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Minimal pseudo-Anosov stretch factors
on nonoriented surfaces

LIVIO LIECHTI

BALÁZS STRENNER

We determine the smallest stretch factor among pseudo-Anosov maps with an ori-
entable invariant foliation on the closed nonorientable surfaces of genus 4 , 5 , 6 ,
7 , 8 , 10 , 12 , 14 , 16 , 18 and 20 . We also determine the smallest stretch factor of
an orientation-reversing pseudo-Anosov map with orientable invariant foliations on
the closed orientable surfaces of genus 1 , 3 , 5 , 7 , 9 and 11 . As a byproduct, we
obtain that the stretch factor of a pseudo-Anosov map on a nonorientable surface
or an orientation-reversing pseudo-Anosov map on an orientable surface does not
have Galois conjugates on the unit circle. This shows that the techniques that were
used to disprove Penner’s conjecture on orientable surfaces are ineffective in the
nonorientable cases.

57M20; 11C08, 37E30, 57M99

1 Introduction

Let S be a surface of finite type. A homeomorphism f of S is pseudo-Anosov if there
are transverse singular measured foliations Fu and Fs and a real number � > 1 such
that f .Fu/D �Fu and f .Fs/D ��1Fs ; see Thurston [32]. The number � is called
the stretch factor of f .

Denote by Ng the closed nonorientable surface of genus g (the connected sum of g

projective planes) and by ıC.Ng/ the minimal stretch factor among pseudo-Anosov
homeomorphisms of Ng with an orientable invariant foliation. (Only one of the
foliations can be orientable, otherwise the surface would have to be orientable as well.)
The number ıC.Ng/ exists because, for any surface S, the set of pseudo-Anosov
stretch factors on S is a discrete set; see Arnoux and Yoccoz [5] and Ivanov [12].

Theorem 1.1 The values and minimal polynomials of ıC.Ng/ for g D 4, 5, 6, 7, 8,
10, 12, 14, 16, 18 and 20 are as follows:
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452 Livio Liechti and Balázs Strenner

g ıC.Ng/� minimal polynomial of ıC.Ng/ singularity type

4 1:83929 x3�x2�x� 1 .6/

5 1:51288 x4�x3�x2Cx� 1 .4; 4; 4/

6 1:42911 x5�x3�x2� 1 .10/

7 1:42198 x6�x5�x3Cx� 1 .4; 4; 4; 4; 4/

8 1:28845 x7�x4�x3� 1 .14/

10 1:21728 x9�x5�x4� 1 .18/

12 1:17429 x11�x6�x5� 1 .22/

14 1:14551 x13�x7�x6� 1 .26/

16 1:12488 x15�x8�x7� 1 .30/

18 1:10938 x17�x9�x8� 1 .34/

20 1:09730 x19�x10�x9� 1 .38/

The table also contains the singularity type of the minimizing pseudo-Anosov map. For
example, .4; 4; 4/ means that the pseudo-Anosov map has three 4–pronged singulari-
ties.

Based on this result, we conjecture the following:

Conjecture 1.2 For all k � 2, ıC.N2k/ is the largest root of

x2k�1
�xk

�xk�1
� 1:

We think that the minimal stretch factors in genus 9 and 11 are as follows. We will
discuss supporting evidence in Section 5.4.

Conjecture 1.3 The approximate values and minimal polynomials of ıC.Ng/ for
g D 9; 11 are as follows:

g ıC.Ng/� minimal polynomial of ıC.Ng/ singularity type

9 1:35680 x8�x5�x4�x3� 1 .16/

11 1:22262
x12�x7�x6�x5�1

x2CxC1
.8; 8; 8/

For our second main result, denote by ıCrev.Sg/ the minimal stretch factor among
orientation-reversing pseudo-Anosov homeomorphisms of the closed orientable sur-
face Sg of genus g that have orientable invariant foliations.

Theorem 1.4 The values and minimal polynomials of ıCrev.Sg/ for g D 1, 3, 5, 7, 9

and 11 are as follows:
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g ıCrev.Sg/� minimal polynomial of ıCrev.Sg/ singularity type

1 1:61803 x2�x� 1 no singularities

3 1:25207
x8�x5�x3�1

x2C1
.4; 4; 4; 4/

5 1:15973
x12�x7�x5�1

x2C1
.6; 6; 6; 6/

7 1:11707
x16�x9�x7�1

x2C1
.8; 8; 8; 8/

9 1:09244
x20�x11�x9�1

x2C1
.10; 10; 10; 10/

11 1:07638
x24�x13�x11�1

x2C1
.12; 12; 12; 12/

Moreover, we have
ıCrev.Sg/� ı

C
rev.Sg�1/

for g D 2; 4; 6; 8 and 10.

Based on these results, it is natural to conjecture the following:

Conjecture 1.5 For all k � 2, ıCrev.S2k�1/ is the largest root of

x4k
�x2kC1

�x2k�1
� 1:

Theorem 1.4 shows that ıCrev.Sg/ fails to be strictly decreasing at every other step for
small values of g . We conjecture that in fact the value of ıCrev.Sg/ strictly increases at
every other step. We will discuss evidence for this after Proposition 5.6.

Conjecture 1.6 For all k � 1, we have

ıCrev.S2k/ > ı
C
rev.S2k�1/:

Motivation

One motivation for studying ı.S/, the smallest stretch factor of an orientation-preserving
pseudo-Anosov map on an orientable surface, is that the shortest closed geodesic (in
the Teichmüller metric) on the moduli space of algebraic curves homeomorphic to S

has length log ı.S/.
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Another motivation for studying small stretch factors comes from 3–manifold theory.
The mapping torus of a pseudo-Anosov map f is a hyperbolic 3–manifold Mf and
the stretch factor of f is related to the hyperbolic volume of Mf ; see Kin, Kojima and
Takasawa [13] and Kojima and McShane [15]. This relates small-volume hyperbolic
manifolds — see Agol [3], Agol, Storm and Thurston [4], Gabai, Meyerhoff and
Milley [9] and Milley [24] — to small stretch factor pseudo-Anosov maps.

One reason to study minimal stretch factors specifically in nonorientable settings is
the following connection to the conjecture of Schinzel and Zassenhaus [28] that asserts
the existence of a universal constant c > 0 such that for any algebraic integer that
is not a root of unity, the largest modulus among its Galois conjugates is bounded
from below by 1C c=d , where d is the degree of the algebraic integer. Using a
result due to Breusch [7], the first author [19] has shown that this conjecture has an
equivalent reformulation that compares, for each genus, the minimal spectral radius > 1

among homological actions of orientation-preserving mapping classes with the minimal
spectral radius >1 among homological actions of orientation-reversing mapping classes.
For instance, if for all but finitely many genera one can obtain smaller spectral radii by
orientation-reversing mapping classes, the conjecture of Schinzel and Zassenhaus is true.

By studying the stretch factors of pseudo-Anosov mapping classes with an orientable
invariant foliation, we restrict to a certain class of homological actions; however, for
this class, our results seem to suggest that indeed smaller spectral radii can typically
be obtained by orientation-reversing mapping classes; compare Conjecture 1.8 with
(1-1) below.

Previous results

The value of ı.Sg/ for hyperbolic Sg is only known for g D 2; see Cho and Ham [8].
This value is the largest root of x4�x3�x2�xC1, which is approximately 1.72208.
More is known about ıC.Sg/, the minimal stretch factor of orientation-preserving
pseudo-Anosov maps on Sg with orientable invariant foliations. The known values are
summarized in Table 1.

Initially, the pseudo-Anosov maps realizing the stretch factors in Table 1 were con-
structed in different ways. The construction is due to Zhirov [36] for g D 2, Lanneau
and Thiffeault [17] for g D 3; 4, Leininger [18] for g D 5, Kin and Takasawa [14]
and Aaber and Dunfield [1] for g D 7, and Hironaka [10] for g D 8. Hironaka [10]
then showed that all of the examples above except the g D 7 example arise from
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g ıC.Sg/� minimal polynomial of ıC.Sg/

1 2.61803 x2�3xC1

2 1.72208 x4�x3�x2�xC1

3 1.40127 x6�x4�x3�x2C1

4 1.28064 x8�x5�x4�x3C1

5 1.17628 x10Cx9�x7�x6�x5�x4�x3CxC1D
x12�x7�x6�x5C1

x2�xC1
7 1.11548 x14Cx13�x9�x8�x7�x6�x5CxC1

8 1.12876 x16�x9�x8�x7C1

Table 1: The known values of ıC.Sg/ .

the fibration of a single hyperbolic 3–manifold, the mapping torus of the “simplest
hyperbolic braid”. The fact that the values in Table 1 are indeed the minimal stretch
factors was shown by Lanneau and Thiffeault [17] by a systematic way of narrowing
down the set of possible minimal polynomials of the minimal stretch factors. For the
larger values of g , their proof is computer-assisted.

Asymptotics

The rough asymptotic behavior of ı.S/ is well understood: Penner [27] showed that
log ı.Sg/ � 1=g . For other constructions of small stretch factors and asymptotics
for different sequences of surfaces, see Bauer [6], McMullen [22], Minakawa [25],
Hironaka and Kin [11], Tsai [33], Valdivia [34] and Yazdi [35].

Since the larger root of the polynomial x2�2x�1 is 1C
p

2, Conjectures 1.2 and 1.5
would imply the following conjectures on the exact limits of the normalized minimal
stretch factors:

Conjecture 1.7 lim
g!1
g even

.ıC.Ng//
g
D .1C

p
2/2 D .silver ratio/2:

Conjecture 1.8 lim
g!1
g odd

.ıCrev.Sg//
g
D 1C

p
2D silver ratio:

In order to compare Conjectures 1.7 and 1.8 to the orientation-preserving case, we
recall that Hironaka asked in [10, Question 1.12] whether

(1-1) lim
g!1

.ıC.Sg//
g
D
�

1
2
.1C
p

5/
�2
D .golden ratio/2:
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Since any pseudo-Anosov map on NgC1 can be lifted to a pseudo-Anosov map on Sg

with the same stretch factor, it is natural that the limit in Conjecture 1.7 is larger than the
limit in (1-1). The fact that the limit in Conjecture 1.8 is smaller than the limit in (1-1)
is consistent with the fact that nonorientable hyperbolic 3–manifolds can have smaller
volume than orientable ones. For example, the smallest-volume noncompact hyperbolic
3–manifold is the Gieseking manifold, a nonorientable manifold; see Adams [2].
Since the stretch factor is related to the volume of the mapping torus — see Kojima
and McShane [15] — on a fixed surface one can expect to find orientation-reversing
pseudo-Anosov maps with smaller stretch factor than orientation-preserving ones.

Asymptotics along other genus sequences

We expect the limits in Conjectures 1.7 and 1.8 to be different for other genus sequences.
For example, we conjecture the following:

Conjecture 1.9 lim inf
g!1
g odd

.ıC.Ng//
g > .1C

p
2/2 D .silver ratio/2:

This conjecture is supported by the following result in [21]. In that paper, we show that
if ıP .Ng/ denotes the minimal stretch factor among pseudo-Anosov mapping classes
on Ng obtained from Penner’s construction, then the sequence ıP .Ng/ has exactly two
accumulation points as g!1. One accumulation point, .1C

p
2/2 , is the limit for

the sequence restricted to even g . The other accumulation point, conjectured to be the
largest root of x4�8x3C13x2�8xC1, which is strictly greater than .1C

p
2/2 , is the

limit for the sequence restricted to odd g . We expect this dichotomy to be indicative of
how the sequence .ıC.Ng//

g behaves for odd and even genus sequences, respectively,
since so far no pseudo-Anosov mapping class of a nonorientable surface is known to not
have a power arising from Penner’s construction (compare with Question 1.11 below).

Uniformity of minimizing examples

In the orientation-preserving case, the concrete descriptions of the examples are all
very different. For g D 2, Zhirov describes the example by the induced homomor-
phism �1.S/! �1.S/. Lanneau and Thiffeault [17, Appendix C] describe the same
example as a product of the Humphries generators. For gD3; 4, Lanneau and Thiffeault
use Rauzy–Veech induction, and for g D 5, Leininger uses Thurston’s construction.
While Hironaka gives a unified construction in [10] using fibered face theory, her work
does not give an explicit description of the maps.
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In contrast, the descriptions of our examples are explicit and uniform: all of our
examples are constructed as a composition of a Dehn twist and a finite-order mapping
class. As we will explain shortly, such constructions cannot work in the orientable
setting.

We remark that it is also possible to construct the examples in Theorems 1.1 and 1.4
by studying fibrations of certain small volume nonorientable hyperbolic 3–manifolds,
although we will not discuss this construction in this paper.

Galois conjugates and Penner’s construction

All of our examples have a power that arises from Penner’s construction of pseudo-
Anosov mapping classes. In sharp contrast, none of the classical minimal stretch factor
examples have a power that arises from Penner’s construction. This is because these
stretch factors have Galois conjugates on the unit circle. However, Shin and the second
author showed in [29] that examples with this property do not have a power arising
from Penner’s construction.

One may wonder what the reason for this discrepancy is. A heuristic reason for why
Galois conjugates of small stretch factors should lie on the unit circle is that every
pseudo-Anosov stretch factor � is a bi-Perron algebraic unit, that is, a real number
larger than 1 whose Galois conjugates lie in the annulus ��1 � jzj � �. If � is close
to 1, this annulus is a thin neighborhood of the unit circle, so it seems natural for the
Galois conjugates to lie on the unit circle.

However, in Section 4 we will prove the following theorem, which explains why the
nonorientable cases are different:

Theorem 1.10 If f is a pseudo-Anosov map on a nonorientable surface or an
orientation-reversing pseudo-Anosov map on an orientable surface, then the stretch
factor of f does not have Galois conjugates on the unit circle.

Penner’s conjecture on nonorientable surfaces

Penner asked in [26] whether every pseudo-Anosov map has a power that arises from
his construction.1 This was answered in the negative by Shin and the second author

1The conjecture that this is true is known colloquially as Penner’s conjecture. However, from the
writing in [26, page 195], it is unclear whether Penner intended to pose this as a question or a conjecture,
or even whether he conjectured the opposite.
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in [29] by providing the obstruction mentioned earlier: if the stretch factor has a Galois
conjugate on the unit circle, the pseudo-Anosov map cannot have a power arising from
Penner’s construction.

However, Theorem 1.10 demonstrates that this obstruction is vacuous for nonorientable
surfaces and for orientation-reversing maps. Since there are no other known obstructions,
it is possible that the answer to Penner’s question is in fact “yes” in these settings. Some
evidence for this is provided by the fact that all the minimal stretch factor examples
we give in Theorems 1.1 and 1.4 have a power arising from Penner’s construction.
Some evidence against is provided by the failure of the second author in [30, Section 7]
to construct certain pseudo-Anosov maps on nonorientable surfaces using Penner’s
construction.

Question 1.11 Does every pseudo-Anosov map on a nonorientable surface have a
power arising from Penner’s construction?

Question 1.12 Does every orientation-reversing pseudo-Anosov map on an orientable
surface have a power arising from Penner’s construction?

Outline of the paper

In Sections 2 and 3, we construct the examples for Theorems 1.1 and 1.4. This is done
by a generalization of the construction we gave for the Arnoux–Yoccoz pseudo-Anosov
maps in [20].

In Section 4, we give various properties that the characteristic polynomials of the
action on homology have to satisfy for maps on nonorientable surfaces and orientation-
reversing maps. We also give the proof of Theorem 1.10 here.

To show that our examples have minimal stretch factor, we follow Lanneau and Thif-
feault’s approach for orientable surfaces [17; 16]: we run a brute-force search for integral
polynomials whose largest root is smaller than our candidate for the minimal stretch
factor and hope that we do not find any. Aside from some low-genus cases, this search
is computer-assisted. Our code can be found at https://github.com/b5strbal/
polynomial-filtering.

In Section 5, we describe this polynomial elimination process and prove Theorem 1.1
without computer assistance in the case gD 3. This elimination process ends up being
significantly cleaner for us than it was for Lanneau and Thiffeault. In their case, the
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restrictions on the polynomials alone are not sufficient to rule out all polynomials, so
they were left with a few polynomials that needed to be ruled out by studying the
possible singularity structures of the pseudo-Anosov maps and by using Lefschetz
number arguments. For us, no arguments like these are necessary.
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We also thank Dan Margalit, Mehdi Yazdi and an anonymous referee for helpful
comments on an earlier version of this paper. Liechti was supported by the Swiss
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2 Construction of pseudo-Anosov maps on nonorientable
surfaces

In this and the next section, we use Penner’s construction to construct pseudo-Anosov
mapping classes. We briefly recall Penner’s construction below, stating it in a way
that works both for orientable and for nonorientable surfaces. For more details, see
[26, Section 4] or [30, Section 2].

In Penner’s construction, we have a collection of two-sided simple closed curves
C D fc1; : : : ; cng that fill the surface (the complement of the curves is a union of
disks and once-punctured disks), that pairwise intersect minimally, and that are marked
inconsistently. This means that there is a small regular neighborhood N.ci/ for each
curve ci and an orientation of each annulus N.ci/ such that the orientations of N.ci/

and N.cj / are different at each intersection whenever i ¤ j . Penner showed that any
product of the Dehn twists Tci

is pseudo-Anosov assuming that

� each twist Tci
is right-handed according to the orientation of N.ci/,

� each twist Tci
is used in the product only with positive powers,

� each twist Tci
is used in the product at least once.

Note that if the surface is oriented, then the above conditions in Penner’s construction
say that the collection of curves is a union of two multicurves �1 and �2 , and the Dehn
twists along the curves in �1 are all right-handed, whereas the Dehn twists along the
curves in �2 are all left-handed with respect to the orientation of the surface.

Algebraic & Geometric Topology, Volume 20 (2020)
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We will present the construction of our examples as follows. First we define the
rotationally symmetric graphs that will be the intersection graphs of the collections
of curves. Then we describe the rotationally symmetric surfaces and curves on these
surfaces whose intersection matrices realize the given graphs. Finally, we define our
mapping classes as a composition of a Dehn twist and a rotation.

2.1 The graphs

Let k and n be integers of different parity such that n� 3 and 1� k � n�1. Let Gn;k

be the graph whose vertices are the vertices of a regular n–gon and every vertex v is
connected to the k vertices that are the farthest away from v in the cyclic order of the
vertices.

Figure 1: The graphs G9;2 , G6;3 and G10;5 .

2.2 The surfaces

For each Gn;k , we will construct a nonorientable surface †n;k that contains a collection
of curves with intersection graph Gn;k . To construct †n;k , start with a disk with one
crosscap. By this, we mean that we cut a smaller disk out of the disk and identify the
antipodal points of the boundary of the small disk. We indicate this identification with
a cross inside the small disk; see Figure 2. The resulting surface is homeomorphic to
the Möbius strip.

Next, we consider 2n disjoint intervals on the boundary of the disk and label the
intervals with integers from 1 to n so that each label is used exactly twice. In the cyclic
order, the labels are 1, s , 2, sC 1, : : : , n, sC n, where s D 1

2
.nC k C 3/ and all

labels are understood modulo n.

For each label, the corresponding two intervals are connected by a twisted strip, as on
Figure 2.

Lemma 2.1 The Euler characteristic of †n;k is �n.

Proof The disk with a crosscap has zero Euler characteristic (it is homeomorphic to a
Möbius strip), and each attached twisted strip has contribution �1.
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c10

Figure 2: The surface †10;5 and the curve c10 .

Lemma 2.2 The number of boundary components of †n;k is gcd.n; k/.

Proof We will show that the number of boundary components of †n;k is the same as
the number of orbits of the dynamical system x 7! xC n� k in the group Z=2nZ.
The number of such orbits is gcd.n� k; 2n/D gcd.k; n/, since n� k is odd.

To prove our claim, we identify Z=2nZ with the 2n intervals in the cyclic order. We
claim that the right endpoint of the interval at position i lies on the same boundary
component as the right endpoint of the interval at position i C n� k . One can see this
by induction. In the case k D n�1, the cyclic order of labels is 1, 1, : : : , n, n, so the
twisted strips identify the right endpoint of every interval with the right endpoint of the
next interval. When k D n� 3, the cyclic order is 1, n, 2, 1, : : : , n, n� 1, in which
case every third right endpoint is on the same boundary component, and so on.

Proposition 2.3 The surface †n;k is homeomorphic to the nonorientable surface of
genus n� gcd.k; n/C 2 with gcd.k; n/ boundary components.
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Proof The Euler characteristic of the nonorientable surface of genus g with b

boundary components is 2�g� b . By Lemmas 2.1 and 2.2, we obtain the equation
2�g� gcd.k; n/D�n. Rearranging, we obtain g D n� gcd.k; n/C 2.

2.3 The curves

We construct a two-sided curve ci for each label i D 1; : : : ; n as follows. Each curve
consists of two parts. One part of each curve is the core of the strip corresponding to
the label. The other part is an arc inside the disk that passes through the crosscap and
connects the corresponding two intervals. The curve c10 is shown on Figure 2.

Note that every pair of curves intersects either once or not at all. The curves ci and cj

are disjoint if and only if the two i labels and the two j labels link in the cyclic order.
In other words, if the two i labels separate the two j labels.

Lemma 2.4 The intersection graph of the curves ci on †n;k is Gn;k .

Proof We prove the lemma by induction. If k D n�1, then sD 1, so the cyclic order
is 1, 1, 2, 2, : : : , n, n. Since no two labels link, all pairs of curves intersect and the
intersection graph is the complete graph Gn;n�1 .

Now suppose k is decreased by 2. Then s is decreased by 1, and we obtain the cyclic
order 1, n, 2, 1, 3, 2, : : : , n, n� 1. As a consequence, 1 becomes linked with 2

and n. Hence the intersection graph is indeed Gn;k .

It is easy to see that every time k is decreased by two each label is linked with two
more labels, hence the intersection graph is always Gn;k .

Lemma 2.5 The curves ci can be marked so that all intersections are inconsistent.

Proof Choose markings for the ci which are invariant under the rotational symmetry;
see Figure 3. The marking of the curves is indicated by the coloring as follows. Consider
the orientable surface obtained by removing the crosscap and cutting the strips attached
to the disk in the middle. Choose an orientation of this surface. Then color the arcs
composing the curves using red and blue depending on whether the orientation of the
neighborhood of the curve matches the orientation of the surface or not. Note that the
color of a curve changes when it goes through the crosscap or the middle of a strip.

Since blue and red meet at every intersection, the marking is inconsistent.
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Figure 3: A collection of filling inconsistently marked curves.

2.4 The mapping classes

Denote by r the rotation of †n;k by one click in the clockwise direction. Define the
mapping class

fn;k D r ıTc1
;

where Tc1
is a Dehn twist about the curve c1 . (There are two possible directions for

the Dehn twist, but either choice works for our purposes.) Note that

f n
n;k D Tcn

ı � � � ıTc1
;

so f n
n;k

arises from Penner’s construction. In particular, f n
n;k

is pseudo-Anosov and so
is fn;k .

We remark that for k D n�1, the mapping class fn;k coincides with the nonorientable
Arnoux–Yoccoz mapping class hn�1 , described as a product of a Dehn twist and a
finite-order mapping class by the authors in [20].

Proposition 2.6 The stretch factor of fn;k is the largest root of xn�xn�r�xn�r�1�

� � � �xrC1�xr � 1, where r D 1
2
.n� kC 1/.

Algebraic & Geometric Topology, Volume 20 (2020)
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Proof To compute the stretch factor, we use Penner’s approach in the section titled
“An upper bound by example” in [27]. Penner constructed an invariant bigon track
by smoothing out the intersections of the curves ci . Each ci defines a characteristic
measure �i on this bigon track, defined by assigning 1 to the branches traversed by ci

and zero to the rest. The cone generated by the �i is invariant under both Tc1
and r ,

hence it contains the unstable foliation, and the stretch factor is given by the largest
eigenvalue of the action of r ıTc1

on this cone. The rotation r acts by a permutation
matrix and the matrix corresponding to Tc1

is the sum of the identity matrix and the
matrix obtained from the intersection matrix i.C;C / by zeroing out all rows except
the first row. The product of these two matrices takes the form0BBBBBBBBBBBBBBB@

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

1 0 0 1 1 1 1 1 0 0

1CCCCCCCCCCCCCCCA
:

This particular matrix belongs to f10;5 .

This matrix is the companion matrix of the polynomial in the statement of the proposi-
tion. Hence the characteristic polynomial of this matrix is indeed that polynomial.

Our next goal is to determine the singularity structure of the mapping classes fn;k . For
this, first we need a lemma.

Consider the complementary regions of the curves fc1; : : : ; cng. There are two types
of regions, depending on whether a region contains a boundary component of †n;k

(type 1) or not (type 2). A region of type 1 is an annulus that is bounded by a boundary
component ˇ of †n;k on one side and by a polygonal path consisting of arcs of the
curves ci on the other side. The shaded region on Figure 3 illustrates a region of type 1.

Lemma 2.7 The length of these polygonal paths is 4n=gcd.k; n/.

Proof This follows from the observation that every point in the orbit in Z=2nZ

corresponding to the boundary component ˇ (see the proof of Lemma 2.2) has two
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associated arcs. Since the number of orbits is gcd.k; n/, the length of each orbit
is 2n=gcd.k; n/, and hence the length of the polygonal path is twice this quantity.

Proposition 2.8 The pseudo-Anosov mapping class fn;k has gcd.k; n/ singularities,
one for each boundary component. The number of prongs of each singularity is
2n=gcd.k; n/.

Proof Each complementary region of the curves fc1; : : : ; cng contains either one
singularity or none. The number of prongs of a singularity equals the number of cusps
of the bigon track obtained by the smoothing process that are contained in the same
region as the singularity. If the number of cusps is 2, then the region does not contain
a singularity. If the number of cusps is k > 2, then it contains a k –pronged singularity.

g n k �.fn;k/ minimal polynomial singularity type

4� 3 2 1:83929 x3�x2�x� 1 .6/

5� 6 3 1:51288 x4�x3�x2Cx� 1 .4; 4; 4/

6� 5 2 1:42911 x5�x3�x2� 1 .10/

7� 10 5 1:42198 x6�x5�x3Cx� 1 .4; 4; 4; 4; 4/

8� 7 2 1:28845 x7�x4�x3� 1 .14/

9 8 3 1:35680 x8�x5�x4�x3� 1 .16/

10� 9 2 1:21728 x9�x5�x4� 1 .18/

11 12 3 1:22262
x12�x7�x6�x5�1

x2CxC1
.8; 8; 8/

12� 11 2 1:17429 x11�x6�x5� 1 .22/

13 22 11 1:27635 x12�x11�x6Cx� 1 .411/

14� 13 2 1:14551 x13�x7�x6� 1 .26/

15 14 3 1:18750 x14�x8�x7�x6� 1 .28/

16� 15 2 1:12488 x17�x9�x8� 1 .30/

17 18 3 1:14259
x18�x10�x9�x8�1

x2CxC1
.12; 12; 12/

18� 17 2 1:10938 x19�x10�x9� 1 .34/

19 18 5 1:20514 x18�x11�x10�x9�x8�x7� 1 .36/

20� 19 2 1:09730 x23�x12�x11� 1 .38/

Table 2
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Regions of type 2 are rectangles (bounded by four subarcs of the curves ci ), and hence
contain two cusps. So they do not correspond to singularities.

The lengths of the polygonal paths bounding regions of type 1 are 4n=gcd.k; n/ by
Lemma 2.7, so the number of cusps in these regions is 2n=gcd.k; n/. Therefore the
singularities have that many prongs. By Lemma 2.2, the number of such regions is
gcd.k; n/, so that is also the number of the singularities.

As a corollary of Propositions 2.6, 2.8 and 2.3, we have the following:

Corollary 2.9 There exist pseudo-Anosov mapping classes with an orientable invariant
foliation on the surfaces Ng with the data given in Table 2. All of these examples
belong to the family fn;k for the n and k shown in Table 2. (411 means that there are
11 singularities with 4 prongs.)

In each genus, the family fn;k contains several examples. In Table 2, we have listed
only the example with the smallest stretch factor. In the starred cases, we will be able
to certify that the given stretch factors are not only minimal in the family fn;k but
among all pseudo-Anosov maps with an orientable invariant foliation.

3 Orientation-reversing pseudo-Anosov mapping classes on
odd genus surfaces

In this section, we construct an orientation-reversing pseudo-Anosov mapping class
with small stretch factor on every odd genus orientable surface. The construction is
analogous to the construction in the previous section, but simpler. As in the previous
section, we separate the construction of the surfaces, the curves and finally the mapping
classes.

3.1 The surfaces

For every k � 2, consider the surface †k obtained by chaining together 2k annuli in
a cycle as on Figure 4.

Proposition 3.1 The number of boundary components of †k is 4 if k is even and 2

if k is odd.
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Figure 4: The surface †k .

Proof The boundary of †k is composed of 8k arcs, 4 arcs for each annulus. Our
goal is to determine which of them belong to the same boundary component.

Denote by r the rotation of †k by one click. By tracing the boundary, one can see that
every boundary point x lies on the same boundary component as r4.x/. Moreover, the
path between x and r4.x/ traverses each of the 4 types of arcs exactly once. Therefore
it suffices to pick any boundary point x and determine into how many equivalence
classes the set fx; r.x/; : : : ; r2k�1.x/g falls apart. The number of such equivalence
classes is 4 if k is even and 2 if k is odd.

Proposition 3.2 The surface †k is homeomorphic to Sk�1;4 if k is even and Sk;2

if k is odd.

Proof We have �.†k/ D 2k . From the equation � D 2� 2g � b , where g is the
genus and b is the number of boundary components, it follows that g D kC 1� 1

2
b .

The statement now follows from Proposition 3.1.

As a consequence, the construction only produces odd genus examples.
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3.2 The curves

From now on, suppose that k is even. Consider the set C D fc1; : : : ; c2kg of core
curves of the 2k annuli. Our numbering will differ from the standard cyclic numbering;
we will explain this shortly. As in Section 2.3, any rotationally symmetric marking of
the curves is an inconsistent marking.

The intersection graph of C is a cycle of length 2k . We draw this cycle as on Figure 5:
the vertices are the vertices of a regular polygon and every vertex is connected to the
two vertices that are the second furthest in the cyclic order. We number the curves
according to the cyclic orientation induced by this picture.

c1 c2
c3c12

Figure 5: Our unusual way of numbering the curves. For example, the curve c1

intersects ck and ckC2 , not c2 and c2k .

3.3 The mapping classes

Denote by r the rotation of †k (see Figure 4) by one click in the clockwise direction.
Since ci and r.ci/ intersect for all i , the rotation r induces a rotation of the cycle on
Figure 5 by k � 1 clicks. So rk�1 rotates the cycle by .k � 1/2 D k2� 2kC 1 clicks,
which is congruent to 1 modulo 2k if k is even. Therefore rk�1 induces rotating the
cycle on Figure 5 by one click (in the clockwise direction, assuming that we have chosen
the numbering of the curves accordingly). In particular, we have rk�1.ciC1/D ci .

We are now ready to define the mapping class:

 k D rk�1
ıTc1

:

Note that
 2k

k D Tc2k
ı � � � ıTc1

;

so  2k
k

arises from Penner’s construction. In particular,  2k
k

is pseudo-Anosov and so
is  k . Note that while  2k

k
is orientation-preserving,  k is orientation-reversing. This

follows from the observation that Tc1
is orientation-preserving and r is orientation-

reversing.
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Proposition 3.3 The stretch factor of  k is the largest root of x2k�xkC1�xk�1�1.

Proof The proof is similar to the proof of Proposition 2.6. We have

i.C;C /D

0BBBBBBBBBBB@

0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1

1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 0 1 0 0 0

1CCCCCCCCCCCA
and M D

0BBBBBBBBBBB@

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 1 0 1 0 0

1CCCCCCCCCCCA
;

where M is the matrix of the action of  k on the cone of measures (the product of a
permutation matrix and the sum of the identity matrix and the first row of i.C;C /).
The matrices above illustrate the case k D 4. The matrix M is the companion matrix
of the polynomial in the proposition.

Proposition 3.4 The pseudo-Anosov mapping class  k has four k –pronged singular-
ities.

Proof By Proposition 3.1 and its proof, each of the four boundary components of †k

consists of 2k arcs if k is even. There is a prong for every second corner of the
boundary path, therefore there are k prongs for each singularity.

Corollary 3.5 There exist orientation-reversing pseudo-Anosov mapping classes with
orientable invariant foliations on the surfaces Sg with the data below. All of these
examples belong to the family  k for the k shown in the table:

g k �. k/ largest root of singularity type

1 2 1:61803 x2�x� 1D
x4�x3�x�1

x2C1
no singularities

3 4 1:25207 x8�x5�x3� 1 .4; 4; 4; 4/

5 6 1:15973 x12�x7�x5� 1 .6; 6; 6; 6/

7 8 1:11707 x16�x9�x7� 1 .8; 8; 8; 8/

9 10 1:09244 x20�x11�x9� 1 .10; 10; 10; 10/

11 12 1:07638 x24�x13�x11� 1 .12; 12; 12; 12/
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Proof The statement follows from Propositions 3.3, 3.4 and 3.2. The reason we have
no singularities in the genus 1 case is that by Proposition 3.4 the “singularities” have
two prongs, so they are not actually singularities.

We remark that in genus 1, there is an alternative, simpler construction that yields the
same stretch factor. Consider the matrix

M D

�
0 1

1 1

�
with determinant �1. The corresponding linear map R2!R2 maps Z2 to Z2 , hence
it descends to an Anosov diffeomorphism f of the torus R2=Z2 . Its stretch factor is
the largest root of x2�x� 1, the characteristic polynomial of M.

4 Restrictions on polynomials

Pseudo-Anosov stretch factors are roots of integral polynomials. The properties of these
integral polynomials are similar, but slightly different depending on whether a pseudo-
Anosov mapping class is an orientation-preserving or orientation-reversing mapping
class on an orientable surface or a mapping class on a nonorientable surface. In this
section, we discuss these properties for nonorientable surfaces and orientation-reversing
mapping classes.

A polynomial p.x/ of degree n is called reciprocal if p.x/D˙xnp.x�1/, in other
words, when its coefficients are the same in reverse order up to sign. Analogously, we
define p.x/ to be skew-reciprocal if p.x/D˙xnp.�x�1/.

Proposition 4.1 Let  W Ng ! Ng be a pseudo-Anosov map with a transversely
orientable invariant foliation on the closed nonorientable surface Ng of genus g . Then
its stretch factor � is a root of a (not necessarily irreducible) polynomial p.x/ 2 ZŒx�

with the following properties:

(1) deg.p/D g� 1.

(2) p.x/ is monic and its constant coefficient is ˙1.

(3) The absolute values of the roots of p.x/ other than � lie in the open interval
.��1; �/. In particular , p.x/ is not reciprocal or skew-reciprocal.

(4) p.x/ is reciprocal mod 2.
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Proof Note that exactly one of the stable and unstable foliations is transversely
orientable (otherwise the surface itself would be orientable). We will assume that it is
the stable foliation, otherwise we replace  by its inverse.

Consider the action  �W H 1.NgIR/!H 1.NgIR/ defined by pullback on cohomol-
ogy with real coefficients. Since the stable foliation is transversely orientable, it is
represented by a closed real 1–form, that is, an element of H 1.NgIR/. The stable
foliation Fs is the one whose leaves are contracting and hence the surface is expanding
in the transverse direction. Therefore the measure of a transverse arc in the pullback
 �.Fs/ is � times its measure in Fs . Hence Fs is an eigenvector of the map  �

with eigenvalue � or ��.

Let p.x/ be the characteristic polynomial of  � . Note that dim.H 1.Ng;R//D g�1,
hence deg.p/D g� 1. This proves (1).

The polynomial p.x/ has integral coefficients, since  � restricts to an action
H 1.NgIZ/!H 1.NgIZ/. This restriction is invertible, since the action of Mod.Ng/

on H 1.NgIZ/ is a group representation, so the determinant of  � is ˙1. Therefore
the constant coefficient of p.x/ is ˙1. Also, as a characteristic polynomial, p.x/ is
monic. This proves (2).

It is a standard fact from the theory of orientation-preserving pseudo-Anosov mapping
classes on orientable surfaces that stretch factors are strictly maximal among their
Galois conjugates. Moreover, if the invariant foliations are orientable, the spectral
radius of the action induced on the first homology equals the stretch factor, and every
other eigenvalue is strictly smaller; see for example [23, Theorem 5.3(1)]. Applying this
result to the orientation-preserving lift z W Sg�1!Sg�1 of  to the orientable double
cover Sg�1 of Ng , we obtain that any root �0 of p.x/ other than ˙� satisfies j�0j< j�j.
Applying the same theorem for z �1 , we conclude that any root �0 of p.x/ other
than ˙��1 satisfies j�0�1j< j�j. Therefore absolute values of the roots of p.x/ other
than ˙� and possibly ˙��1 lie in the open interval .��1; �/. However, it was shown
in the proof of [31, Proposition 2.3] that if � or �� is a root of p.x/, then ��1

and ���1 cannot be roots of p.x/, hence mentioning the edge case ˙��1 in the
previous sentence is not necessary.

If p.x/ were reciprocal, then � and ��1 or �� and ���1 would have to be roots.
If it were skew-reciprocal, then � and ���1 or �� and ��1 would have to be roots.
As we have just shown, these scenarios are impossible, because ˙��1 is not a root
of p.x/. This proves (3).
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The fact that p.x/ is reciprocal mod 2 was shown in [31, Proposition 4.2]. This
justifies (4).

Finally, notice that we have not guaranteed that � is a root of p.x/— we have only
shown that either � or �� is a root. If it is ��, then the polynomial p.�x/ or �p.�x/

satisfies all the required properties.

We call a 2n� 2n matrix A antisymplectic if the corresponding linear transformation
sends the standard symplectic form on R2n to its negative. Formally, this can be written
as

AJAT
D�J

where J D
�

0 I
�I 0

�
and I is the n� n identity matrix.

Proposition 4.2 The characteristic polynomial p.x/ of a 2n � 2n antisymplectic
matrix is skew-reciprocal.

Proof Let A be a 2n� 2n antisymplectic matrix. Since A2 is symplectic, we have
det.A2/D 1 and det.A/D˙1. Since det.J /D 1, we have

p.x/D det.A�xI/D det.AJ �xJ /D det.AJ CxAJAT /

D det.A/ det.J / det.I CxAT /D˙ det.I CxA/

D˙x2n det.ACx�1I/D˙x2np.�x�1/;

hence p.x/ is skew-reciprocal.

The proof above is a straightforward modification of the standard proof of the fact that
the characteristic polynomials of symplectic matrices are reciprocal.

Proposition 4.3 Let  W Sg ! Sg be an orientation-reversing pseudo-Anosov map
with transversely orientable invariant foliations. Then its stretch factor � is a root of a
(not necessarily irreducible) polynomial p.x/ 2 ZŒx� with the following properties:

(1) deg.p/D 2g .

(2) p.x/ is monic and its constant coefficient is .�1/g .

(3) p.x/D .�1/gx2gp.�x�1/.

(4) p.���1/D 0.

(5) The absolute values of the roots of p.x/ other than � and ���1 lie in the open
interval .��1; �/.
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Proof Let p.x/ be the characteristic polynomial of  �W H1.Sg/!H1.Sg/. Clearly,
(1) holds. Similarly to the proof of Proposition 4.1, we obtain (5) by a reduction to
the known statement for orientation-preserving pseudo-Anosov mapping classes. This
time, we directly obtain (5) by applying [23, Theorem 5.3] to the square of  .

An orientation-reversing homeomorphism sends the intersection form on H1.Sg/ to
its negative. Proposition 4.2 implies that p.x/ D ˙x2gp.�x�1/. To decide which
sign is right, we only need to compute the sign of the constant coefficient of p.x/. If
the constant coefficient is 1, then the sign is positive. If the constant coefficient is �1,
then the sign is negative. To put this in another way, we have

(4-1) p.x/D p.0/x2gp.�x�1/:

For orientation-preserving homeomorphisms, the action on homology is symplectic,
hence its determinant is C1. It follows that, for fixed g , the determinant is either C1

for all orientation-reversing homeomorphisms of Sg or �1 for all orientation-reversing
homeomorphisms of Sg . It is sufficient to check only one homeomorphism to decide
which one. For example, consider the reflection i W Sg!Sg about the plane containing
the curves bi on Figure 6.

a1 a2
b1 b2

Figure 6: The standard homology basis for S2 .

The curves fa1; : : : ; ag; b1; : : : ; bgg form a homology basis. We have i.bi/ D bi

and i.ai/D �ai for all i . So the matrix of A is a diagonal matrix whose diagonal
contains 1’s and �1’s, g of each. Hence the determinant is .�1/g and we have
shown (2).

Item (3) follows from (4-1) and the fact p.0/D .�1/g we have just shown.

Either � or �� is a root of p.x/. If it is ��, we may replace p.x/ with p.�x/;
the previously proven properties remain true. Finally, (4) follows from (3) by setting
x D �.

We are now ready to prove Theorem 1.10. We emphasize that, unlike in the previous
propositions, in this theorem we are not assuming that the surface is closed or that the
pseudo-Anosov mapping class has a transversely orientable invariant foliation.
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Proof of Theorem 1.10 An irreducible polynomial p.x/ 2 ZŒx� with a (complex)
root ˛ on the unit circle is reciprocal. This is because then ˛�1 is also a root of p.x/,
therefore ˛ is a root of the polynomial xdp.x�1/, where d is the degree of p.x/.
But the minimal polynomial is unique up to constant factor, so xdp.x�1/D˙p.x/.
Hence p.x/ is indeed reciprocal. So if a stretch factor � has a Galois conjugate on the
unit circle, then the minimal polynomial of � is reciprocal and ��1 is also a root of
the minimal polynomial.

However, by [31, Proposition 2.3], � and ��1 are not Galois conjugates if � is a
stretch factor of a pseudo-Anosov map (possibly with no orientable invariant foliations)
on a nonorientable surface (possibly with punctures). This completes the proof in the
case when the pseudo-Anosov map is supported on a nonorientable surface.

We now prove the orientation-reversing case. If our surface is closed, then, by
Proposition 4.3, � and ��1 are not Galois conjugates if � is a stretch factor of an
orientation-reversing pseudo-Anosov map with orientable invariant foliations. If the
foliations are not orientable, we can lift the map to the orientation double cover of
the foliations to obtain an orientation-reversing pseudo-Anosov map with orientable
invariant foliations and with the same stretch factor. Therefore � and ��1 are not
Galois conjugates in this case, either.

If our surface has punctures, then we can fill in the punctures after making the foliations
orientable to obtain a pseudo-Anosov map with the same stretch factor on a closed
surface, reducing to the closed case discussed in the previous paragraph. This completes
the proof in the case when the pseudo-Anosov map is orientation-reversing.

5 Elimination of polynomials

In this section we first prove bounds on the sum of k th powers of roots of a polynomial
when the absolute values of the roots are bounded by some r > 1. These bounds are
improved versions of Lemma A.1 of [17], using the special properties of the polynomials
in Propositions 4.1 and 4.3.

Then we describe how we use this lemma and Propositions 4.1 and 4.3 in order to
systematically narrow down the set of possible minimal polynomials of the minimal
stretch factors.

5.1 Power sum bounds

We begin by proving two elementary lemmas.
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Lemma 5.1 Suppose r > 1 and r�1 � a1; : : : ; ad � r are positive real numbers such
that a1 � � � ad D 1. Then

dX
iD1

ai �

�
n.r C r�1/ if d D 2n is even;
n.r C r�1/C 1 if d D 2nC 1 is odd.

Proof The function x 7! xC x�1 is increasing on the interval x � 1. So if there
are i ¤ j such that r�1 < ai ; aj < r , then we can increase the sum by moving ai

and aj away from each other while keeping their product unchanged, until at least
one of them is r�1 or r . After every such operation, the number of ai that are equal
to r�1 or r increases. So eventually we get to a point where at most one ai is not
r�1 or r . When d D 2n, no such ai can exist, and exactly half of the ai equal r , the
other half r�1 , otherwise their product would not be 1. When d D 2nC 1, exactly
one such ai exists, it equals 1 and exactly half of the remaining ai equal r , the other
half r�1 .

Lemma 5.2 Suppose r > 1 and a1; : : : ; ad are positive real numbers such that
r�1 � a1 � : : :� ad � r and a1 � � � ad D 1 and a1 � a�1

d
. Then

ad �

d�1X
iD1

ai �

�
minf2� 2n;�.n� 2/r � nr�1g if d D 2n is odd,
minf1� 2n;�.n� 2/r � 1� nr�1g if d D 2nC 1 is odd.

Moreover, the inequalities are strict if a1 > a�1
d

.

Proof Similarly to the proof of Lemma 5.1, our approach is to change the numbers
a1; : : : ; ad�1 to increase

Pd�1
iD1 ai as much as possible while keeping the hypotheses

true. Whenever there are i ¤ j such that a�1
d
< ai ; aj ; < ad , we push ai and aj apart

until at least one of them equals a�1
d

or ad . The end result is the same as before, so
we have

ad �

d�1X
iD1

ai � ad � ..n� 1/ad C na�1
d /D�.n� 2/ad � na�1

d

when d D 2n and

ad �

d�1X
iD1

ai � ad � ..n� 1/ad C 1C na�1
d /D�.n� 2/ad � 1� na�1

d

when d D 2nC1. Since the function x 7! �.n�2/x�nx�1 is concave, its minimum
on the interval Œ1; r � is taken at one of the endpoints.
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The inequalities in the case a1 > a�1
d

are strict, since in the optimal distribution there
has to be an ai that takes the value a�1

d
.

Now we apply Lemmas 5.1 and 5.2 for roots of polynomials.

Corollary 5.3 Suppose P .x/ is a monic polynomial of degree d with constant coeffi-
cient ˙1. Let z1; : : : ; zd be the roots of P .x/ and let

pk D zk
1 C � � �C zk

d

be the k th power sum of the roots.

Suppose there is a root � > 1 such that all the other roots have absolute values in the
interval Œ��1; ��. For any r > �, we have

minf2� 2n;�.n� 2/rk
� nr�k

g � pk � n.rk
C r�k/

if d D 2n is even and

minf1� 2n;�.n� 2/rk
� 1� nr�k

g � pk � n.rk
C r�k/C 1

if d D 2nC 1 is odd.

Moreover, strict inequality holds in the lower bound when no eigenvalue equals ��1 .

Proof Let z1; : : : ; zd be the roots of P .x/ and let ai D jzi j
k for every i . Note that

a1 � � � ad D 1 and r�k � a1; : : : ; ad � rk . Assuming a1 � � � � � ad , we have ad D �
k .

Since

ad �

d�1X
iD1

ai � pk D zk
1 C � � �C zk

d�1C�
k
�

dX
iD1

ai ;

the bounds follow from Lemmas 5.1 and 5.2

5.2 Newton’s formulas

In this section, we recall Newton’s formulas that relate power sums of the roots to the
coefficients of the polynomial.

We will use the notation

P .x/D xd
� c1xd�1

� � � � � cd�1x˙ 1

for the coefficients of monic polynomials of degree d . As in the statement of Corollary
5.3, we denote by pk the k th power sum of the roots of P .x/.
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Newton’s formulas relating power sums and symmetric polynomials can be stated either
as

(5-1) pk D�c1pk�1� c2pk�2� � � � � ck�1p1� kck

or as

(5-2) ck D
�c1pk�1� c2pk�2� � � � � ck�1p1�pk

k

for all 1� k � d � 1.

As Lanneau and Thiffeault point out in Section A.1 of [17], it is more computationally
efficient to bound the power sums pi and use Newton’s formulas to compute the
coefficients ck from the pi than to bound the coefficients directly. This is because
many scenarios get ruled out just because the numerator in (5-2) is not divisible by k .

5.3 The polynomial elimination algorithm

We give a lower bound on the minimal stretch factor ıC.Ng/ by a systematic elimination
of polynomials. We describe this process below. In order to illustrate the effect of each
step in the algorithm, we give the number of candidate polynomials left after each step
when g D 12 (when the degree is 11).

Algorithm 5.4 Let d � 4, g D d � 1 and r > 1 be such that ıC.Ng/ < r . Perform
the following steps in order to obtain a small set of polynomials of degree g that include
one polynomial whose root is ıC.Ng/:

(1) Compute the possible values of p1; : : : ;pd�1 using the bounds of Corollary 5.3.
For d D 11, the total number of combinations is 20 � 20 � 21 � 23 � 24 � 27 � 30 � 34 �

38 � 43D 10 641 541 131 648 000.

(2) Compute the coefficients c1; : : : ; cd�1 using (5-2), keeping only the cases when
all ci are integers. 57 643 952 cases remain.

(3) Discard all cases where the polynomial is not reciprocal mod 2. 1 808 922 cases
remain.

(4) Try ˙1 for the constant coefficient. We have now doubled the number of cases
to 3 617 844.

(5) Consider the reciprocal polynomial P�.x/D˙xdP .x�1/ (with the sign chosen
so that the polynomial is monic), and use (5-1) to compute the power sums
p�

1
; : : : ;p�

d�1
of this polynomial from the reversed sequence ˙cd�1; : : : ;˙c1

of coefficients, where the signs here depend on the sign chosen in the previous
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step. Discard the cases that do not satisfy the bounds of Corollary 5.3. 5075

cases remain.

(6) Test the remaining polynomials by Newton’s method for finding roots. Start
with the upper bound for the Perron root. Since the polynomial is increasing
and convex in Œ�;1/, we should get a decreasing sequence of x–values larger
than �. Discard the cases when this fails. Stop when two consecutive x–values
are very close to each other. 421 cases remain.

(7) Discard the polynomials where the largest eigenvalue in absolute value is not
real. 86 cases remain.

(8) Discard the cases where the multiplicity of the largest eigenvalue is larger than 1.
54 cases remain.

(9) Discard the cases where there is a root with absolute value less than or equal
to ��1 . 33 cases remain.

(10) Discard the cases where the largest eigenvalue is larger than our upper bound.
1 case remains.

In practice, the first three steps are implemented in a more sophisticated way. Our com-
puters cannot handle as many as 10 641 541 131 648 000 cases, so the implementation
does not actually consider all those combinations. It first chooses a value for p1 and
sets c1 D�p1 by (5-2). Then it has to choose a value for p2 of the same parity as p1 ,
since c2 D �

1
2
.c1p1 � p2/. Similarly, the value chosen for p3 is then determined

mod 3, therefore a huge number of combinations for the pi are never considered. Also,
once more than half of the ci are computed, we obtain additional constraints on the pi ,
since our polynomial has to be reciprocal mod 2. Since these divisibility checks are
done early, and not after the whole polynomial is constructed, a huge number of cases
gets eliminated early.

The idea of bounding the coefficients using power sums as in steps (1) and (2) instead
of using symmetric polynomials to express the coefficients in terms of the roots is
due to Lanneau and Thiffeault [17]. As the numbers suggest, these are the steps that
are responsible for bringing the size of the set of possible polynomials down from an
astronomical size to one that is approachable by computers.

Step (3) is special to nonorientable surfaces and is also crucial. Without this step, not
only would the searching process be much slower, but there are quite a few polynomials
that pass all the other tests but this is the only step that eliminates them. Perhaps this
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step is the main reason why we do not need Lefschetz number tests unlike Lanneau
and Thiffeault in the orientable case.

Step (5) is also special to nonorientable surfaces, since in the orientable case the
polynomials are reciprocal, so the reciprocal polynomial does not contain any additional
information. This was one of the last tests we added, and this reduced the running time
of the algorithm for the d D 11 case from several hours to a few minutes. The reason
this works so effectively is that in most of the coefficient sequences at this point, the
last few coefficients (cd�1 , cd�2 , etc) are much bigger than the required bounds.

Step (7) is another computationally inexpensive test that quickly eliminates a large
fraction of the polynomials. The idea of this test is also due to Lanneau and Thiffeault.

The most computationally expensive part is computing the roots. We only compute the
roots after Step (7), only in 421 cases. So, in terms of total time, actually steps (1)–(7)
take more than 99% of the running time.

We use a very similar algorithm in order to give a lower bound for the minimal stretch
factor ıCrev.Sg/ among orientation-reversing pseudo-Anosov maps. The difference is
that we use the properties from Proposition 4.3 instead of the ones from Proposition 4.1.
Our implementation of these algorithms can be found at https://github.com/
b5strbal/polynomial-filtering.

5.4 Minimal stretch factors

We are now ready to single out the minimal stretch factor ıC.Ng/ among pseudo-
Anosov homeomorphisms with an orientable invariant foliation for certain nonorientable
closed surfaces Ng . Theorem 1.1 is a direct consequence of Corollary 2.9 and
Proposition 5.5 below.

Proposition 5.5 Let g and r be as in one of the rows in Table 3. Let f be a pseudo-
Anosov mapping class with an orientable invariant foliation on Ng whose stretch
factor � is smaller than r . Then � must be a root of the polynomial shown in Table 3.

In the cases where no polynomial is given, we have indicated to how many polynomials
we were able to restrict the list of candidate polynomials.

Proof The proof consists of running Algorithm 5.4 and is computer-assisted. However,
we will prove the proposition by hand in genus 4. We follow the first four steps explicitly,
then (since only a handful of polynomials remain) we finish the proof with an ad hoc
but simple argument.
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g r polynomial candidates largest root

4 1:84 x3�x2�x� 1 1:83929

5 1:52 x4�x3�x2Cx� 1 1:51288

6 1:43 x5�x3�x2� 1 1:42911

7 1:422 x6�x5�x3Cx� 1 1:42198

8 1:2885 x7�x4�x3� 1 1:28845

9 1:3568 18 candidates

10 1:2173 x9�x5�x4� 1 1:21728

11 1:22262 5 candidates

12 1:1743 x11�x6�x5� 1 1:17429

13 1:2764 288 candidates

14 1:14552 x13�x7�x6� 1 1:14551

15 1:1875 84 candidates

16 1:1249 x15�x8�x7� 1 1:12488

17 1:1426 16 candidates

18 1:10939 x17�x9�x8� 1 1:10938

20 1:09731 x19�x10�x9� 1 1:09730

Table 3

Step (1) We have

�1Dminf�1; 1:84� 1� 1=1:84g< p1 < 1:84C 1C 1=1:84� 3:38;

therefore the possible values for p1 are 0, 1, 2 and 3. We have

�1Dminf�1; 1:842
� 1� 1=1:842

g< p2 < 1:842
C 1C 1=1:842

� 4:68;

so the possible values for p2 are 0, 1, 2, 3 and 4.

Step (2) By (5-2), we have c1 D �p1 and c2 D
1
2
.p2

1
�p2/, therefore p1 and p2

have the same parity. Hence the possible pairs are .0; 0/, .0; 2/, .0; 4/, .1; 1/, .1; 3/,
.2; 0/, .2; 2/, .2; 4/, .3; 1/ and .3; 3/.

Step (3) The pair
�
p1;

1
2
.p2

1
�p2/

�
also has the same parity, since our polynomial is

reciprocal mod 2. That leaves the choices .0; 0/, .0; 4/, .1; 3/, .2; 0/, .2; 4/, .3; 3/
for .p1;p2/.
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Step (4) We construct the list of possible polynomials:

(1) x3˙ 1.

(2) x3� 2x˙ 1.

(3) x3�x2�x˙ 1.

(4) x3� 2x2C 2x˙ 1.

(5) x3� 2x2˙ 1.

(6) x3� 3x2C 3x˙ 1.

The polynomial has to be irreducible, since the degree of a stretch factor on a non-
orientable surface is at least three [30, Proposition 8.7.]. The polynomials where
neither 1 nor �1 are roots are x3 � x2 � x � 1, x3 � 2x2C 2xC 1, x3 � 2x2 � 1

and x3� 3x2C 3xC 1. The second and fourth polynomial do not have a positive real
root, and the third polynomial has a root that is approximately 2:2. That leaves us with
x3�x2�x� 1.

We have stopped at genus 20 because of computational difficulties. The genus 18 case
took about half a day to run on a single computer. In the genus 20 case the algorithm
took about a day to complete when run parallel on 30 computers. We estimate that the
genus 22 case would need to run for a few months on the same cluster of computers.

In the odd genus cases, the issue is not the running time, but the fact that our tests are
not good enough to eliminate all polynomials that should be eliminated. In the hope of
dealing with more odd genus cases, we have also implemented the Lefschetz number
tests used by Lanneau and Thiffeault [17, Section 2.3]. These tests help eliminate a
large percentage of the remaining polynomials, but, unfortunately, not all. Table 4
shows the polynomials that we could not eliminate in the genus 9, 11 and 13 cases, in
addition to the polynomials that we have constructed in Corollary 2.9.

Most of the polynomials that we are not able to eliminate are products of polynomials
that appear in some lower genus and cyclotomic polynomials. We think that these
polynomials should be possible to eliminate, but we do not know how. In particular,
we think that in the genus 9 and 11 cases all three remaining polynomials could be
eliminated, and we conjecture that the examples constructed in Corollary 2.9 are the
minimal stretch factor examples (see Conjecture 1.3).

Similarly, in the orientation-reversing case, Theorem 1.4 follows directly from Corollary
3.5 and Proposition 5.6 below.
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g polynomial stratum stretch factor

9 .x7�x4�x3� 1/.x� 1/ .47/ 1:28845

.x7�x5�x2� 1/.x� 1/ .47/ 1:30740

11 .x9�x5�x4� 1/.x� 1/ .49/ 1:21728

13 18 polynomials

Table 4: The polynomials and possible strata in genus 9 and 11 that we
cannot rule out using Algorithm 5.4 and Lefschetz arguments. The notation ab

means an orbit of length b consisting of a–pronged singularities.

Proposition 5.6 Let g and r be as in one of the rows in the table below. Let f
be an orientation-reversing pseudo-Anosov mapping class with orientable invariant
foliations on Sg whose stretch factor � is smaller than r . Then � must be a root of the
polynomial shown in the table:

g r polynomial candidates largest root

1 1:62 x2�x� 1 1:61803

2 1:62 x2�x� 1 1:61803

3 1:253 x8�x5�x3� 1 1:25207

4 1:253 x8�x5�x3� 1 1:25207

5 1:16 x12�x7�x5� 1 1:15973

6 1:16 x12�x7�x5� 1 1:15973

7 1:1171 x16�x9�x7� 1 1:11707

8 1:1171 x16�x9�x7� 1 1:11707

9 1:0925 x20�x11�x9� 1 1:09244

10 1:0925 x20�x11�x9� 1 1:09244

11 1:0764 x24�x13�x11� 1 1:07638

Proof Analogously to the proof of Proposition 5.5, the proof of this statement is also
computer-assisted. The algorithm used is a slight modification of Algorithm 5.4 as
mentioned at the end of Section 5.3.

The polynomials in the table for g � 3 are not irreducible: they are products of x2C1

and an irreducible factor. When g � 3 is odd, the polynomial we get as a result of the
elimination process is this irreducible factor. When g � 4 is even, the only polynomial
left is the product of that irreducible factor and x2�1. In either case, the stretch factor
has to be a root of the irreducible factor, therefore a root of the polynomials in the table.
(The reasons for why we have not listed the irreducible factors in the table is that they
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have many more terms and they do not show such a clear pattern as the polynomials in
the table. Moreover, the polynomials in the table appear also in Corollary 3.5.)

Similarly, in genus 2, the polynomial remaining after the elimination process factors as
.x2�x� 1/.x2� 1/, so the stretch factor would have to be a root of x2�x� 1.

By using the Lefschetz number arguments of Lanneau and Thiffeault, we think it is
possible to show that in genus 2 the only remaining polynomial, .x2�x� 1/.x2� 1/,
cannot actually be the characteristic polynomial of the action on the first homology
for an orientation-reversing pseudo-Anosov map with orientable invariant foliations.
This would imply that ıCrev.S2/ > ı

C
rev.S1/. Since Proposition 5.6 shows a very clear

pattern, we conjecture that the stretch factor candidates in Proposition 5.6 cannot be
realized for any even genus, leading to Conjecture 1.6.
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