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ABSTRACT 

 

Problem solving provides an opportunity for learners to explore ideas and to extend 

their creativity, specifically if they are exposed to strategies that translate text into 

mathematical expressions. Number pattern problems allow learners to make 

predictions and justify their reasoning when solving problems. However, the solving of 

number pattern problems is often regarded as difficult for learners to do. Many learners 

use irrelevant strategies to solve number pattern problems and cannot easily identify 

number patterns embedded in problems. They also lack an understanding of the 

mathematical concepts of number patterns, which results in them not being able to 

solve algebraic problems or translate algebraic problems into mathematical equations. 

A reason for these difficulties could be that teachers often do not expose learners to 

various strategies for solving number pattern problems. Therefore, the purpose of this 

study is to investigate grade 9 mathematics learners’ strategies in solving number 

pattern problems. Knowledge about learners’ strategies will assist teachers in the 

teaching of problem solving and guide them to introduce various strategies, which can 

assist in the solving of number-related problems. 

 

Mathematics is defined as a human activity that involves observing, representing and 

investigating patterns and qualitative relationships in physical and social phenomena 

and between mathematical objects themselves. The beliefs about the nature of 

mathematics provide a foundation for teacher's methods of teaching and how learners 

learn mathematics. It could also affect how mathematics concepts are explained, 

demonstrated and taught to learners. The in-depth investigation of patterns in 

mathematics could add more value to the ability to problem solve. Patterns are a way 

for learners to recognise order and organise their world and are important in all aspects 

of mathematics. The study was guided by the problem solving (PS) conceptual 

framework of Singer and Voica (2013), which highlights progression in problem solving 

according to four phases, namely decoding, representing, processing and 

implementing. This PS conceptual framework reflects learners’ levels of natural 

dispositions towards strategies for solving problems and offers insight into more the 

effective learning of mathematical problem solving. 
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The study adopted an exploratory qualitative case study research strategy. Ninety 

grade 9 learners were purposively selected from three rural schools (30 participants 

from each school) to participate in the study. Qualitative data were collected through 

a written activity and semi-structured one-on-one interviews. Data analysis was done 

by means of content analysis following a deductive approach. The levels of 

engagement in the four phases of the PS conceptual framework of Singer and Voica 

(2013) were used to analyse and interpreted participants’ strategies.  

 

The main finding revealed that learners utilise five main strategies in number pattern 

problems, namely (1) direct counting; (2) direct proportion; (3) recursive strategy; (4) 

mental image representation; and (5) mental model representation. Both direct 

counting and recursive strategies were evident during the decoding phase (DP). The 

strategy of mental image representation was evident during the representing phase 

(RP). The strategy of direct proportion, even inappropriately employed, was evident in 

both the processing phase (PP) and the implementing phase (IP). Mental modelling 

was evident in the (RP). The different strategies learners used to solve number pattern 

problems could sensitise teachers about other strategies to use when introducing 

number pattern problems to learners. This study also makes teachers aware of 

learners’ interpretations and implicit thinking processes about the strategies they use 

in solving number patterns during the different problem-solving process phases, which 

may eventually influence learners’ learning of mathematics. 
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CHAPTER 1: INTRODUCTION AND CONTEXTUALISATION 

 

1.1 INTRODUCTION 

In South Africa, most learners across the primary grades have poor mathematics skills 

(Graven & Heyd-Metzuyanim, 2014), with the average performance steadily declining 

by approximately 10% each year (Department of Basic Education (DBE), 2014). The 

results of the Annual National Assessment (ANA) for mathematics in South Africa, is 

also of national concern because of the poor performance of grade 9 mathematics 

learners (Govender, 2013). The ANA tests are meant to serve as a diagnostic tool for 

identifying areas of strengths and weakness in teaching and learning, thus providing 

information for school-focused interventions. The tests also provide teachers with 

benchmark information and baseline data that can be used to improve “classroom 

assessment practices and inform the teaching and learning of literacy and numeracy” 

(DBE, 2012:4). Although the 2013 ANA national average increased slightly from 13% 

to 14% for grade 9 mathematics, the results are still poor. In addition, the overall 

performance in mathematics in the ANA of 2014 showed an increase in performance 

by a maximum of 8% for all grades, except for grade 9. Unfortunately, in 2015 the 

writing of the ANA was postponed (DBE, 2015).  

 

The current forms of assessment available in grade 9 mathematics are tests and 

internal examinations, investigations, assignments and projects (DBE, 2013). Van 

Staden and Motsamai (2017) argue that South African learners continue to perform 

poorly in mathematics throughout all grades compared to their counterparts 

internationally, locally and regionally. The Head of the National Education Evaluation 

and Development Unit (NEEDU) Department of Basic Education, argues that poor 

learner performance is largely due to poor teacher subject knowledge, especially in 

mathematics, in most schools (Zingiswa, 2019). 

 

Govender (2012) indicates that the DBE and other stakeholders have paid significant 

attention over the past years to the Further Education and Training (FET) phase 

(grades 10-12), especially grade 12, at the expense of the other phases. Govender 

(2012) argues that it is possible that this neglect has contributed to the poor state of 

mathematics teaching and learning in the lower grades. In particular, the majority of 
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grade 9 mathematics learners in South Africa face difficulties in solving number pattern 

problems. Maluleka (2013) notes that the greatest difficulty in working with 

mathematical problems is to translate real-life issues into mathematical problems. A 

person first need to have knowledge of the issue before trying to attempt it.  

 

Mathematical problem solving is complicated because learners need to read and 

comprehend written content which is stated in numerical relations (Tolar, Fuchs, 

Cirino, Fuchs, Hamlett, & Fletcher, 2012). Phonapichat, Wongwanich, and Sujiva 

(2014) identify some key difficulties that learners experience in mathematical problem 

solving, namely: understanding keywords appearing in problems; interpreting 

keywords in mathematical sentences; figuring out what information to assume, and 

what information is necessary to solve the problem. Wang, Fuchs, and Fuchs (2016) 

notice that many learners approach mathematical problems without giving in-depth 

consideration about how unrelated details could derail them from associating a new 

problem with and existing known problem. According to Tambychik and Meerah 

(2010:150):  

Learners’ difficulties in mathematics problem solving are due to incompetency in 

acquiring many mathematics skills and lacking in cognitive abilities of learning. This 

lacking, results in uncertainty, confusion and inaccuracy in the decision and 

connection making among information, and therefore leads to errors in mathematics 

problem solving.  

 

1.2 BACKGROUND TO THE STUDY 

Since the 1970’s much research has focused on problem solving. As explained by 

Allevato and Onuchic (2008:61): 

Concomitantly, at the beginning of the 1970’s, systematic investigation of problem 

solving and its implications for curricula was initiated. Thus, the importance attributed 

to problem solving is relatively recent, and only in this decade did mathematics 

educators come to accept the idea that the development of problem-solving abilities 

deserved more attention. At the end of the 1970’s, problem solving emerged, gaining 

greater acceptance around the world. 
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In 1980 the National Council of Teachers of Mathematics (NCTM) published a 

document recommending problem solving to be the main focus of school mathematics 

(NCTM, 2010) (see section 2.5). Kilpatrick, Swafford, and Findell (2001:421) state that: 

Problem solving must be in the centre of the Mathematics Curriculum. Problem 

solving should be the site in which all of the strands of mathematics proficiency 

converge. It should provide opportunities for learners to weave together the strands 

of proficiency and for teachers to assess learners’ performance on all of the strands.  

Lambdin (2009) expresses the belief that “the primary goals of mathematics learning 

are understanding and problem solving, and that these goals are inextricably related 

because learning mathematics with understanding is best supported by engaging in 

problem solving” (p. 6). Otten (2010) adds that problem solving develops creativity, 

flexibility and metacognitive skills that address professional and post-secondary 

demands. In other words, the study of problem solving in mathematics prepares 

learners for many aspects of their lives after school, for example, trades, professional 

careers and knowledgeable citizenship. In addition, Matlala (2015) states that the 

problem-solving approach in mathematics teaching may be a way to improve the 

quality of, and results in, school mathematics. 

 

The importance of problem solving is also evident in the numerous studies on problem 

solving in mathematics that have been conducted in the South African context 

(Maluleka, 2013; Mochesela, 2007; Sepeng, 2010; Sepeng & Madzorera, 2014; 

Sepeng & Sigola, 2013; Sepeng & Webb, 2012). Maluleka (2013) discovered that 

grade 9 learners are trying to fix problems without comprehension; and that methods 

of interaction, reasoning and recording seem to be crucial to helping learners. 

Mochesela (2007:iii) found that “exposing learners to a variety of problem-solving 

strategies improves their problem solving performance and attitudes towards 

mathematics”. Therefore, creating an environment where learners attempt to find 

variety of strategies for solving number-related problems empowers them to explore 

alternatives and develops confidence in mathematics problem solving. Sepeng (2010) 

found that the discussion and argumentation techniques in mathematical problems 

have a positive effect on learners’ ability to consider reality during problem solving. 

Similarly, Sepeng and Webb (2012) found that debates in mathematics classrooms, 

as a learning approach, could enhance learners' efficiency in solving mathematical 
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problems, as well as their capacity to make sense of real-life problems. Sepeng and 

Madzorera (2014) have shown that learners are struggling to define algebraic terms 

that are used both in problem statements and in educational vocabulary. Sepeng and 

Sigola (2013) explored sources of mistakes made by grade 9 learners when they solve 

mathematical problems. They found that learners' mistakes in problem solving appear 

to be due to a lack of knowledge of mathematical vocabulary used in a problem 

declaration. 

 

Despite all the above-mentioned research studies on problem solving in South Africa, 

grade 9 learners still struggle to solve number patterns-related problems. 

 

1.3 MOTIVATION FOR THE STUDY 

Mathematical problems allow learners to think creatively and develop new 

mathematical reasoning skills (Depaepe, De Corte, & Verschaffel, 2010). One benefit 

of problem solving is that it is a learner-centred approach in which learners investigate 

and explore mathematical ideas on their own (Depaepe et al., 2010). In addition, 

problem-solving motivates learners to perform academically as it enhances creativity 

and mental behaviour of learners to develop their knowledge (Căprioară, 2015). The 

Curriculum and Assessment Policy Statements (CAPS) document for Senior Phase 

(SP) Mathematics in South Africa also claims that mathematical problem solving 

“enables learners to understand the world (physical, social and economic) around 

them, and, most of all, encourages teachers to teach learners to think creatively” (DBE, 

2011:8). 

 

“Number pattern problems allow learners to make predictions and justify their 

reasoning when solving problems” (DBE, 2011:9). For example, in number pattern 

problems, learners are given a sequence of numbers and they have to identify a 

pattern or relationship between consecutive terms in order to extend the pattern. 

Examples of number patterns are: -2, -5, -8, -11… or 3, 7, 11, 15, 19… where the 

second term depends on what happens to the first term, and the third term depends 

on the second term. Number pattern activities can lead to the development of problem-

solving capabilities by highlighting the evaluation of specific instances, systematically 

organising information, and inferring and generalising information (Barbosa, Vale, & 

Palhares, 2012). Number pattern problems have an important place in mathematics, 
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and pattern seeking is a valuable problem-solving strategy (Kurbal, 2015). According 

to Mahlobo and Ntombela (2014), problems involving number patterns provide “an 

opportunity to generalise and to give general algebraic descriptions of the relationship 

between terms and their position in a sequence” (p. 186).  

 

The learning of patterns and sequences starts in the Foundation Phase (FP) where 

CAPS states that: “In the SP phase, learners work with both number patterns (e.g. 

skip counting) and geometric patterns (e.g. pictures)” (DBE, 2011:9). This topic 

continues through the Intermediate Phase (IP) and SP. Thus, in many nations, 

including South Africa, the use of symbols and variables to represent number patterns 

and generalisations is a significant element of the mathematics curriculum (Fray, Fish, 

& Taylor, 2015) (see section 2.3). 

 

1.4 CONCEPTUAL FRAMEWORK 

The problem-solving (PS) conceptual framework of Singer and Voica (2013) is 

adopted for this study and is briefly illustrated in Figure 1.1. This framework reflects 

the learners’ natural disposition towards strategies for solving problems, and offers 

“insight for more effective learning of mathematical problem solving and can be used 

in problem posing and problem analysis in order to devise questions more relevant for 

deep learning” (Singer & Voica, 2013:11). It is designed to help learners to read the 

problem with understanding by, firstly, identifying the key words that could help them 

solve the problem. The conceptual framework of Singer and Voica (2013) is 

particularly relevant to this study as it reflects the new, focused research publication 

devoted to mathematics problem solving. The framework describes the strategies that 

could help learners to make sense of the information on the given text, and ultimately 

to arrive at the correct solution. The framework describes phases to reach that could 

help learners to make sense of the information for effective problem solving (see 

section 2.8). 

 

Singer and Voica (2013) as cited by Irvine (2017) point out that correlations exist 

between problem solving, problem posing, and creativity. Multiple descriptions of 

creativity include problem finding, problem solving, and problem posing, and problem 

posing is frequently used in assessing creativity. Salazar Solórzano (2014) indicate 

that the PS conceptual framework of Singer and Voica (2013), which involves four 
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operational categories, namely decoding, representing, processing and implementing, 

can be helpful when analysing the original problem, modifying it or posing a new 

problem. They further conclude that despite teachers being naturally predisposed to 

problem solving, they also need to be properly trained in this skill as part of their 

university studies in order to acquire an effective technique. 

 

Munroe (2016) argues that Singer and Voica (2013)’ s PS conceptual framework 

consider problem solving as a generative activity from which information on the levels 

of mathematical thinking, skills, and areas of weakness of the learners could be drawn. 

This framework allows leaners to interact with multiple problems, methods, and 

solutions simultaneously and this increases the possibility of developing creativity in 

leaners (Munroe, 2016). 

 

The PS conceptual framework in Figure 1.1 highlights four phases, namely: decoding, 

representing, processing, and implementing. 

 

 

Figure 1.1: The phases of the PS conceptual framework of Singer and Voica 

(2013:13) 
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Phase 1: Decoding 

According to Singer and Voica (2013), when a problem is given (the wording) the 

problem solver makes relations among the data and operators, which requires the 

solver to convert the text of the problem into understandable language. Lorenzo (2005) 

states that “breaking the problem into parts allows learners to focus on a few ideas at 

a time, when they have to work on a new unknown, which means that the likelihood of 

making mistakes would decrease” (p. 54) (See sub-section 2.8.1). 

 

Phase 2: Representing 

In this phase, the problem solver needs to represent the problem in the text by using 

appropriate mental representation (Singer & Voica, 2013). The representing process 

in mathematical problem solving permits learners to visually relate various types of 

information given in the problem statement to help them determine which 

mathematical expressions are useful in solving the problem (Jan & Rodrigues, 2012b) 

(see sub-section 2.8.2). 

 

Phase 3: Processing 

Singer and Voica (2013) state that in the processing phase (PP) the problem solver 

“uses the mental model suggested by the problem and personal mathematical 

competence to identify a mathematical model that can be associated with the problem” 

(p. 11). The learner creates a mental image to solve problems, which may produce 

mathematical models such as formulas or equations (see sub-section 2.8.3). 

 

Phase 4: Implementing 

During the implementing phase (IP), the problem solver implements what is already 

known about the problem in order to test a model or an equation. According to Singer 

and Voica (2013), this phase focusses on the “application of techniques that are 

specific to the found mathematical model and adaptable to the given particular 

situation, with the purpose to obtain final results for the problem” (p. 13) (see sub-

section 2.8.4). 

 

Singer and Voica (2013) argue that “when the process of solving is successful, from 

the text of the problem (the wording) to its solution, a solver need to work from the 

solution to the initial problem” (p. 13). Thus, a solver needs to interpret the solution in 
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relation to the given problem (the wording). The IP involves the understanding of the 

solution from the context within which the problem is given, meaning that the solver 

should be able to connect the formal solution of the problem with the initial data. The 

bold arrow in Figure 1.1 illustrates the closing of the solving cycle (Singer & Voica, 

2013). 

 

1.5 RESEARCH PROBLEM 

According to Boonen, Van der Schoot, Van Wesel, De Vries and Jolles (2013), solving 

number pattern problems presents difficulties if learners cannot identify the 

relationship between the known and the unknown variable. This is particularly true 

when learners face challenges in understanding the problem-description text provided. 

Jupri and Drijvers (2016) confirm that the major difficulties encountered by learners 

when dealing with number pattern problems are “to understand the words, to formulate 

a mathematical model from the problem, to solve the problem expressed in the model, 

and to interpret the solution in terms of the original problem” (p. 2499). 

 

Working with number patterns is particularly difficult for learners as the patterns are 

often embedded in problem solving. Problem solving becomes difficult for learners 

when the problem is presented linguistically, since they require learners to “read and 

interpret the problem, represent the semantic structure of the problem, and choose a 

solution strategy” (Schumacher & Fuchs, 2012:608). Learners cannot easily identify 

number patterns embedded in problems. Barbosa et al. (2012) state that students tend 

to use numeric rather than visual methods and experience several difficulties when 

solving pattern exploration issues, particularly when generalising remote values. 

Usually, learners experience difficulties in problem solving when trying to translate 

algebraic problems into mathematical equations (Ahmad, Tarmizi, & Nawawi, 2010). 

 

The SP Mathematics CAPS document states that “problem solving and cognitive 

development should be central to all mathematics teaching. Learning procedures and 

proofs without a good understanding of why they are important will leave learners ill 

equipped to use their knowledge in later life” (DBE, 2011). However, the analysis of 

the 2014 ANA results reveals that the solving of problems is challenging for learners 

(DBE, 2014). Problem solving is a complex process in which learners need to be 

coached (Klingler, 2012) and by which an unfamiliar situation is resolved (Killen, 
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2007). Notwithstanding the emphasis on the importance of problem solving, many 

researchers recommend further research in this regard (Boonen et al., 2013; Duru, 

Peker, Bozkurt, Akgün, & Bayrakdar, 2011; Jan & Rodrigues, 2012b; Mimbs, 2005; 

Peters, 2011; Sepeng & Sigola, 2013; Tambychik & Meerah, 2010). 

 

Boonen et al. (2013) suggest that “follow-up studies should examine the effects of 

interventions in which elementary and secondary school learners are taught to 

systematically build visual-schematic (mental) representations during math problem 

solving” (p. 277). Duru et al. (2011) claim that teachers need to be informed about 

various strategies to solve problems in mathematics; and they need to understand 

learner difficulties in order to implement these various strategies. Jan and Rodrigues 

(2012a) suggest studies to determine which variables affect the capacity of students 

to understand mathematical problems in order to discover suitable teaching 

approaches to solve problems meaningfully. 

 

Mimbs (2005) suggests that current and future teachers should be supported 

professionally with regard to strategies needed for problem solving. Peters (2011) 

recommends that future research “should be conducted in order to explore new or 

alternative strategies that can be added to the already known standard list of problem-

solving strategies as suggested by Polya (1945)” (p. 93). In addition, Sepeng and 

Sigola (2013) recommend that strategies that can be used to solve problems should 

be made accessible to learners, especially “the use of models, images, tables, 

diagrams and other learning aids” (p. 332). According to Tambychik and Meerah 

(2010), further research based on learners’ ability to perform mathematical skills is 

necessary for a better understanding of problem solving. The identification of the 

mathematics skills needed for tackling problem-solving activities is essential for 

achieving better performance in these activities. 

 

Barbosa et al. (2012) suggest that for learners to understand the meaning of numbers 

and variables, it is important that teachers provide tasks that encourage learners to 

use and understand the potential of visual strategies and to link numerical contexts 

with visual contexts. Number patterns problems can help learners to develop the ability 

to generalise, giving learners the opportunity to come up with a pattern rule or formula 

to find any term in a sequence. In addition, Sepeng and Sigola (2013) noticed that 
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many learners experience difficulties in reading and making sense of mathematical 

problems and it appears they are struggling to understand problem solving. Therefore, 

it is essential to assist learners in developing skills and strategies to effectively solve 

problems related to number patterns (Sepeng & Sigola, 2013). The problem of number 

patterns can lead to increased problem-solving abilities by highlighting the assessment 

of particular cases, systematically organising data, conjecturing and generalising 

information. Therefore, learners need to be exposed to strategies to solve number 

pattern problems in their classroom activities  

 

Regardless of all the mentioned inquiries on problem solving, grade 9 learners in 

South Africa are still struggling to solve number patterns problems. As a mathematics 

teacher, I have observed that many grade 9 learners have difficulty in solving number 

pattern problems in mathematics. In particular, they cannot solve algebraic number 

pattern problems or translate algebraic number pattern problems into mathematical 

equations due to a lack of understanding of mathematical concepts. Many of them do 

not have sufficient knowledge or exposure to strategies for solving number pattern 

problems. Yet, problem solving provides an opportunity for learners to explore ideas 

and gives them the chance to extend their creativity. 

 

1.6 MAIN RESEARCH QUESTION 

In the light of the importance of number pattern problems in mathematics, as well as 

the complexity of the topic for many SP learners in South Africa, the following research 

question is interrogated in this study: 

 

What strategies do grade 9 mathematics learners use in solving number pattern 

problems? 

 

1.6.1 Research sub-questions 

To address the main question, the following sub-questions were posed: 

 What are the strategies grade 9 mathematics learners engage in when solving 

number pattern problems? 

 What are the views of grade 9 mathematics learners regarding the areas of 

difficulty (if any) they experience as they complete number pattern problems? 
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 What levels of engagement in the four phases of the PS conceptual framework 

are evident in grade 9 mathematics learners’ strategies to a number pattern 

problem activity? 

 

1.6.2 The purpose and objectives of the study 

The purpose of this study is to investigate grade 9 mathematics learners’ strategies in 

solving number pattern problems. Knowledge about learners’ strategies will assist 

teachers in the teaching of number pattern problems and guide them to employ various 

strategies, which can assist in the solving of number pattern problems. 

 

The objectives of this study were to: 

 Determine the strategies grade 9 mathematics learners engage in when solving 

number pattern problems; 

 Establish grade 9 mathematics learners’ views regarding the areas of difficulty 

(if any) they experience as they complete number pattern problems; and 

 Ascertain the levels of engagement in the four phases of the PS conceptual 

framework in grade 9 mathematics learners’ strategies to a number pattern 

problems activity. 

 

1.7 CLARIFICATION OF CONCEPTS: WORKING DEFINITIONS 

The following section clarifies the concepts and definitions used in this study to ensure 

a clear understanding. 

Mathematics:  

“A diverse discipline that deals with data, measurements, and observations from 

science; with inference, deduction, and proof; and with mathematical models of natural 

phenomena, of human behaviour, and of social systems” (NRC, 1989). 

Number patterns:   

Number patterns are numbers, which cannot be transferred to “non-numeric patterns 

without loss of some crucial property of the pattern” (Liljedahl, 2004:4). 

Problem solving:  

A mathematical task that has the potential to provide intellectual challenges for 

enhancing learners’ mathematical understanding and development (NCTM, 2010). 
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Strategies in problem solving:  

Groupings of mental or physical actions designed to solve a problem (Biddlecomb & 

Carr, 2011). “Giving problems to learners that would explore all aspects of principles 

and concepts depending on subject matter” (Killen, 2007:260). 

Decoding:  

The ability to interpret the given statement and to identify the key words in order to 

solve the problem (Clement, 2008). 

Representing:  

“Understanding the problem through a generated mental model” (Singer & Voica, 

2013:11). 

Processing:  

Using problem-suggested mental settings and private mathematical expertise to 

define a mathematical model that can be connected with the problem (Singer & Voica, 

2013). 

Implementing:  

Application of “techniques that are specific to the found mathematical model and 

adaptable to the given particular situation, with the purpose” of obtaining final results 

for the problem (Singer & Voica, 2013:11). 

 

1.8 RESEARCH DESIGN AND METHODOLOGY 

The following section describes the research design used in this study and how the 

data collection process was followed (see section 3.2).  

 

1.8.1 Research paradigm 

An interpretivist paradigm with an “epistemological position that prioritises people’s 

subjective interpretations and their own actions” (Matthews & Ross, 2010:28) was 

used. This paradigm provided an in-depth insight into the inquiry (see sub-section 

3.2.1). A qualitative research approach in the form of an exploratory case study was 

used “to explore those situations in which the intervention being evaluated has no 

clear, single set of outcomes” (Yin, 2003:102) (see section 3.2). 

 

The qualitative research approach focused on meaning and understanding and 

provided a rich description of the phenomenon under investigation (Merriam, 2009). 

Working with qualitative data in this study involved interpreting the words, stories, 
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accounts, and explanations of the participants about the strategies they use to solve 

problems on number patterns (see sub-section 3.2.2).  

 

1.8.2 The data collection methods and procedures 

In stage one, a written activity on number patterns prescribed by the SP mathematics 

CAPS, was used to collect qualitative data from learners (see section 3.3). In stage 

two, the researcher conducted one-on-one semi-structured interviews (after school 

hours) with selected participants to establish their views regarding the areas of 

difficulty they experience as they complete number pattern problems. Open-ended 

interviews were administered to probe for deeper understanding. Data collected from 

the interviews was transcribed (see section 3.3). Lastly, the researcher ascertained 

the levels of engagement in the four phases of the PS conceptual framework in the 

participants’ strategies derived from the analysis of the written activity and the 

interviews in order to determine the implications for solving number pattern problems 

(see section 3.3).  

 

1.8.3 Population and sample 

The population of the study was grade 9 mathematics learners in Quintile 1 schools in 

the Capricorn district of the Limpopo Province. The population comprised 90 learners 

from three rural schools (A, B and C). The researcher purposively selected 30 grade 

9 mathematics learners from each of these three sampled schools; thus a total of 90 

learners consisting of both males and females of ages ranging from 14–16 (see 

section 3.3). 

 

1.8.4 Data analysis procedures 

In stage one and two, inductive content analysis was used to analyse the written 

activity and interview transcripts. A constant comparative analysis method was used 

to ascertain the levels of engagement in the four phases of the PS conceptual 

framework in the participants’ strategies derived from the analysis of the written activity 

and the interviews (see section 3.3). 

 

1.9 TRUSTWORTHINESS 

According to Guion, Diehl, and McDonald (2002:1), “validity in qualitative research, 

refers to whether the findings of a study are true and certain”, thus trustworthiness. 
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Trustworthiness was ensured by using triangulation, which involved the analyses and 

comparison of results from multiple qualitative data collection instruments, namely 

documents and interviews. Trustworthiness was also established by considering 

credibility, transferability, dependability, and confirmability (Lincoln & Guba, 1985).  

 

To ensure credibility, audio-taped interviews were transcribed and the inconsistent 

data was carefully checked and examined. Member checking was used by returning 

all the analysed interview transcripts to the participants to check whether or not they 

agreed with emerging findings (Birt, Scott, Cavers, Campbell, & Walter, 2016). 

However, it was difficult to validate the emerging findings, as participants could have 

reached a particular phase of the PS conceptual framework in their minds, but chose 

not to write down the solution they arrived at, for not trusting that the solution is 

accurate. Therefore, it was done just to check the accuracy of the transcriptions. To 

ensure transferability, a dense description of the methodology, a literature control, and 

verbatim quotes were provided. To ascertain dependability, the researcher continued 

interviewing participants until data-saturation was reached. Confirmability was 

established by external audits. Expert teachers/researchers were consulted to assist 

the researcher with advice regarding clarity of the interview questions, and the design 

of the activity sheet and assessment grid (see section 3.4). 

 

1.10 POSSIBLE CONTRIBUTION OF THE STUDY 

The study contributes to practice by providing information about learners’ strategies to 

solve problems, which could assist teachers in their future teaching of number 

patterns. Teachers could benefit from the interpretation of learners’ strategies 

pertaining to the implicit thinking processes of learners when they solve problems, 

which may influence their teaching of mathematics. Curriculum developers may 

benefit from an increased awareness of the difficulties learners experience with 

problem solving. Subject advisors could use learners’ strategies, in solving number 

pattern problems, in a meaningful and effective way to support teachers in their 

professional development of problem-solving proficiency. Policy developers were 

provided with guidelines on learners’ strategies to solve problems involving number 

patterns, which may influence policy. The importance of this study in terms of 

academic value is that it expands on the existing PS conceptual framework of Singer 

and Voica (2013), which may be used for further research pertaining to the 
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development and maintenance of effective strategies to solve problems involving 

number patterns. 

 

1.11 STRUCTURE OF THE DISSERTATION 

The dissertation consists of five chapters: 

Chapter 1 provides an introduction to the background and rationale of the study to 

orientate the reader. It briefly introduces the study’s research questions, purpose, 

objectives, and theoretical framework. The research paradigm, design, and 

methodology are also outlined. Important concepts are defined and possible 

contributions of the study are foregrounded.  

 

Chapter 2 consists of an in-depth review of relevant literature, and explains the 

conceptual framework of the problem-solving process on which this study is based, 

namely: decoding, representing, processing, and implementing (Singer & Voica, 

2013). The topics that are addressed in the literature review include: the nature of 

mathematics, problem solving in mathematics, problems in mathematics, number 

patterns, and strategies for problem solving. 

 

Chapter 3 describes and justifies the research methodology and design used in this 

study. The data collection instruments, selection of the participants, data collection 

processes and data analysis procedures are discussed, including the validity and 

trustworthiness of the study. 

 

Chapter 4 presents the results of the document analysis, and the analysis of the one-

on-one semi-structured interviews; as well as the interpretation of the findings in light 

of the literature reviewed and the conceptual framework. 

 

Chapter 5 summarises the study according to the research questions; makes 

recommendations for further research; discusses the implications of the research, and 

the limitations of the study. Lastly, this chapter concludes with a personal reflection on 

the study. 
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CHAPTER 2: LITERATURE OVERVIEW AND CONCEPTUAL 

FRAMEWORK 

 

2.1 INTRODUCTION  

Chapter 2 provides an overview of literature pertaining to the nature of mathematics 

with reference to problem solving. Firstly, definitions of mathematics are provided 

followed by a discussion on beliefs about the nature of mathematics pertaining to 

teaching and learning practices. The nature of mathematics is viewed from the 

perspectives of mathematics as a discipline, knowledge of the teacher regarding 

mathematics, and how mathematics is learned and taught in a classroom (Siswono, 

Kohar, & Hartono, 2017). Then, problem solving focuses on problems in mathematics 

will be discussed. The discussion will be extended by focusing on learners’ 

experiences of problem solving and strategies to solve problems. The majority of 

grade 9 mathematics learners in South Africa face difficulties in solving problems. 

Problems belong to one of the difficult and complex topics in mathematics that learners 

encounter during their elementary level of mathematical development.  

 

A discussion will follow focusing on number patterns and the design of a number 

pattern problem-solving activity.  Working with number patterns in particular can be 

difficult for learners as it is often embedded in problems. Learners cannot easily 

identify number patterns embedded in problems. This chapter will conclude by 

describing the conceptual framework of Singer and Voica (2013) for problem solving 

in mathematics. This conceptual framework will highlight and elaborate on four 

phases, namely decoding, representing, processing and implementing.   

 

2.2 THE NATURE OF MATHEMATICS 

2.2.1 Defining mathematics 

According to the DBE (2011), mathematics is a discipline consisting of many topics 

such as algebra, geometry, trigonometry, statistics and probability. In particular, 

mathematics “is a human activity that involves observing, representing and 

investigating patterns and qualitative relationships in physical and social phenomena 

and between mathematical objects themselves” (DBE, 2011:8). 
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Various scholars (Graven, 2015; Mwakapenda, 2008; Peters, 2011; Schoenfeld, 

2013) have also attempted to define mathematics. Peters (2011) agrees that 

mathematics is an “ordered field of knowledge with many branches such as arithmetic, 

algebra, geometry, trigonometry, statistics and analysis that are related to and 

dependent on each other” (p. 7). Peters (2011) further claims that mathematics is a 

common language that uses closely defined terms and symbols that allow people to 

think about, record, and transmit their thoughts about the features and relationship of 

quantity. Schoenfeld (2013) states that in doing mathematics we investigate and 

discuss details and make conjectures. Through problem-solving techniques those 

conjectures can be proven and verified. In addition, Graven (2015) defines 

mathematics as a subject where learners must be able to build new knowledge from 

previously learnt knowledge as they progress towards more abstract levels, which 

implies having strategies of solve the problem, and the process of reasoning. In 

contrast, Mwakapenda (2008) defines mathematics as the ability to notice significant 

details of patterns with accurate logical thinking, which leads to theories of abstract 

relations. 

 

From the given definitions, it can be concluded that mathematics is way of trying to 

understand, make sense of, or describe how one’s world works. Mathematics allows 

learners to have knowledge that they can use outside of school. The definition of 

mathematics as a human activity requires teachers to change their approach to 

mathematics teaching and learning – from traditional methods to allowing learners to 

think creatively, investigate and explore mathematical ideas on their own.  

 

2.2.2 Beliefs about the nature of mathematics 

Ernest (1991) argues that having a good understanding of the nature of mathematics, 

and its philosophical underpinnings, is important both for the teaching and learning of 

mathematics.  

 

Teachers' views about the essence of mathematics should take into account the 

understanding of the content and the way of teaching and learning to enrich the 

learners’ enjoyment of it (Spangenberg & Myburgh, 2017). Similarly, Beswick 

(2012:145) suggested that: 
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There is a need to focus on the beliefs about the nature of mathematics that the 

teachers have constructed during their teaching experience as mathematics teachers 

in primary and secondary schools, as well as universities; and from years of 

involvement in the profession. 

 

Many researchers (Ernest, 1991; Givvin, Stipek, Salmon, & MacGyvers, 2001; 

Lamichhane, 2017; Siswono et al., 2017; Űnlü & Aktaş, 2013) have investigated the 

beliefs that teachers hold about the nature of mathematics, and how these beliefs 

affect their practice. Ernest (1991) classified beliefs about the nature of mathematics 

into three main philosophical conceptions of mathematics, namely instrumentalist, 

Platonist and problem-solver. An instrumentalist view proposes that mathematics 

consists of certain operations, rules and skills. The role of a teacher is as an instructor, 

meaning that the teacher tells learners which rule and procedure to follow when 

solving a mathematical problem. The learner does not know if the answer is correct 

until the teacher tells them. The learner who is taught instrumentally can perform 

calculations and apply procedures, but will not necessarily understand the 

mathematics behind the rule or procedure (Skemp, 1976).  

 

A Platonist view suggests that mathematics is a static, but unified body of certain rules 

(Ernest, 1991). Learning of mathematics is seen as a passive reception of knowledge, 

while a teacher is the possessor and explainer. In the problem-solver view, 

mathematics as a continually expanding field of human activity, creativity and 

discovery, in which patterns are generated and then distilled into knowledge (Ernest, 

1991). A teacher facilitates while learners investigate and explore mathematical ideas 

on their own. The Platonist, instrumentalist and problem-solver views on mathematics 

teaching and learning can be summarised as follows (Beswick, 2012:30):  

A Platonist believes mathematics teaching is content focused with an emphasis on 

understanding, while mathematics learning is an active construction of 

understanding. An instrumentalist views mathematics teaching as content focused 

with an emphasis on performance, while mathematics learning is about skill mastery, 

thus a passive reception of knowledge. While problem solving is a learner-centred 

approach in which learners investigate and explore mathematical ideas on their own.  
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Lamichhane’s (2017) research on the relationship between teachers’ beliefs about 

mathematics and their instructional practices showed that teachers with an absolutist 

belief tended to “blend with technical interest of curriculum development that adopts 

an instructional pedagogical approach and thus their classroom practices become 

more transmissions, autocratic and disempowering” (p. 19). The learner depends on 

the knowledge of the teacher. Learners might consider mathematics as a subject 

composed of meaningless symbols that have to be remembered and manipulated 

correctly to get the answer.  

 

Siswono et al. (2017) investigated three Indonesian lower secondary mathematics 

teachers’ beliefs about the nature of mathematics, and how these beliefs related to 

their knowledge. The different philosophical views of teaching and learning 

mathematics were used, i.e., instrumentalist, Platonist and problem-solver. The study 

showed that “the instrumental teacher’s belief was consistent with his insufficient 

knowledge about problem solving, while both Platonist and problem-solving teachers’ 

beliefs were consistent with their sufficient knowledge of either content or pedagogical 

problem solving” (p. 6).  

 

Űnlü and Aktaş (2013) investigated the beliefs of 104 pre-service elementary 

mathematics teachers about the nature of mathematics. They found that most pre-

service teachers’ hold a problem-solver view; meaning that they did not believe that 

mathematical problems could only be solved in ways shown in the book, but that 

different strategies could be used. They thought that mathematics was concerned with 

intelligence, mental thinking and creativity.  

 

In conclusion, beliefs about the nature of mathematics provide the foundation for a 

teacher’s method of teaching; and their views on how learners learn mathematics. 

Thus teachers’ beliefs about the nature of mathematics can affect how mathematics 

concepts are explained, demonstrated, and taught to learners. These different 

philosophies of mathematics provide an important lens for the study of learners’ errors 

and misconceptions in mathematics, and the relationship of these misconceptions to 

the different philosophies of mathematics learners might hold.  
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2.3 NUMBER PATTERNS IN PROBLEM SOLVING 

2.3.1 Defining pattern  

Peters (2011) defines mathematics as the science of finding patterns. Patterns are 

powerful tools in mathematics and can suggest several approaches, namely: 

knowledge of counting numbers, recognition of numbers, and relating numbers to the 

identification of pattern. Number-pattern tasks are problems that involve a number 

sequence. Recognising number patterns, as related to problem solving in this study, 

involves a process of looking out for numbers in a given sequence and forming a 

pattern, which allows the problem-solver to generalise a solution that can be applied 

in every given situation. The learning of patterns and sequences starts in the FP where 

CAPS states that: “In this phase, learners work with both number patterns (e.g. skip 

counting) and geometric patterns (e.g. pictures)” (DBE, 2011:9). The topic continues 

through to the IP and SP levels. “This understanding of patterns allows learners to 

make predictions and justify their reasoning when solving problems” (DBE, 2011:9). 

According to CAPS, number patterns in mathematics is about recognising, describing, 

and working with numerical and non-numerical patterns (DBE, 2011). In the 

mathematics curricula of many countries, including South Africa, the use of symbols 

and variables that represent patterns and generalisation are foregrounded (Fray et al., 

2015). According to the NCTM (2000:91): 

Patterns are a way for learners to recognise, order and to organise their world and 

are important in all aspects of mathematics. Learners recognise patterns in their 

environment and through experiences in school, and should become more skilled in 

noticing patterns in arrangements of objects, shapes, and numbers, and in using 

patterns to predict what comes next in an arrangement.  

 

2.3.2 Example of number pattern problems 

According to SP CAPS, there are two kinds of patterns in mathematics, namely, 

number patterns and geometric patterns (DBE, 2011). Ilany and Margolin (2010) 

classify number patterns according to two criteria: number patterns that deal with 

mathematical relationships between numbers or object sizes; and mathematical 

number patterns that deal with real-life situations. Szabo and Andrews (2017) 

emphasise that number pattern problems must unfold the mathematical competences 

necessary for solving the problem, rather than the recall of previously solved problems 

to derive the answer.  
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With number patterns, learners are given a sequence of numbers and they have to 

identify a pattern or relationship between consecutive terms in order to extend the 

pattern. Examples of number patterns are: -2, -5, -8, -11… or 3, 7, 11, 15, 19… where 

the second term depends on what happens to the first term, and the third term depends 

on the second term. Liljedahl (2004:4) argues that number patterns contain numbers, 

which cannot be transferred to  

non-numeric patterns without loss of some crucial property of the pattern … For 

example, the pattern 1, 2, 3, 4, 3, 2, 1 is transferable to a b c d c b a; and 1, 2, 1, 1, 2, 

1, 1, 1, 2… can be transferred to a b a a b a a a b… without loss of the nature of the 

pattern. Thus, these two patterns cannot be defined as number patterns. 

 

While geometric patterns are number patterns represented diagrammatically, the 

diagrammatic representation reveals the structure of the number patterns (DBE, 

2011), e.g., flower patterns or matchstick patterns. Such patterns usually require some 

form of generalisation of patterns, usually in terms of algebraic symbols. Moreover, 

there are a variety of different number patterns in mathematics, including: “linear or 

arithmetic sequences and quadratic sequences” (DBE, 2011:22). 

 

A number pattern or geometric pattern is linear sequence if each number is obtained 

by adding a constant increment to the previous number; while a quadratic sequence 

is a sequence of numbers in which the second difference between each consecutive 

term differs by the same amount, e.g., -3; 8; 23; 42; 65. To confirm that the sequence 

is quadratic, the second difference must be found. According to the CAPS, patterns in 

mathematics are about describing and working with numerical and non-numerical 

patterns (DBE, 2011). Patterns may be represented in concrete, visual words or 

symbolic forms using shapes, pictures and colours.  

 

2.3.3 Benefits of number pattern problems 

Number pattern activities enable learners to be creative and improve their algebraic 

thinking. This is achieved through open-ended questioning to develop a deep 

understanding of most topics in mathematics in order to prepare learners for further 

learning and to develop problem-solving skills. Number patterns can help learners to 

develop the ability to generalise, giving learners the opportunity to come up with a 
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pattern rule or formula to find any term in a sequence. According to Mahlobo and 

Ntombela (2014), solving number-pattern problems “is an opportunity to generalise 

and to give general algebraic descriptions of the relationship between terms and their 

position in a sequence” (p. 186). In addition, number pattern activities can lead to the 

development of problem solving skills by foregrounding the evaluation of specific 

instances, systematically organising data, and inferring and generalising information 

(Barbosa et al., 2012). 

 

Barbosa et al. (2012) believe that the ways learners use strategies to solve problems 

on patterns may significantly contribute to teaching decisions that increase 

mathematical knowledge in learners and, more especially, in algebraic thinking. 

Barbosa et al. (2012) indicate that the in-depth investigation of pattern in mathematics 

can add more value to the ability to problem solving. “Number patterns, geometric and 

pictorial patterns is more beneficial in building a positive and meaningful image of 

mathematics and add more value to the development of several skills related to 

problem solving and algebraic thinking” (Barbosa et al., 2012:274). 

 

2.4 PROBLEM SOLVING IN MATHEMATICS 

2.4.1 Previous inquiries on problem solving in mathematics 

Since the 1970’s much research has focused on problem solving. According to 

Allevato and Onuchic (2008:61-62): 

At the beginning of the 1970’s, an investigation of problem solving and its implications 

for curricula was initiated. In 1976, at the 3rd International Congress on Mathematical 

Education, in Karlsruhe, Germany, problem solving was one of the themes 

addressed.   

 

In 1980 the National Council of Teachers of Mathematics (NCTM) published a 

document recommending that problem solving be the main focus of school 

mathematics (NCTM, 2010) (see section 2.5). Kilpatrick et al. (2001:421) state that: 

Problem solving must be in the centre of the Mathematics Curriculum. Problem 

solving should be the site in which all of the strands of mathematics proficiency 

converge. It should provide opportunities for learners to weave together the strands 

of proficiency and for teachers to assess learners’ performance on all of the strands.  
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Thinking processes and problem-solving teaching topics received increased attention 

from psychological researches in the 1980’s (Dwiyogo, 2016). In South Africa, CAPS 

states that “problem solving and cognitive development should be central to all 

mathematics teaching and learning. Learning procedures and proofs without a good 

understanding of why they are important leaves learners ill-equipped to use their 

knowledge in later life” (DBE, 2011:8). Moreover, problem solving is also part of every 

content area in the South African IP, SP and FET Mathematics curricula. Anderson 

(2009) recognises problem solving as skill that contributes to the processes that 

involve thinking and reasoning, interpretation of the give statement, analysing, 

predicting, evaluating and finding strategies to solve the problem. 

 

2.4.2 Defining problem solving in mathematics 

Problem solving is a process requiring learners to understand the situation, be able to 

identify key words to help to solve the problem, create strategies to solve the problem, 

and apply them to arrive at the solution. In other words, by studying problem solving 

in mathematics, learners become better prepared for many aspects of their lives after 

school, for example, trades, professional careers, and knowledgeable citizenship. In 

addition, Matlala (2015) states that a problem-solving approach to mathematics 

teaching may be a way to improve the quality and results of school mathematics. 

According to Lester and Kehle (2003), “problem solving involves coordinating previous 

experiences, knowledge, familiar representations and patterns of inference, and 

intuition in an effort to generate new representations and related patterns of inference 

that resolve some tension or ambiguity (i.e., lack of meaningful representations and 

supporting inferential moves) that prompted the original problem-solving activity” (p. 

510). 

 

Vula and Kurshumlia (2015) emphasise that problem solving should be part of 

mathematics teaching and learning since it affects the development and application of 

learners’ knowledge and abilities in mathematics. Problems in mathematics could 

involve real-life questions where information is provided to perform computations to 

solve them (Depaepe et al., 2010). Peters (2011) defines a problem in mathematics 

as a “verbal description of a problem situation wherein one or more questions are 

posed of which the answers can be obtained through the application of mathematical 

operations to information available in the text” (p. 7). According to Boonen and Jolles 
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(2015), the term ‘problem’ is used to refer to any mathematics activity were the 

information is presented as a story problem rather than in the form of notation. 

Schumacher and Fuchs (2012) points out that mathematical problem-solving tasks are 

presented linguistically and do not require learners to do straight forward calculations, 

learners have to read with understanding and be able to interpret the problem, 

represent the model or equation from the written statement, and choose a solution 

strategy. 

 

Problems are used in mathematics to relate mathematical knowledge and learning that 

occur in the classrooms to the kind of mathematics that might be encountered in real-

world contexts (Hill, Blunk, Charalambous, Lewis, Phelps, Sleep, & Ball, 2008). The 

use of problem solving involving number patterns in this study was to help learners 

make sense of a given problem and to devise their own strategy to solve the problem. 

Problem solving, is considered to be the basis of applying and integrating mathematics 

in the real world. This provides opportunities to practice how to solve real-life problem 

situations when they are encountered.  

 

2.4.3 Benefits and difficulties of problem solving for learners 

Problem solving in mathematics contains several benefits for learners. Problem 

solving in mathematics is a learner-centred approach allowing learners to investigate 

and to explore mathematical ideas on their own (Depaepe et al., 2010). In addition, 

Căprioară (2015) claims that problem solving activities motivate learners to develop 

intellectually as it enhances creativity of learners and inform their mental behaviour to 

a better understanding of mathematics. The CAPS document for SP mathematics in 

South Africa also indicates that mathematical problem solving “enables learners to 

understand the world (physical, social and economic) around them, and, most of all, 

encourages teachers to teach learners to think creatively” (DBE, 2011:8). The NCTM 

(2010:52) claims that problem solving is a mathematical activity that could provide 

intellectual challenges to learners to improve their knowledge of and development in 

mathematics: 

By learning problem solving in mathematics, learners should acquire ways of 

thinking, habits of persistence and curiosity, and confidence in unfamiliar situations 

that will serve well outside the mathematics classroom. Being a good problem solver 

in a workplace or in everyday life, in general, is advantageous. 
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According to Lambdin (2009), the primary goals of mathematics learning are 

understanding and problem solving, and they are inextricably related because learning 

with understainding is best supported by engaging in problem solving. Otten (2010) 

states that a problem-solving skill provides the creativity and flexibility control of 

thought that address professional and post-secondary demands.  In other words, by 

studying problem solving in mathematics, learners become better prepared for many 

aspects of their lives after school, for example, trades, professional careers, and 

knowledgeable citizenship.  

 

The importance of problem-solving skills is also evident in the numerous studies on 

problem solving in mathematics that have been conducted in the South African context 

and also in other countries (Maluleka, 2013; Mochesela, 2007; Sepeng, 2010; Sepeng 

& Madzorera, 2014; Sepeng & Sigola, 2013; Sepeng & Webb, 2012). Maluleka (2013) 

found that grade 9 learners are attempting to solve mathematical problems without 

understanding, whereby communication, reasoning and recording processes appear 

to be key in assisting them. Mochesela (2007:iii) discovered that “exposing learners to 

a variety of problem-solving strategies improves their problem-solving performance 

and attitudes towards mathematics”. Sepeng (2010:iv) found that the “discussion and 

argumentation techniques in the learning of mathematics problems have a positive 

effect on learners’ ability to consider reality during problem solving”. Similarly, Sepeng 

and Webb (2012) found that discussion as a teaching strategy has positive results in 

improving learners’ problem-solving skills in mathematics classrooms, and their ability 

to make sense of real world problems. Sepeng and Madzorera (2014) revealed that 

“learners struggle with defining algebraic terms used in the problem statements as well 

as in instructional vocabulary” (p. 217).  

 

2.5 LEARNERS’ EXPERIENCES OF PROBLEM SOLVING 

Bohlmann and Pretorius (2008) claim that the “conceptual complexity and problem-

solving nature of mathematics make extensive demands on the reasoning, interpretive 

and strategic skills of learners, especially when these activities are done in a language 

that is not their primary language” (p. 43). Sepeng and Sigola (2013) also note that 

many learners encounter difficulties in reading and making sense of the mathematical 
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problem solving and it appears that the learners struggle to comprehend given 

mathematics problems.  

 

Kilpatrick et al. (2001) recommends that mathematics problem solving should be the 

site in which all of the learning exploration of mathematics proficiency converge. It 

should provide opportunities for learners to weave together the experiences of 

proficiency and for teachers to assess learners’ performance. Mathematics problems 

challenge learners to “read and interpret the problem, represent the semantic structure 

of the problem and choose a solution strategy” (Schumacher & Fuchs, 2012:608). 

Learners cannot easily identify number patterns embedded in problems. Barbosa et 

al. (2012) state that learners “tend to use numeric instead of visual approaches and 

experience several difficulties when solving problems involving pattern exploration, 

especially when they have to generalise for distant values” (p. 291). Learners normally 

face difficulties in problem solving initially from translating algebraic problems into 

mathematical equations (Ahmad et al., 2010). Therefore, working with number 

patterns, in particular, can be difficult for learners as it is often embedded in problems. 

Maluleka (2013) notes that the biggest challenge in working with mathematical 

problems is that there is no correlation between real-life practices and mathematical 

problems which require understanding of the problem first, before attempting to 

respond to it. 

 

 “Mathematical problem solving is complex because it requires learners to read and 

understand written material that expresses numerical relations” (Tolar et al., 2012:1). 

Phonapichat et al. (2014) identified some key difficulties that learners experience in 

mathematical problem solving, namely, understanding keywords appearing in 

problems; interpreting keywords in mathematical sentences; and figuring out what 

information to assume and what information from the problem are necessary to solve 

the problems. Wang et al. (2016) noted that “many learners approach problems 

without thinking deeply about how irrelevant information detracts them from 

recognising a novel problem as belonging to a known” (p. 4). 

 

Sepeng and Sigola (2013) observed that many students are experiencing difficulties 

in reading and making sense of mathematical problems and it appears that they are 

struggling to understand problem solving. Sepeng and Madzorera (2014) revealed that 
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“learners struggle with defining algebraic terms used in problem statements as well as 

in instructional vocabulary” (p. 217). Sepeng and Kunene (2015) noted that learners 

have difficulties in reading the problem statement as well as generating meaning about 

the situation that the problem-solving task holds. Sepeng (2010) explored language 

and mathematics issues when English second-language learners solve mathematical 

problems and discovered that computational mistakes made by learners, especially 

numerical abilities, seem to result from the failure to use language efficiently to fix 

problems in a realistic scenario. Maluleka (2013) showed that learners fail to break the 

issue into smaller, meaningful components for better comprehension, as well as 

experiencing difficulties in connecting real-life issues with mathematical material 

learned in class. According to Sepeng (2010), language in mathematics plays a really 

vital role in understating the concepts which must be dealt with when solving 

mathematical problems.  Sepeng and Sigola (2013) “investigated sources of errors 

that grade 9 learners make when they solve mathematical problems in a classroom” 

(p. 325). The findings revealed that learners cannot read or interpret the given 

mathematics problems and they cannot make sense of the problems:  

It appeared that learners struggle to comprehend the given problems and the errors 

exhibited by learners in the solution of problems appeared to be as a result of lack of 

understanding of mathematical vocabulary that is used in a problem statement.   

 

Sepeng and Madzorera (2014) explored grade 11 learners’ views on the what causes 

the difficulty in comprehending mathematical problems, the majority of learners 

struggled to formulate the correct equations that were needed to answer the problem 

tasks given. The study indicated learners’ lack of both vocabulary knowledge and 

conceptual knowledge (or understanding) to form linear equations during problem 

solving. “The challenges that learners face when solving algebraic problems are 

caused by their inability to read and understand the problem statement itself” (Ellion, 

2016:268). 

 

Raoano (2016) revealed several “challenges faced by learners in solving problems; 

including language challenges, lack of strategy knowledge, lack of arithmetic skills and 

lack of reflective skills” (p. 74). Barbosa et al. (2012) noticed that learners experience 

difficulties when solving problems related to number patterns; especially when they 

had to give the general formula for the nth term. It was found that learners were able 
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to get better results for far generalisation questions. According to Boonen et al. (2013), 

solving problems seems to be very difficult if learners cannot identify the relationship 

between the known and the unknown, especially when the learners face challenges in 

understanding the problem text given.  In some cases, if a learner fails to identify some 

operations required to solve the problem, they might have difficulties arriving at the 

acceptable answers (Vula & Kurshumlia, 2015). 

 

As a mathematics teacher, I often observe many grade 9 learners having difficulties in 

solving problems in mathematics. In particular, many cannot solve algebraic problems 

or translate algebraic problems into mathematical equations due to a lack of 

understanding of mathematical concepts. Also, I believe, many learners do not have 

sufficient knowledge or exposure to strategies for solving problems on number 

patterns. Learners are often overwhelmed by problems not because they cannot solve 

these, but because they do not comprehend the problem statement due to a language 

barrier. Jupri and Drijvers (2016) confirms this challenge by stating that the main 

difficulties encountered by learners who deal with problems are to understand the 

problem, to formulate a mathematical model from the problem, to solve the problem 

expressed in the model, and to explain the meaning of their solution in terms of the 

original problem given.  

 

2.6 STRATEGIES FOR PROBLEM SOLVING 

Biddlecomb and Carr (2011) define strategies as groupings of mental or physical 

actions designed to solve a problem. Killen (2007) identifies strategies in problem 

solving as “giving problems to learners that would explore all aspects of principles and 

concepts depending on subject matter” (p. 260). Various strategies can be utilised to 

solve problems related to number patterns in mathematics. Learners need to be 

exposed to those strategies naturally in their classroom activities. Ellion (2016) argues 

that it is important for teachers to expose their learners to various problem-solving 

strategies and to help them carry out those strategies to solve problem tasks. In 

agreement, Duru et al. (2011) argues that teachers need to be informed about various 

strategies to solve problems in mathematics and they need to understand learners’ 

difficulties in order to implement these various strategies.  
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Sepeng and Sigola (2013) suggest that “strategies that can be used for solving 

problems must be made available to the learners particularly the use of models, 

pictures, tables, diagrams and other learning aids” (p. 332). Creating an environment 

where learners attempt to find variety of strategies for solving problems empowers 

them to explore alternatives and develops confidence in mathematics problem solving. 

Taber (2013) suggested that strategies for solving mathematical problems must be 

taught to learners. Learners need to be exposed to these strategies so that when they 

translate the text into mathematical expressions they know how to tackle the problem. 

“Mathematical problems are not simply computational tasks, but also require 

appropriate selection of strategies and decisions that lead to logical solutions” (Ahmad 

et al., 2010:357). Boonen and Jolles (2015:5) recommended that: 

Research should focus on the development of effective problem-solving instruction. 

Adequate problem solving instructional programs that teach learners to solve 

problems are still limited, or they have not been implemented in the educational 

practice of elementary schools. 

 

It is important for learners to be assisted in gaining the necessary skills and strategies 

in order to successfully solve problems (Sepeng & Sigola, 2013). There are various 

models describing problem-solving strategies. Therefore, to solve a problem, learners 

need to understand its context and develop a strategy to solve it. Tambychik and 

Meerah (2010) indicate that identification of mathematics strategies is important in 

responding to difficulties in mathematical problem solving. These strategies could help 

to motivate, manage, and assist in improving the learners’ skills in mathematics 

problem solving.  

 

An understanding of the strategies involved in solving number pattern is critical in 

assisting learners to solve the problems. Patterns are normally found in nature, art, 

music, movement, and also in numbers. Therefore, problems related to growing 

pattern can be taken from real-life situations where learners have to work on the known 

stages to be able to complete the unknown stage. García Cruz and Martinón (1997) 

analysed the generalisation procedures created by high school learners and have 

identified the following primary categories: counting strategy, recursive approach, and 

direct proportional strategy, while Ibrahim and Rebello (2013) investigated the mental 

representation categories with which learners operate during problem solving of 
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distinct formats of representational tasks. The results indicate that leaners work at 

three levels of mental representation, namely propositional; mental images and mental 

model representation. 

 

Barbosa et al. (2012) define a counting strategy as counting the elements of a 

particular number or figural term in a pattern. Counting is always a successful strategy, 

but is only useful in solving near generalisation questions, because It involves counting 

the amount of shape parts or numbers, in order to calculate the expected number or 

shape drawing of the next figure. Example of counting strategy: to add 4+3, learners 

start with the “4”, and then count up, “5, 6, 7”. Furthermore, when adding negative 

numbers to negative number (counting backwards). Example: -4+ -2. This would be 

read as negative four plus negative two. First, you have to disregard the plus sign and 

recognise that you are subtracting that amount by the second negative number. You 

would therefore believe of this issue as "negative four minus two." Start at -4, then 

count (subtract) 2 more backwards. Your response will then be -6.  

 

Becker and Rivera (2005) indicate that those learners who do not provide the overall 

formulae tend to begin with counting strategies; however, they lack the flexibility to 

attempt other methods and see possible links between distinct types of representation 

and overall strategies. Lannin et al. (2006) define a recursive approach as a 

connection between successive independent variable values in the scenario. Lannin 

et al. (2006) mention that learners may select a recursive strategy because they want 

to determine a general rule based on an understanding of a relationship that occurs in 

the situation. In recursive strategy leaners used the common difference between two 

consecutive terms of the sequence to solve some of the questions posed. Akkan’s 

(2013) study on the learners’ strategies and representations regarding generalisation 

patterns found that most of the learners who used the recursive strategy were able to 

find near and far terms accurately in the sequence.  

 

An example of recursive strategy is as follows: A number pattern is a sequence or 

number list formed by a rule. Therefore, a number patterns can use any of the four 

operations (+, –, ×, ÷) or a combination of these. A recursive rule is to find the next 

number by doing something to the number. E.g. finding a general rule for the following 

pattern …. a leaner will 5; 13; 21; 29; 37…. first find the common difference which is 
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8. Therefore multiply by nth term, n × (8) = 8n; n represents the number of term in the 

sequence and 8 is the common difference. Term 1 = 1 × (8) =  8, check whether it 

give us the first term of the sequence which is five, this does not give 5 which mean 

the learner need to subtract (-) 3 to give 5. This apply to the second term T2 =2 ×

(8) = 16, this does not give me 13  which is the second, also subtract 3 to give us 13; 

therefore, the recursive rule will be have Tn = 8n − 3.  

 

Barbosa et al. (2012) define direct proportion strategy as a situation, where the 

multiples of a specific term of a sequence is considered, and the problems presented 

in the test do not fit that model. Similarly, Lannin (2003) describe this strategy as using 

a portion as a unit to construct a larger unit using multiples of the units. For example, 

Joana needs 6 white beads and one black bead to make one flower. How many white 

and black beads will Joana need to make a necklace with 3 flowers? therefore, 

applying the direct proportion strategy a learner will say for 3 flowers will be (6 x 3 = 

18 white beads and one three black beads). How many flowers will Joana be able to 

make if she uses 102 white beads? Joana will need 17 flowers with 102 white beads, 

the learners are counting how many white beads for the second flower, and looking 

for a rule that would work, therefore multiplied six which is the white beads by the 

number of flowers. Barbosa et al. (2012) indicate that learners who use the direct 

proportional strategy fail to make a final adjustment based on the context of the 

problem.  While Ibrahim and Rebello (2013) state that learners with propositional 

mental representation tend to rotate and mechanically use definitions and manage 

mathematical formulations. There is no proof of the basic ideas being understood. 

 

Ibrahim and Rebello (2013) define mental image representation as having the 

tendency to include a diagrammatic representation which may not be linked to the 

mathematical formulations used. For example; Joana likes to make necklaces using 

flowers. She uses white beads for the petals and black beads for the centre of each flower. 

The following diagrams shows a necklace with one flower and a necklace with two flowers, 

both made by her. 

_____________________ 
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One flower   two flowers   three flowers 

How many white and black beads will Joana need to make a necklace with 3 flowers? Draw a 

diagram of a necklace with 3 flowers.  Although they are aware of the relationship among 

the white and the black beads to make a flower and may recognise the applicability of 

the qualitative method (taking the number of whites beads and the number of flower) 

to solve the problem, but they prefer manipulating equations. Meaning that this leaner 

will see this flowers as a disjoint unit which does not make a linear pattern. In the 

mental image representation Ibrahim and Rebello (2013) found that “students who 

construct a mental image handle the (generated) visual representations in isolation” 

(p. 14).  

 

According to Ibrahim and Rebello (2013), representation of mental models provides a 

means to connect the syntactic (mathematical) and structural (visual) aspects of the 

task under consideration, it allows interpretation and understanding When leaners had 

to interpret the visual pattern, they will formulate a description referring to each flower 

as a joint unit to form a linear pattern. Each flower shares two white beads to have a 

complete flower, four white beads were added to the end of each prior flower to create 

a new flower, and then added two beads to give a complete flower, therefore a general 

rule will be Tn=4n+2 the variable n represent the number of flowers. 

 

2.7 PROCESSES FOR PROBLEM SOLVING IN MATHEMATICS 

Polya (1945) presents four phases of problem solving, focusing on supporting the 

teaching of problem-solving skills. The four phases are: understanding the problem, 

devising a plan to solve the problem, implementing the plan, and reflecting on the 

problem. Therefore, as learners are presented with a problem they have to interpret 

the problem in order to understand what the problem is about, devise a method to 

solve it to achieve the results, and then analyse the results to see if it is an acceptable 

solution to the problem presented. According to Singer and Voica (2013), Polya’s 

strategy focuses on describing how teachers can help learners develop skills in 

problem solving, whereas this study intends to look for a strategy that describes 

different phases the learners utilise when solving problems. Krulik, Rudnick, and Milou 

(2003) regard problem solving as the means by which individuals take the skills and 

understandings previously developed and apply them to unfamiliar situations. The 
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process begins with the initial confrontation of the problem and continues until an 

answer has been found and the learner has double checked the solution. 

 

Johnston (1994) viewed the problem-solving process as comprising six critical steps, 

namely: representing the unknown by a variable, breaking down the problem into small 

parts, representing the pieces by an algebraic expression, arranging the algebraic 

expression in an equation, solving the equation and checking the solution. What 

challenges most learners in problem solving is that learners cannot solve algebraic 

problems or translate algebraic problems into mathematical equations due to the lack 

of understanding of mathematical concepts. Therefore, if learners cannot represent 

the unknown by a variable they cannot make sense of the problem.  

 

Maluleka (2013) observed that the greatest difficulty in working with problems is to 

translate real-life issues into mathematical problems needing first knowledge of the 

issue before trying to react to it.  Boonen et al. (2013) argue that solving problems 

using words seems to be very difficult if the learners cannot relate the known and 

unknown, especially when the learners face challenges in understanding the given 

problem text. This study, however, focuses on a framework to assist learners to move 

their attention from the wording of the problem to the relations among the data and the 

mathematical operators by means of decoding and identifying the key word that could 

assist them in making sense of the problem.  

 

Ilany and Margolin (2010) argue that many learner difficulties in solving problems 

emerge from understanding the text literally and mathematically. Therefore, these 

authors developed a nine stages model for mathematical problems to address the 

gaps between natural language and mathematical language in problem solving, 

namely: 

Reading the problem, understanding the linguistic situation, understanding the 

mathematical situation, matching the mathematical situation to the linguistic situation, 

screening the ideas, building a mathematical model, finding the solution and control.  

 

They claim that this “nine-stage instruction and learning model transforms into a 

complex thought process when fully understood and internalised” (Ilany & Margolin, 

2010:142). 
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The difficulties faced by learners using this strategy are more noticeable during the 

first phase in problem solving. Learners are not able to transform the problem into 

mathematical sentences. Ahmad et al. (2010) point out that learners usually encounter 

difficulties in solving problems because problems are actually story problems and the 

learners should be given guidance on how to relate between the known and the 

unknown. The study is looking for the framework that will help to understand the 

problem via a generated mental model made up of images, configurations, drawings, 

schemes, and graphs (Singer & Voica, 2013). 

 

2.8 CONCEPTUAL FRAMEWORK OF THE STUDY  

Singer and Voica (2013) have identified a conceptual framework for the problem-

solving process, which has been adopted for this study (see Figure 2.1). This 

framework reflects the learners’ natural disposition towards strategies for solving 

problems, and offers “insight for more effective learning of mathematical problem 

solving and can be used in problem posing and problem analysis in order to devise 

questions more relevant for deep learning” (Singer & Voica, 2013:11). It is designed 

to help learners to read the problem with understanding by, firstly, identifying the key 

words that could help them solve the problem. The framework describes the strategies 

that could help learners to make sense of the information on the given text, and 

ultimately to arrive at the correct solution. The framework describes four phases that 

could help learners to make sense of the information for effective problem solving, 

namely, decoding, representing, processing, and implementing. 

 

Singer and Voica (2013) argue that “when the process of solving is successful, from 

the text of the problem (the wording) to its solution, a solver need to work from the 

solution to the initial problem” (p. 11). Thus, a solver needs to interpret the solution in 

relation to the given problem (the wording). This conceptual framework for problem 

solving involves understanding the solution from the original statement within which 

the problem is given, meaning that the solver should be able to connect the answer of 

the problem with the problem statement. The bold arrow in this figure 2.1 illustrates 

the closing of the solving cycle. 
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 Figure 2.1: PS conceptual framework of Singer and Voica (2013:13) 

 

2.8.1 Phase 1: Decoding 

Clement (2008) defines decoding as the ability to interpret the given statement and to 

identify the key words in order to solve the problem. In order to be a successful 

problem solver one needs to know how to decode the problem. This decoding process, 

according to Singer and Voica (2013), involves understanding the wording given on 

the problem statement which will leads in describing clearly what the problem is about. 

In decoding, the problem text includes a background theme, (numerical) data, 

operators (or operating systems), information and operator limitations and limitations 

involving at least one unknown parameter value (Singer & Voica, 2013). 

 

The background theme represents the problem in detail, the operating schemes are 

actions suggested by the text of the problem, which could be mathematical operations 

that will lead the problem solver to solve the problem, e.g., plot, draw, trace, intersect, 

cut, addition or subtraction (Singer & Voica, 2013). The data and operators are 

limitations that state the background theme's relationships with information and 

operators (operating schemes) (Singer & Voica, 2013). 
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According to Singer and Voica (2013), when a problem is given (the wording) the 

problem solver makes a connection between the data and the operators, which 

requires the solver to convert the given statement of the problem into more 

understandable language. Usually number patterns are actually numbers that require 

learners to make connections between the known and the unknown in order to solve 

the problem. According to Lorenzo (2005), by breaking the issue into sections enables 

students to concentrate on a few ideas at a moment when they need to work on a 

fresh unknown, thus reducing the probability of making errors. 

 

2.8.2 Phase 2: Representing 

For this phase, according to Singer and Voica (2013), the problem solver must 

represent the problem in the text by using a suitable mathematical image and provide 

a mathematical equation that can help solve the problem. Therefore, the learner 

creates a mental image to solve problems and this may produce mathematical models 

such as formulas, equations, pictures, and drawings. Appropriate depiction of the 

issue shows that the problem solver perceived the problem and serves as a guide to 

the solution plan for the learners. Apprentices with math issues will find it difficult to 

solve them (Sajadi, Amiripour, & Rostamy-Malkhalifeh, 2013). 

 

The representing process in mathematical problem solving permits learners to visually 

relate various types of information given in the problem statement to help them 

determine which mathematical expressions are useful in solving the problem (Jan & 

Rodrigues, 2012a). According to Singer and Voica (2013), when a problem solver 

reads or hears the problem text with understanding, the problem statement should 

lead him/her to a mental model. “The mental model is a structured ensemble of mental 

representations induced by the wording, which is oriented by the purpose of solving 

the problem” (Singer & Voica, 2013:9). The mental model might also consist of 

translating the problem into a language that is more understandable to the solver.  

 

The mental model in this study could take the form of images, drawings, schemes, 

constructions, or general formula. “Therefore, as a result of reading/hearing and 

understanding the wording, the solver builds a mental model that is expressed via 

images, movements, physical objects, schemes, or sentences in a more familiar 
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(internal) language” (Singer & Voica, 2013:9). Tambychik and Meerah (2010) pointed 

out that mathematical language and representing are important in the process of 

understanding the problem. However, lack of these skills causes difficulties in bringing 

meaning to the information stated in the mathematical problems. 

 

2.8.3 Phase 3: Processing 

During the processing phase, the problem solver processes what is already known 

about the problem to test the model or the equation that is currently being chosen. 

Tambychik and Meerah (2010) state that, during this phase, the problem solver “uses 

a mental model suggested by the problem and personal mathematical competence to 

identify a mathematical model that can be associated with the problem” (p. 11). Ilany 

and Margolin (2010) state that processing in problem solving means that the problem 

solver need to be able to change the information into an algebraic equation. This can 

only be done by understanding the keywords in the problem, and the mathematical 

operations within the problem statement. 

 

During the PP the problem solver need to use his/her mathematical knowledge and 

understanding to identify the mathematical model that is relevant to the problem.  The 

PP is related to the ability to identify the mathematical model associated with the 

question. The question can be an equation, a system, the steps of a graphical 

representation and various computing algorithms (Singer & Voica, 2013). Therefore, 

in this study, processing is viewed as the exploration of possible situations through 

drawings, finding of the general formula of sequences, finding of the relevant equation 

of the nth term of the sequence, using of the correct mathematical operation sign, or 

the transposition of the text into an equation. 

 

2.8.4 Phase 4: Implementing 

Implementation refers to the process of implementing the solution to the problem in 

problematic situations (D’Zurilla & Nezu, 2010). During this phase, the problem solver 

applies the solution strategy that has been used to arrive at the solution of the problem. 

According to Singer and Voica (2013), this phase focusses on the “application of 

techniques that are specific to the found mathematical model and adaptable to the 

given particular situation, with the purpose to obtain final results for the problem” (p. 

11). Singer and Voica (2013) argue that “when the process of solving is successful, 
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from the text of the problem (the wording) to its solution, a solver need to work from 

the solution to the initial problem” (p.11). Therefore, the problem solver needs to 

interpret the solution in relation to the given problem statement (the wording). This will 

involve understanding the solution from the context within which the problem is given. 

The problem solver should be able to connect the formal solution of the problem with 

the initial data.  

 

Singer and Voica (2013) indicate that the implementation phase is “based on the 

application of already mastered techniques to a certain determined situation in certain 

known conditions” (p. 9). These techniques might involve, for example, recognising 

the different ways of proving the solution; minimising the values that do not satisfy the 

constraints of the problem; using helpful constructions, substitutions; or by using a 

known algorithm.  

 

2.9 CHAPTER SUMMARY 

This chapter reviewed literature concerning number pattern problems. A discussion 

on the nature of mathematics, including the definition of mathematics; problem solving; 

number patterns; the design of a number pattern problems; learners’ experience of 

problem solving; strategies used in number patterns; and lastly the PS conceptual 

framework developed from Singer and Voica (2013), was provided. Mathematics is 

defined as a “human activity that involves observing, representing and investigating 

patterns and qualitative relationships in physical and social phenomena and between 

mathematical objects themselves” (DBE, 2011:8). Beliefs about the nature of 

mathematics provide a foundation for teacher's methods of teaching and how learners 

learn mathematics. Mathematical problems challenge learners to “read and interpret 

the problem, represent the semantic structure of the problem and choose a solution 

strategy” (Schumacher & Fuchs, 2012:608). Learners cannot easily identify number 

patterns embedded in problems.  

 

Number patterns related to problem solving in this study is a process of looking out for 

numbers in the given sequence and forming a pattern, which will allow the problem 

solver to come up with a more general solution that can be applied in every given 

situation. Various strategies can be utilised to solve problems related to number 

patterns in mathematics. Learners need to be exposed to those strategies naturally in 
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their classroom activities. The framework describes four phases that could help 

learners to make sense of the information for effective problem solving, namely, 

decoding, representing, processing, and implementing. According to the framework of 

Singer and Voica (2013), learners should be able to relate the initial wording of the 

problem with the implemented solution of the problem after they have solved the 

problem. Therefore, teachers should encourage learners to reflect on their solutions 

to check whether what they have answered is what the question required. Chapter 3 

will discuss the research design and research methodology adopted for the study.  
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CHAPTER 3: RESEARCH DESIGN AND METHODOLOGY 

 

3.1 INTRODUCTION 

This chapter discusses the research design and research methodology used for the 

study. It starts with a discussion of the research paradigm, which consists of the 

following philosophical assumption: epistemology, ontology, and axiology. Each 

philosophical assumption is explained, and the relationships between them explored. 

The research paradigm helped to shape an understanding of the interconnectivity of 

real-life elements in the study, and assisted in planning and carrying out the research. 

The research approach used in this study was qualitative in nature, since the study 

sought to interrogate grade 9 mathematics learners’ strategies in solving number 

pattern problems, and to assist in setting guidelines to improve future learning of 

problems involving number patterns. A qualitative exploratory case study research 

design was used for the study, as it allowed participant strategies to be investigated 

for the solving of number pattern problems in three rural schools. The research 

methodology adopted for the study is discussed in more detail below, including an 

explanation of the research context, population, and sampling procedures. Thereafter, 

the data collection process and data collection instruments are discussed followed by 

an explanation of the data analyses processes. Finally, the chapter concludes with a 

discussion of the quality criteria used in the study, as well as the ethical measures 

considered.  

 

3.2  RESEARCH DESIGN  

Mouton (2001) describes “the research design as a plan or blueprint of how the 

researcher intends to conduct the research” (p. 55). In addition, Leedy and Ormrod 

(2010) describe a research design as a plan where you link research method and 

procedure used to achieve reliable and valid data for analysing and interpreting the 

findings of the study. This study’s research design provided the researcher with the 

research paradigm, the epistemological, ontological, and axiological assumptions; as 

well as the most suitable research approach and research methods to use. The 

research design gives a clear description of the research methodology by indicating 

how the researcher will conduct the fieldwork; and it gives a clear indication of the data 

collection process, methods and procedures (Peters, 2011).  
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The design also sets the basis for interpretation and analysis of data. Therefore, the 

qualitative research design chosen for this study was an exploratory case study.   

 

3.2.1 Philosophic assumptions 

The epistemology, ontology, and axiology helped define the research paradigm for this 

study. The epistemological assumption is concerned with addressing the facts by 

asking what acceptable knowledge is. The ontological assumption deals with the 

nature of reality. Finally, the axiological assumption focuses on the value of the study 

and biases affecting information gathered from the field (Creswell, 2013). Each of 

these philosophical assumptions is discussed next as they were used in this study. 

 

3.2.1.1 Epistemological assumptions 

Matthews and Ross (2010) define epistemology as “the theory of knowledge and how 

we know things” (p. 18). Epistemology defines what acceptable knowledge is for a 

field of research and what information is known to be true – for this study, mathematical 

problems related to number patterns in mathematics. “The interpretive epistemology 

is one of subjectivism which is based on real world phenomena” (Scotland, 2012:11). 

This study seeks to explore learner strategies used in solving number pattern 

problems, and learner views and perspectives on these strategies. Thus, theories 

about learner strategies have an epistemological dimension since they describe how 

we acquire knowledge in problem solving, and what is important both to the theory 

and practice of mathematics education.  

 

An interpretivist paradigm, with an “epistemological position that prioritises people’s 

subjective interpretations and their own actions” (Matthews & Ross, 2010:28), 

provided an in-depth insight into this inquiry. “An interpretive approach sees people, 

and their interpretations, perceptions, meanings and understandings, as the primary 

data sources” (Mason, 2002:56). Goldkuhl (2012) states that “the aim of understanding 

the subjective meanings of persons in studied domains is essential in the interpretive 

paradigm” (p. 4). The interpretive paradigm, as used in this study, sought to explore 

the learners’ strategies and their views and perspectives on these strategies. The 

learners were interviewed to provide them with an opportunity to describe their 

strategy and to allow researcher interpretation and understanding of the words, views 
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and explanations of the strategies they used to solve number patterns-related 

problems. 

 

3.2.1.2 Ontological assumptions 

Ontology refers to the way in which the social world is seen and what can be assumed 

about the nature and reality of the social phenomena (Matthews & Ross, 2010). 

Similarly, Ponterotto (2005) explains ontology as the “nature of reality and being” (p. 

130). Ponterotto (2005) indicates that reality is subjective and influenced by the 

context of the situation, which is the individual’s experience and perceptions. This 

study used the ontological position that learners’ knowledge, views, understandings, 

interpretations, experiences, and interactions with number pattern problems are 

important properties of their social reality.  

 

3.2.1.3 Axiological assumptions 

Axiology “concerns the role of researcher values in the scientific process” (Ponterotto, 

2005:130). The axiology in this study is about the value of problem solving, such as 

good and bad, moral and immoral; thus, questions about what the meaning of problem 

solving is, and how we should value it. Ponterotto (2005) highlighted that axiological 

assumptions “maintain that the researcher’s values and lived experience cannot be 

divorced from the research process, the researcher should acknowledge and state his 

or her values, but not eliminate them” (p. 131). Therefore, the researcher values 

number pattern problems in mathematics as it allows creative thinking, and learners 

are able to develop new mathematical reasoning skills when solving the problem. A 

benefit of number pattern problems includes a learner-centred approach in which 

learners investigate and explore mathematical ideas on their own (Verschaffel, Greer, 

& De Corte, 2000). By studying problem solving in mathematics, learners become 

better prepared for many aspects of their lives after school, for example, trades, 

professional careers, and knowledgeable citizenship. Matlala (2015) states that by 

using problem solving in mathematics the quality and results of school mathematics 

could be improved in future. In addition, Căprioară (2015) indicates that problem 

solving stimulates motivation towards intellectual progress; it sharpens learners’ 

creativity and applies mental behaviour that aims to build a better structure of learners’ 

knowledge.  
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3.2.3 Research approach 

A qualitative research approach was chosen because it provides a rich description of 

the phenomenon under investigation (Merriam, 2009), namely constructing an 

understanding of the strategies that learners use when solving number- pattern-related 

problems. In this study, the qualitative methods used examined learners’ words, views, 

thinking, and their perceptions about number pattern problems in descriptive ways, 

and with the intention of representing the situation as experienced by the learners. 

Therefore, a qualitative research approach helped the researcher to understand the 

embedded actions of learners’ strategies in more detail. “Qualitative research is 

concerned with the opinions, experiences and feelings of individuals producing 

subjective data. It describes social phenomena as they occur naturally and 

understanding of a situation is gained through a holistic perspective” (Kakulu, 2014:6).  

 

3.2.4 Research strategy 

The case study design allowed the researcher to investigate grade 9 mathematics 

learners’ strategies in solving number pattern problems in three rural schools. Yin 

(2009) describes a case study as an empirical investigation that explores a modern 

phenomenon in depth and in its real-life context, particularly when the limits between 

phenomenon and context are not obvious.  

 

Rule and John (2011) state that “a case study is a systematic and in-depth 

investigation of a particular instance in its context in order to generate knowledge” (p. 

4). In addition, Rule and John (2011) show that a case study strategy enables you to 

examine a specific example in excellent depth, rather than superficially examining 

various cases.  

 

Therefore, in the context of this study, the use of a case study refers to the process of 

conducting an investigation to understand learner strategies in three different schools. 

Such understanding assisted in the final written documents produced from the study, 

and the setting of guidelines to improve the future teaching and learning of problems 

regarding number patterns. 

 

An exploratory qualitative case study inquiry was deemed most appropriate for this 

study. Rule and John (2011) indicate that “an exploratory case study often examines 
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a phenomenon that has not been investigated before and can lay the basis for further 

studies” (p. 8).  This exploratory case study assisted in developing insight into the 

strategies that learners use in solving number pattern problems in order to develop 

models or theories to improve the future teaching and learning of problems regarding 

number patterns (Kakulu, 2014). 

 

The advantage of the exploratory case study used in this research was that open-

ended questions required learners to elaborate on their strategies, and gave them the 

opportunity to respond in their own words and explain what they wrote, rather than 

forcing learners to choose from fixed responses such as ‘yes’ or ‘no’ questions. 

According to Neuman (2011), exploratory research is used when the subject is very 

new, or if we know little or nothing about it. As mentioned in Chapter 1, rural schools 

have been marginalised in South Africa; therefore, more research needs to be done, 

and reported on, in this context. The overall goal of this study fits well with the general 

intention of exploratory research, as it sought to provide a basis for formulating more 

precise questions about the strategies that rural high-school learners use when solving 

number pattern problems in mathematics, and which can be used to conduct further 

research. 

 

A multiple-case study was used to find the strategies used by grade 9 mathematics 

learners to solve number pattern problems. According to Ary, Jacobs, and Sorensen 

(2010), “multiple case studies use several cases selected to further understand and 

investigate a phenomenon, population or general condition, while single case studies 

may not provide a detailed understanding of phenomenon being investigated” (p. 455). 

In this study the unit of analysis was learners in three public schools in the rural 

Capricorn district of Limpopo Province at Lepelle Nkumpi municipality. Using learners 

from three schools provided data on different types of strategies used and a better 

understanding of those strategies. Data were collected from two sources, namely, 1) 

a written activity on number pattern problems to establish the strategies used; and 2) 

semi-structured interviews with participants to obtain an in-depth understanding of the 

strategies used. 
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3.3 RESEARCH METHODOLOGY 

Research methodology is “used to gather and analyse data related to the research 

question or hypothesis” (Crotty, 2003:3). This section will include an explanation of the 

research context, population, sampling procedures, and a discussion on the data 

collection instruments and data analysis methods. 

 

3.3.1 Research context 

Data were collected from three Quintile 1 schools in the Capricorn district of Limpopo 

Province. The DBE classifies schools according to quintiles. Quintile 1 schools are in 

deep rural areas and mostly inadequately resourced in terms of teaching and learning 

materials, and poor infrastructure. The Capricorn district, where this study was 

conducted, has a total land area of 21 704 km2, and the three rural schools were 5 to 

10 km apart in the Lepelle Nkumpi Municipality of the Lepelle circuit. Figure 3.1 gives 

a map of the Limpopo Province showing the Capricorn district in the Lepelle Nkumpi 

Municipality. The Capricorn district is one of the five districts of the Limpopo Province 

of South Africa. Prior to the study the researcher collected background information 

and demographic details of schools from the circuit office (see section 4.2). The map 

in Figure 3.1. shows the Capricorn district in the Lepelle Nkumpi Municipality were the 

Quintile 1 schools are situated.  

 

 

Figure 3.1: A map of Limpopo Province showing the Capricorn district in the 

Lepelle Nkumpi Municipality 

 

Quintile 1 

schools 
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3.3.1.1 School A 

School A was established in 1971 with only two classroom blocks. The school was 

renovated in 2012 and now consists 15 blocks including a library and a laboratory. It 

was the first secondary school in the village to be used for this study. The school’s 

enrolment at the time of the study was 320 learners, with 8 teachers including the 

principal. The school had 31 grade 9 learners with 20 females and 11 males, but only 

20 females and 10 males participated, thus, in total 30 learners participated. The ages 

of the selected learners ranged from 15–17 years. The grade 12 pass rate in 2017 

was 58%. This school was classified as an underperforming school in 2018. According 

to the DBE, this means that the school’s grade 12 results were below the benchmark 

of 65%.  

 

3.3.1.2 School B 

School B was established in 1990, and was the second secondary school in the village 

to be used for this study. At the time of the study, the school had an enrolment of 118 

learners, with 5 teachers including the principal. The school had one class of 33 grade 

9 learners with 21 males and 12 females. The age of learners ranged from 15–16. Ten 

females and 20 males participated in this study, thus, in total 30 learners participated. 

The grade 12 passed rate in 2017 was 45% and it was declared a chronically 

underperforming school in 2018, meaning the school had been underperforming for 

three consecutive years (according to the DBE). 

 

3.3.1.3 School C 

School C is currently the largest in the village in terms of learner enrolment, but did 

not have sufficient equipment or classrooms to cater for all learners. This was the third 

secondary school used for this study. The school was established in 1994 and the 

grade 12 pass rate for the school has never been less than 80%. In 2017, the grade 

12 passed rate was 90%.  

 

At the time of the study, the school had an enrolment of 884 learners and 24 teachers 

(including the principal and the deputy principal). The school had 142 grade 9 learners 

evenly distributed in two classrooms; grade 9A with 63 learners (27 are males and 36 

females) and grade 9B with 79 learners (38 are males and 41 females). The ages of 

learners ranged from 14–16. Fifteen females and 15 males participated in this study, 
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thus, in total 30 learners participated. Table 4.2 gives a summary of the selected 

schools and demographic information about the participants. 

 

3.3.2 Population and sampling procedures 

The population for this study comprised grade 9 mathematics learners in Quintile 1 

schools in the Capricorn district of the Limpopo Province. The sample comprised 90 

learners from three rural schools (A, B and C). The researcher purposively selected 

30 grade 9 mathematics learners from each of the three sampled schools in order to 

have equal distribution of participants among schools – a total of 90 learners. Kunene 

(2014) defines “sampling as a process of identifying relevant participants, subjects or 

people who are rich informants according to the researcher from which data can be 

collected” (p. 20). Similarly, Rule and John (2011) define sampling as where 

individuals are intentionally selected as research participants because of their 

suitability in advancing the purpose of the research. Therefore, participants were 

chosen because of their relevant knowledge, interest and experience in relation to the 

case. 

 

The schools were selected using purposive sampling. Purposive sampling, as Merriam 

(1998) indicates, is mostly based on the assumption that the investigator wants to 

discover, understand and gain insight. The researcher, therefore, selects a sample 

from which most can be learned. According to Creswell (2013), purposive sampling 

involves selecting participants based on characteristics that make them holders of the 

information needed for the study. Kakulu (2014) also indicates that, in purposive 

sampling, the researcher selects the population according to the purpose or aims of 

the study using categories such as age, gender, status, role or function in an 

organisation. Moreover, in purposive sampling, researchers intentionally select 

individuals and sites that will help them to learn about, or understand, the central 

phenomenon (Creswell, 2008). In the context of this study, the researcher purposively 

selected participants that were doing mathematics in grade 9, as they were supposed 

to have knowledge of number pattern problems as prescribed in the CAPS document 

for the specific grade. The researcher wanted to investigate and understand grade 9 

mathematics learners’ strategies in solving number pattern problems to assist in 

setting guidelines to improve future learning of problems regarding number patterns. 

Table 3.1 indicates the criteria used for selecting the participants. 
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Table 3.1: Criteria used for selecting participants 

Criteria 

Public schools 

Rural schools 

Quantile-one schools 

Voluntary participation 

Grade 12 performance  

Grade 9 mathematics learners 

 

The selection of schools was based on the two criteria: 1) public rural schools; and 2) 

schools in rural areas that continue to experience challenges, including a lack of 

necessary resources. Learners from the selected schools were sharing textbooks, 

workbooks, and other mathematical instruments.  

 

According to the principals of those schools, their learners were from various 

backgrounds, with the majority coming from poor socio-economic backgrounds, and 

with parents who were uneducated. The schools lack parental involvement because 

most parents are employed in faraway large cities, such as Johannesburg. Quantile-

one schools, as selected for this study, are classified as no-fee schools according to 

the South African School Act (84 of 1996), and are situated in deep rural areas (Dass 

& Rinquest, 2017).  

 

The selected schools enrol learners from grade 8 to grade 12. Two of the selected 

schools were declared as underperforming schools according to the DBE1, while the 

other school’s grade 12 performance results were at a higher level, as they had not 

obtained below 65% for the past number of years. Thus, the grade 9 mathematics 

learners who participated in this study came from selected public rural schools. They 

also participated voluntarily in the study. 

 

The motivation for choosing Quintile 1 rural schools in the Capricorn district in Limpopo 

was that these schools were the most in need of assistance in mathematics. They are 

situated in deep rural areas with inadequate resources in terms of teaching and 

                                            
1 Underperforming schools are schools that obtain less than the DBE’s benchmark of 65% in the grade 
12 final results. 
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learning materials and infrastructure, and the majority of schools in the district were 

classified as underperforming schools according to their grade 12 results since 2016. 

The schools also comprised a convenience sample as the researcher lives and work 

in the Capricorn district. Moreover, the selected schools shared common features, 

such as poverty, absence of parental and community engagement, and a number of 

curriculum challenges. This study also focused on these rural schools due to the 

context, i.e., that the learners’ needs differ from those in suburban schools; and 

mathematics teachers from these schools receive less professional training than those 

from suburban schools. Adedeji and Olaniyan (2011:21) state: 

Teaching is often of poor quality and is poorly supported in rural schools. Isolated 

conditions in rural areas fail to attract high-quality teachers. This situation is made 

worse by the fact that poor infrastructure obstructs support from advisory agencies  

 

3.3.3 Instruments for data collection   

3.3.3.1 Written activity 

A written activity on number pattern problems was used to collect qualitative data for 

this study (see Appendix A). According to Matthews and Ross (2010), “documents are 

often readily available and frequently contain large amounts of information and they 

are socially constructed, they can tell the researcher more than just the information 

that they contain” (p. 277). The aim of the written activity was to promote higher levels 

of learner engagement in number pattern problems, creativity, and the utilisation of 

different strategies to solve the problems. The setting of the activity was informed by 

the SP Mathematics CAPS. Furthermore, the activity allowed participants to engage 

in the process of problem solving by reaching different phases as outlined in the PS 

conceptual framework of the study. It is important to note that by its nature, this activity 

requires learners to engage in all phases to arrive to a solution. 

 

The first phase to reach was the DP. The DP indicated the ability to move focus from 

the wording of the problem (understanding the text) to the relations among the data 

and the operating schemes that can be deduced from the given constraints (Singer & 

Voica, 2013).  

 

The second phase to reach was the RP. The RP concerned the ability to understand 

the problem via a generated mental model. The mental model was made of images, 
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configurations, drawings, schemes and graphs. The mental model also required a 

rephrasing of the problem statement into a language more accessible to the solver 

(Singer & Voica, 2013).  

 

The next phase was the PP. The PP related to the ability to identify the mathematical 

model associated with the question. The question can be an equation, a system, the 

steps of a graphical representation, or various computing algorithms (Singer & Voica, 

2013).  

 

The last phase to reach was the IP. The IP indicated the ability to apply techniques 

that are specific to the found mathematical model and adaptable to the given situation. 

The IP serves to obtain the final results for the problem (Singer & Voica, 2013).  

 

The activity was learner centred and required participants to come up with their own 

strategies to solve the problem (see Appendix A). The written activity in this study 

intended to investigate the participants’ strategies they engaged in when e solving of 

number pattern problems that deal with mathematical relationship between 

consecutive numbers and real-life situations. Thus, the data collected from the 

responses to the written activity were used to answer the first research question, 

namely: What are the strategies grade 9 mathematics learners engage in when solving 

number pattern problems? 

 

This activity requires an understanding of numeric patterns and geometric patterns.  

This type of content requires learners to have a high level of understanding in order to 

arrive at a strategy to solve the problem. Barbosa et al. (2012) state that there are two 

main reasons for including linear pattern presented in numbers and pictures: “it allows 

application of a diversity of generalisation strategies, i.e. numeric, visual or mixed and 

the observation of the structure of the figure is enough to determine the general rule 

of the pattern” (p. 282). Szabo and Andrews (2017) also emphasise that problem-

solving activities must utilise the mathematical competences necessary for solving the 

problem, rather than the recall of previously solved problems to obtain the answer to 

the next problem. 
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The written activity consisted of two questions adapted from Barbosa et al. (2012). 

These questions were aligned with the SP CAPS, which states that “investigating 

number patterns is an opportunity to generalise and to give general algebraic 

descriptions of the relationship between terms and their position in a sequence and to 

justify solutions” (DBE, 2011:126).  Furthermore, the SP CAPS states that, in order to 

complete the sequence of numbers, learners have to identify the constant difference 

between consecutive numbers. The SP CAPS also indicates that learners are 

requested to prepare the rule that can describe the relationship between the numbers 

in this sequence; and they must be able to use that rule to find the nth term in that 

sequence (DBE, 2011). Similarly, Singer and Voica (2013) state that “the problem 

solver needs to represent the problem in the text by using appropriate mathematical 

image and come up with mathematical equation that can help with solving the 

problem” (p. 11). Barbosa et al. (2012) argues that the kinds of activities that involve 

generalisation allow teachers to analyse the learners’ strategies used to solve the 

problem, as well as their level of understanding.  

 

In question 1, as illustrated in Table 3.2, the researcher asked learners to continue the 

given sequences by indicating the next term of the sequence, and also to continue the 

sequence to nth term. This question required that learners had knowledge and 

understanding of linear patterns and decreasing patterns. Thus, this question involved 

near and far generalisation and allowed the researcher to analyse how learners 

understood patterns in different contexts, as well as the strategies they used. 

Moreover, the researcher intended to analyse participants’ ability to interpret and 

continue sequences and to recognise the pattern.  

 

Table 3.2: Question 1: Numeric patterns 

1.1 Complete the table by indicating the next terms (f(x)) of the sequence. If the sequence 

is continued to the nth term, please write the general formula for the nth term. 

𝑥 1 2 3 4 5 6 7 8 N 

𝑓(𝑥) -2 -5 -8 -11 -14     
 

 

For question 1, participants were expected to give a decreasing pattern by noticing 

that the values of f(x) which shrank, by a constant difference each time to get the next 
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term. Participants needed to explore numbers by using mathematical operators, 

drawing, words, and symbols. When creating decreasing patterns, learners first need 

to choose a starting point, and then decide on the amount by which the number 

decreases.  

 

During the interview, participants had to describe their pattern in question 1 of the 

written activity by clearly explaining how the value of the terms changes from one term 

to the next. Participants were required to share their number patterns and the 

strategies they used to create their pattern.  Therefore, the first question in this study 

involved number patterns, requiring participants to carefully move through the phases 

of the Singer and Voica’s PS conceptual framework from decoding, representing, 

processing to implementing the sequence of numbers. According to Singer and 

Voica’s PS conceptual framework:  

A solver starts from the wording of the problem (decoding); then searches for 

relationships among the data and the operators, which lead to mental representations 

(representing); deduces relationships that call for a known mathematical model 

adequate to the problem (processing); and finally uses techniques adequate to the 

identified mathematical model to get to the final result(s)/solution(s) of the problem 

(implementation) (Singer & Voica, 2013:11). 

 

First, during the decoding phase (DP) in this question; participants were required to 

observe the sequence of numbers and to be able to use the correct mathematical 

operators in order to extend the pattern to the next number. Therefore, they had to 

understand and to identify mathematical operators, which would help them to realise 

that this problem involves a decreasing numbers pattern. The decoding of decreasing 

numbers facilitates an integrated understanding of numbers and operations in 

mathematics.  

 

Secondly, moving up the representing phase (RP), participants were required to find 

the connection between the data and the unknown in the given problem statement in 

order to produce a mental model (with or without visual support) suggested by the 

problem (such as, drawing, words, symbols, graphs or table values).   
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Thirdly, moving further up to the PP, the participants had to produce mathematical 

models, such as formulas, equations, pictures, and drawings relevant to the problem 

statement. Furthermore, when identifying an algebraic equation, the variables had to 

describe the number patterns in a general form. Therefore, if participants applied the 

correct mathematical model to a given problem, these would provide opportunities to 

understand how learners represent problems, and what strategies they use to solve 

the problem.  

 

Lastly, to reach the implementation phase (IP), the participants were required to 

implement the mathematical model suggested by the problem to find any nth term of 

the sequence. 

 

Question 2, as illustrated in Table 3.3, represented an increasing linear pattern, 

presented in a visual context. This question required a description of figural growth 

patterns numerically, and translation between their figural and numerical pattern, as 

well as the use mathematical operations to find the relationship of the unknown data 

and known data. It also required learners to engage in near and far generalisation. 

Near generalisation problems are problems that can be solved by using a sketch or a 

counting strategy, such as discovering the second, third, fourth or fifth item of the 

series. On the other hand, far generalisation problems imply the finding of a general 

rule of the sequence (Barbosa et al., 2012). 
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Table 3.3: Question 2: Geometric patterns 

 

2. Joana likes to make necklaces using flowers. She uses white beads for the petals and 

black beads for the centre of each flower. The figure below shows a necklace with one 

flower and a necklace with two flowers, both made by her. 

_____________________ 

One flower   two flowers   three flowers 

2.1. How many white and black beads will Joana need to make a necklace with 3 flowers? 

Draw a diagram of a necklace with 3 flowers.  

2.2. How many flowers will Joana be able to make if she uses 102 white beads? 

 

In question 2, participants were expected to describe an increasing geometric pattern, 

and to relate the concepts of a linear function to the geometric diagram. An increasing 

pattern in this study is a growing pattern where the size of the flowers increases in a 

predictable way. Therefore, as the participants described increasing shape patterns in 

a drawing, they were expected to also recognise that each term had a numeric value. 

For example, participants had to describe a given increasing pattern by stating the 

pattern rule. A pattern rule tells us how to make the pattern, and can be used to extend 

an increasing pattern.  

 

The participants were given the first two increasing patterns, which presented a real-

life situation in the form of making necklaces using flowers. The goal was to work 

visually, thinking about how the number of beads grows and whether participants could 

see the extra white and black beads. Moreover, participants had to see the different 

ways to visualise, and to explain, how patterns change.  

 

Barbosa et al. (2012) recommended that learners should be motivated to understand 

the problem based on the real-life situation, where they are encouraged to “use the 

potential of visual strategies and to relate number contexts with visual contexts in order 

to then understand the meaning of numbers and variables” (p. 219). 
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During the first phase, namely the DP, it was important to emphasise the essential 

relationship between the data and the operating schemes. Therefore, the second 

question represented an increasing linear pattern presented in a visual context, which 

required participants to have the ability to interpret the given statement and to 

understand what the problem is about. The numerical data of the problem referred to 

the number of beads needed to make a flower. Therefore, decoding required noticing 

a transition from smaller flower to growing flower. Incomplete decoding would show 

that the participants had a perception of the process described in the text, but could 

not see the need for reversibility (Singer & Voica, 2013).  

 

During the second phase, namely the RP, participants had to progress by establishing 

a mental model of this problem by means of a drawing. Drawing involves creating a 

mental image of how many white and black beads will be needed to make a necklace 

with three flowers. Therefore, at this phase the participants had to explain how their 

extension followed the pattern. The question demands a change of the problem 

statement into a language that is more accessible to the solver (Singer & Voica, 2013).  

 

During the next phase, namely the PP, participants had to advance from drawing to 

the awareness that the problem involved the use of the following mathematical tools: 

linear pattern, algebra equation, mathematical operators, and meaning of variables. 

The processing in this problem was the transposition of the text into an equation to 

produce a mathematical model (Singer & Voica, 2013). The participants needed to 

construct a mathematical model and then use the model to generalise a formula to 

show how the number of white beads, at the end, depend on the number of white 

beads. Participants were expected to formulate a pattern and to generalise a rule for 

the linear pattern (generalising). Participants had to extend the pattern by identifying 

the rule, and then use the rule to build and draw the next flowers.  

 

Lastly during the IP, participants had to develop from recognising mathematical tools 

to applying techniques that were specific to the found mathematical model in order to 

obtain final results. They were also required to refer back to the previous pattern using 

their general rule to check if their solution worked best. The participants had to explore 

the possible situations through a formula to check whether it could be applied to any 

nth term. 
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3.3.3.2 Semi-structured one-on-one interviews 

In this study, semi-structured one-on-one interviews were used to understand 

participants’ strategies, and their explanations as to why they chose certain strategies 

to solve number pattern problems, rather than simply interpreting strategies from the 

written activity. The interviews also helped the researcher to ensure correct 

interpretation of the participant explanations given in the written activity (in cases of 

uncertainty). Maluleka (2013) confirms that interviews aim to get a deeper 

understanding of the views and opinions from the participants by talking to them 

individually. Interviews are one of the data collection methods in qualitative research 

that are used to gain a deeper understanding of the research question (Petty, 

Thomson, & Stew, 2012). Similarly, Gill, Stewart, Treasure, and Chadwick (2008) state 

that interviews provide a deeper understanding to the problem, and also explore the 

views, experiences, and beliefs of an individual. Furthermore, interviews aim “to 

explore people’s individual and collective understandings, reasoning processes and 

social norms” (Mason, 2002:56). 

 

This study used one-on-one semi-structured interviews in order to answer the sub-

research question 2, namely: What are the views of grade 9 mathematics learners 

regarding the areas of difficulty (if any) they experience as they complete number 

pattern problems? and to gain explanations and a deeper understanding of the 

strategies grade 9 mathematics learners engage in when solving these problems. 

“Semi-structured interviews consist of several key questions that help to define the 

areas to be explored, but also allows the interviewer or interviewee to diverge in order 

to pursue an idea or response in more detail” (Gill et al., 2008:91). Peters (2011) adds 

that “a one-on-one semi-structured interview aims to explore concerns relating to a 

topic by obtaining information from respondents” (p. 38). In the context of the one-on-

one semi-structured interviews in this study, the participants were allowed to freely 

explain their strategies and their thinking while they were involved in solving the 

problems.  

 

The interviews also allowed the researcher to understand what the participants wrote 

by asking for clarifications and further explanations on their strategies. Nine open-

ended questions base on the four phases of the PS conceptual framework of Singer 
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and Voica (2013) were administered to probe deeper in attempting to understand the 

strategies employed in the written activity (see Appendix B). Participants were asked 

to explain their strategy and how they implemented it to arrive at the solution. In 

addition, they were required to answer explanatory questions such as “How did you 

think?”; “How did you solve?”; What”; and “Why”. 

 

The interview questions were as follows:  

1. Let’s look at question 1, what type of pattern is that and why? This question 

demanded the participant to interpret the decreasing pattern in a table form. 

Participants had to describe their pattern by clearly explaining how it changes 

from one term to the next and whether the sequence is linear or quadratic. 

Therefore, the participant could reach the DP  

2. How did you complete the sequence in question 1? Explain your strategy. This 

question demanded the participant to be able to describe the decreasing linear 

pattern. The participant was required to explain the strategy she/he used to 

complete the table and also explain the mathematical operator used to extend 

the pattern to the next number. Therefore, the participant could reach the DP 

3. How did you get your general formula?  This question required the participant 

to explain the connection between the data and the unknown in the given 

problem statement in order to produce a mental model (with or without visual 

support) suggested by the problem. Therefore, the participant could reach RP. 

For the participant to reach PP, the participants had to explain mathematical 

models, such as formulas, equations, pictures, and drawings relevant to the 

problem statement. Finally, for the participant to reach IP, the participants were 

required to implement the mathematical model suggested by the problem. 

4. When working with question 2 about Joana making necklaces; how did you 

identify the key words to solve the problem? This question demanded the 

understanding of the wording given on the problem statement which will leads 

in describing clearly what the problem is about. Therefore, the participant could 

reach DP 

5. How did you make a necklace with 3 flowers? The question required the 

participant to explain the connection between two known flowers and the 

unknown flowers in order to produce a mental model (with or without visual 

support) suggested by the problem. Therefore, the participant could reach RP 
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6. How many flowers will Joana be able to make if she uses 102 white beads? 

Explain your answer. This question, the participants had to explain 

mathematical models, such as formulas, equations, pictures, and drawings 

relevant to the problem statement.  Furthermore, participants were required to 

implement the mathematical model suggested by the problem. Therefore, the 

participant could reach PP and IP 

7. Can you come up with a general formula for this problem? The question 

required the participants to construct a mathematical model and then use the 

model to generalise a formula to show how the number of white beads, at the 

end, depend on the number of white beads. Participants were expected to 

formulate a pattern and to generalise a rule for the linear pattern (generalising). 

Therefore, the participant could reach PP 

8. How do you determine if the formula used is correct? This question required 

the participants to apply techniques that were specific to the found 

mathematical model in order to obtain final results. They were also required to 

refer back to the previous pattern using their general rule to check if their 

solution worked best. Therefore, the participant could reach IP 

9. Is there anything else you want to tell me with regard to better understanding 

of number pattern problems? 

 

3.3.4 Data collection process 

Data collection was done at three rural schools in the Capricorn district, Limpopo 

Province. The circuit manager, as well as the three principals of the schools, was 

contacted to discuss the study and request permission to conduct the study. Three 

letters of invitation were sent to each school, one addressed to the principal (see 

Appendix F), one to the parents of the learners (see Appendix G) and one to the grade 

9 learners (see Appendix H). 

 

During data collection, all arrangements were made directly with the principal, as well 

as grade 9 mathematics teachers. Data pertaining to grade 9 learners’ strategies on 

solving number pattern problems were collected from two sources, namely the 

participants’ written activity in their scripts, and one-on-one semi-structured interviews 

with three of the participants.  
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The data were collected at two stages. In stage one, participants were given a written 

activity (see Appendix A) to complete individually during school contact time in their 

classrooms. The participants were given 40 minutes to complete the activity. The 

written activity was marked by the researcher and analysed pertaining to the levels of 

engagement in the four phases of the PS conceptual framework of Singer and Voica 

(2013). It took the researcher a period of three days to complete stage one in all three 

schools. The schools that had more than 30 learners, for example school C with 147 

learners, only 30 learners were randomly selected. Those non selected learners were 

also given the written activity, but their scripts were not considered for analysis.  

  

During stage two, the researcher conducted individual interviews with three randomly 

selected learners after school hours based on the criteria given in Table 3.4. The three 

participants – A, B and C – were selected, one from each of the three schools, and 

had participated in the written activity during stage one. The researcher took a period 

of eight days to complete stage two. During the individual interviews, each participant 

was given their script which asked them to give a detailed explanation about the 

strategy they used to solve the problem. The interview questions were based on the 

conceptual framework of the study in order to view the learners’ strategies with regard 

to the levels of engagement in the four phases of PS conceptual framework (see 

section 2.8). Some open-ended questions were used based on the activity to probe 

for deeper understanding, and to allow the participants to explain their strategies in 

detail and to further elaborate on the interview questions. Furthermore, the interview 

questions were clarified with learners in cases where they did not understand the 

question clearly. 

 

The interview questions (see Appendix B) were designed based on the levels of 

engagement in the four phases of the PS conceptual framework. Table 3.4 gives the 

criteria for selecting participants for the interviews. 

 

  



 
 

 63  
 

Table 3.4: Criteria for selecting participants for the interviews 

 Undocumented number pattern strategy related to the problem – left a blank space 

(Participant A). 

 Irrelevant number pattern strategy related to the problem (Participant B). 

 Appropriate use of a specific strategy and/or comments with the potential for further 

discussion (Participant C). 

 

The first criterion, undocumented number pattern strategy, as related to the problem, 

refers to a case where the researcher could not ascertain the participant’s strategy 

(meaning that there was no response to the problem or the participant left a blank 

space). The interview was conducted with such a participant to explore his/her thinking 

processes.  

 

The second criterion, the irrelevant number pattern strategy, as related to the problem, 

refers to a case where the participant used an inappropriate strategy to solve the 

problem. The participant did not fail to decode the problem correctly, but failed to 

progress in identifying the correct mathematical model to solve the problem. The 

participant was directly extracting numbers from the given problems, meaning that 

they used the number pattern strategy, but did not address the problem statement.  

 

The interview was conducted with such a participant to probe his/her thinking 

processes and the explanation provided for using that strategy, or to obtain other 

similar responses. The last criterion, appropriate use of a specific strategy or 

comments with the potential for further discussion, relates to the case where the 

participant was able to indicate his/her levels of engagement in the four phases of the 

PS conceptual framework. The interview was conducted with such a participant to 

obtain an explanation for the chosen strategy, and also to obtain a deeper 

understanding of the strategy used. 

 

An audio tape recorder was used to record the participants’ responses during the 

interviews in order to transcribe the responses later. “The recording of the interview 

makes it easier for the researcher to focus on the interview content and the verbal 

prompts and thus enables the transcriptionist to generate verbatim transcript of the 
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interview” (Jamshed, 2014:87). To ensure that there was no disruption during the 

interviews, the researcher arranged a suitable place for privacy in the school building 

(staff room). The length of each interview was approximately 30 minutes. The interview 

phase took place during the period from 18th to 22nd July 2018, and the researcher 

took 3 days to complete the interviews with the three participants.  Table 3.5 illustrates 

the management plan and the profile of the participants who were involved in the 

interviews. 

 

Table 3.5: Management plan for the interviews 

Schools  A B C 

Date  18 July 2018 20 July 2018 22 July 2018 

Time  15H00–15H30 15H00–15H30 16H00–16H30 

Venue Staff room of school A Staff room of school B Staff room of school C 

 

3.3.5 Data analysis 

In this study each participant’s written activity, and the three participants’ one-on-one 

interview transcripts, were analysed and interpreted separately to form a picture of the 

learners from each school. The findings from the data-analyses were organised, 

discussed, and interpreted according to the levels of engagement in the four phases 

of the PS conceptual framework (Singer & Voica, 2013). Data were analysed in two 

stages.  

 

In stage one, participant scripts, with their written activity, were collected by the 

researcher. Thirty (30) scripts per school were collected to make a total of 90 scripts. 

These scripts were marked by the researcher using a marking guideline (see Appendix 

D). Content analysis following a deductive approach was used to analyse the collected 

data from the written activity. Maree (2007) defines content analyses as a systematic 

qualitative data analysis approach that identifies and summaries the message. In the 

context of this study the learners’ scripts were read thoroughly and repeatedly for 

‘sense making’ and to identify the strategies that had been used, and how the 

participants had solved the question in order to create a theory. A deductive approach 

was used to analyse the data according to the levels of engagement in the four phases 

of the PS conceptual framework, which highlights the four phases for effective problem 

solving, namely the decoding phase (DP), the representing phase (RP), the 
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processing phase (PP), and the implementing phase (IP) (see section 4.3). 

Participants who left blank space to all questions were coded as DP0, RP0, PP0, and 

IP0 and grouped together, the total was calculated. This section used both the protocol 

and the indicators to analyse the level of engagement in the written activity by learners 

per school (see section 4.3).   

 

In stage two, one-on-one semi-structured interviews were transcribed into a written 

form that was further analysed using content analysis. The initial coding scheme for 

number pattern problem was again based on the levels of engagement in the four 

phases of the PS conceptual framework, as for the written activity. For example, 

indicators for decoding were coded as DP0, DP1, DP2 and DP3 (see section 4.3.3). 

In DP3 responses the participants showed an understanding of the level of 

engagement in the DP by accurately, appropriately and flexibly interpreting, 

recognising and expanding a number pattern, and relate numbers and operations with 

the problem statement. Participants with a response coded as DP2 showed an 

acceptable level of decoding with minor errors. This participant did not focus on finding 

relationships between the data and mathematical operators, and showed a lack of 

integration and interpretation of negative numbers. This means that the participant 

showed no knowledge of how to use the mathematical operation of subtraction and 

negative signs. The participant showed an incorrect understanding of negative 

numbers. Participant responses coded as DP1 indicated decoding with major 

mathematical errors. Lastly, DP0 indicated that participants left blank spaces, or did 

not respond to the question or showed no engagement in the DP 

 

Lastly, a constant comparative analysis was used to ascertain the levels of 

engagement in the four phases of the PS conceptual framework in the participants’ 

strategies derived from the analysis of the written activity and the interviews (see 

section 4.6). Matthews and Ross (2010) defined a “constant comparison method as 

comparing data from different sources and from different places and times to support 

the analysis, along with the search for negative cases” (p. 400). “Constant comparison 

serves to uncover and explain patterns and variations” (Bitsch, 2005:79). 

 



 
 

 66  
 

3.4 QUALITY CRITERIA 

3.4.1 Establishing trustworthiness 

According to Guion et al. (2002), “validity in qualitative research, refers to whether the 

findings of a study are true and certain” (p. 1). Direct quotations from the participants, 

and a detailed description of the data, was provided to ensure validity. Trustworthiness 

was ensured by using triangulation. “Triangulation is a method used by qualitative 

researchers to check and establish validity in their studies”; it uses two or more 

methods of data collection (Guion et al., 2002:1). Creswell (2008) defines triangulation 

as “a validity procedure where researchers search for convergence among multiple 

and different sources of information to form themes or categories in a study” (p. 126). 

The different sources of data that were analysed and triangulated were participants’ 

written activity and interviews. The findings were then compared to ascertain the levels 

of engagement in the four phases of the PS conceptual framework in the participants’ 

strategies derived from the analysis of the written activity and the interviews. This 

approach increased the likelihood that the phenomenon of interest was being 

understood from various points of view (Maykut & Morehouse, 1994). Trustworthiness 

was also established by considering credibility, transferability, dependability, and 

confirmability (Lincoln & Guba, 1985; Peters, 2011). 

 

3.4.1.1 Credibility 

Credibility ensures that the study measures what is actually intends to measure and 

determines how congruent the findings are with reality (Shenton, 2004). Ary et al. 

(2010) define credibility in qualitative research as the “concerns of the truthfulness of 

the inquiry’s findings” (p. 498). Therefore, participants were given a written activitiy to 

complete in the presence of a researcher and interviews were conducted based on 

what participants wrote in their activity. To further ensure credibility, a Mathematics 

Education lecturer from another university was consulted to assist with specialised 

advice regarding the clarity of the interview questions, the design of the activity sheet 

and assessment grid, and the establishment of the indicators for the four phases of 

the PS conceptual framework. In order to enhance the credibility of the findings, data 

were interpreted and compared with reference to the levels of engagement in the four 

phases of the PS conceptual framework of Singer and Voica (2013). During the 

interview, participants were asked structured questions and the researcher behaved 

impartially, without showing any personal interest, in order to avoid bias and enhance 
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the degree of objectivity. Before drafting the final report, interview transcripts were 

presented to the participants to confirm the accuracy of the transcriptions. The raw 

data, along with the interpretation of the findings, were forwarded by the researcher to 

another university for peer reviewing. 

 

3.4.1.2 Transferability 

Transferability is the “provision of background data to establish context of study and 

detailed description of phenomenon in question to allow comparisons to be made” 

(Shenton, 2004:73). To ensure transferability, a dense description of the findings from 

the written activity and interviews were provided to make judgements about the 

similarities and differences between case studies with regard to strategies used to 

solve number pattern problems. To further ensure transferability, verbatim quotes from 

the interviews were provided to demonstrate how the findings and the researcher’s 

interpretations arose from the data. 

 

3.4.1.3 Dependability 

Dependability refers to reliability in qualitative studies. A study is reliable if it is 

repeated in the same context using the same data collection methods and participants 

with the same characteristics and similar results are obtained (Shenton, 2004). To 

ensure dependability of the study, the researcher continued interviewing participants 

until data-saturation was reached. According to Fusch and Ness (2015), “data 

saturation is reached when there is sufficient information to replicate the study, when 

the ability to obtain additional new information has been attained, and when further 

coding is no longer feasible” (p. 1408). An audit trail was kept to enable readers to 

evaluate the context of this study (Ary et al., 2010:502). The audit trail contains all the 

raw data gathered in interviews and the written activity, and records of the researcher’s 

decisions about whom to interview and why. These   raw data (audio recording and 

learners’ written activity) have been stored for verification. 

 

3.4.1.4 Confirmability 

Confirmability ensures that the “worker’s findings are the result of the experiences and 

ideas of the participants, rather than the characteristics and the preferences of the 

researcher” (Shenton, 2004:72). Member checking was applied to validate the 

emerging findings from the data analysis. Bitsch (2005) suggested the following 
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questions to ask pertaining to member checking: “have data and interpretations been 

re-checked with the participants? Did those who provided the data agree with findings 

and interpretations? Have they been heard and did they contribute to the final findings 

and conclusions?” (p. 84). Therefore, participants who were interviewed were asked 

to verify the accuracy of the verbal quotations that were recorded in the interview. 

Those participants acknowledged that transcripts were true reflection of what they 

said.  

 

3.5 ETHICAL CONSIDERATIONS 

The Faculty of Education Academic Ethics Committee of the University of 

Johannesburg (Appendix C) and the Limpopo Department of Education (Appendix D) 

granted the researcher ethical clearance to conduct this research study. Before the 

study commenced the researcher informed the participants, School Governing Bodies 

(SGB) and the school principals about the purpose and process of the study and 

requested permission (Appendix E). Written permission was obtained from the 

respective school principals and SGBs (Appendix F). Parents were informed about the 

purpose and process of the study and were asked to sign a letter of consent (Appendix 

G) to allow their children to participate. Participants were asked to sign letters of 

consent (Appendix H) to participate, which included a description of the research 

process and purpose. Ninety participants took part in the study voluntarily. No harm 

or discomfort was associated with participation in this study. Participants were at 

liberty to withdraw from the study at any time, without penalty or pressure to provide 

reasons to the researcher. Every effort was made to guarantee the participants’ 

confidentiality and privacy.  

 

To ensure anonymity and secure the privacy of the participants, no names were 

requested throughout the data collection process. The researcher protected the 

identities of schools and those of participants. The following procedure was used to 

establish name codes for the participants in the three selected schools: letters of the 

alphabet (A, B and C) were assigned to each school to protect their identities. A 

implying the first school, B implies the second school and C implies the third school. 

To distinguish one participant from another, for example in School A, participants were 

named A1, A2, A3, etc. For School B, participants were named B1, B2, B3, etc. The 

same applies for School C. Participants were named C1, C2, C3, etc...  All data 
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collected were treated anonymous and kept under lock and key. Only the researcher 

had access to the data. Data were securely stored and will be kept for no longer than 

two years after completion of the study. Thereafter, all collected data will be destroyed. 

Although there could be risk of group or cohort identification in research publications, 

the participants’ personal identity will always remain confidential.  

 

3.6 CHAPTER SUMMARY 

Chapter 3 deals with the research design and research methodology used in the study. 

In particular, the chapter describes the philosophical assumptions (the 

epistemological, ontological, and axiological assumptions) of the study. The qualitative 

research approach followed in this study assisted the researcher to develop a deep 

understanding of the learners’ strategies used on number pattern problems. The 

researcher used an exploratory case study.  

 

A clear indication of the sampling techniques, data collection processes, and data 

analysis procedures are also provided. Purposive sampling was used for this 

qualitative study. The researcher selected participants that were doing mathematics 

in grade 9. The data were collected through a written activity and semi-structured 

interviews. Data analysis was carried out by means of content analysis, following a 

deductive approach, to analyse participant scripts and interviews. The phases of the 

PS conceptual framework (Singer & Voica, 2013), namely, decoding, representing, 

processing and implementing, formed the categories for the analysis. Finally, the 

levels of engagement in the four phases of the PS conceptual framework in strategies 

from the analyses of the written activity and the interviews were compared. 

Trustworthiness of the study was discussed with reference to credibility, transferability, 

dependability, and confirmability. Lastly, ethical considerations taken into account 

were reported. The next chapter will focus on data analysis and the interpretation of 

findings.   
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CHAPTER 4: DATA ANALYSES AND DISCUSSION OF FINDINGS 

 

4.1 INTRODUCTION  

In Chapter 3 it was mentioned that qualitative research provides a rich description of 

the phenomenon under investigation (Merriam, 2009); and was therefore chosen for 

this study. Specifically, this study focussed on meaning and understanding of learners’ 

strategies in solving number pattern problems. Therefore, this study, gathered data 

from participants’ scripts containing the written activity; to analyse grade 9 

mathematics learners’ strategies used to solve number pattern problems. Also, data 

were collected from one-on-one interview with the participants to establish the 

strategies grade 9 mathematics learners use to solve number pattern problems. This 

chapter deals with the analysis of these collected data and discusses and interprets 

the findings regarding the strategies grade 9 mathematics learners use in solving 

number pattern problems from three rural schools. Specifically, five steps were 

followed to analyse data. These steps are outlined next.  

 

The first step was to obtain the profile of schools and biographic information of 

participants. Step two provided a brief description on how the written activity was 

analysed, including the protocol for analysing the number pattern problems, and a 

description of the phases from the PS conceptual framework. Step three discussed 

the findings from the analyses by interpreting the levels of engagement in the written 

activity by the participants separately according to each of the three schools (school 

A, school B and school C) in terms of the levels of engagement in the four phases of 

the PS conceptual framework of Singer and Voica (2013) (see section 2.8). Step four 

involved data analyses from the one-on-one semi-structured interviews with 

participants to understand their views on the PS conceptual framework strategies and 

their explanation for using these strategies to solve number pattern problems, rather 

than simply interpreting strategies from the written activity.  Finally, in step five, the 

levels of engagement in the four phases of the PS conceptual framework of Singer 

and Voica (2013) in strategies from the analysis of the written activity and the 

interviews were compared. Table 4.1 that follows provides a summary of the five steps 

followed to analyse data in this study. 
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Table 4.1: Summary of the steps followed in the data analysis 

Step 1 Profile of schools and biographic information of participants 

 School A 

 School B 

 School C 

Step 2  Analysis of the written activity on number pattern problems 

 Analysing of questions on number pattern problems 

 Description of phases of the PS conceptual framework 

Step 3 Findings from the analysis of the written activity on number pattern 

problems according to the phases 

 Findings and discussion of participant responses on number pattern 

problem 

Step 4 One-on-one semi-structured interviews with three participants 

 Findings on views of decoding and interpretation 

 Findings on views of representation and interpretation 

 Findings on views of processing and interpretation 

 Findings on views of implementing and interpretation 

Step 5 The levels of engagement in the four phases of the PS conceptual 

framework of Singer and Voica (2013) in strategies from the analysis of the 

written activity and the interviews 

 

4.2 PROFILE OF SCHOOLS AND DEMOGRAPHIC INFORMATION OF 

PARTICIPANTS 

The following sections provide the background information and demographic details 

of participants, which were collected form the circuit office prior to the study. 

 

4.2.1 School A 

School A was established in 1971 with only two classroom blocks. The school was 

renovated in 2012 and now consists 15 blocks including a library and a laboratory. It 

was the first secondary school in the village to be used for this study. The school’s 

enrolment at the time of the study was 320 learners, with 8 teachers including the 

principal. The school had 31 grade 9 learners with 20 females and 11 males, but 20 
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females and 10 males participated, thus, in total 30 learners participated. The ages of 

the selected learners ranged from 15–17 years. The grade 12 pass rate in 2017 was 

58%. This school was classified as an underperforming school in 2018. According to 

the DBE, this means that the school’s grade 12 results were below the benchmark of 

65%.  

 

4.2.2 School B 

School B was established in 1990, and was the second secondary school in the village 

to be used for this study. At the time of the study, the school had an enrolment of 118 

learners, with 5 teachers including the principal. The school had one class of 33 grade 

9 learners with 21 males and 12 females. The age of learners ranged from 15–16. Ten 

females and 20 males participated in this study, thus, in total 30 learners participated. 

The grade 12 passed rate in 2017 was 45% and it was declared a chronically 

underperforming school in 2018, meaning the school had been underperforming for 

three consecutive years (according to the DBE). 

 

4.2.3 School C 

School C is currently the largest in the village in terms of learner enrolment, but did 

not have sufficient equipment or classrooms to cater for all learners. This was the third 

secondary school used for this study. The school was established in 1994 and the 

grade 12 pass rate for the school has never been less than 80%. In 2017, the grade 

12 passed rate was 90%.  

 

At the time of the study, the school had an enrolment of 884 learners and 24 teachers 

(including the principal and the deputy principal). The school had 142 grade 9 learners 

evenly distributed in two classrooms; grade 9A with 63 learners (27 are males and 36 

females) and grade 9B with 79 learners (38 are males and 41 females). The ages of 

learners ranged from 14–16. Fifteen females and 15 males participated in this study, 

thus, in total 30 learners participated. Table 4.2 gives a summary of the selected 

schools and demographic information about the participants. 
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Table 4.2: Summary of selected schools and demographic information of 

participants 

Schools A B C 

Year established 1971 1990 1994 

2018 learner enrolment  320 118 884 

Number of teachers 8 5 24 

2017 grade 12 performance 58% 45% 90% 

Number of grade 9 learners 

enrolled in the schools and who 

participated in the study 

31 enrolled 

30 participated 

33 enrolled 

30 participated 

147 enrolled 

30 participated 

 

4.3 ANALYSIS OF THE WRITTEN ACTIVITY ON NUMBER PATTERN 

PROBLEMS 

 

4.3.1 Protocol for analysing the number pattern problems 

A protocol for analysing the written activity (Appendix J) was developed to identify the 

levels of engagement in the four phases of the PS conceptual framework. This 

protocol, as well as the marking guideline (Appendix I), was used to analyse learners’ 

responses to the written activity. For example, if the protocol showed that participants 

reached a certain phase of the PS conceptual framework, e.g. the decoding phase 

(DP), representing phase (RP), processing phase (PP), or implementing phase (IP), 

then the indicators for DP, RP, PP, and IP were used to analyse participants’ 

responses. In the analysis of the participants’ scripts the focus was on identifying 

strategies used by learners when solving number pattern problems. 

 

4.3.2 Description of phases of the PS conceptual framework   

For the study to analyse the participants’ responses from the written activity, and to 

identify the strategies used for number pattern problems, phases of the PS conceptual 

framework were used. Literature discussed in Chapter 2 helped to unpack the PS 

conceptual framework and the strategies that participants used for number pattern 

problems. Indicators from the four phases of the PS conceptual framework are 

discussed next. When learners’ responses were analysed, these indicators 

determined the competency that learners displayed in their response to number 

pattern problems.  
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4.3.3 Indicators for the decoding phase (DP) 

In Chapter 2 (section 2.8) the researcher discussed the PS conceptual framework of 

Singer and Voica (2013), who argue that decoding is the ability to move focus from 

the wording of the problem (understanding the text) to relations among the data and 

the operating schemes that are induced by the given constraints. Clement (2008) 

defines decoding as the ability to interpret the given statement and to identify the key 

words in order to solve the problem (see sub-section 2.8.1). Data concerning the DP 

were analysed using the key given in Table 4.3.   

 

Table 4.3: Key for analysing the decoding phase (DP) 

Codes  Actions of participants  

DP3 Participants at level 3 could show an understanding of the level of engagement in 

the DP accurately, appropriately and flexibly  by interpreting, recognising and 

expanding a number pattern, and related numbers and operations with the 

problem statement. 

DP2 Participants at level 2 could show acceptable level of engagement in the DP with 

minor errors. However, they could not show knowledge of how to use the 

mathematical operation of subtraction.   

DP1 Participants at level 1 could display some insight into decoding, but with major 

mathematical errors. The participants made major mistakes when interpreting the 

mathematical structure and a numerical pattern. The participants concentrated 

only on the relationship between a single pair of beads (white beads)  and used it 

as a general rule. 

DP0 Participants at level 0 left blank spaces, did not respond to the question, or 

showed no level of engagement in the DP. 

 

A participant response to the written activity coded as DP3 showed an understanding 

of the level of engaging in the DP accurately, appropriately and flexibly. For question 

1, the participants were required to observe the sequence of numbers and to be able 

to use the correct mathematical operators in order to extend the pattern to the next 

number. Therefore, they had to understand and to identify mathematical operators, 

which would help them to realise that this problem involves a decreasing numbers 

pattern.    
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The second question represented an increasing linear pattern in a visual context, 

which required participants to have the ability to interpret the given statement and to 

understand what the problem is about. Therefore, decoding required noticing a 

transition from smaller flower to growing flower. Therefore, those participants were 

expected to be able to move beyond the data, by generating and predicting the 

problem statement, thus, the participants had to understand the problem and the 

mathematical operations within the problem statement. Moreover, the participants had 

to be able to comprehend mathematical concepts on number patterns that would be 

helpful in solving the problem. 

 

Participants with a response coded as DP2 had to show an acceptable level of 

engagement in the DP with minor errors. However, these participants could not focus 

on finding relationships between the data and mathematical operators, and showed a 

lack of integration and interpretation of negative numbers in question 1. This means 

that the participants showed no knowledge of how to use the mathematical operation 

of subtraction and negative signs. The participants showed an incorrect understanding 

of negative numbers. For example: −4 − (−2), this would be read as negative four 

plus  two, but they said negative four minus 2 and ignored the negative two. For the 

second, the participants coded DP2 were not able to interpret the given statement and 

to understand what the problem is about, which resulted them not noticing a transition 

from smaller flower to growing flower. 

 

Participants with a response coded as DP1 reached some insight of decoding but with 

major mathematical errors; taking information as it is from the data, which means 

reading the data with little understanding of, for example, locating or translating. For 

question 2, the participants made major mistakes when decoding the structure. The 

participants concentrated only on the relationship between a single pair of beads 

(white beads) (n; f (n)) and used it as a general rule. For example, the participants saw 

that there were six white beads in the first flower f (1) = 6 × 1 = 6, and then used the 

rule f (n) = 6n to find the number of beads with 3 flowers f (3) = 6× 3 = 18; hence the 

participants used a direct proportional strategy.  

 

Participants who gave a DP0 response left blank spaces, did not respond to the 

question, or showed no levels of engagement in the DP. 
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4.3.4 Indicators for the representing phase (RP) 

Singer and Voica (2013) explain representing as the ability to understand a problem 

by generating a mental model. In the context of this study, a mental model is an 

explanation of learners’ thought processes about how number pattern problems work 

in the real world (see sub-section 2.8.2). Three types of mental representations were 

taken into account in the analysis of the data, namely: proportional representations, 

mental models, and mental images. Data concerning the RP were analysed using the 

key given in Table 4.4.  

 

Table 4.4: Key for analysing the representing phase (RP) 

Codes  Actions of participants 

RP3 Participants were classified at level 3 if they could focus on the comprehension of 

the situation, as well as the mathematics concepts in the activity. Those 

participants who were classified as having a mental model at level 3 prioritised a 

qualitative approach, such as an explanation of how to get the next term of the 

sequence to complete the table value and to draw the correct diagram. 

RP2 Participants were classified as having a mental image representation at level 2 if 

they could show an awareness of the relationship among the flowers and the 

beads, and could mention the previous term and the next term. They could also 

recognise the applicability of the qualitative method to solve the problem. 

Participants could provide reasons for the problem even if they failed to handle 

the mathematical part of the problem.  For example, they could recognise the 

common difference between consecutive numbers, but incorrectly used it to 

determine the next term. Although they could reason about the number of beads 

and the flower, they used the incorrect diagram.  

RP1 

 

Participants at level 2 were classified with propositional mental representation if 

they tended to use definitions and handled mathematical formulations in a rote 

and mechanical manner. They showed no evidence of understanding of the 

underlying concepts of a number pattern. They manipulated equations by directly 

applying multiplication of the common difference when the pattern increased.   

RP0 Participants at level 0 left blank spaces or did not respond to the question. 

 

Participants whose responses were coded as RP3 could present a mental model 

showing “comprehension of the situation, as well as the mathematics concepts 
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highlighted in the activity. Moreover, before dealing with equations they could include 

a diagrammatic representation in their problem solution” (Ibrahim & Rebello, 203:4). 

For question 1, the participants reaching RP3, were required to find the connection 

between the previous term and the next term in order to produce a mental model (with 

or without visual support) suggested by the problem (such as, drawing, words, 

symbols, graphs, table values or number line). The participants who were classified 

as having a mental model prioritised a qualitative approach, such explanation of how 

to get the next term of the sequence to complete the table value. 

 

For question 2, participants had to progress by establishing a mental model of this 

problem by means of a correct drawing. The participants had to be aware that each 

flower must be a joint unit to form a linear pattern. Each flower shared two white beads 

to have a complete flower, four white beads were added to the end of each prior flower 

to create a new flower, and then added two beads to give me a complete flower. 

Drawing involves creating a mental image of how many white and black beads will be 

needed to make a necklace with three flowers. Therefore, at this phase the participants 

had to explain how their extension followed the pattern. Those participants who were 

classified as having a mental model also emphasised the identification and 

understanding of number pattern principles or concepts. 

 

Participants whose responses were coded as RP2 partially created concrete 

representations of the pattern. Participants could provide reasons for the problem even 

if they failed to handle the mathematical part of the problem (Ibrahim & Rebello, 203). 

For question 1, the participants could provide reason on how to find the common 

difference but the sign that the common difference should take was also a challenge, 

they could not subtract -3 from each term to get the next term on the sequence. For 

question 2, the participants who were coded RP2, demonstrated a diagrammatic 

representation (flowers) which may not be linked to the mathematical formulations 

used. Those participants were aware of the relationship among the flowers and the 

beads and they could recognise the applicability of the qualitative method to solve the 

problem, but used the incorrect diagram. 
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Participants whose responses were coded as RP1 were unable to create concrete 

representations of the number pattern problems. The participants could only “focus on 

given or apparent information and only prioritised manipulation of equations with rote 

memorisation and pattern matching of information” (Ibrahim & Rebello, 203:4). For 

question 1, they applied a multiple of common difference without making a final 

adjustment to give the generalise formula. For question 2, the participants attempted 

the tasks structured with a symbolic presentation by using a quantitative approach to 

determine a value of white beads that Joana needed to make three flowers. 

 

Finally, participants who did not engage in the written activity or left blank spaces were 

coded as RP0.  

 

4.3.5 Indicators for the processing phase (PP) 

The PP was the phase where a mathematical model associated with the problem could 

be identified, either in the form of an equation, a formula, a system, steps of a graphical 

representation, or various computing algorithms (Singer & Voica, 2013) (see sub-

section 2.8.3). In the context of this study, the model focused on describing pattern 

and external representations (drawing, table, or symbols) to build an understanding of 

the system that is modelled. Data concerning the PP were analysed using the key 

given presented in Table 4.5. 

 

Table 4.5: Key for analysing the processing phase (PP) 

Codes  Actions of participants 

PP3 Participants at level 3 could construct a mathematical model and then used it to 

show how the number of a previous term depended on the number of the next 

term. 

PP2 Participants at level 2 could create a mathematical model, with minor errors in 

finding the term of the sequence. They made application errors by thinking that 

“n” is the term that follows the previous term and applied numerical expressions 

instead of using an algebraic expression. 

PP1 Participants at level 1 created an incorrect formula to generalise the sequence. 

They applied the formula of the common difference that is T2-T1;T3-T2… as a 

general formula. 

PP0 Participants at level 0 left blank spaces or did not respond to the question. 
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Participants whose responses were coded as PP3 could construct a mathematical 

model and then use it to generalise a mathematics formula to show how the number 

of the previous term depends on the number of the next term.  The participants had to 

produce mathematical models, such as formulas, equations, pictures, and drawings 

relevant to the problem statement. Furthermore, when identifying an algebraic 

equation, the variables had to describe the number patterns in a general form.  

 

For question 2, participants had to advance from drawing to the awareness that the 

problem involved the use of the following mathematical tools: linear pattern, algebra 

equation, mathematical operators, and meaning of variables. The participants needed 

to construct a mathematical model and then use the model to generalise a formula to 

show how the number of white beads, at the end, depend on the number of white 

beads. Participants were expected to formulate a pattern and to generalise a rule for 

the linear pattern (generalising). Participants had to extend the pattern by identifying 

the rule, and then use the rule to build and draw the next flowers. 

 

Participants whose responses were coded as PP2 created a model (general formula) 

with minor errors in finding the terms of the sequence, for example, participants made 

an application error in determining the unknown term, such as the nth term. For 

question 1, the participants correctly completed the table value, but performed an 

application error by thinking that “n” is the term that follows -23 and applied numerical 

expressions instead of using an algebraic expression. The participants were not able 

to find adequate rule (question 2), revealing difficulties in finding a functional 

relationship between the number of white and black beads to make flowers and 

making mistakes like the application of a direct proportion model when not adequate. 

The participants started by processing the situation with a drawing, at the end they 

were unable to discover the pattern due to the application of inadequate strategies: 

counting (using a confusing diagram), or considering a direct proportional model. 

Considering the rule to find the number of beads in three flowers was Tn=6×n, n being 

the number of flowers. 

 

Participants whose responses were coded as PP1 created an incorrect formula to 

generalise the sequence. For question 1, the participants were coded on PP1 if they 
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created an incorrect formula to generalise the sequence to find the nth term. The 

participants had evidence on how to calculate the common differences, but mistakenly 

taking the calculation of the common difference to be the calculation of the general 

formula of the sequence. When the participants were asked about the rule of the 

pattern when the number of flower increases (question 2), they stated that they only 

perceived the difference between two terms as a rule. These participants were able to 

make local generalisations and rise until PP1 level.  

 

Finally, participants coded as PP0 level left blank spaces or did not respond to the 

question. 

 

4.3.6 Indicators for the implementing phase (IP) 

The IP is concerned with applying techniques that are specific to the found 

mathematical model, using a multiple solution strategy and producing mathematical 

explanation and justification for the solution, and generally questioning the model 

(Singer & Voica, 2013) (see sub-section 2.3.4). These techniques might involve, for 

example, recognising the different ways of proving the solution; minimising the values 

that do not satisfy the constraints of the problem; using helpful constructions, 

substitutions or using a known algorithm. During the IP, the participants could also 

apply knowledge of what is already known about the problem to test the model or the 

equation that is chosen. Data concerning the IP were analysed using the key given in 

Table 4.6. 
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Table 4.6: Key for analysing the implementing phase (IP) 

Codes Actions of participants 

IP3 Participants at level 3 could apply techniques that were specific to the found 

mathematical model. The participants could implement the correct general rule to 

obtain the correct solution.  

IP2 

 

Participants at level 2 could implement the solution in a manner that addressed 

the problem statement, but ignored relevant contextual factors. The participants 

could indicate that the rule to find the number of white beads was Tn = 6n.  

IP1 

 

Participants at level 1 implemented the solution in a manner that did not directly 

address the problem statement. The participants were aware of the common 

difference between consecutive numbers, but conducted the wrong 

mathematical model and used a direct proportional model to implement the 

solution. e.g. Tn=-3n. 

IP0 

 

Participants left blank spaces or did not respond to the question. 

 

Participants whose responses were coded as IP3 could apply techniques specific to 

the found mathematical model; could produce mathematical explanations and 

justification of the solution; and could generally question the model. To reach the IP3 

(question 1), the participants were required to implement the mathematical model 

suggested by the problem to find any nth term of the sequence. For question 2, 

participants coded IP3, had to develop from recognising mathematical tools to 

applying techniques that were specific to the found mathematical model in order to 

obtain final results. They were also required to refer back to the previous pattern using 

their general rule to check if their solution worked best. The participants had to explore 

the possible situations through a formula to check whether it could be applied to any 

nth term. 

 

Participants, whose responses were coded as IP2 could implement the solution in a 

manner that addressed the problem statement, but ignored relevant contextual factors. 

These participants could not produce a mathematical model, and also failed to 

substitute the correct value to arrive at the correct solution both for question and two.  

The participants indicated that the rule to find the number of white beads was Tn = 6n 

(question 2), and six was incorrect common difference for this problem. This rule 
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indicated that they did not properly analyse the structure of the flower, but thought 

each flower is a disjoint unit. Therefore, the participants used a direct proportional 

strategy which was not relevant to the given problem. 

 

Participants whose responses were coded as IP1 implemented the solution in a 

manner that did not directly address the problem statement. Even though the 

participants were aware of the common difference in question 1, they conducted the 

wrong mathematical model, such as Tn=-3n, and used a direct proportional model to 

implement the solution in question 1. Participants used a direct proportional strategy 

without adjustment to the problem, meaning that participants were directly picking up 

numbers from the given problems and using multiplication.  

 

Participants who left blank spaces or did not respond to the question were coded as 

IP0. 

 

4.3.7 Coding strategy 

Various strategies can be utilised to solve number pattern problems. García Cruz and 

Martinón (1997) analysed the generalisation procedures on number pattern problems 

created by high school learners and have identified the following primary categories: 

counting strategy, recursive approach, and direct proportional strategy. While Ibrahim 

and Rebello (2013) investigated the mental representation categories with which 

learners operate during problem solving of distinct formats of representational tasks. 

The results indicate that leaners work at the three levels of mental representation, 

namely: propositional; mental images and mental model representation.  

  

Barbosa et al. (2012) define a counting strategy as counting the elements of a 

particular number or figural term in a pattern. Lannin et al. (2006) define a recursive 

approach as a connection between successive independent variable values in the 

scenario. Lannin et al. (2006) mention that learners may select a recursive strategy 

because they want to determine a general rule based on an understanding of a 

relationship that occurs in the situation. Both direct counting and recursive strategies 

were evident during the decoding phase (DP). Besides, the participants using 

recursive, counting and direct proportional strategies, the tendency to convert shape 

pattern problems into number sequence problems was very high. In the counting 
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strategy used in this study, the participants knew the starting point of the sequence, 

and counted up or counted down to generate the unique sequence. They also started 

making mathematical predictions, such as finding the next term of the sequence.  For 

the recursive strategy, the participants used the common difference to find the next 

term of the sequence and adjust it to find the general formula.  

 

Barbosa et al. (2012) define direct proportion strategy as a situation, where the 

multiples of a specific term of a sequence is considered, and the problems presented 

in the test do not fit that model. Similarly, Lannin (2003) describe this strategy as “using 

a portion as a unit to construct a larger unit using multiples of the units. The strategy 

of direct proportion, even inappropriately employed, was evident in both the 

processing phase (PP) and the implementing phase (IP). Those participants who used 

direct proportional they indicated some techniques for manipulating expressions and 

equations, but without a basic underlying understanding of what the variables and 

numbers represent. Hence, they used the direct proportional strategy to manipulate 

the equation. They could only focus on given information and only prioritised 

manipulation of equations with rote memorisation and pattern matching of information. 

 

For example, in question 2, Joana needs 6 white beads and one black bead to make 

one flower. How many white and black beads will Joana need to make a necklace with 

3 flowers? therefore, for 3 flowers will be (6 x 3 = 18 white beads and one three black 

beads). Those participants tended to inadequately use a direct proportion model, in 

some way familiar to them. This may indicate that they did not properly analyse the 

structure of the sequence, thinking of each flower as a disjoint unit. Most of them 

considered that each flower had six white beads and one black, so a necklace with 

eight flowers would have forty-eight white and eight black beads and a necklace with 

twenty-five flowers would have hundred and fifty white and twenty-five black beads. 

 

Ibrahim and Rebello (2013) define mental image representation as having the 

tendency the tendency to include a diagrammatic representation which may not be 

linked to the mathematical formulations used. The strategy of mental image 

representation was evident during the representing phase (RP). Both for questions 1 

and 2, the participants started by portraying the situation with a drawing, but ultimately 
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they were unable to discover the pattern due to inadequate strategies (using a 

confusing diagram). 

 

According to Ibrahim and Rebello (2013), mental models provide a means to connect 

the syntactic (mathematical) and structural (visual) aspects of the task under 

consideration, which allow for interpretation and understanding. Mental model 

representation was evident in the RP.  In question 1, one participant stated that “the 

fast way to get -3 is to multiply the nth by (-3), n × (-3) = -3n, therefore substitute the 

first position to see if it gives you a first term. If it does not give a first term, then I added 

1 to give -2”. 

 

4.4 FINDINGS FROM THE ANALYSIS OF THE WRITTEN ACTIVITY ON NUMBER 

PATTERN PROBLEMS ACCORDING TO THE PHASES 

The indicators for the phases of the PS conceptual framework were used as codes to 

categorise the actions that participants displayed in their responses to the written 

activity, evident in participants’ scripts (a total of 90 scripts – 30 from each of the three 

selected schools). The written activity consisting of two questions can be found in 

Appendix A. The 90 participants’ responses to the written activity were marked by the 

researcher using the making guideline (see Appendix I). The indicators developed for 

the four phases of the PS conceptual framework were used to code the participants’ 

work as they move from DP to IP (see Appendices P, Q and R for examples of coded 

written activities from each school).  

 

In some cases, it is found that the participants were not able to complete the cycle, 

that is moving to the highest level of the phases, namely DP3, RP3, PP3 and IP3. For 

example, nine participants were able to showed an understanding of decoding 

accurately and were coded at DP3, but only four of them focused on comprehension 

of the situation, as well as the mathematics concepts in the activity and they were 

coded at RP3. The other five participants from the total of nine who were unable to 

move to RP3, could, however, provide reasons for the problem even if they failed to 

handle the mathematical part of the problem and they were coded at RP2. Three 

participants from those four participants who were coded RP3 moved to PP3. They 

constructed a mathematical model and then used the model to show how the number 

of previous term depends on the number of the next term. Finally, only two participants 
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applied techniques that were specific to the found mathematical model and were 

coded at IP3. The participants who were coded at DP1 reached some insight into 

decoding, but made major mathematical errors. These participants could not move to 

RP2, but were coded at RP1, meaning the participants focused on given or apparent 

information or prioritised the manipulation of equations with rote memorisation or 

pattern matching of information. These participants created an incorrect formula to 

generalise the sequence PP1. 

The participants who were able to implement the solution in a manner that did not 

directly address the problem statement were coded IP1. Table 4.7 shows the analysis 

of the number of participants (per school), who engaged in the four phases of the PS 

conceptual framework per indicator with regard to their responses in the written 

activity. The grey-shaded row (DP0, RP0, PP0 and IP0) represents the number of 

participants who left blank spaces or did not respond to the questions. 

Table 4.7: Number participants (per school) who responded according to the 

phases of the PS conceptual framework

 School A 

Indicators Phases Total 

number of 

participants 

(N) 

Decoding 

(DP) 

Representing 

(RP) 

Processing 

(PP) 

Implementing 

(IP) 

0 5 5 5 5 20 

1 11 11 10 9 41 

2 5 5 5  4 19 

3 9 5 4 2 20 

Total number 

for phases 

30 26 24 20 100 
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School B 

Indicators Phases Total 

number of 

participants 

(N) 

Decoding 

(DP) 

Representing 

(RP) 

Processing 

(PP) 

Implementing 

(IP) 

0 10 10 10 10 40 

1 12 10 9 7 38 

2 6 4 3 3 16 

3 2 2 1 1 6 

Total number 

for phases 

30 26 23 21 100 

School C 

Indicators Phases Total 

number of 

participants 

(N) 

Decoding 

(DP) 

Representing 

(RP) 

Processing 

(PP) 

Implementing 

(IP) 

0 5 5 5 5 20 

1 7 7 6 6 26 

2 8 7 5 4 24 

3 10 8 6 6 30 

Total number 

for phases 

30 28 26 25 100   

Overall (school A, B and C) 

Grand total 

per 

Indicators 

Phases Total 

number of 

participants 

(N) 

Decoding 

(DP) 

Representing 

(RP) 

Processing 

(PP) 

Implementing 

(IP) 

0 20 20 20 20 80 

1 30 28 25 22 105 

2 19 16 13 11 56 

3 21 15 11 9 59 

Grand total 

for phases 

90 79 69 62 300 
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The analysis of the indicators for the decoding phase (DP), the representing phase 

(RP), the processing phase (PP), and the implementing phase (IP) were descriptive 

in nature and were qualitatively analysed. The discussion on each of the indicators 

per school follows. 

 

4.4.1 Findings on the decoding phase (DP) and interpretation 

4.4.1.1 School A  

At school A, five participants (5 out 30) engaged in the activity on DP2, while 11 out of 

30 participants were on DP1, and five out of 30 participants were on DP0. Only nine 

of the participants performed on DP3. The vignette in Figure 4.1 shows an example of 

question 1 of the written activity, from school A, of participant A1 response coded as 

DP2. 

 

Figure 4.1: Participant A1’s response from school A coded as DP2 

 

Participant A1 was one of the 5 participants who showed acceptable levels of 

engagement in the DP with minor errors, and was coded as DP2. The participant 

incorrectly decoded the mathematical operations by indicating that “subtract -3 from 
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each term to get the next term”. The sign that the common difference should take was 

also a challenge, because no clear method seems to have been followed, so it could 

not be traced. So, in this case, there was a minor error of decoding that seems to have 

occurred. Thus, this participant did not focus on finding relationships between the data 

and mathematical operators, and showed a lack of integration and interpretation. This 

means that the participant showed no knowledge of how to use the mathematical 

operation of subtraction and negative signs. The participant showed an incorrect 

understanding of negative numbers. Makonye and Fakude (2016) also found that one 

of the errors learners make is poor interpretation of number lines when dealing with 

directed numbers. They found that learners could easily calculate numbers, which 

have positive and addition operation frames, but could not easily accommodate 

negative numbers or the subtraction operation involving negative integers. Similarly, 

Carvalho and Da Ponte (2017) revealed that the procedure of counting operations is 

one of the greatest problem areas for learners.  

 

4.4.1.2 School B  

At school B, less than half of the participants (12 out 30) could engage in the activity 

on DP1 level, while six of the 30 participants were on DP2, and five of the 30 

participants were on DP0. Only two participants progressed to DP3. The vignette in 

Figure 4.2 shows an example of part of question 2 of the written activity of participant 

B2’s response from school B coded as DP1.  

  

 

Figure 4.2: Participant B2's response from school B coded as DP1 
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Participant B2 was one of the 12 participants who reached some insight of decoding, 

but with major mathematical errors and was coded DP1. The participant focused on 

using information as it is from the data, which means reading the data with little 

understanding. The participant was only locating and translating the given information. 

Participant B2 indicated that “to make three flowers she will need 18 white beads for 

the petals and 3 black beads for the centre of each flower since each flower needs 

only one black centre”. The participant made major mistakes when decoding the 

structure. The participant concentrated only on the relationship between a single pair 

of beads (white beads) (n; f (n)) and used it as a general rule. For example, the 

participant saw that there are six white beads in the first flower f (1) = 6 × 1 = 6, and 

then used the rule f (n) = 6n to find the number of beads with 3 flowers f (3) = 6× 3 = 

18; hence the participant used a direct proportional strategy. Lannin, Barker, and 

Townsend (2006) agree that learners who use a direct proportional strategy 

immediately attempt to calculate particular values in the given statement problem by 

means of multiplication, and fail to adjust for any over- or under-counting.  

 

4.4.1.3 School C  

At school C, only a third of the participants (10 out 30) could engage in the written 

activity on DP3 level, while eight of the 30 participants were on DP2, and seven of the 

30 participants were on DP1. Five of the 30 participants were on DP0 level. The 

vignette in Figure 4.3 shows an example of question 1 of the written activity, from 

school C, of participant C6’s response coded as DP3.   
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Figure 4.3: Participant C6's response from school C coded as DP3 

 

Participant C6 was one of 10 participants who were able to decode the numerical 

pattern that involved negative numbers and he/she also showed a good understating 

of a decreasing pattern. Participant C6 was able to identify the mathematical operator 

needed to solve the problem. Moreover, this participant was able to make connections 

between the data and the unknown in a given problem by indicating the next terms of 

the sequence.  

 

As the sequence continued, the participant knew the starting point of the sequence, 

and the common difference between terms, then generated the unique sequence and 

started to make mathematical predictions, such as finding the value of the 9th term. 

Participant C6 indicated that: 

From the table the fast way to get -3 is to multiply the nth by (-3), n × (-3) = -3n, 

therefore substitute the first position to see if it gives you a first term. If it does not 

give a first term, then I added 1 to give -2. 
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Barbosa et al. (2012) concur that it is important to provide number pattern questions 

that encourage learners to use and understand the potential of interpreting patterns. 

Such questions assist learners to relate number contexts with operations in order to 

understand the meaning of numbers and variables. 

 

4.4.1.4 Summary on findings on decoding 

The first phase was categorised as the DP and required participants to interpret, 

recognise and expand a number pattern, and relate numbers and operations with the 

problem statement. Fewer participants from schools A and B than school C could 

identify the pattern related to numbers, and the majority of the participants failed to 

identify the pattern in a geometric figure. They could only engage in the written activity 

on DP1 and DP2 level and fewer progressed to DP3. At school C, participants could 

progress to DP3. Those participants had the ability to move their focus from the 

wording of the problem to the relationship among the data and the operating schemes. 

They successfully investigated and extended numeric and geometric patterns. 

Therefore, Barbosa et al. (2012) suggest that more attention should be paid to the 

understanding of mathematical concepts of pattern in mathematics teaching 

(represented as numeric and geometric patterns) by creating environments and 

opportunities to develop abilities related to this skill. 

 

4.4.2 Findings on the representing phase (RP) and interpretation 

4.4.2.1 School A 

At school A, majority of participants (11 out of 30) could only engage in the written 

activity on RP1 level, while nine of the 30 participants were on RP2. Five participants 

did not engage or reach this phase and were coded as RP0. This finding shows 

difficulty with mental representing. Only five participants progressed to RP3 level. The 

vignette in Figure 4.4 shows an example of part of question 2 of the written activity of 

participant A4’s response from school A coded as RP1 
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Figure 4.4: Participants A4's response from school A coded as RP1 

 

Participant A4 was one of the 11 participants who were coded as RP1, which is 

categorised as proportional representing. The participant could only focus on given or 

apparent information, or prioritised the manipulation of equations with rote 

memorisation or pattern matching of information. The participant had an idea of joining 

each flower, but had no idea what the structure of the sequence with 3 flowers would 

look like. Therefore, the incorrect representation resulted in an over-counting of 21 

white beads for three flowers. The participant’s response indicated how the flowers 

were joined to make a pattern but he/she did not realise that there was an overlap of 

two white beads in each flower. Ibrahim and Rebello (2013) agree that students, who 

use proportional representation, focus on symbolic representations independently 

from other forms of visual representations, which shows poor conceptual 

understanding. 

 

4.4.2.2 School B  

At school B, ten participants (10 out of 30) could not represent their problems mentally. 

They left blank spaces or did not respond to the question and were, therefore, on RP0. 

10 out of the 30 participants were on RP1, and four of the 30 participants were on 

RP2, only two progressed to RP3. The vignette in Figure 4.5 shows an example of 
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part of question 2 of the written activity of participant B’s response from school B coded 

as RP2.  

 

 

Figure 4.5: Participant B2's response from school B coded as RP2 

 

Participant B2 was one of four participants who could provide reasons for the problem 

even if he/she failed to handle the mathematical part of the problem. The participant’s 

response was categorised as a mental image representation. The participant had an 

image of a model that represented the flower and responded to a vision of the model 

by joining the white beads to make a necklace with three flowers from perception or 

imagination. The participant could provide reasons for the problem by means of a 

drawing even if he/she failed to handle the mathematical part of the problem correctly. 

The participant indicated that “the diagram has a sum of 21 beads, 18 white and 3 

black centre beads”. Ibrahim and Rebello (2013) found that students who use a mental 

image fail to translate information from the task presented with a symbolic format into 

a visual format for solving a problem. Additionally, although they do translate 

information from a linguistic to a visual format, they do not necessarily use the visual 

representation to generate a numerical solution.  
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4.4.2.3 School C  

At school C, few participants (8 out of 30) could engage in the written activity on RP3. 

Seven out of the 30 participants were on RP2, also seven of the 30 participants were 

on RP1. The participants who did not engage or reach this phase had difficulty in 

understanding the questions, which were five out of 30 participants who were on RP0. 

The vignette in Figure 4.6 shows an example of participant C5’s response on question 

1 of the written activity from school C coded as RP3. 

 

 

Figure 4.6: Participant C5's response from school C coded as RP3 

 

Participant C5 was one of nine participants who progressed to RP3. The participant 

was able to find the relations among the data and mathematical operators by creating 

a mental model using a number line. The participant successfully used a number line 

to find the next terms of the sequence. He/she identified the equal spacing on the 

number and started skipping counting by two. The participant successfully kept the 

spaces equal when drawing the marks on a number line, which indicated a good 

representation on the numerical linear pattern. Reading off values on a number line 

requires the participant to divide the space between two numbered points into parts. 

He/she noted: “from -2 to -5 the number that in between we must count them until we 
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get into -5, so that means from -2 we have two numbers and the third number is the 

answer”. Makonye and Fakude (2016) recommend the use of number line as a model 

“to help learners understand the concept of directed numbers and how to add and 

subtract directed numbers” (p. 9). 

 

4.4.2.4 Summary on findings on the representing phase (RP) 

The second phase was categorised as the level of mental representation where 

participants had to build mental representation to create an equation of a linear 

pattern. Participants from school A partially created concrete representations of the 

pattern. Few participants could generate mental images to reason about the problem, 

and they failed to handle the mathematical part of the problem. 

 

Participants from school B were unable to create concrete representations of number 

pattern problems. The participants could proportionally represent problems, meaning 

that they focused on given numbers in the problem and manipulated an equation from 

those numbers with rote memorisation from the prior knowledge.  

 

Participants from school C were able to create concrete representations of patterns 

and perform alternative solution methods. Those participants were classified as having 

a mental model. They could focus on comprehending the situation and could highlight 

the mathematics concepts in the activity. 

 

Liljedahl, Santos-Trigo, Malaspina, and Bruder (2016) acknowledge that when 

learners are given a number pattern problem activity, teachers are actually exposing 

learners to mathematical reasoning. Mathematical reasoning requires learners to 

represent their own thinking, and to identify and explore their understanding, which 

could support learners in the learning the number patterns. 

 

4.4.3 Findings on the processing phase (PP) and interpretation  

4.4.3.1 School A 

At school A, less than half of the participants (5 out 30) could engage in the written 

activity on PP2, while 10 of the 30 participants were on PP1, and five of the 30 

participants were on RP0. Only four participants progressed to PP3. The vignette in 
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Figure 4.6 shows an example of question 1 of the written activity of participant A1’s 

response from school A coded as PP1.   

 

Figure 4.7: Participant A1's response from school A coded as PP1 

 

Participant A1 was one of nine participants who created a wrong formula to generalise 

the sequence and was coded on PP1. The participant had knowledge of common 

differences between consecutives, but failed to describe the relationship between the 

number of terms and the position of numbers. During the processing to find the nth 

term, the participant could reason about the problem, but failed to generalise the 

sequence. The participant had evidence on how to calculate the common differences, 

but mistakenly taking the calculation of the common difference to be the calculation of 

the general formula of the sequence. The participant indicates that “the general 

formula will be 𝑇𝑛 = 𝑇2 − 𝑇1, therefore 𝑇𝑛 = −3”. The assumption is that this formula 

for calculating the common difference was taught to learners without meaning and 

those learners lack understanding of linear function concepts. Foster (2007) agrees 

that if learners are taught abstract ideas without meaning, there will be no 

understanding. Learners need experiences with number patterns concepts to learn 

and develop meaning in solving the problem. Therefore, if a teacher wants learners to 
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know the mathematics content in number patterns, learners must understand the 

mathematical concepts and not memorise the formula.  

 

4.4.3.2 School B  

At school B, three participants (3 out of 30) could engage in the written activity on PP2.  

Less than a half of the participants (9 out of 30) were on PP1, and ten of the 30 

participants were on RP0. Only one participant progressed to PP3. The vignette in 

Figure 4.8 shows an example of question 1 of the written activity of participant B9’s 

response from school B coded as PP2.   

 

 

Figure 4.8: Participant B9's response from school B coded as PP2 

 

Participant B9 was one of three participants who could create a model (general 

formula) with a minor error in finding the term of the sequence and was coded on PP2. 

The participant correctly completed the table value, but performed an application error 

by thinking that “n” is the term that follows -23 and applied numerical expressions 

instead of using an algebraic expression. Another difficulty that emerged from the 

participant’s response was the lack of experience in the use of algebraic symbolism to 

reason about and to express those pattern generalisations. Güner, Ersoy, and Temiz 
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(2013) mention that “patterns have an important role as a bridge between 

generalisation and algebra in primary level for providing constitution of algebraic 

thinking that is the base of formal algebra” (p. 39). There is a concern that the learners’ 

level of reasoning for near generalisation questions is higher than the generalisation 

when solving number patterns problems (Jurdak & El Mouhayar, 2014). 

 

4.4.3.2 School C  

At school C, few participants (6 out of 30) could engage in the written activity on PP3. 

Six of the 30 participants were on PP2, and five of the 30 participants were on PP0. 

Six of the 30 participants were on PP1. The vignette in Figure 4.9 shows an example 

of part of question 2 of the written activity of participant C5’s response from school C 

coded as PP3.   

 

 

Figure 4.9: Participant C5's response from school C coded as PP3 

 

Participant C5 was one of the nine participants who were able to join the flowers to 

make a pattern. The participant constructed a mathematical model and then used the 

model to generalise the pattern to show how the number of previous term depends on 

the number of the next term. The participant was able to use a mathematical model 

with a degree of success. The participant’s drawing show how the flower was joined 

to make an increasing linear pattern. The participant used an appropriate 

mathematical model and came up with a mathematical equation that could help with 
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solving the problem on generalisation. The participant indicated that “to make necklace 

with 3 flowers, as drawn, we will need 3 black and 14 white beads”.  

 

Therefore, the participant was able to identify a correct mathematical model relevant 

to the given problem. The participant made no errors in identifying pattern rules and 

he/she was able to apply pattern rules to the find the correct solution. Mulligan and 

Mitchelmore (2009:45) indicate that learners “with high levels of awareness of 

mathematical pattern structure become knowledgeable about spatial structures”, and 

would have a tendency to look and to explore patterns. Mulligan and Mitchelmore 

(2009) also regard the finding and understanding of mathematical structure in patterns 

as pre-algebraic thinking. 

 

4.4.3.4 Summary on findings on processing phase (PP) 

The PP is characterised by creating correct mathematical models for finding the terms 

of sequences. The majority of participants from school A were unable to reach this 

phase and created incorrect formulas to generalise the sequence. Less than a third of 

the participants from school B created a model, in this case a general formula, with 

minor errors in finding the terms of the sequence. Few participants from school C could 

construct a mathematical model and used it to generalise a formula to show how the 

number of previous term depend on the number of the next term.  

 

According to Greefrath and Vorhölter (2016), learning to work with a mathematical 

model in number patterns develops learners’ algebraic thinking, which is foundational 

for working with more abstract mathematics in higher grades. Therefore, processing 

is needed for exploring different mathematical models, which might be used to build 

real models in order to generalise solutions.  

 

Mathematical models in the PP provided rich opportunities for the participants to 

integrate their mathematical knowledge with the usage of patterns and structures. 

According to Van de Walle and Lovin (2006), algebraic reasoning is directly related to 

mathematical modelling in patterns because this reasoning focuses on making 

generalisations based on mathematical experiences and recording these 

generalisations by using symbols or variables. 
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4.4.4 Findings on the implementing phase (IP) and interpretation  

4.4.4.1 School A 

At school A, few participants (4 out of 30) could engaged with the written activity and 

reached the level of IP2.  Less than a half of 30 (9 out of 30) participants only reached 

the level of IP1, while five of the 30 participants did not engaged and were on IP0. 

Only two participants progressed to IP3. The vignette in Figure 4.10 shows an example 

of part of question 2 of the written activity of participant A7’s response from school A 

coded as IP2.   

 

 

Figure 4.10: Participant A7's response from school C coded as IP2 

 

Participant A7 was one of seven participants who implemented the solution in a 

manner that addressed the problem statement, but he/she ignored relevant contextual 

factors. The participant used a direct proportional strategy and did not make a final 

adjustment based on the context of the problem. Barbosa et al. (2012) indicate that 

“once it considers multiples of a specific term of a sequence, and the problems 

presented in the test do not fit that model it is called direct proportional strategy” (p. 

283). The participant’s tendency to manipulate numbers increased the difficulty to 

implement the general rule, which was noticed by the order of the flowers that got 

higher. The participant indicated that the rule to find the number of white beads was 

Tn = 6n. This rule indicated that he/she did not properly analyse the structure of the 

flower, but thought each flower is a disjoint unit. Therefore, the participant used a direct 

proportional strategy which was not relevant to the given problem. 
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4.4.4.2 School B 

At school B, three participants (3 out of 30) could engage in the written activity on IP2. 

Less than a half of 30 participants (7out of 30) were on IP1, and ten of the 30 

participants were on IP0. Only one participant progressed to IP3. The vignette in 

Figure 4.11 shows an example of question 1 of the written activity of participant B8’s 

response from school B coded as IP1.   

 

 

Figure 4.11: Participant B8's response from school B coded as IP1 

 

Participant B8 was one of 16 participants who implemented the solution in a manner 

that did not directly address the problem statement and was coded on IP1. The 

participant conducted the wrong mathematical model and used a direct proportional 

model to implement the solution. Participant B8’s response aligns with a concern 

raised by Jurdak and Mouhayar (2014) that learners’ level of reasoning for near 

generalisation questions is higher than that for the far generalisation when solving 

number patterns. Smith and Thompson (2007) argue that incorrect implementation of 

mathematical models in solving number patterns results from elementary curricula that 

fail to develop learners’ abilities to reason about complex additive and multiplicative 
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relationships. Furthermore, according to Magiera, Van den Kieboom, and Moyer 

(2013), learners whose strategies are inappropriate to the problem statement, make 

more errors related to mathematical properties of number patterns, such as 

inappropriate organisation of information, identification of a pattern, description of the 

rule and justification of it.  

 

4.4.4.3 School C 

At school C, five participants (5 out of 30) left a blank space and, thus, did not reach 

the phase on IP0. Six of the 30 participants could only engage in the written activity 

on IP1. four of the 30 participants were on IP2, and six of the 30 participants were on 

IP3. The vignette in Figure 4.12 shows an example of part of question 2 of the written 

activity of participant C5’s response from school C coded as IP3.   

 

 

Figure 4.12: Participant C5's response from school C coded as IP3 

 

Participant C5 was one of nine participants who applied techniques that were specific 

to the mathematical model and was coded on IP3. The participant implemented the 

correct general rule to obtain the correct solution. The participant used an explicit 

strategy to implement the solution. The participant applied techniques that were 

specific to the mathematical model and produced a mathematical explanation and 

justification of the solution. Güner et al. (2013) acknowledge that for the development 

of algebraic thinking in mathematics, it is important for learners have knowledge about 

how to construct patterns, to use cognitive processes and to think in these 

constructions. 
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4.4.4.4 Summary on findings on the implementing phase (IP) 

The IP relates to the application of techniques, which are specific to the mathematical 

model, and also the production of mathematical explanation, the justification of the 

solution, and the general questioning of the model. Some participants from school A, 

B and C implemented the solution in a manner that did not directly address the problem 

statement, while several participants from school B implemented the solution in a 

manner that addressed the problem statement, but ignored relevant contextual factors.  

 

Incorrect implementation shows that the participants had a perception of the process 

described in the text, but could not see the need for reversibility (Singer & Voica, 2013). 

Most participants who responded in the IP, were able to express the sequence for 

near generalisation, but were unable to express the sequence for far generalisation. 

Finally, some participants from school C applied techniques that were specific to the 

mathematical model and also produced correct explanations of their solutions. During 

the IP the participants had to check critically and to reflect on their solutions to reveal 

creativity. The participants, who were unable to implement the solutions to obtain the 

correct answers, did not appear to have an understanding of the mathematical model 

of the patterns as they found it difficult to check and reflect on their solutions. According 

to John, David, and Townsend (2006), formulating a mathematical model of number 

patterns recognises the need to make final adjustment based on the context of the 

problem to avoid over or undercounting of numbers.  

 

4.4.5 Overall findings from the written activity 

Most of the participants (30 out of 90), which include participants from all three schools 

in the study, could only engage in the written activity on the DP1. In contrast, 28of the 

90 participants were able to engage in the activity on the RP1, 25 of the 90 participants 

were able to engage in the written activity on the PP1, and 22of the 90 participants 

could engage in the written activity on to the IP1. Those were the participants who 

implemented the solution in a manner that did not directly address the problem 

statement.  

 

Less than a quarter of the participants (19 out of 90), could only engage in the written 

activity on the DP2. Only 16 of the 90 participants were able to engage in the written 

activity on the RP2, 13 of the 90 participants were able to engage in the written activity 
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on the PP2, and 11 of the 90 participants could engage in the written activity on to the 

IP2. Those were participants who implemented the solution in a manner that 

addresses the problem statement, but they ignored relevant contextual factors. 

Furthermore 21 of the participants (21 out of 90), could only engage in the written 

activity on the DP3. 15 of the 90 participants were able to engage in the written activity 

on the RP3, 11 of the 90 participants were able to engage in the written activity on the 

PP3, and only 9 of the 90 participants could engage in the written activity on to the 

IP3. Those were the participants who applied techniques that were specific to the 

found mathematical model during implementation.    

   

Magiera et al. (2013) concur that there is a need to understand the learners’ thinking 

processes and also to determine what they already know or do not know when 

assessing them on number patterns. According to SP CAPS, grade 9 learners are 

exposed to number patterns generalisation through algebraic concepts such as 

variables, equations, algebraic expressions in the previous grades (DBE, 2011). Most 

participants whose strategies were fragmented during the RP and PP when solving 

the number pattern problem, recalled prior knowledge that was within the context of 

the problem. However, some elements of their solution strategies were incorrectly 

manipulated that were caused by incorrect representation and processing of the 

problem. When representing their strategies, most participants confused the roles of 

the independent and dependent variables. Thus, they had an incorrect understanding 

of positive and negative numbers when describing the rule and justifying it.  

 

Less than a half of the participants (43 out of 90) whose strategies were inappropriate 

to the number pattern problem, failed to implement the mathematical model to obtain 

the correct answer. Although they had a mathematical model of the described 

situation, it was not entirely satisfactory for the problem text. Only 12 participants out 

of 90 whose implementation was appropriate to number pattern problems, could recall 

and manipulate number patterns strategies that were relevant to the context of the 

problem. Those participants were developing an own understanding through 

meaningful decoding, representation and processing that allowed them to deeply 

understand the concepts and processed what was already known about the problem. 

They could use the model as a building block to implement the solution and their 

understanding of the given problem was at the advanced level. They were able to 
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move beyond the data as they were able to generate and predict the number patterns. 

Thus, their written activity showed that they had a deeper understanding of 

mathematical structures and mathematical concepts related to number patterns. 

 

4.5 ONE-ON-ONE SEMI-STRUCTURED INTERVIEWS 

Semi-structured interviews were conducted with one participant from each of the three 

schools. The three participants (Participant A, Participant B and Participant C) were 

selected to be interviewed based on the following criteria: undocumented strategy on 

number pattern problems; inappropriate strategy on number pattern problems; and 

appropriate used of a specific strategy on number pattern problems (see sub-section 

3.5.3). 

 

The transcripts of these three interviews were qualitatively analysed using the content 

analysis method. Ezzy (2002) indicates that content analysis starts with the unit of 

analysis (for example, words or sentences) and the categories to be used for analysis. 

The texts were reviewed in order to code them and to place them into categories. 

Then, the occurrences of words, codes and categories were counted and logged.  

 

In the context of this study, the unit of analysis were the phases; therefore, categories 

were based on the indicators of the phases of the PS conceptual framework. These 

indicators were developed and discussed in sections 4.3 to 4.6 and were used to 

analyse the participants’ responses from the interviews. The participants’ responses 

from the interviews were coded according to the levels of engagement in the four 

phases of the PS conceptual framework as per indicator (see Appendix M, N and O). 

The number of responses per indicator was counted.  Table 4.8 presents the number 

of participants’ interview responses showing their levels of engagement in the four 

phases of the PS conceptual framework regarding their solutions to the written activity. 
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Table 4.8: Number of participants’ interview responses showing the levels of 

engagement in the phases of the PS conceptual framework 

Phases Indicators Number of responses Total 

number of 

responses 

per phase 

Participant A Participant B Participant C 

Decoding 

 

DP1 0 3 0 11 

DP2 3 0 0 

DP3 1 1 3 

Representing 

 

RP1 1 1 0 7 

RP2 2 1 0 

RP3 0 0 2 

Processing 

 

PP1 0 0 0 7 

PP2 2 2 0 

PP3 0 0 3 

Implementing 

 

IP1 1 1 0 6 

IP2 1 0 0 

IP3 0 0 3 

Total number of responses per 

participant 

11 9 11 31 

 

4.5.1 Findings on views of decoding and interpretation 

The grand total number of responses on the DP was 11 in total for participants A, B 

and C.  Participant A15 responded three times on DP2 and once on DP3. As 

participant A1 was completing the sequence from the table, he/she mentioned that “I 

am counting the numbers from the sequence by subtracting 3 up until I arrive to the 

nth term”. The counting strategy in near generalisation was the preferred strategy for 

the participant; as the participant was unable to give the general rule for far 

generalisation. 

 

Barbosa et al. (2012) define a counting strategy as counting the elements of a 

particular number or figural term in a pattern. Counting is always a successful strategy, 

but is only useful in solving near generalisation questions (see section 2.6). Samson 

and Schäfer (2007) acknowledge that a noticeable positive change in the counting 
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strategy is evident when three consecutive purely pictorial terms are used instead of 

two non-consecutive pictorial terms.  

 

Participant B2 responded three times on DP1 and once on DP3. Participant B2 stated 

that: “the sequence goes down and we called it a decreasing pattern and we represent 

the common difference between consecutive numbers by the variable d; I have 

calculated the common difference (d) between consecutive numbers which is -3. E.g. 

T2-T1=d; -5-(-2) = -3; T3-T2=d the common difference between two consecutive terms 

is -3, and then I subtracted the first term by -3 to get the next term”. 

 

Participant B2 used the recursive strategy, but was unable to give the nth term. He/she 

could not process the correct general formula. Lannin et al. (2006) define a recursive 

strategy as a connection occurring in the scenario between the independent variable's 

successive values. This finding does not correspond with Lannin et al. (2006) arguing 

that most learners used recursion when they appeared to have a strong visual picture 

of the situation and when they focused on decontextualized numerical relationships. 

This finding can be interpreted in the way participant B2 responded in his/her decoding 

of the decreasing numerical pattern. Although the participant had a strong visual 

picture of the situation by focusing on the relationship between the common difference 

and the consecutive number to complete the table, he/she obtained results in near 

generalisation rather than in far generalisation, hence he/she could not process to the 

general formula.  

 

Participant C5 responded on three times DP3. Participant C5 showed an understating 

of decoding accurately, appropriately, and flexibly. Participant C5 could see that each 

flower shares two white beads to have a complete flower; four white beads were added 

to the end of each prior flower to create a new flower. This finding is consistent with 

Mulligan and Mitchelmore (2009) claiming that if learners are conscious of 

mathematical patterns and structure, they tend to look for patterns and discover 

similarities and differences between them and learn more easily fresh constructions. 

This finding can be interpreted in the way participant C5 responded in his/her decoding 

of the mathematical pattern. This finding concurs with Mulligan and Mitchelmore 

(2009) claiming that if students are aware of mathematical patterns and structure, they 
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have a tendency to look for patterns and to explore similarities and differences 

between them and learn new structures more easily. 

 

 Participant C5 was conscious of mathematical pattern and structure, he/she correctly 

decoded the mathematical structure on the pictorial pattern when responding that: “the 

flowers should be a joint unit which to make this pattern a linear pattern”.  

 

During the DP, an understanding of position-to-term relationship was evident in the 

interviews with participant A15, B2 and C5. Participants A1 and B2 could show an 

understating of decoding accurately, appropriately, and flexibly by finding a pattern to 

discover terms in the near position using the counting strategy. However, only 

participant C5 was able to proceed to the far position using the general rule. All three 

participants used mathematical operators correctly and were able to find the 

relationships among the data and the operators.  

 

Participants A15 and B2, who used the counting strategy, applied direct proportion to 

determine the term in the far position. This strategy was incorrect for the given 

problem.  Both participants A and B lacked an understanding of linear pattern for far 

generalisation during decoding. They could not identify how each figure and number 

in the pattern differed from each previous figure or number as the pattern increased. 

In their description of the number patterns for the far position, both participants A and 

B did not recognise that each term had a numeric value. These participants were 

unable to demonstrate a way of establishing a general formula of the nth term of the 

sequence number in a table form. This finding correspond with Barbosa et al. (2012) 

which disclosed that in solving problems involving pattern exploration, learners 

encountered several difficulties, particularly when they had to generalise for remote 

values. In problems of near-generalisation they accomplished better outcomes than in 

issues of far-reaching generalisation.  

 

This finding can be interpreted in the way participant A15 and B2 responded in their 

decoding of the numerical pattern and geometric pattern, they began using the 

counting approach, although they moved to a direct proportion model for the far-

reaching generalisation. They were focusing on calculating the number of components 

of a shape or configuring in order to calculate the expected drawing a shape 
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4.5.2 Findings on views of representing and interpretation 

Participant A15 responded twice on RP2 and once on RP1. Participant A15 focused 

on given or apparent information or prioritised the manipulation of equations with rote 

memorisation or pattern matching of information. Participant A15 mentioned that “I am 

weak in mathematics and poor in visualisation to see a pattern, but now as I am 

speaking to you I see light”. Participant A15 could, therefore, provide reasons for the 

problem even if he/she failed to handle the mathematical part of the problem. 

Participant A15 mentioned that “6 white beads and one black bead make one flower 

therefore for 3 flowers will be (6x3=18 beads)”. The mathematical structure of the 

sequence was not properly represented. Participant A15 interpreted each flower as a 

disjoint unit and therefore used the direct proportional strategy.  

 

This finding does not correspond with Barbosa et al., (2012) suggesting that it is 

important to provide learners with questions that encourage them to use and 

understand the potential of visual patterns. Such visual patterns will enable learners 

to relate number contexts with visual contexts in order to enhance their understanding 

of the meaning of numbers and variables.  This finding can be interpreted in the way 

participant A15 responded in his/her representing of the visual pattern. Although the 

participant had a visual patterns of the situation but was unable to relate number 

contexts with visual contexts in order to enhance his/her understanding of the meaning 

of numbers and variables, hence he/she did not make a final adjustment based on the 

context of the problem. 

 

Participant C5 responded twice on RP3. When participant C5 was asked what type of 

pattern is presented in the sequence, he/she answered that: “the pattern is an 

increasing linear pattern they sometimes call it arithmetic sequence”, and indicated: 

Each flower must be a joint unit to form a linear pattern. Each flower shares two white 

beads to have a complete flower, four white beads were added to the end of each 

prior flower to create a new flower, and then added two beads to give me a complete 

flower, therefore my general rule will be Tn=4n+2 the variable n represent the number 

of flowers. 
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Participant C5’s response was categorised as having a mental model, referring to the 

participant’s ability to conduct high-level reasoning. Participant C5 focussed on 

comprehension of the situation and highlighted the mathematics concepts in the 

activity. Moreover, before dealing with equations he/she was able to include a 

diagrammatic representation in his/her solution of the problem. This finding 

correspond with Ibrahim and Rebello (2013) who acknowledge that the construction 

of the mental model provides a means of linking the syntactic (mathematical) and 

structural (visual) aspects of the task under consideration, enabling interpretation and 

understanding to be taken into account. This finding can be interpreted in the way 

participant C5 responded in his/her mental model representation. The participant 

linked the mathematical concepts and structural aspects of number pattern to 

construct the number of beads to make flowers with understanding.  

 

Participant B2 responded once on RP2 and once on RP1. Participant B2 mentioned 

that “the sequence increases by 6 white beads in ever flower, but I don’t know the type 

of pattern”. Participant B2 claimed that she/he understood how the subsequent terms 

were obtained. Yet, she/he was unable to establish the rule for the general term. Both 

participants A15 and B2 had a mental image of the problem. They demonstrated a 

diagrammatic representation (flowers) which may not be linked to the mathematical 

formulations used. This finding correspond with Becker and Rivera (2005), arguing 

that variables used simply as non-significant placeholders except as a generator for 

linear number sequences show a lack of representation. This finding can be 

interpreted in the way participant A15 and B2 responded in question 2, they could 

count number of beads from the sequence, but made no sense of what the nth term in 

the linear pattern represented, nor what the variable in the linear pattern represented. 

Although they are aware of the relationship among the three flowers and the beads 

and they may recognise the applicability of the qualitative method to solve the problem, 

they prefer manipulating equations. 

 

4.5.3 Findings on views of processing and interpretation 

Participant A15 responded twice on PP2. When asked to complete number patterns 

on a table until the nth term, participant A15 responded: “I counted the numbers from 

the sequence by subtracting 3 up until I arrive to the nth term, I think 𝑛 will be a number 

that follow the previous number in the sequence”. Participant A15 used direct counting 
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to solve near generalisation for the given number patterns. For far generalisation 

Participant A15 claimed that “the general formula will be 𝑇𝑛 = −3 × 𝑛”. 

 

This finding correspond with Barbosa et al. (2012) arguing that learners who are “not 

able to find adequate explicit rules, reveal difficulties in finding a functional relationship 

and make many mistakes, such as the application of a direct proportion model when 

it is not applicable” (p. 291). This finding can be interpreted in the way participant A15 

responded in his/her general formula. By using the counting strategy, participant A15 

found it difficult to produce a mathematical model, specifically where far generalisation 

was involved, and hence used direct proportion. 

 

Participant B2 responded three times on PP2 and mentioned:  

I found out that the pattern decreases by 3 less than before.  I tried the different 

possibilities i.e. n-3, -3n, 3×n and trying to add other digits that can give the first -2.  I 

then substituted n by 1; 2; 3 so that it can give me the pattern of the sequence. Then 

I found the algebraic expression for this kind of pattern then I choice -3n therefore I 

have Tn=-3n+…. 

Participant B2 could write some general formulas, but did not focus on the relationship 

between the term and the value of the term, nor did he/she check the accuracy of 

formulas by comparing the number and value of the step. Thus, he/she was unable to 

find the general formula. Participant B2 failed to elaborate clearly on how he/she 

arrived at his/her rules used in the written activity. Becker and Rivera (2005) concur 

that learners who are unable to provide the general formulae tend to start with 

numerical strategies; however, they lack the flexibility to try other approaches and see 

possible connections between different forms of representation and processing 

strategies. 

 

This finding can be interpreted in the way participant A15 and B2 responded in his/her 

representation and strategy for processing. Participant B2 only knew the letter n 

represented a number, whereas participant A15 took it to mean the previous term. 

Clearly, participants A15 and B2 were unaware of the meaning of n as used in the 

symbolic rule. 

 

Participant C5 responded three times on PP3. Participant C5 mentioned: 
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n × (−3) = −3n; n represents the number of term in the sequence and -3 is the 

common difference. Term 1 = 1 × (−3) =, this does not give -2 which mean I must 

add 1 Term 2 =2 × (−3) = −6, this does not give me -5 as the second term I must 

add 1; therefore I will have Tn = −3n + 1.  

Participant C5 had reasoning competence on producing a mathematical model as 

he/she could demonstrate a way of establishing a general formula for the nth term of 

the sequence number by drawing a logical conclusion. Thus, participant C5 showed 

an understanding of the mathematical model during the PP.  

 

Participant A15 preferred to use a direct proportional strategy far generalisation, while 

participant B2 tried to use guess and check for far generalisation. This guessing and 

checking strategy took the form of scribbling down the algebraic expressions by 

participant B2. Participant B2 tested and adjusted the number in order to fit the 

expression to the pattern. 

  

4.5.4 Findings on views of implementing and interpretation 

Participant A15 responded once on IP1 and IP2. He/she implemented the solution in 

a manner that addressed the problem statement, but ignored relevant contextual 

factors. When asked to use the mathematical model to calculate the number of flowers 

Joana will need if she uses 102 white beads, participant A15 mentioned that “6 white 

beads and one black bead make one flower therefore for 3 flowers will be (6 x 3 = 18 

beads)”. Participant A15 was asked to express the pattern rule in then algebraic 

expression Tn = 6n, and responded as follows:  

Joana will need 17 flowers with 102 white beads, I was counting how many white 

beads for the second flower, and I was looking for a rule that would work therefore I 

multiplied six which is the white beads by the number of flowers.  

 

Participant A15’s explanation for using direct proportion in this study indicates that 

her/his response was on IP2, thus focussing on taking information as is from the data 

by reading the data with little understanding. Barbosa et al. (2012) found that students 

who use direct proportional strategy were not able to find adequate general rules, 

revealing difficulties in finding a functional relationship between the data and the 

mathematical operations. This finding can be interpreted in the way participant A15 

responded to the number of flower will Joana be able to make if she uses 102 white 
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beads. The participants used direct proportional strategy and was not able to find 

adequate general rule, revealing difficulties in finding a functional relationship between 

the number of beads and the number of flowers. 

 

Participant B2 responded once on IP1. Participant B2 implemented the solution in a 

manner that did not directly address the problem statement. Participant B2 used an 

incorrect strategy for implementing the decreasing pattern. Participant B2 could hardly 

apply a mathematical operation, and this kind of error also appeared in the analysis of 

participant B2’s written activity. In the case of −2 − (−3), the participant confessed: “I 

added 2 and 3 to give me 5 but know that the common difference of the sequence was 

3 so I ignored the subtraction sign and the negative sign added 2 and 3 to give me the 

next term.” This finding is in agreement with Akkan (2013) claiming that most learners 

who use the recursive (additive) strategy to generalise patterns are able to find near 

terms accurately, but are unable to implement a model to find later terms in a 

sequence. This finding can be interpreted in the way participant B2 responded in 

his/her implementation. Although the participant focusing on the relationship between 

the common difference and the consecutive number but still applied an error on the 

mathematical operation and could not find near terms accurately and was not able to 

implement a model to find the next term in the sequence.  

 

Participant C5 responded three times on IP3. Participant C could construct a 

mathematical model and use the constructed model to generalise a pattern. 

Specifically, he/she could show how the number of a previous term depends on the 

number of the next term. Participant C5 could thus establish the relationship between 

terms and could use this relationship to express the general formula of the pattern. 

Participant C5’s response shows that he/she processed knowledge about the obtained 

formula and, therefore, used a recursive strategy to generalise the pattern. Barbosa 

et al. (2012) state that, when learners use a recursive strategy correctly, they should 

be able to find the pattern for near and far generalisations. Using the recursive 

strategy, this learner used the common difference between two consecutive terms of 

the sequence to solve the questions posed. This finding correspond with Barbosa et 

al. (2012) arguing that a learner can extend the sequence and generate the general 

formula using the common difference, but when using multiples of the common 

difference without final adjustment, it would result in inaccurate answers. 
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This finding can be interpreted in the way participant C5 responded the number of 

bead need to make three flowers. The participant indicated that each flower shares 

two white beads to have a complete flower, four white beads were added to the end 

of each prior flower to create a new flower which is the common difference, and then 

make final adjustment by adding two beads to give me a complete flower. 

 

4.5.5 Summary of the overall findings from the semi-structured interviews 

Eleven of 31 responses by participants indicated that they have reached the DP, 7 of 

33 responses showed evidence of moving to the RP and PP, and 6 of 33 responses 

implied some level of engagement at the IP. The interviews shed light on a number of 

reasons influencing the strategies participants used during the solving of the number 

pattern problem. Apart from their personal opinions and prior learning experiences, 

other reasons ranged from a lack of understanding of mathematical operations, such 

as subtraction and addition, to a lack of visualisation of patterns, which resulted in 

overlapping shapes, and finally, to a lack of understating of the nth term when 

completing a table of values.  

 

According to the responses in the interviews, it can be inferred that, during the IP, 

participants who used the direct proportional strategy did not make a final adjustment 

based on the context of the problem to obtain a final solution. As a result, those 

participants may have lacked mental representing and processing of the mathematical 

model. Even though the participants were able execute the IP, their solutions were 

incorrect. They ‘picked up’ numbers directly from the given problems and applied 

multiplication to those numbers, hence their responses were coded on IP2. Participant 

B could successfully find the mathematical model to generalise the pattern, and was 

able to use the rule for far generalisation.  

 

Participant C’s visual images appeared to contribute to the success in generating 

correct pattern rules. Therefore, participant C was able to engage in all four phases of 

Singer and Voica’s (2013) PS conceptual framework. The overall finding emerging 

from the participants’ responses showed that the participants could successfully 

recognise patterns and generalise them as algebraic formulas. 
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4.6 THE LEVELS OF ENGAGEMENT IN THE FOUR PHASES OF THE PS 

CONCEPTUAL FRAMEWORK IN STRATEGIES FROM THE   ANALYSIS OF 

THE WRITTEN ACTIVITY AND THE INTERVIEWS 

This section ascertains the levels of engagement in the four phases of the PS 

conceptual framework in the participants’ strategies derived from the analysis of the 

written activity and the interviews Table 4.9 illustrates these levels of engagement in 

the four phases of the PS conceptual framework in the solutions of the problems of 

the written activity of the participants, who participated in the written activity and the 

semi-structured one-on-one interviews.  

Table 4.9: Levels of engagement in the four phases of the PS conceptual 

framework according to the responses in the written activity and interviews 

Phases No of 
participants 

(N=90) 

Frequency 
of 

responses 
for three 

participants 
(f=31) 

Comparison Interpretation 

Written 
activity 

Interviews 

Decoding 
 
 

21 out of 90 
 

11 out of 31 
responses 
 
 

Similarities between 
the written activity 
and the interviews:  

 Able to find a 
pattern to 
discover terms in 
near positions.  

 Able to relate 
number patterns 
and 
mathematical 
operation.  

 Used the 
counting 
strategy. 

Differences between 
the written activity 
and interviews:  

 Found a pattern 
to discover 
terms in far 
positions. 

 Used the 
recursive 
strategy or direct 
proportion.  

The participants were 
similar in the sense 
that they could find a 
pattern to discover 
the term in a near 
position by using the 
counting strategy. 
They could all start by 
writing sequence 
number of -2, -5, -8, -
11, -14, -17, -20, -23, 
-26, which showed 
their comprehension 
of the decreasing 
pattern. The finding 
indicates that the 
participants were able 
to understand the 
problem and could 
construct a sequence 
number. They were 
able to identify the 
relationship between 
numbers and 
operations. 
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Representing 
 

16 out of 90 
 
 

7 out of 31 
responses 
 

Similarity between 
the written activity 
and interviews:  

 Used 
proportional 
representations.  

Differences between 
the written activity 
and interviews:  

 Used mental 
models and the 
mental images. 

 

The participants who 
used proportional 
representation during 
the written activity, 
changed to use 
mental images during 
the interviews. 

Processing 
 

14 out of 90 
 

7 out of 31 
responses 
 
 

Similarity between 
the written activity 
and interviews:  

 Concluded a 
new structure 
with (6×n) as the 
strategy for the 
next stage. 

Participants did not 
understand how to 
use symbolic notation 
to continue the 
pattern. They used 
numbers instead of 
algebraic 
expressions. The 
lacked in-depth 
observation of 
patterns. They found 
it difficult to find 
meaning into an 
abstract algebraic 
expression. 
 
Participants A and B 
found it challenging to 
find a pattern to 
determine a term in 
the far position. They 
used direct proportion 
incorrectly to find the 
value of nth term. 
Participant C 
successfully found the 
nth term using the 
recursive strategy. 

Implementing 
 

12 out of 90 
 
 

6 out of 31 
responses  
 
 

Similarity between 
the written activity 
and the interviews: 

 Drew a 
conclusion to 
implement the 
direct 
proportional 
strategy. 

 

Participants were 
unsuccessful to use 
substitution to find the 
unknowns patterns, 
since they relied on 
the direct proportional 
strategy. They found 
it challenging to check 
the mathematical 
model to implement 
the solution.  
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All three participants’ number of indicators for decoding, representing, processing and 

implementing increased from the responses in their written activity to the responses in 

their interviews as indicated in table 4.9. This finding correspond with Wang et al. 

(2016) recognising that learners often have difficulties with the problem solving that 

vary from teaching problems when solving problems.  This finding can be interpreted 

in the way participants responded during the interviews, where the researcher 

connected a problem statement with previous knowledge on number pattern problems 

so that those participants who had difficulties during written activity could recognise 

and recall their prior knowledge. Participant A15’s response from the written activity 

posits that the participant left a blank space in all the phases. The researcher could 

not ascertain participant A’s number patterns strategy; hence an interview was 

conducted to access his/her thinking process. 

 

During the decoding, participant A15’s written activity shows that the participant did 

not understand the information within the given problem statement in order to solve 

the problem. There was evidence of the counting strategy on decoding and 

proportional representation during his/her interview. This finding could indicate that 

there was a problem in understanding the language of instructions in the written 

activity. A similarity was found between the responses of participants’ B and C. Both 

participants completed the number sequence by using the counting strategy, which 

indicates correct decoding as they could comprehend the decreasing pattern.  

 

By reviewing the written activity on number sequence, participant A15, who did not 

response to the question, made a unique plan to complete the sequence during his/her 

response in the interview by stating that “this sequence number was difficult to 

calculate in order to find a general form of the nth term when I was writing the activity 

that is why I left it blank”. 

 

During representing, participant B2, who used proportional representation during the 

written activity, changed his/her response to a mental image during the interview. 

He/she was able to visualise the pattern and could provide reasons for the problem, 

even while failing to handle the mathematical part of the problem. Both participants A 

and B did not understand how to use symbolic notation to continue the pattern during 
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their responses in the interviews, but they were able to provide images of how the 

pattern grows. They used numbers instead of algebraic expressions to find the value 

of the nth term. Participant C5, who responded to the written activity at RP2, changed 

his/her response to a mental model during representation. Participant C5 could focus 

on comprehension of the situation, and highlighted the mathematics concepts in the 

interview questions. 

 

During processing, a similarity was found between participants A15 and B2 from the 

written activity to the interview. Both left a blank space in the written activity. During 

the interview, both of them indicated some techniques for manipulating expressions 

and equations, but without a basic underlying understanding of what the variables and 

numbers represent. Hence, both of them used the direct proportional strategy to 

manipulate the equation. They could only focus on given information and only 

prioritised manipulation of equations with rote memorisation and pattern matching of 

information. 

 

Therefore, their mathematical model did not support their understanding of what was 

happening when they manipulated the algebraic expression. They found it difficult to 

find meaning into an abstract algebraic expression. During the written activity, 

participant A15 did not response to the question, while in the interview he/she could 

identify what the problem was asking in terms of calculation, and could then perform 

the calculation by translating the problem statement into numbers. Participant A15 

could found an algebraic expression (formula) for the number of objects in each 

pattern in the sequence by using multiplication of numbers. Participant C5, before 

dealing with equations could include a diagrammatic representation in their problem 

solution and he/she was successfully in developing the correct mathematical model.  

 

During the implementation, participants A15 and B2 were unsuccessful to use 

substitution to find the unknowns pattern. They all relied on the direct proportional 

strategy, namely multiplication of numbers. They found it challenging to checking their 

mathematical models to implement the solution during both the written activity and the 

interviews. Only participant C5 was able to apply techniques that were specific to the 

mathematical model, which was adaptable to the given particular situation, with the 

purpose to obtain final results for the problem.  
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Participant C5 revealed a high-level thinking capability and reasoning level in all the 

phases. He/she was the only one who could progress to DP3, RP3, PP3 and IP3 

during the written activity and who was able to explain the strategies used in every 

phase of the PS conceptual framework during the interview. Participant C5 reached 

all the phases in the sense of being able to make an individual idea creatively by 

constructing new knowledge based on his/her pre-existed knowledge. Participant C5 

demonstrated a way of establishing a general formula of nth term of the sequence 

number through drawing a logical conclusion in both the written activity and the 

interview.  

 

4.7 KEY FINDINGS PERTAINING TO THE RESEARCH QUESTIONS  

The overarching findings for the main research question will be addressed in this 

section, namely: What strategies do grade 9 mathematics learners use in solving 

number pattern problems? Table 4.10 illustrates the data analysis collection 

instruments and the key findings related to the PS conceptual framework with regard 

to the sub-research questions. 
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Table 4.10: Findings related to the PS conceptual framework of the study in 

relation to the research questions 

Sub-question 1: 

What are the 

strategies grade 

9 mathematics 

learners engage 

in when solving 

number pattern 

problems? 

Written 

activity (see 

section 4.4) 

 

Decoding: 

 Most participants used the counting strategy to find a 

pattern to determine terms in near position. Fewer 

participants changed to the recursive strategy to find 

a pattern to determine the term in the far position 

Representing: 

 Few participants were able to use mental models 

and mental images; they used diagrams and pictures 

to find the nth term. 

 Most participants used proportional representation 

and did not use pictures or diagrams as guidance in 

finding the nth term 

Processing: 

 Most participants used an incorrect formula to find 

the general rule. They were incorrectly interpreting 

the unknown variables. Hence, participants used the 

direct proportional (multiplication of numbers) 

strategy without making adjustment to the problem, 

Implementation: 

 Almost half of the participants were able to identify 

adequate ways to describe or to prove the number 

patterns and to eliminate the values that did not 

satisfy the constraints of the problem. 

Just more than half of the participants had a tendency to 

manipulate numbers to let the order of the sequence got 

higher, which increased the difficulty of implementing the 

model to find a correct solution  
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Sub-question 2:  

What are the 

views of grade 9 

mathematics 

learners 

regarding the 

areas of difficulty 

(if any) they 

experience as 

they complete 

number pattern 

problems? 

 

 

Interviews 

(see section 

4.5) 

Decoding: 

Almost a third of the responses indicated that 

participants were able to engage or reach the DP using 

the counting strategy for a near position of the terms. 

The participants indicated that they had experienced 

difficulties to find a pattern to determine a term in the far 

position in comparison to the near position. Decoding of 

numbers and mathematical structures were a challenge 

to participants and they used direct proportion incorrectly 

when finding the value of the nth term. 

Representing: 

A third of the responses showed that participants were 

able to represent the problem. The participants indicated 

that they had experienced difficulties in using symbolic 

notation to continue with the pattern, but they were able 

to provide an image of how the pattern grows. They 

used numbers instead of algebraic expressions to 

explain their strategies.  

Processing: 

Few responses indicated that participants reached the 

PP. The participants indicated that they had experienced 

difficulties in finding meaning into an abstract algebraic 

expression. The participants indicated some techniques 

for manipulating algebraic expressions and equations, 

but without a basic underlying understanding of what the 

variables and numbers represent.  

Implementation: 

Few responses indicated that participants reached the 

IP. The participants were unsuccessful to use 

substitution to find the unknowns pattern, since they 

relied on the direct proportional strategy (multiplication of 

numbers). 
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Sub-question 3: 

What levels of 

engagement in 

the four phases 

of the PS 

conceptual 

framework are 

evident in grade 9 

mathematics 

learners’ 

strategies to a 

number pattern 

problem activity? 

Synthesis 

from written 

activity and 

interviews 

(see section 

4.6) 

During the written activity and interview, participant C 

was able to progress to DP3, RP3, PP3 and IP3. 

Participant C used recursive and strategy during DP3. 

He/she was able to move beyond the data by generating 

and predicting the problem statement. Participant C 

understood the problem and the mathematical 

operations within the problem statement and could 

comprehend mathematical concepts of number patterns 

that would be helpful in solving the problem.  

 

During RP3, it could be interpreted that participant C had 

high-level thinking capabilities reasoning levels, as 

he/she was able to use mental models. He/she focussed 

on the comprehension of the situation, as well as the 

mathematics concepts in the activity. 

 

During PP3, participant C was able to successful 

formulate a geometric diagram into a number patterns 

and could change a difficult problem into a simpler 

problem to produce the correct mathematical model. 

Participant C was able to overcome difficulties related to 

the phase without much intervention during the 

interview. Participant C could demonstrate a way of 

establishing a general formula of nth term of the number 

sequence through drawing a logical conclusion. 

Therefore, participant C reached all the phases by being 

able to make an individual idea creative by constructing 

new knowledge based on pre-existed knowledge during 

the IP.  

 

Participants’ A and B responses were coded on DP1, 

RP1, PP1 and IP1. These participants used direct 

proportional and direct counting strategies. They 

indicated some techniques for manipulating expressions 

and equations, but without a basic underlying 

understanding of what the variables and numbers 
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represent. Hence, they used the direct proportional 

strategy to manipulate the equation. They could only 

focus on given information and only prioritised 

manipulation of equations with rote memorisation and 

pattern matching of information. 

 

The strategies indicated in the written activity and the responses from the interviews 

on the number pattern problems revealed four strategies, namely (1) counting; (2) 

recursive strategy; (3) direct proportion; (4) mental image representation; and (5) 

mental modal representation (see section 2.6). 

 

The counting strategy was evident in the DP. Specifically, during the DP, the counting 

strategy was the preferred strategy for participants in near generalisation while 

recursive was for far generalisation. The participants that used the counting strategy 

were unable to give a general rule for far generalisation. This strategy was applied by 

the majority of the participants in executing numerical linear patterns and this 

preference has increased as compared to the execution of pictorial patterns. The 

participants who used the counting strategy could not recognise a pattern for far 

generalisation than, those who used recursive strategy.  

 

The participants who used counting strategies indicated that they were more 

successful in observing the sequence of numbers by completing the pattern indicating 

the next terms or elements, therefore this indicate correct decoding of numbers for 

near generalisation when given a number pattern. However, participants who used 

counting strategy were not able to find a pattern in far generalisation. Becker and 

Rivera (2005) indicate that those learners “who fail to provide the general formulae 

tend to start out with counting strategies; however, they lack the flexibility to try other 

approaches and see possible connections between different forms of representation 

and generalisation strategies” (p. 128). 

 

The recursive strategy was also evident in the DP. The participant who use the 

recursive strategy, they were able to decode the problem statement, and also able to 

use the mental model of the problem during the RP.  Moreover, they were able to 

proceed to PP by indicating the correct general rule of the problem. Lannin et al. (2006) 
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mention that learners may select a recursive strategy because they want to determine 

a general rule based on an understanding of a relationship that occurs in the situation. 

Akkan’s (2013) study on the learners’ strategies and representations regarding 

generalisation patterns found that most of the learners who used the recursive strategy 

were able to find near and far terms accurately in the sequence. 

 

The direct proportional strategy was evident in the RP, PP and the IP. During the RP, 

the majority of participants used the proportional representation. These participants 

could only focus on given or apparent information and only prioritised manipulation of 

equations of common difference and multiplication (rote memorisation) when finding 

the nth term. 

 

During the PP, the participants who used the direct proportional strategy, did not have 

a strong visual image of the situation. As a result, they focussed only on the numbers 

given in the problem. Those participants who attempted to generalise the problem, 

began with an incorrect drawing and directly counted the numbers from a pattern. They 

used the direct proportional strategy (multiplication of numbers) to generalise the 

sequence. 

 

During the IP, only a minority of participants used the recursive strategy, while the 

majority used direct proportional strategies. Participants’ interpretations of the 

mathematical structures involving patterns contributed to their choice of strategies 

used.  

 

The participants who used the direct proportional strategy without adjustment to the 

problem, were directly picking up numbers from the given problems and applied 

multiplication to those numbers during the IP, hence they failed to obtain the correct 

answer. 

 

The participants who used the direct proportional strategy showed a lack of 

representing, processing and implementation. Those participants did not understand 

the information within a given problem statement in order to solve the problem. 

Barbosa et al. (2012) indicate that learners who use the direct proportional strategy 

fail to make a final adjustment based on the context of the problem Therefore, 
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participants who used direct proportion in this study responded at an elementary level. 

They focused on taking information as it is from the data which means they were 

reading the data with little understanding. This finding is in agreement with Ibrahim 

and Rebello (2013) claiming that during the proportional representation “most of the 

students deal with symbolic representations independently of other forms of visual 

representations” (p. 14). Even though some participants were able to move to the IP, 

their solutions were incorrect because they tend to directly picking up numbers from 

the given problems and applying multiplication of those numbers.  

 

The mental image representation was evident in the RP. While the minority of the 

participants using mental image representation could provide reasons for the problem, 

they failed to handle the mathematical operations of the problem statement. Ibrahim 

and Rebello (2013) found that “students who construct a mental image handle the 

(generated) visual representations in isolation” (p. 14). The competency in mental 

model representing was noted when the participants stated the problem in language 

they could understand and were able to represent the problem by means of mental 

model. The participants focus on the image or diagram to provide reasons for the 

problem even if they fail to handle the mathematical part of the problem.   

 

Mental models were also evident in the RP. The few participants who used mental 

model representation, focussed on comprehension of the situation, as well as the 

mathematics concepts of the activity. They dealt with equations by including 

diagrammatic representations in their solutions of the problem. The competency of 

developing mental models was specifically noted when the participants focused on 

comprehension of the pattern, as well as the mathematics concepts highlighted in the 

problem. According to Ibrahim and Rebello (2013), “mental model provides a medium 

for making links between the syntactic (mathematical) and structural (visual) aspects 

of the task under consideration, thus allowing interpretation and comprehension to 

take place” (p. 14).  

 

4.8 CHAPTER SUMMARY  

The profile of schools and demographic information of participants were provided. 

Thereafter a description of the written activity, including the protocol for reviewing the 

number pattern problems, was given. The written activity on number pattern problems 
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provided opportunities for the participants to decode, represent, process and 

implement the mathematical ideas on number patterns. A discussion of participants’ 

responses on a number pattern problem for school A, school B, school C aligned with 

the phases of the PS conceptual framework was provided. The PS conceptual 

framework helped participants to model and interpret problem situations, to 

understand number patterns mathematical concepts, to clarify and to communicate 

their thinking, and to make connections between related mathematical ideas. Finally, 

the levels of engagement in the four phases of the PS conceptual framework of Singer 

and Voica (2013) in the strategies in the analysis of the written activity and the 

interviews were compared to align participants’ strategies with the four phases of the 

PS conceptual framework.  

 

The phases of the PS conceptual framework were used to analyse and interpreted the 

levels of engagement by the participants in their response to the written activity and 

interviews. The documents in the form of a written activity were analysed and 

discussed separately for each of the three schools in terms of four phases of the PS 

conceptual framework. During the analysis of the participants’ responses, the phases, 

namely decoding, representing, processing and implementing determined the 

competencies that participants displayed in their responses to number pattern 

problems. The findings showed that participants who left blank spaces during the 

written activity were able to give their strategies during the interviews. Also, 

participants whose strategies were inappropriate to number pattern problems on the 

written activity, were able to practically describe their representing during the 

interviews. They were able to move from proportional representing to mental image 

representing even though their solution was not entirely satisfactory for the problem 

text during the IP.  

 

Both direct counting and the recursive strategy were evident during the DP. Those 

who correctly decoded the number patterns used recursive strategy, saw the patterns 

or trends in the problem statement. While counting strategy was the preferred strategy 

for participants in near generalisation, the strategies of mental image and mental 

model representation were evident during the RP. The strategy of direct proportion, 

even inappropriately employed, was evident in both the PP and the IP. Most 

participants used direct proportion during the PP and the IP, which was noted when 
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the participants constructed a rule that did not work for all the terms in their number 

pattern. 
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CHAPTER 5: CONCLUSIONS, RECOMMENDATIONS AND 

LIMITATIONS 

5.1 INTRODUCTION 

The solving of number pattern problems is often regarded as a difficult topic for 

learners. Learners often use inappropriate strategies to solve number pattern 

problems. Many of them cannot easily identify number patterns embedded in problems 

and lack the mathematical concepts to do so. This study, therefore, focused on the 

strategies used by participants to solve number pattern problems in line with the PS 

conceptual framework of Singer and Voica (2013). This chapter provides an overview 

of the study based on Chapter 1 to Chapter 4. A summary of the findings for each 

research objectives, as well as a summary of the overarching findings for the main 

research question, is provided. The implications of the findings of the research study 

are outlined. Thereafter, the contribution of the study will be given, followed by the 

limitations of the study and recommendations for future research. Lastly, the study is 

concluded and a final reflection on the study is offered. 

 

5.2 OVERVIEW OF STUDY 

Chapter 1 stated the purpose of the study, namely, to investigate grade 9 mathematics 

learners’ strategies in solving number pattern problems. This purpose was envisaged 

to ultimately assist learners with guidelines to improve their learning of number 

patterns-related problems. Thus, the main research question was: What strategies do 

grade 9 mathematics learners use in solving number pattern problems? To address 

the main question, the following sub-questions were set: 

 What are the strategies grade 9 mathematics learners engage in when solving 

number pattern problems? 

 What are the views of grade 9 mathematics learners regarding the areas of 

difficulty (if any) they experience as they complete number pattern problems? 

 What levels of engagement in the four phases of the PS conceptual framework 

are evident in grade 9 mathematics learners’ strategies to a number pattern 

problem activity? 
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Chapter 2 focused on an overview of literature concerning number pattern problems. 

A discussion on the nature of mathematics, including the definition of mathematics; 

problem solving; number patterns; the design of number pattern problems; learners’ 

experience of problem solving; strategies used in number patterns; and lastly the PS 

conceptual framework developed from Singer and Voica (2013), was provided.  

 

Mathematics was defined as a human activity that involves observing, representing, 

and investigating patterns and qualitative relationships in physical and social 

phenomena and between mathematical objects themselves (DBE, 2011). Ernest 

(1991) argues that having a good understanding of the nature of mathematics and its 

philosophical underpinnings are important for both the learning and teaching 

mathematics. Beliefs about the nature of mathematics provide a foundation for 

teacher's methods of teaching, and how learners learn mathematics. It can also affect 

how mathematics concepts are explained, demonstrated, and taught to learners.  

 

Barbosa et al. (2012) argues that an in-depth investigation of patterns in mathematics 

can add more value to the ability to problem solve. Patterns are a way for learners to 

recognise order and organise their world, and are important in all aspects of 

mathematics. Therefore, number patterns and geometric/pictorial patterns are 

beneficial in building positive and meaningful images of mathematics, and add value 

to the development of several skills related to problem solving and algebraic thinking. 

More specifically Schumacher and Fuchs (2012) indicate that mathematical problems 

challenge learners to read and interpret the problem, represent the semantic structure 

of the problem, and choose a solution strategy. The study was guided by the PS 

conceptual framework of Singer and Voica (2013). Singer and Voica’s PS conceptual 

framework highlights four phases, namely, decoding, representing, processing, and 

implementing (see section 2.8) 

 

Chapter 3 outlined the research design and research methodology used in this study. 

The chapter described the philosophical assumptions (epistemological, ontological, 

and axiological) of the study. The qualitative research approach followed in this study 

assisted the researcher to develop a deep understanding of the learners’ strategies 

used in solving number pattern problems. The researcher used an exploratory 

qualitative case study research strategy. Purposive sampling was utilised to select 90 
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grade 9 mathematics learners from three rural schools (30 from each school). The 

data were collected through written a activity and semi-structured one-on-one 

interviews. Data analysis was carried out by means of content analysis following a 

deductive approach to analyse the participants’ written activity and interviews. 

Trustworthiness of the study was discussed with reference to credibility, transferability, 

dependability, and confirmability. Lastly, ethical considerations taken into account 

were reported.  

 

Chapter 4 focused on data analysis and the interpretation of findings. The profile of 

the schools, and demographic information on the participants, was provided. 

Thereafter, a description of the written activity, including the protocol for reviewing the 

number pattern problems, was given. The written activity on number pattern problems 

provided opportunities for the participants to decode, represent, process, and 

implement the mathematical ideas on number patterns. A discussion of how 

participant responses (to a number pattern problem for school A, B and C) aligned 

with the phases of the PS conceptual framework was provided. Finally, the levels of 

engagement of the four phases of the PS conceptual framework in strategies from the 

analysis of the written activity and the interviews were compared. A summary of the 

findings according to the research objectives are given next. 

 

5.3 SUMMARY OF FINDINGS ACCORDING TO THE RESEARCH OBJECTIVES 

The following section provides a summary of the findings according to the research 

objectives. 

5.3.1 Research objective 1: Determine the strategies grade 9 mathematics 

learners engage in when solving number pattern problems 

To achieve this objective, documents in a form of participant scripts were used. The 

participant scripts were marked by the researcher using a marking guideline (see 

Appendix I) set according to the indicators developed from the four phases of the PS 

conceptual framework (see section 4.5). During the DP, most participants used the 

counting strategy to find a pattern to determine terms in the near position. Fewer 

participants changed to the recursive strategy to find a pattern to determine terms in 

the far position.  
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During the RP few participants were able to use mental models and mental images; 

they used diagrams and pictures to find the nth term. Most participants used 

proportional representation and did not use pictures or diagrams as guidance in finding 

the nth term. The mental image representation was also evident in the RP. While the 

minority of the participants using mental image representation could provide reasons 

for the problem, they failed to handle the mathematical operations of the problem 

statement. 

 

During the PP most participants used an incorrect formula to find the general rule. 

They were incorrectly interpreting the unknown variables. Hence, participants used 

the direct proportional (multiplication of numbers) strategy without making adjustments 

for the problem.  Finally, during the IP, only a minority of participants used the recursive 

strategy, while the majority used direct proportional strategies. Almost half of the 

participants were able to identify adequate ways to describe or to prove the number 

patterns and to eliminate the values that did not satisfy the constraints of the problem. 

Just over half of the participants tended to manipulate numbers in order to allow the 

sequence to go higher, which increased the difficulty of implementing the model to find 

a correct solution.   

 

5.3.2 Research objective 2: Establish grade 9 mathematics learners’ views 

regarding the areas of difficulty (if any) they experience as they 

complete number pattern problems 

To achieve this objective, the researcher conducted one-on-one semi-structured 

interviews with three participants in order to obtain explanations and experiences from 

participants for using specific strategies to solve number pattern problems.  

 

Almost a third of the responses indicated that participants were able to engage or 

reach decoding using the counting strategy for a near position of the terms. The 

participants indicated that they had experienced difficulties in finding a pattern to 

determine a term in the far position, as compared to the near position. Decoding of 

numbers and mathematical structures were a challenge to participants and they used 

direct proportion incorrectly when finding the value of the nth term. 
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A third of the responses showed that participants were able to represent the problem. 

The participants indicated that they had experienced difficulties in using symbolic 

notation to continue with the pattern, but they were able to provide an image of how 

the pattern grows. They used numbers instead of algebraic expressions to explain 

their strategies.  

 

Few responses focused on processing. The participants indicated that they 

experienced difficulties in finding meaning in an abstract algebraic expression. 

However, they mentioned some techniques for manipulating algebraic expressions 

and equations, but without a basic underlying understanding of what the variables and 

numbers represented.  

 

Few responses referred to implementation. The participants were unsuccessful in 

using substitution to find the pattern for the unknowns, since they relied on the direct 

proportional strategy (multiplication of numbers). 

 

5.3.3 Research objective 3: Ascertain the levels of engagement in the four 

phases of the PS conceptual framework in grade 9 mathematics 

learners’ strategies to a number pattern problem activity 

To achieve this objective, the levels of engagement in the four phases of the PS 

conceptual framework of Singer and Voica (2013) in the strategies established from 

the results from the written activity with the interviews were compared. The findings 

showed that participants who left blank spaces during the written activity were able to 

give their strategies during the interviews. Also, participants whose strategies were 

inappropriate to number pattern problems in the written activity, were able to describe 

their representing practically during the interviews. They were able to move from 

proportional representation to mental-image representation even though their solution 

was not entirely satisfactory for the problem text during the IP. 

 

5.4 SUMMARY OF OVERARCHING FINDINGS 

Findings from the three research objectives were considered to present an answer to 

the main research question: What strategies do grade 9 mathematics learners use in 

solving number pattern problems? 
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The findings from the written activity and the responses from the interviews on the 

number pattern problems revealed four strategies, namely: (1) direct counting, (2) 

recursive strategy, (3) direct proportion, (4) mental-image representation (5) mental-

modal representation. 

 

Both direct counting and the recursive strategy were evident during the DP. The 

competency of decoding was demonstrated when the participants recognised and 

found a pattern in both the near and far position. The findings indicate that the 

participants who used direct counting during the DP, were able to discover a term in 

the near position, but failed in the far position. Those who correctly decoded the 

number patterns by means of the recursive strategy saw the patterns or trends in the 

problem statement.  

 

The strategy of mental image representation was evident during the RP. The 

competency of representing was noted when the participants stated the problem in 

language they could understand and were able to represent the problem by means of 

mental model. The participants, who used mental model representations, could 

provide reasons for the problem even in cases where they failed to handle the 

mathematical part of the problem. 

 

The strategy of direct proportion, even if it was inappropriately employed, was evident 

in both the PP and the IP. Processing occurred when participants could create a 

general formula for the sequence, i.e., a mathematical model. Most participants used 

direct proportion inappropriately during the PP and the IP, which was noted when the 

participants constructed a rule that did not work for all the terms in their number 

patterns. The participants, who were unable to use the correct mathematical model, 

struggled to implement their answers in the IP.  

 

5.5 IMPLICATIONS OF THE STUDY 

The findings of this study have several important implications. To develop the skill of 

decoding, learners should be provided with content knowledge of patterns. Teachers 

should use strategies that assist learners to use symbolic algebraic expressions and 

to generalise the sequence. Learners should be developed to use a recursive 

generalisation.  
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Teachers need to inform learners on how to find the value of a term by giving the value 

of the preceding term. It is important that learners are asked to explain their thinking. 

Having them describe their reasoning can also help them realise that often there is 

more than one way to look at a pattern. 

 

Secondly, to acquire the skill of representing, learners should be guided on how to 

construct mental models, which will provide them with opportunities to use algebra to 

prove conjectures or rectify different solutions or formulae for number patterns. By 

drawing learners' attention to the relationships between the physical representation of 

a pattern and its symbolic expression, learners can be led to recognise that different 

symbolic expressions may represent the same physical situation. 

 

Thirdly, to foster the skill of processing, learners should be assisted to develop 

accurate concepts on number pattern. The concept of algebraic expressions, to form 

equations to solve number patterns problems, is a powerful concept of elementary 

algebraic reasoning. Teachers should not only assist learners in using algebraic 

expressions, but also provide them with strategies to manipulate symbols in number 

patterns. Teachers should provide learners with content knowledge of number 

patterns, i.e., the strategies that can be used in both numbers and pictorial patterns. 

 

Finally, to develop the skill of implementing, teachers should assist learners to focus 

on the relationship between the data in a problem and the mathematical operation. 

Learners should be guided to find and to discover a pattern, and to generalise and to 

implement a correct mathematical model. Thus, learners should be encouraged to 

reason about the strategies they use when solving number pattern problems. 

 

5.6 LIMITATIONS OF THE STUDY 

While a qualitative study is known to dig deep in terms of examining a phenomenon 

under study, the large sample size of 90 participants from three schools for the written 

activity could not achieve the depth-ness of the investigation. On the other hand, three 

participants for the interviews did not adequately address the issue of depth in terms 

of gaining knowledge that informs learners’ problem-solving strategies in number 

pattern problem solving tasks. Therefore, the findings cannot be generalised to all 
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schools in South Africa. Also, the context was restricted to rural schools and, therefore, 

the findings could be different for urban schools. Furthermore, the study was limited 

to grade 9 learners and did not consider learners from primary schools, where the 

basic foundations of the topic of number patterns are introduced.  

 

Due to the limited scope of this study, only one mathematics topic was investigated, 

namely, linear number pattern problems. Patterns are also evident in linear and 

quadratic functions, which could reveal different findings. Only two data collection 

instruments were used due to time constraints, namely, interviews and a written 

activity. A shortcoming in this study is that no observations or think-aloud protocol were 

done while the participants engaged in the activity on number pattern problems. 

Therefore, participants’ thinking processes could not be established during the various 

phases of problem solving. The written activity was completed during school hours, 

which could have led to learners rushing through the activity without putting cognitive 

effort into the mathematics problems due to insufficient time. The participants were 

also from three different schools and were taught by different mathematics teachers. 

It could also be possible that different teaching styles might have influenced the types 

of strategies used on number pattern problems. Conducting observations was not 

feasible as the researcher is also a teacher at another school and did not have 

permission to leave her school during contact time. The study was qualitative and 

focussed on participants’ interpretations of their strategies to solve number pattern 

problems. A last limitation is that the study did not investigate the effect of the 

strategies on participant learning of, or performance in, number pattern problems.  

 

5.7 RECOMMENDATIONS FOR FUTURE RESEARCH 

This study aimed to lay a foundation for future studies regarding different strategies to 

employ in solving number pattern problems. Future studies may involve learners from 

the FP and IP at primary schools, in order to compare strategies on solving number 

pattern problems across different phases. Furthermore, a recommendation is to 

expand this research enquiry on learner strategies in solving number pattern problems 

to other contexts, both locally and internationally within the same grades. The focus of 

research could also shift from learners’ strategies used in learning to teachers’ 

strategies used in the teaching problems. Other frameworks, different from the PS 

conceptual framework of Singer and Voica (2013) could also be explored. A future 
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study on number pattern problems, which includes a larger sample size, may 

contribute to the transferability of the study. Having a smaller sample size in this study 

did not provide sufficient information on the strategies that grade 9 mathematics 

learners use in solving number pattern problems. 

  

In future, it is recommended that quantitative data is also collected on how learners’ 

strategies in solving number pattern problems relate with those of the teachers’ 

teaching practice in this topic. Lastly, it can be suggested that a longitudinal study on 

how learners could be developed to solve problems by using the phases of the PS 

conceptual framework of Singer and Voica (2013). 

 

5.8 CONTRIBUTION OF STUDY 

The study contributes to practice by establishing different strategies learners use to 

solve number pattern problems, which could sensitise teachers to introduce alternative 

strategies to learners when solving number pattern problems. This study also makes 

teachers aware of learners’ interpretations and implicit thinking processes regarding 

the strategies they use when solving number patterns during the different process 

phases of problem solving, which may influence learners’ learning of mathematics.  

 

Curriculum developers may benefit from an increased awareness of the difficulties 

learners experience when solving number pattern problems, and may include 

examples of different strategies to solve problems in curriculum documents to guide 

teachers in this regard. Mathematics subject advisors at district level may introduce 

teachers to meaningful and effective strategies in solving number pattern problems to 

support them in their professional development of problem-solving proficiency. 

Guidelines on learners’ strategies to solve number pattern problems may also be 

added to the mathematics CAPS.  

 

The importance of this study in terms of academic value is that it expands on the uses 

of the existing PS conceptual framework of Singer and Voica (2013), which may be 

used for further research pertaining to the development and maintenance of effective 

strategies in the solving of number pattern problems. The study also adds to the limited 

research in South Africa on problem solving, specifically pertaining to the topic of 

number patterns, which has not been sufficiently addressed in previous studies. 
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5.9 CONCLUSION 

This chapter summarises the findings of this study on grade 9 mathematics learners’ 

strategies in solving number pattern problems. The findings of this study, together with 

its implications for practice and recommendations for future research, were discussed. 

The study investigated grade 9 mathematics learners’ strategies in solving number 

pattern problems in order to assist in setting guidelines to improve future learning of 

problems regarding number patterns. The research question focused on the strategies 

used by grade 9 mathematics learners in solving number pattern problems. The 

qualitative research approach followed in this study assisted the researcher to develop 

a deep understanding of the strategies learners use for number pattern problems. The 

focus was on the levels of engagement in the four phases of the PS conceptual 

framework that participants displayed, namely: decoding, representation, processing, 

and implementation (Singer & Voica, 2013). The four phases of the PS conceptual 

framework were used to analyse participants’ written activity and the interviews on the 

strategies used in solving number pattern problems. 

 

The study concluded by revealing that the counting strategy was widely used across 

the various process phases of problem solving. Those participants who struggled to 

generalise the pattern, preferred to use the direct proportional strategy. Furthermore, 

many participants lacked an understanding of mathematical operations, such as 

subtraction and addition, and could not visualise the pattern, which resulted in 

overlapping shapes and misunderstanding of the nth term when completing the table 

of values. Most participants used direct proportion inappropriately during processing 

and implementing.  

 

From the findings, it can be concluded that there is no way a problem can be correctly 

solved if it is not properly decoded. A suggestion to teachers is that they should 

encourage learners to decode a problem before they attempt to find a solution. Also, 

when number pattern problems are solved, learners should be advised to check the 

results by means of substituting the calculated values in the initial statement, and also 

to control the results against the context within which the problem is given.  
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Definitely, the PS conceptual framework of Singer and Voica (2013) can be adopted 

and relevant strategies can be used to help solve number pattern problems effectively. 

In future, teachers could also adjust the PS conceptual framework and use it as a tool 

to analyse the strategies they use to teach number pattern problems. 

 

5.10 FINAL REFLECTION  

Completing this dissertation has been quite a challenge and it has taken much time 

and effort to complete it to the best of my ability. The biggest mistake that I made when 

writing this dissertation, was to write about something before I completely understood 

it. As a result, it impacted on my time management in completing the dissertation as I 

had to spend additional time on refocusing, including additional information and 

rephrasing of information. I now realise how my own thinking processes have 

improved since the beginning of my proposal to end of my dissertation. I have grown 

personally as a mathematics teacher, and academically as a researcher. As a 

mathematics teacher, it has been good to develop my knowledge and understanding 

of learners’ strategies used to solve number pattern problems by using the PS 

conceptual framework. This new knowledge can help me in my future teaching of the 

topic, and also to share my expertise with my colleagues. As a researcher, this study 

has taught me how to report my findings and to review literature. I have learned how 

to analyse, to write up a report, and to think through what I can say and what I need 

to do, thus to conceptualise a research inquiry. Developing academic writing skills is 

a process, which I still need to improve as a whole. These skills will help me with other 

types of writing that I have to do, including writing used on a day-to-day basis 

throughout my teaching career. 
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APPENDICES 

 

APPENDIX A: WRITTEN ACTIVITY 

Question 1 

1.1. Complete the table by indicating the next terms (f(x)) of the sequence. If the sequence is 

continued to nth term, please write the general formula for the nth term. Explain your answer 

𝑥 1 2 3 4 5 6 7 8 n 

𝑓(𝑥) -2 -5 -8 -11 -14     

 

Question 2 

Joana likes to make necklaces using flowers. She uses white beads for the petals and black beads 

for the centre of each flower. The figure below shows a necklace with one flower and a necklace 

with two flowers, both made by her. 

 

2.1 How many white and black beads will Joana need to make a necklace with 3 flowers? Explain 

your answer. Make a neat diagram with 3 flowers on the above space provided. 

 

2.2 

 

 

 

 

 

 

How many flowers will Joana be able to make if she uses 102 white beads? Explain your 

answer. 
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APPENDIX B: ONE-ON-ONE SEMI-STRUCTURED INTERVIEW 

 

TITLE: GRADE 9 MATHEMATICS LEARNERS’ STRATEGIES IN SOLVING 

NUMBER PATTERN PROBLEMS 

Research Question: 

The main research question:  

What strategies do grade 9 mathematics learners use in solving number pattern 

problems? 

Participant:         School: 

Date:           

Interview Questions 

1.  Let’s look at question 1, what type of pattern is that and why? 

________________________________________________________________

________________________________________________________________

________________________________________________________________ 

2. How did you complete the sequence in question 1? Explain your strategy 

________________________________________________________________

________________________________________________________________

________________________________________________________________ 

3.  How did you get your general formula?  

______________________________________________________________

______________________________________________________________ 

 

4. When working with question 2 about Joana making necklaces; how did you identify 

the key words to solve the problem? 

______________________________________________________________

______________________________________________________________ 

 

5. How did you make a necklace with 3 flowers? 

______________________________________________________________

______________________________________________________________

______________________________________________________________ 
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6. How many flowers will Joana be able to make if she uses need if she uses 102 

white beads? Explain your answer 

______________________________________________________________

______________________________________________________________

______________________________________________________________ 

7. Can you come up with a general formula for this problem? 

______________________________________________________________

______________________________________________________________

______________________________________________________________ 

8. How do you determine if the formula used is correct? 

______________________________________________________________

______________________________________________________________

______________________________________________________________ 

9. How do you relate your final answer with the original statement to check whether 

the formula is correct? 

______________________________________________________________

______________________________________________________________

______________________________________________________________ 
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APPENDIX C: UNIVERSITY OF JOHANNESBURG ETHICAL CLEARANCE 

LETTER 
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APPENDIX D: LIMPOPO DEPARTMENT OF EDUCATION 
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APPENDIX E: LETTER TO THE PRINCIPALS 

 

P.O.BOX 1060 

         MARBLE HALL 

         0450 

         18 May 2017 

 

Dear Principal     

REQUEST FOR PERMISSION TO CONDUCT RESEARCH 

Ethical clearance number 2017-029 has reference. 

The Faculty of Education Academic Ethics Committee of the University of 

Johannesburg and the Limpopo Department of Education granted me an ethical 

clearance to conduct a research study in schools. See attachments. 

I hereby request permission to conduct research from Grade 9 mathematics learners. 

I am an M Ed student in Mathematics Education at the University of Johannesburg. 

My research topic is Grade 9 mathematics learners’ strategies in solving number 

pattern problems.  

 

Most learners across the primary grades in South Africa have poor mathematics skills, 

with the average performance steadily declining by approximately 10% each year. The 

results for the ANA for mathematics in South Africa also raise a national concern 

regarding the poor performance of grade 9 mathematics learners. Even though the 

2013 ANA results slightly increased, from 13% to 14% in the national average, for 

grade 9 mathematics, the results are still poor. Therefore, the purpose of my study is 

to investigate grade 9 mathematics learners’ strategies in solving number pattern 

problems in order to provide guidelines to assist future learning of number patterns. 

 

The data collection process will be as follows: During this term (second term 2017), 

educators will be asked to provide documentary source such as learners’ record of 

performance in mathematics. I will give learners an activity sheet consisting of 

problems involving number patterns to complete. I will observe those learners as they 

complete activity sheets during school contact time for about two lessons on different 

days in one week and it will be done at a time convenient to the educator and should 

not disrupt the educator’s timetable. The observations will be video recorded; this will 
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allow for a clear and accurate record of the learners strategies in solving number 

pattern problems. I will also conduct one-on-one semi-structured interviews with 

learners after school hours for about two weeks in order to verify strategies used in 

the activity sheets and to ensure correct interpretation in cases of uncertainty. I would 

like to assure you in advance that my study in the selected schools will in no way 

interrupt the normal teaching, learning and assessment activities. Please note that it 

is unlikely that there will be any potential risks to teachers or learners participating in 

the study. Also note that learners are at liberty to withdraw from this study at any time, 

without penalty or pressure to provide reasons to me, as the researcher.  In this regard, 

I will undertake to ensure that participating in this study does not disadvantage the 

participants. 

 

You are hereby assured that the information the learners give will be treated with 

utmost confidentiality and that their identity as well as that of your school will be kept 

private. Data collected from this study will be kept safe for until the study is completed 

and destroyed afterwards. The published results of this study will, however, be made 

available to you, the circuit manager and the Limpopo Department of Education.  

No direct or indirect financial benefits shall derive from carrying out this study, nor shall 

your learners’ participation herein incur any costs.  

For any information, please, contact me at 079 84 66 265 or email me at 

phithyk@gmail.com 

Yours in Education 

_________________ 

Aphane K.P. (Mathematics Educator)      

Cell: 0798466265 

  

mailto:phithyk@gmail.com
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APPENDIX F: PERMISSION TO CONDUCT RESEARCH FROM SCHOOLS 
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APPENDIX G: LETTER TO THE PARENTS 

 

P.O. Box 1066 

Marble Hall 

0450 

18 May 2017 

 

Dear Parents/Guardians of Grade 9 Mathematics learners 

   

The purpose of this letter is to request your permission to involve your Grade 9 

Mathematics child in my research study. Approval from the Limpopo Department of 

Education and the circuit manager to conduct research in Schools has been given.  

 

Most learners across the primary grades in South Africa have poor mathematics skills, 

with the average performance steadily declining by approximately 10% each year. The 

results for the ANA for mathematics in South Africa also raise a national concern 

regarding the poor performance of grade 9 mathematics learners. Even though the 

2013 ANA results slightly increased, from 13% to 14% in the national average, for 

grade 9 mathematics, the results are still poor. The overall performance in 

mathematics in the ANA of 2014 showed an upward trend in performance with the 

average percentage scores increasing by a maximum of 8% in mathematics in all 

grades, except in grade 9. 

 

As part of my M Ed Degree at the University of Johannesburg, I am conducting 

research on Grade 9 mathematics learners’ strategies in solving number pattern 

problems. Research in this area will investigate grade 9 mathematics learners’ 

strategies in solving number pattern problems in order to provide guidelines to assist 

future learning of number patterns. I will conduct classroom observation and an in-

depth interview with the learners to identify learners’ strategies to solve problems 

involving number patterns. 

 

Please note that learners are at liberty to withdraw from this study at any time, without 

penalty or pressure to provide reasons to me, as the researcher.  In this regard, I will 
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undertake to ensure that participating in this study does not disadvantage the 

participants.   

 

All the information supplied will be treated with confidentiality and outcomes of the 

research will be made available on request. Data will be kept under lock and key and 

will be destroyed after completion of the research study. Should you have any queries 

or comments regarding this research, you are welcome to contact me via the School.  

Your cooperation is highly appreciated. 

 

 

Yours in Education 

 

_________________      ___________________ 

Aphane K.P       Dr E D Spangenberg 

(Mathematics Educator)     (Supervisor) 

Researcher 

 

  ------------------------------------------------------------------------------------------------------- 

 

 

I, ___________________________________________________, the 

parent/guardian of ______________________________________ give my consent 

that he/she may participate in the study and that the information may be used for 

research purposes.  Furthermore, I give consent that the school may provide his/her 

marks to the researcher on condition that all the information will be treated as 

confidential at all times.   

 

___________________________   

 _____________________ 

       Signature of parent                            Date 
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APPENDIX H: LETTER TO LEARNERS 

 

  

 

 

Dear learner 

You are kindly requested to complete the activity sheets which will be handed to you 

the next few days and to conduct one-on-one interview with you.  The aims of the 

activity sheets and the interview are: 

 To identify learners’ strategies to solve problems involving number patterns, 

 To assess learners’ strategies when solving problems involving number 

pattern; 

The purpose of my study is to investigate grade 9 mathematics learners’ strategies in 

solving number pattern problems in order to provide guidelines to assist future learning 

of number patterns. It will take approximately 45 minutes to complete the activity and 

30 minute for an interview. The activity will be completed during class under 

supervised examination conditions and the interview will be conducted after school 

hours.  

I assure you that your identity and your responses to the activity and the interview will 

be treated as CONFIDENTIAL at all times and that it will NOT be made available to 

any unauthorised user.  

Please note that you are at liberty to withdraw from this study at any time, without 

penalty or pressure from me, as the researcher, to provide reasons.  In this regard, I 

will undertake to ensure that participating in this study does not disadvantage you.  

Should you have any queries or comments regarding this research, you are welcome 

to contact me via your educator.  

Your cooperation is highly appreciated. 

Yours in Education     

NUMBER PATTERN 

STRATEGIES 
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____________________      

APHANE K.P.       

 

 

  ------------------------------------------------------------------------------------------------------------ 

CONSENT 

I, ___________________________________________________ have read and 

understand the aims of this research study. On condition that the information provided 

by me is treated as confidential at all times, I hereby give consent that it may be used 

for research purposes.   Furthermore, I give consent that the school may provide my 

marks to the researcher on condition that these will also be treated as confidential.   

 

_____________________________   _____________________ 

     Signature of participant                           Date  

 

 

  



 
 

 170  
 

APPENDIX I: MARKING GUIDELINE 

Question 1 

1.1 Complete the table by indicating the next terms (f(x)) of the sequence. If the sequence is 

continued to nth term, please write the general formula for the nth term 

𝑥 1 2 3 4 5 6 7 8 n 

𝑓(𝑥) -2 -5 -8 -11 -14 -17 

√ 

-20 

√ 

 

-23 

√ 

-3n+1 

√√ 

 

Continue the sequences indicating the next three elements (find a pattern, to discover terms in 

near) (3 marks) 

Recognise a pattern and expand it, and be able to relate numbers and operations 

e.g. 𝑇2 − 𝑇1 = 𝑑 (𝑐𝑜𝑚𝑚𝑜𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

Correct rule given i.e. find a pattern, to discover terms in far position 

𝑇𝑛 = −3𝑛 + 1 (2 marks) 

            √      √ 

Question 2 

Joana likes to make necklaces using flowers. She uses white beads for the petals and black beads 

for the centre of each flower. The figure below shows a necklace with one flower and a necklace 

with two flowers, both made by her. 

        

2.

1 

How many white and black beads will Joana need to make a necklace with 3 flowers? Explain 

your answer 

Able to explain a pattern and expand it (2 marks) 

14 white beads √ 

3 black beads √ 

Build concrete representation which can be expressed in a form of drawing. Make a neat 

diagram with 3 flowers on the above space provided (3 marks for the diagram) 

 

 



 
 

 171  
 

 

2.

2 

 

 

 

 

How many flowers will Joana be able to make if she uses 102 white beads? Explain your 

answer 

Provide the correct rule of Tn=4n+2 (2marks) 

                                                 √    √ 

Correct substitution in the formula and calculation (3 marks) 

102 = 4(𝑛) + 2    √        

102 − 2 = 4𝑛       √         

100

4
= 𝑛  

𝑛 = 25 √ 

 

(2) 
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APPENDIX J: PROTOCOL TO REVIEW THE WRITTEN ACTIVITY 

 

1.1 Complete the table by indicating the next terms (f(x)) of the sequence. If the 

sequence is continued to nth term, please write the general formula for the nth 

term. Explain your answer 

𝑥 1 2 3 4 5 6 7 8 n 

𝑓(𝑥) -2 -5 -8 -11 -14     

 

 DP; continue the sequences, recognise a pattern and expand it, and be able to 

relate numbers and operations. The question demanded knowledge of linear 

pattern and the mathematical operation of subtraction.  

 RP; find a pattern, to discover terms in near and far positions. The question 

demanded the use mental model to create concrete representations of patterns 

using, tables, word and symbols. 

 PP; correct rule 

 IP; implementing the rule 

If the sequence number is continued to nth term, please write the general formulation 

of the nth term. 

 DP: continue the sequences, recognise a pattern and expand it, and be able to 

relate numbers and operations 

 RP: build mental representation to create an equation of linear pattern. This 

question demanded knowledge of recognition of variables and construct 

relations between variables, be able to identify the unknown quantity by 

generalising a rule for a linear pattern 

 PP; create a correct formula for finding the element of the sequence. The 

question demanded the use formula of arithmetic sequence to find the nth term 

 IP; substituting the correct values, simplifying, and using known algorithm. The 

question demanded the applying techniques that are specific to the found 

mathematical model, using multiple solution strategy and producing 

mathematical explanation and justification of the solution and generally 

questioning the model (Singer and Voica, 2013). 

Joana likes to make necklaces using flowers. She uses white beads for the petals and 

black beads for the centre of each flower. 
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How many white and black beads will Joana need to make a necklace with 3flowers? 

 DP; recognise a pattern and expand it, and be able to relate numbers and 

operations. 

 RP; build concrete representation which can be expressed in a form of drawing. 

The question might also demand changing of problem statement into a 

language that is more accessible to the solver (Singer & Voica, 2013). 

 PP; create a correct formula to generalise linear patterns. The question 

demanded the application of linear formula to find the nth term of the sequence 

and knowledge of mathematical expression to represent a pattern. 

 IP; substituting the correct values, simplifying, and using known algorithm. 

2.2. How many flowers will Joana be able to make if she uses 102 white beads? 

 DP; recognise a pattern and expand it, and be able to relate numbers and 

operations. 

 RP; build concrete representation which can be expressed in a form of drawing.  

 PP; create a correct formula to generalise linear patterns.  

 IP: Substituting the correct values and solving linear equation.  
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APPENDIX M: ONE-ON-ONE SEMI-STRUCTURED INTERVIEW WITH 

PARTICIPANT A15 

 

TITLE: GRADE 9 MATHEMATICS LEARNERS’ STRATEGIES IN SOLVING 

NUMBER PATTERN PROBLEMS 

The sub-research question:  

What are the views of grade 9 mathematics learners regarding the areas of difficulty 

(if any) they experience as they complete number pattern problems? 

Participant A: undocumented strategy on number pattern problems  

          

Interview Questions 

1. Let’s look at question 1, what type of pattern is that and why? 

Participant A: I was thinking that the pattern is linear because we have the 

common difference of a constant number of white beads in each flower. 

(Coded DP2) 

2. How did you complete the sequence in question 1? Explain your 

strategy 

Participant A: I am counting the numbers from the sequence by subtracting 3 

up until I arrive to the nth term (Coded DP3) showed an understanding of 

decoding accurately (in the table) for the first three elements. I think 𝑛 will be 

multiplied by the common difference (coded DP2) or nth term can be the 

number that follow the previous number in the sequence which is -26. 

3. How did you get your general formula?  

Participant A: the general formula will be 𝑇𝑛 = −3 × 𝑛. I counted the numbers 

from the sequence by subtracting 3 up until I arrive to the nth term. (Coded 

PP2, RP1, IP1) 

4. When working with question 2 about Joana making necklaces; how did 

you identify the key words to solve the problem? 

Participant A: I cannot not figure it out, but I was thinking that the pattern is 

linear because we have the common difference of 6 white beads in each 

flower. I was counting the number of beads in each flower and figuring out 

what the third flower would look like. (Coded DP2) 

5. How did you make a necklace with 3 flowers? 

Participant A: Since we are having six white beads in the first flowers 

therefore for three flowers will be Tn=6×3(flower)=18 white beads and 3 black 

beads. Coded (RP2) 
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6. How many flowers will Joana be able to make if she uses 102 white 

beads? Explain your answer 

Participant A: from my general formula; Tn = 6n, therefore Joana will need 17 

flowers with 102 white beads, I was counting how many white beads for the 

second flower, and I was looking for a rule that would work therefore I 

multiplied six which is the white beads by the number of flowers. (Coded RP2) 

7. Can you come up with a general formula for this problem? 

Participant A: the general formula will be 𝑇𝑛 = 6 × 𝑛. Six is the number of 

white beads and n is the number of flower. (Coded PP2) 

8. How do you determine if the formula used is correct? 

Participant A: I think by substituting the correct values, that is Tn=6×1 is 6 

therefore for flower 1 total of seven beads. (Coded IP2) 

9. Is there anything else you want to tell me with regard to better 

understanding of number pattern problems? 

Participant A: I am weak in mathematics and poor in visualisation to see a 

pattern, but now as I am speaking to you I see light. 6 white beads and one 

black bead make one flower therefore for 3 flowers will be (6x3=18 beads) 

 

 

 

 

The participant A15’s responses 

3 DP2 1DP3 2PP2 1IP1 1RP1 2RP2 1IP2 
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APPENDIX N: ONE-ON-ONE SEMI-STRUCTURED INTERVIEW WITH 

PARTICIPANT B2 

 

TITLE: GRADE 9 MATHEMATICS LEARNERS’ STRATEGIES IN SOLVING 

NUMBER PATTERN PROBLEMS 

The sub-research question:  

What are the views of grade 9 mathematics learners regarding the areas of difficulty 

(if any) they experience as they complete number pattern problems? 

Participant B2: irrelevant strategy on number pattern problems 

          

Interview Questions 

1. Let’s look at question 1, what type of pattern is that and why? 

Participant B: I am going to subtract negative 3 in each term to give me the 

next term and negative multiple by negative is positive, but I don’t know the 

type of pattern (Coded DP1) 

2. How did you complete the sequence in question 1? Explain your 

strategy 

Participant B: the sequence goes down and we called it a decreasing pattern 

and we represent the common difference between consecutive numbers by 

the variable d; I have calculated the common difference (d) between 

consecutive numbers which is -3. E.g. T2-T1=d; -5-(-2) = -3; T3-T2=d the 

common difference between two consecutive terms is -3, and then I 

subtracted the first term by -3 to get the next term (Coded DP3) 

3. How did you get your general formula?  

Participant B: I tried the different possibilities because I know the common 

difference -3 i.e. n-3, -3n, 3×n and trying to add other digits that can give the 

first -2.  I then substituted n by 1; 2; 3 so that it can give me the pattern of the 

sequence. Then I found the algebraic expression for this kind of pattern then I 

choice -3n therefore I have Tn=-3n+... (coded RP2, PP2) 

4. When working with question 2 about Joana making necklaces; how did 

you identify the key words to solve the problem?  

Participant B: my key word was the Joana making necklace. (Coded DP1) 

5. How did you make a necklace with 3 flowers? 

Participant B: for 3 flower she will need 18 white beads and 3 black beads 

(Coded RP1) 

6. How many flowers will Joana be able to make if she uses need if she 

uses 102 white beads? Explain your answer 
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Participant B: Mmmmm… (pause) I think it will be 17 flowers because 18 

white beads for 3 flowers. (Coded PP2) 

7. Can you come up with a general formula for this problem? 

Participant B: Yes…I think it will be Tn=6n (Coded PP2) 

8. How do you determine if the formula used is correct? 

Participant B: for question 2; the pattern grows by 6 white beads each time. 

Therefore, Tn=6×17(flower)=102 white beads. For question 1; I added 2 and 3 

to give me 5 but know that the common difference of the sequence was 3 so I 

ignored the subtraction sign and the negative sign added 2 and 3 to give me 

the next term (Coded IP1) 

 

9. Is there anything else you want to tell me with regard to better 

understanding of number pattern problems? 

Participant B: I understand how the consecutive terms are obtained in a 

pattern, but I’m still not sure if I understand how many white beads and black 

beads you will need for 3 flowers 

 

 

 

The participant B2’s responses 

3DP1 1DP3 1RP2 3PP2 1IP1 1RP1 
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APPENDIX O: ONE-ON-ONE SEMI-STRUCTURED INTERVIEW WITH 

PARTICIPANT C5 

 

TITLE: GRADE 9 MATHEMATICS LEARNERS’ STRATEGIES IN SOLVING 

NUMBER PATTERN PROBLEMS 

The sub-research question:  

What are the views of grade 9 mathematics learners regarding the areas of difficulty 

(if any) they experience as they complete number pattern problems? 

 

Participant C5: appropriate used of a specific strategy on number pattern problems 

          

Interview Questions 

1. Let’s look at question 1, what type of pattern is that and why?  

Participant C5: it is a decreasing linear pattern. They sometimes call it 

arithmetic sequence. An arithmetic sequence is simply a sequence that is 

expanded by the same number of integers for each new term. I this case we 

have the constant difference of -3. (Coded DP3) 

2. How did you complete the sequence in question 1? Explain your 

strategy 

 Participant C5: The pattern has a common difference of -3; therefore, I used 

the common difference to get the next term which will be -2-3=-5, then 

continue like that until I arrive to the nth term. For the nth term I used the 

general formula (Coded DP3) 

3. How did you get your general formula?  

Participant C5: n × (−3) = −3n; n represents the number of term in the 

sequence and -3 is the common difference. Term 1 = 1 × (−3) =, this does 

not give -2 which mean I must add 1 Term 2 =2 × (−3) = −6, this does not 

give me -5 as the second term I must add 1; therefore I will have Tn = −3n +

1. (coded RP3, PP3, IP3) 

4. When working with question 2 about Joana making necklaces; how did 

you identify the key words to solve the problem?  

Participant C5: I have looked at the number of white beads in flower 1 and 

flower 2 to observe the difference between the number of white beads (coded 

DP3) 

5. How did you make a necklace with 3 flowers?  
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Participant C5: Each flower must be a joint unit to form a linear pattern. Each 

flower shares two white beads to have a complete flower, four white beads 

were added to the end of each prior flower to create a new flower, and then 

added two beads to give me a complete flower (Coded RP3). 

6. How many flowers will Joana be able to make if she uses 102 white 

beads? Explain your answer  

Participant C5: the flowers should be a joint unit which to make this pattern a 

linear pattern. I will multiply 3(flowers) by 4(common difference), which is 12 

white beads plus 3 black beads. Therefore 2 flowers have 6+4=10 white and 

1+1=2 black beads, 3 flowers will need 10+4=14 whit and 2+1=3black beads. 

Therefore, for 102 white beads she will make 25 flowers. (Coded PP3, IP3) 

7. Can you come up with a general formula for this problem?  

Participant C5: my general rule will be Tn=4n+2 the variable n represents the 

number of flowers. (Coded PP3) 

8. How do you determine if the formula used is correct? 

 Participant C5: I will substitute 102 white beads into my formula. (coded IP3) 

 

9. Is there anything else you want to tell me with regard to better 

understanding of number pattern problems?  

Participant C5: I think I do understand number pattern 

 

 

 

 

 

The participant C5’s responses 

3DP3 2RP3 3PP3 3IP3 
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APPENDIX P: WRITTEN ACTIVITY OF PARTICIPANT A4 
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APPENDIX Q: WRITTEN ACTIVITY OF PARTICIPANT B2 
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APPENDIX R: WRITTEN ACTIVITY OF PARTICIPANT C5 

 

 

 

 


