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In this thesis, we focus on h–discrete and h–discrete fractional representa-

tion of a pharmacokinetics-pharmacodynamics (PK-PD) model which describes tumor

growth considering time on hNa, where h > 0. First, we introduce some definitions,

lemmas and theorems on both h–discrete and h–discrete fractional calculus in the

preliminary section. In Chapter 3, we work on the PD model with delay by exam-

ining nabla h–discrete equations and nabla h–discrete fractional equations as well as

variation of constants formulas, accordingly. We introduce our model and solve it

using theorems we proved in the last section of the indicated chapter. When we do

simulation for the solutions we found that jumps occur when drug was given the first

time. Therefore, we decide to work on PD model without delay in Chapter 4. We also

obtain theorems regarding nabla h–discrete equations and nabla h–discrete fractional

equations ignoring delay. We apply our results to the tumor growth model to find

solutions. We observe that jumps disappear on this model once we put new solutions

into code. Although, we do not attain our wanted goal for tumor growth model hav-

ing delay, we decide to write it as a chapter in this thesis because the theorems and

lemmas found in Chapter 3 might be useful for another research work in the future.

In Chapter 5, we give our PK model considering both delay and without delay case,

then solutions of the models are stated accordingly. In the last chapter, we summarize

what we have done so far and mention future works regarding continuation of this

work.
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Chapter 1

INTRODUCTION

Discretization in applied mathematics is a procedure which transfers continu-

ous models, functions and equations into discrete form using operators, namely both

delta and nabla operators. Our first aim in starting this process is to make them

appropriate for numerical calculation and implementation on computers. Fractional

calculus studies some various potentials which define the complex number or real num-

ber powers of the differentiation operator and of the integration operator. It has many

applications for fields such as finance, medicine and engineering [29],[3],[7],[9],[10].

Fractionalization of mathematical models in the area of phamacodynamics and

phamacokinetics is not new but it has not really prevailed [30],[33]. Mathematical

complexity is one of the reasons that creates difficulties when numerical methods are

implemented by the users. In clinical setting with populations comprising of several

hundreds of patients, the run-time involved would be a second reason. In paper [3], the

authors worked on PK-PD model starting with discretizing and then fractionalizing.

An explicit solution was found for the indicated model without implementing any

numerical methods. Nevertheless, as the authors stated in their paper [3], some

limitations of the discretization approach appeared in the discrete model for h = 1.

The first property of the tumor growth model, which states that tumor growth

is inhibited while its treatment, fails in simulation process once obtained the solution

is implemented. Simulation demonstrates that as dose is increasing the tumor volume

is increasing in the beginning after decrease is observed in treatment. In discrete

model, the effect of the drug is seen after the day the drug is administrated to the

blood because of the nature of solutions. The graph of the discrete model does not

show any decrease in tumor volume right away after drug administration.

The second property of the model,that tumor volume will never be negative,

1



holds true for the discrete model h = 1
24 on hNh

0 but not for h = 1. Tumor volume is

going to be negative while increasing doses significantly. The authors stated in the

paper [3] that this is not reasonable not only from the mathematical side but also

from the biological point of view.

As the authors maintained, the discrete model for h = 1 loses some important

properties that hold true for the continuous model. Our motivation to write this

thesis is based on removing these limitations in the model. While simulation was

done for daily drug concentration, we now consider c(t)-drug concentration values for

each hour rather than only one time in a day.
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Chapter 2

PRELIMINARIES

In this chapter, we give fundamental theorems, lemmas and definitions on h–

discrete calculus and h–discrete fractional calculus. In order to acquire basic knowl-

edge regarding discrete fractional calculus, we refer [20] to the readers.

Definition 2.1. Let a ∈ R. Nabla operator (∇) which is also known as the backward

difference operator for a function f ∶ Na Ð→ R is defined by

(∇f) (t) ∶= f(t) − f(t − 1),

where Na = {a, a + 1, a + 2, . . .} .

Definition 2.2. Let a ∈ R and h > 0. Nabla h–operator (∇h) which is also known

as the backward h–difference operator for a function f ∶ hNa Ð→ R with a domain

hNa = {a, a + h, a + 2h, ....} is defined by

∇hf(t) ∶=
f(t) − f(ρh(t))

t − ρh(t)
= f(t) − f(t − h)

h
,

where ρh(t) = t − h is backward jump operator on time scale calculus [20].

Definition 2.3. [3] Let α ∈ R. tα is known as a rising factorial power (read as ’t to

the α rising’) is defined by

tα ∶= Γ(t + α)
Γ(t) ,

such that t ∈ R ∖ {...,−2,−1,0}, 0α = 0 and Γ denotes the Gamma function [24].

Definition 2.4. Let α ∈ R and h > 0. The nabla h-factorial of t is defined by

tαh ∶= hα
Γ( th + α)

Γ( th)

3



where t ∈ R ∖ {....,−2h,−h,0}, 0αh = 0, and Γ denotes the Gamma function [24].

We present the α-th order fractional sum of f defined as in [5]

∇−α
a f(t) ∶=

t

∑
s=a

(t − ρ(s))α−1
Γ(α) f(s), (2.0.1)

where α ≥ 0, ρ(t) = t−1, and t ∈ Na. In addition, we recall the definition of α-th order

fractional difference of f which is also known as a Riemann-Liouville (RL) fractional

difference

∇αf(t) ∶= ∇n(∇−(n−α)f(t)),

where α > 0, n − 1 < α < n, n is a positive integer [5].

Definition 2.5 (Nabla h–fractional sum). Let α > 0 and a be any real number. For

a function f ∶ hNa Ð→ R, the nabla h–fractional sum with order α is defined by

(a∇−α
h f)(t) ∶= 1

Γ(α)
t/h

∑
s=a/h

(t − ρh(sh))
α−1

h
f(sh)h, t ∈ hNa.

where h > 0 and ρh(t) = t − h.

Definition 2.6 (Nabla h–fractional difference.). The nabla h–fractional difference of

order α is defined by

(a∇α
hf)(t) ∶= (∇n

h a∇
−(n−α)
h f)(t), t ∈ hNa.

where a ∈ R, α, h > 0, n − 1 < α < n, and n is a positive integer.

Let us introduce the properties of the rising factorial power functions. While

the proof of the first property is given in [31], we make a generalization and give the

general power rule as a second property.

4



Lemma 2.7. Let a be any real number and h > 0, α > 0, µ > 0 be positive numbers.

Whenever the expressions on each side of the equality are valid, these succeeding

properties hold.

(i) ∇ht
µ
h = µt

µ−1
h where t ∈ hNa.

(ii) a∇−α
h (t − a + h)µh =

Γ(µ + 1)
Γ(µ + α + 1)(t − a + h)

µ+α
h where t ∈ hNa.

Proof. (ii) By using the definition of the nabla h–fractional sum operator, we obtain

a∇−α
h (t − a + h)µh =

1

Γ(α)
t/h

∑
s=a/h

(t − ρh(sh))
α−1

h
(sh − a + h)µhh

= 1

Γ(α)
t/h

∑
s=a/h

hα−1
Γ( t−sh+hh + α − 1)

Γ( t−sh+hh )
hµ

Γ( sh−a+hh + µ)
Γ( sh−a+hh )

h

= hα+µ

Γ(α)
t/h

∑
s=a/h

Γ( th − s + α)
Γ( th − s + 1)

Γ(s − a
h + µ + 1)

Γ(s − a
h + 1)

= hα+µ

Γ(α)
(t−a)/h

∑
s=0

Γ( t−ah − s + α)
Γ( t−ah − s + 1)

Γ(s + µ + 1)
Γ(s + 1)

= hα+µ

Γ(α)
(t−a)/h

∑
s=0

(
t−a
h

s
)

Γ(s + µ + 1)Γ( t−ah − s + α)
Γ( t−ah + 1) ,

where we used the formula

(u
v
) = Γ(u + 1)

Γ(v + 1)Γ(u − v + 1) ,

where u and v are natural numbers. Next, we apply the following identity given in

[2] into our problem
u

∑
v=0

(u
v
)αvβu−v = (α + β)u,

where u, v are natural numbers and α,β are positive real numbers.
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Hence, we have

hα+µ

Γ(α)
(t−a)/h

∑
s=0

(
t−a
h

s
)

Γ(s + µ + 1)Γ( t−ah − s + α)
Γ( t−ah + 1) = hα+µ Γ(µ + 1)

Γ( t−ah + 1)
t−a/h

∑
s=0

(
t−a
h

s
)(µ + 1)sα t−a

h
−s

= hα+µ Γ(µ + 1)
Γ( t−ah + 1)(µ + 1 + α) t−a

h .

Using the definition of nabla rising factorial and nabla h–factorial, we get the following

result which completes the proof.

hα+µ
Γ(µ + 1)

Γ( t−ah + 1)(µ + 1 + α) t−a
h =hα+µ Γ(µ + 1)

Γ( t−ah + 1)
Γ(µ + 1 + α + t−a

h )
Γ(µ + 1 + α)

= Γ(µ + 1)
Γ(µ + α + 1)(t − a + h)

µ+α
h .

Theorem 2.8 (Leibniz rule on hNa). Let a be any real number, h > 0, and t ∈ hNa.

Then for a function f ∶ hNa Ð→ R the following identities are true.

(i) ∇h

t/h

∑
s=a

f(t, s) =
t/h

∑
s=a

∇hf(t, s) +
f(t − h, th)

h
.

(ii) ∇h

t/h

∑
s=a

f(t, s) =
(t/h)−1

∑
s=a

∇hf(t, s) +
f(t, th − 1)

h
.

Proof. (i) We can rewrite the right hand side of the equation by means of the back-

ward difference operator,

∇h

t/h

∑
s=a

f(t, s) =

t/h

∑
s=a

f(t, s) −
(t−h)/h

∑
s=a

f(t − h, s) + f(t − h, t
h
) − f(t − h, t

h
)

h

=

t/h

∑
s=a

f(t, s) −
t/h

∑
s=a

f(t − h, s)

h
+
f(t − h, t

h
)

h

6



=
t/h

∑
s=a

∇hf(t, s) +
f(t − h, t

h
)

h
.

(ii) Using backward difference operator, we have

∇h

(t/h)

∑
s=a

f(t, s) =

(t/h)

∑
s=a

f(t, s) −
(t−h)/h−1

∑
s=a

f(t − h, s)

h

=

(t/h)−1

∑
s=a

f(t, s) −
(t/h)−1

∑
s=a

f(t − h, s) + f(t, t
h
− 1)

h

=
(t/h)−1

∑
s=a

∇hf(t, s) +
f(t, th − 1)

h
.

Subsequently, we introduce the connection between the nabla h– the discrete

operator and the discrete operator. Additionally, we present the relationship between

nabla h–fractional difference operator and the discrete fractional difference opera-

tor. To the best of our knowledge, those connections are not found elsewhere in the

literature.

Lemma 2.9. Let a be any real number, h > 0, and t ∈ hNa. Define the function

k ∶ Na/h Ð→ hNa

k(u) ∶= uh

and y ∶ hNa Ð→ R. Then

∇hy(uh) =
∇(y ○ k)(u)

h

where u = t
h ∈ Na/h.

7



Proof. Using the definition of nabla operator,

∇hy(t) =
y(t) − y(t − h)

h

we substitute t = uh and obtain ,

∇hy(uh) =
y(uh) − y(uh − h)

h

= y(k(u)) − y(k(u − 1))
h

= ∇(y ○ k)(u)
h

,

where u ∈ Na/h.

Lemma 2.10. Let α,h > 0, a be any real number,and the function k be defined as

k ∶ Na/h Ð→ hNa

k(u) ∶= uh.

And let y ∶ hNa Ð→ R. Then

a∇α
hy(uh) = h−α∇α

a/h(y ○ k)(u)

where u = t
h ∈ Na/h.

Proof. We first find a relation between ∇−α
h and ∇−α

a∇−α
h y(uh) = 1

Γ(α)
u

∑
s=a/h

(uh − ρh(sh))
α−1

h
y(sh)h

= 1

Γ(α)
u

∑
s=a/h

Γ(uh−sh+hh + α − 1)
Γ(uh−sh+hh )

hαy(sh)

8



= hα

Γ(α)
u

∑
s=a/h

Γ(u − s + α)
Γ(u − s + 1) y(sh)

= hα

Γ(α)
u

∑
s=a/h

(u − s + 1)α−1y(sh)

= hα
u

∑
s=a/h

(u − s + 1)α−1
Γ(α) (y ○ k)(s)

= hα∇−α
a/h(y ○ k)(u)

where u ∈ Na/h.

With help of Definition 2.6 and Lemma 2.9, we obtain

a∇α
hy(uh) = (∇h(a∇−(1−α)

h ))y(uh)

= ∇((a∇−(1−α)
h )y ○ k)(u)

h

= ∇(a∇−(1−α)
h y(uh))
h

=
∇(h1−α∇−(1−α)

a/h
(y ○ k)(u))

h

= h−α∇α
a/h(y ○ k)(u)

where u ∈ Na/h.

Theorem 2.11 (Integration by parts). [22] Let f, g ∶ hNa Ð→ R are given, then the

following identity

t/h

∑
s=a

∇f(s)g(s) = f(s)g(s)∣s→
t
h

s→a−1 −
t/h

∑
s=a

f(ρ(s))∇g(s)

holds.

9



Chapter 3

THE PHARMACODYNAMICS MODEL WITH DELAY

The pharmacodynamics (PD) is a field that focuses on studying biological

and physiologic effects of drugs, the relation of the effects to drug exposure and the

system of drug movement. Indicated effects can comprise of those observed within

microorganisms, animals, or humans. Main significance in PD is the connecting of

the drug at the receptor (target) since receptors are the most consequential targets

for therapeutic drugs [12, 23].

The main goal of PD modeling is to predict the time curve of the drug effect

potency in natural conditions in health and disease [11]. In the process of discovering

and developing drugs, the PD modeling has been a principal success factor. As an

illustration, optimization of the dosing administration and the delivery profile of new

or presenting drugs can be given which demonstrates that PD modeling has a benefit

as the theoretical basis [13].

Looking back to history, it was discerned that the answer to pharmacological

questions can be found by clinicians and pharmacists employing mathematical mod-

els [14], [15]. Despite this fact, it is significant to emphasize that the development of

the mathematical PD modeling theory was liberated from the mathematical group.

The interpretation of pharmacological concepts in the PD models is the main pivot.

Thus, clinical representation of model parameters can be created and rational model

performance can be used for simulations. Over the past decades, mathematicians

began to make significant contributions to PD modeling with effectual input. Fur-

thermore, a small mathematical group that develops more progressive mathematical

and computational approaches has been established within the PD field [28].

Another important ambition of the PD model is to provide an answer to certain

clinical questions. For the sake of being more precise, it has been shown that the

10



attainment of mathematical modeling such as in the biopharma industry is contingent

on acquiring the correct question, correct model, and correct analysis [1]. Ordinary

differential equations play the main role in formulating PD models and they can be

improved in such a way that depends on data which means characterizing existing

data, or in a more mechanistic perspective, where elaborate underlying physiological

mechanisms are depicted [3].

In this chapter, we will consider the PD delayed model for tumor growth. A.

K. Laird [27] started mathematical modeling of tumor growth in the 1960s using the

application of the Gombertz [19] function to fit data from various animals. By ob-

serving the sigmoidal curve, it appeared that the curve fits perfectly to the common

tumor growth behaviour which generally passes through three phases, exponential

growth at the initial step followed by linear growth and ultimately saturation. De-

tailed information concerning the delayed model problem is given in Section 3.3 of

this chapter. In the beginning, the model is given as a system of differential equa-

tions and we use nabla h–discrete and nabla h–discrete fractional operators to write

the model on h–discrete calculus and h–discrete fractional calculus. Therefore, we

introduce the solution of nabla h–discrete equations and its variation of constants

formula in Section 3.1, and the solution of nabla h–discrete fractional equation and

its variation of constants formula in Section 3.2. We present the new tumor growth

model in Section 3.3 and solve it using theorems obtained in the previous sections.

11



3.1 Nabla h–Discrete Equations with Delay

Theorem 3.1. Let λ, c, t0 ∈ R. The solution of the following initial value problem

(IVP)

(∇hy)(t) = λy(t − h) for t ∈ hNt0+h

y(t0) = c

is given by

y(t) = c(1 + hλ)
t−t0
h

where h > 0 and hλ ≠ −1.

Proof. By using the definition of the nabla h-discrete operator, we can write

y(t) − y(t − h)
h

= λy(t − h)

y(t) = y(t − h)(1 + hλ).

Setting t = t0 + h, the equation yields

y(t0 + h) = y(t0)(1 + hλ) = c(1 + hλ),

since y(t0) = c. Setting t = t0 + 2h, we have

y(t0 + 2h) = c(1 + hλ)2.

12



Proceeding forward gives us

y(t0 + nh) = c(1 + hλ)n for n ∈ N.

The above expression can be rewritten as in the following,

y(t) = c(1 + hλ)
t−t0
h

for all t ∈ hNt0+h and hλ ≠ −1.

Next, we state and prove the variation of constants formula for the non-

homogeneous linear equation.

Theorem 3.2 (Variation of Constants Formula). Assume λ ∈ R ∖ {− 1
h} and t0 ∈ R.

Then, the first order nabla h–difference equation

(∇hy)(t) = λy(t − h) + f(t − h) for t = t0 + h, t0 + 2h, ..., (3.1.1)

has the general solution

y(t) = c(1 + hλ)
t−t0
h +

t
h
−1

∑
s=t0/h

(1 + hλ) t
h
−s−1f(sh)h

where h > 0 and c ∈ R constant number.

Proof. Using direct substitution of the solution into (3.1.1), we obtain

∇hy(t) =∇hc(1 + hλ)
t−t0
h +∇h

t
h
−1

∑
s=t0/h

(1 + hλ) t
h
−s−1f(sh)h

=cλ(1 + hλ)
t−h−t0

h +
t
h
−2

∑
s=t0/h

∇h(1 + hλ)
t
h
−s−1f(sh)h

13



+ (1 + hλ) t
h
−s−1f(sh)h
h

∣t→t,s→ t
h
−1

=cλ(1 + hλ)
t−t0
h

−1 +
t
h
−2

∑
s=t0/h

λ(1 + hλ) t
h
−s−2f(sh)h + f(t − h)

=λ[c(1 + hλ)
t−t0
h

−1 +
t
h
−2

∑
s=t0/h

(1 + hλ) t
h
−s−2f(sh)h] + f(t − h)

=λy(t − h) + f(t − h),

where we use Theorem 2.8 (ii) and Theorem 3.1.

3.2 Nabla h–Discrete Fractional Equations with Delay

Theorem 3.3. Let λ, c, t0 ∈ R, h > 0, and α ∈ (0,1). A solution of the following initial

value problem

t0∇α
hy(t) = λy(t − h) t = t0 + h, t0 + 2h, ..., (3.2.1)

y(t0) = c (3.2.2)

is given by

y(t) = c

hα−1

t/h

∑
n=t0/h

λn−
t0
h (t − nh + h)(n−

t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

.

Proof. We directly substitute the given solution into the equation (3.2.1) and use the

definition of rising factorial power

t0∇α
hy(t) =t0∇α

h

c

hα−1

t/h

∑
n=t0/h

λn−
t0
h (t − nh + h)(n−

t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)
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=t0∇α
h

c

hα−1

t/h

∑
n=t0/h

λn−
t0
h
h(n−

t0
h
+1)α−1Γ( t−nh+hh + nα − t0

h α + α − 1)
Γ((n − t0

h + 1)α)Γ( t−nh+hh )

=I.

Using Definition 2.5 and Definition 2.6, we obtain

I = ∇h t0∇
−(1−α)
h

c

hα−1

t/h

∑
n=t0/h

λn−
t0
h
hnα−

t0
h
α+α−1Γ( t−nh+hh + nα − t0

h α + α − 1)
Γ((n − t0

h + 1)α)Γ( t−nh+hh )

= ∇h
c

hα−1

t/h

∑
s=t0/h

(t − ρh(sh))−αh
Γ(1 − α) h

s

∑
n=t0/h

λn−
t0
h
hnα−

t0
h
α+α−1Γ( sh−nh+hh + nα − t0

h α + α − 1)
Γ((n − t0

h + 1)α)Γ( sh−nh+hh )
.

Subsequently, we interchange the order of summation and get

I = c

hα−1
∇h

t/h

∑
n=t0/h

t/h

∑
s=n

h−αΓ( t−sh+hh − α)
Γ( t−sh+hh )Γ(1 − α)

λn−
t0
h hnα−

t0
h
α+α

Γ(s − n + 1 + nα − t0
h α + α − 1)

Γ((n − t0
h + 1)α)Γ(s − n + 1)

= c

hα−1
∇h

t/h

∑
n=t0/h

t/h−n

∑
s=0

Γ( t−nh−sh+hh − α)
Γ( t−nh−sh+hh )Γ(1 − α)

λn−
t0
h h(n−

t0
h
)α

Γ(s + nα − t0
h α + α)

Γ(s + 1)Γ((n − t0
h + 1)α)

= c

hα−1
∇h

t/h

∑
n=t0/h

λn−
t0
h h(n−

t0
h
)α

Γ( th − n + 1)
t/h−n

∑
s=0

(
t
h − n
s

)(1 − α) t
h
−n−s(nα − t0

h
α + α)s,

where we used the formula

(u
v
) = Γ(u + 1)

Γ(v + 1)Γ(u − v + 1) ,

where u and v are natural numbers. By using the identity below

t/h−n

∑
s=0

(
t
h − n
s

)(1 − α) t
h
−s−n(nα + α)s = (nα + 1) t

h
−n.
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we obtain

I = c

hα−1
∇h

t/h

∑
n=t0/h

λn−
t0
h h(n−

t0
h
)α(nα − t0

h α + 1) t
h
−n

Γ( th − n + 1)

= c

hα−1
∇h

t/h

∑
n=t0/h

λn−
t0
h h(n−

t0
h
)α( th − n + 1)(n−

t0
h
)α

Γ(nα − t0
h α + 1)

= c

hα−1
∇h

t/h

∑
n=t0/h

λn−
t0
h h(n−

t0
h
)αΓ( th − n + 1 + nα − t0

h α)
Γ(nα − t0

h α + 1)Γ( th − n + 1)

= c

hα−1
∇h

t/h

∑
n=t0/h

λn−
t0
h (t − nh + h)(n−

t0
h
)α

h

Γ(nα − t0
h α + 1)

.

Next, we apply Theorem 2.8 (i) on the final expression, and we get

I = c

hα−1

t/h

∑
n=t0/h

∇hλ
n−

t0
h
(t − nh + h)(n−

t0
h
)α

h

Γ(nα − t0
h α + 1)

+ cλn−
t0
h

hα−1Γ(nα − t0
h α + 1)

(t − nh + h)(n−
t0
h
)α

h

h
∣t→t−h,n→ t

h

= c

hα−1

t/h

∑
n=t0/h

(n − t0
h )αλn−

t0
h (t − nh + h)nα−

t0
h
α−1

h

Γ(nα − t0
h α)(nα −

t0
h α)

= c

hα−1

t/h

∑
n=t0/h+1

λn−
t0
h (t − nh + h)nα−

t0
h
α−1

h

Γ(nα − t0
h α)

,

where we used the definition of rising power factorial and assumption on the Gamma

function,
1

Γ(0) = 0. Hence we have

I = c

hα−1

(t−h)/h

∑
n=t0/h

λn−
t0
h
+1(t − (n + 1)h + h)(n+1−

t0
h
)α−1

h

Γ((n + 1 − t0
h )α)
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= cλ

hα−1

(t−h)/h

∑
n=t0/h

λn−
t0
h (t − nh)(n−

t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

= λy(t − h),

as desired.

Subsequently, we give an alternative proof for the initial value problem given

above.

Proof. (Alternative proof.)

We prove above theorems by means of Lemma 2.9 and Lemma 2.10.

The given equation,

t0∇α
hy(t) = λy(t − h)

can be written as the following

t0∇α
hy(t) =t0 ∇α

hy(uh) = h−α∇α
t0/h

(y ○ k)(u)

λy(t − h) = λy(h(u − 1)) = λ(y ○ k)(u − 1)

∇α
t0/h

(y ○ k)(u) = λhα(y ○ k)(u − 1),

where k(u) = uh and u ∈ Nt0/h. Next, we consider the following IVP and its solution

given in [34]

∇ν
ay(t) = λy(t − 1) for t = a + 1, a + 2, a + 3, ...,

∇−(1−ν)
0 y(t)∣t=a = y(a) = c.

17



Hence, we have

(y ○ k)(u) = c
u

∑
n=t0/h

(λhα)n−
t0
h (u − n + 1)(n−

t0
h
+1)α−1

Γ((n − t0
h + 1)α)

y(uh) = c
u

∑
n=t0/h

(λhα)n−
t0
h (u − n + 1)(n−

t0
h
+1)α−1

Γ((n − t0
h + 1)α)

y(t) = c
t/h

∑
n=t0/h

(λhα)n−
t0
h ( th − n + 1)(n−

t0
h
+1)α−1

Γ((n − t0
h + 1)α)

Next, using the definition of rising factorial power, the following result is obtained

y(t) =c
t/h

∑
n=t0/h

λn−
t0
h hα(n−

t0
h
)Γ( t−nh+hh + (n − t0

h + 1)α − 1)
Γ( t−nh+hh )Γ((n − t0

h + 1)α)

= c

hα−1

t/h

∑
n=t0/h

λn−
t0
h (t − nh + h)(n−

t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

.

Let us define the following nabla function which will be used for the succeeding

theorem

ŷλ(t, t0) ∶=
1

hα−1

t/h

∑
n=t0/h

λn−
t0
h (t − nh + h)(n−

t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

.

Theorem 3.4 (Variation of Constants Formula). Assume λ, t0 ∈ R and h > 0. The

fractional h–difference equation of order α ∈ (0,1)

t0∇α
hy(t) = λy(t − h) + f(t − h) for t = t0 + h, t0 + 2h, ...,

18



has the general solution

y(t) = ŷλ(t, t0)c +
t/h−1

∑
s=t0/h

ŷλ(t + t0 − sh − h, t0)f(sh)hα,

where c is constant and

ŷλ(t, t0) =
1

hα−1

t/h

∑
n=t0/h

λn−
t0
h (t − nh + h)(n−

t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

.

Proof. Our aim is to show the following

t0∇
α
h

t/h−1

∑

s=t0/h

ŷλ(t + t0 − sh − h, t0)f(sh)h
α
= λ

t/h−2

∑

s=t0/h

ŷλ(t + t0 − sh − 2h, t0)f(sh)h
α
+ f(t − h).

Using Definition 2.5 and Definition 2.6, we can write the left side of the equation given

above as the following,

I =t0∇
α
h

t/h−1

∑

s=t0/h

ŷλ(t + t0 − sh − h, t0)f(sh)h
α

=∇h t0∇
−(1−α)
h

t/h−1

∑

s=t0/h

ŷλ(t + t0 − sh − h, t0)f(sh)h
α

=∇h

t/h

∑

u=t0/h

(t − ρ(uh))−αh
Γ(1 − α)

u−1

∑

s=t0/h

ŷλ(uh + t0 − sh − h, t0)f(sh)h
α+1.

Next, we interchange the order of summation and get

I = ∇h

t/h−1

∑

s=t0/h

t/h

∑

u=s+1

(t − ρ(uh))−αh
Γ(1 − α)

ŷλ(uh + t0 − sh − h, t0)f(sh)h
α+1.
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Using Theorem 2.8 (ii), we obtain

I =
t/h−2

∑

s=t0/h

∇h

t/h

∑

u=s+1

(t − ρ(uh))−αh
Γ(1 − α)

ŷλ(uh + t0 − sh − h, t0)f(sh)h
α+1

+

t/h

∑

u=s+1

(t − ρ(uh))−αh
Γ(1 − α)

ŷλ(uh + t0 − sh − h, t0)f(sh)h
α+1

h
∣t→t,s→ t

h
−1.

Since ŷλ(t0, t0) = 1, we rewrite

I =
t/h−2

∑

s=t0/h

∇h

t/h

∑

u=s+1

(t − ρ(uh))−αh
Γ(1 − α)

ŷλ(uh + t0 − sh − h, t0)f(sh)h
α+1

+ f(t − h).

Next we use substitution τh = uh + t0 − sh − h, we obtain

t/h

∑

u=s+1

(t − ρ(uh))−αh
Γ(1 − α)

ŷλ(uh + t0 − sh − h, t0)f(sh)h
α+1

=

t+t0
h

−s−1

∑

τ=t0/h

(t − (τh + sh + h − t0 − h))
−α
h

Γ(1 − α)
ŷλ(τh, t0)f(sh)h

α+1

=

t+t0
h

−s−1

∑

τ=t0/h

((t + t0 − sh − h) − ρ(τh))
−α

Γ(1 − α)
ŷλ(τh, t0)f(sh)h

α+1

= t0∇
−(1−α)
h ŷλ(t + t0 − sh − h, t0)f(sh)h

α.

Hence, we obtain

I =
t/h−2

∑

s=t0/h

∇h( t0∇
−(1−α)
h ŷλ(t + t0 − sh − h, t0)f(sh)h

α
) + f(t − h)

=

t/h−2

∑

s=t0/h
t0∇

α
h ŷλ(t + t0 − sh − h, t0)f(sh)h

α
+ f(t − h)

= λ
t/h−2

∑

s=t0/h

ŷλ(t + t0 − sh − 2h, t0)f(sh)h
α
+ f(t − h)
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= λy(t − h) + f(t − h).

We use Theorem 3.3 to complete the proof.

3.3 Solving Tumor Growth Model with Delay Using Nabla h–

Discrete and Nabla h–Fractional Operators

As a result of replacement of the unperturbed growth component of PK-PD

model in [25] with the Gombertz growth component, the following form [3] of the

PK-PD model in continuous time was obtained.

x′1(t) = (a − bln(x1(t))x1(t) − k2c(t)x1(t), x1(0) = w0

x′2(t) = k2c(t)x1(t) − k1x2(t), x2(0) = 0

x′3(t) = k1x2(t) − k1x3(t), x3(0) = 0

w(t) = x1(t) + x2(t) + x3(t),

This model describes unperturbed and perturbed tumor growth and consists

of five parameters (w0, a, b, k1, k2) [3]:

• k1 is the transit rate between compartments of the non-proliferating cells.

• a and b control the growth of the proliferating cells.

• w0 is the initial tumor weight.

• k2 is the the potency factor of the drug.

We presume that cells instantaneously cease proliferating depending on drug concen-

tration once affected by drug action and get through certain phases with rate k1 before

21



Figure 3.3.1: Schematic representation of transit compartment model to evaluate
anticancer effect of single therapy.

they die. Considering that non-proliferating cells still give additional weight to total

tumor mass, total tumor w(t) is the sum of proliferating x1 and non-proliferating

tumor cells (x2, x3). But, there are only remaining x1 cells that are proliferating and

not affected by drug action which add to the tumor growth. Here, c(t) is the drug

concentration in plasma and w(t) is total tumor weight.

In the process of constructing the tumor growth inhibition model, two funda-

mental properties are considered [3]:

1. The tumor growth will be prevented while the drug is administrated, i.e. c(t) >

0.

2. The tumor volume will always be positive, i.e. w(t) > 0 for all t ≥ 0.

We first write the delayed model indicated above as nabla h–discrete equations

(∇hu)(t) = a − bu(t − h) − k2c(t − h), x1(0) = w0

(∇hx2)(t) = k2c(t − h)x1(t − h) − k1x2(t − h), x2(0) = 0
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(∇hx3)(t) = k1x2(t − h) − k1x3(t − h), x3(0) = 0

w(t) = x1(t) + x2(t) + x3(t),

where u(t) = lnx1(t).

We solve the above system of difference equations by using Theorem 3.1 and

Theorem 3.2. We obtain the following solutions

u(t) = u(0)(1 − bh) t
h + h

t
h
−1

∑
s=0

(1 − bh) t
h
−s−1(a − k2c(sh))

x1(t) = eu(t)

x2(t) = k2h
t
h
−1

∑
s=0

(1 − k1h)
t
h
−s−1(c(sh)x1(sh))

x3(t) = k1h
t
h
−1

∑
s=0

(1 − k1h)
t
h
−s−1x2(sh)

Next, we write the delayed model on h–discrete fractional calculus

∇α
hu(t) = a − bu(t − h) − k2c(t − h), x1(0) = w0

∇α
hx2(t) = k2c(t − h)x1(t − h) − k1x2(t − h), x2(0) = 0

∇α
hx3(t) = k1x2(t − h) − k1x3(t − h), x3(0) = 0

w(t) = x1(t) + x2(t) + x3(t),

where u(t) = lnx1(t).

Using Theorem 3.3 and Theorem 3.4 as tools, we obtain the following solutions
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for x1(t), x2(t), x3(t). We obtain:

u(t) = ŷ−b(t,0)u(0) +
(t/h)−1

∑
s=0

ŷ−b(t − sh − h,0)(a − k2c(sh))hα

x1(t) = eu(t)

x2(t) =
(t/h)−1

∑
s=0

ŷ−k1(t − sh − h,0)(k2c(sh)x1(sh))hα

x3(t) =
(t/h)−1

∑
s=0

ŷ−k1(t − sh − h,0)(k1x2(sh))hα

where

ŷ−b(t,0) =
(t/h)

∑
n=0

(−b)nhnαΓ( th + nα − n + α)
Γ((n + 1)α)Γ( th − n + 1)

ŷ−k1(t,0) =
(t/h)

∑
n=0

(−k1)nhnαΓ( th + nα − n + α)
Γ((n + 1)α)Γ( th − n + 1) .
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3.4 Combination Therapy for Tumor Growth Model with De-

lay

Patients having cancer are widely treated by combination therapy. The princi-

pal purpose of combining anticancer agents in the clinic is to acquire a better reaction

with decreased destructive effects. Starting from early drug development, evaluating

the nature and severity of combination drug therapy in the laboratory has always

been a considerable challenge. A substantial number of reports can be found in the

literature concerning the definition and categorization of pharmacological drug coop-

eration [8], [21]. Furthermore, PK-PD modeling was suggested to quantify in vivo

drug interactions in order to remove these challenging features of combination ther-

apy. Working with this modelling approach gives an opportunity to select the most

advantageous combination therapies [25].

We replace unperturbed growth component given in the paper [25] with the

Gombertz growth component, and we get the model equations for combination ther-

apies in the form of differential equations which are shown below,

x′1(t) = (a − bln(x1(t))x1(t) − (ka2c1(t) + kb2c2(t)ψ)x1(t), x1(0) = w0

x′2(t) = (ka2c1(t) + kb2c2(t)ψ)x1(t) − k1x2(t), x2(0) = 0

x′3(t) = k1x2(t) − k1x3(t), x3(0) = 0

w(t) = x1(t) + x2(t) + x3(t).

Parameters are listed as below,

• k1 is the transit rate between the compartments of the non-proliferating cells.

• ka2 is the potency of the drug A.
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• kb2 is the potency of the drug B.

• c1(t) is the concentration of drug A.

• c2(t) is the concentration of drug B.

It would be worthwhile to mention that ψ was included the model so as to determine

the interaction during joint administration. The value of ψ either greater or less than

1 shows the degree of rise or decrease in the anti-tumor effect. In this section, we first

write the model indicated above as nabla h-discrete equations

(∇hu)(t) = a − bu(t − h) − (ka2c1(t − h) + kb2c2(t − h)ψ), x1(0) = w0

(∇hx2)(t) = (ka2c1(t − h) + kb2c2(t − h)ψ)x1(t − h) − k1x2(t − h), x2(0) = 0

(∇hx3)(t) = k1x2(t − h) − k1x3(t − h), x3(0) = 0

w(t) = x1(t) + x2(t) + x3(t)

where u(t) = lnx1(t).

We solve above system of difference equations by using Theorem 3.1 and The-

orem 3.2. The following solutions are obtained:

u(t) = u(0)(1 − bh) t
h + h

t
h
−1

∑
s=0

(1 − bh) t
h
−s−1(a − (ka2c1(sh) + kb2c2(sh)ψ))

x1(t) = eu(t)

x2(t) = h
t
h
−1

∑
s=0

(1 − k1h)
t
h
−s−1(ka2c1(sh) + kb2c2(sh)ψ)x1(sh))

x3(t) = h
t
h
−1

∑
s=0

(1 − k1h)
t
h
−s−1k1x2(sh)

Next, we write the delayed model for combination therapy on h–discrete fractional
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calculus

∇α
hu(t) = a − bu(t − h) − (ka2c1(t − h) + kb2c2(t − h)ψ), x1(0) = w0

∇α
hx2(t) = (ka2c1(t − h) + kb2c2(t − h)ψ)x1(t − h) − k1x2(t − h), x2(0) = 0

∇α
hx3(t) = k1x2(t − h) − k1x3(t − h), x3(0) = 0

w(t) = x1(t) + x2(t) + x3(t),

where u(t) = lnx1(t).

Using Theorem 3.3 and Theorem 3.4 as tools, we obtain the following solutions

for x1(t), x2(t), x3(t). We obtain:

u(t) = ŷ−b(t,0)u(0) +
(t/h)−1

∑
s=0

ŷ−b(t − sh − h,0)(a − (ka2c1(sh) + kb2c2(sh)ψ))hα

x1(t) = eu(t)

x2(t) =
(t/h)−1

∑
s=0

ŷ−k1(t − sh − h,0)(ka2c1(sh) + kb2c2(sh)ψ))x1(sh))hα

x3(t) =
(t/h)−1

∑
s=0

ŷ−k1(t − sh − h,0)(k1x2(sh))hα

where

ŷ−b(t,0) =
(t/h)

∑
n=0

(−b)nhnαΓ( th + nα − n + α)
Γ((n + 1)α)Γ( th − n + 1)

ŷ−k1(t,0) =
(t/h)

∑
n=0

(−k1)nhnαΓ( th + nα − n + α)
Γ((n + 1)α)Γ( th − n + 1) .
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Chapter 4

THE PHARMACODYNAMICS MODEL WITHOUT DELAY

Even though we get solutions for delay case of our model, try different drug

doses, do parameter estimations and simulations, we still see jumps on the graph.

Therefore, in this chapter, we investigate our tumor growth model by getting rid of

delay from model equations. In order to obtain solutions for indicated problem, we

first introduce several theorems including variation of constants formulas for nabla

h–discrete and discrete fractional equations by neglecting delay. In the final section,

we solve our model which does not have delay with help of those theorems we prove

in Section 4.1 and Section 4.2. As a result, we are able to eliminate occurring jumps

from graph for tumor growth model without delay.

4.1 Nabla h–Discrete Equations without Delay

Theorem 4.1. Let h > 0 and λ, c, t0 ∈ R be constants. The solution of the following

initial value problem (IVP)

(∇hy)(t) = −λy(t) for t ∈ hNt0 (4.1.1)

y(t0) = c (4.1.2)

is given by

y(t) = c(1 + hλ)−
t−t0
h

where hλ ≠ −1.
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Proof. By using the definition of nabla h-discrete operator, we can write

y(t) − y(t − h)
h

= −λy(t)

y(t) = y(t − h)(1 + hλ)−1.

Setting t = t0 + h, the equation yields

y(t0 + h) = y(t0)(1 + hλ)−1 = c(1 + hλ)−1

since y(t0) = c. Setting t = t0 + 2h, we have

y(t0 + 2h) = c(1 + hλ)−2.

Proceeding forward gives us

y(t0 + nh) = c(1 + hλ)−n for n ∈ N.

The above expression can be rewritten as follows ,

y(t) = c(1 + hλ)−
t−t0
h

for all t ∈ hNt0 and hλ ≠ −1.

Next, we give variation of constants formula for the equation 4.1.1 and its

proof.

Theorem 4.2 (Variation of Constants Formula). Assume h > 0, λ ∈ R∖{−1

h
} and t0
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are any real numbers. Then, the first order nabla h–difference equation

(∇hy)(t) = −λy(t) + f(t) for t = t0, t0 + h, t0 + 2h, ..., (4.1.3)

has the general solution

y(t) = c(1 + hλ)−
t−t0
h +

t
h

∑
s=t0/h+1

(1 + hλ)−( th−s+1)f(sh)h

where c ∈ R constant number.

Proof. Using direct substitution into (4.1.3), we obtain

∇hy(t) =∇hc(1 + hλ)−
t−t0
h +∇h

t
h

∑
s=t0/h+1

(1 + hλ)−( th−s+1)f(sh)h

= − cλ(1 + hλ)−
t−t0
h +

t
h

∑
s=t0/h+1

∇h(1 + hλ)−(
t
h
−s+1)f(sh)h

+ (1 + hλ)−( th−s+1)f(sh)h
h

∣t→t−h,s→ t
h

= − cλ(1 + hλ)−
t−t0
h +

t
h

∑
s=t0/h+1

−λ(1 + hλ)−( th−s+1)f(sh)h + f(t)

= − λ[c(1 + hλ)−
t−t0
h +

t
h

∑
s=t0/h+1

(1 + hλ)−( th−s+1)f(sh)h] + f(t)

= − λy(t) + f(t),

where we use Theorem 2.8 (i) and Theorem 4.1.
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4.2 Nabla h–Discrete Fractional Equations without Delay

Theorem 4.3. Let h > 0, λ, c ∈ R. and α ∈ (0,1). A solution of the following initial

value problem

t0∇α
hy(t) = −λy(t) t = t0, t0 + h, t0 + 2h, ..., (4.2.1)

y(t0) = c (4.2.2)

is given by

y(t) = c(1 + λh
α)

hα−1

∞

∑
n=t0/h

(−λ)n−
t0
h (t − t0 + h)

(n−
t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

where ∣λhα∣ < 1.

Proof. We directly substitute the given solution into the equation (4.2.1) and use

definition of rising factorial power. Hence, we have

t0∇α
hy(t) =t0∇α

h

c(1 + λhα)
hα−1

∞

∑
n=t0/h

(−λ)n−
t0
h (t − t0 + h)

(n−
t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

=t0∇α
h

c(1 + λhα)
hα−1

∞

∑
n=t0/h

(−λ)n−
t0
h hnα−

t0
h
α+α−1Γ( t−t0+hh + nα − t0

h α + α − 1)
Γ( t−t0+hh )Γ((n − t0

h + 1)α)

=I.
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Using Definition 2.5 and Definition 2.6, we obtain

I =∇h t0∇
−(1−α)
h c(1 + λhα)

∞

∑
n=t0/h

(−λ)n−
t0
h hnα−

t0
h
αΓ( t−t0h + nα − t0

h α + α)
Γ( t−t0h + 1)Γ((n − t0

h + 1)α)

=∇hc(1 + λhα)
t/h

∑
s=t0/h

(t − ρh(sh))−αh
Γ(1 − α) h

∞

∑
n=t0/h

(−λ)n−
t0
h hnα−

t0
h
αΓ( sh−t0h + nα − t0

h α + α)
Γ( sh−t0h + 1)Γ((n − t0

h + 1)α)

=∇hc(1 + λhα)
t/h

∑
s=t0/h

h−α Γ( t−sh+hh − α)
Γ( t−sh+hh )Γ(1 − α)

∞

∑
n=t0/h

(−λ)n−
t0
h hnα−

t0
h
α+1

Γ(s − t0
h + 1)

×
Γ(s − t0

h + nα −
t0
h α + α)

Γ((n − t0
h + 1)α)

=∇hc(1 + λhα)
t/h

∑
s=t0/h

Γ( th − s + 1 − α)
Γ( th − s + 1)Γ(1 − α)

∞

∑
n=t0/h

(−λ)n−
t0
h hnα−

t0
h
α+1−α

Γ(s − t0
h + 1)

×
Γ(s − t0

h + nα −
t0
h α + α)

Γ((n − t0
h + 1)α)

.

Subsequently, we interchange the order of summation and get

I =∇hc(1 + λhα)
∞

∑
n=t0/h

t/h

∑
s=t0/h

(−λ)n−
t0
h h(n−

t0
h
−1)α+1Γ(s − t0

h + (n − t0
h + 1)α)

Γ(s − t0
h + 1)Γ((n − t0

h + 1)α)

×
Γ( th − s + 1 − α)

Γ( th − s + 1)Γ(1 − α)

=∇hc(1 + λhα)
∞

∑
n=t0/h

t−t0
h

∑
s=0

(−λ)n−
t0
h h(n−

t0
h
−1)α+1Γ(s + (n − t0

h + 1)α)
Γ(s + 1)Γ((n − t0

h + 1)α)

×
Γ( th − s −

t0
h + 1 − α)

Γ( th − s −
t0
h + 1)Γ(1 − α)

.
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Next, we apply the following formulas

(u
v
) = Γ(u + 1)

Γ(v + 1)Γ(u − v + 1) ,

where u and v are natural numbers.

t/h−n

∑
s=0

(
t
h − n
s

)(1 − α) t
h
−s−n(nα + α)s = (nα + 1) t

h
−n.

and obtain

I =∇h
c(1 + λhα)

Γ( t−t0h + 1)hα−1
∞

∑
n=t0/h

(−λ)n−
t0
h hnα−

t0
h
α

t−t0
h

∑
s=0

(
t−t0
h

s
)(1 − α)

t−t0
h

−s(nα − t0
h
α + α)s

=c(1 + λh
α)

hα−1
∇h

∞

∑
n=t0/h

(−λ)n−
t0
h hnα−

t0
h
α

Γ( t−t0h + 1)
(1 + nα − t0

h
α)

t−t0
h

=c(1 + λh
α)

hα−1
∇h

∞

∑
n=t0/h

(−λ)n−
t0
h hnα−

t0
h
α( t−t0h + 1)nα−

t0
h
α

Γ(1 + nα − t0
h α)

.

Now we use Definition 2.3 and Definition 2.4,

I =c(1 + λh
α)

hα−1
∇h

∞

∑
n=t0/h

(−λ)n−
t0
h hnα−

t0
h
α

Γ( t−t0h + 1 + nα − t0
h α)

Γ( t−t0h + 1)Γ(1 + nα − t0
h α)

=c(1 + λh
α)

hα−1

∞

∑
n=t0/h

∇h

(−λ)n−
t0
h (t − t0 + h)

nα−
t0
h
α

h

Γ(1 + nα − t0
h α)

.

33



Using Lemma 2.7 (i), the following is obtained

I =c(1 + λh
α)

hα−1

∞

∑
n=t0/h

(−λ)n−
t0
h (nα − t0

h α)(t − t0 + h)
nα−

t0
h
α−1

h

(nα − t0
h α)Γ(nα − t0

h α)

=c(1 + λh
α)

hα−1

∞

∑
n=t0/h+1

(−λ)n−
t0
h (t − t0 + h)

nα−
t0
h
α−1

h

Γ(nα − t0
h α)

since
1

Γ(0) = 0. Hence we have

I =c(1 + λh
α)

hα−1

∞

∑
n=t0/h

(−λ)n+1−
t0
h (t − t0 + h)

(n+1)α−
t0
h
α−1

h

Γ((n + 1)α − t0
h α)

= − λc(1 + λh
α)

hα−1

∞

∑
n=t0/h

(−λ)n−
t0
h (t − t0 + h)

(n−
t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

= − λy(t)

as desired.

Proof. (Alternative proof) Using Lemma 2.10, we introduce a second proof of the

theorem mentioned above.

t0∇α
hy(t) = −λy(t)

t0∇α
hy(uh) = −λy(uh)

∇α
t0/h

(y ○ k)(u)
hα

= −λ(y ○ k)(u)

∇α
t0/h

(y ○ k)(u) = −λhα(y ○ k)(u)
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where k(u) = uh = t and u ∈ Nt0/h. We use solution of the following IVP given in [4]

∇αy(t) = −λy(t) for t = 1,2,3, ...,

y(0) = c

Hence we have,

(y ○ k)(u) = c(1 + λhα)
∞

∑
n=t0/h

(−λhα)n−
t0
h (u − t0

h + 1)(n−
t0
h
+1)α−1

Γ((n − t0
h + 1)α)

y(uh) = c(1 + λhα)
∞

∑
n=t0/h

(−λhα)n−
t0
h (u − t0

h + 1)(n−
t0
h
+1)α−1

Γ((n − t0
h + 1)α)

y(t) = c(1 + λhα)
∞

∑
n=t0/h

(−λhα)n−
t0
h ( t−t0h + 1)(n−

t0
h
+1)α−1

Γ((n − t0
h + 1)α)

Now we use Definition 2.3 and rewrite the equation

y(t) =c(1 + λhα)
∞

∑
n=t0/h

(−λhα)n−
t0
h Γ( t−t0+hh + 1 + nα − t0

h α + α − 1)
Γ( t−t0+hh + 1)Γ((n − t0

h + 1)α)

=c(1 + λhα)
∞

∑
n=t0/h

(−λ)n−
t0
h hnα−

t0
h
α(t − t0 + h)

(n−
t0
h
+1)α−1

h

hnα−
t0
h
α+α−1Γ((n − t0

h + 1)α)

=c(1 + λh
α)

hα−1

∞

∑
n=t0/h

(−λ)n−
t0
h (t − t0 + h)

(n−
t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

as desired.

Let us define

y∗λ(t, t0) ∶=
1

hα−1

∞

∑
n=t0/h

(−λ)n−
t0
h (t − t0 + h)

(n−
t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

.
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Theorem 4.4 (Variation of Constants Formula). Assume h > 0 and λ, c, t0 ∈ R. The

fractional difference equation of order α ∈ (0,1)

t0∇α
hy(t) = −λy(t) + f(t)) t = t0, t0 + h, t0 + 2h, ..., (4.2.3)

has the general solution

y(t) = y∗λ(t, t0)(1 + λhα)c +
t/h

∑
s=t0/h+1

y∗λ(t + t0 − sh, t0)f(sh)hα

where c is constant and

y∗λ(t, t0) =
1

hα−1

∞

∑
n=t0/h

(−λ)n−
t0
h (t − t0 + h)

(n−
t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

.

Proof. We need to show

t/h

∑
s=t0/h+1

y∗λ(t + t0 − sh, t0)f(sh)hα

is a solution of equation (4.2.3). Using the definition of y∗λ(t, t0) and Definition 2.5,

we write

yp(t) =
t/h

∑
s=t0/h+1

y∗λ(t + t0 − sh, t0)f(sh)hα

=
t/h

∑
s=t0/h+1

1

hα−1

∞

∑
n=t0/h

(−λ)n−
t0
h (t − sh + h)(n−

t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

f(sh)hα

=
∞

∑
n=t0/h

(−λ)n−
t0
h

t/h

∑
s=t0/h+1

(t − ρ(sh))(n−
t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

f(sh)h

=
∞

∑
n=t0/h

(−λ)n−
t0
h t0+h∇

−(n−
t0
h
+1)α

h f(t)
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Next, we plug in yp(t) into equation (4.2.3) and use Definition 2.6

t0∇α
hyp(t) = t0∇α

h

∞

∑
n=t0/h

(−λ)n−
t0
h t0+h∇

−(n−
t0
h
+1)α

h f(t)

=∇h t0∇
−(1−α)
h

∞

∑
n=t0/h

(−λ)n−
t0
h t0+h∇

−(n−
t0
h
+1)α

h f(t)

=∇h

∞

∑
n=t0/h

(−λ)n−
t0
h t0∇

−(1−α)
h t0+h∇

−(n−
t0
h
+1)α

h f(t)

=I.

Using Definition 2.6, we obtain

I =∇h

∞

∑
n=t0/h

(−λ)n−
t0
h t0∇

−(1−α)
h

t/h

∑
s=t0/h+1

(t − ρ(sh))(n−
t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

f(sh)h

=∇h

∞

∑
n=t0/h

(−λ)n−
t0
h

t/h

∑
τ=t0/h

(t − ρ(τh))−αh
Γ(1 − α)

τh/h

∑
s=t0/h+1

(τh − ρ(sh))(n−
t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

f(sh)h2

Next, we interchange the order of summation and get

I =∇h

∞

∑
n=t0/h

(−λ)n−
t0
h

t/h

∑
s=t0/h+1

t/h

∑
τ=s

(t − ρ(τh))−αh
Γ(1 − α)

(τh − ρ(sh))(n−
t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

f(sh)h2

=∇h

∞

∑
n=t0/h

(−λ)n−
t0
h

t/h

∑
s=t0/h+1

sh∇−(1−α)
h (t − ρh(sh))

(n−
t0
h
+1)α−1

h

f(sh)h
Γ((n − t0

h + 1)α)
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Next, we use Lemma 2.7 (ii) and obtain

I =∇h

∞

∑
n=t0/h

(−λ)n−
t0
h

t/h

∑
s=t0/h+1

Γ((n − t0
h + 1)α − 1 + 1)

Γ((n − t0
h + 1)α − 1 + 1 + 1 − α)

× (t − ρh(sh))
(n−

t0
h
+1)α−1+1−α

h

Γ((n − t0
h + 1)α)

f(sh)h

=∇h

∞

∑
n=t0/h

(−λ)n−
t0
h

t/h

∑
s=t0/h+1

(t − ρh(sh))
(n−

t0
h
)α

h

Γ((n − t0
h )α + 1)

f(sh)h

=∇h

∞

∑
n=t0/h

(−λ)n−
t0
h t0+h∇

−((n−
t0
h
)α+1)

h f(t)

=
∞

∑
n=t0/h

(−λ)n−
t0
h ∇h t0+h∇

−((n−
t0
h
)α+1)

h f(t).

Using Definition 2.6, the following result is obtained

I =
∞

∑
n=t0/h

(−λ)n−
t0
h t0+h∇

−((n−
t0
h
)α)

h f(t)

=
∞

∑
n=t0/h+1

(−λ)n−
t0
h t0+h∇

−((n−
t0
h
)α)

h f(t) + f(t)

=
∞

∑
n=t0/h

(−λ)n+1−
t0
h t0+h∇

−((n+1−
t0
h
)α)

h f(t) + f(t)

= − λ
∞

∑
n=t0/h

(−λ)n−
t0
h t0+h∇

−(n−
t0
h
+1)α

h f(t) + f(t)

= − λyp(t) + f(t).

We use Theorem 4.3 to complete the proof.

38



Now, we focus on the following problem,

t0∇α
hy(t) = −λy(t) t = t0, t0 + h, t0 + 2h, ..., (4.2.4)

y(t0) = 1 (4.2.5)

We define the solution of (4.2.4)-(4.2.5) as indicated below,

êα(−λ, (t − t0)αh) =
(1 + λhα)
hα−1

∞

∑
n=t0/h

(−λ)n−
t0
h (t − t0 + h)

(n−
t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

Theorem 4.5. Let 0 < α < 1 . The following are valid:

(i) êα(−λ,0) = 1, t ∈ hNa.

(ii) t0∇α
h êα(−λ, (t − t0)αh) = −λêα(−λ, (t − t0)αh), t ∈ hNa.

(iii) êα(−λ, (t − t0)αh) ≥ 0, t ∈ hNa.

(iv) êα(0, (t − t0)αh) =
(t − t0 + h)α−1

Γ(α)hα−1 , t ∈ hNa.

(v) êα(−λ, (t − t0)αh) converges absolutely if ∣λhα∣ < 1.

Proof. (i) We use the Definition 2.4 to prove (i),

êα(−λ,0) =
(1 + λhα)
hα−1

∞

∑
n=t0/h

(−λ)n−
t0
h (h)(n−

t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

= (1 + λhα)
hα−1

∞

∑
n=t0/h

(−λ)n−
t0
h Γ(1 + nα − t0

h α + α − 1)hnα−
t0
h
α+α−1

Γ(1)Γ((n − t0
h + 1)α)

= (1 + λhα)
∞

∑
n=t0/h

(−λ)n−
t0
h h(n−

t0
h
)α

= (1 + λhα)
∞

∑
n=t0/h

(−λhα)n = (1 + λhα) 1

(1 + λhα) = 1
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(ii) We first use the definition of êα(−λ, (t − t0)αh),

t0∇α
h êα(−λ, (t − t0)αh) =

(1 + λhα)
hα−1

t0∇α
h ((t − t0 + h)α−1h

Γ(α) )

+ (1 + λhα)
hα−1

t0∇α
h

⎛
⎜
⎝

∞

∑
n=t0/h+1

(−λ)n−
t0
h (t − t0 + h)

(n−
t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

⎞
⎟
⎠

=(1 + λh
α)

hα−1
(∇h t0∇

−(1−α)
h

(t − t0 + h)α−1h

Γ(α) )

+ (1 + λhα)
hα−1

∞

∑
n=t0/h+1

∇h t0∇
−(1−α)
h

(−λ)n−
t0
h (t − t0 + h)

(n−
t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

=I

where we used Definition 2.6.

Next, we use Lemma 2.7 (ii) and obtain the following,

I =(1 + λh
α)

hα−1
∇h (

Γ(α − 1 + 1)(t − t0 + h)α−1+1−αh

Γ(α − 1 + 1 + 1 − α)Γ(α) )

+ (1 + λhα)
hα−1

∞

∑
n=t0/h+1

∇h

⎛
⎜
⎝
(−λ)(n−

t0
h
)Γ((n − t0

h + 1)α)(t − t0 + h)
(n−

t0
h
)α

h

Γ(nα − t0
h α + 1)Γ((n − t0

h + 1)α)
⎞
⎟
⎠
.

Subsequently, Lemma 2.7 (i) is used as a tool. We simplify and get,

I =(1 + λh
α)

hα−1

∞

∑
n=t0/h+1

(−λ)(n−
t0
h
)(n − t0

h )α(t − t0 + h)
(n−

t0
h
)α−1

h

(n − t0
h )αΓ((n − t0

h )α)

=(1 + λh
α)

hα−1

∞

∑
n=t0/h

(−λ)(n−
t0
h
+1)(t − t0 + h)

(n−
t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)
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= − λ(1 + λh
α)

hα−1

∞

∑
n=t0/h

(−λ)n−
t0
h (t − t0 + h)

(n−
t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

= − λêα(−λ, (t − t0)αh)

(iii) In order to prove third property, we plug in the solution into the equation 4.2.4.

Using Definition 2.6, the following is obtained

t0∇α
h êα(−λ, (t − t0)αh) =(∇h t0∇

−(1−α)
h êα(−λ, (t − t0)αh)

=∇h

t/h

∑
s=t0/h

(t − sh + h)−αh
Γ(1 − α) êα(−λ, (sh − t0)αh)h

= 1

Γ(1 − α)
t/h

∑
s=t0/h

∇h(t − sh + h)−αh êα(−λ, (sh − t0)αh)h

+ (t − sh + h)−αh êα(−λ, (sh − t0)αh)h
Γ(1 − α)h ∣t→t−h,s→ t

h
= I

where we use Theorem 2.8 (i).

We simplify and use Theorem 2.7,

I = 1

Γ(1 − α)
⎛
⎝

t/h

∑
s=t0/h

∇h(t − sh + h)−αh êα(−λ, (sh − t0)αh)h + 0
⎞
⎠

= −α
Γ(1 − α)

t/h

∑
s=t0/h

(t − sh + h)−α−1h êα(−λ, (sh − t0)αh)h

Next, we make the above result equal to the right hand side of 4.2.4 and obtain,

−α
Γ(1 − α)

t/h

∑
s=t0/h

(t − sh + h)−α−1h êα(−λ, (sh − t0)αh)h = −λêα(−λ, (t − t0)αh)

−α
Γ(1 − α)

⎛
⎝

t/h−1

∑
s=t0/h

(t − sh + h)−α−1h êα(−λ, (sh − t0)αh)h + (h)−α−1h êα(−λ, (t − t0)αhh
⎞
⎠
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= −λêα(−λ, (t − t0)αh)

We use the definition of the nabla h–factorial as a succeeding step,

−α
Γ(1 − α)

t/h−1

∑
s=t0/h

(t − sh + h)−α−1h êα(−λ, (sh − t0)αh)h +
−αΓ(−α)h−α−1
Γ(1 − α)Γ(1) êα(−λ, (t − t0)

α
hh)

= −λêα(−λ, (t − t0)αh)

Since Γ(1 − α) = −αΓ(−α), we get the following

−α
Γ(1 − α)

t/h−1

∑
s=t0/h

(t − sh + h)−α−1h êα(−λ, (sh − t0)αh)h + êα(−λ, (t − t0)αh)h−α

= −λêα(−λ, (t − t0)αh)

êα(−λ, (t − t0)αh) =
α

(λ + h−α)Γ(1 − α)
t/h−1

∑
s=t0/h

(t − sh + h)−α−1h êα(−λ, (sh − t0)αh)

Since 0 < α < 1 and ∣λhα∣ < 1, it is obvious that (λ + h−α) > 0 and Γ(1 − α) > 0. Using

Definition 2.4, we can show that

(t − sh + h)−α−1h =
h−α−1Γ( th − s − α)

Γ( th − s + 1) ≥ 0

for t0 ≤ sh ≤ t − h. Thus, using the fact that êα(−λ,0) = 1, we obtained

êα(−λ, (t − t0)α) ≥ 0 t ∈ hNt0 .
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(iv) We first rewrite the solution of 4.2.4-4.2.5 as the following,

êα(−λ, (t − t0)αh) =
(1 + λhα)
hα−1

∞

∑
n=t0/h

(−λ)n−
t0
h (t − t0 + h)

(n−
t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

= (1 + λhα)
hα−1

⎛
⎜
⎝
(t − t0 + h)α−1h

Γ(α) +
∞

∑
n=t0/h+1

(−λ)n−
t0
h (t − t0 + h)

(n−
t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

⎞
⎟
⎠

set λ = 0

êα(0, (t − t0)αh) =
(t − t0 + h)α−1h

hα−1Γ(α) .

We write generalization of the theorem given in the paper [16]. If we take h = 1, we

obtain the result shown in the paper indicated above.

(v) We prove that t0∇α
h êα(−λ, (t − t0)αh) is convergent using the ratio test. We will

use the following property of the Gamma function [6]

lim
n→∞

Γ(n + α)
Γ(n)nα = 1

where α ∈ R. Then

lim
n→∞

Γ( t−t0h + (n + 2 − t0
h )α)

Γ( t−t0h + (n + 1 − t0
h )α)(

t−t0
h + (n + 1 − t0

h )α)α
= 1 (4.2.6)

and

lim
n→∞

Γ((n − t0
h + 1)α)((n − t0

h + 1)α)α
Γ((n + 1) − t0

h + 1)α)
= 1. (4.2.7)
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Define an =
(1 + λhα)
hα−1

∞

∑
n=t0/h

(−λ)n−
t0
h (t − t0 + h)

(n−
t0
h
+1)α−1

h

Γ((n − t0
h + 1)α)

. Then we have

lim
n→∞

∣an+1
an

∣ = lim
n→∞

RRRRRRRRRRRRRR

λ(t − t0 + h)
(n+1−

t0
h
+1)α−1)

h Γ((n − t0
h + 1)α)

Γ((n + 1 − t0
h + 1)α)(t − t0 + h)

(n−
t0
h
+1)α−1)

h

RRRRRRRRRRRRRR

= lim
n→∞

RRRRRRRRRRRR

hnα+2α−
t0
h
α−1Γ( t−t0h + nα + 2α − t0

h α)Γ((n − t0
h + 1)α)Γ( t−t0h + 1)

hnα−
t0
h
α+α−1Γ( t−t0h + 1)Γ((n − t0

h + 2)α)Γ( t−t0h + nα + α − t0
h α)

RRRRRRRRRRRR

= lim
n→∞

∣λhα
Γ( t−t0h + nα + 2α − t0

h α)Γ((n − t0
h + 1)α)

Γ((n − t0
h + 2)α)Γ( t−t0h + nα + α − t0

h α)
∣

= lim
n→∞

∣ λhα
Γ( t−t0h + (n + 2 − t0

h )α)
Γ( t−t0h + (n + 1 − t0

h )α)(
t−t0
h + (n + 1 − t0

h )α)α

×
Γ((n − t0

h + 1)α)((n − t0
h + 1)α)α

Γ((n + 1 − t0
h + 1)α)

⋅
( t−t0h + (n + 1 − t0

h )α)α
((n − t0

h + 1)α)α
∣

= lim
n→∞

∣ λhα
( t−t0h + (n + 1 − t0

h )α)α
((n − t0

h + 1)α)α
∣

= ∣λhαα
α

αα
∣ = ∣λhα∣ < 1,

where we used (4.2.6)-(4.2.7) and Definition 2.4.
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4.3 Solving Tumor Growth Model without Delay Using Nabla

h–Discrete and Nabla h–Fractional Operators

In this section, we give solutions to the model given in Section 3.3 but without

the delay condition. We first write the model on h–discrete calculus as the following

(∇hu)(t) = a − bu(t) − k2c(t), x1(0) = w0

(∇hx2)(t) = k2c(t)x1(t) − k1x2(t), x2(0) = 0

(∇hx3)(t) = k1x2(t) − k1x3(t), x3(0) = 0

w(t) = x1(t) + x2(t) + x3(t),

where u(t) = lnx1(t).

Using Theorem 4.1 and Theorem 4.2, we obtain the following solutions

u(t) = u(0) 1

(1 + hb) t
h

+ h
t
h

∑
s=1

1

(1 + hb) t
h
−s+1

(a − k2c(sh))

x1(t) = eu(t)

x2(t) = k2h
t
h

∑
s=1

1

(1 + hk1)
t
h
−s+1

(c(sh)x1(sh))

x3(t) = k1h
t
h

∑
s=1

1

(1 + hk1)
t
h
−s+1

x2(sh).

Next, we write the representation of our model on h–discrete fractional calculus

below
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∇α
hu(t) = a − bu(t) − k2c(t), x1(0) = w0

∇α
hx2(t) = k2c(t)x1(t) − k1x2(t), x2(0) = 0

∇α
hx3(t) = k1x2(t) − k1x3(t), x3(0) = 0

w(t) = x1(t) + x2(t) + x3(t),

where u(t) = lnx1(t).

Then, we solve the model utilizing Theorem 4.3 and Theorem 4.4 and get the

following outcome

u(t) = y∗b (t,0)(1 + bhα)u(0) +
(t/h)

∑
s=1

y∗b (t − sh,0)(a − k2c(sh))hα

x1(t) = eu(t)

x2(t) =
(t/h)

∑
s=1

y∗k1(t − sh,0)(k2c(sh)x1(sh))h
α

x3(t) =
(t/h)

∑
s=1

y∗k1(t − sh,0)(k1x2(sh))h
α

where

y∗b (t,0) =
∞

∑
n=0

(−b)nhnαΓ( th + nα + α)
Γ((n + 1)α)Γ( th + 1) ,

y∗k1(t,0) =
∞

∑
n=0

(−k1)nhnαΓ( th + nα + α)
Γ((n + 1)α)Γ( th + 1) .
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4.4 Combination Therapy for Tumor Growth without Delay

Model

In this section, we focus on the tumor growth model for without delay form

for combination therapy as we did in Section 3.4. First, we write the model on h–

discrete calculus. Then we introduce solutions using theorems we present in Section

4.1. Moreover, we continue to write our model on h–fractional calculus and give its

solutions.

(∇hu)(t) = a − bu(t) − (ka2c1(t) + kb2c2(t)ψ), x1(0) = w0

(∇hx2)(t) = (ka2c1(t) + kb2c2(t)ψ)x1(t) − k1x2(t), x2(0) = 0

(∇hx3)(t) = k1x2(t) − k1x3(t), x3(0) = 0

w(t) = x1(t) + x2(t) + x3(t)

where u(t) = lnx1(t).

Using Theorem 4.1 and Theorem 4.2, we obtain the following solutions

u(t) = u(0) 1

(1 + hb) t
h

+ h
t
h

∑
s=1

1

(1 + hb) t
h
−s+1

(a − (ka2c1(sh) + kb2c2(sh)ψ))

x1(t) = eu(t)

x2(t) = h
t
h

∑
s=1

1

(1 + hk1)
t
h
−s+1

(ka2c1(sh) + kb2c2(sh)ψ)x1(sh))

x3(t) = k1h
t
h

∑
s=1

1

(1 + hk1)
t
h
−s+1

x2(sh).

Next, we write the representation of our model on h–discrete fractional calculus below
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∇α
hu(t) = a − bu(t) − (ka2c1(t) + kb2c2(t)ψ), x1(0) = w0

∇α
hx2(t) = (ka2c1(t) + kb2c2(t)ψ)x1(t) − k1x2(t), x2(0) = 0

∇α
hx3(t) = k1x2(t) − k1x3(t), x3(0) = 0

w(t) = x1(t) + x2(t) + x3(t),

where u(t) = lnx1(t).

As a following step, we solve the model with help of Theorem 4.3 and Theorem

4.4 and get the following result

u(t) = y∗b (t,0)(1 + bhα)u(0) +
(t/h)

∑
s=1

y∗b (t − sh,0)(a − (ka2c1(sh) + kb2c2(sh)ψ))hα

x1(t) = eu(t)

x2(t) =
(t/h)

∑
s=1

y∗k1(t − sh,0)(k
a
2c1(sh) + kb2c2(sh)ψ)x1(sh))hα

x3(t) =
(t/h)

∑
s=1

y∗k1(t − sh,0)(k1x2(sh))h
α

where

y∗b (t,0) =
∞

∑
n=0

(−b)nhnαΓ( th + nα + α)
Γ((n + 1)α)Γ( th + 1) ,

y∗k1(t,0) =
∞

∑
n=0

(−k1)nhnαΓ( th + nα + α)
Γ((n + 1)α)Γ( th + 1) .
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Chapter 5

THE PHARMACOKINETIC MODEL

Pharmacokinetics (PK) is one of the fields of pharmacology which studies

the behaviour of the drugs that are administrated to the body over time. To put

another way, PK determines the fate of substances given to a living organism. These

substances include pesticides, cosmetics, pharmaceutical drugs, food additives, and

so on. Clinical pharmacokinetics [17] is the application of pharmacokinetic rules to

the secure and productive therapeutic control of drugs in an single patient. It forms a

reasonable basis for administrating proper amounts of the drug for a sensible amount

of time to attain desired beneficial effects while minimizing detrimental events. PK’s

aim is to analyze chemical metabolism and to uncover the future of a chemical from

the time it is administered till the moment it is completely removed from the body.

The PK model consists of the following the processes: liberation, absorption,

distribution, metabolism, and elimination of a drug [18]. Liberation is the procedure

that pharmaceutical formulation release drug. Absorption is the procedure in which

the substance enters to blood circulation. Distribution is the process whereby sub-

stances circulate or diffuse throughout fluids and tissues of the body. Metabolism or

biotransformation is the process whereby an organism recognizes a foreign substance

is present. Elimination or excretion is the removal of substances from the body.

Patient-related factors and a drug’s chemical properties define the pharma-

cokinetics of the drug. With the aim of predicting pharmacokinetics parameters in

populations some patient-related factors such as renal function, sex and age can be

used. For instance, some drugs, especially those demanding both metabolism and

excretion are noticeably long in the elderly.

In 1937, Swedish physiologist T. Teorell [32] published first pharmacokinetic

model which describes the circulatory system. In addition, F. H. Dost who was a
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German pediatrist is considered to be the founder of the term pharmacokinetic, we

refer the reader to [35] for further information. “Der Blutspiegel” [14] in 1953 and

“Grundlagen der Pharmakokinetik” [15] in 1968 were two of his famous books in

which he gave elaborate information and detailed analysis concerning drug behavior

in time based on a linear differential equation [23].

The drug concentration in blood within given time is measured in pharma-

cokinetic experiments. For the sake of improving the PK model, the body is usually

divided into several parts. In this chapter, we focus on a two-compartment model

approach which is broadly used. The model is based on linear differential equations

and from a modeling perspective forms a verifiable method to determine the drug

concentration. The time curve of many drugs can be represented by such models.

In this chapter, we first introduce our tumor pharmacokinetic model with two

compartments. Subsequently, we consider model for delay and without delay cases.

We give solutions for two forms of the models in the final section of this chapter,

accordingly.
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5.1 Two-Compartment PK Model without Delay

In this section, we consider two-compartment pharmacokinetic model. We

study oral absorption and endovenous control of the drug. Blood samples have to

be taken from patients in order to measure drug concentration. However, existence

of data is restricted due to moral limits. It is observed that two compartments are

adequate to suitably illustrate the time curve in blood for most drugs. To acquire

more knowledge regarding it, we refer the reader to [18].

A two-compartment model should be comprise of two physiological sensible

parts [26]:

• The main compartment is recognized with the blood and organs greatly provided

with blood like liver or kidney.

• The peripheral compartment represents as an illustration tissue or typically, the

section of the body which is severely supplied with blood.

The compartments are linked with each other and thus sharing between main and

peripheral compartments occurs. Essential assumptions in pharmacokinetics are as

follows:

• The drug is completely removed (metabolism and excretion) from the body via

the main compartment.

Now we give our two-compartment tumor growth PK model.

A′(t) = −kaA(t), A(tD) = f ∗ dose

C ′(t) = ka
A(t)
V

− (kel + k12)C(t) + k21P (t), C(tD) = 0

P ′(t) = k12C(t) − k21P (t), P (tD) = 0
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where 0 < f ≤ 1 is a parameter describing the amount of drug which reaches the blood.

Without loss of generality, we take f = 1. The model has the parameters

µ = (ka, kel, k12, k21)

and dose as a variable.

• V is volume of distribution in the model.

• ka > 0 is absorption rate constant.

• kel > 0 is elimination rate from the body.

• k12, k21 > 0 stand for the distribution between main and peripheral compart-

ment.

• C(t) is the drug concentration in the blood.

• A(t) is the absorption amount.

It is worthwhile to mention that while for the two-compartment model k12, k21 > 0,

for the one compartment model k12 = k21 = 0.

As it is seen above, the model is given in the form of differential equations and

our aim is to find the solution by rewriting the model as a nabla h–discrete equation.

∇hA(t) = −kaA(t), A(tD) = dose

∇hC(t) = ka
A(t)
V

− (kel + k12)C(t) + k21P (t), C(tD) = 0

∇hP (t) = k12C(t) − k21P (t), P (tD) = 0

52



In order to find the solution for nabla h–discrete equations indicated above,

we use theorems that we prove in Section 4.1 and Section 4.2. Using Theorem 4.1,

we obtain the solution of the first equation as follows,

A(t) = dose ⋅ (1 + hka)−
t−tD

h .

Regarding the second and third equations, we first write them as a system,

∇h

⎡⎢⎢⎢⎢⎢⎢⎣

C(t)

P (t)

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

−(kel + k12) k21

k12 −k21

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

C(t)

P (t)

⎤⎥⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎢⎣

kaA(t)
V

0

⎤⎥⎥⎥⎥⎥⎥⎦

By means of variation of constants formula, more precisely, Theorem 4.2, we obtain

⎡⎢⎢⎢⎢⎢⎢⎣

C(t)

P (t)

⎤⎥⎥⎥⎥⎥⎥⎦
= h

(t/h)

∑
s=tD/h+1

(I − hM)−( th−s+1)
⎡⎢⎢⎢⎢⎢⎢⎣

kaA(sh)
V

0

⎤⎥⎥⎥⎥⎥⎥⎦
(5.1.1)

where M is an 2 × 2 matrix and I is an 2 × 2 identity matrix.

M =
⎡⎢⎢⎢⎢⎢⎢⎣

−(kel + k12) k21

k12 −k21

⎤⎥⎥⎥⎥⎥⎥⎦

The characteristic equation for matrix M is

λ2 + (kel + k12 + k21)λ + kelk21 = 0.

Our eigenvalues are

λ1 =
−(kel + k12 + k21) +

√
(kel + k12 + k21)2 − 4kelk21

2
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λ2 =
−(kel + k12 + k21) −

√
(kel + k12 + k21)2 − 4kelk21

2
.

Next step is to use the Putzer algorithm in order to achieve solution; therefore,

we introduce the Putzer algorithm for delayed form equation.

Theorem 5.1. The unique solution of the initial value problem

∇hy(t) = Ay(t) t = t0 + h, t0 + 2h, ..., (5.1.2)

y(t0) = c (5.1.3)

is given by

y(t) = (I − hA)−
t−t0
h c

where A is an n × n constant matrix, and c and y(t) are n × 1 vectors.

Now, we define the following nabla function

y∗A(t, t0) ∶= (I − hA)−
t−t0
h (5.1.4)

Theorem 5.2 (Variation of Constants Formula). Assume t0 ∈ R and h > 0. The

fractional h–difference equation

∇hy(t) = Ay(t) + f(t) for t = t0 + h, t0 + 2h, ...,

has the general solution

y(t) = y∗A(t, t0)c +
t/h

∑
s=t0/h+1

y∗A(t + t0 − sh + h, t0)f(sh)h

where A is an n × n constant matrix, c is n × 1 vector.
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Next, we introduce the Putzer Algorithm on h–discrete calculus. The indicated

algorithm is a method used for calculating matrix exponential functions analytically

using eigenvalues and components in the solution of a simple linear system. Hence,

we first introduce the matrix exponential function.

Definition 5.3. (Matrix Exponential Function without Delay) Let A be an n × n

constant matrix. The unique matrix valued solution of the initial value problem(IVP)

∇hY (t) = AY (t) for t ∈ hNa (5.1.5)

Y (a) = In, (5.1.6)

where In denotes the n × n identity matrix, is called the matrix exponential function.

Now, we introduce the theorem regarding the Putzer algorithm and its proof

for h–discrete calculus.

Theorem 5.4. Let λ1, λ2, ..., λn be (not necessarily distinct) eigenvalues of the n × n

matrix A, with each eigenvalue repeated as many times as its multiplicity, then

y∗A(t, a) =
n−1

∑
i=0

pi+1(t)Mi,

where

M0 = In

Mi = (A − λiIn)Mi−1, (1 ≤ i ≤ n − 1)

Mn = 0

and the vector valued function p defined by
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p(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(t)

p2(t)

p3(t)

⋮

pn(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is the solution of the initial value problem

∇hp(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 ⋯ 0

1 λ2 0 ⋯ 0

0 1 λ3 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 ⋯ 0 1 λn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p(t) for t ∈ hNa (5.1.7)

p(a) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

⋮

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.1.8)

Proof. Define Φ(t) =
n−1

∑
i=0

pi+1(t)Mi. Firstly, we show that Φ solves the IVP (5.1.5)-

(5.1.6). It is good to demonstrate that

Φ(a) = p1(a)M0 + p2(a)M1 +⋯ + pn(a)Mn−1

= In
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since the given initial values p(a) = [1 0 0 ⋯ 0]
T

.

∇hΦ(t) −AΦ(t) = ∇h

n−1

∑
i=0

pi+1(t)Mi −A
n−1

∑
i=0

pi+1(t)Mi

= ∇hp1(t)M0 +∇hp2(t)M1 +⋯∇hpn(t)Mn−1 −A
n−1

∑
i=0

pi+1(t)Mi,

since ∇h is a linear operator. Subsequently, we use (5.1.7) and obtain

∇hΦ(t) −AΦ(t) = λ1p1(t)M0 + [p1(t) + λ2p2(t)]M1 + [p2(t) + λ3p3(t)]M2

+⋯ + [pn−1(t) + λnpn(t)]Mn−1 −A
n−1

∑
i=0

pi+1(t)Mi

= [λ1M0 +M1 −AM0]p1(t) + [λ2M1 +M2 −AM1]p2(t)

+⋯ + [λnMn−1 −AMn−1]pn(t)

= [λnIn −A]Mn−1pn(t),

since Mi = (A − λiIn)Mi−1 for (1 ≤ i ≤ n). Using the Cayley-Hamilton Theorem, we

get zero for the last quantity.

In other words,

(λnIn −A)Mn−1pn(t) = −(A − λnIn)(A − λn−1In)⋯(A − λ1In)pn(t)

= 0n×n.

Since y∗A,(t, a) satisfies the IVP (5.1.5)-(5.1.6), we have

Φ(t) = y∗A(t, a)
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by the unique solution of the given initial value problem.

Now, we apply the Putzer algorithm indicated above for our problem,

M0 =
⎡⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎦
.

M1 =
⎡⎢⎢⎢⎢⎢⎢⎣

−(kel + k12) k21

k12 −k21

⎤⎥⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎢⎣

λ1 0

0 λ1

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

−(kel + k12 + λ1) k21

k12 −(k21 + λ1)

⎤⎥⎥⎥⎥⎥⎥⎦
.

Now, the vector function given by,

y(t) =
⎡⎢⎢⎢⎢⎢⎢⎣

y1(t)

y2(t)

⎤⎥⎥⎥⎥⎥⎥⎦

must be a solution of the IVP,

∇hy =
⎡⎢⎢⎢⎢⎢⎢⎣

λ1 0

1 λ2

⎤⎥⎥⎥⎥⎥⎥⎦
y, y(0) =

⎡⎢⎢⎢⎢⎢⎢⎣

1

0

⎤⎥⎥⎥⎥⎥⎥⎦
.

So, y1(t) is a solution of the IVP

∇hy1(t) = λ1y1(t)

y1(0) = 1

and we obtain

y1(t) = (1 − hλ1)−
t
h .
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Next, y2(t) is a solution of the IVP

∇hy2(t) = λ2y2(t) + y1(t)

y2(0) = 0

It follows that

y2(t) =
t/h

∑
s=1

(1 − hλ2)−(
t
h
−s+1)(1 − hλ1)−sh

Hence,

(I − hM) t
h =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎦
(1 − hλ1)−

t
h (5.1.9)

+
⎡⎢⎢⎢⎢⎢⎢⎣

−(kel + k12 + λ1) k21

k12 −(k21 + λ1)

⎤⎥⎥⎥⎥⎥⎥⎦

t/h

∑
s=1

(1 − hλ2)−(
t
h
−s+1)(1 − hλ1)−sh

(5.1.10)

Subsequently, we take the last the sum from the expression indicated above and call

it Q,

Q =
t/h

∑
s=1

(1 − hλ2)−(
t
h
−s+1)(1 − hλ1)−sh

=
t/h

∑
s=1

(1 − hλ2)−(
t
h
−s+1) h

hλ1
∇(1 − hλ1)−s

= 1

λ1

t/h

∑
s=1

∇(1 − hλ1)−s(1 − hλ2)−(
t
h
−s+1)

where we use Definition 2.1 as a tool.

Next, we apply integration by parts formula given in Theorem 2.11 to the last
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equality and we obtain,

Q = 1

λ1
((1 − hλ1)−s(1 − hλ2)−(

t
h
−s+1))∣s→

t
h

s→0 −
1

λ1

t/h

∑
s=1

(1 − hλ1)−s+1∇(1 − hλ2)−(
t
h
−s+1)

We simplify and get the following result

Q = 1

λ1
((1 − hλ1)−

t
h − (1 − hλ2)−

t
h

1 − hλ2
) + (1 − hλ1)λ2

(1 − hλ2)λ1

t/h

∑
s=1

(1 − hλ2)−(
t
h
−s+1)(1 − hλ1)−sh

Q = 1

λ1
((1 − hλ1)−

t
h − (1 − hλ2)−

t
h

(1 − hλ2)
) + (1 − hλ1)λ2

(1 − hλ2)λ1
Q

Q = (1 − hλ1)−
t
h − (1 − hλ2)−

t
h

λ1 − λ2
.

We plug in result into equation 5.1.9 and obtain

(I − hM) t
h =

⎡⎢⎢⎢⎢⎢⎢⎣

(1 − hλ1)−
t
h 0

0 (1 − hλ1)−
t
h

⎤⎥⎥⎥⎥⎥⎥⎦

+ (1 − hλ1)−
t
h − (1 − hλ2)−

t
h

λ1 − λ2

⎡⎢⎢⎢⎢⎢⎢⎣

−(kel + k12 + λ1) k21

k12 −(k21 + λ1)

⎤⎥⎥⎥⎥⎥⎥⎦

Finally, we rewrite equation 5.1.1 and the following result is achieved

C(t) =ka ⋅ dose
V

t/h

∑
s=tD/h+1

(1 − hλ1)−(
t
h
−s+1)(1 + hka)−(

sh−tD
h
)h

− (kel + k12 + λ1)ka ⋅ dose
(λ1 − λ2)V

t/h

∑
s=tD/h+1

(1 − hλ1)−(
t
h
−s+1)(1 + hka)−(

sh−tD
h
)h

+ (kel + k12 + λ1)ka ⋅ dose
(λ1 − λ2)V

t/h

∑
s=tD/h+1

(1 − hλ2)−(
t
h
−s+1)(1 + hka)−(

sh−tD
h
)h

60



For the sake of simplification, we take the first sum in the above expression,

I =
t/h

∑
s=tD/h+1

(1 − hλ1)−(
t
h
−s+1)(1 + hka)(−s+

tD
h
)h

=
t/h

∑
s=tD/h+1

(1 − hλ1)−(
t
h
−s+1)−∇(1 + hka)(−s+

tD
h
)

hka
h

since ∇(1 + hka)(−s+
tD
h
) = −hka(1 + hka)(−s+

tD
h
).

I =
t/h

∑
s=tD/h+1

− 1

ka
∇(1 + hka)(−s+

tD
h
)(1 − hλ1)−(

t
h
−s+1)

Successively, we apply Theorem 2.11 to the last equality and get the following outcome

I = − 1

ka
((1 + hka)(−s+

tD
h
) (1 − hλ1)−(

t
h
−s+1) ) ∣ s→

t
h

s→
tD
h

+ 1

ka

t/h

∑
s=tD/h+1

(1 + hka)(−s+1+
tD
h
)∇(1 − hλ1)−(

t
h
−s+1)

= − 1

ka

⎛
⎝
(1 + hka)−(

t−tD
h
) − (1 − hλ1)−(

t−tD
h
)

1 − hλ1
⎞
⎠

− λ1(1 + hka)
ka(1 − hλ1)

t/h

∑
s=tD/h+1

(1 − hλ1)−(
t
h
−s+1)(1 + hka)(−s+

tD
h
)h.

We simplify and obtain

I = − 1

ka

⎛
⎝
(1 + hka)−(

t−tD
h
) − (1 − hλ1)−(

t−tD
h
)

1 − hλ1
⎞
⎠
− λ1(1 + hka)
ka(1 − hλ1)

I

I = (1 − hλ1)−(
t−tD

h
) − (1 + hka)−(

t−tD
h
)

ka + λ1
. (5.1.11)
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Similarly, we get the following result for the third sum in the equation for C(t)

t/h

∑
s=tD/h+1

(1 − hλ2)−(
t
h
−s+1)(1 + hka)−(

sh−tD
h
)h = (1 − hλ2)−(

t−tD
h
) − (1 + hka)−(

t−tD
h
)

ka + λ2
.

(5.1.12)

Thus,

C(t) =ka ⋅ dose
V

(1 − hλ1)−(
t−tD

h
) − (1 + hka)−(

t−tD
h
)

ka + λ1
(5.1.13)

− (kel + k12 + λ1)ka ⋅ dose
(λ1 − λ2)V (ka + λ1)

((1 − hλ1)−(
t−tD

h
) − (1 + hka)−(

t−tD
h
)) (5.1.14)

+ (kel + k12 + λ1)ka ⋅ dose
(λ1 − λ2)V (ka + λ2)

((1 − hλ2)−(
t−tD

h
) − (1 + hka)−(

t−tD
h
)) . (5.1.15)

And we get the solution for P (t) as follows,

P (t) =
t/h

∑
s=tD+1

((1 − hλ1)−(
t
h
−s+1) − (1 − hλ2)−(

t
h
−s+1)k12

λ1 − λ2
) dose ⋅ ka(1 + hka)

−(
sh−tD

h
)

V
h

=dose ⋅ ka ⋅ k12
V (λ1 − λ2)

t/h

∑
s=tD/h+1

(1 − hλ1)−(
t
h
−s+1)(1 + hka)(−s+

tD
h
)h

− dose ⋅ ka ⋅ k12
V (λ1 − λ2)

t/h

∑
s=tD/h+1

(1 − hλ2)−(
t
h
−s+1)(1 + hka)(−s+

tD
h
)h

From previous calculation, more precisely, using Equation 5.1.11 and Equation 5.1.12,

the following result is obtained

P (t) = dose ⋅ ka ⋅ k12
V (λ1 − λ2)(ka + λ1)

((1 − hλ1)−(
t−tD

h
) − (1 + hka)−(

t−tD
h
))

− dose ⋅ ka ⋅ k12
V (λ1 − λ2)(ka + λ2)

((1 − hλ2)−(
t−tD

h
) − (1 + hka)−(

t−tD
h
)) .
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5.2 Two-Compartment PK Model with Delay

In this section, we analyze the model shown in Section 5.1 but in the delay

case. Firstly, we write the model for the nabla h–discrete calculus. Then, we use

theorems which we proved in Section 3.1 and Section 3.2. Furthermore, we use the

definition of eMt where M is n×n matrix and the Putzer algoritm for the solution of

the delayed two-compartment PK model.

We first introduce the Putzer algorithm for the delayed form equations. So,

we state the subsequent theorem and the proof follows similar techniques as Theorem

3.3.

Theorem 5.5. The unique solution of the initial value problem

∇hy(t) = Ay(t − h) t = t0 + h, t0 + 2h, ..., (5.2.1)

y(t0) = c (5.2.2)

is given by

y(t) = (I + hA)
t−t0
h c

where A is an n × n constant matrix, c and y(t) are n × 1 vectors.

Now, we define the following nabla function

ŷA(t, t0) ∶= (I + hA)
t−t0
h (5.2.3)

Theorem 5.6 (Variation of Constants Formula). Assume t0 ∈ R and h > 0. The
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fractional h–difference equation

∇hy(t) = Ay(t − h) + f(t − h) for t = t0 + h, t0 + 2h, ...,

has the general solution

y(t) = ŷA(t, t0)c +
t/h−1

∑
s=t0/h

ŷA(t + t0 − sh − h, t0)f(sh)h,

where A is an n × n constant matrix, c is n × 1 vector.

Definition 5.7. (Matrix Exponential Function with Delay) Let A be an n×n constant

matrix. The unique matrix valued solution of the initial value problem(IVP)

∇hY (t) = AY (t − h) for t ∈ hNa (5.2.4)

Y (a) = In, (5.2.5)

where In denotes the n × n identity matrix, is called the matrix exponential function.

Now, we introduce theorem regarding the Putzer algorithm and its proof.

Theorem 5.8. Let λ1, λ2, ..., λn are (not necessarily distinct) eigenvalues of the n×n

matrix A, with each eigenvalue repeated as many times as its multiplicity, then

ŷA(t, a) =
n−1

∑
i=0

pi+1(t)Mi,

where

M0 = In

Mi = (A − λiIn)Mi−1, (1 ≤ i ≤ n − 1)
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Mn = 0

and the vector valued function p defined by

p(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(t)

p2(t)

p3(t)

⋮

pn(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is the solution of the initial value problem

∇hp(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 ⋯ 0

1 λ2 0 ⋯ 0

0 1 λ3 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 ⋯ 0 1 λn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p(t − h) for t ∈ hNa (5.2.6)

p(a) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

⋮

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.2.7)

Proof. Define Φ(t) =
n−1

∑
i=0

pi+1(t)Mi. Firstly, we show that Φ solves the IVP (5.2.4)-
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(5.2.5). It is good to demonstrate that

Φ(a) = p1(a)M0 + p2(a)M1 +⋯ + pn(a)Mn−1

= In

since the given initial values p(a) = [1 0 0 ⋯ 0]
T

.

∇hΦ(t) −AΦ(t − h) = ∇h

n−1

∑
i=0

pi+1(t)Mi −A
n−1

∑
i=0

pi+1(t − h)Mi

= ∇hp1(t)M0 +∇hp2(t)M1 +⋯∇hpn(t)Mn−1 −A
n−1

∑
i=0

pi+1(t − h)Mi,

since ∇h is a linear operator. Subsequently, we use (5.2.6) and obtain

∇hΦ(t) −AΦ(t − h) = λ1p1(t − 1)M0 + [p1(t − h) + λ2p2(t − h)]M1

+ [p2(t − h) + λ3p3(t − h)]M2 +⋯ + [pn−1(t − h) + λnpn(t − h)]Mn−1

−A
n−1

∑
i=0

pi+1(t − h)Mi

= [λ1M0 +M1 −AM0]p1(t − h) + [λ2M1 +M2 −AM1]p2(t − h)

+⋯ + [λnMn−1 −AMn−1]pn(t − h)

= [λnIn −A]Mn−1pn(t − h),

since Mi = (A − λiIn)Mi−1 for (1 ≤ i ≤ n). Using Cayley-Hamilton Theorem, we get

zero for the last quantity.
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In other words,

(λnIn −A)Mn−1pn(t − h) = −(A − λnIn)(A − λn−1In)⋯(A − λ1In)pn(t − h)

= 0n×n.

Since ŷA,(t, a) satisfies the IVP (5.2.4)-(5.2.5), we have

Φ(t) = ŷA(t, a)

by the unique solution of the given initial value problem.

Now, we first rewrite our tumor growth PK model by taking delay into con-

sideration.

∇hA(t) = −kaA(t − h), A(tD) = dose

∇hC(t) = ka
A(t − h)

V
− (kel + k12)C(t − h) + k21P (t − h), C(tD) = 0

∇hP (t) = k12C(t − h) − k21P (t − h), P (tD) = 0

From first equation, we obtain a solution for A(t) as follows

A(t) = dose ⋅ (1 − hka)
t−tD

h .

where we use Theorem 3.1. Subsequently, we write equation second and third as a

system,

∇h

⎡⎢⎢⎢⎢⎢⎢⎣

C(t)

P (t)

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

−(kel + k12) k21

k12 −k21

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

C(t − h)

P (t − h)

⎤⎥⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎢⎣

kaA(t − h)
V

0

⎤⎥⎥⎥⎥⎥⎥⎦
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Using variation of constants formula given in Theorem 3.2, we obtain

⎡⎢⎢⎢⎢⎢⎢⎣

C(t)

P (t)

⎤⎥⎥⎥⎥⎥⎥⎦
= h

(t/h−1)

∑
s=tD/h

(I + hM)( th−s−1)
⎡⎢⎢⎢⎢⎢⎢⎣

kaA(sh)
V

0

⎤⎥⎥⎥⎥⎥⎥⎦
(5.2.8)

where M is an 2 × 2 matrix and I is 2 × 2 identity matrix.

M =
⎡⎢⎢⎢⎢⎢⎢⎣

−(kel + k12) k21

k12 −k21

⎤⎥⎥⎥⎥⎥⎥⎦

and we use definition of eMt. The characteristic equation for matrix M is

λ2 + (kel + k12 + k21)λ + kelk21 = 0.

Our eigenvalues are

λ1 =
−(kel + k12 + k21) +

√
(kel + k12 + k21)2 − 4kelk21

2

λ2 =
−(kel + k12 + k21) −

√
(kel + k12 + k21)2 − 4kelk21

2
.

Next, we apply the Putzer algorithm given in Theorem 5.8,

M0 =
⎡⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎦
.

M1 =
⎡⎢⎢⎢⎢⎢⎢⎣

−(kel + k12) k21

k12 −k21

⎤⎥⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎢⎣

λ1 0

0 λ1

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

−(kel + k12 + λ1) k21

k12 −(k21 + λ1)

⎤⎥⎥⎥⎥⎥⎥⎦
.
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Now, the vector function given by,

n(t) =
⎡⎢⎢⎢⎢⎢⎢⎣

n1(t)

n2(t)

⎤⎥⎥⎥⎥⎥⎥⎦

must be the solution of the IVP,

∇hn =
⎡⎢⎢⎢⎢⎢⎢⎣

λ1 0

1 λ2

⎤⎥⎥⎥⎥⎥⎥⎦
n, n(0) =

⎡⎢⎢⎢⎢⎢⎢⎣

1

0

⎤⎥⎥⎥⎥⎥⎥⎦

So, n1(t) is a solution of IVP

∇hn1(t) = λ1n1(t − h)

n1(0) = 1

and we obtain

n1(t) = (1 + hλ1)
t
h .

Next, n2(t) is a solution of IVP

∇hn2(t) = λ2n2(t − h) + n1(t − h)

n2(0) = 0

It follows that

n2(t) =
t/h−1

∑
s=0

(1 + hλ2)(
t
h
−s−1)(1 + hλ1)sh
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Hence,

(I + hM) t
h =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎦
(1 + hλ1)

t
h (5.2.9)

+
⎡⎢⎢⎢⎢⎢⎢⎣

−(kel + k12 + λ1) k21

k12 −(k21 + λ1)

⎤⎥⎥⎥⎥⎥⎥⎦

t/h−1

∑
s=0

(1 + hλ2)(
t
h
−s−1)(1 + hλ1)sh

(5.2.10)

Next, we take the last sum and define it as a L,

L =
t/h−1

∑
s=0

(1 + hλ2)(
t
h
−s−1)(1 + hλ1)sh

=
t/h−1

∑
s=0

(1 + hλ2)(
t
h
−s−1) (1 + hλ1)

hλ1
∇(1 + hλ1)sh

= 1 + hλ1
λ1

t/h−1

∑
s=0

∇(1 + hλ1)s(1 + hλ2)(
t
h
−s−1)

where we use Definition 2.1 as a tool.

Subsequently, we apply Theorem 2.11 to last equality and we obtain,

L =1 + hλ1
λ1

⎛
⎝
((1 + hλ1)s(1 + hλ2)(

t
h
−s−1))∣s→

t
h
−1

s→−1 −
t/h−1

∑
s=0

(1 + hλ1)s−1∇(1 + hλ2)(
t
h
−s−1)

⎞
⎠

We simplify and get the following result

L = 1 + hλ1
λ1

((1 + hλ1)
t
h − (1 + hλ2)

t
h

1 + hλ1
) + (1 + hλ1)λ2

(1 + hλ1)λ1

t/h−1

∑
s=0

(1 + hλ2)(
t
h
−s−1)(1 + hλ1)sh

L = 1

λ1
((1 + hλ1)

t
h − (1 + hλ2)

t
h) + λ2

λ1
L

L = (1 + hλ1)
t
h − (1 + hλ2)

t
h

λ1 − λ2
.
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We plug this result into equation 5.2.9 and obtain

(I + hM) t
h =

⎡⎢⎢⎢⎢⎢⎢⎣

(1 + hλ1)
t
h 0

0 (1 + hλ1)
t
h

⎤⎥⎥⎥⎥⎥⎥⎦

+ (1 + hλ1)
t
h − (1 + hλ2)

t
h

λ1 − λ2

⎡⎢⎢⎢⎢⎢⎢⎣

−(kel + k12 + λ1) k21

k12 −(k21 + λ1)

⎤⎥⎥⎥⎥⎥⎥⎦

Consequently, we rewrite equation 5.2.8 and the following result is achieved

C(t) =ka ⋅ dose
V

t/h−1

∑
s=tD/h

(1 + hλ1)(
t
h
−s−1)(1 − hka)(

sh−tD
h
)h

− (kel + k12 + λ1)ka ⋅ dose
(λ1 − λ2)V

t/h−1

∑
s=tD/h

(1 + hλ1)(
t
h
−s−1)(1 − hka)(

sh−tD
h
)h

+ (kel + k12 + λ1)ka ⋅ dose
(λ1 − λ2)V

t/h−1

∑
s=tD/h

(1 + hλ2)(
t
h
−s−1)(1 − hka)(

sh−tD
h
)h

By taking the first sum from expression above, we simplify and get

W =
t/h−1

∑
s=tD/h

(1 + hλ1)(
t
h
−s−1)(1 − hka)(s−

tD
h
)h

=
t/h−1

∑
s=tD/h

(1 + hλ1)(
t
h
−s−1)∇(1 − hka)(s−

tD
h
)(1 − hka)

−hka
h

since ∇(1 − hka)(s−
tD
h
) = −hka

1−hka
(1 − hka)(s−

tD
h
).

W = −1 − hka
ka

t/h−1

∑
s=tD/h

∇(1 − hka)(s−
tD
h
)(1 + hλ1)(

t
h
−s−1)

Successively, we apply Theorem 2.11 to last equality and get the following outcome

W = − 1 − hka
ka

((1 − hka)(s−
tD
h
) (1 + hλ1)(

t
h
−s−1) ) ∣ s→

t
h
−1

s→
tD
h
−1
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+ 1 − hka
ka

t/h−1

∑
s=tD/h

(1 − hka)(s−1−
tD
h
)∇(1 + hλ1)(

t
h
−s−1)

= − 1 − hka
ka

⎛
⎝
(1 − hka)(

t−tD
h
) − (1 + hλ1)(

t−tD
h
)

1 − hka
⎞
⎠

+ (−λ1)(1 − hka)
ka(1 − hka)

t/h−1

∑
s=tD/h

(1 + hλ1)(
t
h
−s−1)(1 − hka)(s−

tD
h
)h

We simplify and obtain

W = − 1 − hka
ka

⎛
⎝
(1 − hka)(

t−tD
h
) − (1 + hλ1)(

t−tD
h
)

1 − hka
⎞
⎠
− λ1
ka
W

W = (1 + hλ1)(
t−tD

h
) − (1 − hka)(

t−tD
h
)

ka + λ1
. (5.2.11)

Similarly, we get the following result for the third sum in the equation for C(t)

t/h−1

∑
s=tD/h

(1 + hλ2)(
t
h
−s−1)(1 − hka)(

sh−tD
h
)h = (1 + hλ2)(

t−tD
h
) − (1 − hka)(

t−tD
h
)

ka + λ2
. (5.2.12)

Hence, we obtain solution of C(t). Thus,

C(t) =ka ⋅ dose
V

(1 + hλ1)(
t−tD

h
) − (1 − hka)(

t−tD
h
)

ka + λ1

− (kel + k12 + λ1)ka ⋅ dose
(λ1 − λ2)V (ka + λ1)

((1 + hλ1)(
t−tD

h
) − (1 − hka)(

t−tD
h
))

+ (kel + k12 + λ1)ka ⋅ dose
(λ1 − λ2)V (ka + λ2)

((1 + hλ2)(
t−tD

h
) − (1 − hka)(

t−tD
h
)) .

And we get solution for P (t) as follows,
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P (t) =
t/h−1

∑
s=tD/h

((1 + hλ1)(
t
h
−s−1) − (1 + hλ2)(

t
h
−s−1)k12

λ1 − λ2
) dose ⋅ ka(1 − hka)

(
sh−tD

h
)

V
h

=dose ⋅ ka ⋅ k12
V (λ1 − λ2)

t/h−1

∑
s=tD/h

(1 + hλ1)(
t
h
−s−1)(1 − hka)(s−

tD
h
)h

− dose ⋅ ka ⋅ k12
V (λ1 − λ2)

t/h−1

∑
s=tD/h

(1 + hλ2)(
t
h
−s−1)(1 − hka)(s−

tD
h
)h

From previous calculation, more precisely, using Equation 5.2.11 and Equation 5.2.12,

the following result is obtained

P (t) = dose ⋅ ka ⋅ k12
V (λ1 − λ2)(ka + λ1)

((1 + hλ1)(
t−tD

h
) − (1 − hka)(

t−tD
h
))

− dose ⋅ ka ⋅ k12
V (λ1 − λ2)(ka + λ2)

((1 + hλ2)(
t−tD

h
) − (1 − hka)(

t−tD
h
)) .
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5.3 Application of the Pharmacokinetics Model

In this section, we illustrate an example where one can see how we do calcu-

late the concentration over time. A drug is administered to the body daily in four

consecutive days at the times t = 360,384,408,432. We calculate the concentration

in the following way:

Before the drug is administered, there is no concentration. So we have

C(t) = 0 for t < 360.

After the first dose is given at t = 360, we define

C1(t) ∶= C(t, dose1) for t ∈ N360

Subsequently, a second dose is administered to the body at t = 384. The concentration

includes two parts: the first part is the remaining concentration from the first dose

and the second part is the concentration due to the second dose.

C2(t) ∶= C1(t) +C(t, dose2) for t ∈ N384

Finally, a third dose is administered at time t = 408. Now, we consider two parts in

order to determine drug concentration in the blood: the first part is the remaining

concentration from the first and the second doses, namely C2(t), the second part is

the concentration due to the third dose.

C3(t) ∶= C2(t) +C(t, dose3) t ∈ N408
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We continue to the process and write

C4(t) ∶= C3(t) +C(t, dose4) for t ∈ N432 .
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Chapter 6

CONCLUSION AND FUTURE WORK

In this thesis, we worked on h–discrete calculus and h–discrete fractional cal-

culus for the sake of finding solutions to our tumor growth model for both mono and

combination therapies. To put it another way, we first introduced some basics and

fundamental knowledge about h–discrete calculus and h–discrete fractional calculus

as preliminaries. We then focus on the nabla h–discrete equation for delayed form and

introduce the variation of constants formula accordingly. Following to this, we exam-

ine h–discrete fractional equation with delay and its variation of constants formula,

too. We write our tumor growth model for both mono and combination therapies and

find solutions for them in Chapter 3. Since our aim was to eliminate jumps from our

tumor growth model’s graph, as a following step we applied the same procedure for

the model not having delay in Chapter 4 and we achieve our goal,in other words, we

are able to remove those jumps from our tumor growth graph. In the last chapter, we

consider PK model. Furthermore, we write the PK model on h–discrete calculus and

find solutions for it. In order to obtain solutions we had to use the Putzer algorithm,

therefore, we introduced the Putzer algorithm on h–discrete calculus. We give an

application of PK model in the final section of Chapter 5.

In future work, we would like to fractionalize PK model and examine its effects

for parameter estimations as well. Additionally, we will work on our PK model for

combination therapy on both h–discrete calculus and h–discrete fractional calculus.
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