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ABSTRACT 

 

A mathematical model for the healing response of diabetic foot ulcers was 

developed using averaged data (Krishna et al., 2015).  The model contains four major 

factors in the healing of wounds using four separate differential equations with 12 

parameters.  The four differential equations describe the interactions between matrix 

metalloproteinases (MMP-1), tissue inhibitors of matrix metalloproteinases (TIMP-1), the 

extracellular matrix (ECM) of the skin, and the fibroblasts, which produce these proteins.  

Recently, our research group obtained the individual patient data that comprised the 

averaged data.  The research group has since taken several approaches to analyze the 

model with the individual patient data.  One approach was to introduce mixed modeling 

techniques on certain parameters in that model.  Mixed effects modeling is an analytical 

tool useful for the repeated measurement of data with subjects, patients, etc., that have 

random affects that deviate from a specified norm.  This is accomplished by taking a 

parameter that is shared across all data sets and splitting it into a fixed variable and a 

random variable.  Then all data sets are modeled so that the fixed variable is the same for 

all patients and the random variable is a unique modifier that accounts for the differences 

across patients.  Another approach has been to use an optimal design technique to 

identify which times are ideal for data gathering for the model.  For this project a 

Standard Error (SE) optimal design method was chosen with the goal of minimizing the 

sum of squared normalized standard errors.  Our project worked to combine these 

techniques by first introducing mixed modeling parameter values into an SE-optimal 

design algorithm and then comparing the results collected to the standard algorithm.
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Other optimal design techniques were used with and without these mixed modeling 

parameters to see if a certain technique was better than the others. Finally, we worked 

toward improving our estimates for mixed modeling parameters by attempting to 

implement in MONOLIX.  Our focus for this part was to develop test cases that could be 

implemented in MONOLIX.
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INTRODUCTION 

 

The wound-healing process is complex and requires the proper combination of 

biological healing factors to be present in the correct ratios for the healing process to 

progress. Proper healing occurs in four distinct stages: coagulation and hemostasis, 

inflammation, proliferation, and wound remodeling (Velnar et al., 2009).  Coagulation 

and hemostasis begin the instant a wound is formed with the primary function being to 

create a blood clot to prevent extreme blood loss that could lead to further heal risks.  For 

this to occur, an interconnected matrix of cells must be created which is permeable 

enough to allow cells through that are needed for future healing while also preventing 

excessive bleeding and further damage. This process begins immediately after trauma by 

causing an involuntary reaction from the neuronal reflex that leads to the contraction of 

blood vessels and vascular smooth muscle cells in the muscle layer. After this 

constriction is ended, “blood spills into the site of injury, the blood components and 

platelets come in contact with exposed collagen and other extracellular matrix 

components” (Velnar et al., 2009).   This creates a blood clot that is composed of 

fibronectin, fibrin, vitronectin, and thrombospondin.  These platelet clots contain a series 

of growth factors that are important for later stages of the healing process. Without these 

clots, platelet derived growth factor (PDGF), transforming growth factor-β (TGF- β), 

epidermal growth factor (EGF), and insulin-like growth factor (IGF-1) would not be 

present in the healing site.  These promote the healing process by recruiting additional 

healing factors into the site and activating them to begin the process of healing.  In 

addition to the introduction of growth factors, platelet clots also contain vasoactive 
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amines that are stored and lead to “fluid extravasation in the tissue that results in oedema, 

which, in turn, potentiates itself during the following inflammation phase”  (Velnar et al., 

2009).As coagulation and hemostasis nears completion, the inflammatory phase begins.  

The goal of this phase is to purge any outside bacteria or infection-causing agents that 

have entered the body during or after the formation of the wound.  In the early stages of 

inflammation, neutrophils enter and remove any of the outside bacteria that may cause 

infection or hinder the healing process.  The neutrophils enter the wound site around 24-

36 hours after a wound has formed.  The neutrophils stick to the capillaries surrounding 

the wound and use the flow of blood to move around the wound site gathering up bacteria 

and any dangerous materials that have entered into the site.  Once the site has been 

cleared the neutrophils are purged and are replaced by macrophages that continue the 

cleansing of the site.  Macrophages have a longer lifespan than the fast acting neutrophils 

and can work at lower pH levels as the wound healing progresses.  As the healing process 

continues, macrophages continue to clean the site as well as release growth factors that 

recruit cells like fibroblasts, keratinocytes, and endothelial cells.  These cells are so 

important to the healing process that the lack of macrophages in the wound site “… 

causes severe healing disturbances due to poor wound debridement, delayed fibroblast 

proliferation and maturation, as well as delayed angiogenesis, resulting in inadequate 

fibrosis and a more weakly repaired wound” (Velnar et al., 2009).  Finally, the last step in 

the inflammation stage is the entrance of lymphocytes and immunoglobulin G (IgG) 

breakdown products that are crucial for later healing. 

 Once the inflammation phase has begun to subside and the wound site has been 

thoroughly “cleaned” by neutrophils and macrophages, proliferation begins.  This begins 
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the tissue repair stages of wound healing.  This stage begins with what is known as a 

“fibroblast migration” to the wound site that essentially floods the wound site with 

fibroblasts and myofibroblasts that are going to be in charge of synthesizing new 

extracellular matrix in the wound (Velnar et al., 2009).  These fibroblasts produce 

collagen, which is vital for all stages of the healing process as it is the main structural 

protein in the skin as well as in other tissues.  While the production of the extracellular 

matrix is obviously the main priority during this stage, blood vessels and other supportive 

tissue is also developed and controlled by cell migration to the growth factors that have 

been brought to the site during the inflammation phase.  This ensures that any new 

extracellular matrix that is created will have adequate numbers of capillaries and blood 

flow present for continued health and re-growth.  Endothelial cells are then “moved” into 

place creating the matrix using three processes that work together: protrusion, adhesion, 

and traction.  Protrusion refers to filaments that “protrude” from the cell allowing for 

cell-cell movement along the extracellular matrix.  These filaments act as a sort of anchor 

point for the cell and allow strong connections that can be manipulated to provide 

movement.  Adhesion is controlled by integrin, extracellular receptors that allow for the 

adhesion between two cells, which are present in all cells in the extracellular matrix.  The 

proper regulation of adhesion is vital to the movement of these cells to the correct place 

in the matrix for optimal migration rates that ebb and flow during the healing process 

adhesion is vital.  If there is not adequate cell adhesion, then the site will be flooded with 

too many cells and healing is hindered.  At the same time, if cells adhere too much to one 

another, then endothelial cells struggle to get to the site, which delays or even stops the 

healing process.  Finally, traction is the pulling motion that is created between cells 
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through their integrin connections.  This pulling is what actually facilitates cell 

movement, which is controlled by the adhesion of the cell and is made possible because 

of the protrusion from the cell.  Without proper protrusion and cell adhesion, wound 

healing is hindered.  When these three processes work together properly, endothelial cells 

are transported to the wound site and production of the extracellular matrix continues. 

 In the remodeling phase of the process, scar tissue and epithelium, the thin outside 

layer of the skin, are produced to complete healing of the wound.  This process is actually 

begun quite soon after injury and can take up at least a year or two for the entire process 

to be complete, and depending on the severity of the wound, could take even longer 

(Velnar et al., 2009).  In the wound-healing process, this phase actually overlaps with 

nearly all of the other phases.  For the healing to progress properly through remodeling, 

there must be control of the degradation of old tissue as well as synthesis of new tissue.  

The main agent responsible for the breakdown of the extracellular matrix are matrix 

metalloproteinases (MMPs), more specifically for this project MMP-1, and is controlled 

by its inhibitor TIMP-1.  If degradation is too prolific because of an overabundance of 

MMP-1, then the wound may never be able to heal properly.  At the same time, if old 

tissue is not broken down quickly enough to be replaced with new matrix then the new 

site will not be strong enough to withstand potential further injury.  Having the 

degradation and synthesis in equilibrium is essential for the long-term health of the 

wound site.  As new extracellular matrix is produced, there is an abundance of collagen 

being infused into the new skin being formed, which can almost entirely recreate the 

strength of the skin present before the wound. During this remodeling phase the collagen 

present is transferred from being an unorganized mass present in the site to an organized 



5 

matrix that interconnects building strength and structure at the wound site.  As structures 

are created, the underlying tissues shrink and contract closing the site as the healing 

continues.  This closing happens in direct reaction to the creation of new matrix as scar 

tissue is replaced with properly created extracellular matrix and as the blood vessels and 

capillaries are extended into the newly created matrix.  Over time the wound closes itself 

and proper healing is complete.   

Because of the complexity of this process, it is difficult to analyze all phases of 

the healing process at one time.  However, a few biological markers have been identified 

that influence all stages of the wound-healing process. Proper wound healing requires 

matrix metalloproteinases (MMP-1) and its corresponding inhibitor (TIMP-1) to remain 

in proper ratios and be present at appropriate times for the wound to heal in a normal and 

sufficient manner.  The proportions of these proteins in the wound must be precise and, if 

there is too much or too little of one specific factor, the healing process will be hindered 

and can directly lead to the wound becoming chronic (Muller et al., 2008). The impact of 

these factors directly impacts the success or failure of the wound-healing process. 

Wounds that follow this process are known as acute healers and wounds that, for any of a 

variety of reasons, do not follow this process are called chronic wounds.  There are a 

number of issues that could be present to cause a wound to become chronic as well as a 

number of treatments and management courses that can be taken.  This project looks 

specifically at patients who have diabetes as they are much more likely to develop 

chronic wounds than the general population.  People with diabetes are more likely to 

have complications “caused by several intrinsic factors (neuropathy, vascular problems, 
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other complicating systemic effects due to diabetes) and extrinsic factors (wound 

infection, callus formation, and excessive pressure to the site)” (Falagna, 2005).  

To further evaluate the role of MMPs & TIMPs in the healing of chronic wounds,16 

separate patients with diabetic foot ulcers who were monitored over a twelve-week period 

or until the wound has fully healed (Muller et al., 2008).  They measured a variety of 

wound proteins over this time, which included MMP-1 and TIMP-1. Cross-sectional 

areas of the wound were also measured. To further study the influences on the healing 

response, patients were subdivided into two categories – “good” healers and “poor” 

healers.  A “good” healer is defined to be a patient with at least 82% wound closure at the 

4-week point, while a “poor” healer is not. This definition was based on another study 

(Sheehan et al., 2003) that looked at four-week healing rates of chronic wounds that 

healed within 12 weeks.  To further analyze the impact of these factors on the healing 

response of the wound, a mathematical model was formulated using the median patient 

data of the “good” and “poor” healers (Krishna et al., 2015).   

In this model, four distinct state variables are used to describe the healing process 

through corresponding differential equations containing a total of twelve parameters. 

Specifically, these equations look at the evolution of MMP-1, TIMP-1, extracellular 

matrix, and fibroblast cell count which are labeled M, T, E, and 𝑓", respectively, and are 

shown below in Equation (1) – (4).  There are twelve total parameters, 𝑘$ − 𝑘$$ and the 

initial fibroblast parameter, 𝑓&. 
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Equation 1-4: Mathematical Model of Wound Healing 

 

All equations are non-dimensionalized through rescaling.  Both M and T and their 

corresponding data with MMP-1 and TIMP-1 are scaled by an average initial value of 

TIMP-1. We use the data of the wound cross-sectional area for the ECM by setting 𝐸 =

HIJKLH
HIJK

, where 𝐴NOP is the largest cross-sectional are for all patients. While there are no 

data for f, we scale f by its carrying capacity.  While the original work was with median 

data (Krishna et al., 2015), all subsequent work (French, 2017; Karimli, 2019; Prassad, 

2017; Alotaibi, 2019), including this thesis, is with the individual patient data. 

Using multiple computational techniques is the basis for this work.  One 

technique is called mixed effects modeling. Mixed effects modeling is an analytical tool 

useful for the repeated measurement of data with subjects, patients, etc. that have random 

effects that deviate from a specified norm.  Modern uses for mixed modeling effects can 

remedy a variety of issues that analysts have run into in the past including, but not limited 

to,  

(a) deficiencies in statistical power related to the problems posed by repeated  

observations, (b) the lack of a flexible method of dealing with missing data, (c) 

disparate methods for treating continuous and categorical responses, as well as (d) 
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unprincipled methods of modeling heteroskedasticity and non-spherical error 

variance (for either participants or items) (Baayen at al., 2008).   

 

 Previously, French (2017) applied the technique of mixed modeling effects to the 

parameters present in the model using an exponential function of a sum of two 

parameters (Equation 5). The parameter β& is a fixed effect that is the same value for all 

13 patients (Three patients were unable to be curve fit due to issues with their data.), 

while the random variable,𝛷&,T, is a parameter that measures the variability that occurs for 

each of the patients.  This technique can be applied to any parameter. 

 

                                 𝑘&,T = 𝑒(V10W1,X), 𝑖 = 1,… ,12	, 𝑗 = 1,…	, 13                      (5) 

Equation 5: Mixed Modeling of Parameters (French, 2017) 

 

A second set of techniques is optimal design methods. Optimal Design is a method 

that has historically been used to identify optimal sampling times and distributions in 

relation to the cost of gathering data in effort to minimize the error of the parameter 

estimates.  In medicine, where data collection can be both sparse and expensive, 

identifying optimal times for collecting data for individual patients is essential.  

There are many different optimal design techniques that can be used, many of which 

were explored in Banks et al. (2011). These differing methods all work by minimizing a 

specific characteristic of the model and data set.  For example, the Standard Error (SE) 

optimal design minimizes the standard error between the model and the original data.  

The determinant (D) optimal-design technique works by minimizing the determinant of 

the Fisher Information Matrix (FIM), while the eigenvalue (E) optimal-design technique 
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works by minimizing the minimum eigenvalue of the FIM. The Fisher Information 

Matrix measures the information that an observable variable contains regarding an 

unknown parameter assuming a known distribution (Frieden, 2004). 

This project seeks to combine a series of previously-developed methods to analyze 

this mathematical model in wound healing. The techniques of mixed-modeling & optimal 

design were previously used separately (French, 2017; Karimli, 2019; Alotaibi, 2019; 

Prassad, 2017) and part of this project aims to see how these techniques may work 

together to create a better understanding of the model.  Using parameters that were 

identified through mixed-modeling techniques can be put through the optimization 

routines that can then be used to identify specific days that data should be collected for 

optimal modeling accuracy. 
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MIXED MODELING AND OPTIMAL DESIGN 

 

METHODS 

The first step in working with the wound-healing data is to create and implement an 

algorithm that would use the model from previous work (Krishna et al., 2015) and adapt 

it to a given data set.  The first previously-developed method (Prassad, 2017) is mixed 

effect modeling and used with the following procedure in Alotaib (2019).  

 

Procedure 1: Mixed Modeling Effects 

1. Curve fit the individual patient data using the GlobalSearch algorithm (as outlined 
in Krishna et al., 2015). 

2. Identify a subset of parameters that are divided into fixed and random effects 
using 𝑘& = 𝑘&	_O`'aN + 𝑘&	/&Pb' for the ith parameter.  The subset of parameters 
used in this project are 𝑘$, 𝑘c, 𝑘@, 𝑎𝑛𝑑	𝑘$$. 

3. Fix the other parameters to values from the curve fits in Step 1. 
4. Recurve fit all patients simultaneously to find fixed and random effect values 

𝑘$, 𝑘c, 𝑘@, 𝑎𝑛𝑑	𝑘$$ for all patients using the GlobalSearch algorithm. 
5. Combine the random & fixed effect measurement to obtain a mixed modeling 

effect estimate for 𝑘$, 𝑘c, 𝑘@, 𝑎𝑛𝑑	𝑘$$. 

 

The GlobalSearch algorithm in MATLAB was unable to curve fit all parameters 

simultaneously for the mixed effects model.  A subset of parameters was then used. It 

was decided that parameters k1, k5, k8, and k11, which are known as the growth 

parameters, would be the ones chosen.  This work was completed in Alotaibi (2019) and 

the mixed-effect parameter values are given in Table 1, where 𝑘&	/&Pb' represents the 

random effect for the i-the parameter, and 𝑘&	gaNh&`b' = 𝑘&	/&Pb' + 𝑘&	_O`'aN for the i-the 

parameter.  𝑘&	gaNh&`b' and the fixed values from the individual curve fits for the 
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remaining parameters are used for the rest of this work. The next step is to use the 

parameter values to run an optimal-design algorithm that would result in the optimal 

times for data collection for each patient.  The procedure is as follows: 

 

Procedure 2: Optimal Design Code 

1. Define a final time T and the number of optimal time values for collecting data. 
2. Choose an initial guess for the optimal time points and define the error tolerance for 

the GlobalSearch algorithm. 
3. Define an optimal design method. 
4. After running the optimal design method, return the time values in both days and 

weeks and the least-squares minimum value J. 

 

This process was initially done using an SE optimal-design technique, where the J-

min value represented the Standard Error of the FIM. Likewise, we also used E-optimal 

design which requires 𝐽 = min	{eig(𝐹𝐼𝑀)} which minimizes the minimum eigenvalue of 

the FIM.  𝐹𝐼𝑀 = 𝑋8𝑋 where X is a sensitivity matrix containing partial derivatives of the 

state variables with respect to the parameters. For the D-optimal design algorithm, 𝐽 =

min	{det(𝐹𝐼𝑀)}, which minimizes the determinant of the FIM. Then we compare the 

results from each technique to see if one technique is better or worse than the others. This 

process outputs four individual graphs, one for each of the state variables in the model, 

which shows the original data, the model that was created, and final the optimal design 

time points.  In addition to the graphs, there is a list of data points that gives the exact 

values of the optimal design points.  These values are given first in weeks and then in 

days; this allows the user to make the best decision possible when collecting data 

considering the data collection process may be complicated. 
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Table 1: Mixed-Modeled Parameters 

 

 Finally, after running each optimal design algorithm with the individual curve-

fitted parameter values, the optimal design algorithms were run with the parameters given 

in Table 1.  All told, the optimal design algorithms were run 6 times total: 3 with the 

individual curve fits and 3 with the mixed modeling parameters. 
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RESULTS 

The first series of numerical experiments in the project was done using the Standard 

Error (SE) optimal design technique on the data collected for patients 1-15 (Muller et al., 

2008), excluding patients 10 and 13 because of inconsistent or incomplete data.  This 

series of data collection times provide a general basis that future results would be 

compared to and also give an idea of which patients will be difficult or easy to model 

data collection.  An example of what ideal data collected can be seen for Patient 14 

(Figure 1). 

 

 
Figure 1: Data Collected for Patient 14 Using SE Optimization on Original Parameter Guesses 

 

The four graphs in Figure 1 represent the four state variables in the mathematical 

model.  The graphs offer a visual comparison of the original data (small data points) and 

the mathematical model (solid line). In addition to the graphs, there is a series of data that 

represents the results using the optimization technique (circles).  Below the graphs is the 
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J value, which represents the current value of the Standard Error associated with the 

model.  When using SE optimization, this value is minimized and the final value is 

displayed along with the graphs. In the case of Patient 14, the final J value is 8.9902.  

Finally, there are two rows of data points that represent the optimal time measurements 

for data collection that would have resulted in the best model of the original data.  The 

first row of data displayed represents these optimal data collection times in week and the 

second row are those same collection times in days. The input data includes an initial 

guess for the optimal time points of 6 data points that are evenly spread out from week 0 

to week 12 and then these points are refined to the final values.  For patient 14, it actually 

turns out that only 5 times for optimal data collection are needed.  There were two groups 

that data collected fell into once it was collected.  When the parameter values used 

represented the data well, there were overall positive results using the optimal design 

algorithm.  This was the case for patients 2, 3, 4, 5, 6, 7, 11, 12, 14, and 15, but not for 1, 

8, and 9. 

 Next, the mixed modeling parameters (Table 1) were introduced into the optimal-

design program and then the above process was then repeated to observe any changes in 

the modeling accuracy and the optimal design data results.  This series of computational 

runs began to show a problem.  While there were certain patients that showed decent 

modeling results with the introduction of these new parameters (i.e, Patients 4, 14, 15), 

most of the results illustrated issues with the mixed modeling parameters.  The main issue 

that appeared to be distorting the data was the Fisher Information Matrix (FIM) 

approaching or becoming singular.  Because the program works by minimizing a value 
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associated with the inverse of the FIM this raised a consistency issue.  The program 

would begin as intended and then somewhere along the line it would fail.  

 The algorithm was then rerun using D-optimal and E-optimal design for both sets 

of parameters. Once again, this series of results fell into two groups.  When using D- and 

E-optimal design, these two techniques produced similar results. For both optimal-design 

techniques patients 1, 2, 4, 5, 6, 7, 12, 14, and 15 displayed accurate fits (like Figure 3), 

while patients 3, 8, 9, and 11 did not.  However, the high J-value for almost all patients 

(Table 3) using D-optimal and E-optimal design suggests all cases had difficulty with the 

FIM being singular or near singular. Yet, even with high J values, the algorithm still 

seems to produce reasonable results, such as having two time measurements between the 

extreme and inflection points of the MMP-1, TIMP-1, and ECM graphs (Figure 2).  

 

 
Figure 2: Data Collected for Patient 3 Using E Optimization on Original Parameter Guesses 
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 SE-Optimal 
Design, 
Individual 
Parameters 

SE-Optimal 
Design, 
Mixed-
Model 
Parameters 

D-Optimal 
Design, 
Individual 
Parameters 

D-Optimal 
Design, 
Mixed-
Model 
Parameters 

E-Optimal 
Design, 
Individual 
Parameters 

E-Optimal 
Design, 
Mixed-
Model 
Parameters 

Patient 1 3.954 0.1127 -2.9949 E 
73 

1.4816 E 45 7.6152 E 13 1.0016 E 11 

Patient 2 66.8835 93.1693 2.1480 E 69 7.6401 E 57 7.4452 E 14 4.8460 E 19 
Patient 3 4.821 E -04 2.9442 6.0800 E -

20 
1.2684 E 70 7.5256 E 08 1.5758 E 14 

Patient 4 -2.6744 E 
09  

0.4150 -3.5005 E 
33 

-4.6888 E 
69 

3.9520 E 12 1.4439 E 15 

Patient 5 1.1963 5.5534 E 03 1.3386 E 05 1.6645 E 41 1.3005 E 08 7.0634 E 11 
Patient 6 192.5474 288.8716 -3.9193 E 

67 
1.6315 E 59 9.1881 E 24 1.9220 E 25 

Patient 7 2.3674 E 03 7.0582 E 20 2.7343 E 42 7.2603 E 74 1.1613 E 12 3.9419 E 14 
Patient 8 3.1383 E 09 -1.8754 E 

21 
-2.421 E 
101  

-1.6763 E 
132 

7.7328 E 26 4.9932 E 27 

Patient 9 -3.4565 E 
19 

317.4927 -6.6248 E 
65 

1.8611 E 73 4.0195 E 25 3.4141 E 17 

Patient 11 -3.4866 E 
20 

-1.4192 E 
24 

-1.9727 E 
70 

2.2910 E 78 9.8501 E 20 2.8563 E 21 

Patient 12 -3.7106 E 
19 

592.6011 4.7766 E 66 -1.0669 E 
75 

2.5829 E 13 4.2474 E 27 

Patient 14 8.9902 495.7772 3.1674 E 25 2.2224 E 57 8.4847 E 14 2.5079 E 22 
Patient 15 13.7374 2.5742 E 04 2.8610 E 25 5.1925 E 33 7.4692 E 07 2.9750 E 10 

Table 2: J-min Values for Each Patient 

 

When comparing SE-optimal design, in which the J-min value is the final 

Standard Error value derived from the FIM, individual-parameter to mixed-modeling 

parameter results, the J-min value is fair-to-excellent for Patients 1, 2, 3, 5, 6, 14, and 15 

for both sets of parameters. Only Patient 7 has a fair J value for the individual 

parameters, but not with the mixed-modeling parameters, while 9 and 11 are the opposite.  

Patient 4 has an excellent J-value for its mixed-modeling parameters, but not with regard 

to individual parameters.  Patients 8 and 11 have poor J values with either technique.  In 

all cases, the SE-optimal design performed better than D- and E-optimal design, which is 

consistent with another study (Banks et al., 2011).   
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Figure 3: Data Collected for Patient 4 Using D Optimization on Mixed-Modeling Parameters 

 

The high J-values represent a problem that has occurred across all three optimal 

design techniques and seems to be an issue for both the individual parameters and the 

mixed-modeling parameters as the FIM becomes singular.  Because this issue occurs 

after several iterations of the algorithms, it seems likely that there is a solution to this 

problem which would allow for the collection of relevant data that is not skewed by the 

issues currently present.   

 

CONCLUSIONS 

The first major conclusion that can be derived from the work is that SE-optimal 

design is an excellent tool for the project, especially when compared to the other optimal 

design techniques that were utilized in the project.  The best indication of this are the J-
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values obtained from using SE-optimal design are much more consistent and reasonable 

than the values obtained from the other techniques.  In addition, the graphs that were 

obtained with these values also tell the same story.  For each set of simulations, there 

were groups of patients that were identified as good and poor fits by looking at the graphs 

that represent each of the 4 state variables and in each case the SE-optimal design 

performed as well or better than the other two techniques.  All in all, this supports 

previous work that had been done in regards to developing and testing SE-optimal design 

(Banks et al., 2011).  In this study, it was decided that while SE-optimal design is not 

always better than more traditional techniques, like D-optimal and E-optimal, it was at 

the very least on par and can sometimes lead to better results.  Our results support the 

previous conclusions.  Therefore, any future work will continue with SE-optimal design 

as the primary optimal design technique used. 

To potentially improve our results, we will work to test and improve the estimates for 

mixed-modeling parameters.  If the parameters that are being fed into the optimal design 

process are poor estimates, this can lead to poor results when using the optimal design 

algorithms.  To do this, future work will be done exploring MONOLIX, as a possible 

mixed-modeling alternative to using MATLAB.  It is hoped that this focus can further 

improve the results for both optimal design and the mixed modeling areas of the project.
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FORMULATING A NEW MODEL AND MONOLIX TRANSITION 

 

METHODS 

 

 MONOLIX is an advanced solver for non-linear mixed effects modeling 

(MONOLIX, 2016). It has been recommended by various experts in the field whom we 

have talked to as a software tool to analyze our model.  MONOLIX is an advanced solver 

for non-linear mixed effects modeling.  To begin with, we decided to work with a simpler 

model to test MONOLIX and see its effectiveness. From there, we would continue to 

increase the model complexity until either implementing MONOLIX using our model or 

the academic year ended. 

 First, we decided that the modeling of logistical growth would be a reasonable 

starting point.  The logistical growth equation is easy to manipulate, has a well-known 

solution, and its numerical solution generally resembles the behavior that we expect to 

see in the fibroblast equation in our model.  We started by creating a pseudo-random data 

set from the logistic growth model and take that data and try to fit it to confirm that we 

had a data set that would match the original logistic model.  If we were able to do this for 

a simple version of the function as well as a more complex system of equations we would 

be able to easily move this data set, as well as our custom model, over to MONOLIX. 

 
'v
')
= 𝑥 ∗ 𝑌(𝑡) ∗ (1 − v())

{
)                                     (6) 

Equation 6: Basic Logistic Growth Model
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Equation (6) is the logistic growth differential equation, where x represents the growth 

rate, and w represents the carrying capacity.  To create a data set, we took this model and 

produced two data sets, which can represent two patients, by adding random “noise” for 

integer time points between 0 and 5, inclusive. One data set is generated with a growth 

rate of 1.5 and a carrying capacity of 150, while the other with a growth rate of 1 and a 

carrying capacity of 100.  Table 3 shows these two data sets that were created using the 

single ODE with two sets of parameter values. 

 

 0 1 2 3 4 5 

Solution Data 
for Patient 1 

10 36.3740 88.3903 129.8110 144.9692 148.8474 

Pseudo-
Random Data 
for Patient 1 

10 43.0890 76.3154 136.9834 161.2716 153.7364 

Solution Data 
for Patient 2 

5 12.5161 28.0005 51.3887 74.1841 88.6508 

Pseudo-
Random Data 
for Patient 2 

5 22.8630 35.2693 48.3543 77.1228 80.7780 

Table 3: Data for Patients 1 and 2 Created Using Logistic ODE 

 

 To test the data, the data was curve fit using MATLAB’s fminseearch, a local 

optimization routine, minimizing the sum of squares of the error.  When running this 

algorithm there are certain values that must be estimated and known.  First, the initial 

conditions for each patient are input into the algorithm. Then, the algorithm requires an 

initial guess estimated for the parameter values.  This allows the algorithm to differentiate 

potential conflicts between local and global minimum.  However, a variety of initial 

guess estimates were tested and similar solutions were always obtained. While accurate 

initial guesses are likely necessary for a more complex system, for these data sets they 
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were not. Overall, this supports the data being an accurate representation of the solutions 

to Equation (6) for each patient as the returned parameter values were always close to the 

parameters that were used to create the data.   

 Next, we used the data with a mixed-effects model.  This is to confirm that we 

have data to use with a mixed-effects model before using.  To make this change, we need 

six parameters with initial estimates for these parameters. The mixed-effects model is 

given in Equations (7) and (8), where Y1 is for Patient 1 and Y2 is for Patient 2. 

 
'v,
')
= (𝑘$ + 𝑘c) ∗ 𝑌$(𝑡) ∗ (1 −

v,())
(+30+=)

)                (7) 

'v3
')
= (𝑘4 + 𝑘c) ∗ 𝑌|(𝑡) ∗ (1 −

v3())
(+}0+=)

)                (8) 

Equations 7-8: Models for Patients 1 and 2 

 

To represent as a mixed-effects model, the carrying capacity and growth rates 

have been split into the sum of two parameters giving two new parameters that are then 

shared between the two patients.  Here, 𝑘$-𝑘6 are still unique to each patient and 

represent the random variables, while 𝑘c and 𝑘~ are shared by each and are thus the fixed 

variables for the two patients.   

We, then, decided to do a quick numerical study to see the effects of the data 

becoming sparse.  This was done by only using subsets of the data and then re-curve fit to 

see if there was any change in the overall fit of the model.  The original data set that used 

integer time values from day 0 to day 5 with day 0 being the initial condition.  We 

comparted this set with data from days 0, 1, 3, and 5 as well as the data from days 0, 2, 

and 4.   
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Once the data had been properly modeled using one simple ordinary differential 

equation (ODE) for each patient, the next step was to create a system of equations for 

each patient.  This adds complexity to the model and is closer to what our model is for 

diabetic ulcer healing.  If we are able to correctly model a system of equations for each 

patient we should be able to port that system of equations over to MONOLIX as well as 

the full diabetic healing model.  The system of equations that was decided to work on for 

each patient is in Equations (9) and (10). 

 
'v
')
= 𝑥 ∗ 𝑌(𝑡) ∗ (1 − v())

{
)                                     (9) 

'�
')
= 𝑧 ∗ 𝑌(𝑡) ∗ 𝐺(𝑡)                                           (10) 

Equations 9-10: System of Equations Logistic Growth Model 

 

 This system of equations is more complex than the previous model as it 

introduces another parameter z, which in this case is an interaction rate that, introduces a 

relationship between the first ODE and the second.  The second function being a 

decaying interaction function is quite important as it closely resembles the biological 

interaction relationships that are expected in Equations (1) – (4).  In that model, 

biological enzymes and their inhibitors interact and compete with one another and this 

relationship is best replicated with a decaying interaction ODE as seen in our system. As 

before, two sets of parameters were introduced to simulate two separate patients.  The 

first patient has a growth rate of 1.5, a carrying capacity of 150, and an interaction rate of 

.002.  The second has a growth rate of 1.0, a carrying capacity of 100, and an interaction 

rate of .003. To create a new data set for each of the patient’s data these parameters were 

entered into the above ODEs and then solved.  Time points where once again intervals of 
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1 starting at 0 and ending at 5.  This data was collected, and then random noise was once 

again added to each data point.  While the first data set for each patient is essentially the 

same as before the resulting data from the second ODE for each patient can be seen 

below. 

 

 0 1 2 3 4 5 

Solution Data 
for Patient 1 

20 18.7860 15.6346 11.1873 7.3737 4.7390 

Pseudo-Random 
Data for Patient 
1 

20 18.0399 17.2656 12.7851 7.6141 5.8815 

Solution Data 
for Patient 2 

40 39.0231 36.8080 32.7163 27.0588 21.1462 

Pseudo-Random 
Data for Patient 
2 

40 38.6131 36.5597 35.6957 29.8769 23.9806 

Table 4: Data for Patients 1 and 2 Created by Second ODE in System of Equations 

  

 The generated data was then used to refit equations (9) – (10).  The same 

fminsearch MATLAB function that was used before was modified to model each of the 

patients’ data sets separately and then solve for the individual parameters.  This function 

produced two modeled graphs of the data fit, one for each ODE, as well as three 

individual parameters that corresponded to each patients’ x, w, and z values from 

Equations (9) and (10).  We again conclude that we can determine the model parameter 

values well from simulated data. 

Next, we consider the system of ODEs using mixed-effects modeling. In this case, 

there were nine parameters between the two patients and the ODEs that were used to 

model each patient given in equations (11)-(14). 
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'v,
')
= (𝑘$ + 𝑘>) ∗ 𝑌$(𝑡) ∗ (1 −

v,())
(+30+�)

)                           (11) 

'�,
')
= (𝑘4 + 𝑘D) ∗ 𝑌$(𝑡) ∗ 𝐺$(𝑡)                                      (12) 

'v3
')
= (𝑘6 + 𝑘>) ∗ 𝑌|(𝑡) ∗ (1 −

v3())
(+90+�)

)                          (13) 

'�3
')
= (𝑘~ + 𝑘D) ∗ 𝑌|(𝑡) ∗ 𝐺|(𝑡)                                      (14) 

Equations 11-14: System of Equations Models for Patients 1 and 2 

 

Here, Equations (11) and (12) are for Patient 1 and Equations (13) and (14) are for 

Patient 2.  As before, each parameter has been split into the sum of two parameters, with 

one of those being shared with the other patient.  Once again a variety of initial parameter 

guesses were used to see if being off on the parameters guess would produce bad results 

from fitting.  And as before there were no issues found with trying a variety of 

parameters guesses; the only thing that it seemed to effect by the various inputs where 

how long the program would take to reach a solution. This shows that the parameters in 

the model are identifiable and able to be used to create a pseudo-random data set, and that 

this data set is able to be modeled back to estimate the original parameter values.  This 

means that the next step, the transition to MONOLIX, is ready. 

When looking at moving this data over to MONOLIX the first place to start is to 

use the model library that comes preloaded with the software, specifically the PKPD 

model library.  PKPD stands for pharmacokinetic/pharmacodynamic modeling, which is 

typically used for modeling the intensity of medical pharmaceutical and its relationship to 

dosing times and regiment.  The models present in the PKPD library cover a variety of 

dosing timings, models, and data collection methods.  The issue that became apparent 

with this was that none of the preloaded models worked in the way that we were  hoping 
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and we did not figure out how to use MONOLIX for the above work at the time of this 

writing.  While the originally planned stopping spot for this section of the project was to 

complete the transfer of the model to MONOLIX, this was where the work for this 

project ended. 

 

RESULTS 

 

 First, we generated pseudo-randomized data for each of our imaginary patients.  

We solved Equation (6) using pre-selected parameter values at integer time values.  Then 

we added pseudo-random noise to the numerical solutions at the integer time values to 

generate our data. Each of the below results was also replicated using a variety of initial 

parameter guesses as well as with multiple replications for each step. 

Next, we used this random data to see how well we can re-curve fit both data sets 

in MATLAB using the built-in function, fminsearch (MATLAB, 2019) minimizing the 

sum of squared differences between the model and the data.  Patient 1’s data was created 

using parameter values of 1.5 and 150, while Patient 2’s data was created using parameter 

values of 1 and 100.  Figures 4 and 5 show that that the data was well fit using the 

MATLAB routine.  In addition to these graphs, the values in Table 5 also show that the 

routine is able to identify and estimate the original parameter values that were used to 

create the data.  
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Figures 4-5: Modeled Data for Patients 1 and 2 

 

 

 Growth Rate Carrying Capacity 
Parameters Used to Create 

Patient 1 Data 
1.5 150 

Parameter Values Returned 
for Patient 1 

1.4035 163.0693 

Parameters Used to Create 
Patient 2 Data 

1.0 100 

Parameter Values Returned 
for Patient 2 

1.1215 86.4586 

Table 5: Parameter Values for Patients 1 and 2 

 

 Next, the program was modified for mixed-modeling parameters.  To maintain 

consistency and to be able to accurately compare results the same data was once again 

used.  Figures 6 and 7 as well as the data in Table show that we were able to accurately 

able to model the data and estimate the original parameter values. 
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Figures 6-7: Mixed-Modeling Data for Patients 1 and 2 

 

 
 

Growth Rate 
(Fixed) 

Growth Rate 
(Random) 

Carrying 
Capacity 
(Fixed) 

Carrying 
Capacity 
(Random) 

Parameter 
Values Returned 
for Patient 1 

1.3397 0.0638 76.1868 86.8826 

Parameter 
Values Returned 
for Patient 2 

1.3397 -0.2182 76.1868 10.2718 

Table 6: Mixed-Modeling Parameter Values for Patients 1 and 2 

 

Before moving on to the system of equations, the numerical study with fewer data 

points brought some interesting results.  This study was done to test the effectiveness of 

our current technique when looking at data sets that were incomplete or having less and 

less data. 

 
Figures 8-9: Mixed-Modeling Data for Patient 1 With Less Data 
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Figure 8 shows the model using mixed-modeling parameters with data from days 

0, 1, 3, and 5, while Figure 9 shows the model using mixed-modeling parameters with 

data from days 0, 2, and 4.  Both figures represent data collected for Patient 1, however 

the data collected for Patient 2 mirrored the above graphs in both instances.  When 

comparing these graphs to those generated when using the individual parameters, it can 

be seen that these are slightly better.  While the data set is quite small, and this is not 

surprising as having more parameters allows for a better fit.  In addition, the parameter 

values that are returned in both of these instances shows that mixed-modeling parameters 

allows for accurate finding of the original parameter values even with less data points 

(Table 7). 

 

 Growth Rate 
(Fixed) 

Growth Rate 
(Random) 

Carrying 
Capacity 
(Fixed) 

Carrying 
Capacity 
(Random) 

Parameter 
Values Returned 
for Patient 1 
(0135) 

1.5084 0.1417 70.0567 82.8408 

Parameter 
Values Returned 
for Patient 2 
(0135) 

1.5084 -0.4726 70.0567 17.5804 

Parameter 
Values Returned 
for Patient 1 
(024) 

1.1265 0.1399 91.6408 86.7694 

Parameter 
Values Returned 
for Patient 2 
(024) 

1.1265 0.0794 91.6408 -4.3134 

Table 7: Mixed-Modeling Parameter Values with Less Data  

 

 Next, we formulate a system of equations, which adds a level of complexity and 

more closely aligns to model Equations (1) – (4), which is our system of differential 
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equations.  Rather than modify the first equation, we simply developed a second equation 

(Equation (10)), which couples the two equations.  

 Mirroring the previous work, the next step was to take these data sets and then to 

see if they could be modeled to identify the original parameters that were used to create 

the data.  The previous MATLAB program that was used with the previous data is once 

again adapted to model the new system of equations.  Because the new model is made up 

of two ODEs, the second of which is actually dependent on the solution of the first, this is 

a bit more complex.  However, the same concept of modeling the data, minimizing the 

sum squared difference, and then outputting the model alongside the original data still 

stands.  The data that was generated for this step can be seen above in Methods. 

 Next, we re-curve fit all four equations. Again, there is excellent agreement 

between the model and generated data (Figures 10-11).  The data for Patient 1 was 

created using parameter values of 𝑘$ = 1.5, 𝑘| = 150, and 𝑘4 = -0.002, while the data 

for Patient 2 was created using parameter values of 𝑘$ =  1, 𝑘| = 100, and 𝑘4 =  -0.003.  

And since the program returned values of 1.4034, 163.0785, -0.0026, 1.12, 86.5608, and -

.0022, we can reasonably identify the parameters.   
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Figures 10-11: Data Fits for ODE 2 in System of Equations with Individual Parameters 

 

The final addition of complexity to the model before the transition to MONOLIX 

was to introduce mixed modeled parameters into this system of equations.  Once the 

necessary changes to the code were completed, the program was rerun and produced 

graphs and values that were remarkably similar to the above graphs.   

 Growth 
Rate 
(Fixed) 

Growth 
Rate 
(Random) 

Carrying 
Capacity 
(Fixed) 

Carrying 
Capacity 
(Random) 

Interaction 
Rate 
(Fixed) 

Interaction 
Rate 
(Random) 

Parameter 
Values 
Returned 
for Patient 
1 

1.2641 0.1394 113.7930 49.2855 0.0024 0.0002 

Parameter 
Values 
Returned 
for Patient 
2 

1.2641 -0.1440 113.7930 -27.2321 0.0024 -0.0002 

Table 8: Mixed-Modeling Parameter Values for Patients 1 and 2, System of Equations 

 

With the mixed modeling parameters, the final results for parameter values would 

nearly always be close to the initial guess, but if the fixed and random values were 

combined into a single parameter, that value was consistent across all of the initial 

guesses.  Specifically, 𝑘$ - 𝑘~ are the random effects that are unique to each patient, and 
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𝑘> - 𝑘D are the fixed effects that are shared between the two patients.  While the graphs 

obtained from modeling the data using the mixed-modeling parameters is nearly identical 

to Figure (10) and (11), the parameter values returned, given in Table 8 show us that the 

program was accurately able to estimate the parameters used to create the data. The 

ability to provide clear and consistent answers across multiple data sets with a variety of 

initial guesses tells us that the program is working properly to identify and accurately 

predict the parameter values of the data that it is given.   

 Our results are consistent because the randomized data was reproducible, each set 

was representative of the model, and each of the models were done with various initial 

parameter guesses.  The next step in the project was planned to be to now move this 

model over to MONOLIX as a precursor to the diabetic healing model, but we have been 

unable to replicate these types of results in MONOLIX at the time of this defense.  If we 

obtained reliable results using equations (1) – (4) in MONOLIX, we would then re-run 

the SE-optimal design algorithm with the mixed-modeling parameters. 

 

CONCLUSIONS 

While the major goal, transitioning the new model into MONOLIX, of this 

section of the project was unsuccessful because of technical, as well as situational, issues 

there are still quite a few of results from the work done that allow for some general 

conclusions.  First, the model was able to be accurately solved and modeled using the 

tools available in MATLAB.  In addition is was shown that an interconnected system of 

ordinary differential equations was able to be modeled and analyzed properly, which 
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points to the long-term viability of the full model.  Finally, the small look at using various 

sizes of data sets was interesting as it showed that as less data was available the better 

mixed modeled parameters performed.  Overall, this part of the project will serve as an 

excellent starting point for future work on an introduction of using tools like MONOLIX.  

The next step for this project is to continue to work on integrating the current 

model into the MONOLIX software.  With MONLIX’s ability to identify and work easily 

with mixed-modeling parameters new and better estimates for the values may be found 

which can in turn improve the optimal design work with Equations (1) – (4).  While this 

step has not been completed at the time of this defense, the work to accomplish this move 

has continued.
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