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ABSTRACT 

 
 
 Invasive species serve as a threat to native biodiversity and ecosystem sustainability. 

Combatting the spread of invasive species requires long-term physical and monetary 

commitments. In Balule Nature Reserve of Greater Kruger National Park, South Africa, 

Opuntia ficus-inidica (the common prickly pear) has been a relentless invader, displacing 

the local flora and fauna. The goal of this project is to battle invasive species such as 

prickly pear using efficient and inexpensive technology: unmanned aerial vehicles 

(UAVs or drones) and multispectral sensors.  

 Using a 4-bandwidth Parrot Sequoia multispectral sensor in tandem with the DJI 

Phantom Pro 3TM UAV, images of land plots were collected in the summer of 2018 on 

Balule Nature Reserve and surrounding areas in South Africa. From the images collected, 

maps were created using the mapping software Pix4D Mapper. Vegetation indices were 

created in which certain properties of vegetation are highlighted, assisting in plant 

identification. Using geographical informational system (GIS) software, classifications 

will be performed in which the multispectral data serves an important role. Multispectral 

sensors capture images in varying bandwidths; by collecting images in the red, green, red 

edge, and near-infrared bandwidths, there is potential for creating unique spectral 

signatures specific to individual objects such as prickly pear. Once a spectral signature is 

determined, a computer can then potentially perform unsupervised classifications to 

identify prickly pear solely from aerial images. 
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INTRODUCTION 

 
 

In the United States, it is estimated that approximately $120 billion are spent in 

damages due to invasive species every year (USFWS, 2012). These costs include, but are 

not limited to, prevention, detection, response, management, and habitat restoration 

(USFWS, 2012). Invasive species serve as a threat to native biodiversity and ecosystem 

sustainability (Lemke et al., 2013). Often introduced to ecosystems by accident or for 

personal use, invasive plant species proliferate in the ecosystem to which they have been 

introduced by taking advantage of nutrients that would otherwise sustain the native 

vegetation. This creates a competition between invasive and native plants and deteriorates 

the ecosystem. 

In South Africa, many invasive species have been introduced to provide food, raw 

materials, ecosystem control, or often by accident (Zengeya et al., 2017). Some invasive 

plants that have spread across regions of South Africa and negatively affected the 

ecosystems they invaded are Chromolaena odorata (triffid weed), Jacaranda mimosifolia 

(jacaranda), and Atriplex species (saltbushes) (Richardson & Van Wilgen, 2004). These 

species displayed rapid growth in both size and range before biological agents were used 

to decrease their expansion. Many species of cacti, grasses, and tree species like acacias, 

eucalyptus and pines (Zengeya et al., 2017) have also invaded the Eastern Cape, 

Gauteng, Free State, Mpumalanga, Limpopo, and the Western Cape provinces. One 

genus of cactus, Opuntia, is a significant invader of the Mpumalanga and Limpopo 

provinces (Invasive Species South Africa, 2019), wreaking havoc in Kruger National 
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Park and private nature reserves. Some species of Opuntia that have invaded South 

Africa are O. aurantiaca (jointed cactus), O. ficus-indica (the common prickly pear), and 

O. humifusa (eastern prickly pear) (Zengeya, 2017). Opuntia cacti are characterized by 

prickly cactus pads; many species also bear a spiny, pear-like fruit on top of the stalks. 

For this reason, Opuntia are nicknamed “prickly pear”. 

 
   Figure 1- An image of Opuntia ficus-indica (Rignanese, L. 2005) 

 
To combat the spread of prickly pear through the South African savanna, wildlife 

biologists and park personnel often must traverse the land by foot and search for 

individual prickly pear plants. Prickly pears and other invasive species can be eliminated 

through herbicides or biological control agents, such as insects or fungi like Verticillium 

lecanii and Hirsutella thompsonii (CABI, 2019) (Hall & Papierok, 1982). However, this 

method of searching for and eliminating prickly pear by foot is time-costly, expensive, 

dangerous due to the environment, and requires a lot of manual labor. Prickly pears are 

often also surrounded by tall grasses and thorny bushes and trees, making them hard to 
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reach or spot. To avoid these obstacles, scientists have begun exploring various methods 

of invasive species monitoring and habitat analysis. 

Remote sensing is often utilized to detect, map and monitor wild vegetation, 

providing a plethora of methods to collect multispectral data and perform cost-effective 

habitat analysis (Joshi, et al., 2004). Remote sensing can be achieved through satellite 

imagery or other multispectral or hyperspectral imagery, and it is often integrated with 

geographical information systems (GIS) to map plant distributions and invasive species 

patterns, creating decision support systems (Hegazy & Kaloop, 2015). Unmanned aerial 

vehicles (UAVs), when used with multispectral sensors, provide a means of capturing 

landscape images and vegetation structures at higher resolutions than satellite imagery 

and are more economical than using manned aircraft to survey ecosystems (Matese et al., 

2015; Carl et al., 2017). Multispectral sensors capture reflected electromagnetic energy in 

multiple, discrete-wavelength bands which provide information concerning land 

properties (Neha et al., 2016). These data can be used to develop various vegetation 

indices to analyze land cover, providing detailed information about species distribution, 

soil properties, and condition of land. 

Vegetation indices allow for precision agriculture, combining data from several 

spectral bands to accentuate vegetation properties such as canopy characteristics, 

radiation absorption, and chlorophyll content (Candiago, et al. 2015). Some commonly 

used vegetation indices include the Normalized Difference Vegetation Index (NDVI), 

Leaf Area Index (LAI), and Soil-Adjusted Vegetation Index (SAVI).  In order to generate 

a vegetation index, remote images must first be obtained from sensors on a platform. 

Before modern technological advances in UAVs, these platforms were primarily satellites 
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and manned aircrafts (Candiago, et al., 2015). However, the images derived from these 

platforms were often of poor resolution. Using modern technology, more platforms are 

available readily and at low-cost, such as UAVs. Multispectral sensors on UAVs can 

capture images at a much higher resolution and provide more data in a shorter amount of 

time than can most satellite-acquired images  

Images captured at different wavelengths on the electromagnetic spectrum 

highlight unique features within the spectral signature of an object (Turner, et al. 2003). 

For example, because the near-infrared band reflects light between 800 and 2500 nm on 

the electromagnetic spectrum, it can highlight moisture within plants, allowing for a 

statistical evaluation of vegetation moisture levels (Turner et al., 2003). To make 

quantitative measurements, various aspects of energy, sensitivity, and absorption are 

combined. Because Opuntia are cacti, we considered moisture level an important aspect 

for potential identification using remotely sensed data. Other succulent plant species 

might be confused with Opuntia due to similar moisture levels. If different plants are 

similar in leaf moisture content, it is possible that when creating vegetation indices, the 

moisture levels indicated in the near-infrared band for the different plants could overlap. 

This could make it difficult for classification software and algorithms to differentiate 

between species.  

 Scientists in Australia have utilized both satellite imagery and UAVs to map and 

detect invasive species. Ahsan et al. (2016) collected data from six weed species in four 

different areas in Australia to determine if UAV and satellite imagery can be used for 

weed management programs while eliminating “guess-work” (Ahsan, et al., 2016). First, 

ground-truthed data were collected to train both multi-scale and multi-class algorithms 
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and specialized classification algorithms to detect six different weed species: Nassella 

trichotoma (serrated tussock), Lycium ferocissium (African boxthorn), Mimosa pudica 

(mimosa), Sclerolaena birchii (galvanized burr), Harrisia martini (harrisia cactus), and 

Pilosella aurantiaca (orange hawkweed). Human experts trained the algorithms by 

annotating example weed locations in the imagery collected. Then, both multi-rotor and 

fixed-wing UAVs were used to collect data. The multi-rotor UAV provided more useful 

data. These data were then run through the algorithms. The authors achieved detection 

accuracy of 73% (serrated tussock), 80% (African boxthorn), 73% (mimosa), and 89% 

(galvanized burr). The automated detection of weeds greatly reduces the manual effort 

needed to conduct weed surveys, thereby increasing spatial and temporal scope of 

surveys. The results from this study provide a promising foundation for the use of UAVs 

in invasive plant detection. 

After performing extensive background research, we hypothesized that unique 

spectral signatures could be created to identify Opuntia using information from vegetation 

indices created using images collected from a multispectral sensor. We also hypothesized 

that spectral signatures can be developed to differentiate between different species of 

succulent plants and that UAV-based analysis will produce results that strongly correlate 

with in situ location efforts. The goal of this project is to minimize the environmental 

dangers and costs of finding and battling invasive species.
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METHODS 

 
 
Study Area 

Prickly pear, consumed by humans and other animals, are very cold-tolerant cacti 

and proliferate the most in the summer, thriving in areas with long summers and mild 

winters (CABI, 2020). Like other cacti, prickly pear grows exceptionally well in arid and 

semi-arid climates (Arba et al., 2017). The study areas on and around Balule Nature 

Reserve have the ideal climate for prickly pear and other succulents to proliferate.  

 Balule Nature Reserve is a private nature reserve that is a part of the Associated 

Private Nature Reserves (APNR) of Kruger Park. Located in the Limpopo province of 

South Africa, Balule borders western Kruger National Park and is characterized as part of 

the lowveld savanna with a semi-arid climate (Olifants West Nature Reserve, 2015). In 

recent decades, the area has received an annual average rainfall of 415 mm, categorizing 

it as semi-arid savannah (Wade, 2016). Balule is known to have stable and moderate 

levels of perennial grasses, but vegetation levels and conditions are highly dependent on 

annual rainfalls and climate changes (Peel, 2015). The last decade has seen lower 

amounts of annual rainfall and more frequent droughts, causing a decrease in the amount 

of forage during the dry season. This area of Limpopo experiences mild winters and very 

hot summers with variable rainfall and wildfires. Some common plants and woody trees 

in Kruger National Park and present in the study areas are red bush willow (Combretum 

apiculatum), knobthorn (Acacia nigrescens), grasses of the genus Eragrostis (Scholtz et 

al., 2014), and velvet raison (Grewia flava) (Peel, 2015). These plants were seen 
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commonly among the study areas and were present around the prickly pear plants located 

for study.  

Plots of land in Balule and the surrounding area were designated as flight plots 

based on criteria such as level of accessibility and vegetation and prickly pear 

distribution. The plots were either known to have prickly pear, contained no prickly pear, 

or had unknown levels of prickly pear, if any. We chose 20 sites ranging from 0.9 to 3.9 

ha. A map of the reserve was used to select roughly rectangular plots in these areas, and 

the GPS coordinates of the plots were obtained using ArcGIS. With assistance from 

reserve personnel and volunteers, we surveyed these plots on foot for prickly pear from 

May 24th, 2018 to June 19th, 2018. The GPS coordinates of any prickly pear found were 

recorded. A comprehensive list of the coordinates of the four corners and the locations of 

the prickly pears in the plots is in Table 1.  

To ensure that the data could be georeferenced, each of the four corners were 

marked with large white rocks that were visible in the images captured. The same was 

done with each known prickly pear; a rock spray-painted white or white plastic bag was 

placed two meters away from the plant in the direction of the sun and the GPS 

coordinates were recorded again for accuracy. In order to minimize the effects of 

shadows when analyzing the data, a time frame was chosen in which the sun was at its 

highest point, reducing the prominence of shadows in the images captured. For this 

reason, all flights were completed between 11:00 a.m. and 1:00 p.m. local time. The 

above process was repeated for one plot containing Cereus jamacaru (Queen of the 

Night), one plot containing Aloe vera, and two plots containing Euphorbia ingens 

(euphorbia).  
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If different plants are similar in leaf moisture content, it is possible that when 

creating vegetation indices, the moisture levels indicated in the near-infrared band for the 

different plants could overlap. This could make it difficult for classification software and 

algorithms to differentiate between species. Some plants we considered for possible 

confusion were Aloe Vera, plants of the genus Euphorbia, and Queen of the Night, a 

flowering cactus also considered an invasive species in South Africa. However, use of 

other spectral bands or visual assessment of composite images may allow us to 

distinguish species.  

Hardware, Software, and Data Acquisition  

 Sensor- The Parrot SequoiaTM agricultural sensor has two main components that 

ensure accurate and reliable data acquisition (Parrot, 2019). The first is the Multispectral 

Sensor, which contains four, 1.2-megapixel monochrome sensors: green (550 nm - 40 

nm), red (660 nm - 40 nm), red edge (735 nm - 10 nm), and near infrared (790 nm - 

40nm). The multispectral sensor also has one, 16-megapixel RGB sensor. The second 

component, the Sunshine sensor, has a GPS module, an SD card slot, 2 GB internal 

storage, and is also used to minimize the effects of variations in light during image 

capture.  

Setup- The DJI Phantom Pro 3TM (DJI, 2020) originally came with a camera and 

gimble for aerial visual imagery. This apparatus was detached from the UAV and the 

Parrot Sequoia sensor was connected to the main power source. A 32 GB SD card was 

inserted into the Sunshine Sensor, which we mounted above the body of the UAV. Once 

the appropriate parts were assembled, the UAV controller was wirelessly connected to 

the drone through the PrecisionFlightTM (PrecisionHawk, 2010) application accessible on 
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an iPhone 8. In order to ensure a precise flight that could be monitored at all times, 

Precisionflight, which is a flight planner app, was used to map and control each flight.  

Using the information collected from surveying each plot and marking the 

appropriate locations, I used the GPS coordinates of each corner to create a map of the 

plot. On the interface of the app, the flight path that the UAV was predicted to take could 

be manipulated; the overall flight distance and time changed based on what path was 

chosen. The above-surface altitude at which the UAV flew was set at 40 meters for every 

flight. Only one battery could be used at a time in the UAV, so battery life was a major 

factor when determining flight paths and plot areas. The sensor provided its own WiFi 

network that allowed the user to access the Parrot Sequoia user interface, view the 

sensor’s specifications, and manipulate the sensor’s settings. The user interface enabled 

the controller to change parameters such as whether the images should be stored onto the 

SD card or internal storage and at what distance interval each image should be taken 

when set to capture images based on GPS location. For all flights, the sensor was set to 

capture an image every five meters, including take-off and landing. Image overlap is an 

important feature when collecting aerial images.  

When a mapping software is “stitching” the images together, increased overlap 

between images helps in creating a better three-dimensional scene or seamless two-

dimensional one (Drones Made Easy, 2020). Based on altitude and flying speed, we 

determined that a five-meter overlap was adequate. Before each flight, the sensor had to 

be activated through the interface so that the images would automatically be captured 

once flight began. The “Come Home” function of the UAV allowed the drone to 

automatically land from where it took off by recording the GPS coordinates of this 
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location. This function is automatically utilized if the battery runs low during flight and 

for un-piloted flights. However, the drone would often land a few meters away from 

where it took off. Because of the dense vegetation and obstructions around takeoff 

locations, manual control of landing was often required using the controller, which had 

full access to manipulate the drone’s actions during flight. Once each flight was 

complete, the acquired images were transferred to a hard drive, along with a document 

containing the GPS coordinates of each corner and prickly pear plant coordinates paired 

with pictures of each plant taken on an iPhone.  

Data Analysis- Prickly Pear  

 A mapping software was chosen that had the features necessary to accomplish our 

basic goals. Pix4Dmapper (Pix4D, 2020) is a cloud-based software that allows the user to 

import images taken on the Parrot Sequoia. These images can then be processed in a 

multitude of ways that highlight various aspects of the plot flown. The initial processing 

stage allows for the input of ground control points (GCPS), calibration of various camera 

parameters, and geolocation of GPS coordinates and GCPs. The second processing step 

builds on the data created in the first step to create a point cloud and 3D textured mesh 

that represent and visualize the shape of the model presented in the map. The third and 

final processing step produces a digital surface model, a 2D orthomosaic map, a 

reflectance map, and an index map. The index map is created by utilizing information 

extracted from each pixel to determine the bandwidth values at each pixel’s location. The 

reflectance values from each bandwidth (red, green, blue, red edge, and near infrared) are 

then combined and processed through an algorithm, which is specific to the index being 

produced.  
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The software also allows the user to use predefined vegetation indices or input 

algorithms for their own preferred index. Pix4dDapper has a pre-programmed NDVI 

(Normalized Difference Vegetation Index) algorithm, so for every map produced, an 

NDVI map was created. The equation used to produce NDVIs is 𝑵𝑫𝑽𝑰 = 	 (𝑵𝑰𝑹)𝑹𝒆𝒅)
(𝑵𝑰𝑹-𝑹𝒆𝒅)

  

The data produced in these maps were then exported in the form of geoTIFF and 

TIF files containing the geographic coordinates for each pixel and its spectral value 

derived from the NDVI equation. Along with this processing, individual reflectance maps 

for the green, near infrared, red, and red edge bandwidths were also created. After 

researching other vegetation indices that would facilitate differentiation based on 

moisture levels, maps were created using the Optimized Soil Adjusted Vegetation Index 

(OSAVI) (Rondeaux et al., 1996). The formula used to create maps using the OSAVI 

is	𝑶𝑺𝑨𝑽𝑰 = 	 (𝑵𝑰𝑹)𝑹𝒆𝒅)
(𝑵𝑰𝑹-𝑹𝒆𝒅-𝟎.𝟏𝟔)

  

Through QGISTM software, supervised classifications are to be performed by 

associates at Balule Nature Reserve. In the supervised classifications, the program will be 

told which pixels included prickly pear. These will be determined through cross referencing 

the coordinates compiled during field work. By analyzing the spectral values at these 

pixels, the computer will assign prickly pear with a specific spectral signature. This 

signature will then be used to analyze imagery from plots with unknown amounts of prickly 

pear and identify pixels that potentially have prickly pear.
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RESULTS 

 
 

Table 1 shows each site flown and the date at which it was completed and 

includes the coordinates of the four corners of each plot.   

Site Date and Number 4 Corner Coordinates 

5-24-18 site 1 (-24.19657, 30.81456), (-24.19620, 30.81507), 
(-24. 19696, 30.81501), (-24.19726, 30.81506) 

5-24-18 site 2 (-24.19629, 30.8155), (-24.19639, 30.815544),  
(-24.19667, 30.81552), (-24.19671, 30.81576) 

5-24-18 site 3 (-24.19338, 30.81689), (-24.19370, 30.81685),  
(-24.19326, 30.81754), (-24.19353, 30.81748) 

5-25-18 site 1 (-24.21402, 30.88278), (24.21365, 30.88323), 
(-24.21351, 30.88336), (-24.21357, 30.88222) 

5-25-18 site 2 (-24.21726, 30.88766), (-24.21657, 30.88830),  
(-24.21767, 30.88889), (-24.21776, 30.88825) 

5-25-18 site 3 (-24.21726, 30.88766), (-24.21657, 30.88830),  
(-24.21767, 30.88889), (-24.21776, 30.88825) 

5-28-18  site 1 (-24.18631, 30.84628), (-24.18623, 30.84755),  
(-24.18803, 30.84758), (-24.18856, 30.84909) 

5-28-18  site 2 (-24.18695, 30.84102), (-24.18695, 30.84267),  
(-24.18905, 30.84164), (-24.18899, 30.84279) 

5-29-18  site 1 (-24.18860, 30.82835), (-24.18863, 30.82980),  
(-24.19034, 30.83030), (-24.19035, 30.82853) 

5-29-18  site 2 (-24.18812, 30.83166), (-24.18812, 30.83315),  
(-24.18998, 30.83324), (-24.19003, 30.83178) 

5-30-18 site 1 (-24.22504, 30.95387), (-24.22411, 30.95457),  
(-24.20539, 30.85571), (-24.20551, 30.85477) 

5-31-18 site 1 (-24.19519, 30.91610), (-24.19547, 30.91710),  
(-24.19465, 30.91730), (-24.19428, 30.91548) 

5-31-18 site 2 (-24.20439, 30.85533), (-24.20451, 30.85431),  
(-24.20539, 30.85571), (-24.20551, 30.85477) 

6-1-18 site 1 (-24.19562, 30.82954), (-24.19380, 30.82885),  
(-24.19409, 30.82961), (-24.19542, 30.83046) 

6-1-18 site 2 (-24.19756, 30.82978), (-24.19782, 30.83131),  
(-24.19521, 30.83166), (-24.19567, 30.82994) 

6-1-18 site 3 (-24.19590, 30.82915), (-24.19732, 30.82910),  
(-24.19710, 30.82861), (-24.19542, 30.82833) 

6-15-18 site 1 (-24.19195, 30.86355), (-24.19206, 30.86672),  
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(-24.19296, 30.86646), (-24.19301, 30.86414) 

6-16-18 site 1 (-24.19112, 30.86183), (-24.19102, 30.86308),  
(-24.19325, 30.86330), (-24.19326, 30.86218) 

6-16-18 site 2 (-24.18015, 30.86319), (-24.18054, 30.86289),  
(-24.18068, 30.86339), (-24.18043, 30.86398) 

6-19-18 site 1 (-24.22018, 30.86956), (-24.22012, 30.86646),  
(-24.22105, 30.86961), (-24.22100, 30.86650) 

 
Table 1: Flight dates, site number, and corner coordinates. 

 
Figure 2 shows the orthomosaic map created of a plot after the initial processing 

stage is completed. This shows the entire plot flown with the normal RGB camera 

images. Figure 3 shows the same map from 5-24 site 2 after an NDVI has been created 

using the data acquired. 

    

    Figure 2: Orthomosiac map of 5-24 site 2            Figure 3: NDVI map of 5-24 site 2 
 

The following figures (Figures 4-12) display the maps for Site 1, collected on June 15, in 

RGB, green, near infrared, red, red-edge, NDVI, and OSAVI.  
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Figure 4: Orthomosaic map of 6-15 site 1, area with prickly pear enclosed in red square 

 

 
                Figure 5: Picture of prickly pear from 6-15 site 1 



 

15 

 
Figure 6: Aerial view of the orthomosaic map from 6-15 site 1 with  

prickly pear locations circled in red 

 
Figure 7: Aerial view of the green reflectance map from 6-15 site 1  

with prickly pear locations circled in red 
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Figure 8: Aerial view of the near infrared reflectance map from 

 6-15 site 1 with prickly pear locations circled in red 

 
Figure 9: Aerial view of the red reflectance map from 6-15 site 1 

with prickly pear locations circled in red 
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Figure 10: Aerial view of the red edge reflectance map from 6-15  

site 1 with prickly pear locations circled in red 

 
Figure 11: Aerial view of the NDVI map from 6-15 site 1 with  

prickly pear locations circled in black 
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Figure 12: Aerial view of the OSAVI map from 6-15 site 1 with prickly 

 pear locations circled in black 
 

After creating maps of both the indices and all of the reflectances in 

Pix4Dmapper, I chose a site which contained a considerable prickly pear collection and 

used the software TNTatlasTM (TNTatlas, 2020) to locate the plants using GPS 

coordinates. After precisely determining where two of the many prickly pear plants was 

for this site, I circled the area in each of the seven maps. Although this site had many 

prickly pear locations, I chose the most heavily inhabited area, opting to forgo locating 

the very small or individual plants as these would be very difficult to see from the altitude 

at which the images were taken. After studying these images, I concluded that both the 

green and near infrared reflectances best highlighted prickly pear. While the brightness of 

the circled area varies between reflectances and indices, it is hard to distinguish our 

preferred vegetation due to lack of classifications.  
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Figure 13: Zoomed in view of green reflectance map  

distinguishing prickly pear 
 

 
Figure 14: Zoomed in view of near infrared reflectance  

map distinguishing prickly pear 
.
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DISCUSSION 

 
 

The two vegetation indices we used were NDVI and OSAVI. NDVI assists in 

differentiating between plants and soil through NIR and red reflectance values 

(MicaSense, 2020). NDVIs are most effective when using data collected in areas with 

little to medium canopy density. We collected our data in May and June of 2018, during 

the winter season when vegetation and green cover were relatively low due to low rainfall 

and inadequate temperatures. This, in theory, facilitated a higher NDVI sensitivity. The 

NDVI, while one of the leading indices for measuring vegetative properties using remote 

sensing applications, can often be less reliable and more vulnerable to solar geometry, 

soil background, and atmospheric effects than other indices more tailored to aerial data 

acquisition (Rondeaux et al., 1996). Soil adjusted vegetation indices perform better at 

measuring specific vegetation properties than NDVIs when the soil background is 

unknown, specifically the optimized soil adjusted vegetation index (OSAVI) (Rondeaux 

et al., 1996). In the OSAVI algorithm, 0.16 serves as the soil adjustment coefficient 

(MicaSense, 2020). This coefficient effectively reduces NDVI’s soil background 

reflectance and variable environment condition sensitivity. While computer 

classifications are part of the future direction of this product, it is hard to tell from simple 

visual analysis what the different various vegetation indices tell us about the spectral 

signatures of prickly pears.  

While careful considerations of study area, technological restrictions, and data 

analysis were taken before, during, and after field data acquisition, there are some areas 
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in which improvement could be made. Firstly, we ran into many technical issues 

throughout the process. This could have been avoided by fully preparing the equipment 

before beginning field work. However, the sensor could not have been attached to the 

drone beforehand due to travel restrictions and safety measures. A period of time directly 

before beginning data acquisition at Balule was spent figuring out the software, firmware, 

and user interfaces of the many phone applications used to test and fly the drone. It would 

have been ideal to become familiar with the equipment before travelling to South Africa. 

Towards the end of field work, the sensor malfunctioned, cutting short the amount of data 

we wanted to collect. By studying the UAV and software used beforehand, this issue 

likely could have been fixed while still performing field work.  

Our partners in South Africa are currently working to perform supervised and 

unsupervised classifications on all of the flights performed. They are working with GIS 

software to assign prickly pear a unique signature and to attempt to identify prickly pear in 

the plots we flew with minimal false positive results. The information gathered in this study 

is intended to make easier the process of invasive species control. We hope that once our 

result goals are reached, we can create a pathway for scientists and conservation biologists 

to battle harmful species in a safe and manageable way, minimizing injury and time and 

financial costs.
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