electrical signals that can be stored and processed as 2D
arrays of numbers. Lenses are the other constituent element of the

This chapter includes content from [114] and [109].

53

54 sensor setup

vision system; they are responsible for focusing the light beams to the
sensor element.

The pinhole perspective projection model, proposed by Brunelleschipinhole

camera model at the beginning of the fifteenth century, is widely used to relate 3D
points in the scene with their projection onto the image plane [79].

From a practical point of view, the method establishes that the
relationship between a 3D point P = (X, Y,Z)T and its projection onto
the image plane, p = (x,y)T , is given by the intrinsic camera matrix,
K1:

K =

⎡⎢⎢⎣fx 0 cx

0 fy cy

0 0 1

⎤⎥⎥⎦ , (3.1)

where fx, fy, cx, and cy are the intrinsic parameters of the vision system:

fx, fy focal lengths expressed in pixel units

cx, cy position in pixel units of the retinal coordinate system or
principal point

For a monocular camera, the projection matrix, P , can be defined as:

P =

⎡⎢⎢⎣fx 0 cx 0

0 fy cy 0

0 0 1 0

⎤⎥⎥⎦ =
[
K 0

]
(3.2)

Then, the projection p = (x,y)T of a point P = (X, Y,Z)T onto
the rectified image is given by the following set of equations, in
homogeneous coordinates:⎡⎢⎢⎣uv

w

⎤⎥⎥⎦ = P

⎡⎢⎢⎢⎢⎣
X

Y

Z

1

⎤⎥⎥⎥⎥⎦
x =

u

w

y =
v

w

(3.3)

It is important to note that all these equations hold as long as P

is expressed in a local coordinate frame whose origin coincides with
the principal point of the camera. In this thesis, the following camera
frame is mainly adopted2:

x points to the right in the image

y points down in the image

z points into the plane of the image (forward)

1 Please note that a simplified version of the intrinsic camera matrix is used here, where
the skew between axes is assumed to be nil.

2 The proposed camera frame is the usual in computer vision publications and libraries;
e. g., http://wiki.ros.org/image_pipeline/CameraInfo

http://wiki.ros.org/image_pipeline/CameraInfo

3.1 fundamentals 55

On the other hand, lenses usually introduce distortion that displaces lens

distortionthe projected points from their ideal positions. When using the gen-
eral rational polynomial distortion model, distortion is defined by eight
parameters [197]: six of them refer to the radial component (k1, k2, k3,
k4, k5, k6), and the other two account for the tangential component
(p1, p2). The simpler Plumb Bob model considers only the first three
radial coefficients (k4 = k5 = k6 = 0). When distortion is considered,
the projection of P involves the following procedure:

1. Projection onto the normalized undistorted image:

x ′ =
X

Z

y ′ =
Y

Z

(3.4)

2. Distortion coefficients are used to move the point to its distorted
position (in a normalized image). This step is also known as
rectification. Using the rational polynomial distortion model:

x ′′ = x ′
1+ k1r

2 + k2r
4 + k3r

6

1+ k4r2 + k5r4 + k6r6
+ 2p1x

′y ′ + p2(r
2 + 2x ′2)

y ′′ = y ′ 1+ k1r
2 + k2r

4 + k3r
6

1+ k4r2 + k5r4 + k6r6
+ p1(r

2 + 2y ′2) + 2p2x
′y ′,

(3.5)

where r2 = x ′2 + y ′2.

3. The normalized image is converted to a pixel-coordinate image
by applying the intrinsic camera matrix to each image point:⎡⎢⎢⎣uv

1

⎤⎥⎥⎦ = K

⎡⎢⎢⎣x
′′

y ′′

1

⎤⎥⎥⎦ (3.6)

Note that Eq. 3.3 is merely a particular case of this procedure, where
all the distortion parameters are zero.

Obviously, the selection of the camera-lens combination must be camera

selection

criteria

carefully made based on both compatibility (mainly, regarding the
sensor format) and the requirements of the particular application.
Two of the most important characteristics to take into account when
evaluating the adequacy of the vision system to the application are:

1. The FOV, which express the area around the vehicle which is
covered by the sensor

2. The area occupied by the subjects of interest in the resulting
image, which determines the effective range of the system.

56 sensor setup

Both properties are determined by the characteristic parameters of
the vision system (lens and camera) and can be obtained by making
use of the pinhole model. Hence, for non-fisheye cameras, Horizontal
Field Of View (HFOV) and Vertical Field Of View (VFOV) angles can be
obtained using the following equations:

HFOV = 2 · arctan
(
wsensor

2 · fx

)
VFOV = 2 · arctan

(
hsensor

2 · fy

)
,

(3.7)

wherewsensor ×hsensor is the physical size of the CCD or CMOS sensing
element, and f is the focal length in mm. Usually, it is safe to assume
that fx = fy = f; then, the value of f is, in practice, given by the lens.

On the other hand, an object of dimensions wobj × hobj placed at a
distance dobj from the camera will span Nw ×Nh pixels in the image,
where Nw and Nh can be obtained as follows:

Nw =
fx ·wimage ·wobj

wsensor · dobj

Nh =
fy · himage · hobj

hsensor · dobj
,

(3.8)

where wimage × himage is the image resolution.
It is noteworthy that these equations have been expressed in terms

of physical lengths, differently from Eqs. 3.1-3.6, which were written
in terms of pixel units. The relationship is given by the size of each
pixel within the sensor. Usually, pixels are square, so if the pixel size
is wpixel = hpixel = lpixel; then wsensor = wimage · lpixel and hsensor =

himage · lpixel.
Of course, the resulting image is dependent on other characteristics

that must be considered as well, such as the aperture of the lens and
the dynamic range of the sensor.

3.1.2 Stereo cameras

While all the equations described in Sec. 3.1.1 hold for each of the
cameras of a stereoscopic system, devices of this kind present some
particularities that must be considered.

First of all, stereo rectification involves not only the transformation
into an image with the distortion corrected but also a transformation
to align the two images of the stereo pair so that they lie in the same
plane and have coincident epipolar lines[225].

When this transformation is performed, the definition of projection
matrix given by Eq. 3.2 no longer applies, as the leftmost 3× 3 subma-
trix in P become different from K. Additionally, the projection matrix
has an additional parameter, the translational offset t = (Tx, Ty, 0)T ,

3.1 fundamentals 57

which reflects the external position of the right camera relative to the
left camera. The projection matrix P then becomes:

P =

⎡⎢⎢⎣f
′
x 0 c ′x Tx

0 f ′y c ′y Ty

0 0 1 0

⎤⎥⎥⎦ = K ′
[
I t

]
, (3.9)

with I being the identity matrix, and K ′, the intrinsic matrix of the
rectified image. It makes sense to use a local camera frame attached
to one of the two cameras, so that, for that camera, Tx = Ty = 0.
Furthermore, in the most usual (canonical) setup, the two cameras
are looking perpendicular to the line joining both camera centers; in
that case, Ty = 0 and Tx = −fx ·B, where B is the distance separating
both cameras, known as the baseline. The baseline is the most critical
parameter to take into account in the selection of a stereo vision system;
in general, wider baselines are suitable for more distant operation
ranges, as will be shown in Sec. 3.2.1.

3.1.3 Lidar

The operation principle of most modern multi-layer, 360° lidars is lidar devices

based on several light emitters, vertically arranged, that perform rota-
tion (all together) around a slightly displaced vertical axis.

Lidar raw data is a set of 3D points that can be represented in a point point cloud

cloud. A point cloud is an arrangement of points defined by their x, y,
and z coordinates. Each point can also include additional information,
such as color, which can be represented using RGB values. As with the
camera, points are in a local reference frame whose origin is located
in the center of the lidar sensor. A typical lidar reference system is the
one described below3:

x points forward

y points to the left

z points upward

This specification assumes that the lidar is positioned in such a way
that scan planes are roughly parallel to the ground plane.

When selecting a lidar device, prominent features are the resolution lidar selection

criteriaand the FOV. The number of scan planes determines the vertical resolu-
tion; today, devices with 16, 32, 64, and 128 planes can be found in the
market4. Different strategies can be employed for the distribution of
these planes, which has given rise to a variety of devices with different
FOVs and plane densities.

3 The lidar reference frame introduced here follows the standard ROS coordinate
conventions from REP-0103 (https://www.ros.org/reps/rep-0103.html) for axis
orientation. Note that it differs from the default reference frame used by several
manufacturers such as Velodyne.

4 For instance, see: https://www.velodynelidar.com/products.html

https://www.ros.org/reps/rep-0103.html
https://www.velodynelidar.com/products.html

58 sensor setup

3.2 data representation

Through the following chapters of this document, processing based
on CNNs will be applied to the sensor data to obtain meaningful
information. As mentioned in Sec. 2.4, CNNs are particularly suitable
for 2D data arrangements. Whereas images are naturally represented
that way, the issue is not so straightforward when dealing with 3D
geometrical information from stereo and lidar systems. Stereo vision
involves a non-trivial procedure to obtain an estimate of the scene
geometry that leads to an image-like structure, while lidar data must
be projected into manually-engineered 2D representations. Both issues
are discussed below.

3.2.1 Stereo matching

Retrieving the 3D information from a pair of stereo images requires a
procedure to find matching pixels in both images and convert their
image coordinates into 3D points. That procedure is known as stereo
matching and is one of the most widely studied and fundamental
problems in computer vision [256].

If positions and calibration data for the cameras are known, theepipolar

geometry search space of possible correspondences on the other image for each
pixel is reduced to a line, according to the principles of epipolar
geometry (Fig. 3.1). If images are rectified beforehand, then correspond-
ing horizontal scanlines are epipolar lines, and the search gets even
simpler.

Figure 3.1: Epipolar geometry. Figure by Arne Nordmann in Wikimedia
Commons5 (license CC BY-SA)

The resulting standard rectified geometry is employed in a lot of stereo
camera setups and stereo algorithms and leads to an elementary

5 https://commons.wikimedia.org/wiki/File:Epipolar_geometry.svg

https://commons.wikimedia.org/wiki/File:Epipolar_geometry.svg

3.2 data representation 59

inverse relationship between depths in the local reference frame (Z)
and disparities (d) [256]:

d = f
B

Z
, (3.10)

where f is the focal length (in pixels), B, the baseline (distance between
cameras) and the disparity d, a value relating the coordinates of
the projection of a point onto one of the images, (x1,y1)T , with the
coordinates of the projection of the same point onto the other image,
(x2,y2)T :

x2 = x1 + d(x1,y1) (3.11)

y2 = y1 (3.12)

Usually, the disparity is computed from left to right and, therefore, disparity map

computationsubscript 1 refers to the left image and subscript 2, to the right one.
Dense matching algorithms are supposed to assign a disparity value
to each pixel in the image6. Then, the resulting information can be
represented in a 2D disparity map containing the d(x,y) values, as
shown in Fig. 3.2.

(a) RGB images overlapped (b) SGM disparity map (c) DispNet disparity map

Figure 3.2: Stereo matching and disparity maps obtained with two different
methods [114]

The accuracy and completeness of the depth estimation depend
strongly on the stereo matching algorithm. For instance, the disparity
map in Fig. 3.2b presents large areas with undefined disparity values
(in gray), while the one in Fig. 3.2c has a density of 100%.

Although a wide variety of algorithms have been proposed over the
years, three paradigmatic groups of approaches can be cited:

local algorithms : Local algorithms, such as the popular Block
Matching (BM) [151], search for correspondences taking into
account a finite window around each pixel. Usually, the com-
parison is established in terms of similarity of the intensity
values within that window; then, the estimated disparity value
is the one that maximizes the resemblance (that is, minimizes a
dissimilarity cost) between both images. While stunningly fast

6 In practice, some algorithms can be unable to find proper values for a certain percent-
age of the pixels.

60 sensor setup

compared to other approaches, local methods struggle with chal-
lenging situations such as the lack of texture, which often results
in not-so-dense disparity maps with large undefined areas.

global algorithms : Global algorithms make explicit smooth-
ness assumptions and then solve a global optimization problem
that provides a solution for the disparity assignment. Most meth-
ods are formulated in an energy-minimization framework, where
the energy is made of two terms: one considers the agreement
of the disparity function with the input image pair, whereas the
other encodes the smoothness assumptions. As these methods
incorporate information from the whole image, their compu-
tational cost is often prohibitive, unless specific hardware or
efficiency-oriented implementations are used. A good compro-
mise is offered by the Semi-Global Matching (SGM) algorithm
proposed by [124], which only takes into account eight directions
(the four cardinal and the four intercardinal directions) from
each pixel to solve the energy-minimization problem through
scanline optimization (a variant of dynamic programming). The
widely-used OpenCV implementation matches pixel blocks in-
stead of individual pixels and can be, therefore, more accurately
described as Semi-Global Block Matching (SGBM)7. The disparity
map in Fig. 3.2b was obtained through this approach.

neural-network-based : Stereo matching is not alien to the gen-
eral trend towards feature learning brought by DL, and top-
performing methods today make use of DNNs in some way or
another. A lot of labeled samples are required to optimize the
parameters of the network, which is not a trivial requirement.
Datasets usually employed to that end include KITTI, which ob-
tains the depth ground-truth from lidar measurements, and the
collection of synthetic datasets from the University of Freiburg
(e.g., FlyingThings3D or Monkaa)8. These very same researchers
proposed an encoder-decoder architecture, DispNet [181], de-
signed to perform real-time end-to-end disparity computation
based on their previous work, FlowNet [62]. A sample of the
resulting disparity map using this method can be found in
Fig. 3.2c.

Once the dense disparity map containing the values of d(x,y) is
available, the value of the depth coordinate for each pixel within the
image is easily obtainable through Eq. 3.10. Hence, stereo data can
be represented by a point cloud, similarly to the lidar data. Addi-
tionally, color information (RGB) is naturally available for every pixel
since, after all, original data were images from two camera devices. A

7 https://docs.opencv.org/3.4/d1/d9f/classcv_1_1stereo_1_1StereoBinarySGBM.

html

8 https://lmb.informatik.uni-freiburg.de/resources/datasets

https://docs.opencv.org/3.4/d1/d9f/classcv_1_1stereo_1_1StereoBinarySGBM.html
https://docs.opencv.org/3.4/d1/d9f/classcv_1_1stereo_1_1StereoBinarySGBM.html
https://lmb.informatik.uni-freiburg.de/resources/datasets

3.2 data representation 61

method d1-all (%) runtime (s)

SegStereo [286] 2.25 0.6

DispNetC [181] 4.34 0.06

SGM_ROB [124] 6.38 0.11

OCV-BM [151] 25.27 0.1 a

a Method implemented on CPU instead of GPU

Table 3.1: Error rates and run times of selected stereo matching methods on
the KITTI dataset. The error rate is expressed as the percentage of
stereo disparity outliers over all the ground truth pixels

representation of the XYZRGB stereo point clouds resulting from the
disparity maps in Fig. 3.2 is depicted in Fig. 3.3.

(a) SGM point cloud (b) DispNet point cloud

Figure 3.3: 3D point clouds obtained with two different stereo matching
algorithms [114]

The analysis of the results in Figs. 3.2 and 3.3 shows that DispNet benchmark

achieves a higher density than SGM, but is not exempt from spurious
estimations that are particularly visible in Fig. 3.3b in the sky area. It
is important to note that the accuracy of DNN-based models is strongly
dependent on the training data; in this case, the model was trained
with the KITTI stereo benchmark [90], whose labels are unevenly
distributed due to the properties of the lidar used to generate the
ground-truth. Although many other methods have been proposed in
recent years, some of them achieving better accuracy than DispNet,
very few are suitable for real-time processing due to their high com-
putational cost. Table 3.1 establishes a quantitative comparison of the
accuracy of the algorithms cited in this section, using the number of
outliers (i.e., clearly wrong estimations) as a measure of performance.
A more comprehensive comparison can be found in the KITTI public
stereo benchmarks9.

When using stereo vision to retrieve geometrical information, esti- matching

errormation accuracy at far distances is known to be worse than in the near

9 http://www.cvlibs.net/datasets/kitti/eval_stereo.php

http://www.cvlibs.net/datasets/kitti/eval_stereo.php

62 sensor setup

range. The error made in the estimate, δz, increases with the distance
from the camera, z, according to the following equation [73]:

δz =
z2

fB
δd, (3.13)

where δd is the error made in the stereo matching process itself. Some
reasonable values for this error are, for instance, δd ≈ 2 for the SGM
method and δd ≈ 1 for the DispNet method10.

All these considerations will be taken into account in Sec. 6.1, where
a method for 3D object localization based on stereo data will be
proposed.

3.2.2 Lidar

Although lidar measures can be straightforwardly expressed in a pointmotivation

cloud structure, like the one depicted in Fig. 3.4c, this representation
may be inefficient depending on the particular application, because of
two interrelated reasons:

1. In general, and due to their limited resolution, data from de-
vices of this kind is very sparse, which results in large areas of
space being empty. These empty zones waste resources without
providing any useful information.

2. 3D data is naturally bulkier than 2D data due to the extra co-
ordinate, which further increases the already high processing
requirements.

In order to mitigate these problems and, additionally, obtain adata represen-
tations

2D representation naturally suitable for CNNs, different approaches
have been proposed in the literature. Two of them are described
here because of their widespread use in modern object detection
approaches:

front view (fv): Lidar data can be projected to obtain a more com-
pact representation; however, it is noteworthy that, differently
from the stereo disparity map, this information is not dense
when projected onto an image plane. The most straightforward
way to create a compact 2D representation from lidar points is,
instead, adjusting them to an image where each row contains all
the range measurements from the same scan plane. The equa-
tions to obtain the (r, c) coordinates of a 3D point (x,y, z) in the
so-called front view are [46]:

c = ⌊atan2(y, x)/∆θ⌋

r =
⌊

atan2(z,
√
x2 + y2)/∆ϕ

⌋ (3.14)

10 These estimates were found experimentally.

3.3 sensor calibration 63

This kind of representation results in image-like 2D structures,
like the one shown in Fig. 3.4b. This sample features a 64-layer
lidar and, hence, that is the number of rows with information
in the FV. Since the device is mounted on the roof of a vehicle,
most laser beams point downward11 and collide with the ground,
which is, therefore, more densely represented than the rest of
the scene. Please note as well that the resulting image from 360°
data is considerably wider than the crop depicted in Fig. 3.4b,
as every column represents an individual range measure, and
horizontal resolution is significantly higher than the vertical.

bird’s eye view (bev): Occupancy grid representations are a clas-
sical approach for robot navigation [187]. Grid maps partition
the environment into cells, which are then provided with in-
formation about the space represented by each of them. This
information can be a binary state representing the occupancy (as
in Fig. 3.4d), although when the grid map is created using lidar
information, additional features can be included, such as the
number of points per cell or the mean value of their reflection
intensities. The name Bird’s Eye View (BEV) has gained traction
in the literature to represent this kind of representation. Despite
that this representation does not solve the sparsity problem (as
apparent in Fig. 3.4d, where most pixels are still empty), it re-
duces the dimensionality of the data by pruning out information
with little relevance to the goal of traffic scene understanding
(the height coordinate), while preserving the x and y coordinates
of points.

The data thus processed behaves, to a certain extent, as an image;
therefore, it can serve as an input of a CNN, provided that adequate
considerations are made. A method for 3D object detection based on
the BEV representation will be proposed in Sec. 6.2.

3.3 sensor calibration

Models described in the previous section make use of parameters that taxonomy

are specific to each particular device. Recovering the geometrical in-
formation from sensor data, especially cameras (i.e., images), involves
determining the intrinsic parameters which define the relationship be-
tween the world points and its projection. On the other hand, several
sensors can be part of the same sensor setup, and the parameters
defining the relationship between them is referred to here as extrinsic
parameters.

11 The device is, actually, a Velodyne HDL-64E unit (https://velodynelidar.com/
hdl-64e.html), with a VFOV from +2.0°to -24.9°

https://velodynelidar.com/hdl-64e.html
https://velodynelidar.com/hdl-64e.html

64 sensor setup

(a) RGB image (b) Front View (FV) (crop)

(c) Point cloud (d) Bird’s Eye View (BEV)

Figure 3.4: Three different representations of the lidar information on a scene
from the KITTI dataset

3.3.1 Intrinsic calibration

Intrinsic parameters are different for each device due to, among otherproblem

statement factors, minor differences in manufacturing. Generally, small changes
in calibration parameters involve significant changes in accuracy; that
is why a calibration process must be carried out before putting the
device into operation, in order to have a precise estimation of the
intrinsic parameters.

Sometimes, manufacturers perform this procedure before the sensor
is sold; this is the case, for example, with lidar devices. However, both
elements that make up a vision system, i.e., the lens and the camera,
affect the intrinsic parameters. As both parts are bought separately,
the intrinsic calibration of vision systems usually falls to the end-user.

As stated in Sec. 2.3.1, the method by Zhang [295], which uses azhang’s
method fiducial pattern, is widely used nowadays to perform intrinsic cali-

bration. The OpenCV implementation, which was later wrapped in a
Robot Operating System (ROS) package12, is the method-of-choice to
perform intrinsic calibration. Values for fx, fy, cx, cy, as well as the ki
and pi distortion parameters, are outputs of the procedure.

Fig. 3.5 shows a sample frame that can be used as an input for the
Zhang’s method, as the checkerboard pattern is completely visible.
Generally, the accuracy of the obtained estimation increases with the
number and diversity of the samples provided.

12 http://wiki.ros.org/camera_calibration

http://wiki.ros.org/camera_calibration

3.3 sensor calibration 65

Figure 3.5: Checkerboard pattern used for intrinsic calibration as seen from
a camera with a high positive radial distortion (barrel distortion)

3.3.2 Extrinsic calibration

Extrinsic calibration between sensors is a prerequisite to establishing motivation

correspondences between data representations coming from different
devices and, therefore, to make use of all the available sources of
information jointly.

According to the most general definition, extrinsic parameters relate
the sensor’s coordinate system to another one (e.g., a fixed world
coordinate system or another sensor’s local system), thereby specifying
its position and orientation in space. When dealing with automotive
platforms, the hardest problem is, usually, the determination of the
relative pose of sensors with respect to each other.

In that case, the extrinsic calibration problem can be formulated as problem

formulationthe estimation, in pairs, of rigid-body transforms, each relating the
coordinate system {C1}, fixed in one of the sensors, with the coordinate
frame {C2}, fixed in the other sensor. This transformation is defined by
six parameters, ξ12 = (tx, ty, tz,ϕ, θ,ψ), which express the translation
along the x-, y-, and z-axes, and the rotation around x (roll), y (pitch)
and z (yaw).

Using homogeneous coordinates, the set of parameters ξ12 can also
be expressed as a transformation matrix, T12, which allows transform-
ing a point in the {C1} frame, p1 = (x1,y1, z1, 1)T , into a point in {C2}

coordinates, p2 = (x2,y2, z2, 1)T :

p2 = T12p1 =

⎡⎢⎢⎢⎢⎣
r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
x1

y1

z1

1

⎤⎥⎥⎥⎥⎦ , (3.15)

where r11, r12, ..., r33 can be obtained from ϕ, θ, and ψ through alge-
braic manipulation.

66 sensor setup

In the most typical setup, both sensors to be calibrated have over-
lapped FOVs. Features in the area visible from both sensors can then
be exploited to perform calibration by finding correspondences be-
tween both data representations. These features can be more easily
obtained and associated if a fiducial pattern, with distinctive motifs, is
employed. While the procedure is usually assumed to be performed
offline and in a controlled environment, accuracy requirements make
it advisable to minimize the need for human intervention.

3.4 automatic stereo-lidar extrinsic calibration

Among the different sensor pairs that can be found in autonomous
vehicles, the camera-lidar combination is one of the most interesting
because of the complementarity of both modalities. This fact, which
stems from the difference between their respective data, is what makes
it one of the most challenging sensor pairs to calibrate as well.

Stereo vision systems provide the same appearance information
as a single camera but also allow reconstructing the 3D structure of
the environment. In this section, a procedure for extracting features
useful for extrinsic calibration from stereo data is proposed. The
procedure belongs to a general stereo-lidar calibration framework that
was presented in [109] and will also be outlined here for completeness.

3.4.1 Introduction

The presented stereo-lidar calibration procedure aims to provide anhighlights

extrinsic calibration solution that does not require complex setups
(e.g., using multiple calibration patterns) and is valid for different
commercially-available lidar devices (e.g., with 16, 32 or 64 layers). A
short series of synchronized stereo-pair images and lidar scans are
used. Intrinsic parameters are assumed to be known (including the
stereo camera baseline), and rectification is performed beforehand.

Inspired by the work by Velas et al. [266], a custom-made planar
calibration target, shown in Fig. 3.6, is used. The marker has a very
distinctive, mistake-proofing shape, with a large planar surface and
four circular holes that are difficult to confuse in the representations
provided by the sensors. The physical realization used in the experi-
ments is made of wood and was manufactured using a CNC wood
machine for maximum accuracy in dimensions13.

The centers of the four circular holes are used as distinctive featuresmethod

overview visible by both sensors; therefore, the calibration target must be placed
in the common FOV. The placement of the pattern should be selected so
that each hole is intersected by two lidar planes and can be perceived
from the stereo system.

13 The high-quality pattern used in the experiments was kindly provided by Persiman
S.L.U. Special thanks to Juan Guindel for his help.

3.4 automatic stereo-lidar extrinsic calibration 67

(a) Embodiment (b) Production drawing

Figure 3.6: Calibration target used by the proposed calibration method

The algorithm can be divided into two main phases: segmentation
of reference points (the centers of the circles) in both clouds and regis-
tration between them to estimate the transform parameters. Following
the notation introduced in Sec. 3.3.2, {C} is the reference frame fixed
in the camera and {L}, in the lidar.

3.4.2 Feature extraction from stereo data

The segmentation of reference points from sensor data involves several
processing steps. As stated earlier, a particular procedure to handle
the stereo data is proposed here. Lidar data requires an equivalent
process that takes into account the particularities of the range data;
further discussion will be provided later.

The extraction of the reference points from the stereo cloud is done
in five stages, which are depicted in Fig. 3.7 and described in detail in
the following sections.

3.4.2.1 Pre-processing

In order to retrieve the 3D point cloud from the pair of stereo images, stereo

matchingan SGM approach is used. The OpenCV SGBM implementation was
found reasonably accurate for depth estimation, which is, indeed,
the primary requisite for this application. The accuracy of border
localization, a typical problem in stereo matching, has a limited impact
on the algorithm since, as will be shown later, it is tackled by using
the intensity information. However, the calibration target is assumed
to present a minimum of texture (e.g., wood grain) so that the stereo
correspondence problem can be solved.

Before the segmentation steps of the algorithm, the stereo cloud is filtering

fed through several pass-through filters that remove points out of the
normal range of operation, thus limiting the information processing
to the area in which the calibration target must be placed.

68 sensor setup

(a) Pc
1 (b) Pc

2

(c) Pc
3 (d) Pc

4

(e) Euclidean clustering

Figure 3.7: Proposed approach to extract the reference points from the stereo
point cloud [109] © 2017 IEEE

3.4.2.2 Target segmentation

Segmentation is used to find subsets of points Pi0 representing adefinition

geometrical shape (e.g., a plane) in the input cloud. If several segmen-
tations are applied successively, for each step i0, it holds:

Pc
i0

= {(x,y, z)} ⊆ Pc
i0−1, (3.16)

where the superscript c is used to make clear that clouds are coming
from the stereo camera. The extraction of the reference points from
the calibration marker involves several segmentation steps, as well
as some model fitting procedures. The latter make use of sample
consensus-based segmentation methods, i.e., the RAndom SAmple
Consensus (RANSAC) family [77], because of its robustness against
outliers. On the other hand, the preceding segmentation stages aim
to extract points belonging to discontinuities in the calibration target,
which will be used to extract the location of the fiducial points.

3.4 automatic stereo-lidar extrinsic calibration 69

First of all, taking advantage of the planar shape of the calibration planar surface

segmentationtarget, points within the stereo cloud that support a plane model are
found; then, those points are segmented. Since several planes can be
represented in the cloud, such as those belonging to the ground plane
or building walls, some restrictions are imposed on the resulting plane.
On the one hand, a tight threshold δplane is used to determine when a
point fits the model; and, on the other hand, the plane is required to
be parallel to the vertical axis of the sensor reference frame, with an
angular tolerance αplane

14.
When the plane model is available, points whose distance to the

model is higher than δinliers,c are removed, resulting in the cloud
segment Pc

1 . An example of the result of the plane segmentation
process is shown in the upper part of Fig. 3.7a (in red).

After that, the segmented cloud undergoes a process aimed to filter
out the points in the calibration target not belonging to discontinuities.
This is effectively carried out by keeping the points in Pc

1 that map to
edges in the intensity image. To that end, a Sobel filter is applied over
the left image of the stereo pair (lower part of Fig. 3.7a). Points whose
projection on the image corresponds to a low value in the Sobel image
(smaller than τsobel,c) are filtered out, as shown in Fig. 3.7b, generating
Pc

2 as output.

3.4.2.3 Circle segmentation

The second group of segmentation steps is intended to segment the
four circles of the calibration target, whose centers will be used as
correspondence keypoints at the registration stage.

In order to avoid introducing noise into the center estimation, points filtering

not belonging to the circles are removed. As only discontinuities are
present in Pc

2 , outliers to be removed belong, mostly, to the outer
edges of the calibration target. For this reason, the cloud is subjected
to a filtering process aimed at the elimination of straight lines. Lines
are found using a sample consensus segmentation. To avoid removing
points belonging to the circles, only those lines compatible with the
layout of the calibration pattern are considered. Notwithstanding these
considerations, experiments proved that the segmentation method is
largely insensitive to the presence of these borders, except for some
particular poses of the calibration target. The filtered cloud, Pc

3 , is
shown in Fig. 3.7c (in red).

Afterward, remaining points are used to fit four circle models. To circle

segmentationthat end, a circle segmentation process is performed in the 2D space
determined by the plane model πc. This is effectively implemented by
rotating the cloud Pc

3 until the points are aligned with the XY plane
and then translating it along the z-axis to reach the value enforced by
the plane equation. Later, circles are segmented in the XY subspace

14 As shown in Fig. 3.6, the calibration target is intended to stand up on the ground,
and the camera is assumed to have a limited pitch deviation from the horizontal.

70 sensor setup

parameter value unit

δinliers,l 10 cm

δcluster 2 cm

τsobel,c 128

αplane 0.55 rad

N 30

Table 3.2: Parameters for reference points extraction from stereo data

through sample consensus, imposing the known circle radius as a con-
straint. Center-to-center distances are also checked against the actual
dimensions of the calibration pattern to avoid spurious detections.
Finally, the obtained centers are transformed back to the 3D sensor’s
coordinate frame, resulting in the point cloud Pc

4 , depicted in green in
Fig. 3.7d. Note that, since the circle segmentation stage is performed
in a bidimensional space, the proposed method is also suitable for
scarce clouds, such as those provided by low-end lidars.

As a result of the procedure described above, the 3D coordinateseuclidean

clustering of the centers of the four circles, relative to the reference frame fixed
in the camera {C}, are obtained. To make the estimation more robust
against the different sources of noise present in the process (e.g., the
accuracy of the stereo matching algorithm), centers are effectively
cumulated over a window of N frames. The resulting cloud goes
through a clustering algorithm that merges points belonging to each
circle. The estimated positions of the four centers that are used in the
next step of the calibration procedure are, ultimately, the centroids
of each cluster. This strategy assumes that the calibration target, as
well as the sensors, remains static throughout the selected N-length
window. A Euclidean clustering, with a cluster tolerance of δcluster, is
used. This approach can cope reasonably well with outliers; however,
additional restrictions can be imposed on both the minimum and
the maximum number of points allowed in each cluster, taking into
account the length of the window.

Values for the different parameters involved in the segmentation
process were selected empirically and are presented in Table 3.2.

The procedure employed to extract the center of the circles withinlidar data

processing the lidar data is analogous to the one presented here, with two signifi-
cant exceptions [109]: discontinuities are segmented using differences
in depth between neighboring points, and the outer boundaries of the
calibration target are removed instead by restricting the number of
points in each ring.

3.4 automatic stereo-lidar extrinsic calibration 71

3.4.3 Registration

Registration is responsible for establishing correspondences between
the reference points (centers of the circles) from both data represen-
tations and obtaining the set of transformation parameters ξ̂CL =

(tx, ty, tz,ϕ, θ,ψ) that minimize the distance between both sets.
As presented in [109], a two-stage registration procedure can be coarse

estimationemployed. First, the optimal transformation assuming the absence of
rotation (pure translation) is computed; in homogeneous coordinates:

TCL(1) =

⎡⎢⎢⎢⎢⎣
1 0 0 tx(1)

0 1 0 ty(1)

0 0 1 tz(1)

0 0 0 1

⎤⎥⎥⎥⎥⎦ (3.17)

This transformation can be obtained by finding the least-squares
solution of the overdetermined system of 12 equations provided by
the registration of the three coordinates of each of the four reference
points. The association is made by assuming that the relative ordering
of points in space is the same for both sensors.

After that, the estimation is refined using the well-known Iterative fine

adjustmentClosest Points (ICP) algorithm [21], which provides a full transforma-
tion (a combination of translation and rotation):

TCL(2) =

⎡⎢⎢⎢⎢⎣
r11(2) r12(2) r13(2) tx(2)

r21(2) r22(2) r23(2) ty(2)

r31(2) r32(2) r33(2) tz(2)

0 0 0 1

⎤⎥⎥⎥⎥⎦ (3.18)

The final transformation is obtained as the composition of the two
partial transformations:

TCL(ξ̂CL) = TCL(2)TCL(1) (3.19)

3.4.4 Experimental results

The validity of the method for the extraction of the reference points
from the stereo data must be assessed regarding its usefulness within
the whole calibration pipeline to which it belongs.

The ground-truth transformation relating two sensors is impossible
to obtain in practice since it would require knowing the exact posi-
tion of the sensing elements within both devices. Validation of the
calibration algorithm was therefore carried out through two methods:

1. Experiments on a virtual environment created with the open-
source simulator Gazebo [149], replicating the exact character-
istics of both sensors, including the measuring noise, and the

72 sensor setup

calibration pattern. In this case, ground-truth parameters are
available, and the error can be quantified.

2. Real-world experiments where the validity of the estimated
calibration for its use in perception applications could be quali-
tatively assessed.

3.4.4.1 Evaluation using the synthetic test suite

Tests using the simulation environment were performed on nine dif-
ferent calibration setups with different relative poses between both
sensors, and also with respect to the calibration pattern. Some very
challenging setups, beyond the typical configurations of automotive
applications, were included to generalize the conclusions of the exper-
iments.

Following [91], the performance was evaluated as the differenceevaluation

metrics between both the estimated and the ground-truth transforms, which
is separately measured in its linear and angular components:

et = ∥t− tg∥ (3.20)

er = ∠(R−1Rg), (3.21)

where t is the last column of TCL in Eq. 3.19, which represents the
translation, and R, the upper-left 3× 3 portion of TCL, which corre-
sponds to the rotation components.

An extensive set of experiments can be found in [109], including
some tests for the selection of the N parameter and an analysis of the
sensitivity of the method to noise in sensor data. Here, a measure of
the accuracy of the obtained transformation on the nine test scenarios
of the Gazebo synthetic test suite is presented.

Results are shown along with those obtained by two comparablequantitative

results in

simulation

methods: the one proposed by Velas et al. [266], analyzed using their
ROS implementation, and the one by Geiger et al. [91], whose results
were obtained through their public web toolbox15. For the sake of
fairness, it is important to remark that both approaches are aimed at
monocular cameras; besides, the latter one can provide the camera
intrinsic parameters as well. Both methods were introduced earlier in
Sec. 2.3.2.

Experiments for the method by Geiger et al. were conducted on a
representative set of settings among the nine possible configurations,
in order to avoid overusing the public toolbox. Meanwhile, the method
by Velas et al. was applied over the whole set of settings, as the source
code is available16 Nevertheless, it was unable to provide valid results
for most of the settings since it was designed for smaller magnitudes
of the transformation parameters.

15 http://www.cvlibs.net/software/calibration/

16 http://wiki.ros.org/but_calibration_camera_velodyne

http://www.cvlibs.net/software/calibration/
http://wiki.ros.org/but_calibration_camera_velodyne

3.4 automatic stereo-lidar extrinsic calibration 73

As the calibration algorithm is mainly targeted at low-end lidar
devices (in contrast to other methods tailored for 64-layer lidars),
performance evaluation was conducted over three devices with a
different number of scan planes: 16, 32 and 64. Results, considering
only meaningful outcomes, are presented in Fig. 3.8 using box-and-
whisker plots.

Proposed Velas et al. Geiger et al.
0

0.2

0.4

0.6

0.8

1

Tr
an

sl
at

io
n

er
ro

r (
m

)

(a) 16-layer, trans. error
Proposed Velas et al. Geiger et al.

0

0.2

0.4

0.6

0.8

1

Tr
an

sl
at

io
n

er
ro

r (
m

)

(b) 32-layer, trans. error
Proposed Velas et al. Geiger et al.

0

0.5

1

1.5

2

2.5

Tr
an

sl
at

io
n

er
ro

r (
m

)

(c) 64-layer, trans. error

Proposed Velas et al. Geiger et al.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
ot

at
io

n
er

ro
r (

ra
d)

(d) 16-layer, rot. error
Proposed Velas et al. Geiger et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
ot

at
io

n
er

ro
r (

ra
d)

(e) 32-layer, rot. error
Proposed Velas et al. Geiger et al.

0

0.5

1

1.5

2

2.5

3

R
ot

at
io

n
er

ro
r (

ra
d)

(f) 64-layer, rot. error

Figure 3.8: Accuracy of the proposed calibration approach in comparison
with other existing methods [109] © 2017 IEEE

3.4.4.2 Evaluation in real scenarios

The algorithm was also tested on a real platform with a 16-layer qualitative

resultslidar and a 12-cm baseline stereo vision system. After performing
calibration with the wooden pattern shown in Fig. 3.6, correspondence
between the stereo and lidar clouds could be established, as shown
in Fig. 3.9a. Subsequently, correspondence between lidar points and
2D points in the color image from the left camera becomes trivial, as
proved in Figs. 3.9b and 3.9c.

The algorithm was implemented in a ROS package and released
as open-source software17 to ease its reproducibility by the scientific
community and to provide an off-the-shelf tool to the general public.

3.4.5 Additional remarks

It is important to note that the approach used for registration is mostly
agnostic to the procedure used upstream to extract the reference points

17 https://github.com/beltransen/velo2cam_calibration/

https://github.com/beltransen/velo2cam_calibration/

74 sensor setup

(a) Cloud registration (b) Projection: test scenario (c) Projection: urban sc.

Figure 3.9: Examples of the calibration result in real scenes [109] © 2017 IEEE
(Figs. a and b)

from the fiducial marker. Therefore, it would be possible to extend
the procedure to deal with almost every kind of sensor, as long as
distinctive features from the calibration target can be extracted from
the data.

One of the most natural extensions would be the case of monocular
cameras, which will be a more general case encapsulating the particu-
lar case of stereo vision systems. Although geometrical information
(i.e., the depth coordinate) is not straightforwardly available from a
single image, using a marker with known-size motifs would enable
recovering the missing scale factor and, therefore, using the calibra-
tion procedure described above. Such a marker could be one of those
described in Sec. 2.3.1 for intrinsic calibration: checkerboards with a
fixed square size or squared planar markers.

3.5 conclusion

This chapter has presented an overview of some aspects that must be
taken into account when designing the hardware part of a perception
system. The mathematical foundations of data projection and stereo
vision, as well as some typical lidar data representations, have been
described. These elements provide an essential background to face the
object localization issue in Chapter 6.

On the other hand, the proposed automatic calibration approach,
whose stereo data processing branch was introduced in this chapter, is
intended to provide a tool that reduces the effort required to perform
extrinsic calibration. Results on simulation prove that errors several
orders of magnitude lower than existing approaches can be achieved.
The code was released under the GPL-2.0 license and got the attention
of a significant number of users around the world18, thus confirming
the convenience of the method.

18 As of September 2019, the GitHub repository https://github.com/beltransen/

velo2cam_calibration had been starred 109 times and forked 46 times.

https://github.com/beltransen/velo2cam_calibration
https://github.com/beltransen/velo2cam_calibration

4
O B J E C T D E T E C T I O N

Object detection is, perhaps, the most critical task to be performed
by the perception system of an automated driving system. Dynamic
objects may eventually interfere with the trajectory of the vehicle,
posing a severe risk; on the other hand, static objects belonging to the
infrastructure convey crucial information for vehicle navigation.

This chapter is devoted to the introduction of the object detection
framework (in images) that make up the backbone of this thesis. The
proposal relies on a well-known object detection meta-architecture,
Faster R-CNN [213], which was one of the first real-time-capable DNN-
based detection approaches, but it is still today the basis upon which
a significant number of detection methods is built.

Some tweaks are proposed later to improve the capabilities of the
method when applied to onboard applications. Furthermore, the influ-
ence of data used for training is also analyzed in this chapter. It will
be shown that training data is indeed one of the factors that have the
most influence on the performance of the detection system.

Finally, a proposal for the use of additional sources of information
(specifically, stereo-vision depth estimation) in the detection frame-
work is discussed.

4.1 faster r-cnn paradigm

Object detection in images is the problem of finding all the objects that problem

formulationcan be seen in the frame and providing an estimate of their location in
image coordinates, as well as a prediction of the category to whom
they belong among a list of predefined alternatives.

The rest of the modules down the pipeline expect the object de-
tection system to provide a list of instances defined by a bounding
box and an assigned class. Bounding boxes can be encoded using the
coordinates of the top-left and bottom-right corners, (x1,y1, x2,y2), or
the coordinates of the top-left corner and the dimensions of the box,
(x,y,w,h). Classes, on the other hand, are commonly provided as a
probability distribution over the possible outcomes.

Faster R-CNN [213] embeds the inference of this list of objects into an faster r-cnn

end-to-end framework that takes an RGB image as input. The selection
of this meta-architecture in this thesis was made due to its compelling
set of features:

1. Since it was conceived as an end-to-end framework, the con-
stituent elements of the network (i. e., weights and biases) are

This chapter includes content from [111], [113], [6], [115], and [114].

75

76 object detection

learned via backpropagation, thus reducing to a minimum the
number of tunable parameters.

2. No assumptions are made at any point in the process about
the position of the objects in the image, which makes it robust
against complicated traffic scenarios.

3. The number of categories considered in the classification stage
has a minimal impact on the performance, regarding both the
accuracy and the processing time. Increasing the number of
classes only raises the number of parameters of the last set of
layers.

4. Although it depends on the hardware and the specific imple-
mentation in use, the framework was designed with real-time
performance in mind and is therefore suitable for onboard appli-
cations.

The nuts and bolts of Faster R-CNN are introduced in the following
sections1.

4.1.1 Design principles

The Faster R-CNN meta-architecture, depicted in Fig. 4.1, is dividedstages

into two well-differentiated stages:

region proposal : This stage is responsible for extracting candi-
dates; that is, the bounding boxes that are more likely to contain
objects. This task is performed by a Region Proposal Network (RPN)
that assigns an objectness score to a set of predefined anchors cov-
ering the whole of the image. Classification (and bounding box
refinement) of the set of anchors centered in a pixel is performed
using a fixed-sized window of features around that pixel.

classification : The second step assigns a classification label and
provides a refinement of the location and size for each bounding
box. A fixed-length feature vector describing each proposal is
fed into several stacked Fully-Connected (FC) layers, and finally,
goes through two function-specific heads that estimate proba-
bility distributions for the classification and the bounding box
regression, respectively.

Both stages make use of the same data, which comes from a com-strengths

mon core: the feature extractor. The feature extractor is made of the
first stages of a CNN that acts as the backbone of the network; that is,

1 Information in this section was obtained from the original Fast [95] and Faster
R-CNN [213], [214] publications, as well as the source code in https://github.com/

rbgirshick/py-faster-rcnn and other secondary sources.

https://github.com/rbgirshick/py-faster-rcnn
https://github.com/rbgirshick/py-faster-rcnn

4.1 faster r-cnn paradigm 77

Convolutional

layers

F
ea

tu
re

 m
ap

s

F
u
ll

y
 c

o
n
n
ec

te
d

F
u
ll

y
 c

o
n
n
ec

te
d

F
C

F
C

RPN

ROI

Pooling 𝐭 ∈ ℝ4𝐾

𝐩 ∈ ℝ𝐾
4096

…
Bounding box

regression

Class

S
o

ft
m

ax
S

o
ft

m
ax

× No. of proposals

4096

Feature extraction (backbone)

Classification heads

Figure 4.1: Faster R-CNN overview

several stacked blocks of “convolution + non-linearity + pooling” op-
erations. The fact that feature extraction is shared between both stages
means that the computationally costly encoding of the image pixels
into smaller feature maps is done only once. This property is one of
the critical aspects that make this framework suitable for real-time
applications.

The link between the region proposal and the classification stages
is provided by the ROI pooling layer. Anchors selected by the RPN are
mapped to the last set of feature maps, and then, a fixed-length feature
vector is extracted for each proposal. This operation is effectively
performed by dividing the proposal into a fixed number of cells and
computing the maximum value of the feature maps within each cell
(max pooling). This is a smart way to handle objects at different scales
and is one of the reasons why this two-stage scheme can cope well
with objects represented by just a few pixels in the image.

On the negative side, it should be noted that every proposal must limitations

go through several FC layers. That leads to a hard balance between
the recall of the set of proposals and the computing requirements.
On the other hand, inference on the RPN is performed based on a
limited window of values cropped from the feature maps around the
center of the anchor. Therefore, although different anchor scales and
aspect ratios are used, the area of the image that is effectively used
to perform classification in the RPN, i. e., the receptive field, has a fixed
size regardless of the actual size of the anchor.

4.1.2 Training

The loss function used to train Faster R-CNN by backpropagation tasks

accounts for the different outcomes produced by the multi-task frame-
work, including the intermediate ones from the RPN:

78 object detection

1. Proposal objectness. Estimated by the RPN for each anchor, is a
categorical probability distribution:

a = (a0,a1), (4.1)

with a1 being the probability of the proposal representing an
object.

2. Proposal refinement. As the (x,y,w,h) encoding is used through-
out the network, the RPN proposes a box regression expressed
as an offset relative to each anchor box:

b = (bx,by,bw,bh) (4.2)

3. Classification. The classification head provides a categorical dis-
tribution p that describes the probabilities of each proposal
belonging to each of the K possible categories and an additional
catch-all background class:

p = (p0, . . . ,pK), (4.3)

where p0 is the probability of the proposal not being an object,
and pi the probability of the proposal representing an object
with the category i.

4. Bounding box refinement. The size and position of every bound-
ing box are regressed using offsets from the original proposal.
The regression is class-aware so that four different offset values
(tx, ty, tw, th) are inferred for each class k:

tk = (tkx, tky, tkw, tkh), k = 0, . . . ,K (4.4)

Although the original Faster R-CNN approach trained the RPN andapproximate

joint training the classification heads separately, it was soon shown [214] that an
approximate joint training strategy could be used without degrading
the performance significantly. This strategy performs training through
SGD and, for each iteration, propagates back a combination between
both the RPN and the Fast R-CNN losses to the backbone. However,
proposal boxes from the RPN are assumed fixed despite being pro-
duced by the network as well, so this training strategy is ultimately
an approximation.

The set of parameters of the different stages of the pipeline, i. e.,loss functions

backbone, RPN, and classification heads, is trained through a multi-task
loss. Consider the following per-element loss functions:

1. Multinomial logistic loss (or log loss), used for multilabel classi-
fication problems:

Lcls(p̂n, ln) = − log p̂n,ln , (4.5)

4.1 faster r-cnn paradigm 79

which assumes that each element n of the batch produces p̂n,
which is a vector whose ith element (p̂n,i) represents the es-
timated probability of the class i, and ln is the ground-truth
class.

2. Smooth-L1 loss, used for box regression:

Lloc(t̂
u
n, vn,σ) =

∑
ξ∈{x,y,w,h}

smoothL1
(t̂un,ξ − vn,ξ,σ), (4.6)

where t̂un is the estimated bounding box regression according to
Eq. 4.4, vn is the set of regression targets, (vx, vy, vw, vh), and
smoothL1

is a robust L1 loss that copes well with outliers:

smoothL1
(x,σ) =

⎧⎨⎩0.5(σ · x)2 if |x| < 1
σ2

|x|− 0.5
σ2 otherwise

(4.7)

Note that σ is a parameter that controls the resemblance of
smoothL1

with a hard L1 loss2. The value of this parameter
affects the behavior of the loss function, as will be shown soon.

In Faster R-CNN, the regression targets for a box, vn = (vx, vy, vw, vh),
are defined in terms of the proposal, P = (Px,Py,Pw,Ph), and the
ground-truth box, G = (Gx,Gy,Gw,Gh), encoding parameters:

vx = (Gx − Px)/Pw

vy = (Gy − Py)/Ph

vw = log(Gw/Pw)

vh = log(Gh/Ph)

(4.8)

Hence, the multi-task loss employed to train the network parameters multi-task loss

functionis the sum of four different losses, corresponding to the tasks defined
at the beginning of this section:

1. Proposal objectness. The RPN proposal classification is defined as
a multinomial classification problem with two possible outcomes:
background and object:

L1 =
1

NB1

∑
j∈B1

Lcls(aj,uj) (4.9)

where aj is the probability distribution provided by the network
(according to Eq. 4.1), and uj, the ground-truth class. As shown,
the loss is aggregated and normalized over a randomly sampled
mini-batch of anchors (B1)3.

2 For large values of σ (e. g., σ > 3), smoothL1
(x,σ) gradually becomes |x|.

3 By default, B1 = 256.

80 object detection

2. Proposal refinement. The loss associated with the RPN regression
is:

L2 =
1

NB1

∑
j∈B1

ujLloc(bj,b∗
j , 3) (4.10)

with bj representing the offset provided by the network (Eq. 4.2)
and b∗

j , the regression targets as defined in Eq. 4.8. Please note
that the ground-truth class of the proposal, uj, appears as a factor,
so the proposals whose ground-truth label is background (uj = 0)
do not contribute to this loss. This loss is also aggregated over the
mini-batch (B1). The parameter σ of Lloc is set to 3 to mitigate
the effects of the lack of normalization of the RPN regression
targets4.

3. Classification. The classification of the proposals from the RPN

involves the following loss:

L3 =
1

NB2

∑
i∈B2

Lcls(pi, vi) (4.11)

where pi is the estimated probability distribution over the K+

1 possible classes and vi, the ground-truth class. The loss is
normalized over the set of proposals resulting from an NMS

performed on the RPN output (B2).

4. Bounding box refinement. The regression loss is computed by:

L4 =
1

NB2

∑
i∈B2

[vi ⩾ 1]Lloc(t
vi

i , tvi∗
i , 1) (4.12)

where tvi

i is the vector of offsets estimated by the network for the
ground-truth class5 vi, and tvi∗

i , the vector of regression targets.
Ground-truth regression targets are normalized so that they have
zero mean and unit variance and, therefore, the parameter σ of
Lloc is set here to 1. On the other hand, the Iverson bracket applied
to a logical proposition P is defined as:

[P] =

⎧⎨⎩1 if P is true

0 otherwise
(4.13)

Therefore, the term [vi ⩾ 1] is included in the loss to prevent the
background bounding boxes (vi = 0) from contributing to the
regression loss.

4 https://github.com/rbgirshick/py-faster-rcnn/issues/89

5 It should be recalled that the bounding box regression is class-aware, so four offset
parameters are separately estimated for each class.

https://github.com/rbgirshick/py-faster-rcnn/issues/89

4.2 tuning for traffic environments 81

In all cases, the assignment of an anchor or detection to a particular
ground-truth annotation is done based on the IoU overlap between
the two instances. The final multi-task loss to be optimized during
training, L, is defined as:

L =

4∑
i=1

αiLi, (4.14)

where αi are the weights associated with the different terms of the
loss. In the proposed approach, αi = 1 ∀i ∈ {1, 2, 3, 4}, so that all the
tasks have an equal contribution to the final loss.

4.2 tuning for traffic environments

Even though Faster R-CNN is mainly agnostic to the application by
not making any assumption, some hyperparameters can be tuned to
optimize the performance of the system on the particular case of traffic
environments.

In order to adapt the system to the particular characteristics of
traffic environments, extensive experimentation based on the KITTI 2D
object detection benchmark, one of the components of the KITTI Vision
Benchmark Suite [90] introduced in Sec. 2.2.2, has been performed.
The accurate and detailed object labels featured by the KITTI dataset
make this dataset an ideal choice for this purpose. In this section, a
detailed description of the KITTI 2D object detection benchmark is
provided, before introducing the set of proposed adjusts to the Faster
R-CNN framework motivated by the conducted experiments.

4.2.1 KITTI object detection benchmark

The KITTI object detection benchmark [90] consists of 14 999 data
frames (synchronized stereo images and lidar point clouds) endowed
with labels describing all the relevant objects in the FOV of the cameras.
Each object is represented by several attributes, such as its bounding
box coordinates in the image, its category, its occlusion and truncation
states, and its 3D location and dimensions. The possible categories categories

are listed below, each represented by a 3-letter code that will be used
hereon in this document:

car Car

ped Pedestrian

cyc Cyclist

van Van

trk Truck

sit Person sitting

trm Tram

82 object detection

There are two additional categories: a catch-all Misc (Miscellaneous)
category, and a DontCare category. The DontCare category is intended
to encompass all the regions containing non-labeled objects, usually
because they are too far away. These regions are not considered either
false positives or false negatives in the evaluation.

Only labels corresponding to 7481 frames (the training set) aretrain/val

splits publicly available. The rest of the frames (7518 frames, the testing
set), are used to perform a fair evaluation in a public server, where a
leaderboard of methods is on display6. During this thesis, experiments
have been performed using the training set. Eventually, final results
have been submitted to the official server to obtain stats on the testing
set.

As usual in machine learning, the KITTI training set has been con-
veniently split into a proper training subset and a validation subset.
Frames in the KITTI object benchmark come from continuous se-
quences recorded on different days; ideally, frames in the training
subset should belong to different sequences than frames in the vali-
dation subset, given that data from the same sequence can be pretty
similar. Different train/validation splits are available:

• The split by Xiang et al. [280], which features 3682 training
images and 3799 validation images (50:50 ratio).

• The split by Chen et al. [43], [44], [46], with 3712 training images
and 3769 validation images (50:50 ratio), which is lately gain-
ing traction in the literature to establish comparisons between
methods.

• A split proposed in this thesis, with 5415 training images and
2065 validation images (70:30 ratio).

As an example, Table 4.1 shows the number of instances in each
subset for the last split introduced above. The table contains the
aggregated numbers in the official training set too.

car ped cyc van trk sit trm

Train samples 20 609 2476 1042 2407 965 222 511

Val. samples 8120 2010 584 506 129 — —

Total 28 729 4486 1626 2913 1094 222 511

Table 4.1: Object occurrence statistics for the custom train and validation
KITTI subsets [114]

Regarding the sensor characteristics, images in the KITTI object de-sensor charac-
teristics tection benchmark have different sizes around 1242× 375. The reason

behind this disparity is that, even though all the images were captured

6 http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d

4.2 tuning for traffic environments 83

using the same sensor, different crops were applied later. The 1/2 ′′

sensor, together with a 4mm lens, provides an HFOV of 90°. After the
crop, the VFOV is 35°. Although two different stereo rigs are available,
the color cameras, with a baseline of 54 cm, will be used throughout
this work.

Object labels are divided into three levels of difficulty attending to levels of

difficultythe size, occlusion, and truncation criteria reported in Table 4.2. Note
that, according to this definition, each difficulty level includes all the
samples belonging to the lower difficulty levels as well.

level min. height max . occlusion max . truncation

Easy 40 px. Fully visible 15 %

Moderate 25 px. Partly occluded 30 %

Hard 25 px. Difficult to see 50 %

Table 4.2: Definition of the levels of difficulty from the KITTI dataset

The evaluation criteria used in the KITTI benchmark for 2D detec- metrics

tion is the Average Precision (AP), introduced in [71]. When dealing
with the category k, AP is defined as:

APk =
1

11

∑
r∈{0,0.1,...1}

pinterp(r), (4.15)

where pinterp(r) is an interpolation of the precision at each recall
level, p(r), for all the recall levels above the current one:

pinterp(r) = max
r̃:r̃⩾r

p(r̃) (4.16)

Because of this interpolation, pinterp(r) becomes a monotonically
increasing function, thus smoothing the precision curve. The AP mea-
sure requires high precision at all levels of recall, penalizing methods
that focus on a small subset of examples. A condensed version of the
measure, the mean Average Precision (mAP), aggregates the AP across all
the foreground categories:

mAP =
1

K

K∑
k=1

APk, (4.17)

Detections are assigned to ground-truth labels according to the IoU

overlap. True positives are required an overlap higher than 50% for
the Pedestrian and Cyclist categories, and higher than 70% for the Car
category. Official evaluation is restricted to those three categories since
authors argue that the number of samples for the rest of the categories
is not enough to perform comprehensive evaluation7.

7 This statement is included in the readme file of the KITTI 2D object detection bench-
mark development kit.

84 object detection

Other measures are proposed by the KITTI benchmark to evaluate
the performance in pose estimation. They will be discussed in Secs.
5.1.1 and 6.1.3.1.

4.2.2 Hyperparameter tuning of the detection framework

Three main types of strategies have been adopted to optimize the
performance of the Faster R-CNN detection framework in the KITTI
dataset. The modifications affect, among others, the input scale, the
training samples, and the RPN anchors, as described in the following
sections.

4.2.2.1 Input scale

Faster R-CNN has proven highly sensitive to the size of the input images
[72]: the larger the scale, the better the results, to a certain extent.
However, larger input scales slow down the feature map generation.
In this work, unless otherwise stated, input images are rescaled to the
uniform scale of 500 pixels in height, approximately corresponding to
a scaling factor of 1.33×. For KITTI images, the resulting resolution is
around 1656× 500 pixels and is used for both training and validation.
This scale offers a good trade-off between accuracy and processing
time and is in line with other works [285]. Further discussion will be
provided in Sec. 5.3.4.

4.2.2.2 Training samples

There are two points relevant to the training procedure used with thehard samples

KITTI dataset. On the one hand, only samples meeting the criteria of
the Hard difficulty level in Table 4.2 are employed, in order to avoid
feeding the network with overcomplicated samples. This filtering leads
to the removal of a surprisingly high proportion of samples, as shown
in Table 4.3 for the three main classes using the custom split.

car ped cyc

Train samples 20 609 2476 1042

Train samples within Hard 15 526 2355 711

Table 4.3: Number of car, ped, and cyc instances meeting the requirements
of the Hard difficulty level in the KITTI dataset

On the other hand, DontCare regions are properly handled to preventdontcare

samples them from corrupting the training. Following the same procedure as
the vanilla Faster R-CNN, where anchors and proposals are required

4.2 tuning for traffic environments 85

to belong unambiguously to a category8, the following measures are
adopted:

1. At the RPN, the anchors with the highest overlap with each
DontCare area are discarded.

2. Also at the RPN, anchors with an overlap higher than 15% with
a DontCare region are excluded from the mini-batch.

3. At the classification heads, proposals with an overlap higher than
25% with a DontCare region are not considered as background
samples.

This design prevents introducing spurious samples in the training
procedure (e. g., distant cars as background), as areas of the image with
non-labeled objects (i. e., DontCare regions) are not employed during
the training procedure, neither as positive nor as negative samples.

Additionally, categories not used during the training (e. g., Misc), other

categoriesas well as samples harder than the Hard difficulty level, are also
considered as DontCare samples. The reason behind this decision is
the difficulty involved in distinguishing the different kinds of traffic
participants; for instance, the Misc category includes trailers that could
be easily confused with cars. These measures aim to avoid ambiguous
samples that are difficult to grasp even for a human being, which
could hurt the optimization process.

4.2.2.3 Class balancing

As apparent from Table 4.1, the occurrence frequency of the different
categories in the KITTI dataset is strongly unbalanced. This is a com-
mon problem in virtually every automotive-oriented dataset and can
lead to models biased towards cars at the expense of VRUs, which are
particularly sensitive from a safety point of view.

In order to deal with this issue, a basic class balancing method is
proposed. It is based on a weighted classification loss where samples
belonging to different classes contribute differently to the final loss,
depending on the frequency of each category in the training set.

To that end, the classification loss L3 in Eq. 4.11 is modified by
replacing the multinomial logistic loss Lcls with an information gain (or
infogain) loss Linf, defined as follows9:

Linf(p̂n, ln) =
K∑

k=1

Hln,k log(p̂n,k), (4.18)

8 In the original Faster R-CNN, anchors should have an overlap higher than 70% with a
ground-truth box to be considered a positive sample, and an overlap lower than 30%
with any ground-truth box to be considered a negative sample. Proposals fed to the
classification heads are imposed similar requirements: overlap higher than 50% for
the positive ones, and non-existent for the negative ones.

9 http://caffe.berkeleyvision.org/tutorial/layers/infogainloss.html

http://caffe.berkeleyvision.org/tutorial/layers/infogainloss.html

86 object detection

where Hln,k is the element at the location (vn,k) in the infogain matrix
H, and p̂n,k, the predicted probability of sample n belonging to the
class k; i. e., the kth element of p̂i.

If H is a diagonal matrix, then the infogain loss becomes:

Linf(p̂n, ln) = Hln,ln log(p̂n,ln), (4.19)

which can be seen as a weighted version of the multinomial logistic
loss, where the weight assigned to the samples belonging to the class
k is given by the value of Hk,k. This way, the underrepresented classes
can be assigned higher Hk,k values.

In particular, the infogain matrix values are selected according to
the frequencies observed for the different categories in the training set
using the following equation:

Hk,k = 2 ·
(
fmin

fk

) 1
8

, (4.20)

where fmin is the number of occurrences of the less frequent class
and fk, the number of instances of class k. Background samples are
assigned a unit weight. Values obtained through this equation are
shown in Table 4.4 for two different sets of training categories: the
three main categories (car, ped, and cyc) and all the categories,
respectively.

bg car ped cyc van trk sit trm

car+ped+cyc 1 1.38 1.8 2 — — — —

All categories 1 1.14 1.48 1.66 1.48 2 1.65 1.8

Table 4.4: Weights in the infogain matrix for two different sets of categories.
bg denotes the weight assigned to background samples.

4.2.2.4 RPN anchors

Although the proposal regression performed by the RPN should be
capable of handle pretty large deviations from the original anchors
through the proposal regression estimation, it has been shown [214]
that using different scales and aspect ratios per location improves
the performance of the system. Therefore, it makes sense to modify
these values to fit the geometries featured by road participants. A
statistical analysis of the KITTI samples provides the results shown
in the histograms in Figs. 4.2 and 4.3, where W is the width of the
annotations, and H, their height. Please note that areas are computed
on the original, unscaled image.

Despite that it has been proven that adding more anchors would
benefit the accuracy [281], the number of anchors of the proposed
setup follows the original model: three scales and three aspect ratios

4.2 tuning for traffic environments 87

0 5000 10000 15000
Size (W x H)

0

200

400

600

800

1000

1200

N
um

be
r o

f i
ns

ta
nc

es

(a) Car

0 5000 10000 15000
Size (W x H)

0

50

100

150

200

250

300

350

400

N
um

be
r o

f i
ns

ta
nc

es

(b) Pedestrian

Figure 4.2: Histograms of sizes (W ×H) for Hard samples in the KITTI train-
ing subset

0 0.5 1 1.5 2
Ratio (H/W)

0

500

1000

1500

2000

2500

N
um

be
r o

f i
ns

ta
nc

es

(a) Car

1 2 3 4
Ratio (H/W)

0

20

40

60

80

100

120

140

160

180

N
um

be
r o

f i
ns

ta
nc

es

(b) Pedestrian

Figure 4.3: Histograms of ratios (H/W) for Hard samples in the KITTI train-
ing subset

for a total of nine anchors per location. This way, the complexity of the
model does not increase, and computation times remain tractable. The
new anchors have been selected to fit better the typical shapes and
scales without loss of generalization ability. The values are reported in
Table 4.5 and graphically represented in Fig. 4.4. In both cases, scales
are provided as the areas of the resulting anchors.10

As apparent from the figure, the new anchor shapes are closer to
the ones typically featured by cars (ratios 0.4 and 0.7) and pedestrians
(ratio 2.5), which, in general, reduces the magnitude of the regression
needed to fit the ground-truth boxes. The new scales, on the other

10 Anchors, which are rectangles of size W ×H, are obtained by modifying the aspect
ratio of a base box of 16× 16 while maintaining its area. Afterward, a factor is applied
to the sides of the box to get the provide them with the desired scale.

88 object detection

default custom

Scales (box areas) {1282, 2562, 5122} {802, 1122, 1442}

Ratios (H/W) {2 : 1, 1 : 1, 1 : 2} {5 : 2, 7 : 10, 2 : 5}

Table 4.5: Modified settings for RPN anchors [113]

112 px.

144 px.

80 px.

(a) Scales (pixels)

0.4
0.7

2.5

(b) Ratios (H/W)

Figure 4.4: Custom RPN anchors

hand, are more suitable for the representation of small and distant
objects.

4.2.2.5 Dropout and layer freezing

As discussed in 2.5.3, dropout [248] is a regularization technique aimeddropout

at reducing overfitting in DNNs by randomly removing units in the
network during training.

Faster R-CNN originally employed dropout in the last two common
FC layers before the classification heads. However, its effect for this par-
ticular setup is dubious, as will be experimentally proven in Sec. 5.3.1.
As a result, dropout is not used in the models trained in this thesis.
Nevertheless, no overfitting symptoms were observed.

On the other hand, as is standard practice, initial weights are loadedlayer freezing

from a model pre-trained on ImageNet and then fine-tuned. In the
baseline Faster R-CNN, however, fine-tuning does not reach every layer
in the backbone, as the authors consider that the first convolutional
layers are “generic and task-independent,” [95] so ImageNet weights
should be valid for other applications.

However, in this thesis, it was observed that, for the considered
application, extending backpropagation to the shallowest layers had a
significant beneficial effect. Therefore, for all models in this document,
fine-tuning was applied to the whole backbone network.

4.2.2.6 NMS

A greedy NMS is applied over the resulting bounding boxes of the
Faster R-CNN network to remove duplicate detections. The NMS is
usually performed on a per-class basis; however, in the particular
case of road participants, it makes sense to consider some pairs of
categories together based on their similarity. More specifically, two

4.2 tuning for traffic environments 89

bundles are considered: Car, Van, and Truck, on the one hand, and
Pedestrian, Person sitting, and Cyclist, on the other hand.

This strategy allows removing redundant detections representing a
rider as a pedestrian, or a van as a truck, for instance. Note that this is
a test-time modification that improves the result provided to higher-
level modules, but should not have an impact on the quantitative
evaluation performed under the KITTI criteria, which already ignores
misclassifications between neighbor categories.

4.2.3 Experimental setup and preliminary assessment

The different findings that will be introduced henceforth are supported common setup

by experimental evidence. All the experiments follow the same pattern:
a Faster R-CNN-like model is trained11 on one of the KITTI training
subsets, and validated on its respective validation subset according
(mostly) to the KITTI evaluation criteria.

Apart from the modifications described in the previous section, most
parameters and configurations follow the setup used in the original
R-CNN papers [95], [96], [214]. Thus, training is performed following
the image-centric strategy, where all the samples for an SGD iteration
are obtained from a single image, and 256 anchors are sampled to
calculate the RPN losses. Later, 300 proposals are extracted and fed to
the classification heads to compute its losses. In each iteration, frames
are horizontally flipped with a certain probability as a way to augment
the training data.

The bulk of the experimental analysis of Faster R-CNN and other baseline

evaluationproposed variants will be provided in Chapter 5 in the context of joint
detection and viewpoint estimation. However, a baseline evaluation
on the KITTI dataset with the modifications proposed in the previous
sections is presented here.

For each set of experiments, the set of hyperparameters and config-
urations employed to train the network will be specified. In this case,
the setup is summarized in Table 4.6.

An explanation of the different parameters in the table is provided
below:

• Feature extractor: the backbone of the model. Usually, the 16-layer
VGG (VGG-16) [244] is employed.

• Pre-training: it indicates if the model has been trained by fine-
tuning a pre-trained model.

• Anchors: the set of anchors (scales and aspect ratios) employed
by the RPN.

11 The term trained is used here as equivalent of fine-tuned from a pre-trained model.

90 object detection

Feature extractor: VGG-16 [244]

Pre-training: Yes, on ImageNet

Anchors: Custom (Table 4.5)

Classification loss: Infogain

RPN proposals: 300

Classification heads: Category + bounding box regression

Predicted classes: 3 (car, ped, cyc)

Train/val split: Custom (70:30)

Training schedule: 50k iterations @ lr = 10−3 + 30k iterations @ lr =

10−4

Table 4.6: Training hyperparameters for the tuned Faster R-CNN

• Classification loss: the type of loss used in L3. It can be the regular
multinomial logistic loss (Lcls) or the weighted version imple-
mented with the infogain loss (Linf).

• Classification heads: the sibling FC branches which provide the
results of the inference. In addition to the usual heads for cate-
gory prediction and bounding box regression, new branches can
be added to extend the capabilities of the framework, as will be
discussed in the next chapter.

• Predicted classes: the number of classes for which the model is
trained. The output of the FC layer responsible for category pre-
diction is made of this number of elements (plus the one corre-
sponding to the background class). Additionally, as the bounding
box regression is class-aware, it affects also to the output size of
the regression branch.

• Train/val split: the split of the publicly available training set deter-
mining the samples used for training and validation, respectively.

• Training schedule: number of iterations and learning rate. A step
decay schedule is adopted in all the experiments, so the learning
rate is reduced by some factor after a set number of training iter-
ations. The learning rate and width (in iterations) corresponding
to each step are specified.

Table 4.7 shows the results of the tuned Faster R-CNN trained for
the detection of the three main categories on the KITTI dataset. Com-
parison with other methods is complicated due to the diversity of
train/validation splits used in the literature and is, therefore, delayed
to the next chapter, where the official testing set will be used. The
effect of the different hyperparameters will also be analyzed then.

4.2 tuning for traffic environments 91

class 2d detection (ap 2d)

easy mod. hard

car 88.20 77.87 63.64

ped 81.41 70.52 66.39

cyc 72.65 53.73 51.92

mAP 80.76 67.37 60.65

Table 4.7: Detection performance (AP %) of the tuned Faster R-CNN on the
KITTI validation subset

4.2.3.1 Implementation and inference time

The tuned Faster R-CNN model, as well as the rest of the modifications source code

described in this and the next chapter, were implemented in Python
using the Caffe DL framework [141]12. This implementation was based
on the one by Ross Girshick13, which is, in turn, a re-implementation of
the original MATLAB code by Shaoqing Ren14. The modified code has
been released under the same MIT license15 to ease the reproducibility
of the results.

Caffe makes use of the NVIDIA CUDA16 parallel computing plat- hardware

form to perform most of the CNN operations on GPU, thus reducing
training and inference times. Experiments in this thesis were per-
formed using a Titan Xp GPU17. Some of its specs are reported in Table
4.8, including its theoretical performance measured in float point oper-
ations per second (TFLOPS) for the single-precision floating-point format
(FP32), which is the one used by the current implementation.

CUDA cores (shading units): 3840

Boost clock: 1582 MHz

Memory config: 12 GB GDDR5X

Memory bandwidth: 547.7 GB/s

TFLOPS FP32: 12.15 TFLOPS

Table 4.8: NVIDIA Titan Xp GPU specifications18

The forward-pass time for each KITTI frame is around 83ms19; run time

therefore, automotive-capable output rates are doable using dedicated

12 Caffe is open source under a BSD 2-Clause license: https://github.com/BVLC/caffe
13 Open source under the MIT license: https://github.com/rbgirshick/

py-faster-rcnn. Note that Ross Girshick is one of the authors of Faster R-CNN.
14 Open source under the MIT license: https://github.com/ShaoqingRen/faster_rcnn.
15 https://github.com/cguindel/lsi-faster-rcnn

16 https://developer.nvidia.com/cuda-zone

17 The GPUs used in this research were kindly donated by NVIDIA Corporation.
18 https://www.techpowerup.com/gpu-specs/titan-xp.c2948

19 This time was obtained as the median of forward-pass times for 1 000 frames from
the KITTI testing set

https://github.com/BVLC/caffe
https://github.com/rbgirshick/py-faster-rcnn
https://github.com/rbgirshick/py-faster-rcnn
https://github.com/ShaoqingRen/faster_rcnn
https://github.com/cguindel/lsi-faster-rcnn
https://developer.nvidia.com/cuda-zone
https://www.techpowerup.com/gpu-specs/titan-xp.c2948

92 object detection

implementations. For instance, some GPUs have native half-precision
floating-point format (FP16) support, which speeds up computations
without significant loss of accuracy [183].

4.3 enhanced detection using stereo vision

While Faster R-CNN features a satisfactory detection performance usingmotivation

only color images as input, additional sources of information can
be incorporated into the detection pipeline to further improve the
capabilities of the network.

Stereo vision has already been pointed out in previous chapters
as a useful strategy to obtain geometrical information from images.
In this section, a strategy to leverage stereo information aimed to
enhance the solid detection baseline provided by Faster R-CNN is
proposed. The method does not require extensive modifications from
the original design, which, among other things, avoids an increase in
the complexity of the model.

The proposal is summarized in Fig. 4.5. The main idea is the inclu-proposal

overview sion of stereo depth information to the input image as a fourth channel,
in addition to the existing R, G, and B color channels.

Stereo
Matching

Faster
R-CNN

Bounding boxes
(x, y, w, h)

Refinement
(t

x
,t

y
,t

w
,t

h
)

Class
p=(p

0
,...,p

K
)

Disparity map

Left RGB image

Right RGB image Object detectionFour-channel image

Figure 4.5: Proposed approach to incorporate stereo information into the
Faster R-CNN framework [113]

The proposal affects only to the first convolutional layer of the fea-
ture extractor, whose filters must be extended to accept four channels
as input. Dimensions of all the feature maps, both the intermediate
and the final ones, remain unalterable from the original model.

The addition of depth information is aimed to improve mainly the
region proposal stage by providing hints about the boundaries of the
objects, thus helping to partially overcome the limitations of the RPN

due to the fixed receptive field. On the other hand, this approach
preserves the end-to-end nature of the Faster R-CNN and does not
introduce significant overhead.

4.3.1 Depth information encoding

Different approaches can be used to represent the depth informationdisparity

channel in the fourth channel. In this proposal, a scaled disparity map is used.

4.3 enhanced detection using stereo vision 93

Following Eq. 3.10, the value of the pixel at coordinates (x,y) in the
fourth channel, I(x,y), is given by20;

I(x,y) = clip (k · d(x,y)) = clip
(
k · f · B

Z(x,y)

)
, (4.21)

where k is a constant scaling factor, and clip (x) is a clipping
function that limits the pixel value to a maximum of 255; that is,
clip(x) = min (x, 255). This equation effectively performs normaliza-
tion of disparity values between 0 and 255/k, while all pixels with
d(x,y) ⩾ 255/k are assigned I(x,y) = 255.

In the experiments, the parameter k was set to 4. This way, only
disparities originally in the range between 0 and 64 are distinguishable
in the resulting map. In images from the KITTI dataset, that clipping
corresponds to depths from 6m to the infinite, which is an adequate
range of detection for the application, given the FOV of the cameras.

The motivation behind using a scaled disparity map as a fourth justification

channel, instead of alternatives such as a depth map, is twofold. On
the one hand, the inverse relationship between depth and disparity
leads to the disparity map having a higher resolution in closer values
(with small Z(x,y)), where the criticality of the detection increases. On
the other hand, the chosen normalization allows removing extremely
close points, which will otherwise dominate most of the scale of the
fourth channel, precisely because of the non-uniform resolution.

Two methods, already introduced in Sec. 3.2.1, have been employed stereo

matchingto perform the stereo matching: the OpenCV SGBM implementation
[124], and DispNet [181]. A background interpolation method is used
with the SGBM disparity to remove holes (i. e., undefined values) in the
disparity map. Every pixel (x0,y0) with an undetermined value in the
disparity map, ∄d(x0,y0), is given a value according to:

d̂(x0,y0) = min(d(x−0 ,y0),d(x+0 ,y0)) (4.22)

where d(x−0 ,y0) and d(x+0 ,y0) are the disparities of the closest defined
pixels at the left and right sides in the same row. Fig. 4.6 depicts
an example of the fourth channel arrays obtained through the two
different stereo matching methods.

The VGG-16 model [244] is used as a feature extractor. As mentioned training setup

before, a common practice in CNN training is to initialize the weights
using pre-trained values. Usually, pre-training in Faster R-CNN affects
the feature extractor. As the structure of the first convolutional layer
has been modified to accept four-channel images, pre-training on a
monocular-only dataset, such as ImageNet, is unfeasible. Instead, all
but these weights are loaded with ImageNet pre-trained values, and
the filters whose structure has changed are initialized with made-
up values computed as the mean value of the weights of the color

20 Please refer to Sec. 3.1.2 for an explanation of the concept of disparity and its
mathematical definition.

94 object detection

(a) RGB image. (b) DispNet disparity map.

(c) SGBM disp. before interpolation (d) SGBM disp. after normalization

Figure 4.6: Example of the processed disparity maps on a frame from the
KITTI dataset [113]

channels. This approach is based on the intuition that discontinuities
in depth are usually linked to discontinuities in intensity. In any case,
all network parameters, including those in the shallowest layers, are
updated during fine-tuning, as explained in Sec. 4.2.2.5, which should
help to fit the new nature of the data.

4.3.2 Experimental results

Experiments were conducted on the KITTI object detection benchmark.
Training was performed according to the choices summarized in Table
4.9.

Feature extractor: VGG-16 [244] (slightly modified)

Pre-training: Yes, on ImageNet

Anchors: Custom (Table 4.5)

Classification loss: Multinomial logistic

RPN proposals: 300

Classification heads: Category + bounding box regression

Predicted classes: 7 (car, ped, cyc, van, trk, sit, trm)

Train/val split: Chen et al. Chen et al.

Training schedule: 50k iterations @ lr = 10−3 + 30k iterations @ lr =

10−4

Table 4.9: Training hyperparameters for the proposed stereo-vision-capable
Faster R-CNN

Note that, while the network is trained to predict seven categories,
evaluation is restricted to the three considered in the official bench-
mark. Table 4.10 shows a comparison between the RGB baseline and
the two alternatives presented to incorporate the stereo information,
making use of two different stereo matching methods.

4.4 analysis of the influence of training data 95

class method 2d detection (ap 2d)

easy mod. hard

car

RGB 88.76 77.01 60.81

RGB+SGBM 89.39 77.99 66.84

RGB+DispNet 88.82 77.29 66.56

ped

RGB 85.97 68.71 61.41

RGB+SGBM 87.39 69.16 63.62

RGB+DispNet 87.70 69.73 64.47

cyc

RGB 65.22 53.67 50.37

RGB+SGBM 64.07 52.25 49.68

RGB+DispNet 66.51 55.77 52.26

Table 4.10: Comparison of the performance (AP % and AOS %) of the proposed
stereo-vision-capable Faster R-CNN with other methods on the
KITTI validation subset [113]

The straightforward addition of stereo data obtained with the Disp-
Net method leads to an improvement of more than +1.1 points in
mAP for Moderate objects and almost +3.6 points for the Hard set. The
SGBM alternative, while generally worse than the DispNet method,
also achieves an improvement of around 2.5 points in the Hard mAP

and gets the highest AP values for Car.
These improvements are achieved with a negligible impact on the

run time of the detection network, as the increase in the number of
parameters and operations per frame is minimal. A non-negligible
time is spent, however, in the stereo matching process, so this ap-
proach makes the most sense when the disparity map is used in other
applications within the automated driving pipeline (e.g., traversable
area detection [179]) and, therefore, would be computed in any case.

4.4 analysis of the influence of training data

As established before, most experimental results provided throughout
this thesis make use of the KITTI 2D object detection benchmark,
which is made of real data from onboard sensors that have been
profusely annotated and contains a variety of challenging instances
with different sizes, poses, and occlusion statuses. Results obtained on
the KITTI object detection benchmark are, therefore, representative of
the real performance of the algorithms on real situations.

However, the 7481 frames composing the official training set may
not be enough to fulfill the requirements of modern DL algorithms,
especially when split into two separated subsets for training and
validation. This section is devoted to the study of the influence of
training data on the performance of Faster R-CNN. The study is limited

96 object detection

here to the quantitative effect of augmenting the available training
data. Extended results will be provided in Sec. 5.3.5 in the context of
joint detection and orientation estimation.

4.4.1 Experimental setup

Two different datasets are used in this analysis: the standard KITTI 2Ddatasets

object detection benchmark and the Cityscapes dataset [49]. Concern-
ing KITTI, the train/validation split by Chen et al. [46] is employed,
and the validation set is used as the reference testbed, enabling com-
parison between the different alternatives that will be analyzed.

Regarding the Cityscapes dataset, the 2975 available training framesformat

adaptation with fine annotations are employed21. Cityscapes is aimed at semantic
segmentation algorithms, so annotations are pixel-wise. However,
instance information is also available, so bounding box labels similar
to the ones in the KITTI dataset can be obtained. This adaptation
enables the combination of both datasets to study the effect of an
increase in the number of training samples22.

To that end, each bounding box is taken as the minimum enclosing
rectangle of the set of polygons defining an instantiable object. Fig. 4.7
illustrates the procedure. Although all the instantiable categories can
be transformed into bounding box labels, as shown in the figure, only
the three main KITTI categories are considered.

(a) Original pixel-wise annotation (b) Obtained bounding box labels

Figure 4.7: Example of the conversion from pixel-wise to bounding box labels.
Figures by Iñigo Barredo from [6] (license CC BY-NC-ND 3.0 ES)

The three main classes of the KITTI dataset are considered. Due tocategories

differences in the definition of KITTI and Cityscapes categories, the
following criteria have been adopted:

• car: both definitions agree.

• ped: Cityscapes’ person labels are assumed equivalent to the
KITTI Pedestrian labels.

21 An additional set of 19 998 training images is available featuring coarse annotations,
but these were found insufficiently precise for this purpose.

22 The adaptation of Cityscapes annotations to KITTI format was designed and per-
formed by Iñigo Barredo during a TFG (Bachelor’s Thesis) supervised by the author
of this thesis [6].

4.4 analysis of the influence of training data 97

• cyc: each Cityscapes’ rider sample has been merged with the
closest bicycle instance, following the Cyclist (cyc) category spec-
ification from the KITTI dataset.

The total number of samples from each dataset considered in the
analysis is shown in Table 4.11.

category kitti cityscapes

train val total total

Car (car) 10 753 10 963 21 716 21 637

Pedestrian (ped) 2104 2172 4276 15 788

Cyclist (cyc) 594 600 1194 1481

Table 4.11: Object occurrence stats for the KITTI and Cityscapes subsets used
in the analysis [115] © 2018 IEEE

The adaptation procedure deals with two additional sources of occlusion /
truncationdifference between datasets: the occlusion and truncation statuses and

the resolution and FOV. Regarding the former, assigning occlusion and
truncation statuses to every sample enables discarding extremely hard
instances from the training procedure, as stated in Sec. 4.2.2.2. Both
magnitudes are estimated for every labeled sample from Cityscapes
as follows:

• Occlusion: an instance is labeled as occluded when its bound-
ing box is intersected by another object in the foreground. The
foreground-background ordering is available in the Cityscapes
annotations. An estimate of the degree of occlusion is provided
by computing the ratio between the area of the intersection and
the area of the object box.

• Truncation: if any of the sides of the bounding box coincides
with the image boundaries, the object is assumed truncated.

Although both are rough estimations, they are valid for the intended
filtering purposes. Thresholds for the KITTI Hard samples were shown
in Table 4.2; likewise, the difficulty criteria for the adapted Cityscapes
samples have been established according to the occlusion and trunca-
tion estimations introduced above so that the maximum admissible
occlusion level for Hard samples is 75%, and no truncation is allowed.

On the other hand, a comparison between KITTI images (e. g., resolution /
fovFig. 4.6a) and Cityscapes images (e. g., Fig. 4.7b) makes it clear that

they are significantly different in terms of resolution and FOV. During
the training procedure in Faster R-CNN, every input frame is rescaled
to a fixed height, so these differences are undesirable. Therefore, an
ROI of 2048× 620 is extracted from the Cityscapes images to make
them similar to the KITTI frames regarding the VFOV; additionally,

98 object detection

this cropping removes the hood of the ego-car, which is otherwise
visible in the bottommost part of the images.

4.4.2 Analysis

As stated before, the main goal of the analysis is to study the effect
of enlarging the training set on the detection capabilities of Faster
R-CNN. The procedure consists of adding the 2975 training frames
from Cityscapes on top of the KITTI training subset, made of 3682

images. In each training iteration, an image is randomly chosen from
the mix of both datasets to perform the SGD. Table 4.12 shows the
setup used in the experiment.

Feature extractor: VGG-16 [244]

Pre-training: Yes, on ImageNet

Anchors: Default

Classification loss: Infogain

RPN proposals: 300

Classification heads: Category + bounding box regression

Predicted classes: 3 (car, ped, cyc)

Train/val split: Chen et al. (KITTI) and Cityscapes training set

Training schedule: 50k iterations @ lr = 10−3 + 30k iterations @ lr =

10−4

Table 4.12: Training hyperparameters for the analysis of the influence of
training data on the detection performance

Detection performance is analyzed on the KITTI validation subset.
Table 4.13 shows the results obtained when training with each of the
two datasets separately, and the performance obtained with the mix
of both.

As expected, the model trained only on Cityscapes performs worse
on the KITTI validation subset than the one trained on the training
subset of the same dataset. However, combining the Cityscapes frames
with the KITTI samples improves the results from the baseline ob-
tained with the KITTI training subset alone for all the categories and
difficulty levels. The overall effect is an increase of +4.24 points in
mAP for the Moderate level, which is an improvement of around 6.25%
with respect to the baseline model.

Results show that the increase in diversity introduced by the ad-
ditional Cityscapes samples is beneficial for the development of the
CNN model, even when the validation set is exclusively made of KITTI
frames. The conclusion is especially noteworthy due to the notable
differences between both datasets regarding the properties of their re-
spective vision systems. Further discussion will take place in Sec. 5.3.5.

4.5 conclusion 99

class tr . data easy mod. hard

car

KITTI 90.05 79.32 70.04

Cityscapes 81.37 63.66 53.47

KITTI + CS 90.31 84.94 70.33

ped

KITTI 75.80 67.17 58.58

Cityscapes 72.00 63.92 55.33

KITTI + CS 77.77 68.72 60.05

cyc

KITTI 77.47 56.96 54.64

Cityscapes 63.09 50.14 46.85

KITTI + CS 82.90 62.50 58.05

Table 4.13: Detection performance (AP %) of Faster R-CNN on the KITTI valida-
tion subset for different sets of training data. KITTI + CS denotes
the combined KITTI-Cityscapes dataset [115] © 2018 IEEE

4.5 conclusion

In this chapter, it has been proven that the state-of-the-art object detec-
tion meta-architecture Faster R-CNN is suitable to perform detection
on images from an onboard camera and provide reliable identification
of the obstacles around the vehicle. The conclusion has been reached
through a detailed understanding of the design and particularities of
the architecture.

Its adequacy can be further enhanced by introducing some improve-
ments specifically targeted at the considered application, though the
quantification of the effect of these modifications has been delayed
to the next chapter. In any case, results on the KITTI dataset show
adequate levels of accuracy.

Data from stereo cameras can be exploited to improve the accuracy
of the detection with minimal changes in the architecture. The pre-
sented results suggest that the spatial information provided by that
source of data can help in the generation of proposals by providing a
rough segmentation of the scene.

Furthermore, experimental analyses conducted with two automo-
tive datasets have demonstrated the high sensitivity of the architecture
to the size of the training set. The availability of many and varied
annotated frames can improve the performance of the algorithm dra-
matically without any change in its design. Further discussion will be
held in the next chapter.

It is important to highlight the relevance of detection methods, such
as the one presented here, nowadays. Although a significant part of the
computer vision (and related ITS) research has tilted towards semantic
segmentation algorithms, object-based models of the environment
are still necessary for automated driving. Instance segmentation, a
particular subtask of semantic segmentation, aims to separate the

100 object detection

different instances and might be the answer to these needs. However,
some of the best performing instance segmentation algorithms rely on
robust bounding-box detections. This is particularly the case of Mask
R-CNN [118], which is an extension of Faster R-CNN that introduces a
new classification head to perform the segmentation task on a per-
instance basis. It is, therefore, worth it to continue making efforts to
understand and improve the object detection task.

5
V I E W P O I N T E S T I M AT I O N

Once objects are localized within the boundaries of the image, knowl-
edge about the different instances can be enriched with additional
attributes that provide the high-level reasoning modules with more
detailed insight into the traffic scene. In particular, information about
the pose of the objects is of paramount importance for automated
driving systems in order to decide the future trajectory to be followed
the vehicle.

As discussed in Sec. 2.6.2, the problem of pose estimation in the
context of autonomous driving can often be reduced to the estimation
of three magnitudes: on the one hand, the 2D coordinates of objects
on the road plane and, in the other hand, their yaw angle, frequently
referred to as heading angle.

In this chapter, an approach to embed orientation estimation into the
Faster R-CNN detection framework is proposed. Orientation is obtained
exclusively through appearance features and, therefore, does not rely
on motion features that would require performing a robust tracking
of objects in the scene. Instead, the method takes advantage of the fact
that detection and orientation estimation are linked problems that can
be tackled from the same perspective.

In this chapter, a comprehensive analysis of the full detection and
viewpoint estimation pipeline is also provided, complementing the
results introduced in the previous chapter and providing insightful
details that should be taken into account in the design of the perception
system.

Finally, a discussion on some possible enhancements to the method
is provided, opening new avenues for research. Some preliminary
results are presented, implying the future potential of the method
beyond the scope of this dissertation.

5.1 problem formulation

Although orientation is an intuitive concept, different definitions can viewpoint

definitionbe adopted, so it is important to start establishing the criteria used
in this work. Assuming that road users move on a roughly planar
surface, the orientation of an object is defined by its rotation around
an axis which is normal to the road.

In the most general case, the sought-after magnitude is the value
of the angle expressed with respect to a fixed reference frame (e. g.,
the camera frame), which will be referred to here as the yaw angle.

This chapter includes content from [111], [115], and [114].

101

102 viewpoint estimation

According to this definition, every car moving in the same direction
along a straight road has the same yaw angle.

However, as evident from Fig. 5.1, the representation in the image of
objects with the same yaw angle can be significantly different. As we
aim to employ appearance features to discriminate among different
orientations, it is more convenient to define a new angular magnitude:
the viewpoint or observation angle. Unlike the yaw angle, the viewpoint
considers the vector from the origin of the camera coordinate system
to the geometrical center of the object, representing the perspective
from which the object is perceived by the sensor, as depicted in Fig. 5.2.
In that way, instances with identical viewpoint values have the same
parts visible in the image (e. g., the front right corner for the viewpoint
highlighted in red in Fig. 5.2).

Figure 5.1: Illustration of the difference between yaw and viewpoint [188]
© 2017 IEEE

Figure 5.2: Representation of different viewpoints [164]

In this document, both angles are defined as shown in Fig. 5.3,
where φ is the yaw angle, representing the rotation around the y-axis
of the camera frame1, and θ is the viewpoint, related to the yaw angle

1 Note that the canonical camera frame defined in Sec. 3.1.1 is employed here.

5.1 problem formulation 103

and the object position on the plane, (x0, z0), through the following
equation:

φ = θ+ atan2(z0, x0) + 3π/2, (5.1)

where the atan2 function is defined as follows:

atan2(y, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan(y/x), if x > 0

arctan(y/x) + π, if x < 0 and y ⩾ 0

arctan(y/x) − π, if x < 0 and y < 0

+π/2, if x = 0 and y > 0

−π/2, if x = 0 and y < 0

undefined, if x = 0 and y = 0

(5.2)

Note that, for the car in Fig. 5.3, φ = −90°, but θ ̸= −90°, as the
viewpoint varies according to the position of the object with respect
to the camera.

θ

Camera

frame

x

z

z
0

x
0

φ

Figure 5.3: Definition of yaw (φ) and viewpoint angles (θ)

Subsequently, the viewpoint estimation problem can be framed in continuous vs .
discrete

viewpoint

estimation

two different ways:

1. As a regression problem to a continuum of values spanning the
full 360° circle, so that the viewpoint variable can adopt arbitrary
values.

2. As a classification problem in which the circle is quantized into
a predefined number of bins, and each real-valued viewpoint
is assigned to a bin representing a range of values, as shown
in Fig. 5.4. A formal definition of the discrete angle bins can be
formulated as follows: if the full circle of possible viewpoints (2π
radians) is divided into Nb bins, each bin Θl, l = 0, . . . ,Nb − 1

encompasses a range of viewpoints given by:

Θl =

{
θ ∈ [0, 2π)

⏐⏐⏐⏐ 2πNb
· l ⩽ θ+ θo <

2π

Nb
· (l+ 1)

}
, (5.3)

104 viewpoint estimation

where θo is an offset that can be used to control the start and
end points of the bins. Unless otherwise stated, θo = π/Nb is
chosen in this work to make viewpoint bin centers correspond
to well-defined orientations; i. e., front, rear, etc.

0: R

1: FR

2: F

3: FL

4: L

5: BL

6: B

7: BR

θj0

Ego-car

*

Figure 5.4: Example of viewpoint quantization with 8 bins (Nb = 8). The
object’s viewpoint falls into the first bin (θ∗j0 ∈ Θ1). Viewpoint
bins are named using combinations of the four main orientations:
front (F), back (B), left (L), and right (R) [111] © 2018 IEEE

It is simple to conclude that the regression approach can theoreti-comparison

cally provide a finer-grained estimation than the discrete alternative.
However, in practice, some aspects favor the use of the discrete ap-
proach in machine learning algorithms, such as CNNs. On the one
hand, the regression into a full [0, 2π) range does not fit well into in-
ference frameworks, where outputs usually represent small variations
from some reference values. On the other hand, data available for
training is limited, which makes it difficult for the model to learn the
diversity of values featured by the viewpoint variable, in contrast with
the limited set of possible values in the discrete approach.

Furthermore, the discrete approach has often been proven as ade-
quate for high-level scene understanding (e. g., [92]).

5.1.1 Orientation in the KITTI dataset

The KITTI object detection benchmark [90], whose main featuresangles

were already introduced in Sec. 4.2.1, is outfitted with both yaw and
viewpoint annotations, referred to as rotation_y and alpha, respectively.
Both angles follow the criteria established in Fig. 5.3 and take values
in the [−π,π] range.

Regarding the evaluation, the KITTI benchmark poses the viewpointmetrics

estimation problem within the frame of object detection and proposes
a measure intended to assess both detection and viewpoint estimation

5.1 problem formulation 105

simultaneously. This measure is the Average Orientation Similarity (AOS),
which is defined analogously to the AP for a category k:

AOSk =
1

11

∑
r∈{0,0.1,...1}

sinterp(r) (5.4)

A condensed metric that expresses the mean of the AOS values over
all the categories can also be defined here as mean Average Orientation
Similarity (mAOS). As with the AP, sinterp(r) results from the interpola-
tion of a measure, in this case, the orientation similarity, at each recall
level, s(r), for all the recall levels above the current one:

sinterp(r) = max
r̃:r̃⩾r

s(r̃) (5.5)

The orientation similarity is a unitary normalized variant of the
cosine similarity, whose output is, in turn, limited to the [−1, 1] range:

s(r) =
1

|D(r)|

∑
i∈D(r)

1+ cos∆(i)
θ

2
δi, (5.6)

where D(r) is the set of object detections at recall r and ∆
(i)
θ is

the angular error between the estimated orientation of detection i
and its ground-truth value. On the other hand, δi ensures that only
the detections corresponding to a ground-truth object are taken into
account in the AOS computation, given that δi = 0 unless the detection
i has an overlap over the defined IoU threshold with any ground-truth
box.

The orientation similarity is a smooth function of ∆(i)
θ on the domain orientation

similarity[−2π, 2π], which encompasses the range of possible values, and is able
to deal naturally with the fact that π and −π represent the same
direction, as shown in Fig. 5.5.

-2 - 0 2
0

0.2

0.4

0.6

0.8

1

Figure 5.5: Relationship between orientation similarity and error in orienta-
tion estimation

As apparent from Eq. 5.6, when the orientation is perfectly es-
timated, the orientation similarity s(r) becomes the precision, p(r).

106 viewpoint estimation

Therefore, the AOS value is upper-bounded by the AP and hence,
assesses the detection and the orientation estimation performances
jointly.

5.2 viewpoint estimation within faster r-cnn

A method to embed the viewpoint estimation into the Faster R-CNNintuition

framework is proposed in this thesis. The approach is based on two
hypotheses inspired by intuition:

1. The orientation of objects can be straightforwardly approximated
from their appearance on a monocular image. The set of visible
parts (e. g., the headlights of a car or the face of a pedestrian)
and the relative positions among them can be used as cues.

2. Features employed for object detection and classification are also
useful for viewpoint estimation.

In Faster R-CNN, the feature maps are concurrently used by theapproach

RPN and the classification heads (Fast R-CNN) to generate proposals,
refine their bounding boxes, and provide a classification. According
to the hypotheses stated above, it should be possible to additionally
exploit these feature maps to provide a viewpoint estimation using
an additional classification head. This idea is the foundation of the
proposed approach, outlined in Fig. 5.6.

Convolutional

layers

F
ea

tu
re

 m
ap

s

F
u

ll
y
 c

o
n

n
ec

te
d

F
u

ll
y
 c

o
n

n
ec

te
d

F
C

F
C

RPN

ROI

Pooling

𝐭 ∈ ℝ4𝐾
𝐩 ∈ ℝ𝐾

4096

…
Bounding box

regression

Class

S
o
ft

m
ax

S
o
ft

m
ax

× No. of proposals

4096

Feature extraction (backbone)
Classification heads

F
C 𝐫 ∈ ℝ𝑁𝑏𝐾Viewpoint

S
o
ft

m
ax

Figure 5.6: Proposed approach to incorporate viewpoint estimation capabili-
ties into the Faster R-CNN framework (FRCNN+Or)

A discrete approach is adopted, so the viewpoint estimation prob-
lem is viewed as a classification task with Nb categories, which are
indeed bins defined as in Eq. 5.3. The target output of the viewpoint
estimation branch for an object classified into the class k is a categori-
cal distribution over Nb possible outcomes described by rk ∈ ∆Nb−1,
with ∆N being the unit N-simplex:

∆N =

{
x ∈ RN+1

⏐⏐⏐⏐⏐
N+1∑
i=1

xi = 1 ∧ ∀i : xi ⩾ 0

}
(5.7)

5.2 viewpoint estimation within faster r-cnn 107

The superscript k shows that, in this approach, the viewpoint predic- class-aware

estimationtion is class-aware, so the actual output of the viewpoint classification
head is made of K+ 1 different unit (Nb − 1)-simplex sets, each de-
scribing the probability distribution for a category (plus the background
class). Therefore, rk is the Nb-length prediction corresponding to the
class k. The desired raw output r of the viewpoint estimation branch
is made of the concatenation of the different rk vectors. If the symbol
⊕ is used to represent vector concatenation, then:

r = r0 ⊕ r1 ⊕ · · · ⊕ rK ∈ R(K+1)·Nb (5.8)

Hence, each element rki of the probability distribution rk expresses
the likelihood of the object’s orientation being within the range spanned
by the bin with index i (Eq. 5.3), as long as the object belongs to the
class k.

The viewpoint estimation branch has the same basic structure as viewpoint

estimation

head

its siblings for classification and bounding box regression: the vector
resulting from the stack of common FC layers is fed to a specific FC

layer, and then, a softmax operation is applied. Naturally, the softmax
is applied here over each rk sub-vector instead of using the full r
output; in practice, only the softmax of rk̂, with k̂ being the predicted
class, is computed.

As with the other classification heads, the viewpoint estimation
branch provides a predicted value for each proposal from the RPN.
However, its overall impact on the inference time is minor since all
the classification heads use the same feature maps; besides, only
Nb × (K+ 1)× 4096 new parameters are added to the CNN.

5.2.1 Interpretation of the probability distribution

As stated above, the target output of the new viewpoint branch in the
proposed CNN is a vector describing the probability of each viewpoint
bin for each RPN proposal. This set of numbers has to be eventually
mapped into a single-number value that can be assigned to the object
model. This mapping means converting from the discrete space of
angle bins to the continuum of values in [−π,π] so that the viewpoint
estimate becomes a decimal number representing the object’s angle in
rad.

From the definition of rk and Eq. 5.3, it follows that the predicted
bin Θl̂ for a proposal classified with class k̂ is given by the index of
the maximum element in rk̂; that is, l̂ = arg maxi (r

k̂
i).

The most straightforward way to provide a prediction of the view- simple

estimationpoint magnitude (θ̂) is using the center of the predicted angle bin,
Z(Θl̂):

θ̂ = Z(Θl̂) =
π(2l̂+ 1)

Nb
− θo (5.9)

108 viewpoint estimation

As an alternative approach, an interpolation step can be performedpseudo-
continuous

estimation

to provide a finer-grained estimation. Following [287], the final pre-
diction can be computed as the weighted average of two adjacent
viewpoint bin centers, using their respective probabilities as weights.
In particular, the bin with the highest probability and its most probable
neighbor are used here. The viewpoint value is then obtained as:

θ̂ =
rk̂
l̂
·Z(Θl̂) + r

k̂
l̂±

·Z(Θl̂±
)

rk̂
l̂
+ rk̂

l̂±

, (5.10)

with l̂± being the index of the bin adjacent to l̂ with the highest
probability:

l̂± = arg max
l∈{l̂−1,l̂+1}

(rk̂l). (5.11)

Of course, bins Θ0 and ΘNb−1 are assumed adjacent to this purpose.
In this way, the one-hot representation given by rk̂ can be mapped to
a continuous value in [Z(Θî) − π/Nb,Z(Θî) + π/Nb), thus increasing
the resolution of the prediction and mitigating the potential confusion
in some extreme cases (e. g., viewpoints at the end of bin intervals).

5.2.2 Training

The output r is included as an additional outcome of the Faster R-CNNviewpoint

output framework and is handled the same way that the rest of the outputs
listed in Sec. 4.1.2; namely, the RPN’s objectness a and box refinement
b, and the classification head’s category estimation p and bounding
box refinement t.

For each classified proposal, only one of the probability distribu-
tions contained in r is relevant: the one corresponding to its class. At
inference time, rk̂ is employed, as mentioned before. During training,
however, the distribution corresponding to the ground-truth class, rvi ,
is used. In either case, the list of outputs provided in Sec. 4.1.2 is
extended to include a fifth element:

rk = (rk0 , . . . , rkNb−1), k = 0, . . . ,K (5.12)

The same training scheme as in Chapter 4 is adopted, and therefore,viewpoint loss

the loss function is the one in Eq. 4.14 with an extra summand taking
into account the viewpoint estimation. As this prediction is indeed a
classification into the Nb possible angle bins, the multinomial logistic
loss is used2:

L5 =
1

NB2

∑
i∈B2

[vi ⩾ 1]Lcls(r
vi

i ,wi), (5.13)

2 Please note that, in this equation, the subscript i of rvi

i refers to the index of the batch
element instead of the index of the element within the vector.

5.2 viewpoint estimation within faster r-cnn 109

where wi is the index of the ground-truth bin3 for the detection i.
Background samples (vi = 0) do not contribute to the loss. Besides,
the loss is normalized over the set of proposals from the RPN (B2).

Finally, training is also performed through the approximate joint final

multi-task losstraining strategy, so the resulting multi-task loss to be optimized by
the SGD is:

L =

5∑
i=1

Li, (5.14)

with the definitions of L1, L2, L3, and L4 given in Sec. 4.1.2, and L5 as
described in Eq. 5.13.

5.2.3 Experimental results

In order to assess the validity of the approach, quantitative exper-
iments have been carried out on the KITTI dataset. The aim is to
demonstrate the validity of the general approach introduced in this
chapter, as well as the technical soundness of the design choices pre-
sented in Sec. 4.2 within the framework of the proposed joint detection
and viewpoint estimation method.

5.2.3.1 Criteria

Quantitative results are expressed in terms of the already introduced metrics

AP and AOS measures (Sec. 4.2.1 and Sec. 5.1.1), but other ways of
measuring the performance are used as well:

• Precision-recall and orientation similarity-recall curves, repre-
senting the interpolated precision and orientation similarity,
respectively, for each recall value, pinterp(r), as in Eq. 4.16. AP

and AOS are indeed aimed to condense the information provided
by these curves.

• Evolution of the recall with the number of proposals. Employed,
among others, by the COCO dataset [169], this measure is espe-
cially interesting to assess the effectiveness of region proposal
methods. It can be averaged similarly to AP and AOS to provide
the Average Recall (AR).

• Mean Precision in Pose Estimation (MPPE). Introduced by [173],
the MPPE is defined as the mean of the elements on the main
diagonal of the confusion matrix when viewpoint estimation is
viewed as a bin classification problem. While MPPE is usually
computed for a fixed detection threshold, it can also be obtained
for every recall value, as with precision and orientation similarity.

3 As with the other losses, detections are assigned ground-truth annotations according
to the IoU overlap between them.

110 viewpoint estimation

Criteria established by the KITTI dataset and described in Sec. 4.2.1,
including threshold IoUs and levels of difficulty, are adopted here.

It must be noted that, for almost every metric used, detected in-detection

score stances are assumed to be ranked according to a confidence score
assigned by the detection algorithm. In this work, the score is naively
obtained as the class probability provided by the category vector; that
is, the k̂th element of p, pk̂. This score is also used in the final NMS

procedure that is performed over the set of output detections. There-
fore, the confidence value of the viewpoint estimation, provided by
rk̂
l̂

, is not considered at any time. This design decision is intended to
favor the performance of detection over viewpoint estimation in case
of disagreement.

The set of settings shown in Table 5.1 is employed, unless otherwisetraining setup

stated. Likewise, the number of viewpoint bins is set to Nb = 8 for
most of the experiments.

Feature extractor: VGG-16

Pre-training: Yes, on ImageNet

Anchors: Custom (Table 4.5)

Classification loss: Infogain

RPN proposals: 300

Classification heads: Category + b. box regression + viewpoint estima-
tion

Predicted classes: 3 (car, ped, cyc)

Train/val split: Custom (70:30)

Training schedule: 50k iterations @ lr = 10−3 + 50k iterations @ lr =

10−4 + 50k iterations @ lr = 10−5

Table 5.1: Set 1 of training hyperparameters for the proposed approach

When comparing alternatives, the analyzed models are trained and
tested ceteris paribus, i. e., “all other things being equal,” to isolate the
effect of the variables under study.

5.2.3.2 Parameter tuning and onboard-oriented adjustments

In this section, a justification of two of the solutions adopted to fit
Faster R-CNN to traffic environments (Sec. 4.2.2) is provided. In par-
ticular, the use of custom RPN anchors (an) and the infogain loss for
class balancing (il) are evaluated. Table 5.2 shows the effect of the
changes introduced in terms of AP and AOS statistics.

As apparent from the data, the impact of custom anchors on the
performance is limited, although results suggest that detection of Hard
samples benefits from it (+0.87 points in mAP). Hence, the modifica-
tion is suitable given that the use of custom anchors does not affect
the inference time as long as the number of anchors per location is
maintained.

5.2 viewpoint estimation within faster r-cnn 111

cl . an il 2d detection (ap 2d) 2d det. and or . (aos)

easy mod. hard easy mod. hard

car

✓ ✗ 89.24 77.95 60.65 87.64 76.37 59.11

✗ ✓ 89.87 79.07 66.96 88.41 77.62 65.37

✓ ✓ 89.18 78.67 61.21 87.60 77.11 59.70

ped

✓ ✗ 80.73 68.78 62.96 71.95 61.13 56.00

✗ ✓ 79.55 68.19 61.34 72.01 61.14 54.94

✓ ✓ 80.30 69.03 62.98 74.52 63.35 57.37

cyc

✓ ✗ 64.38 49.39 47.15 54.48 41.82 40.03

✗ ✓ 72.77 51.07 48.50 58.01 39.74 37.69

✓ ✓ 68.98 51.50 49.99 53.86 41.58 40.55

Table 5.2: Detection and viewpoint estimation performance (AP % and AOS

%) of the proposed approach on the KITTI validation subset with
and without onboard-oriented tuning: custom anchors (an) and
infogain loss (il) [111] © 2018 IEEE

Regarding the use of the infogain loss for class balancing, results
show a notable improvement that reaches +1.03 points in mAP for
Moderate samples. Infogain weights were assigned to favor the Pedes-
trian and Cyclist classes at the expense of the Car category, whose
contribution to the final loss is effectively reduced; nevertheless, it is
noteworthy that performance on Car detection is also ameliorated for
Moderate and Hard difficulties.

5.2.3.3 Alternatives for viewpoint estimation

This section evaluates the interpolation method (in) introduced in
Sec. 5.2.1, along with the use of a convenient offset angle, θo = π/Nb

in Eq. 5.3 (of). In particular, as Nb = 8, θo = π/8, and the centers
of the bins coincide with the cardinal and intercardinal directions.
Table 5.3 shows the AP and AOS values when adopting these measures.
Please note that the interpolation method is a test-time modification
that affects only the viewpoint estimation, whereas modifying the
offset θo requires training a new model; that is why AP gets affected
in this latter case.

The interpolation approach shows a consistent improvement of
around +0.20 points in mAP across all levels of difficulty. On the
other hand, a carefully selected offset implies enhancing not only
the viewpoint estimation performance (more than +1 mAOS point
for Moderate samples) but also the detection performance (+0.65 mAP

points for Moderate samples). The proper separation among different
viewpoint bins introduced by the offset probably benefits the whole
model, including the detection branch.

112 viewpoint estimation

cl . of in 2d detection (ap 2d) 2d det. and or . (aos)

easy mod. hard easy mod. hard

car

✗ ✗
88.50 77.72 60.41

87.90 76.90 59.33

✗ ✓ 87.93 76.94 59.37

✓ ✗
89.18 78.67 61.21

87.53 77.03 59.64

✓ ✓ 87.60 77.11 59.70

ped

✗ ✗
80.89 69.37 63.98

75.17 62.89 57.96

✗ ✓ 75.51 63.30 58.33

✓ ✗
80.37 69.03 62.98

74.07 63.00 56.97

✓ ✓ 74.52 63.35 57.37

cyc

✗ ✗
63.73 50.16 49.68

50.93 38.38 38.01

✗ ✓ 51.18 38.60 38.25

✓ ✗
68.98 51.50 49.99

53.65 41.41 40.42

✓ ✓ 53.86 41.58 40.55

Table 5.3: Performance (AP % and AOS %) on the KITTI validation subset
of the proposed approach for different alternatives for viewpoint
estimation refinement: offset θo = π/Nb (of) and interpolation
(in) [111] © 2018 IEEE

5.2.3.4 Assessment and benchmarking of the general approach

In this section, evidence of the validity and effectiveness of the pro-comparison

with baseline posed approach is provided. First of all, the method is compared with
the baseline Faster R-CNN, with detection-only capabilities. The com-
parison is shown in Fig. 5.7 in terms of the recall-IoU curve, intended
for assessing the effectiveness of the proposals, and the precision-
recall curve, which gives an overall estimate of the performance of the
detection method.

As evident from the figure, the introduction of viewpoint estima-
tion capabilities has a minor impact on the quality of the proposals,
whereas the overall detection performance of both variants is com-
parable. These results validate the initial hypothesis that the same
set of features can be used for detection and viewpoint orientation
simultaneously.

For the assessment of the effectiveness of the discrete viewpointvalidation of

the discrete

approach

classification approach adopted in this thesis, the proposed method is
compared now with two alternative approaches that pose the problem
as a direct regression of the observation angle. Two different loss
functions have been used:

• Smooth-L1 loss. In this variant, the Smooth-L1 loss (Eq. 4.7) is
employed to learn the regression parameters, similarly to other
works in the literature [44], [205]. The output of the viewpoint
estimation head is, in this case, a (K+ 1)-length vector s′ where

5.2 viewpoint estimation within faster r-cnn 113

0.5 0.6 0.7 0.8 0.9 1
IoU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

Car
Pedestrian
Cyclist
with viewp.
without. viewp.

(a) Recall-IoU curve

0 0.2 0.4 0.6 0.8 1
Recall

0

0.2

0.4

0.6

0.8

1

Pr
ec

is
io

n

Car
Pedestrian
Cyclist
with viewp.
without. viewp.

(b) Precision-recall curve

Figure 5.7: Precision-recall and Recall-IoU curves of the proposed approach
on the KITTI Moderate validation subset with and without view-
point estimation [111] © 2018 IEEE

element s ′k provides a direct estimation of the viewpoint for the
class k. The final viewpoint value is the one corresponding to
the predicted class, s ′

k̂
. Therefore, for this alternative, L5 in Eq.

5.14 becomes:

L5 =
1

NB2

∑
i∈B2

[vi ⩾ 1] smoothL1
(s ′i,vi

− s∗i , 1), (5.15)

with the definition of the smooth-L1 function provided in Eq. 4.7
and s∗i being the ground-truth viewpoint angle, in radians.

• Cosine similarity loss. In an attempt to optimize the AOS re-
sults of the regression approach, a loss inversely proportional
to the orientation similarity, defined in Eq. 5.6, is used in the SGD.
This prediction is class-agnostic, so the output is indeed a real
value s ′′ that can be straightforwardly interpreted as the pre-
dicted viewpoint. Then, the loss contribution of the viewpoint
estimation is:

L5 =
1

NB2

∑
i∈B2

Lcos(s
′′
i , s∗i), (5.16)

where s∗i is used to denote the ground-truth observation angle
for the sample i, and Lcos for element n is defined as:

Lcos(ŝn, s∗n) = 1−
1+ cos (ŝn − s∗n)

2
, (5.17)

which is a smooth function which ranges from 0, when the
predicted angle coincides with the ground-truth, to 1, when both
angles are opposite each other.

114 viewpoint estimation

In both cases, the only modifications performed on the proposed
method are the output provided by the viewpoint head, which is no
longer a probability distribution over viewpoint bins but instead a
direct estimation of the angle value, and the corresponding compo-
nent of the multi-task loss. The results of the two tested regression
approaches in comparison with the proposed approach are provided
in Fig. 5.8.

0.4 0.5 0.6 0.7 0.8 0.9
Recall

0

0.2

0.4

0.6

0.8

1

O
rie

nt
at

io
n

si
m

ila
rit

y

Car
Multilogistic loss
Smooth-L1 loss
Cosine sim. loss

(a) Car

0 0.2 0.4 0.6 0.8
Recall

0

0.2

0.4

0.6

0.8

1

O
rie

nt
at

io
n

si
m

ila
rit

y

Pedestrian
Cyclist
Multilogistic loss
Smooth-L1 loss
Cosine sim. loss

(b) Pedestrian and Cyclist

Figure 5.8: Orientation similarity vs. recall of the proposed approach on the
KITTI Moderate validation subset for three alternative viewpoint
estimation approaches. The proposed method uses the multilogis-
tic (multinomial logistic) loss [111] © 2018 IEEE

As observed, the proposed classification approach, whose resolu-
tion is limited by the number of bins, outperforms the two alternative
regression methods. The difference is especially relevant in the Pedes-
trian class, although the overall mAOS score of the discrete approach is
+3.86 points higher than the mAOS of the orientation-similarity-based
regression and +4.23 points higher than the mAOS of the smooth-L1-
based regression in the Moderate validation subset. These results show
that the proposed discrete approach is sound and fits well with the
Faster R-CNN detection framework.

A comparison of the detection and viewpoint orientation resultscomparison

with other

methods

with other methods is provided in Table 5.4. Values, including the
ones for the proposed method, are obtained from the official KITTI
object detection benchmark4 and are therefore referred to the KITTI
testing set, whose annotations are not publicly available. Results are
available on the KITTI website as FRCNN+Or5.

All the included methods, except for DPM-VOC, are modern DNN-
based methods able to jointly estimate detection and observation angle
for all the categories in the KITTI set:

4 http://www.cvlibs.net/datasets/kitti/eval_object.php

5 http://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=

28dc29642148933e41c6daccff01d35b1bdf5ecf

http://www.cvlibs.net/datasets/kitti/eval_object.php
http://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=28dc29642148933e41c6daccff01d35b1bdf5ecf
http://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=28dc29642148933e41c6daccff01d35b1bdf5ecf

5.2 viewpoint estimation within faster r-cnn 115

• Multi-view deformable part model trained with structured bound-
ing box and viewpoint loss (DPM-VOC) [203]

• Monocular 3D object detection for autonomous driving (Mono3D)
[43]

• 3D bounding box estimation using deep learning and geometry
(Deep3DBox) [188]

• Subcategory-aware convolutional neural networks for object
proposals and detection (SubCNN) [281]

cl . method 2d detection (ap 2d) 2d det. and or . (aos) time

easy mod. hard easy mod. hard (s)

car

DPM-VOC 80.45 66.25 49.86 77.51 63.27 47.57 8 a

Mono3D 90.27 87.86 78.09 89.00 85.83 76.00 4.2 b

Deep3DBox 90.47 88.86 77.60 90.39 88.56 77.17 1.5 b

SubCNN 90.75 88.86 79.24 90.61 88.43 78.63 2 c

Proposed 89.87 78.95 68.97 88.52 77.61 67.69 0.09d

ped

DPM-VOC 59.60 44.86 40.37 53.66 39.83 35.73 8 a

Mono3D 77.30 66.66 63.44 68.58 58.12 54.94 4.2 b

Deep3DBox — — — — — — 1.5 b

SubCNN 83.17 71.34 66.36 78.33 66.28 61.37 2 c

Proposed 71.18 56.78 52.86 66.84 52.62 48.72 0.09d

cyc

DPM-VOC 43.65 31.16 28.29 31.24 23.22 21.62 8 a

Mono3D 75.22 63.85 58.96 65.74 53.11 48.87 4.2 b

Deep3DBox 82.65 73.48 64.11 68.58 59.37 51.97 1.5 b

SubCNN 77.82 70.77 62.71 71.39 63.41 56.34 2 c

Proposed 68.81 55.80 50.52 63.41 50.91 45.46 0.09d

a CPU; b GPU 2.5 GHz; c GPU 3.5 GHz; d Titan Xp GPU (1.6 GHz)

Table 5.4: Comparison of the performance(AP % and AOS %) of the proposed
approach with other methods on the KITTI testing set [111] © 2018

IEEE

The running time for a single frame is provided in the last column
of Table 5.4. These processing times are dependent on the particular
implementations and hardware used by the respective authors, al-
though it can be assumed that modern GPUs were used for CNN-based
approaches. The proposed approach takes around 90ms to perform a
forward pass, a time significantly lower than the one featured by the
other methods.

Therefore, it is safe to conclude that the proposed approach obtains
comparable results to state-of-the-art methods while being signifi-
cantly faster than them. Some qualitative results on frames from the
KITTI testing set are shown in Fig. 5.9, where the predicted viewpoint
is represented as an arrow.

116 viewpoint estimation

(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Examples of joint detection and viewpoint estimation on scenes
from the KITTI testing set using the proposed approach. Class
is encoded using color: Car, Cyclist, and Pedestrian classes are
represented as red, yellow, and blue, respectively. The interpolated
viewpoint estimation is depicted as an oriented white arrow at
the center of the obstacle, while the predicted bin is provided
above each bounding box as a combination of front (F), back (B),
left (L) and right (R) [111] © 2018 IEEE

It is clear from the results that the proposed method provides a
methodology to perform joint detection and viewpoint estimation
that is focused on efficiency and, therefore, is especially suitable for
onboard applications. The foundation principle of the approach, based
on taking advantage of the same set of convolutional features to per-
form both tasks, allows for reduced inference times. Furthermore,
most design choices, such as the input scale of the image, were made
prioritizing framerate over accuracy. Consequently, it is still possi-
ble to modify the accuracy/performance trade-off through different
hyperparameters that will be profusely studied in the next section.

5.3 identification of factors affecting the performance

The method introduced in this chapter for simultaneous object detec-
tion and viewpoint orientation leaves room for several setting adjust-
ments that allow tailoring the approach to the required performance.
The analysis introduced in the previous section was performed for a
point of operation that was deemed adequate for onboard applications.
However, it is also interesting to further analyze the effect of the dif-
ferent tunable parameters on the performance and the inference time
of the method, so that different trade-offs can be reached without sub-

5.3 identification of factors affecting the performance 117

stantially modifying the design. A set of experimental results aimed
to quantify the influence of different hyperparameters is provided in
this section.

As before, the analysis is based on the KITTI dataset and the criteria
introduced in Sec. 5.2.3.1 still holds. However, two new sets of training
parameters are used in this section in addition to the Set 1 presented
in Table 5.1. These two sets are shown in Tables 5.5 and 5.66.

Feature extractor: VGG-16 [244] (by default), ZF [291], or MobileNet
[130]

Pre-training: Yes, on ImageNet

Anchors: Custom (Table 4.5)

Classification loss: Infogain

RPN proposals: 300 (unless otherwise stated)

Classification heads: Category + b. box regression + viewpoint estima-
tion

Predicted classes: 7 (car, ped, cyc, van, trk, sit, trm)

Train/val split: Custom (70:30)

Training schedule: VGG-16: 50k it. @ lr = 10−4 + 50k it. @ lr = 10−5

+ 50k it. @ lr = 10−6

ZF: 50k it. @ lr = 5 · 10−4 + 30k it. @ lr = 5 · 10−5

MobileNet: 50k it. @ lr = 10−3 + 50k it. @ lr =

10−4 + 50k it. @ lr = 10−5

Table 5.5: Set 2 of training hyperparameters for the proposed approach

Feature extractor: VGG-16 [244]

Pre-training: Yes, on ImageNet (unless otherwise stated)

Anchors: Default

Classification loss: Infogain

RPN proposals: 300

Classification heads: Category + b. box regression + viewpoint estima-
tion

Predicted classes: 3 (car, ped, cyc)

Train/val split: Chen et al. [46] (KITTI) and Cityscapes training set

Training schedule: 50k iterations @ lr = 10−3 + 30k iterations @ lr =

10−4 (unless otherwise stated)

Table 5.6: Set 3 of training hyperparameters for the proposed approach

6 It can be assumed that every experiment in this chapter resulted from a separate
training procedure. Therefore, small differences in results due to the randomness
involved in training can occur between experiments even if all the hyperparameters
coincide.

118 viewpoint estimation

5.3.1 Training hyperparameters

Firstly, the performance of the algorithm at different stages of thetraining

iterations training procedure is analyzed for signs of either bias or variance error.
Fig. 5.10 shows the evolution of the detection and viewpoint estimation
accuracy from 0 to 150 000 iterations. With the KITTI train/validation
split in use, the upper limit of the range corresponds to around 40

epochs.

0 50 100 150
Iterations 1,000

35

40

45

50

55

60

65

70

75

m
AP

 (%
)

(a) Detection

0 50 100 150
Iterations 1,000

35

40

45

50

55

60

65

70

75

m
AO

S
(%

)

(b) Det. and orientation

Figure 5.10: Detection and orientation estimation performance (mAP % and
mAOS %) of the proposed approach vs. number of training iter-
ations on the KITTI validation subset (hyperparameters: set 3)
[115] © 2018 IEEE

Both curves show that the training procedure is most effective
during the first 80k iterations, and plateaus after that. Although the
training set is relatively small, no signs of overfitting are observed.

Despite this, the use of dropout was also tested. Dropout [248] isdropout

a technique that randomly ignores some neurons during training to
improve the generalization capabilities of a DNN. The probability of a
neuron to be dropped is given by the dropout ratio, p.

A comparison of the obtained mAP and mAOS stats for models
trained with and without dropout, other things being equal, is shown
in Table 5.7. The dropout ratio is fixed to p = 0.5, and it is set up to
affect the two fully connected (FC) layers that are shared by all the
classification heads, as in the original Faster R-CNN proposal.

It is apparent from the table that the effect of dropout in the pro-
posed method is negligible or even negative, which is particularly
noticeable in the viewpoint estimation. This result validates the train-
ing procedure without dropout proposed in Sec. 4.2.2.5.

5.3 identification of factors affecting the performance 119

cl . dr 2d detection (map 2d) 2d det. and or . (maos)

easy mod. hard easy mod. hard

mean
✗ 79.51 65.98 59.44 74.43 61.25 55.02

✓ 79.20 65.34 58.43 73.77 60.73 54.16

Table 5.7: Detection and viewpoint estimation performance (mAP % and mAOS

%) of the proposed approach on the KITTI validation subset with
and without dropout (hyperparameters: set 3) [115] © 2018 IEEE

5.3.2 Number of proposals

The number of proposals generated by the RPN and subsequently clas- overall effect

sified by the respective heads is a hyperparameter of vital importance
on the inference time given that, according to the R-CNN paradigm,
every proposal has to be individually processed at the classification
stage.

Some studies suggest that, contrary to what was expected, the
number of proposals from the RPN can be significantly reduced from
the proposed initially (300) without resulting in a significant loss of
recall [131]. For that reason, some tests were performed to assess the
effect of this hyperparameter on the proposed detection and viewpoint
estimation algorithm.

Firstly, the quality of the resulting set of proposals for different
values of this parameter is studied. The AR metric, proposed in [126],
is computed for a range between 10 and 1000 proposals. AR is com-
puted by averaging the total recall across different IoU requirements,
usually between 0.5 and 1, and gives information about the proposal
performance. Results for each of the three main KITTI classes are
provided in Fig. 5.11a. It can be observed that the AR does not drop
severely until less than 50 proposals are considered

This performance translates to the overall mAP/mAOS results, as
shown in Fig. 5.11b. Thus, the mAP is reduced by only 1.33 points when
50 proposals are used. Meanwhile, the effect on the inference time
is presented in the same figure. From the baseline of 300 proposals,
runtime per frame gets reduced by 9% with 100 proposals, and by
13.6% with 50 proposals.

From these results, it follows that the performance of the method
using 100 or even 50 proposals is satisfactory enough to provide a
faster alternative to the baseline when inference time is critical.

The degradation in recall caused by the reduction of the number of effect on

distant objectsproposals affects almost exclusively to distant objects, which are less
visible in the images. Taking advantage of the 3D annotations available
in the KITTI dataset, Fig. 5.12 provides results of the maximum recall
achieved if the evaluation is limited at a certain distance from the

120 viewpoint estimation

10 1 10 2 10 3

Proposals

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e

re
ca

ll
Car
Pedestrian
Cyclist

(a) Recall

10 1 10 2 10 3

Proposals

52

54

56

58

60

62

64

66

68

m
AP

 /
m

AO
S

(%
)

80

100

120

140

160

180

200

C
om

pu
ta

tio
n

Ti
m

e
(m

s)

mAP
mAOS
Time

(b) mAP/mAOS/time

Figure 5.11: Performance (Average Recall, mAP % and mAOS %) and run time
(s) of the proposed approach vs. the number of proposals on the
KITTI Moderate validation subset (hyperparameters: set 1) [111]
© 2018 IEEE

camera. Curves are provided for 50, 100, and 300 RPN proposals. The
Hard subset is used here to take into account all the annotations.

10 20 30 40 50 60
Max. distance

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

R
ec

al
l

Car
300 prop.
100 prop.
50 prop.

(a) car

10 20 30 40 50 60
Max. distance

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

R
ec

al
l

Pedestrian
Cyclist
300 prop.
100 prop.
50 prop.

(b) ped and cyc

Figure 5.12: Recall of the proposed approach vs. max. distance from the ego-
car on the KITTI Hard validation subset for different numbers of
proposals (hyperparameters: set 1) [111] © 2018 IEEE

As apparent from the figure, samples farther than 20m get affected
the most by the lower number of proposals. The effect is particularly
significant in the Cyclist category, and almost negligible for Car7.

Fig. 5.12 also provides further insight into the baseline approach
with 300 proposals: according to the results, at least 75% of objects
from each category placed within the range 0m to 30m ahead of the
vehicle are successfully identified.

7 Please note the different scale in the y-axis of Fig. 5.12a.

5.3 identification of factors affecting the performance 121

5.3.3 Viewpoint bins resolution

The most critical hyperparameter in the new viewpoint estimation resolution vs .
classification

accuracy

branch proposed in this thesis is the number of viewpoint bins, Nb,
whose value has been fixed to Nb = 8 up to this section. The discrete
approach adopted to embed the viewpoint inference task into the
Faster R-CNN framework naturally limits the maximum resolution to
2π/Nb. It might seem logical to increase the Nb value as much as
possible to improve the resolution of the algorithm; however, this
comes with two major drawbacks that must be taken into account:

1. As the size of the training set remains unchanged, increasing Nb

implies reducing the number of samples available for training
each of the possibilities.

2. For largerNb values, differences in appearance between different
bins get smaller. As a multinomial logistic loss is used for bin
classification, confusions between a bin and its neighbor, which
are more likely to occur as Nb increases, can lead to overly high
losses and hurt the training procedure.

In this section, the influence of Nb on the performance of the results

proposed method is investigated. Different tests are performed for
Nb ∈ {4, 8, 16, 32}. Orientation similarity-recall and MPPE-recall curves
are shown in Fig. 5.13 for the four alternatives using the KITTI Moder-
ate samples.

From Fig. 5.13a, it follows that the performance in terms of AOS does
not get overly affected by changes in Nb. Probably, this is due to the
definition of AOS, which uses the smooth cosine similarity function, as
shown before in Fig. 5.5. Still, the Nb = 8 curve is slightly above the
other alternatives, which proves that it is a valid trade-off choice for
the viewpoint estimation problem.

On the other hand, the MPPE curves (Figs. 5.13b-5.13d) offer in-
sight into the accuracy of the bin classification problem depending
on the number of divisions. As apparent from these results, as Nb

increases, misclassifications are more frequent, thus counterbalancing
the improvement in resolution.

Table 5.8 shows the numerical results in terms of AP and AOS for
the considered alternatives. Overall, Nb = 8 outperforms its closest
alternatives (4 and 16) by around 1 mAOS point for the Hard difficulty
level, thus confirming its adequacy. However, Nb = 16 also offers a
good trade-off, especially for Car. This is likely due to the larger size,
in pixels, of the samples belonging to this class compared to the other
two, which enables a finer-grained classification. Easy samples, which
are also generally bigger, also get more significant improvements
when increasing Nb. Despite all, for Nb = 32, the degradation of
the classification performance is too substantial, which leads to lower

122 viewpoint estimation

0 0.2 0.4 0.6 0.8 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
rie

nt
at

io
n

Si
m

ila
rit

y

4 bins
8 bins
16 bins
32 bins
Car
Pedestrian
Cyclist

(a) OS-recall

0 0.2 0.4 0.6 0.8 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
PP

E

4 bins
8 bins
16 bins
32 bins
Car

(b) MPPE-recall (car)

0 0.2 0.4 0.6 0.8 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
PP

E

4 bins
8 bins
16 bins
32 bins
Pedestrian

(c) MPPE-recall (ped)

0 0.2 0.4 0.6 0.8 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
PP

E

4 bins
8 bins
16 bins
32 bins
Cyclist

(d) MPPE-recall (cyc)

Figure 5.13: Orientation similarity (OS)-recall and MPPE-recall curves of the
proposed approach on the KITTI Moderate validation subset for
different values of Nb (hyperparameters: set 1) [111] © 2018

IEEE

detection performance (−1.11 mAP for Moderate) and, therefore, lower
mAOS (around −2.5 points for all difficulty levels).

In the next section, the influence of Nb will be further analyzed in
combination with other parameters, such as the backbone architecture
and the input scale.

5.3.4 Feature extractor architecture, input scale, and combinations

Faster R-CNN, including the modified version proposed in this thesis,feature

extractor is a meta-architecture that admits many alternatives for the feature
selection part. As stated in the previous chapter, VGG-16 [244] is used
in this work as the baseline backbone for its compelling performance.
However, virtually any of the multiple existing CNN architectures
could be adapted to fulfill this role. Significant differences in perfor-

5.3 identification of factors affecting the performance 123

cl . Nb 2d detection (ap 2d) 2d det. and or . (aos)

easy mod. hard easy mod. hard

car

4 88.86 78.32 65.15 85.97 75.39 61.99

8 89.18 78.67 61.21 87.60 77.11 59.70

16 88.77 78.00 62.72 88.42 77.53 61.87

32 88.13 76.98 59.90 88.00 76.69 59.39

ped

4 82.00 69.30 63.92 74.16 61.96 56.89

8 80.37 69.03 62.98 74.52 63.35 57.37

16 80.02 67.96 61.54 73.56 61.75 55.80

32 78.79 67.63 60.94 70.69 60.14 54.13

cyc

4 69.19 48.32 47.36 52.99 36.37 35.49

8 68.98 51.50 49.99 53.86 41.58 40.55

16 70.79 51.20 49.49 56.28 38.16 36.77

32 65.38 51.24 49.59 48.61 37.81 36.48

Table 5.8: Detection and viewpoint estimation performance (AP % and AOS

%) of the proposed approach on the KITTI validation subset for
different numbers of viewpoint bins (Nb) (hyperparameters: set 1)

mance are expected between feature extractors depending on their
representation capabilities.

In this section, two alternatives to the VGG-16 architecture are tested.
As the focus is on online applications, they are lightweight models
able to achieve even higher framerates than VGG-16 during inference:
Zeiler and Fergus (ZF) [291], and MobileNet [130]. The reader is
referred to Sec. 2.4.3 for a detailed description of both models; as a brief
reminder, the former is a well-studied proposal with a limited number
of parameters, whereas the latter is a modern architecture focused on
efficiency and ready to be deployed in embedded devices. Table 5.9
shows a short comparison of parameters for the three architectures
under study.

backbone conv. layers feats . used by rpn roi pooling

ZF 5 256 6× 6
VGG-16 13 512 7× 7
MobileNet 18 512 7× 7

Table 5.9: Faster R-CNN hyperparameters for each of the studied feature ex-
tractors

Apart from the backbone, the input scale is often shown as one of input scale

the most influential hyperparameters on the performance of Faster
R-CNN [72]. Here, scale refers to the size of the shortest side of the
image in pixels. Frames from the KITTI object detection benchmark

124 viewpoint estimation

have a resolution of around 1242× 375 pixels8. As stated in Sec. 4.2.2,
all experiments so far were performed with a scale of 500 pixels, which
corresponds to a 1.33× scaling factor. It is expected that larger scales
would improve the detection accuracy, especially for small objects,
but that implies higher processing times and a higher GPU memory
footprint. In this section, three scales are considered: 375 (approx. 1×),
500 (approx. 1.33×) and 650 (approx. 1.77×). Note that every model is
trained with the same scale that will be used for inference to maximize
its performance.

Fig. 5.14 is a scatterplot where different alternatives regarding theresults

number of proposals, feature extractor, and input scale, are located
according to their performance (y-axis) and run time (x-axis). Times
are obtained as the median value of inference times for every frame in
the validation subset; on the other hand, performance is given as the
mAP and mAOS values for Moderate samples.

0 50 100 150
Time (ms)

40

45

50

55

60

65

70

75

m
AP

 (%
)

300 proposals
100 proposals
VGG-16
MobileNet
ZF

(a) Detection

0 50 100 150
Time (ms)

35

40

45

50

55

60

65

m
AO

S
(%

)

300 proposals
100 proposals
VGG-16
MobileNet
ZF

(b) Det. and orientation

Figure 5.14: Detection and viewpoint estimation performance (mAP % and
mAOS %) of the proposed approach vs. run time on the KITTI
Moderate validation subset for different numbers of proposals, ar-
chitectures and input scales (375, 500 and 650, indicated through
the marker size) (hyperparameters: set 2) [114]

As already proved (Sec. 5.3.2), accuracy is independent, to a large
extent, to the number of proposals, especially when the number is
above 100. Not surprisingly, the performance of each backbone ar-
chitecture is strongly linked to its complexity and, therefore, its run
time for a forward pass. Hence, VGG-16 is the slowest but provides
the best results, whereas ZF is fast but has trouble at modeling the
underlying structure of data. Similarly, larger scales produce better
results, requiring, in turn, more computational resources.

8 There are small differences in size among the images in the object detection benchmark
since they were cropped by the dataset authors to avoid pincushion distortion effect
[89]

5.3 identification of factors affecting the performance 125

Fig. 5.15 provides a view of the relationship between performance
(mAP and mAOS) and run time when the input scale is changed. The
same three scale values from the previous experiment are tested. In
this case, the two better alternatives for Nb, i. e., 8 and 16 bins, are
analyzed.

60 80 100 120
Time (ms)

54

56

58

60

62

64

66

68

70

72

m
AP

 (%
)

8 bins
16 bins

(a) Detection

60 80 100 120
Time (ms)

50

52

54

56

58

60

62

64

m
AO

S
(%

)

8 bins
16 bins

(b) Det. and orientation

Figure 5.15: Detection and viewpoint estimation performance (mAP % and
mAOS %) of the proposed approach vs. run time on the KITTI
Moderate validation subset with the VGG-16 backbone for differ-
ent numbers of bins and input scales (hyperparameters: set 2)
[114]

According to the results, the improvement achieved by enlarging the
image from 500 to 650 pixels is less significant than the experienced
when applying the original 1.33× scaling. It can be concluded that
performance plateaus for large scales and is no longer worthwhile
after 650 pixels considering the increased computational burden.

A breakdown of the performance in terms of AP and AOS for six
classes from the KITTI dataset at different scales is presented in Table
5.10. In this case, the number of proposals is fixed to 100 and Nb = 8.
In addition to providing a detailed review of the effect of the scale on
the detection of each category, this is the first time in this document
that results are provided for classes other than Car, Pedestrian, and
Cyclist9.

Predictably, the effect of the input scale in Easy samples is lower
since all of them are big enough to be well represented in the studied
scales (larger than 40 pixels). Overall, results show the suitability of
the method for multi-class detection with a large number of categories.
Several factors can explain poor results obtained for Van and, mainly,
Truck: the very reduced number of training samples, the high intraclass

9 However, it should be noted that every experiment performed with the set 2 of
hyperparameters was trained to predict all the available classes; stats for the other
classes were just ignored before.

126 viewpoint estimation

cl . scale 2d detection (ap 2d) 2d det. and or . (aos) time

(pix .) easy mod. hard easy mod. hard (ms)

car

375 83.86 71.59 56.33 82.24 69.78 54.37 52

500 88.54 77.83 60.40 86.88 76.14 58.86 78

650 90.14 84.49 67.11 88.75 82.92 65.53 123

ped

375 77.53 64.48 59.68 71.13 58.31 53.74 52

500 79.73 67.77 61.46 73.42 61.42 55.70 78

650 85.57 70.39 66.34 78.76 64.28 60.24 123

cyc

375 56.88 41.91 40.96 42.02 31.17 30.68 52

500 73.79 53.47 52.12 54.12 40.45 39.47 78

650 74.32 55.28 54.23 57.19 42.42 41.78 123

van

375 37.16 30.25 30.32 36.59 29.00 28.60 52

500 44.39 38.87 37.52 43.90 37.16 36.06 78

650 40.08 34.78 35.58 39.66 32.76 33.60 123

trk

375 10.58 9.96 6.11 9.04 8.31 5.05 52

500 15.03 14.77 10.56 11.52 9.94 7.21 78

650 10.75 12.30 9.17 10.62 10.35 7.19 123

Table 5.10: Detection and viewpoint estimation performance (AP % and AOS

%) of the proposed approach on the KITTI validation subset for
different scales and difficulty levels. Results are obtained using
the VGG-16 backbone and 100 proposals (hyperparameters: set 2)
[114]

variability (e. g., box trucks vs. dump trucks), and the demanding IoU

threshold imposed for these categories (70%, the same as Car).

5.3.5 Training data

This section is intended to be a continuation of the analysis of thesummary of the

analysis influence of training data which began in Sec. 4.4. In this section,
the analysis is extended to the proposed detection and viewpoint
estimation method, with more experiments and additional metrics.

As a brief reminder, the goal of this analysis is to explore the
potential improvements that can be achieved by moderately increasing
the number of training samples. In particular, the KITTI train subset
(3682 frames) is extended by introducing samples from the Cityscapes
dataset (2975 frames). Please refer to Sec. 4.4 for details about the
implementation for the general detection framework.

Regarding the viewpoint estimation part, introduced in this chapter,
it is necessary to note that Cityscapes samples are not endowed with
orientation annotations. Therefore, at training, the viewpoint compo-
nent of the multi-task loss is set to nil when processing a frame from
the Cityscapes set (L5 = 0).

5.3 identification of factors affecting the performance 127

Table 5.11 shows detection and viewpoint estimation results for overall effect

three training sets: the KITTI training subset, the combination of
KITTI and Cityscapes in the same training procedure (K + CS), and
an additional strategy based on finetuning on KITTI a model which
was previously trained on Cityscapes, K (CS pret.). As always, testing
is performed on the KITTI validation subset.

cl . tr . data 2d detection (ap 2d) 2d det. and or . (aos)

easy mod. hard easy mod. hard

car

KITTI 90.01 79.03 69.67 88.26 77.35 67.97

K + CS 90.39 84.59 70.21 88.68 82.79 68.57

K (CS pret.) 90.33 86.16 70.58 88.63 84.43 69.01

ped

KITTI 71.19 64.05 55.75 65.31 57.62 50.01

K + CS 76.32 67.98 59.11 67.83 59.65 51.69

K (CS pret.) 74.54 66.01 57.68 67.33 59.01 51.52

cyc

KITTI 77.33 54.87 52.89 69.73 48.79 47.06

K + CS 86.11 68.49 63.46 77.66 61.23 56.83

K (CS pret.) 83.18 60.37 57.35 75.55 54.36 51.74

Table 5.11: Detection and viewpoint estimation performance (AP % and AOS

%) of the proposed approach on the KITTI validation subset using
different sets of training data (hyperparameters: set 3). K + CS
represents the combined KITTI and Cityscapes dataset, whereas
K (CS pret.) refers to the strategy of pre-training with Cityscapes
[115] © 2018 IEEE

According to the obtained results, extending the baseline KITTI
train subset improves both the AP and AOS for all difficulty levels,
with the mixed KITTI + Cityscapes training outperforming the two-
stage alternative. It is noteworthy that the improvement in detection
performance reaches +7.71 points in mAP for Moderate samples, thus
exceeding by a large margin the improvement achieved without the
viewpoint estimation branch (+4.24 points).

Remarkably, introducing the Cityscapes frames without viewpoint
annotations also improves the AOS results significantly. The increase
in mAOS reaches +6.64 points for Moderate samples. The increase can
be partly explained by the fact that AOS jointly assesses detection
and viewpoint estimation performance and is upper bounded by the
corresponding AP result as only the viewpoint estimated for correctly
detected instances is evaluated.

To isolate the effect of the new samples on the viewpoint classifi- effect on bin

classification

accuracy

cation problem itself, MPPE is employed. The average value of MPPE

across all recall values (Average MPPE) for the two first alternatives
(KITTI alone, and mixed KITTI-Cityscapes) is presented in Table 5.12.

The results confirm that viewpoint classification does not get hurt
at all by the lack of viewpoint annotations in some frames of the

128 viewpoint estimation

cl . tr . viewp. clas . (a-mppe)

data easy mod. hard

car

KITTI 92.24 80.93 69.29

K + CS 92.13 83.40 71.72

ped

KITTI 59.03 51.02 43.71

K + CS 57.74 51.35 44.41

cyc

KITTI 70.71 49.84 49.00

K + CS 64.95 51.60 49.11

Table 5.12: Viewpoint classification performance (MPPE %) of the proposed
approach on the KITTI validation subset using different training
data sets (hyperparameters: set 3) [115] © 2018 IEEE

combined dataset. Hence, frames from the KITTI train subset suffice
to train the viewpoint estimation capability, whereas the new samples
conveniently improve the detection functionality of the algorithm.

As is standard practice, all experiments are performed starting frompre-training

the weights of a model pre-trained on ImageNet [231], made of a large
number of diverse images that enable the generation of a baseline
model with high representation capabilities. The experiment shown
in Table 5.13 evidences that the enlargement of the training dataset is
still not enough to replace the generalization ability provided by the
ImageNet pre-training.

cl . p tr . 2d detection (map 2d) 2d det. and or . (maos)

data easy mod. hard easy mod. hard

mean
✓ KITTI 79.51 65.98 59.44 74.43 61.25 55.02

✗ K+CS 53.80 42.99 37.25 47.93 39.13 33.00

Table 5.13: Detection and viewpoint estimation performance (mAP % and
mAOS %) of the proposed approach on the KITTI validation subset
with and without pre-training (p) on ImageNet (hyperparameters:
set 3). K+CS denotes the combined KITTI-Cityscapes dataset [115]
© 2018 IEEE

Training data can also be enlarged through data augmentationdata

augmentation techniques, which expand the number of samples by creating modified
versions of images in the dataset. All models in this thesis are trained
with horizontal flipping augmentation; however, in this section, more
techniques are examined to create variations of the original images.
Following [221], four texture augmentations are employed:

• Intensity addition: a random value between −40 and +40 is
added to all pixels in the image.

5.3 identification of factors affecting the performance 129

• Intensity multiplication: all pixels in the image are multiplied by
a factor randomly picked from the range [0.5, 1.5].

• Additive Gaussian noise: a small jitter is added to each pixel,
following a Gaussian distribution with mean 0 and standard
deviation randomly chosen from [0, 5.1]

• Hue and saturation addition: a random value in the range
[−20, 20] is added to the H and S channels of the image when
expressed in HSV color space.

These transformations, whose effects for their respective extreme val-
ues are illustrated in Fig. 5.16, not only increase the number of training
samples, thus avoiding overfitting, but also improve the robustness of
the model against changes of illumination, shadows, and other noise
effects caused by the sensing elements (i. e., lens and sensor).

(a) Original (b) Addition (−40)

(c) Addition (+40) (d) Multiplication (×0.5)

(e) Multiplication (×1.5) (f) Gaussian noise (σ = 5.1)

(g) Hue addition (random) (h) Saturation addition (random)

Figure 5.16: Images obtained by applying each data augmentation technique
to the same Cityscapes frame

During training, a random quantity between 0 and 4 of these trans-
formations is applied over the input image, increasing the diversity
of possibilities. Two different training sets have been augmented and
tested: the KITTI training subset and the mixture between KITTI and
Cityscapes samples. Results on the KITTI validation subset are shown
in Table 5.14.

130 viewpoint estimation

tr . aug 2d detection (map 2d) 2d det. and or . (maos)

data easy mod. hard easy mod. hard

KITTI
✗ 79.51 65.98 59.44 74.43 61.25 55.02

✓ 80.39 65.87 58.96 74.56 61.00 54.38

K+CS
✗ 84.27 73.69 64.26 78.06 67.89 59.03

✓ 83.96 74.14 65.16 77.95 68.09 59.59

Table 5.14: Detection and viewpoint estimation performance (AP % and AOS

%) of the proposed approach on the KITTI validation subset with
and without data augmentation (hyperparameters: set 3) [115]
© 2018 IEEE

As observed, the effect of data augmentation techniques is reduced
for both training sets when testing on the KITTI validation set, with
a maximum improvement of +0.9 points in mAP for the Hard diffi-
culty level. A plausible explanation is that KITTI validation frames
lack diversity (e. g., illumination conditions and sensor devices) and,
therefore, the improved robustness of the model cannot be exploited.

Fig. 5.17 shows some examples of the improvement in detectionqualitative

results performance introduced by the new Cityscapes samples and data
augmentation. The baseline detections are in the left column, while
the images in the right column have been processed with the model
trained with the mixed datasets. It is apparent that, with the enhanced
training data, some false negatives become correctly identified.

(a) (b)

(c) (d)

(e) (f)

Figure 5.17: Selected examples of object detection and viewpoint estimation
results on the KITTI test dataset. (a, b, c) with a model trained
on the KITTI training split; (d, e, f) with a model trained on the
combined dataset [115] © 2018 IEEE

5.4 improvements in the baseline solution 131

Finally, the possibility of training the proposed approach with hetero- heterogenous

labelsgeneous annotations is investigated. Some of the categories in KITTI and
Cityscapes are different from each other; for instance, Tram in KITTI
and train in Cityscapes, or traffic sign, which is labeled in Cityscapes
but is not in KITTI. The idea is to create an extended set of classes
useful for traffic scene understanding by combining both groups.
Category mapping is described in Table 5.15.

category kitti category cityscapes category

Car Car car

Truck Truck and Van truck

Pedestrian Pedestrian and Person_sitting person

Cyclist Cyclist bicycle + rider

Train Tram train

Traffic Sign N.A. traffic sign

Table 5.15: Mapping of the extended set of categories to the original labels in
KITTI and Cityscapes

Qualitative results, shown in Fig. 5.18, prove the validity of the qualitative

results using

heterogeneous

labels

approach. The particular case of traffic signs is especially relevant
since the model is able to capture the appearance of the class even if
they are labeled as background in KITTI samples.

(a) (b)

(c) (d)

Figure 5.18: Selected examples of object detection and viewpoint estimation
results on the KITTI test dataset with additional categories [115]
© 2018 IEEE

5.4 improvements in the baseline solution

This section aims to introduce some ideas that might dramatically
enhance the performance of the proposed detection and viewpoint
estimation method but could not be analyzed in full detail due to
time considerations. The first proposal aims to improve the viewpoint

132 viewpoint estimation

estimation by adding a regression step to the existing bin classification
procedure, thus giving rise to a hybrid viewpoint estimation approach.
The second issue to be discussed in this chapter is the adequacy of
the approach to be part of modern detection architectures. Both ideas
boost the performance of the method to the maximum, and should,
therefore, be seriously considered as future research lines.

5.4.1 Hybrid viewpoint estimation

The orientation estimation provided by the method proposed in theoverview

previous sections has proven satisfactory for traffic scene modeling,
as will be discussed in Sec. 6.1. Nevertheless, the estimation can be
further refined by introducing a complementary regression step. In the
proposal introduced in the previous sections, viewpoint estimation is
seen as a classification problem into discrete angle bins. An additional
regression branch can be added to estimate the residual between the
center of the predicted bin and the object’s viewpoint, as represented
in Fig. 5.19.

0

1

2

3

4

5

6

7

θj0

Ego-car

ρ

Figure 5.19: Example of residual angle (ρ). The object’s viewpoint falls into
the first bin

Two alternatives for residual regression will be proposed. The firstsingle value

encoding one estimates the unit-variance-scaled residual value explicitly. As
with the bin classification, residual regression is class-aware. Therefore,
the output of the residual regression branch of the CNN is a set of
K+ 1 vectors sk, one per class:

sk = (sk0 , . . . , skNb−1), k = 0, . . . ,K, (5.18)

where only the element corresponding to the index of the most proba-
ble bin according to the viewpoint classification branch, sk̂

l̂
, is consid-

5.4 improvements in the baseline solution 133

ered, representing the estimated distance between the center of that
bin (Z(Θl̂)) and the actual viewpoint (θ):

sk
l̂
∝ Z(Θl̂) − θ (5.19)

Note that Z(Θl̂) was the estimation obtained by the viewpoint
classification branch through Eq. 5.9. A smooth-L1 loss is used to take
into account this new task:

L6 =
1

NB2

∑
i∈B2

[vi ⩾ 1] smoothL1
(svi

i,wi
, xi, 1), (5.20)

where svi

i,l̂
is the l̂th element of sk for the sample i from the mini-

batch B2, and xi, the residual target. Only residuals belonging to a
foreground class (vi ⩾ 1) and with the same index as the ground-
truth viewpoint bin (wi) contribute to the loss. Residual targets are
normalized using the expected standard deviation as a scaling factor
so that they have unit variance. Then, if it is assumed that ground-truth
viewpoints follow a uniform distribution:

xi =
Z(Θwi

) − θ
2π

Nb

√
12

, (5.21)

with wi being the index of the ground-truth bin.
It can be said that the viewpoint residual regression performed

according to this approach is not only class-aware but also bin-aware
since a separated residual is estimated for each possible class-bin
combination.

The second alternative for residual regression encodes them using sine/cosine

encodingthe sine and cosine of the angle, following [274]. In this particular case,
the output of the residual regression branch for class k is as follows:

sk = (sk0(s), s
k
0(c), s

k
1(s), s

k
1(c) . . . , s

k
Nb−1(s)s

k
Nb−1(c)), k = 0, . . . ,K,

(5.22)

Hence, the inference output for category k is a Nb × 2-element vector.
Each element skl(s) represents the sine of the scaled residual for bin l,
whereas skl(c) refers to the cosine of that same scaled residual:

sk
l̂(s)

= sin(Nb · (Z(Θl̂) − θ)) (5.23)

sk
l̂(c)

= cos(Nb · (Z(Θl̂) − θ)) (5.24)

Because of the scaling by a factor of Nb, this encoding provides a
smooth and unique mapping from the range of possible values of the
residual, [−π/Nb,π/Nb]. The estimated residual (Z(Θl̂) − θ) can be
then obtained as:

Z(Θl̂) − θ =
1

Nb
arctan

(
sk
l̂(s)

sk
l̂(c)

)
± π

Nb
(5.25)

134 viewpoint estimation

The loss component of residual regression becomes then:

L6 =
1

NB2

∑
i∈B2

[vi ⩾ 1]
∑
ξ∈s,c

smoothL1
(svi

i,l̂(ξ)
, xi(ξ), 1), (5.26)

where the regression targets xi(s) and xi(c) are computed analogously
to sk

l̂(s)
and sk

l̂(c)
(Eqs. 5.23 and 5.24) with the ground-truth bin index

(wi) instead.
In both approaches, the new L6 loss is added as a summand in

the multi-task loss of Eq. 5.14, with a weight of 4; that is, the new
multi-task loss is:

L =

6∑
i=1

αiLi, (5.27)

with αi = 0 ∀ii ∈ {1, 2, 3, 4, 5} and α6 = 4. This increased weight
allows for the smaller magnitude of the loss associated with residual
estimation.

Experiments to prove the adequacy of the solution were conductedexperimental

results and

discussion

on the KITTI dataset, according to the training setup reported in
Table 5.16. This setup largely follows the set 3 of hyperparameters
introduced in Table 5.6.

Feature extractor: VGG-16 [244]

Pre-training: Yes, on ImageNet

Classification loss: Infogain

RPN proposals: 300

Classification heads: Category + b. box regression + viewpoint estima-
tion + residual regression

Predicted classes: 3 (car, ped, cyc)

Train/val split: Chen et al. [46]

Training schedule: 50k iterations @ lr = 10−3 + 30k iterations @ lr =

10−4 (unless otherwise stated)

Table 5.16: Training hyperparameters for the residual regression proposal

Table 5.17 shows the results in terms of AP and AOS on the KITTI
validation subset. Four alternatives are used in the comparison: the
baseline method using the center of the estimated bin, the interpo-
lation method introduced in 5.2.1, and the two residual regression
alternatives proposed in this subsection.

Experimental results show an improvement of +1.55 points in mAOS

(Moderate samples) from the non-refined variant for the first approach.
The second alternative, which uses the sine/cosine encoding, enlarges
the increase in mAOS to +1.92 points. Overall, the detection perfor-
mance does not get hurt despite the increased number of components
of the multi-task loss and even gets improved in some configurations.

5.4 improvements in the baseline solution 135

cl . v. refine . 2d detection (ap 2d) 2d det. and or . (aos)

easy mod. hard easy mod. hard

car

None
90.01 79.03 69.67

88.26 77.35 67.97

Interp. 88.33 77.42 68.04

Res. (v. 1) 90.14 79.15 69.75 89.99 78.81 69.23

Res. (v. 2) 89.99 78.95 69.54 88.92 77.82 68.42

ped

None
71.19 64.05 55.75

65.31 57.62 50.01

Interp. 65.46 57.77 50.15

Res. (v. 1) 72.08 64.45 55.99 65.40 57.65 49.98

Res. (v. 2) 73.32 65.20 56.86 66.68 58.56 51.11

cyc

KITTI
77.33 54.87 52.89

69.73 48.79 47.06

Interp. 69.89 48.92 47.18

Res. (v. 1) 77.79 54.21 51.85 73.60 50.44 48.29

Res. (v. 2) 80.24 57.43 54.60 72.44 52.03 49.35

Table 5.17: Detection and viewpoint estimation performance (AP % and AOS

%) of the proposed approach on the KITTI validation subset using
different alternatives for viewpoint refinement: no refinement
(None), interpolation (Interp.), and the two proposed methods for
residual regression (Res. (v. 1) and Res. (v. 2))

As already discussed, the AOS measure assesses joint detection and
orientation estimation, which is convenient to represent the real per-
formance of the algorithm but makes it difficult to decouple both
problems. With the proposed residual regression approaches, the
viewpoint estimation problem is no longer posed as a multi-class
classification; therefore, the MPPE metric is not valid to study the pure
orientation estimation performance. Instead, the AOS/AP ratio is com-
puted and reported in Table 5.18. As the AOS only takes into account
positive detections, it is upper bounded by the AP, and the AOS/AP

ratio gives an overview of the orientation estimation performance on
the correctly identified instances.

Contrary to what the AOS results seem to suggest, the direct re-
gression approach offers the best overall orientation prediction per-
formance. It is particularly interesting to analyze the effect of both
residual regression alternatives on the Cyclist class: the first one largely
improves the pure orientation performance, whereas the second one
leads to a significant increase in the pure detection performance, which
raises the AOS further.

However, regardless of the viewpoint refinement technique, the
proposed architecture achieves AOS/AP ratios above 97% for Car, and
89% for Pedestrian and Cyclist. Although the smoothness of the AOS

136 viewpoint estimation

cl . v. refine . o/d ratio (aos/ap 2d)

easy mod. hard

car

None 98.06 97.87 97.57

Interp. 98.13 97.96 97.67

Res. (v. 1) 99.83 99.56 99.25

Res. (v. 2) 98.81 98.57 98.40

ped

None 91.74 89.96 89.70

Interp. 91.95 90.20 89.94

Res. (v. 1) 90.73 89.45 89.27

Res. (v. 2) 90.95 89.82 89.88

cyc

KITTI 90.17 88.93 88.97

Interp. 90.38 89.16 89.19

Res. (v. 1) 94.61 93.06 93.14

Res. (v. 2) 90.27 90.61 90.38

Table 5.18: Orientation performance (AOS % / AP % ratio) of the proposed ap-
proach on the KITTI validation subset using different alternatives
for viewpoint refinement: no refinement (None), interpolation
(Interp.), and the two proposed methods for residual regression
(Res. (v. 1) and Res. (v. 2))

metric might conceal some inaccuracies, these results confirm the
adequacy of the selected approach.

5.4.2 Validation of the general approach in modern frameworks

The approach introduced in the preceding sections for embeddingintroduction

the viewpoint estimation into a two-stage detection architecture is a
conceptually simple, general framework that is not limited to the use
case presented in the experimental setup of this thesis but, instead,
admits a wide range of setups.

In January 2018, Facebook AI Research (FAIR) released Detectron10,detectron

software

system

a suite based on the DL framework Caffe 2 that includes the official
implementation of Mask R-CNN [118], which, as mentioned in Chapter
4, is a top-performing instance segmentation method. As Mask R-CNN

is, essentially, an extension of Faster R-CNN, Detectron enables the
training and testing of Faster R-CNN models that incorporate the latest
advances in DNN-based detection, including:

• Residual architectures [120] as a feature extractor. ResNets, in-
troduced in Sec. 2.4.3, are nowadays the backbone of choice for
a wide range of applications. The use of residual blocks allows
increasing the number of layers and leads to significant gains in
the representation ability of the feature extractor.

10 https://github.com/facebookresearch/Detectron

5.4 improvements in the baseline solution 137

• Feature Pyramid Network (FPN) [167]. As described in 2.6.1, FPNs

improve the feature extraction step by using feature maps at
different scales in both the RPN and the classification heads.

• ROI align [118]. The ROI pooling operation featured by the orig-
inal Faster R-CNN has been shown to present notable design
flaws. ROI align, originally intended to improve the performance
of pixel-wise mask prediction, provides an elegant replacement
for extracting per-ROI feature maps.

These advances and others of equal importance were introduced
concurrently with the development of this thesis, which is the reason
why they were not employed in the experimental setup of the previous
sections. However, the proposed viewpoint estimation functionality
is a general approach and, therefore, is compatible with all these
complementary techniques.

This section is intended to provide insight into the potential of the experimental

resultsmethod when using contemporary bells and whistles in the detection
framework. As will be shown, results make it clear that the approach
is not tailored to a specific setup, but, instead, can be considered a
generic plug-in with application in a diversity of architectural variants.

In order to prove this claim, a comparison between the baseline
implementation (lsi-faster-rcnn, featuring a VGG-16 model as feature
extractor) used in the previous sections and another one based on
Detectron (with a ResNet-50 backbone) is presented. The experimental
setup employed in the experimentation is summarized in Table 5.19.

Feature extractor: VGG-16 [244] (lsi-faster-rcnn), ResNet-50 [120]
with FPN [167] (Detectron)

Pre-training: Yes, on ImageNet (lsi-faster-rcnn) and COCO (De-
tectron)

Anchors: Default (3 scales in lsi-faster-rcnn and 4 in Detec-
tron)

Classification loss: Infogain (lsi-faster-rcnn), cross-entropy loss (Detec-
tron)

RPN proposals: 300 (lsi-faster-rcnn and Detectron), 1 000 (Detec-
tron)

Classification heads: Category + b. box regression + viewpoint estima-
tion

Predicted classes: 3 (car, ped, cyc)

Train/val split: Chen et al. [46]

Training schedule: 50k iterations @ lr = 10−3 + 30k iterations @ lr =

10−4 (lsi-faster-rcnn), 60k iterations @ lr = 10−3

(Detectron)

Table 5.19: Set of training hyperparameters for the implementation of the
proposed approach in Detectron

138 viewpoint estimation

Some settings, such as the training schedule or the COCO pre-
training, were selected according to the results provided by the Mask
R-CNN authors on the Cityscapes dataset [118], which is similar in
characteristics and number of samples to the KITTI dataset employed
here. As suggested in that paper, weights corresponding to each KITTI
category in the last classification layer are initialized from the corre-
sponding categories in the pre-trained COCO model.

On the other hand, it is noteworthy that both the number of anchor
scales and the number of RPN proposals have been increased in the
Detectron implementation; despite this, the improvements in the code
implementation and the use of a more efficient framework (Caffe 2)
lead to even faster run times, as will be shown later. Nevertheless,
experiments with a reduced number of proposals (300) have also been
performed.

Accuracy and speed results of the newest implementation (Det.) in
comparison with the baseline version (lsi-faster-rcnn) are reported in
Table 5.20. Two alternatives are provided for the Detectron option re-
garding the number of proposals (1000 or 300) fed to the classification
heads by the RPN.

cl . implem . 2d detection (ap 2d) 2d det. and or . (aos) time

easy mod. hard easy mod. hard (ms)

car

lsi-faster-rcnn 90.01 79.03 69.67 88.26 77.35 67.97 90

Det. (1000 p.) 90.37 87.63 78.83 88.77 85.65 76.61 72

Det. (300 p.) 90.37 87.79 78.93 88.75 85.81 76.70 65

ped

lsi-faster-rcnn 71.19 64.05 55.75 65.31 57.62 50.01 90

Det. (1000 p.) 75.32 71.29 63.09 65.50 61.29 54.00 72

Det. (300 p.) 75.36 67.40 63.41 65.50 58.36 54.25 65

cyc

lsi-faster-rcnn 77.33 54.87 52.89 69.73 48.79 47.06 90

Det. (1000 p.) 82.12 61.40 59.86 73.70 55.24 53.68 72

Det. (300 p.) 82.32 61.33 57.13 73.61 54.87 51.11 65

Table 5.20: Detection and viewpoint estimation performance (AP % and AOS

%) of the baseline implementation (lsi-faster-rcnn) and the en-
hanced implementation (Det.) of the proposed approach on the
KITTI validation subset

Predictably, the performance of the Detectron alternative is consis-
tently better; indeed, these results represent the peak performance that
can be currently achieved using the proposed approach. It should be
noted that these results were achieved without a careful tuning of the
hyperparameters; in fact, some overfitting problems were observed
during the experiments. A more in-depth analysis of the parameters,
especially those newly introduced in Detectron (e. g., those correspond-
ing to the FPN), might easily lead to further improvements.

It is also highly remarkable that the proposed approach can be
straightforwardly used within the Mask R-CNN framework. As Mask

5.5 conclusion 139

R-CNN is already implemented in the Detectron suite, the only factor
nowadays that has prevented training a multi-task model able to
perform simultaneous detection, viewpoint estimation, and (instance)
semantic segmentation according to the guidelines proposed in this
thesis is the lack of annotated datasets, as the 3D pose of objects (and,
therefore, their orientation) has not been a matter of interest in most
datasets until very recently11.

Including the proposed viewpoint estimation method into the Mask
R-CNN framework would not only provide an additional output of
interest for onboard perception systems, but would also improve the
detection (and, possibly, the viewpoint estimation) performance of
the method. This phenomenon was observed by the authors of Mask
R-CNN, who attributed it to the new semantic cues introduced by the
mask component of the multi-task loss [118].

5.5 conclusion

This chapter has been devoted to introducing and discussing the
approach proposed in this thesis to enhance the scene understanding
of automated vehicles through the estimation of the heading angle of
objects on the road plane. The method is a straightforward, natural
extension of Faster R-CNN, which allows taking advantage of its high
detection accuracy while providing valuable insight into the intentions
and future trajectories of potentially dangerous objects.

The method has been designed to provide an estimate of the orien-
tation of objects relative to the camera. Both detection and viewpoint
estimation are performed from a shared set of appearance features,
thus exploiting the close relationship between the two tasks. As motion
features are not employed, they can be introduced later in the pipeline
as a redundant source to increase the robustness of the method.

Extensive experiments have shown the validity of the approach
and its superior performance over similar alternatives. Run times
were compatible with onboard requirements, even though suboptimal
implementations were used.

Furthermore, the sensitivity of the results against changes in the
most critical hyperparameters has been analyzed in depth. Several
alternatives have been proposed to reach the desired point of operation
along the speed/accuracy trade-off. On the other hand, the positive
effects of introducing new training data have also been analyzed.

The approach introduced in this thesis has achieved notable results
on the renowned KITTI benchmark, which contains works from sci-
entists all around the world; e. g., as of September 2019, it is still in
12th place in the official Object Detection and Orientation Estimation

11 Further research is required to assess if some datasets released in 2019, such as
nuScenes [37], do meet the requirements to perform the subsequent multi-task
training.

140 viewpoint estimation

Evaluation for the Pedestrian category12, despite featuring one of the
fastest run times among all the ranked methods. Additionally, the
source code of the implementation used in Chapters 4 and 5 of this
thesis was released under the MIT license to promote reproducibility
among the scientific community13.

12 http://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=

28dc29642148933e41c6daccff01d35b1bdf5ecf

13 https://github.com/cguindel/lsi-faster-rcnn

http://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=28dc29642148933e41c6daccff01d35b1bdf5ecf
http://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=28dc29642148933e41c6daccff01d35b1bdf5ecf
https://github.com/cguindel/lsi-faster-rcnn

6
O B J E C T L O C A L I Z AT I O N

The preceding two chapters have introduced a reliable paradigm for
object detection and orientation estimation. Nevertheless, the applica-
tion of this methodology to a real automated vehicle is still hampered
by a rather glaring gap: the output provided by the proposed ap-
proach is composed of detections localized within the boundaries
of the image; however, higher-level, decision-making modules need
spatial awareness about the 3D location of objects in the surroundings
of the vehicle.

As introduced in Sec. 2.6.3, a manifold of methods have been used
to estimate the position of objects in space. It is not unusual that object
localization is considered as a subsequent step aimed to endow a set of
already existing detections with geometrical information. In particular,
when it comes to onboard perception methods, the magnitudes of
interest are the 2D position of obstacles in the ground surface and their
heading. Likewise, the dimensions of road users are also worthwhile
since they enable the definition of obstacles in the environment model
as 3D cuboids centered at a point in the coordinate frame attached to
the ego-vehicle.

Although 3D pose can be estimated from a single frame [43], [156],
accurate localization of obstacles usually makes it advisable to incor-
porate additional sources of information enabling spatial reasoning.
Two of the most typical in automotive applications are stereo-vision
systems and lidar scanners. In this chapter, methods introduced in the
previous chapters are leveraged to obtain meaningful 3D detections
from both modalities.

6.1 object localization based on stereo data

Firstly, a method to perform object localization using stereo informa- stereo vision

tion is presented. This method assumes that objects have been detected
and provided with an estimated orientation using the method intro-
duced in Chapters 4 and 5. An overview of the approach is presented
in Fig. 6.1.

Foundations of stereo vision were widely discussed in Chapter 3.
As a brief reminder, two images representing the same scene and
acquired from different points of view can be used to perform 3D
reconstruction through a procedure known as stereo matching. DispNet
and SGBM, introduced in Sec. 3.2.1, are used in this chapter to perform
stereo matching.

This chapter includes content from [114] and [15].

141

142 object localization

Stereo RGB imgs.

Object detection

and viewpoint

estimation

Stereo matching

Extrinsic auto-

calibration

Point cloud

Transform

(pitch, roll,

height)

(cam frame)

Object

localization

Point cloud

(footprint

frame)

Bounding boxes, with class and orientation

L

R

Stereo

End-to-end

detection

CNN

Scene modelTransformation

Figure 6.1: Proposed stereo vision-based object localization method

The basic idea behind the proposed object localization approach isdata fusion

that it is possible to establish a correspondence between 2D detections
in the image and 3D points from stereo matching. The association is
straightforward if the stereo system is appropriately calibrated (e. g.,
the baseline is known), and the resulting 3D cloud is expressed in local
coordinates of the camera used to perform detection; in this work, the
leftmost camera of the stereo pair is chosen as the reference frame.

In the proposed object localization framework, correspondence be-
tween points in both representations is preserved due to the point
clouds being organized and projectable. The former implies that they
are organized as image-like structures (with rows and columns), and
the latter means that this arrangement convey actual information of
the correspondence with the image, so that the point with (u, v) index
in the cloud contains the 3D location of the (u, v) pixel in the image
[207].

The point cloud resulting from the stereo matching procedure isreference

frames expressed in a reference frame attached to the optical center of the
camera, the camera frame. However, high-level modules making use of
the information from the perception system require the obstacles to be
expressed in a reference frame whose axes are aligned with the main
directions of the road plane. The difference is shown in Fig. 6.2, where
a footprint frame has been defined just below the local camera frame1,
aligned with the road plane and with its x-axis pointing forward.
Please note that the footprint frame is located on the ground plane but
moves together with the ego-car.

When obstacles are expressed in footprint coordinates, measurements
represent distances along the road plane, as desirable. Nonetheless,
it should be noted that the transformation relating the camera and
the footprint frames does not remains constant over time when the
vehicle is moving. Unevennesses of the terrain can alter the relationship
between both frames; for instance, speed bumpers significantly modify

1 In the figure, the camera is assumed to be mounted at the top of the windscreen,
facing forwards.

6.1 object localization based on stereo data 143

Footprint

frame

Camera

frame

Figure 6.2: Definition of coordinate frames for obstacle localization: local
camera frame and footprint frame

the relative pitch angle. An auto-calibration procedure is required to
reestimate the transform at each time step.

6.1.1 Extrinsic auto-calibration

The auto-calibration procedure proposed to obtain the transform be- overview

tween the camera and the footprint frames is based on previous works
developed in the LSI [66], [190], [216]. The method obtains the parame-
ters by detecting and segmenting the ground plane in the data from
the stereo system, as shown in Fig. 6.3. The ground is assumed flat up
to a certain distance.

Figure 6.3: Stereo rig and ground plane in a typical setup [190] © 2014 IEEE

In order to avoid spurious detections, only a small patch of ground point cloud

pre-processingin front of the camera is taken into account to perform calibration.
Successive pass-through filters are applied to the stereo point cloud to
filter out points closer than 2m and further than 20m, as well as those
outside a width range of 12m around the depth axis. Within these
ranges, the flatness assumption is fulfilled with a high probability.

Then, the resulting point cloud is downsampled using a voxel grid
of size 20× 20× 20 cm. In addition to reducing the amount of data to
be processed, this filter normalizes the point density along the depth
(z) axis. An example of a filtered cloud is depicted in Fig. 6.4a.

144 object localization

From this point cloud, the coefficients defining the ground plane canplane

segmentation be computed. A RANSAC-like consensus approach [77] is used to fit the
points to a plane. Following [66], a tight threshold of 1.5 cm is used. In
addition, the search is reduced to planes roughly perpendicular to the
vertical axes (y) of the camera, with a tolerance of 0.35 rad. Fig. 6.4b
depicts the normal to the ground plane obtained from the exemplary
point cloud.

(a) Cropped, downsampled cloud (b) Plane inliers and normal vector

Figure 6.4: Example showing the extrinsic auto-calibration procedure. The
pictures show the downsampled cloud, the normal vector to
the estimated plane and the camera (top) and footprint (bottom)
coordinate systems for a certain frame [114]

It can be shown [66] that, given a road plane axc+byc+ czc+d = 0,coefficients of

the plane with (xc,yc, zc) being the coordinates of a point belonging to the plane,
roll (ψ), pitch (ϕ) and height (h) defining the camera pose with respect
to the ground plane can be obtained as:

ψ = arcsin(a) (6.1)

ϕ = arctan
(
−c

b

)
(6.2)

h = d (6.3)

Yaw angle cannot be extracted solely from the plane, and thus, it
is assumed to be nil. It is noteworthy that this method also produces
as a by-product a coarse estimation of the free space in front of the
vehicle. This outcome is straightforwardly given by the inliers of the
plane segmentation (in green in Fig. 6.4b).

6.1.2 Object 3D localization

As stated before, it is possible to retrieve the 3D points correspondingproblem

statement to each obstacle detected in the image. Nevertheless, there is a signifi-
cant nuance in what the sensor data represents: stereo clouds, as any
other sensor data, contain information representing only the visible
parts of the objects; in this case, their surfaces. Therefore, recovering
the full 3D geometry of the object is far from evident since, in practice,

6.1 object localization based on stereo data 145

it involves estimating the non-visible parts. In this section, a method
to recover the 3D cuboid describing the obstacle from the stereo data
is proposed.

First of all, points in the stereo cloud can be expressed in footprint point cloud

transforma-
tion

coordinates by using the transform obtained in the auto-calibration
procedure. Then, points belonging to the ground, as well as those that
are too close to the camera (less than 3m), are removed.

Another issue that arises due to the use of bounding box repre- position-based

segmentationsentations in 2D detection is that not every 3D point falling inside
the bounding box corresponds, actually, to the object. Fig. 6.5 shows
clearly the problem: in that case, the peripheral areas of the bounding
box represent mostly the background behind the object. In order to
deal with this problem, only the innermost part of the bounding box
is taken into account for computing the object location. In particular,
for a H×W-pixel bounding box, a smaller rectangle of 5H/7× 5W/7
located in the center of the original proposal is considered, as shown
in Fig. 6.5. The dimensions of the inner square have been selected
through statistical analysis. It is noteworthy that this approach deals
naturally with different scales.

Figure 6.5: Area considered by the proposed object localization approach
within an object’s bounding box

The method aims to obtain the location of the center of each object dimensions

and its dimensions. To handle the difference between the stereo data,
representing surfaces, and the desired measure, fixed dimensions are
assumed for the cuboid of every object in each class. Table 6.1 pro-
vides the values selected for each category, obtained from aggregated
statistical data from the KITTI dataset.

Hence, the final estimation of the cuboid representing the object 3d box

estimationand its location, as shown in Fig. 6.6, is based on the following inputs:

1. The x and y coordinates, in the footprint frame, of the surface of
the object. The surface is represented by a point ps = (xs,ys) that
is obtained from the stereo data by ranking two lists containing
the x and y locations of the 3D points corresponding to the inner
box depicted in Fig. 6.5, and computing the first quartile of each
to provide the estimated xs and ys coordinates. The use of the

146 object localization

category length (m) width (m) height (m)

Car (car) 3.88 1.63 1.50

Pedestrian (ped) 0.88 0.65 1.77

Cyclist (cyc) 1.76 0.60 1.75

Truck (trk) 10.81 2.63 3.34

Person sitting (sit) 0.75 0.59 1.26

Tram (trm) 14.66 2.60 3.61

Table 6.1: Dimensions of the cuboids assigned to each KITTI category

first quartile is intended to eliminate the influence of outliers
and ensures that the estimated point belongs to the surface of
the object.

2. The size of the object, L0 ×W0 ×H0, assigned according to the
values in Table 6.12

3. The viewpoint estimation θ that was computed together with
the bounding box detections based on appearance features from
image data.

θ

Footprint

frame

x

y

x0

y0

φ

p0

W0

L0

∆x

∆y

ps

Figure 6.6: Schematic representation of the BEV of a sample scene with a
detected object (a car facing towards)

From this, the size and orientation of the cuboid are determined, and
its location, p0 = (x0,y0), can be obtained by extending the direction
defined by the vector that joins the origin of the footprint frame with ps.
The extension has magnitude ∆s, where ∆s =

√
∆x2 +∆y2. Both ∆x

and ∆y are given by the dimensions of the cuboid and the viewpoint

2 H0, which is not depicted in the top-view representation of Fig. 6.6, is the height of
the cuboid.

6.1 object localization based on stereo data 147

angle. Once p0 is known, it is straightforward to convert the viewpoint
angle, θ into the yaw angle, φ, using Eq. 5.1:

φ = α+ atan2(x0,y0) +
3π

2
, (6.4)

Note that, as discussed in Sec. 5.1, the yaw angle expresses the rotation
of the object around a local vertical axis.

6.1.3 Experimental results

Experiments to assess the validity of the approach have been con-
ducted on the KITTI object detection benchmark, where reliable an-
notations of the 3D location and dimensions of labeled instances are
available. Most existing datasets lack these annotations, making the
KITTI dataset the right choice for this task, again.

6.1.3.1 3D object localization in the KITTI dataset

The evaluation of the 3D detection task proposed by the KITTI bench- experimental

setupmark3 [90] is based on two different kinds of representations: full
3D cuboids4, and 2D bounding boxes on BEV representation5. The
former requires precise estimation of the six dimensions defining the
pose of every object, while the latter is focused on the estimation of
the measures that are the most important for vehicle navigation: the
2D coordinates on the road plane and the yaw angle. Please refer to
Sec. 3.2 for a detailed description of the BEV representation.

Unless otherwise stated, the evaluation follows the criteria estab-
lished in Sec. 4.2.1, including the IoU requirements regarding the criteria and

metricsoverlap between detections and ground-truth annotations. It is note-
worthy that for 3D evaluation, intersection and union are volumes,
whereas for BEV evaluation they are areas, although intersection takes
into account the box rotation given by the yaw angle. Again, the AP

measure is used for quantitative evaluation.
Note also that the baseline of KITTI stereo cameras is approximately stereo cameras

54 cm. Taking into account the intrinsic parameters of the cameras, the
stereo matching error from Eq. 3.13 becomes:

δz[m] =
z[m]2

389.63
δd, (6.5)

which expresses the relation between the error made in the estima-
tion, δz, and the distance to the object, z (in m), through δd, which is
a constant magnitude that depends on the stereo matching method in
use.

3 3D evaluation was introduced in 2017 as an extension of the existing 2D object
detection benchmark.

4 http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d

5 http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=bev

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=bev

148 object localization

6.1.3.2 Localization accuracy

The experiments in this section rely on the outcome of the detectionmodel hyperpa-
rameters and viewpoint estimation method described in Chapter 5. In particular,

a model trained with the set 2 of hyperparameters is employed. The
input scale is set to 650, and 100 proposals are classified in each frame.
A score threshold of 0.2 is established to filter improbable detection
results.

Fig. 6.7 shows the distribution of the localization error per cate-localization

error gory for each of the two stereo matching methods used, considering
only true positive detections. The error is computed as the absolute
Euclidean distance on the xz-plane of the camera frame.

"
Car Ped. Cyc. Van Truck

Class

0

5

10

15

20

25

30

35

40

Ab
so

lu
te

 lo
ca

liz
at

io
n

er
ro

r (
m

)

(a) SGBM

Car Ped. Cyc. Van Truck
Class

0

5

10

15

20

25

30

35

40

Ab
so

lu
te

 lo
ca

liz
at

io
n

er
ro

r (
m

)

(b) DispNet

Figure 6.7: Absolute Euclidean error (m) in the location estimation from
the proposed approach for the different categories, using two
different stereo matching algorithms. The central mark represents
the median, and the bottom and top edges of the box indicate the
first and third percentiles, respectively; outliers are represented
outside the whiskers [114]

Despite the presence of a substantial amount of outliers, the median
of the localization error is 77.1 cm when using SGBM and 51.7 cm with
the DispNet method. It should be noted that the DispNet model
was fine-tuned in the KITTI dataset; overall, the difference is not
very significant, and both methods perform reasonably well in the
localization of the obstacles ahead of the vehicle for the three main
categories of the dataset.

From Eq. 6.5, it follows that the depth information error growseffect on

distant objects quadratically with the distance from the stereo system. Fig. 6.8 studies
the distribution of error as a function of the distance along the depth
(z) axis of the camera frame. The error in depth estimation given by Eq.
6.5 is also depicted.

As apparent, the localization method is reasonably accurate, espe-
cially for obstacles closer than 20m from the camera. Outliers become

6.1 object localization based on stereo data 149

0 20 40 60
Distance (m)

0

5

10

15

20

25

30

35

40

Ab
so

lu
te

 lo
ca

liz
at

io
n

er
ro

r (
m

)

Car
Ped.
Cyc.
Van
Truck

(a) SGBM

0 20 40 60
Distance (m)

0

5

10

15

20

25

30

35

40

Ab
so

lu
te

 lo
ca

liz
at

io
n

er
ro

r (
m

)

Car
Ped.
Cyc.
Van
Truck

(b) DispNet

Figure 6.8: Absolute Euclidean error (m) in the location estimation from
the proposed approach vs. distance from the ego-car using two
different stereo matching algorithms. The dashed line represents
the estimated stereo matching error [114]

increasingly abundant at long distances, where occlusions are more
likely to occur (e. g., pedestrians behind vehicles).

To study the effectiveness of the approach proposed for obtaining comparison

with a trivial

approach

the center of the obstacles from the stereo data, Fig. 6.9 offers a
comparison with a naive approach where the predicted location is
given by the average of the points within the object bounding box.
The non-absolute error is employed to highlight the measurement bias
introduced by using surface points as the only source for estimating
the location.

Car Ped. Cyc. Van Truck
Class

-20

-15

-10

-5

0

5

10

D
ep

th
 e

st
im

at
io

n
er

ro
r (

m
)

(a) Proposed approach

Car Ped. Cyc. Van Truck
Class

-20

-15

-10

-5

0

5

10

D
ep

th
 e

st
im

at
io

n
er

ro
r (

m
)

(b) Naive approach

Figure 6.9: Localization error (detection minus ground-truth, m) along the
depth axis when estimating the center of the object for two differ-
ent localization methods. DispNet disparity used [114]

It can be observed that the median of the error is closer to 0 with
the proposed approach, whereas the error of the naive approach is

150 object localization

biased towards negative values, as expected. These results prove the
soundness of the method to obtain accurate measures.

The problem can be posed as a BEV classification, following the BEVbev detection

performance KITTI evaluation. 2D detection stats on BEV perspective are shown
in Table 6.2. IoU requirements have been relaxed to obtain a repre-
sentative view of the performance of the localization method; indeed,
results are given for two different minimum IoU levels.

min iou diffic . car ped cyc van trk

20%
Easy 77.67 38.55 32.72 25.55 18.68

Moder. 66.49 31.71 22.22 21.09 12.73

Hard 49.88 31.42 22.02 15.38 11.16

40%
Easy 70.64 12.64 8.35 22.16 8.68

Moder. 53.23 12.95 5.19 18.84 8.18

Hard 38.18 9.17 5.17 13.77 4.55

Table 6.2: BEV detection performance (AP %) of the proposed object localiza-
tion approach [114]

It is important to note that, even though BEV detection is effectively
carried out by the method described in this chapter, the final accu-
racy is constrained by the performance of the image detection and
viewpoint estimation algorithm presented in the previous chapters.

6.1.4 Scene modeling

As depicted in Fig. 6.1, a pipeline made of the combination of thedefinition

joint detection and viewpoint estimation CNN with all the steps for
object localization described in this chapter can lead to the generation
of an object-based model of the environment, where all the potential
obstacles are accurately located on the road plane.

Two examples of the resulting model for frames from the KITTIkitti samples

testing set are provided in Fig. 6.10. As the resolution in viewpoint
estimation has an impact on the resulting model, two different config-
urations are tested: Nb = 8 and Nb = 16.

The upper part of each sample depicts the left image, including the
bounding boxes representing image detections and an overlay with an
estimate of the free space in front of the car (in green). This free space
estimation is made of the projection of the stereo 3D points located
around the road plane, with a threshold of 10 cm. On the other hand,
the lower part of the pictures is the model of the scene, where a top
view of the space in front of the vehicle is represented. Rectangles rep-
resenting the estimated position of the obstacles’ cuboids are depicted
over the projection of the 3D stereo cloud. Ground-truth labels are
also represented with a thinner line. For scale, the cell size is 10/3m
(i. e., 3.33m).

6.1 object localization based on stereo data 151

(a) Nb = 8 (b) Nb = 16

(c) Nb = 8 (d) Nb = 16

Figure 6.10: Examples of detections and local scene models obtained from
the proposed approach for different values of Nb: 8 bins (left)
and 16 bins (right). Color code: red for Car, blue for Pedestrian
and orange for Van [114]

As seen in the figure, the approach has the potential to provide ivvi 2 .0 samples

valuable spatial awareness of the environment. Besides, the method
is mainly agnostic to the specific sensor setup. An additional set of
experiments has been performed on the LSI’s IVVI 2.0 platform, a
vehicle endowed with a 12-cm-baseline stereo system, showing the
robustness of the proposed approach against changes regarding the
sensor device and its positioning. Some examples are provided in
Fig. 6.11; in this case, the cell size is 5m.

It should be noted that, except for the stereo matching stage, the run time

localization method presented here introduces a negligible overhead
on top of the detection and viewpoint estimation framework. Concern-
ing the disparity map computation, run times are heavily dependent

152 object localization

(a) (b)

(c) (d)

Figure 6.11: Examples of detections and local scene models obtained from
the proposed approach in our IVVI 2.0 platform. Color code: red
for Car, blue for Pedestrian and orange for Van [114]

on the implementation; in the version used in this thesis, times for
DispNet were around 80ms. Nevertheless, both the stereo matching
and the object detection and viewpoint inference can be performed
concurrently due to the design of the approach, as shown in Fig. 6.1.
This way, information can be delivered at rates around 10Hz, enabling
a fast response to unexpected situations.

6.2 object detection and localization based on lidar data 153

6.2 object detection and localization based on lidar

data

The approach for object localization introduced in the previous section
is intended to complement and enhance the information provided
by the image detection CNN from Chapters 4 and 5. However, the
CNN framework presented in this thesis can alternatively be used
to perform end-to-end object detection and localization (or, in other
words, 3D object detection) based on lidar data.

The use of lidar information leads to some improvements over the
stereo-based solution, such as increased accuracy at long distances,
robustness against fog or illumination, and ease of obtaining informa-
tion in a 360° range. However, the representation of lidar data also
conveys some challenges that are critical for the accuracy of the object
detection task.

6.2.1 Detection and yaw estimation in lidar data

In this section, data from a 360° lidar scanner is employed to perform overview

3D object detection. The general procedure, depicted in Fig. 6.12,
was introduced in [15] as BirdNet. Here, the analysis is limited to
the detection part (in gray), which is indeed the cornerstone of the
method.

Proposed object detection and viewpoint estimation method

RPN

Classification Post-Processing

Ground Estimation

LiDAR Point Cloud

Feature

Maps

LiDAR BEV 3D Object Oriented Detections

ROI Align
2D Aligned Detections

Figure 6.12: Proposed approach for 3D object detection in lidar data (Bird-
Net), based on the joint detection and viewpoint estimation
network © 2018 IEEE [15]

The goal is to take advantage of the Faster R-CNN variant developed
for image detection and viewpoint estimation by extending its capabil-
ities to the lidar modality. While it is designed to admit RGB images as
input, it can also be seen as a general framework that enables detection
over arbitrary 2D, image-like structures.

In this case, the BEV representation introduced in Sec. 3.2 is used lidar data

representationto express lidar data as a 2D data structure. As a reminder, the BEV

representation is built by discretizing the space around the vehicle
into infinitely high cells and providing each cell with a set of variables
describing the lidar measurements that fall into its volume. Unless

154 object localization

otherwise stated, 5 cm square cells are adopted. Following [46], each
cell encodes the following features:

• Height (H), representing the height of the highest point at each
cell. Height is measured from the ground, whose position must
be therefore estimated beforehand [15].

• Intensity (I), encoding the average reflectance of points in each
cell.

• Density (D), computed as the number of points in each cell,
normalized by the maximum possible. A novel method for nor-
malization agnostic to the lidar device in use is employed [15].

As each feature is stored in a different channel, this arrangement is
structurally identical to an RGB image, so the inference process is not
affected. The aim is to perform 2D detection in the BEV, which can be
then interpreted as detections in 3D space except for the information
in the height axis. The height of the objects, as well as their z location
(in footprint frame), cannot be recovered, but they can be reasonably
estimated given the position of the ground. Besides providing a con-
venient structure for lidar data, the BEV representation normalizes
the resolution of the lidar device so that the method is, in principle,
agnostic to the number of measuring layers.

When a BEV is fed into the network instead of an image, outputsbev detection

within faster

r-cnn

are reinterpreted: bounding boxes are the minimum axis-aligned rect-
angles enclosing the object in BEV perspective, and the viewpoint
estimation from the custom branch is used now as a prediction of the
yaw angle. Contrary to the image detection case, bounding boxes do
not fit well BEV detection, since most objects appear rotated. However,
as a yaw estimation is also provided, an accurate rotated bounding box
can be computed in a subsequent post-processing step by assuming a
fixed width (1.8m for Car and 0.6m for Pedestrian and Cyclist) [15].

The detection CNN uses the VGG-16 backbone as a feature extrac-changes in the

detection

model

tor. Throughout this document, feature maps are obtained from the
last convolutional layer, conv5, as in the original approach. They are,
therefore, 16 times smaller than the input image [244]. Since objects,
especially pedestrians, are typically represented with a handful of
pixels in the BEV, the resolution of the feature maps from the last stage
is not suited to this task. Following [46], the last pooling layer in the
VGG-16 backbone, pool4, is removed. Hence, the downsampling factor
from the original image is reduced to 8, providing enough resolution
for the detection.

Similarly, ROI pooling is replaced by ROI align, which was proposed
as an alternative in [118]. ROI align is intended to fix some quantization
issues present in ROI pooling, which caused misalignments between
the extracted features and the actual ROI. Due to the small size of
BEV objects, small translations could lead to significant reductions in
performance.

6.2 object detection and localization based on lidar data 155

Anchors were also modified according to the expected sizes in BEV,
in the same way as in Sec. 4.2.2.4. Scales and ratios are shown in
Table 6.3. Naturally, smaller anchors are chosen, as objects cannot be
represented in the BEV by a large number of pixels (exceptions, such
as trains, aside).

default bev anchors

Scales (box areas) {1282, 2562, 5122} {162, 482, 802}

Ratios (H/W) {2 : 1, 1 : 1, 1 : 2} {2 : 1, 1 : 1, 1 : 2}

Table 6.3: Modified RPN anchors for BEV detection

The interpolation approach introduced in Sec. 5.2.1 is adopted here
to smooth out the predicted yaw values.

6.2.2 Experimental results

Experiments were performed on the KITTI object detection benchmark experimental

setupusing, mainly, the BEV evaluation introduced in Sec. 6.1.3, which is
indeed the most suitable for evaluating the proposed framework.
KITTI lidar data comes from a Velodyne HDL-64E device, with 64
layers. It is noteworthy that annotations are only present in the FOV

of the cameras; therefore, although the lidar provides measures in
a 360° range, only the frontal ∼110° are considered for training and
evaluation. On the other hand, the BEV is cropped at 35m ahead of
the vehicle. Given the 5× 5 cm cells, input images have a resolution
of 1400× 700.

The aim of the investigation carried out in this section is twofold:
firstly, to study the influence of both the design decisions and the
different input features on the final performance, and secondly, to
provide an assessment of the effectiveness of the approach. Training
parameters are presented in Table 6.4.

6.2.2.1 Hyperparameter tuning and ablation experiments

As in the previous use cases, the detection CNN was fine-tuned in the transfer

learningKITTI dataset, starting from a set of initial weights from ImageNet.
While this made sense when training for image detection, as features
were expected to be similar, BEV arrays are radically different from RGB
images. Still, results in Table 6.5 prove that initializing the weights from
a pre-trained ImageNet model produces significantly better results
than using random values.

On the other hand, Table 6.6 investigates the effect of three alterna- model

alternativestives:

• With or without the pool4 layer (p4). As explained before, re-
moving the last pooling operation from the backbone leads to

156 object localization

Feature extractor: VGG-16

Pre-training: Yes, on ImageNet (unless otherwise stated)

Anchors: Custom (Table 6.3)

Classification loss: Infogain

RPN proposals: 300

Classification heads: Category + b. box regression + viewpoint (yaw)
estimation

Predicted classes: 3 (car, ped, cyc)

Train/val split: Chen et al. [46]

Training schedule: 50k iterations @ lr = 10−3 + 50k iterations @ lr =

10−4 + 50k iterations @ lr = 10−5

Table 6.4: Training hyperparameters for the proposed BEV detection network

weights bev det. (map bev) 3d det. (map 3d)

easy mod. hard easy mod. hard

ImageNet 54.46 41.61 40.57 22.92 18.02 16.92

Gaussian 41.89 30.77 29.92 19.76 15.04 14.75

Table 6.5: BEV and 3D detection performance (AP BEV % and AP 3D %) of the
proposed BEV detection approach on the KITTI validation subset
using different weight initialization strategies [15] © 2018 IEEE

feature maps with better resolution. This modification translates
into higher accuracies for the Pedestrian and Cyclist categories.

• With or without ground (gr). An alternative approach to build
the BEV representation without including points belonging to
the ground was tested in order to avoid spurious detections
in empty areas. However, due to the algorithm used for floor
removal, some planar surfaces from the objects were also filtered,
thus destroying valuable information for the CNN. The drop in
performance is notable.

• Number of bins (Nb). As has been the custom in other parts of
this dissertation, the influence of the number of yaw bins has also
been studied for two alternatives: Nb = 8 and Nb = 16. Results
show little difference between both configurations, although
Nb = 16 has a slight advantage.

From now on, results refer to the variant without the pool4 layer,
with ground points (i. e., floor removal is not applied) and 16 bins.

Finally, the relevance of each of the three input features is studiedencoded

features in Table 6.7 by analyzing the performance of models trained with
single-channel BEVs. Notably, the model trained with intensity (i)
information performs much worse than the other two alternatives,

6.2 object detection and localization based on lidar data 157

class p4 gr Nb bev detection (ap bev)

easy mod. hard

car

✗ ✓ 8 72.32 54.09 54.50

✗ ✓ 16 73.73 54.84 56.06

✓ ✓ 8 70.29 49.84 54.52

✓ ✗ 8 66.63 48.52 47.98

✗ ✗ 16 70.19 52.36 52.53

✗ ✗ 8 69.80 52.56 48.44

ped

✗ ✓ 8 43.62 39.48 36.63

✗ ✓ 16 44.21 39.13 35.67

✓ ✓ 8 25.01 23.23 21.84

✓ ✗ 8 24.59 23.07 22.25

✗ ✗ 16 41.73 37.17 34.81

✗ ✗ 8 36.19 32.97 31.39

cyc

✗ ✓ 8 47.44 31.26 30.57

✗ ✓ 16 50.45 33.07 31.15

✓ ✓ 8 41.87 27.49 25.79

✓ ✗ 8 37.60 23.55 22.62

✗ ✗ 16 41.59 26.94 26.21

✗ ✗ 8 45.23 29.32 26.89

Table 6.6: BEV detection performance (AP BEV %) on the KITTI validation sub-
set for different variants of the proposed BEV detection approach,
regarding pool4 layer (p4), ground points (gr) and number of
bins (Nb) [15] © 2018 IEEE

density (d) and height (h). Neither of these two models is significantly
better than the other. However, the baseline model using the three
features achieves the best results for all the categories, thus proving
the adequacy of the selected features.

6.2.2.2 Detection performance

Unlike most existing methods, the proposed 3D object detection detection stats

method can estimate the cuboids corresponding to objects from the
three main categories in the KITTI dataset, thus enabling evaluation
on both the BEV and the 3D detection benchmarks. Additionally, if
the calibration between camera and lidar is known, cuboids can be
projected onto the image, and the approach can be additionally as-
sessed as a 2D detection method, including a predicted viewpoint
value computed from the yaw by using Eq. 6.4.

In this thesis, the focus is on BEV detection performance. Neverthe-
less, Tables 6.8 and 6.9 show, respectively, the 2D and 3D stats obtained

158 object localization

class i d h bev detection (ap bev)

easy mod. hard

car

✓ ✓ ✓ 72.32 54.09 54.50

✓ ✗ ✗ 55.04 41.16 38.56

✗ ✓ ✗ 70.94 53.00 53.30

✗ ✗ ✓ 69.80 52.90 53.69

ped

✓ ✓ ✓ 43.62 39.48 36.63

✓ ✗ ✗ 36.25 30.43 28.37

✗ ✓ ✗ 38.21 32.72 29.58

✗ ✗ ✓ 38.37 34.04 32.37

cyc

✓ ✓ ✓ 47.44 31.26 30.57

✓ ✗ ✗ 33.09 22.83 21.79

✗ ✓ ✗ 43.77 28.62 26.99

✗ ✗ ✓ 48.06 31.21 30.40

Table 6.7: BEV detection performance (AP BEV %) of the proposed BEV detec-
tion approach on the KITTI validation subset using different data
as an input [15] © 2018 IEEE

on the testing set of the KITTI benchmark for reference. Results were
computed in the official evaluation server and are publicly available6.

class 2d detection (ap 2d) 2d orientation (aos)

easy mod. hard easy mod. hard

car 78.18 57.47 56.66 50.85 35.81 34.90

ped 36.83 30.90 29.93 21.34 17.26 16.67

cyc 64.88 49.04 46.61 41.48 30.76 28.66

mean 59.96 45.80 44.4 37.89 27.94 26.74

Table 6.8: 2D detection and viewpoint estimation performance (AP % and AOS

%) of the proposed BEV detection approach on the KITTI testing
set [15] © 2018 IEEE

As expected, cars are more reliably detected than pedestrians and
cyclists due to their size. The three levels of difficulty defined by the
KITTI dataset do not correspond well with the actual complexity in
BEV detection, given that they are defined according to image features.
That is why differences between levels are less noticeable than in image
detection. 3D detection results and, to a lesser extent, BEV detection
results, are profoundly affected by the high IoU overlapping required
for true positives by KITTI criteria. In practice, lower IoU levels provide
acceptable predictions that can be useful for vehicle navigation.

6 http://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=

62a5c7d933e853e8049c9975fa25d8749f258778

http://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=62a5c7d933e853e8049c9975fa25d8749f258778
http://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=62a5c7d933e853e8049c9975fa25d8749f258778

6.2 object detection and localization based on lidar data 159

class 3d detection (ap 3d) bev detection (ap bev)

easy mod. hard easy mod. hard

car 14.75 13.44 12.04 75.52 50.81 50.00

ped 14.31 11.80 10.55 26.07 21.35 19.96

cyc 18.35 12.43 11.88 38.93 27.18 25.51

mean 15.80 12.56 11.49 45.84 33.11 31.82

Table 6.9: 3D detection and BEV detection performance (AP 3D % and AP BEV

%) of the proposed BEV detection approach on the KITTI testing
set [15] © 2018 IEEE

This issue is further studied in Fig 6.13, where recall-IoU curves sensitivity to

iou thresholdsfor the three categories are presented. As apparent from the figures,
recall drops abruptly for high IoU values. However, this does not mean
that objects are not identified; instead, the problem is that predicted
cuboids do not fit perfectly the labels in the dataset, which might be a
minor issue depending on the application.

0.2 0.4 0.6 0.8 1
IoU

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

Car

Easy
Moderate
Hard

0.2 0.4 0.6 0.8 1
IoU

0

0.2

0.4

0.6

0.8

1
Pedestrian

Easy
Moderate
Hard

0.2 0.4 0.6 0.8 1
IoU

0

0.2

0.4

0.6

0.8

1
Cyclist

Easy
Moderate
Hard

Figure 6.13: Recall of the proposed BEV detection approach on the KITTI
validation subset at different IoU thresholds using 300 proposals
[15] © 2018 IEEE

A fair comparison with other methods in the literature is mostly comparison

with other

methods

impractical due to two notable peculiarities of our method:

1. Most methods focus on the detection of cars, which is a more
affordable task due to size constraints.

2. Typically, several sources of data, i. e., images and lidar, are
combined to perform detection through sensor fusion. Instead,
the proposed method performs inference from lidar data, exclu-
sively.

Despite this, Table 6.10 establishes a comparison with other 3D de-
tection methods in the KITTI dataset for Car detection. The minimum
IoU has been set to 50%, which is adequate for the application. Results

160 object localization

come from their own published papers; fortunately, they all use the
same validation subset (Chen et al. [46]) and provide results for IoU

0.5. The compared methods are: MV3D, using only visual information
(BEV+FV) [46]; VeloFCN [163]; and PC-CNN [64], which fuses RGB
and lidar data.

method 3d detection (ap 3d) bev detection (ap bev) time

easy mod. hard easy mod. hard (s)

MV(BV+FV) 95.74 88.57 88.13 86.18 77.32 76.33 0.24

VeloFCN 67.92 57.57 52.56 79.68 63.82 62.80 1

PC-CNN* 87.16 87.38 79.40 90.36 88.46 84.75 0.5

Proposed 88.92 67.56 68.59 90.43 71.45 71.34 0.11

* Fuses RGB and LiDAR data.

Table 6.10: Comparison of the BEV Car detection performance (AP 3D % and
AP BEV %) of the proposed BEV detection approach with other
methods on the KITTI validation subset with IoU 0.5 [15] © 2018

IEEE

Detection results of the proposed method are competitive; it im-
proves VeloFCN by a large margin in both BEV and 3D detection and
is on par with the other two methods. It is noteworthy that it achieves
these results requiring much lower processing time, and providing
detections for all the available categories, which are unique qualities
of the approach that make it suitable for onboard applications.

Some qualitative examples of the performance of the method arequalitative

results and

run time

shown in Fig. 6.14. The run time per KITTI frame using the current
implementation (see Sec. 4.2.3.1) is around 110ms using an NVIDIA
Titan Xp GPU. The forward-pass time is highly dependent on the
cell size and the detection range; both have been chosen to favor
accuracy against speed in this work, so it is expected that computation
time could be further reduced depending on the requirements of the
application.

6.3 conclusion

This chapter has been aimed to close the gap between the percep-
tion suite and the planning and control modules by endowing the
already available set of detections with spatial reasoning. This is a
necessary step to achieve a proper situational awareness that allows
the automated vehicle to navigate in all kinds of traffic environments.

Two alternative approaches have been studied: one intended to
complement the object detection and viewpoint estimation method
introduced in the preceding chapters, and another aimed to replace
the functionality of the entire pipeline. The former takes advantage of
stereo information, whereas the former uses lidar data.

6.3 conclusion 161

(a) (b)

(c) (d)

Figure 6.14: Example of 3D detection results on scenes from the KITTI testing
set using the proposed method [15] © 2018 IEEE

The first method has proven effective despite the limitations of
stereo matching, which affect mainly to the accuracy at long distances.
A complete model of the traffic scene, including the position of all
road users with respect to the vehicle and the free space ahead of it,
can be obtained through this approach.

On the other hand, the lidar-based method has emerged as a viable
alternative to provide 3D detections based solely on lidar data, thus
serving as a redundant method which can perform in parallel to the
main detection pipeline. BirdNet, which is the name given to this
approach, was one of the first methods in the KITTI object detection
benchmark capable of providing results for all the categories7 and
has attracted significant interest in the related literature, receiving 17

citations from reputable authors (e. g., [284]) in less than one year after
publication8.

This chapter proves that the methods proposed in this thesis are
aligned with the current trends in onboard perception research, which
is geared lately towards robust and accurate 3D object detection ap-
proaches

7 http://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=

62a5c7d933e853e8049c9975fa25d8749f258778

8 Citation count provided by Google Scholar. There were no self-citations.

http://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=62a5c7d933e853e8049c9975fa25d8749f258778
http://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=62a5c7d933e853e8049c9975fa25d8749f258778

Part III

C O N C L U D I N G R E M A R K S

7
C O N C L U S I O N A N D F U T U R E W O R K

The achievements made in this thesis and their relevance within the
topics addressed are summarized in this chapter. Besides, some future
research endeavors aimed to lend continuity to the lines of inquiry
started in this work are also suggested.

7.1 conclusion

The perception suite of an automated vehicle should be able to pro-
vide the planning and navigation modules with situational awareness
of traffic scenes. A proper environment model must take into con-
sideration the rest of the road users around the vehicle and their
dynamics. Within this general goal, this thesis has focused on the
identification and localization of objects from onboard sensor data.
Different detection and pose estimation approaches have been pro-
posed taking advantage of modern DNNs, which reach high levels of
accuracy thanks to their feature learning capabilities.

The most important aspects to be considered in the selection of the
sensor suite have been discussed, but the work has not been limited
to a single modality. Instead, it has dealt with different sources of
data, handling the particularities of each one through convenient data
representations.

Hence, a significant number of approaches have been proposed
and validated throughout this document. The main contributions are
summarized below:

• A method to extract features from stereo vision data, and employ
them in an automatic extrinsic calibration framework, has been
introduced. The resulting calibration approach largely eliminates
the need for human intervention in the procedure of obtaining
the transform that relates a stereo camera and a multi-layer lidar
device. Both sensors are typically part of the sensor setup in
automated vehicles, and a precise calibration between them is
crucial to perform data association. A novel evaluation procedure
based on synthetic data has proven that the accuracy of the
proposed calibration method exceeds that of existing methods.

• The applicability of a modern, DNN-based object detector (Faster
R-CNN) to onboard obstacle identification has been demonstrated.
Several fine-tuning measures have been proposed to improve the
performance of the detection framework in the context of this
particular application. The detector uses color images as the sole

165

166 conclusion and future work

input and does not make any bold assumption, thus offering
superior robustness against different variability sources.

• A method to take advantage of stereo data to complement in-
tensity information in object detection has been proposed. The
approach has been shown to improve the detection accuracy of
Faster R-CNN without the need for severe structural changes and
with a minor effect on the computational burden. The method
is suitable for enhancing the detector capabilities when stereo
information is available.

• An approach to performing joint detection and heading estima-
tion based on the Faster R-CNN detection framework has been
presented. The intuition behind the method is that both detection
and orientation estimation can be performed from the same set
of appearance features. This idea has been validated through
plentiful experimentation. As a result, the proposed multi-task
approach is effective but also efficient and provides valuable
information about the position and intentions of other road
users.

• Different combinations of model alternatives, hyperparameter
settings, and design choices have been thoroughly tested to
analyze their effect on the speed and accuracy of the method dis-
cussed in the previous point. The results allow to conveniently
modify the speed-accuracy trade-off according to the require-
ments of the particular application. Additionally, the sensitivity
of the method to the size and diversity of training data has also
been investigated, suggesting that small increases in the number
of training samples might lead to significant improvements in
performance.

• A method to localize the detected objects in 3D space using stereo
vision information has been proposed. The approach makes use
of the orientation estimation provided by the multi-task frame-
work from the previous points to estimate a cuboid representing
the geometry and location of each object with respect to the ego
vehicle. Despite the inherent limitations of stereo matching, the
method has been proven adequate for object-based modeling of
traffic scenes.

• A standalone approach to perform 3D object detection in lidar
data has been introduced. The method takes advantage of the
proposed detection and orientation estimation framework to
process lidar data represented as an image-like structure. Due
to the particularities of lidar scanners, the proposal can perform
detection on a wide 360° range around the vehicle.

All these contributions are inextricably linked as parts of a whole:
an onboard perception suite intended to build an object-based model

7.2 future work 167

with enhanced information about the dynamic objects in the scene. The
investigation conducted in this thesis falls within the topic of traffic
scene understanding, which is one of the most critical challenges faced
by upcoming autonomous vehicles.

7.2 future work

The set of approaches introduced in this thesis, albeit aimed at a com-
mon end, does not intend to offer a comprehensive perception stack.
The application of this methodology to a real automotive platform is
subject to the presence of complementary modules and integration
efforts that fall outside the scope of this work. Among them, it is worth
highlighting the following:

• The set of detections from the presented approaches would bene-
fit hugely from a subsequent tracking stage [99]. This component
is widely used in ITS applications to increase the robustness of
detections by introducing time as a variable in the reasoning
process. This way, the correlation between consecutive frames
is exploited to make predictions, which makes it possible to
filter inference errors made by single-frame detectors. The topic
has been extensively addressed in the literature, giving rise to
a manifold of methods ranging from basic Kalman filters [87]
to very sophisticated approaches [262]. Furthermore, the orien-
tation estimation method presented in this thesis might aid the
movement prediction, thus obtaining additional benefit from the
tracking phase.

• The implementation of the algorithms presented in this the-
sis was geared towards experimentation, and therefore, ease of
operation and versatility took precedence over efficiency. Im-
plementations tailored to automotive hardware should make it
possible to achieve higher framerates with lower energy con-
sumption, applying little or no modification to the presented
models. For instance, most embedded platforms for deep learn-
ing inference are optimized for half-precision float arithmetic
(FP16) or even eight-bit computations (INT8). Recent works have
shown that comparable accuracy levels can be achieved under
these low-precision setups [183], thus extending the validity of
the conclusions reached in this work to embedded inference.

• Although all the proposed methods have been designed to be
virtually agnostic to the characteristics of the sensor device in
use, experimentation has been limited to a restricted number
of setups. Given the growing availability of camera and lidar
scanner devices, the adequacy of the proposed approaches for
every specific setup should be confirmed on a case-by-case basis.

168 conclusion and future work

• Industrial-level safety standards (e.g., ASIL-D, ISO 26262, etc.)
impose strict verification requirements which are challenging
to meet for DNNs [152]. Advances are being made in the matter
[146], but this fundamental issue requires an in-depth analysis
which is out of the scope of this thesis.

• Putting the developed algorithms into operation would neces-
sarily involve the participation of other complementary mod-
ules in the perception stack, so that fundamental tasks such
as traffic signaling detection, traversable space estimation, and
ego-localization [122] are fulfilled. Some of these tasks will be
addressed in Annex A.

Regarding the core topics of this thesis, several improvements can
be carried out to enhance and extend the introduced proposals. Some
of them are listed below:

• The exceptionally rapid progress in DNNs has led to the emer-
gence of multiple alternatives in the literature to improve each of
the stages of the detection framework. Examples include, but are
not limited to, the focal loss proposed in [168] to mitigate class
imbalance at training time, and Soft-NMS [25], which aims to
improve the duplicate filtering at inference time. These and other
structural modifications were discussed in Sec. 2.5 and, along
with the use of recent models for the feature extractor part, are
expected to lead to significant improvements in the performance
of the proposed methods, as hinted in Sec. 5.4.2.

• The link between detection and localization according to the
methods proposed in this thesis takes place at a high level. Al-
ternatives for a low-level fusion of appearance and geometric
information can be explored as a potential source of improve-
ment for 3D detection, as suggested by the results in Sec. 4.3.

• A low-level fusion scheme such as the one proposed in the
previous point would make all the sensor data available before,
or during, feature extraction. That configuration would enable
embedding 3D localization into the Faster R-CNN framework as
another task, resulting in an end-to-end 3D detection scheme
similar to the ones that have become popular in recent times (see
Sec. 2.6.3).

• Inversely, the current dependency on prior geometrical data
could be dropped by introducing depth estimation into the
framework. Instead of explicitly feeding the network with spa-
tial information, stereo matching could be embedded in the
network architecture, which would then accept the stereo pair as
input. Alternatively, 3D reconstruction techniques from monoc-
ular images [43], [156] could be applied, avoiding the need for
additional sources of data.

7.2 future work 169

• It is a well-known fact that detection can benefit from informa-
tion about the scene geometry and the camera position [125].
Thus, the use of additional mid-level cues within the proposed
multi-task paradigm could be explored as a way of taking ad-
vantage of the (loose) structure of traffic environments. As an
example, road users are likely to be found on the road surface,
which is a fact that could be exploited by the system to reduce
the false-positive rate.

There are reasons to believe that traffic scene understanding will be
an active research topic in the coming decades. AI and DNNs should
be the driving forces to achieve the robustness and accuracy goals
imposed by autonomous vehicles. This work is, ultimately, a modest
contribution towards that objective, which will undoubtedly require a
Herculean research effort to be reached.

Part IV

A P P E N D I X

A
A D D I T I O N A L C U E S F O R S C E N E U N D E R S TA N D I N G

As has been repeatedly made clear during this dissertation, object
detection and localization is paramount for the automated navigation
of a vehicle. However, as natural, that application solely does not cover
the entire range of functionalities that the onboard perception stack is
required to provide.

Classical applications that fall outside the scope of object detection
include road (or lane) detection and traffic light classification, for
instance, whose functionality is also critical for autonomous driving.

Recently, semantic segmentation has gained traction as a catch-all
alternative thanks to the fine-grained knowledge provided by its pixel-
wise classification capabilities. Theoretically, semantic segmentation
has the potential to replace several onboard applications with a one-
shot approach [222].

Instance segmentation [118] and, more recently, panoptic segmen-
tation [148] aim to combine the pixel-wise estimation provided by
semantic segmentation with the instance-level classification from ob-
ject detectors.

In this annex, some applications developed in the context of the
thesis, but which fall outside the scope of its main topic, are briefly
presented. All of them are oriented towards the common objective
of providing information to improve the understanding of the traffic
environment, thus complementing the main developments proposed
in the thesis.

a.1 lane detection and classification

An algorithm for lane detection and classification was proposed in overview

[219] based on classical computer vision techniques1. The procedure
performs three different tasks: it finds lines in the image, infers the
most probable lanes given those lines, and classify the lines according
to their traversability.

The information is extracted from a stereo pair. The pipeline is procedure

composed of the following steps:

1. Bird’s Eye View (BEV) perspective transform: As usual in lane
detection, the image is transformed to a BEV perspective so that
lines defining a road lane are represented parallel in the image.

This annex includes content from [219], [57], [76] and [11].
1 The work described in this section was mostly developed by Dr. César H. Rodriguez

during his Ph.D. The author of this thesis was responsible for its implementation in
ROS.

173

174 additional cues for scene understanding

Note that this BEV is not equivalent to the one described before
in this document for lidar data; instead, this one is obtained
by a homographic transformation which gives, as an output,
the image that would be obtained by a virtual camera placed
above the road and looking down to it. An example is shown in
Fig. A.1. The homography is given by the extrinsic parameters of
the camera with respect to the ground and is therefore obtained
through an auto-calibration method similar to the one presented
in Sec. 6.1.1.

(a) Bird’s Eye View (b) Original frame

Figure A.1: Bird’s Eye View (BEV) for lane detection [219]

2. Road segmentation: Pixels whose 3D positions lie outside a cer-
tain distance from the detected plane are removed, so only pixels
belonging to the road are taken into account for subsequent
processing.

3. Road markings mask: A mask of candidate line pixels is created
by computing gradients in the image and keeping only points
meeting some heuristic criteria.

4. Line detection: the Hough transform is used to detect straight
lines in the BEV image, as shown in Fig. A.2a.

5. Lane identification: The set of Hough lines is filtered to keep
only lines meeting geometrical constraints. All the resulting
lines follow the same direction and are separated by a distance
equivalent to the width of a lane. Then, each pair of adjacent
lines define a lane. An example is shown in Fig. A.2b.

6. Line classification: A set of descriptors is extracted from each line,
describing its mean intensity value, its length, and its frequency
peaks. Lines are then classified according to a set of heuristic
rules into one of the following classes: solid, dashed, merging, and
unknown.

7. Temporal consistency: Lanes are tracked through several frames
to increase the robustness against occlusions and noise. To that

A.2 road signaling classification 175

(a) Detected lines (b) Detected lanes

Figure A.2: Example of line and lane detections using the proposed approach

end, lines are assigned an energy value that decays over time if
they are no longer detected. Likewise, a line is required to be
detected over several frames to validate the detection.

Tests on a custom dataset showed precision values of around 88% results

for lane detection and 85% for line classification [216]. Some qualitative
results are shown in Fig. 7.

a.2 road signaling classification

Traffic Sign Recognition (TSR) and Traffic Light Recognition (TLR) are
two critical applications for enabling the use of current infrastructures
by autonomous vehicles. As road signaling is targeted to human
drivers, who perceive information through the sense of sight, cameras
are nearly always used. In this section, two methods are presented,
each of them dealing with one of the two problems.

a.2.1 Detection

The approaches described in this section are aimed at the classification
of previously detected candidate regions. Thus, they serve the same
purpose as the classification head in Faster R-CNN.

Naturally, in the previous step of the pipeline, an RPN could be used
to generate proposals. However, due to the particularities of these
objects, other options are also available. For instance, a semantic seg-
mentation network could be trained on a dataset with these categories
to provide the areas of the image where a sign or a light is likely to be
present. This way, a dedicated proposal network will not be necessary,
and semantic segmentation could also fulfill other functions (e.g., free
space detection).

On the other hand, both signs and lights are, differently from cars or
pedestrians, static objects belonging to the infrastructure. It is possible

176 additional cues for scene understanding

(a) (b)

(c) (d)

Figure A.3: Examples of lane detection and classification results using the
proposed approach. Color code: pink for solid, blue for dashed
and red for merging

.

to take advantage of this fact by using maps provided with both
entities to determine the areas of the image that should be classified.

a.2.2 Traffic sign classification

A traffic sign detection framework was proposed in [57]2. Proposal
generation was based on color, taking advantage of the unique hue
values featured by traffic signs. However, the most relevant results
were from the classification step, which validated the adequacy of
CNNs to perform traffic sign classification.

Experiments were performed using three different architectures
(sorted by increasing complexity): LeNet [160], AlexNet [154], and
GoogLeNet [254].

Tests used the German Traffic Sign Recognition Benchmark (GTSRB)
[249], a renowned dataset that comprises 43 classes typically found in
European roads. A 90:10 train-validation split was performed on the
dataset.

Images are resized to 28× 28 (in grayscale) for the LeNet network,
and to 256× 256 (in color) for AlexNet and GoogLeNet. Results in

2 This work was developed by Lidia Díaz during a TFG (Bachelor’s Thesis) supervised
by the author of this thesis [57]

A.2 road signaling classification 177

Table A.1 prove the high potential of CNNs to perform reliable traffic
sign classification.

LeNet AlexNet GoogLeNet

98.90 98.39 99.05

Table A.1: Classification performance (accuracy %) of three architectures
tested for traffic sign classification [57]

a.2.3 Traffic light classification

Traffic light status recognition might seem a simple task; however, problem

statementthe variety of appearances and typologies of these elements pose a
challenge to onboard perception systems. In this regard, the data used
for training have a significant influence on the performance of the
resulting model.

In [76], a detailed study of the public datasets aimed at traffic light
recognition is presented3. Besides, different CNNs were applied to
perform traffic light status classification. The aim was twofold: firstly,
to identify the datasets which, when used for training, allow obtaining
the best performance; secondly, to test the accuracy of two CNN models
for multi-state classification.

In this section, the experimental procedure for the evaluation of datasets

the CNN models is introduced, along with the obtained results. Five
datasets were used (sorted by publication date):

• LARA traffic light recognition benchmark [54].

• WPI Traffic Light Dataset [47].

• LISA Traffic Light Dataset [140]. For purposes of analysis, day-
light images (LISA-D) are separated from the nighttime ones
(LISA-N).

• Bosch Small Traffic Lights Dataset (BSTLD) [12].

Additionally, some samples from the Cityscapes dataset [49] were
annotated. This set is employed in combination with the others to
generate a meta-dataset composed of all the labeled samples together
(all).

As stated before, two CNN models were employed: models

1. A custom ResNet network, made of only two residual blocks.
Each block contains two 3 × 3 convolution layers (plus their
respective non-linearities). The first block has 16 channels and
the second, 32.

3 This work was co-authored by the author of this thesis during his research visit at the
KIT (Germany) under the supervision of Prof. Christoph Stiller and with the guidance
of Dr. Carlos Fernández.

178 additional cues for scene understanding

2. MobileNet v2 [234]: The standard model, with a width multiplier
of 1, was used.

The mean F1-score (mF1) across the N evaluated categories is usedmetrics

to allow easy comparison between alternative cases. Contrary to raw
accuracy, this metric assigns the same importance to each category,
including the underrepresented yellow:

mF1 =
1

N

N∑
i=1

2
PiRi
Pi + Ri

(A.1)

Traffic light crops from all sources are resized to 64× 32 beforeexperimental

setup entering the CNN. Yellow samples are weighted with a factor of 3 in
the classification loss due to the low number of samples available. All
datasets were split into training and validation subsets with a ratio
of 70 : 30. In order to increase the significance of the results, three
different training procedures were performed for each configuration,
and the best result is provided.

First of all, results for the custom ResNet model for the differenttraining/val .
combinations combinations of train and validation datasets are shown in Table A.2,

including the dataset composed of the mixture of all the others (all).
In this case, only color classification is evaluated (i.e., classes are red,
yellow, and green). Note that this experiment was aimed to show the
ability of each dataset to train robust models, on the one hand, and to
assess the real performance of the methods, on the other hand. Also,
note that WPI results are not directly comparable with the others since
it lacks yellow labels.

training

bstld lara lisa-d lisa-n wpi* all

t
e

s
t

i
n

g

bstld 85.03 71.95 77.64 70.83 90.73 84.84

lara 98.35 99.95 95.10 99.04 99.69 99.95

lisa-d 94.50 87.81 99.82 86.31 87.58 99.68

lisa-n 98.40 94.85 96.19 99.47 99.72 99.62

wpi
* 99.61 98.90 99.61 96.38 100.00 100.00

all 92.76 83.86 88.28 86.29 92.77 96.23

* WPI is evaluated only on the available red and yellow classes.

Table A.2: Classification performance (mean F1 score) on different validation
sets of traffic light color classification using the custom ResNet
model [76] © 2018 IEEE

Obviously, the models perform better when evaluated on the same
dataset used for training. Apart from this, BSTLD arises as a challeng-
ing dataset able to generate all-terrain models. Evaluation on LISA-N
does not yield reliable results due to the prominence of traffic light
bulbs in nighttime conditions. Overall, the model trained with the

A.2 road signaling classification 179

combined dataset obtained the best results when evaluated on every
other dataset, except for BSTLD.

Some data augmentation techniques were tested to improve the data

augmentationperformance of the models:

1. Horizontal flip.

2. Random affine transformations (to simulate different points of
view).

3. Saturation and value (HSV color space) jittering.

The effect of this augmentation, together with a comparison of both
models, for color classification is investigated in Table A.3. Again,
different models trained in each dataset are considered. Overall, the
performance of MobileNet is slightly better than that of the custom
ResNet, although its complexity is also higher. On the other hand,
augmentation has a small positive effect on the results.

mobilenet resnet

aug : ✗ ✓ ✗ ✓

bstld 88.3 92.3 92.8 92.9

lara 74.8 88.8 83.9 88.8

lisa-d 91.0 84.0 88.3 93.3

lisa-n 74.7 60.2 86.3 90.6

wpi
* 84.1 92.5 92.8 97.3

all 99.7 99.8 96.2 96.3

* WPI is evaluated only on the available red and yel-
low classes.

Table A.3: Classification performance (F1-score) of traffic light color classifi-
cation on the combined dataset for the different training sets and
models with and without data augmentation (aug) [76] © 2018

IEEE

Finally, arrow traffic signs are differentiated, and the problem is multi-class

classificationposed as a 6-class classification into green, yellow, red, left green, left
yellow, and left red. Only left turns were considered since they are the
most frequent in the available datasets and also in right-hand-drive
traffic environments4

In this case, due to the reduced number of arrow samples, an
additional factor of 3 is applied to the loss corresponding to these
categories. Confusion matrices, one for each model, are shown in
Tables A.4 and A.5. The combined dataset has been used for both
training and testing.

There are a significant number of samples that were misclassified
regarding the existence of an arrow; however, most of them were

4 Note that, when a green circle is on, it usually allows to go straight and to turn right.
However, turn left is not allowed due to oncoming traffic.

180 additional cues for scene understanding

predicted

rec .

9069 562 10572 3453 104 824 (%)

g
r

o
u

n
d

t
r

u
t

h

9569 8906 75 32 553 0 3 93.1

523 30 467 3 10 13 0 89.3

10710 16 7 10463 7 0 217 97.7

3012 117 7 2 2878 1 7 95.6

96 0 6 0 0 89 1 92.7

674 0 0 72 5 1 596 88.4

precision (%) 98.2 83.1 99.0 83.3 85.6 72.3 91.1*

* Mean F1-score between classes.

Table A.4: Confusion matrix of the MobileNet network for traffic light clas-
sification trained and tested on the combined dataset using six
labels [76] © 2018 IEEE

assigned to the correct color. Again, the performance of the MobileNet
model is slightly better than that of the ResNet. However, the run time
per frame of the former is 7ms (14ms on CPU), whereas it increases
to 24ms (29ms on CPU) for the latter.

Results prove the benefits of combining different datasets to train aconclusion

traffic light classification CNNs. Additionally, data augmentation has
been shown to improve the model capabilities further. Finally, the
feasibility of applying a specific traffic light classification network on
top of a previous proposal method has been demonstrated.

a.3 semantic segmentation

Semantic segmentation aims to provide a label to each pixel in theproblem

statement image. The past few years have seen a flood of research works dealing
with this task [85], which gives valuable information for autonomous
driving.

In [11], a comparative study of four semantic segmentation methods
is presented, along with an analysis of relevant hyperparameters and
setup options that influence their performance5.

The methods under study are listed below:methods

fully convolutional network (fcn) [172]: FCN was the first
DNN-based method proposed for semantic segmentation. Its
encoder-decoder architecture, where feature maps are extracted
from the images and then upsampled to provide the final es-
timation, is the basis of most of the subsequent approaches.
Transpose convolutions are used to carry out the upsampling,

5 This work was developed by Alejandro Barrera during a TFM (Master’s Thesis)
supervised by the author of this thesis [9].

A.3 semantic segmentation 181

predicted

rec .

9069 562 10572 3453 104 824 (%)
g

r
o

u
n

d
t

r
u

t
h

9569 9069 79 18 398 1 4 95.1

523 31 469 4 9 10 0 89.7

10710 17 6 10467 6 1 213 97.7

3012 144 4 3 2857 3 1 94.9

96 0 8 0 0 88 0 91.7

674 4 0 52 2 0 616 91.4

precision (%) 97.9 82.9 99.3 87.3 85.4 73.9 91.1*

* Mean F1-score between classes.

Table A.5: Confusion matrix of the ResNet model for traffic light classification
trained and tested on the combined dataset using six labels [76] ©
2018 IEEE

whereas skips are employed to add low-level features at middle
stages of the decoding procedure. Different alternatives were
proposed; the FCN-8s all-at-once is used in this section.

bayesian segnet [5]: Similar to the previous one, this architecture
features an encoder-decoder architecture (SegNet [5]); however,
they introduce dropout layers to estimate the uncertainty of the
estimation.

u-net [224]: Originally intended for biomedical image processing, it
concatenates features at different levels to propagate low-level
information to the final layers.

erfnet [220]: It introduces a novel block, Non-bottleneck-1D, to reduce
the computation burden while achieving high accuracy. The
design was geared towards onboard systems.

The cited architectures were reimplemented on a common frame- training

techniqueswork, and tested under the same conditions, to enable a fair compari-
son. The Cityscapes dataset [49] was employed for training and testing.
Regarding the hyperparameters analysis, the following factors were
analyzed:

• Class imbalance: Weighting the different categories according to
their frequency of occurrence in the training set has a positive
effect on the performance.

• Transfer learning: When possible, a model pre-trained for recog-
nition on ImageNet can be used to initialize the weights of the
encoder part. Despite the difference between tasks, initial fea-
tures have been shown beneficial for semantic segmentation
models.

182 additional cues for scene understanding

• Preprocessing and data augmentation: The following data aug-
mentation techniques were evaluated: Gaussian jitter, horizontal
flip, and random crop. Overall, they increase the accuracy and
robustness of the trained models.

• Input scale. Increasing the size of input images has a dramatic
effect on the final accuracy, at the expense of higher computation
times.

• Number of classes. Coarse-grained categories (e.g., vehicle),
which can be enough to represent the environment in specific
situations, lead to better results than fine-grained classes (e.g.,
car, van, or truck).

Tests were performed using the ERFNet architecture. Results, in
terms of the widely-used mean IoU stat [172], are shown in Table A.6.

cl .b . tr .l . aug hd miou

✗ ✗ ✗ ✗ 40.23

✓ ✗ ✗ ✗ 40.42

✓ ✓ ✗ ✗ 43.51

✓ ✗ ✓ ✗ 42.14

✓ ✗ ✗ ✓ 45.43

Table A.6: Semantic segmentation performance (mean IoU %) of ERFNet for
different configurations: class balancing (cl . b .), transfer learning
(tr . l .), data augmentation (aug), and high resolution (hd).
Table by Barrera et al. from [11] (license CC-BY-NC)

On the other hand, Table A.7 reports a comparison between thecomparison

among models studied architectures using different evaluation metrics. Run times per
frame are also included. Overall, the ERFNet architecture achieves re-
sults on par with the other methods with much lower processing time.
Some examples of the results obtained with the analyzed methods are
depicted in Fig. A.4, using a frame obtained from the LSI’s IVVI 2.0
platform as an input.

model ov. acc . m rec . m acc . m iou f . w. iou time (ms)

FCN 83.51 50.44 70.57 43.27 76.11 170

B. SegNet 84.00 54.58 68.84 44.25 76.77 182

U-Net 82.81 49.94 62.80 41.31 75.52 135

ERFNet 85.14 51.79 67.10 43.34 78.21 61

Table A.7: Comparison of the performance of the studied semantic segmen-
tation methods on the Cityscapes validation set. Stats: overall
accuracy (ov.acc .), mean recall (m rec .), mean accuracy (m

acc .), mean IoU (m iou), and frequency-weighted IoU (f . w.
iou). Table by Barrera et al. from [11] (license CC-BY-NC)

A.3 semantic segmentation 183

(a) FCN (b) Bayesian SegNet

(c) U-Net (d) ERFNet

Figure A.4: Examples of semantic segmentation results for each of the studied
models. Figures by Barrera et al. from [11] (license CC-BY-NC)

In short, semantic segmentation has shown enormous potential to concluding

remarkshelp to understand the traffic scene. However, as already discussed in
Sec. 4.5, it will not probably offer an all-in-one solution to all the traffic
problems. Instead, it is likely that the vehicular perception systems
will evolve in a way that they will make the most of the combined use
of object detection and semantic segmentation methods. The former is
suitable to generate an object-based model of the environment where
dynamic obstacles (i. e., things) are present. On the other hand, the
latter is more appropriate to provide information about the infrastruc-
ture (i. e., stuff). The task aimed at combining both, named panoptic
segmentation [148], is destined to become an important line of research
over the next few years.

B I B L I O G R A P H Y

[1] S. Agarwal, J. O. D. Terrail, and F. Jurie, “Recent advances
in object detection in the age of deep convolutional neural
networks,” arXiv:1809.03193 [cs.CV], 2018.

[2] H. A. Alhaija, S. K. Mustikovela, L. Mescheder, A. Geiger, and
C. Rother, “Augmented reality meets deep learning for car
instance segmentation in urban scenes,” in Proc. British Machine
Vision Conference (BMVC), 2017.

[3] ——, “Augmented reality meets computer vision,” International
Journal of Computer Vision, vol. 126, no. 9, pp. 961–972, 2018.

[4] E. Arnold, O. Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby,
and A. Mouzakitis, “A survey on 3D object detection methods
for autonomous driving applications,” IEEE Transactions on
Intelligent Transportation Systems, vol. 20, no. 10, pp. 3782–3795,
2019.

[5] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A
deep convolutional encoder-decoder architecture for image seg-
mentation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[6] I. Barredo, “Entrenamiento de algoritmos de deep learning
para la detección de objetos con la base de datos cityscapes,”
Bachelor’s Thesis (TFG), Universidad Carlos III de Madrid, Jul.
2017.

[9] A. Barrera, “Estudio de algoritmos de segmentación semántica
basados en deep learning para su aplicación en vehículos in-
teligentes,” Master’s Thesis (TFM), Universidad Carlos III de
Madrid, Sep. 2018.

[11] A. Barrera, C. Guindel, F. García, and D. Martín, “Análisis,
evaluación e implementación de algoritmos de segmentacion
semántica para su aplicación en vehículos inteligentes,” in
XXXIX Jornadas de Automática, 2018, pp. 983–990.

[12] K. Behrendt, L. Novak, and R. Botros, “A deep learning ap-
proach to traffic lights: Detection, tracking, and classification,”
in Proc. IEEE International Conference on Robotics and Automation
(ICRA), 2017, pp. 1370–1377.

[15] J. Beltrán, C. Guindel, F. M. Moreno, D. Cruzado, F. García, and
A. de la Escalera, “BirdNet: A 3D object detection framework
from LiDAR information,” in Proc. IEEE International Conference
on Intelligent Transportation Systems (ITSC), 2018, pp. 3517–3523.

185

186 bibliography

[16] J. Beltrán, C. Jaraquemada, B. Musleh, A. de la Escalera, and
J. M. Armingol, “Dense semantic stereo labelling architecture
for in-campus navigation,” in Proc. International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and
Applications (VISIGRAPP) - Volume 5: VISAPP, 2017, pp. 266–
273.

[17] Y. Bengio, A. Courville, and P. Vincent, “Representation learn-
ing: A review and new perspectives,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798–
1828, 2013.

[18] K. Bengler, K. Dietmayer, B. Färber, M. Maurer, C. Stiller, and
H. Winner, “Three decades of driver assistance systems: Review
and future perspectives,” IEEE Intelligent Transportation Systems
Magazine, vol. 6, no. 4, pp. 6–22, 2014.

[19] M. Bertozzi, A. Broggi, M. del Rose, M. Felisa, A. Rakotoma-
monjy, and F. Suard, “A pedestrian detector using histograms
of oriented gradients and a support vector machine classifier,”
in Proc. IEEE International Conference on Intelligent Transportation
Systems (ITSC), 2007, pp. 143–148.

[20] M. Bertozzi, A. Broggi, and A. Fascioli, “Vision-based intelli-
gent vehicles: State of the art and perspectives,” Robotics and
Autonomous Systems, vol. 32, no. 1, pp. 1–16, 2000.

[21] P. J. Besl and N. D. McKay, “A method for registration of 3-
D shapes,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 14, no. 2, pp. 239–256, 1992.

[22] D. Biedermann, M. Ochs, and R. Mester, “COnGRATS: Realistic
simulation of traffic sequences for autonomous driving,” in
Proc. International Conference on Image and Vision Computing New
Zealand (IVCNZ), 2015.

[23] ——, “Evaluating visual ADAS components on the COnGRATS
dataset,” in Proc. IEEE Intelligent Vehicles Symposium (IV), 2016,
pp. 1067–1072.

[24] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[25] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis, “Soft-NMS
– improving object detection with one line of code,” in Proc.
IEEE International Conference on Computer Vision (ICCV), 2017,
pp. 5562–5570.

[26] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision
with the OpenCV Library. O’Really, 2008.

[27] D. Braess, A. Nagurney, and T. Wakolbinger, “On a paradox of
traffic planning,” Transportation science, vol. 39, no. 4, pp. 446–
450, 2005.

bibliography 187

[28] M. Braun, S. Krebs, F. Flohr, and D. M. Gavrila, “EuroCity Per-
sons: A novel benchmark for person detection in traffic scenes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 41, no. 8, pp. 1844–1861, 2019.

[29] M. Braun, Qing Rao, Y. Wang, and F. Flohr, “Pose-RCNN:
Joint object detection and pose estimation using 3D object
proposals,” in Proc. IEEE International Conference on Intelligent
Transportation Systems (ITSC), 2016, pp. 1546–1551.

[30] A. Broggi, M. Buzzoni, S. Debattisti, P. Grisleri, M. C. Laghi, P.
Medici, and P. Versari, “Extensive tests of autonomous driving
technologies,” IEEE Transactions on Intelligent Transportation
Systems, vol. 14, no. 3, pp. 1403–1415, 2013.

[31] A. Broggi, A. Cappalunga, C. Caraffi, S. Cattani, S. Ghidoni, P.
Grisleri, P. P. Porta, M. Posterli, and P. Zani, “TerraMax vision
at the Urban Challenge 2007,” IEEE Transactions on Intelligent
Transportation Systems, vol. 11, no. 1, pp. 194–205, 2010.

[32] A. Broggi, A. Cappalunga, S. Cattani, and P. Zani, “Lateral
vehicles detection using monocular high resolution cameras
on TerraMax,” in Proc. IEEE Intelligent Vehicles Symposium (IV),
2008, pp. 1143–1148.

[33] A. Broggi, C. Caraffi, P. P. Porta, and P. Zani, “The single
frame stereo vision system for reliable obstacle detection used
during the 2005 DARPA Grand Challenge on TerraMax,” in
Proc. IEEE International Conference on Intelligent Transportation
Systems (ITSC), 2006, pp. 745–752.

[34] A. Broggi, P. Cerri, S. Debattisti, M. C. Laghi, P. Medici, M. Pan-
ciroli, and A. Prioletti, “PROUD–public road urban driverless
test: Architecture and results,” in Proc. IEEE Intelligent Vehicles
Symposium (IV), 2014, pp. 648–654.

[35] A. Broggi, P. Grisleri, and P. Zani, “Sensors technologies for
intelligent vehicles perception systems: A comparison between
vision and 3D-lidar,” in Proc. IEEE International Conference on
Intelligent Transportation Systems (ITSC), 2013, pp. 887–892.

[37] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuScenes: A
multimodal dataset for autonomous driving,” arXiv:1903.11027
[cs.LG], 2019.

[38] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, “A unified
multi-scale deep convolutional neural network for fast object
detection,” in Computer Vision - ECCV 2016 (LNCS, vol. 9908),
2016, pp. 354–370.

188 bibliography

[39] E. Cano, “Solo el 10 por ciento de los accidentes responden a
fallos técnicos,” ABC, Mar. 14, 2016. [Online]. Available: https:
//www.abc.es/motor/reportajes/abci-causas-accidentes-

trafico-solo-10-ciento-accidentes-responden-fallos-

tecnicos-201603140141_noticia.html (visited on 11/15/2018).

[40] F. Chabot, M. Chaouch, J. Rabarisoa, C. Teulière, and T. Chateau,
“Deep MANTA: A coarse-to-fine many-task network for joint
2D and 3D vehicle analysis from monocular image,” in Proc.
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 2040–2049.

[41] Y. Chen, V. Sundareswaran, C. Anderson, A. Broggi, P. Grisleri,
P. P. Porta, P. Zani, and J. Beck, “TerraMax: Team Oshkosh
urban robot,” Journal of Field Robotics, vol. 25, no. 10, pp. 841–
860, 2008.

[42] Q. Chen and V. Koltun, “Photographic image synthesis with
cascaded refinement networks,” in Proc. IEEE International Con-
ference on Computer Vision (ICCV), 2017, pp. 1520–1529.

[43] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun,
“Monocular 3D object detection for autonomous driving,” in
Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 2147–2156.

[44] X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler,
and R. Urtasun, “3D object proposals for accurate object class
detection,” in Advances in Neural Information Processing Systems
(NIPS), 2015, pp. 424–432.

[45] X. Chen, K. Kundu, Y. Zhu, H. Ma, S. Fidler, and R. Urta-
sun, “3D object proposals using stereo imagery for accurate
object class detection,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 40, no. 5, pp. 1259–1272, 2018.

[46] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3D ob-
ject detection network for autonomous driving,” in Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 6526–6534.

[47] Z. Chen, Q. Shi, and X. Huang, “Automatic detection of traffic
lights using support vector machine,” in Proc. IEEE Intelligent
Vehicles Symposium (IV), 2015, pp. 37–40.

[48] K. Chirantana and S. S. Kanth, “Collision warning with auto-
matic braking system for electric cars,” International Journal of
Mechanical Engineering Research, vol. 5, no. 2, pp. 153–165, 2015.

[49] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R.
Benenson, U. Franke, S. Roth, and B. Schiele, “The Cityscapes
dataset for semantic urban scene understanding,” in Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 3213–3223.

https://www.abc.es/motor/reportajes/abci-causas-accidentes-trafico-solo-10-ciento-accidentes-responden-fallos-tecnicos-201603140141_noticia.html
https://www.abc.es/motor/reportajes/abci-causas-accidentes-trafico-solo-10-ciento-accidentes-responden-fallos-tecnicos-201603140141_noticia.html
https://www.abc.es/motor/reportajes/abci-causas-accidentes-trafico-solo-10-ciento-accidentes-responden-fallos-tecnicos-201603140141_noticia.html
https://www.abc.es/motor/reportajes/abci-causas-accidentes-trafico-solo-10-ciento-accidentes-responden-fallos-tecnicos-201603140141_noticia.html

bibliography 189

[50] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
learning, vol. 20, no. 3, pp. 273–297, 1995.

[51] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski,
“Self-supervised monocular road detection in desert terrain,”
in Proc. Robotics Science and Systems (RSS), 2006.

[52] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: Object detection via
region-based fully convolutional networks,” in Advances in
Neural Information Processing Systems (NIPS), 2016, pp. 379–387.

[53] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), vol. 1, 2005, pp. 886–893.

[54] R. De Charette and F. Nashashibi, “Traffic light recognition
using image processing compared to learning processes,” in
Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2009, pp. 333–338.

[55] S. Debattisti, L. Mazzei, and M. Panciroli, “Automated extrinsic
laser and camera inter-calibration using triangular targets,” in
Proc. IEEE Intelligent Vehicles Symposium (IV), 2013, pp. 696–701.

[57] L. Díaz, “Sistema de detección y clasificación de señales de
tráfico basado en deep learning,” Bachelor’s Thesis (TFG),
Universidad Carlos III de Madrid, Sep. 2017.

[58] K. Dietmayer, “Predicting of machine perception for automated
driving,” in Autonomous Driving. Springer, 2016, ch. 20, pp. 407–
424.

[59] K. C. J. Dietmayer, S. Reuter, and D. Nuss, “Representation
of fused environment data,” in Handbook of Driver Assistance
Systems: Basic Information, Components and Systems for Active
Safety and Comfort, H. Winner, S. Hakuli, F. Lotz, and C. Singer,
Eds. Springer, 2016, ch. 24, pp. 567–604.

[60] Dirección General de Tráfico, “Las principales cifras de la sinies-
tralidad vial en españa 2017,” 2018.

[61] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian
detection: A benchmark,” in IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 2009, pp. 304–311.

[62] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazırbas, V.
Golkov, P. van der Smagt, D. Cremers, and Thomas Brox,
“Flownet: Learning optical flow with convolutional networks,”
in Proc. IEEE International Conference on Computer Vision (ICCV),
2015, pp. 2758–2766.

[63] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proc. Conference
on Robot Learning (CoRL), 2017, pp. 1–16.

190 bibliography

[64] X. Du, S. Karaman, and D. Rus, “A general pipeline for 3D
detection of vehicles,” in Proc. IEEE International Conference on
Robotics and Automation (ICRA), 2018, pp. 3194–3200.

[65] M. Enzweiler and D. M. Gavrila, “Monocular pedestrian de-
tection: Survey and experiments,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 31, no. 12, pp. 2179–2195,
2009.

[66] A. de la Escalera, E. Izquierdo, D. Martín, B. Musleh, F. García,
and J. M. Armingol, “Stereo visual odometry in urban envi-
ronments based on detecting ground features,” Robotics and
Autonomous Systems, vol. 80, no. June, pp. 1–10, 2016.

[67] European Comission, “Towards a European road safety area:
Policy orientations on road safety 2011-2020,” 2010.

[68] European Comission: Directorate General for Transport, “An-
nual accident report,” Jun. 2017.

[69] European Comission: Directorate-General Mobility and Trans-
port, “Road safety in the European Union – trends, statistics
and main challenges,” 2018.

[70] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman, “The Pascal Visual Object Classes
challenge: A retrospective,” International Journal of Computer
Vision, vol. 111, no. 1, pp. 98–136, 2014.

[71] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The PASCAL Visual Object Classes (VOC) chal-
lenge,” International Journal of Computer Vision, vol. 88, no. 2,
pp. 303–338, 2010.

[72] Q. Fan, L. Brown, and J. Smith, “A closer look at Faster R-
CNN for vehicle detection,” in Proc. IEEE Intelligent Vehicles
Symposium (IV), 2016, pp. 124–129.

[73] O. Faugeras, Three-dimensional computer vision: a geometric view-
point. MIT Press, 1993.

[74] P. F. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based mod-
els,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 32, no. 9, pp. 1627–1645, 2010.

[76] C. Fernández, C. Guindel, N.-O. Salscheider, and C. Stiller,
“A deep analysis of the existing datasets for traffic light state
recognition,” in Proc. IEEE International Conference on Intelligent
Transportation Systems (ITSC), 2018, pp. 248–254.

[77] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analy-
sis and automated cartography,” Communications of the ACM,
vol. 24, no. 6, pp. 381–395, 1981.

bibliography 191

[78] F. Flohr, M. Dumitru-Guzu, J. F. P. Kooij, and D. M. Gavrila,
“A probabilistic framework for joint pedestrian head and body
orientation estimation,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 16, no. 4, pp. 1872–1882, 2015.

[79] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach.
Prentice Hall, 2012.

[80] U. Franke, D. Pfeiffer, C. Rabe, C. Knoeppel, M. Enzweiler,
F. Stein, and R. G. Herrtwich, “Making Bertha see,” in IEEE
International Conference on Computer Vision Workshops (ICCVW),
2013, pp. 214–221.

[81] A. Fregin, J. Müller, U. Kreßel, and K. Dietmayer, “The DriveU
traffic light dataset: Introduction and comparison with existing
datasets,” in Proc. IEEE International Conference on Robotics and
Automation (ICRA), 2018, pp. 3376–3383.

[82] Y. Freund, R. Schapire, and N. Abe, “A short introduction
to boosting,” Journal-Japanese Society For Artificial Intelligence,
vol. 14, no. 771-780, p. 1612, 1999.

[83] J. Fritsch, T. Kuhnl, and A. Geiger, “A new performance mea-
sure and evaluation benchmark for road detection algorithms,”
in Proc. IEEE International Conference on Intelligent Transportation
Systems (ITSC), 2013, pp. 1693–1700.

[84] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual worlds as
proxy for multi-object tracking analysis,” in Proc. IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 4340–4349.

[85] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez,
P. Martinez-Gonzalez, and J. Garcia-Rodriguez, “A survey on
deep learning techniques for image and video semantic seg-
mentation,” Applied Soft Computing, vol. 70, pp. 41–65, 2018.

[86] F. García, D. Martín, A. de la Escalera, and J. M. Armingol,
“Sensor fusion methodology for vehicle detection,” IEEE Intelli-
gent Transportation Systems Magazine, vol. 9, no. 1, pp. 123–133,
2017.

[87] F. García, J. Urdiales, J. Carmona, D. Martín, and José M. Armin-
gol, “Mobile based pedestrian detection with accurate track-
ing,” in IEEE Intelligent Vehicles Symposium (IV) - Workshop on
Human Factors in Intelligent Vehicles (HFIV’16), 2016, pp. 44–48.

[88] A. Geiger, M. Lauer, C. Wojek, C. Stiller, and R. Urtasun, “3D
traffic scene understanding from movable platforms,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 36,
no. 5, pp. 1012–1025, 2014.

[89] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets
robotics: The KITTI dataset,” The International Journal of Robotics
Research, vol. 32, no. 11, pp. 1231–1237, 2013.

192 bibliography

[90] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for au-
tonomous driving? The KITTI vision benchmark suite,” in
Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2012, pp. 3354–3361.

[91] A. Geiger, F. Moosmann, Ö. Car, and B. Schuster, “Automatic
camera and range sensor calibration using a single shot,” in
Proc. IEEE International Conference on Robotics and Automation
(ICRA), 2012, pp. 3936–3943.

[92] A. Geiger, C. Wojek, and R. Urtasun, “Joint 3D estimation of
objects and scene layout,” in Advances in Neural Information
Processing Systems (NIPS), 2011.

[93] GEM Motoring Assist. The history of automobile safety, [On-
line]. Available: https://blog.motoringassist.com/history-
of-automobile-safety/ (visited on 10/15/2018).

[94] A. Ghodrati, M. Pedersoli, and T. Tuytelaars, “Is 2D information
enough for viewpoint estimation?” In Proc. British Machine
Vision Conference (BMVC), 2014.

[95] R. Girshick, “Fast R-CNN,” in Proc. IEEE International Conference
on Computer Vision (ICCV), 2015, pp. 1440–1448.

[96] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmen-
tation,” in Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2014, pp. 580–587.

[97] ——, “Region-based convolutional networks for accurate ob-
ject detection and segmentation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 38, no. 1, pp. 142–158,
2016.

[98] X. Glorot and Y. Bengio, “Understanding the difficulty of train-
ing deep feedforward neural networks,” Journal of Machine
Learning Research, vol. 9, pp. 249–256, 2010.

[99] M. . Gómez-Silva, J. M. Armingol, and A. de la Escalera, “Multi-
object tracking with data association by a similarity identifi-
cation model,” in Proc. International Conference on Imaging for
Crime Detection and Prevention (ICDP), 2016, 25 (6 .)-25 (6 .)(1).

[100] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT
Press, 2016.

[101] H. Gotzig and G. Geduld, “Automotive LIDAR,” in Handbook
of Driver Assistance Systems: Basic Information, Components and
Systems for Active Safety and Comfort. Springer, 2016, ch. 18,
pp. 405–430.

https://blog.motoringassist.com/history-of-automobile-safety/
https://blog.motoringassist.com/history-of-automobile-safety/

bibliography 193

[109] C. Guindel, J. Beltrán, D. Martín, and F. García, “Automatic
extrinsic calibration for lidar-stereo vehicle sensor setups,” in
Proc. IEEE International Conference on Intelligent Transportation
Systems (ITSC), 2017, pp. 674–679.

[110] C. Guindel, D. Martín, and J. M. Armingol, “Joint object detec-
tion and viewpoint estimation using CNN features,” in Proc.
IEEE International Conference on Vehicular Electronics and Safety
(ICVES), 2017, pp. 145–150.

[111] ——, “Fast joint object detection and viewpoint estimation
for traffic scene understanding,” IEEE Intelligent Transportation
Systems Magazine, vol. 10, no. 4, pp. 74–86, 2018.

[112] ——, “Modeling traffic scenes for intelligent vehicles using
CNN-based detection and orientation estimation,” in ROBOT
2017: Third Iberian Robotics Conference: Volume 2, 2018, pp. 487–
498.

[113] ——, “Stereo vision-based convolutional networks for object
detection in driving environments,” in Computer Aided Systems
Theory - EUROCAST 2017, 2018, pp. 427–434.

[114] C. Guindel, D. Martín, and J. M. Armingol, “Traffic scene
awareness for intelligent vehicles using ConvNets and stereo
vision,” Robotics and Autonomous Systems, vol. 112, pp. 109–122,
2019.

[115] C. Guindel, D. Martín, J. M. Armingol, and C. Stiller, “Analysis
of the influence of training data on road user detection,” in
2018 IEEE International Conference on Vehicular Electronics and
Safety, ICVES 2018, 2018, pp. 21–26.

[116] R. Hartley and A. Zisserman, Multiple view geometry in computer
vision. Cambridge University Press, 2003.

[117] K. He, R. Girshick, and P. Dollár, “Rethinking ImageNet pre-
training,” Tech. Rep., 2018.

[118] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,”
in Proc. IEEE International Conference on Computer Vision (ICCV),
2017, pp. 2980–2988.

[119] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into recti-
fiers: Surpassing human-level performance on ImageNet clas-
sification,” in Proc. IEEE International Conference on Computer
Vision (ICCV), 2015, pp. 1026–1034.

[120] ——, “Deep residual learning for image recognition,” in Proc.
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 770–778.

194 bibliography

[121] D. Hernandez-Juarez, L. Schneider, A. Espinosa, D. Vázquez,
A. M. López, U. Franke, M. Pollefeys, and J. C. Moure, “Slanted
stixels: Representing San Francisco’s steepest streets,” in Proc.
British Machine Vision Conference (BMVC), 2017.

[122] N. Hernández, A. Hussein, D. Cruzado, I. Parra, and J. M.
Armingol, “Applying low cost WiFi-based localization to in-
campus autonomous vehicles,” in Proc. IEEE Conference on Intel-
ligent Transportation Systems, Proceedings (ITSC), 2017, pp. 848–
853, isbn: 9781538615256. doi: 10.1109/ITSC.2017.8317780.

[123] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning
algorithm for deep belief nets,” Neural computation, vol. 18,
no. 7, pp. 1527–1554, 2006.

[124] H. Hirschmüller, “Stereo processing by semiglobal matching
and mutual information,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 30, no. 2, pp. 328–341, 2008.

[125] D. Hoiem, A. A. Efros, and M. Hebert, “Putting objects in
perspective,” International Journal of Computer Vision, vol. 80,
no. 1, pp. 3–15, 2008.

[126] J. Hosang, R. Benenson, P. Dollar, and B. Schiele, “What makes
for effective detection proposals?” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 38, no. 4, pp. 814–830,
2016.

[127] J. Hosang, R. Benenson, and B. Schiele, “A Convnet for non-
maximum suppression,” in German Conference on Pattern Recog-
nition 2016 (GCPR), 2016, pp. 192–204.

[128] ——, “Learning non-maximum suppression,” in Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 4507–4515.

[129] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and C. Igel,
“Detection of traffic signs in real-world images: The German
traffic sign detection benchmark,” in Proc. International Joint
Conference on Neural Networks (IJCNN), 2013.

[130] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
convolutional neural networks for mobile vision applications,”
arXiv:1704.04861 [cs.CV], 2017.

[131] J. Huang, V. Rathod, C. Sun, et al., “Speed/accuracy trade-
offs for modern convolutional object detectors,” in Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 3296–3305.

[132] X. Huang, X. Cheng, Q. Geng, B. Cao, D. Zhou, P. Wang, Y.
Lin, and R. Yang, “The ApolloScape dataset for autonomous
driving,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, 2018, pp. 954–960.

https://doi.org/10.1109/ITSC.2017.8317780

bibliography 195

[133] K. Hyatt and C. Paukert, “Self-driving cars: A level-by-level
explainer of autonomous vehicles,” Roadshow by CNET, Mar. 29,
2018. [Online]. Available: https://www.cnet.com/roadshow/
news/self- driving- car- guide- autonomous- explanation

(visited on 11/15/2018).

[134] INRIX, “INRIX global congestion ranking,” 2018.

[135] International Organization of Motor Vehicle Manufacturers.
World vehicles in use, [Online]. Available: http://www.oica.
net/wp-content/uploads//Total_in-use-All-Vehicles.pdf

(visited on 10/15/2018).

[136] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” in
Proc. International Conference on Machine Learning, 2015, pp. 448–
456.

[137] G. Iyer, K. R. R., J. K. Murthy, and K. M. Krishna, “CalibNet:
Self-supervised extrinsic calibration using 3D spatial trans-
former networks,” in Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2018, pp. 1110–1117.

[138] A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recog-
nition: A review,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 22, no. 1, pp. 4–37, 2000.

[140] M. B. Jensen, M. P. Philipsen, A. Mogelmose, T. B. Moeslund,
and M. M. Trivedi, “Vision for looking at traffic lights: Issues,
survey, and perspectives,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 17, no. 7, pp. 1800–1815, 2016.

[141] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architec-
ture for fast feature embedding,” in Proc. ACM International
Conference on Multimedia, 2014, pp. 675–678.

[142] J. Jin, K. Fu, and C. Zhang, “Traffic sign recognition with hinge
loss trained convolutional neural networks,” IEEE Transactions
on Intelligent Transportation Systems, vol. 15, no. 5, pp. 1991–2000,
2014.

[143] V. John, K. Yoneda, B. Qi, Z. Liu, and S. Mita, “Traffic light
recognition in varying illumination using deep learning and
saliency map,” in Proc. IEEE International Conference on Intelli-
gent Transportation Systems (ITSC), 2014, pp. 2286–2291.

[144] S. Kammel, J. Ziegler, B. Pitzer, et al., “Team annieway’s au-
tonomous system for the 2007 darpa urban challenge,” Journal
of Field Robotics, vol. 25, no. 9, pp. 615–639, 2008.

[145] A. Karpathy. Cs231n convolutional neural networks for visual
recognition, Standford University, [Online]. Available: http:
//cs231n.github.io/convolutional-networks/ (visited on
12/05/2018).

https://www.cnet.com/roadshow/news/self-driving-car-guide-autonomous-explanation
https://www.cnet.com/roadshow/news/self-driving-car-guide-autonomous-explanation
http://www.oica.net/wp-content/uploads//Total_in-use-All-Vehicles.pdf
http://www.oica.net/wp-content/uploads//Total_in-use-All-Vehicles.pdf
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/

196 bibliography

[146] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. K. J., “Reluplex:
An efficient SMT solver for verifying deep neural networks,” in
CAV 2017: Computer Aided Verification (LNCS, vol. 10426), 2017,
pp. 99–117.

[147] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic
optimization,” in Proc. International Conference on Learning Rep-
resentations (ICLR), 2015.

[148] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár, “Panop-
tic segmentation,” in Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 9404–9413.

[149] N. Koenig and A. Howard, “Design and use paradigms for
Gazebo, an open-source multi-robot simulator,” in Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2004, pp. 2149–2154.

[150] W. König, “Guidelines for user-centered development of DAS,”
in Handbook of Driver Assistance Systems: Basic Information, Com-
ponents and Systems for Active Safety and Comfort. Springer, 2016,
ch. 32, pp. 781–796.

[151] K. Konolige, “Small vision systems: Hardware and implemen-
tation,” pp. 203–212, 1998.

[152] P. Koopman and M. Wagner, “Autonomous vehicle safety:
An interdisciplinary challenge,” IEEE Intelligent Transportation
Systems Magazine, vol. 9, no. 1, pp. 90–96, 2017.

[153] I. Krasin, T. Duerig, N. Alldrin, et al., “OpenImages: A public
dataset for large-scale multi-label and multi-class image classi-
fication.,” Dataset available from https://storage.googleapis.

com/openimages/web/index.html, 2017.

[154] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in
Advances in Neural Information Processing Systems (NIPS), vol. 2,
2012, pp. 1097–1105.

[155] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. Waslander, “Joint
3D proposal generation and object detection from view aggre-
gation,” in Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018, pp. 5750–5757.

[156] J. Ku, A. D. Pon, and S. L. Waslander, “Monocular 3D object
detection leveraging accurate proposals and shape reconstruc-
tion,” in Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 11 867–11 876.

[157] K. Kwak, D. F. Huber, H. Badino, and T. Kanade, “Extrinsic
calibration of a single line scanning lidar and a camera,” in
Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2011, pp. 3283–3289.

https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html

bibliography 197

[158] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, pp. 436–444, 2015.

[159] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. E. Hubbard, and L. D. Jackel, “Handwritten digit recogni-
tion with a back-propagation network,” in Advances in neural
information processing systems, 1990, pp. 396–404.

[160] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2323, 1998.

[161] J. Levinson and S. Thrun, “Automatic online calibration of
cameras and lasers,” in Robotics: Science and Systems, 2013.

[162] B. Li, “3D fully convolutional network for vehicle detection
in point cloud,” in Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2017, pp. 1513–1518.

[163] B. Li, T. Zhang, and T. Xia, “Vehicle detection from 3D lidar
using fully convolutional network,” in Robotics Science and Sys-
tems, 2016.

[164] P. Li, T. Qin, and S. Shen, “Stereo vision-based semantic 3D
object and ego-motion tracking for autonomous driving,” in
Computer Vision - ECCV 2018 (LNCS, vol. 11206), 2018, pp. 664–
679.

[165] Y. Li, Y. Ruichek, and C. Cappelle, “3D triangulation based
extrinsic calibration between a stereo vision system and a
LIDAR,” in Proc. IEEE International Conference on Intelligent
Transportation Systems (ITSC), 2011, pp. 797–802.

[166] M. Liang, B. Yang, S. Wang, and R. Urtasun, “Deep continuous
fusion for multi-sensor 3D object detection,” in Computer Vision
- ECCV 2018 (LNCS, vol. 11220), 2018, pp. 663–678.

[167] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S.
Belongie, “Feature pyramid networks for object detection,” in
Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 2117–2125.

[168] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proc. IEEE International Conference
on Computer Vision (ICCV), 2017, pp. 2980–2988.

[169] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects
in context,” in Computer Vision - ECCV 2014 (LNCS, vol. 8693),
2014, pp. 740–755.

[170] T. Litman, “Autonomous vehicle implementation predictions,”
Victoria Transport Policy Institute Victoria, Canada, 2017.

198 bibliography

[171] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.
Fu, and A. C. Berg, “SSD: Single shot multibox detector,” in
Computer Vision - ECCV 2016 (LNCS, vol. 9905), 2016, pp. 21–37.

[172] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 4, pp. 640–
651, 2017.

[173] R. J. López-Sastre, T. Tuytelaars, and S. Savarese, “Deformable
part models revisited: A performance evaluation for object
category pose estimation,” in Proc. IEEE International Conference
on Computer Vision (ICCV), 2011, pp. 1052–1059.

[174] A. M. López, G. Villalonga, L. Sellart, G. Ros, D. Vázquez, J. Xu,
J. Marín, and A. Mozafari, “Training my car to see using virtual
worlds,” Image and Vision Computing, vol. 68, pp. 102–118, 2017.

[175] H. Luo, Y. Yang, B. Tong, F. Wu, and B. Fan, “Traffic sign
recognition using a multi-task convolutional neural network,”
IEEE Transactions on Intelligent Transportation Systems, vol. 19,
no. 4, pp. 1100–1111, 2017.

[176] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year,
1000 km: The Oxford RobotCar dataset,” The International Jour-
nal of Robotics Research, vol. 36, no. 1, pp. 3–15, 2017.

[177] S. Mahendran, H. Ali, and R. Vidal, “3D pose regression using
convolutional neural networks,” in IEEE International Conference
on Computer Vision Workshops (ICCVW), 2017, pp. 2174–2182.

[179] P. Marín-Plaza, J. Beltrán, A. Hussein, B. Musleh, D. Martín,
A. de la Escalera, and J. M. Armingol, “Stereo vision-based
local occupancy grid map for autonomous navigation in ROS,”
in Proc. Joint Conference on Computer Vision, Imaging and Com-
puter Graphics Theory and Applications (VISIGRAPP) - Volume 3:
VISAPP, 2016, pp. 703–708.

[180] M. Maurer, J. C. Gerdes, B. Lenz, H. Winner, et al., Autonomous
Driving. Springer, 2016.

[181] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Doso-
vitskiy, and T. Brox, “A large dataset to train convolutional
networks for disparity, optical flow, and scene flow estima-
tion,” in Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 4040–4048.

[182] M. Menze and A. Geiger, “Object scene flow for autonomous
vehicles,” in Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[183] P. Micikevicius, S. Narang, J. Alben, et al., “Mixed precision
training,” in Proc. International Conference on Learning Represen-
tations (ICLR), 2018.

bibliography 199

[184] D. Milakis, B. Van Arem, and B. Van Wee, “Policy and society
related implications of automated driving: A review of liter-
ature and directions for future research,” Journal of Intelligent
Transportation Systems, vol. 21, no. 4, pp. 324–348, 2017.

[185] A. Møgelmose, M. M. Trivedi, and T. B. Moeslund, “Vision
based traffic sign detection and analysis for intelligent driver
assistance systems: Perspectives and survey,” IEEE Transactions
on Intelligent Transportation Systems, vol. 13, no. 4, pp. 1484–1497,
2012.

[186] P. Moghadam, M. Bosse, and R. Zlot, “Line-based extrinsic cali-
bration of range and image sensors,” in Proc. IEEE International
Conference on Robotics and Automation (ICRA), 2013, pp. 3685–
3691.

[187] H. Moravec and A. Elfes, “High resolution maps from wide
angle sonar,” in Proc. IEEE International Conference on Robotics
and Automation (ICRA), 1985, pp. 116–121.

[188] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecka, “3D
bounding box estimation using deep learning and geometry,”
in Proc. IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017, pp. 7074–7082.

[189] J. K. Murthy, G. V. S. Krishna, F. Chhaya, and K. M. Krishna,
“Reconstructing vehicles from a single image: Shape priors for
road scene understanding,” in Proc. IEEE International Confer-
ence on Robotics and Automation (ICRA), 2017, pp. 724–731.

[190] B. Musleh, D. Martín, J. M. Armingol, and A. de la Escalera,
“Continuous pose estimation for stereo vision based on UV
disparity applied to visual odometry in urban environments,”
in Proc. IEEE International Conference on Robotics and Automation
(ICRA), 2014, pp. 3983–3988.

[191] G. Neuhold, T. Ollmann, S. R. Bulo, and P. Kontschieder, “The
Mapillary Vistas dataset for semantic understanding of street
scenes,” in Proc. IEEE International Conference on Computer Vision
(ICCV), 2017, pp. 4990–4999.

[192] M. Oeljeklaus, F. Hoffmann, and T. Bertram, “A combined
recognition and segmentation model for urban traffic scene un-
derstanding,” in Proc. IEEE International Conference on Intelligent
Transportation Systems (ITSC), 2017, pp. 2292–2297.

[193] ——, “A fast multi-task CNN for spatial understanding of
traffic scenes,” in Proc. IEEE International Conference on Intelligent
Transportation Systems (ITSC), 2018, pp. 2825–2830.

[194] S. Ohl, “Static software architecture of the sensor data fusion
module of the Stadtpilot project,” in Automotive Systems Engi-
neering. Springer, 2013, ch. 5, pp. 81–109.

200 bibliography

[195] E. Ohn-Bar and M. M. Trivedi, “Learning to detect vehicles by
clustering appearance patterns,” IEEE Transactions on Intelligent
Transportation Systems, vol. 16, no. 5, pp. 2511–2521, 2015.

[196] D. Olmeda, C. Premebida, U. Nunes, J. M. Armingol, and A.
de la Escalera, “Pedestrian detection in far infrared images,”
Integrated Computer-Aided Engineering, vol. 20, no. 4, pp. 347–
360, 2013.

[197] OpenCV documentation. Camera calibration and 3D recon-
struction, [Online]. Available: https://docs.opencv.org/
2.4/modules/calib3d/doc/camera_calibration_and_3d_

reconstruction.html (visited on 02/28/2019).

[198] ——, Camera calibration with OpenCV, [Online]. Available:
https://docs.opencv.org/3.4.2/d4/d94/tutorial_camera_

calibration.html (visited on 06/06/2019).

[199] Y. Park, S. Yun, C. S. Won, K. Cho, K. Um, and S. Sim, “Calibra-
tion between color camera and 3D LIDAR instruments with a
polygonal planar board,” Sensors, vol. 14, no. 3, pp. 5333–5353,
2014.

[200] I. Parra Alonso, D. Fernández Llorca, M. Á. Sotelo, L. M.
Bergasa, P. Revenga de Toro, J. Nuevo, M. Ocaña, and M. Á.
García Garrido, “Combination of feature extraction methods
for SVM pedestrian detection,” IEEE Transactions on Intelligent
Transportation Systems, vol. 8, no. 2, pp. 292–307, 2007.

[201] Partnership on Sustainable Low Carbon Transport, “Creating
universal access to safe, clean and affordable transport,” 2013.

[202] B. Pepik, M. Stark, P. Gehler, and B. Schiele, “Teaching 3D
geometry to deformable part models,” in Proc. IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2012,
pp. 3362–3369.

[203] ——, “Multi-view and 3D deformable part models,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 37, no. 11,
pp. 2232–2245, 2015.

[204] M. Pereira, D. Silva, V. Santos, and P. Dias, “Self calibration
of multiple LIDARs and cameras on autonomous vehicles,”
Robotics and Autonomous Systems, vol. 83, pp. 326–337, 2016.

[205] C. C. Pham and J. W. Jeon, “Robust object proposals re-ranking
for object detection in autonomous driving using convolu-
tional neural networks,” Signal Processing: Image Communication,
vol. 53, pp. 110–122, 2017.

[207] Point Cloud Library (PCL) documentation. Getting started /
basic structures, [Online]. Available: http://pointclouds.org/
documentation/tutorials/basic_structures.php (visited on
09/30/2019).

https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/3.4.2/d4/d94/tutorial_camera_calibration.html
https://docs.opencv.org/3.4.2/d4/d94/tutorial_camera_calibration.html
http://pointclouds.org/documentation/tutorials/basic_structures.php
http://pointclouds.org/documentation/tutorials/basic_structures.php

bibliography 201

[208] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum
pointnets for 3D object detection from rgb-d data,” in Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2018, pp. 918–927.

[209] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN
features off-the-shelf: An astounding baseline for recognition,”
in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, 2014, pp. 512–519.

[210] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only
Look Once: Unified, real-time object detection,” in Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 779–788.

[211] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,”
in Proc. IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017.

[212] ——, “YOLOv3: An incremental improvement,” 2018.

[213] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” in
Advances in Neural Information Processing Systems (NIPS), 2015,
pp. 91–99.

[214] ——, “Faster R-CNN: Towards real-time object detection with
region proposal networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, 2017.

[215] S. R. Richter, Z. Hayder, and V. Koltun, “Playing for bench-
marks,” in Proc. IEEE International Conference on Computer Vision
(ICCV), 2017, pp. 2232–2241.

[216] C. H. Rodríguez Garavito, J. Carmona, A. de la Escalera, and
J. M. Armingol, “Stereo road detection based on ground plane,”
in Computer Aided Systems Theory - EUROCAST 2015, 2015,
pp. 748–755.

[217] C. H. Rodríguez Garavito, A. Ponz, F. García, D. Martín, A. de
la Escalera, and J. M. Armingol, “Automatic laser and camera
extrinsic calibration for data fusion using road plane,” in IEEE
International Conference on Information Fusion (FUSION), 2014.

[219] C. H. Rodríguez-Garavito, C. Guindel, and J. M. Armingol,
“Sistema de asistencia a la conducción para detección y clasi-
ficación de carriles,” in XXXVI Jornadas de Automática, 2015,
pp. 26–31.

[220] E. Romera, J. M. Álvarez, L. M. Bergasa, and R. Arroyo, “ERFNet:
Efficient residual factorized ConvNet for real-time semantic
segmentation,” IEEE Transactions on Intelligent Transportation
Systems, vol. 19, no. 1, pp. 263–272, 2018.

202 bibliography

[221] E. Romera, L. M. Bergasa, J. M. Alvarez, and M. Trivedi, “Train
here, deploy there: Robust segmentation in unseen domains,”
in Proc. IEEE Intelligent Vehicles Symposium (IV), 2018, pp. 1828–
1833.

[222] E. Romera, L. M. Bergasa, and R. Arroyo, “Can we unify monoc-
ular detectors for autonomous driving by using the pixel-wise
semantic segmentation of CNNs?” In IEEE Intelligent Vehicles
Symposium (IV) - DeepDriving Workshop, 2016.

[223] F. J. Romero-Ramirez, R. Muñoz-Salinas, and R. Medina-Carnicer,
“Speeded up detection of squared fiducial markers,” Image and
Vision Computing, vol. 76, pp. 38–47, 2018.

[224] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2015,
2015, pp. 234–241.

[225] ROS wiki. Image_pipeline package documentation, [Online].
Available: http://wiki.ros.org/image_pipeline (visited on
06/07/2019).

[226] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez,
“The SYNTHIA dataset: A large collection of synthetic images
for semantic segmentation of urban scenes,” in Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 4321–4330.

[227] F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, “A
systematic review of perception system and simulators for
autonomous vehicles research,” Sensors, vol. 19, no. 3, p. 648,
2019.

[228] C. Rubino, M. Crocco, and A. Del Bue, “3D object localisation
from multi-view image detections,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 40, no. 6, pp. 1281–1294,
2018.

[230] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
internal representations by error propagation,” California Univ
San Diego La Jolla Inst for Cognitive Science, Tech. Rep., 1985.

[231] O. Russakovsky, J. Deng, H. Su, et al., “ImageNet Large Scale
Visual Recognition Challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211–252, 2015.

[232] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach. Pearson, 2016.

[233] SAE International, “Taxonomy and definitions for terms related
to driving automation systems for on-road motor vehicles.
j3016.,” Tech. Rep., 2016.

http://wiki.ros.org/image_pipeline

bibliography 203

[234] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in
Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 4510–4520.

[235] D. Scaramuzza, A. Harati, and R. Siegwart, “Extrinsic self
calibration of a camera and a 3D laser range finder from natural
scenes,” in Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2007, pp. 4164–4169.

[236] B. Schiele and C. Wojek, “Camera based pedestrian detection,”
in. Springer, 2016, ch. 22, pp. 525–545.

[237] N. Schneider, F. Piewak, C. Stiller, and U. Franke, “RegNet:
Multimodal sensor registration using deep neural networks,”
in Proc. IEEE Intelligent Vehicles Symposium (IV), 2017, pp. 1803–
1810.

[238] B. Schwarz, “LIDAR mapping the world in 3D,” Nature Photon-
ics, vol. 4, no. 7, p. 429, 2010.

[239] T. Scott, A. A. Morye, P. Piniés, L. M. Paz, I. Posner, and
P. Newman, “Exploiting known unknowns: Scene induced
cross-calibration of lidar-stereo systems,” in Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2015, pp. 3647–3653.

[240] T. Scott, A. A. Morye, P. Pinies, L. M. Paz, I. Posner, and
P. Newman, “Choosing a time and place for calibration of
lidar-camera systems,” in Proc. IEEE International Conference on
Robotics and Automation (ICRA), 2016, pp. 4349–4356.

[241] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. Lecun, “Pedes-
trian detection with unsupervised multi-stage feature learn-
ing,” in Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2013, pp. 3626–3633.

[242] S. Shi, X. Wang, and H. Li, “PointRCNN: 3D object proposal
generation and detection from point cloud,” in Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2019, pp. 770–779.

[243] A. Shrivastava, A. Gupta, and R. Girshick, “Training region-
based object detectors with online hard example mining,” in
Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 761–769.

[244] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” Proc. International
Conference on Learning Representations (ICLR), 2015.

[245] S. Singh, “Critical reasons for crashes investigated in the na-
tional motor vehicle crash causation survey.,” U. S. Department
of Transportation. National Highway Traffic Safety Administra-
tion., 2015.

204 bibliography

[246] S. Sivaraman and M. M. Trivedi, “Looking at vehicles on the
road: A survey of vision-based vehicle detection, tracking, and
behavior analysis,” IEEE Transactions on Intelligent Transportation
Systems, vol. 14, no. 4, pp. 1773–1795, 2013.

[247] S. Song, S. P. Lichtenberg, and J. Xiao, “SUN RGB-D: A RGB-D
scene understanding benchmark suite,” in Proc. IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2015,
pp. 567–576.

[248] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machine Learning Research,
vol. 15, pp. 1929–1958, 2014.

[249] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs.
computer: Benchmarking machine learning algorithms for traf-
fic sign recognition,” Neural Networks, vol. 32, pp. 323–332,
2012.

[250] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The german
traffic sign recognition benchmark: A multi-class classification
competition,” in Proc. International Joint Conference on Neural
Networks (IJCNN), 2011, pp. 1453–1460.

[251] C. Stiller, A. Bachmann, and A. Geiger, “Fundamentals of
machine vision,” in Handbook of Driver Assistance Systems: Basic
Information, Components and Systems for Active Safety and Comfort.
Springer, 2016, ch. 20, pp. 461–494.

[252] H. Su, C. R. Qi, Y. Li, and L. J. Guibas, “Render for CNN:
Viewpoint estimation in images using CNNs trained with ren-
dered 3D model views,” in Proc. IEEE International Conference
on Computer Vision (ICCV), 2015, pp. 2686–2694.

[253] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-
v4, Inception-ResNet and the impact of residual connections
on learning,” in Proc. AAAI Conference on Artificial Intelligence
(AAAI), 2017, pp. 4278–4284.

[254] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper
with convolutions,” in Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 1–9.

[255] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the Inception architecture for computer vision,” in
Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 2818–2826.

[256] R. Szeliski, Computer vision: algorithms and applications. Springer,
2010.

bibliography 205

[257] O. S. Tas, N. O. Salscheider, F. Poggenhans, S. Wirges, C. Ban-
dera, M. R. Zofka, T. Strauss, J. M. Zollner, and C. Stiller,
“Making Bertha cooperate–Team AnnieWAY’s entry to the 2016

Grand Cooperative Driving Challenge,” IEEE Transactions on
Intelligent Transportation Systems, vol. 19, no. 4, pp. 1262–1276,
2018.

[258] L. Taylor and G. Nitschke, “Improving deep learning using
generic data augmentation,” in Proc. IEEE Symposium Series on
Computational Intelligence (SSCI), 2018, pp. 1542–1547.

[259] D. Teney and J. Piater, “Continuous pose estimation in 2D
images at instance and category levels,” in Proc. International
Conference on Computer and Robot Vision, 2013, pp. 121–127.

[260] C. Thorpe, M. H. Hebert, T. Kanade, and S. A. Shafer, “Vision
and navigation for the Carnegie-Mellon Navlab,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 10, no. 3,
pp. 362–373, 1988.

[261] S. Thrun, M. Montemerlo, H. Dahlkamp, et al., “Stanley: The
robot that won the DARPA Grand Challenge,” Journal of Field
Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[262] W. Tian and M. Lauer, “Tracking objects with severe occlusion
by adaptive part filter modeling — in traffic scenes and be-
yond,” IEEE Intelligent Transportation Systems Magazine, vol. 10,
no. 4, pp. 60–73, 2018.

[263] J. R. R. Uijlings, K. E. A. Van De Sande, T. Gevers, and A. W. M.
Smeulders, “Selective search for object recognition,” Interna-
tional Journal of Computer Vision, vol. 104, no. 2, pp. 154–171,
2013.

[264] United Nations, “Mobilizing sustainable transport for develop-
ment. analysis and policy recommendations from the United
Nations.,” United Nations, 2016.

[265] C. Urmson, J. Anhalt, D. Bagnell, et al., “Autonomous driving
in urban environments: Boss and the Urban Challenge,” Journal
of Field Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[266] M. Velas, M. Spanel, Z. Materna, and A. Herout, “Calibration
of RGB camera with velodyne LiDAR,” in Comm. Papers Proc.
International Conference on Computer Graphics, Visualization and
Computer Vision (WSCG), 2014, pp. 135–144.

[267] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney,
and K. Saenko, “Translating videos to natural language using
deep recurrent neural networks,” in Proc. Human Language
Technologies: Annual Conference of the North American Chapter of
the ACL (NAACL-HLT), 2015, pp. 1494–1504.

206 bibliography

[268] P. Viola and M. Jones, “Rapid object detection using a boosted
cascade of simple features,” in Proc. IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2001, pp. 511–518.

[269] W. Wachenfeld, H. Winner, J. C. Gerdes, B. Lenz, M. Maurer, S.
Beiker, E. Fraedrich, and T. Winkle, “Use cases for autonomous
driving,” in Autonomous Driving. Springer, 2016, ch. 2, pp. 9–37.

[270] S. Wang, M. Bai, G. Mattyus, H. Chu, W. Luo, B. Yang, J. Liang,
J. Cheverie, S. Fidler, and R. Urtasun, “TorontoCity: Seeing the
world with a million eyes,” in Proc. IEEE International Conference
on Computer Vision (ICCV), 2017, pp. 3028–3036.

[271] M. Weber, P. Wolf, and J. M. Zöllner, “DeepTLR: A single deep
convolutional network for detection and classification of traffic
lights,” in Proc. IEEE Intelligent Vehicles Symposium (IV), 2016,
pp. 342–348.

[272] H. Winner, “Automotive RADAR,” in Handbook of Driver As-
sistance Systems: Basic Information, Components and Systems for
Active Safety and Comfort. Springer, 2016, ch. 17, pp. 325–404.

[273] H. Winner, S. Hakuli, F. Lotz, and C. Singer, Handbook of Driver
Assistance Systems: Basic Information, Components and Systems for
Active Safety and Comfort. Springer, 2016.

[274] S. Wirges, T. Fischer, C. Stiller, and J. B. Frias, “Object detection
and classification in occupancy grid maps using deep convo-
lutional networks,” in Proc. IEEE International Conference on
Intelligent Transportation Systems (ITSC), 2018, pp. 3530–3535.

[275] C. Wojek, S. Walk, S. Roth, K. Schindler, and B. Schiele, “Monoc-
ular visual scene understanding: Understanding multi-object
traffic scenes,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 4, pp. 882–897, 2013.

[276] World Health Organization. WHO global ambient air qual-
ity database, [Online]. Available: https : / / www . who . int /

airpollution/data/en/ (visited on 10/15/2018).

[277] ——, “Global status report on road safety 2015,” 2015.

[278] ——, “Global health estimates 2016: Deaths by cause, age, sex,
by country and by region, 2000–2016.,” 2018.

[279] Y. Wu and K. He, “Group normalization,” in Computer Vision -
ECCV 2018 (LNCS, vol. 11217), 2018, pp. 3–19.

[280] Y. Xiang, W. Choi, Y. Lin, and S. Savarese, “Data-driven 3D
voxel patterns for object category recognition,” in Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2015, pp. 1903–1911.

[281] ——, “Subcategory-aware convolutional neural networks for
object detection,” in Proc. IEEE Winter Conference on Applications
of Computer Vision (WACV), 2017, pp. 924–933.

https://www.who.int/airpollution/data/en/
https://www.who.int/airpollution/data/en/

bibliography 207

[282] Y. Xiang, R. Mottaghi, and S. Savarese, “Beyond PASCAL: A
benchmark for 3D object detection in the wild,” in Proc. IEEE
Winter Conference on Applications of Computer Vision (WACV),
2014, pp. 75–82.

[283] M. Xie, L. Trassoudaine, J. Alizon, M. Thonnat, and J. Gallice,
“Active and intelligent sensing of road obstacles: Application
to the European Eureka-PROMETHEUS project,” in Proc. In-
ternational Conference on Computer Vision (ICCV), IEEE, 1993,
pp. 616–623.

[284] B. Yang, M. Liang, and R. Urtasun, “HDNET: Exploiting HD
maps for 3D object detection,” in Proc. Conference on Robot
Learning (CoRL), 2018, pp. 146–155.

[285] F. Yang, W. Choi, and Y. Lin, “Exploit all the layers: Fast and
accurate CNN object detector with scale dependent pooling
and cascaded rejection classifiers,” in Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2129–
2137.

[286] G. Yang, H. Zhao, J. Shi, Z. Deng, and J. Jia, “SegStereo: Exploit-
ing semantic information for disparity estimation,” in Computer
Vision - ECCV 2018 (LNCS, vol. 11211), 2018, pp. 660–676.

[287] L. Yang, J. Liu, and X. Tang, “Object detection and viewpoint
estimation with auto-masking neural network,” in Computer
Vision - ECCV 2014 (LNCS, vol. 8691), 2014, pp. 441–455.

[288] L. Yang, P. Luo, C. C. Loy, and X. Tang, “A large-scale car
dataset for fine-grained categorization and verification,” in
Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 3973–3981.

[289] J. J. Yebes, L. M. Bergasa, R. Arroyo, and A. Lazaro, “Supervised
learning and evaluation of KITTI’s cars detector with DPM,” in
Proc. IEEE Intelligent Vehicles Symposium (IV), 2014, pp. 768–773.

[290] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and
T. Darrell, “BDD100K: A diverse driving video database with
scalable annotation tooling,” 2018.

[291] M. D. Zeiler and R. Fergus, “Visualizing and understand-
ing convolutional networks,” in Computer Vision - ECCV 2014
(LNCS, vol. 8689), 2014, pp. 818–833.

[292] Y. Zeng, Y. Hu, S. Liu, J. Ye, Y. Han, X. Li, and N. Sun, “RT3D:
Real-time 3D vehicle detection in lidar point cloud for au-
tonomous driving,” IEEE Robotics and Automation Letters, vol. 3,
no. 4, pp. 3434–3440, 2018.

[293] H. Zhang, A. Geiger, and R. Urtasun, “Understanding high-
level semantics by modeling traffic patterns,” in Proc. IEEE In-
ternational Conference on Computer Vision (ICCV), 2013, pp. 3056–
3063.

208 bibliography

[294] S. Zhang, R. Benenson, and B. Schiele, “CityPersons: A diverse
dataset for pedestrian detection,” in Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 3213–
3221.

[295] Z. Zhang, “A flexible new technique for camera calibration,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 22, no. 11, pp. 1330–1334, 2000.

[296] Y. Zhou and O. Tuzel, “VoxelNet: End-to-end learning for point
cloud based 3D object detection,” in Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018, pp. 4490–
4499.

[297] Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li, and S. Hu, “Traffic-
sign detection and classification in the wild,” in Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 2110–2118.

[298] J. Ziegler, P. Bender, M. Schreiber, et al., “Making Bertha drive
— an autonomous journey on a historic route,” IEEE Intelligent
Transportation Systems Magazine, vol. 6, no. 2, pp. 8–20, 2014.

[299] J. Ziegler, H. Lategahn, M. Schreiber, C. Keller, C. Knoppel,
J. Hipp, M. Haueis, and C. Stiller, “Video based localization
for BERTHA,” in Proc. IEEE Intelligent Vehicles Symposium (IV),
2014, pp. 1231–1238.

	Acknowledgments
	Published and submitted content
	Other research merits
	Abstract
	Resumen
	Contents
	List of Figures
	List of Tables
	Acronyms
	 Problem statement and literature review
	1 Introduction
	1.1 Motivation
	1.1.1 Traffic accidents
	1.1.2 Air pollution and climate change
	1.1.3 Congestion

	1.2 Automated driving
	1.2.1 Driver assistance systems
	1.2.2 Autonomous driving

	1.3 Perception systems
	1.3.1 Sensors
	1.3.2 Algorithms

	1.4 Objectives
	1.5 Outline of the dissertation

	2 Related works
	2.1 Historical autonomous driving platforms
	2.2 Datasets
	2.2.1 Object recognition
	2.2.2 Driving environments
	2.2.3 Synthetic datasets

	2.3 Sensor calibration
	2.3.1 Camera intrinsic parameters
	2.3.2 Extrinsic parameters

	2.4 Convolutional neural networks
	2.4.1 Historical evolution
	2.4.2 Fundamentals
	2.4.3 Architectures for image recognition

	2.5 Object detection in images
	2.5.1 Historical evolution
	2.5.2 Meta-architectures
	2.5.3 Training
	2.5.4 Inference

	2.6 Perception on automotive platforms
	2.6.1 Object classification and detection
	2.6.2 Viewpoint estimation
	2.6.3 Obstacle 3D localization
	2.6.4 Multi-tasking and scene understanding

	2.7 Conclusion

	 Proposed approaches and experimental results
	3 Sensor setup
	3.1 Fundamentals
	3.1.1 Monocular cameras
	3.1.2 Stereo cameras
	3.1.3 Lidar

	3.2 Data representation
	3.2.1 Stereo matching
	3.2.2 Lidar

	3.3 Sensor calibration
	3.3.1 Intrinsic calibration
	3.3.2 Extrinsic calibration

	3.4 Automatic stereo-lidar extrinsic calibration
	3.4.1 Introduction
	3.4.2 Feature extraction from stereo data
	3.4.3 Registration
	3.4.4 Experimental results
	3.4.5 Additional remarks

	3.5 Conclusion

	4 Object detection
	4.1 Faster R-CNN paradigm
	4.1.1 Design principles
	4.1.2 Training

	4.2 Tuning for traffic environments
	4.2.1 KITTI object detection benchmark
	4.2.2 Hyperparameter tuning of the detection framework
	4.2.3 Experimental setup and preliminary assessment

	4.3 Enhanced detection using stereo vision
	4.3.1 Depth information encoding
	4.3.2 Experimental results

	4.4 Analysis of the influence of training data
	4.4.1 Experimental setup
	4.4.2 Analysis

	4.5 Conclusion

	5 Viewpoint estimation
	5.1 Problem formulation
	5.1.1 Orientation in the KITTI dataset

	5.2 Viewpoint estimation within Faster R-CNN
	5.2.1 Interpretation of the probability distribution
	5.2.2 Training
	5.2.3 Experimental results

	5.3 Identification of factors affecting the performance
	5.3.1 Training hyperparameters
	5.3.2 Number of proposals
	5.3.3 Viewpoint bins resolution
	5.3.4 Feature extractor architecture, input scale, and combinations
	5.3.5 Training data

	5.4 Improvements in the baseline solution
	5.4.1 Hybrid viewpoint estimation
	5.4.2 Validation of the general approach in modern frameworks

	5.5 Conclusion

	6 Object localization
	6.1 Object localization based on stereo data
	6.1.1 Extrinsic auto-calibration
	6.1.2 Object 3D localization
	6.1.3 Experimental results
	6.1.4 Scene modeling

	6.2 Object detection and localization based on lidar data
	6.2.1 Detection and yaw estimation in lidar data
	6.2.2 Experimental results

	6.3 Conclusion

	 Concluding remarks
	7 Conclusion and future work
	7.1 Conclusion
	7.2 Future work

	 Appendix
	A Additional cues for scene understanding
	A.1 Lane detection and classification
	A.2 Road signaling classification
	A.2.1 Detection
	A.2.2 Traffic sign classification
	A.2.3 Traffic light classification

	A.3 Semantic segmentation

	 Bibliography

