1	Decanuclear FeIII clusters with hemiacetal ligands: a new{M10(μ 3-O)8} cluster core†
2	
3	
1	
4	1 ×
5	J. Mayans, ^a L. Roc, ^a M. Font-Bardia ^o and A. Escuer ^a
0 7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
1/ 10	
10 10	
20	
21	
22	
23	A Departament de Química Inorgànica i Orgànica, Secció Inorgànica and Institute of
24	Nanoscience (IN2UB) and Nanotecnology, Universitat de Barcelona, Martí i Franquès
25	1-11, Barcelona-08028, Spain.
26	b Departament de Mineralogia, Cristal·lografia i Dipòsits Minerals and Unitat de Difracció de R-X,
27	Centre Científic i Tecnològic de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i
28	Sabaris 1-3, 08028 Barcelona, Spain
29 20	
50 21	
32	
33	
34	
35	
36	
37	
38	
39 40	
4U /11	albert esquer@gi ub es (Albert Esquer)
4⊥ 42	albert.escuer(@q1.ub.es.(Albert Escuer)
43	
44	

45 ABSTRACT:

- 46
- 47 The characterization of a decanuclear FeIII cluster with α -methyl-2-pyridinemethanolate, generated by
- 48 the hydrolysis of Schiff bases, inspired us to carry out an initial exploration of the direct syntheses of
- 49 medium nuclearity FeIII clusters starting from aldehydes in methanolic medium. The new complexes
- 50 exhibit an unprecedented {Fe10(μ 3-O)8} cluster core.

51

- 53 Clusters containing oxo-bridged FeIII cations have been widely studied due to their biological relevance
- 54 as mimics of iron storage proteins or in the search for Single Molecule Magnet (SMM) responses. The
- 55 oxo bridges between FeIII cations give usually antiferromagnetic interactions that allow low or zero spin
- 56 ground states. However, high ground spin states, exhibiting slow relaxation of magnetization, can be
- 57 stabilized for some topologies like Fe4 iron-stars or Fe8 clusters, which are among the earlier and best
- 58 studied SMM families.1–5
- 59 2-(Hydroxymethyl)pyridine (Hhmp) is a classic ligand that has been largely employed in CuII, NiII and
- 60 MnII,III,IV cluster chemistry (more than 250 entries in the CCDC database) but, in contrast, its
- 61 reactivity with FeIII is limited to some scarce Fe2, Fe4, Fe6, and Fe8 and one Fe9 complexes6–10
- 62 mainly reported by Christou and Brechin, while polynuclear derivatives of the chiral related ligand,
- 63 HMehpm (α -methyl-2-pyridinemethanol), are unprecedented in FeIII chemistry.
- 64 The condensation reaction between an aldehyde and an amine to produce a Schiff base can be reversed
- by hydrolysis to give the starting reagents, usually helped by its coordination to polarizing cations, as
- 66 FeIII is. The metal assisted nucleophilic attack of a methoxide on the carbonyl C-atom of the
- 67 coordinated aldehyde yields the hemiacetal methoxy(pyridine-2yl)methanolato (MeO-hmp-) ligand.
- 68 This ligand is chiral, but the reaction is not selective and produces the (R)/(S)-MeOhmp-racemic
- 69 mixture. This reaction is well known in organic chemistry but in cluster chemistry it has been reported
- in very few cases by the deliberate or accidental reaction of 2-pyridinecarboxaldehyde and methanol, 11-
- 71 17 due to the breaking of Schiff bases and subsequent reaction of the aldehyde18–20 or due to an
- vuexpected oxidation of Hhmp.21 Noteworthily, coordination of MeO-hmp- to iron cations has been
- observed only one time in a mononuclear FeII complex and in one mixed FeIIILnIII complex.19,20 The
- reaction of the neutral L1 Schiff base (obtained by condensation of 2-pyridylaldehyde with 1,2-
- diphenyl-ethylenediamine, Scheme 1) with ferric nitrate and sodium thiocyanate in methanolic medium
- allows us to characterize the decanuclear cluster [Fe10(MeO-hmp-)8(μ 3-O)6(μ 3-OH)2(NO3)6(NCS)2]
- (1) or $[Fe10(MeO-hmp-)8(\mu 3-O)7(\mu 3-OH)(NO3)7]$ (2) in the absence of thiocyanate. The exclusive
- 78 presence of MeO-hpm- ligands suggests the complete hydrolysis of L1 and further reaction of the
- aldehyde with the solvent according to Scheme 1. To check this hypothesis, the direct reaction of ferric
- 80 nitrate, sodium thiocyanate and 2-pyridinecarboxaldehyde in basic methanolic solution was tried,
- 81 yielding the same complex 1 or complex 2 in the absence of thiocyanate, proving that the aldehyde was
- 82 the intermediate reagent in the formation of the decanuclear cluster.
- 83 In the light of the reproducibility of 1 and 2 by direct syntheses, we explored the direct reaction with
- 84 several aldehydes that allowed us to characterize the core of the $[Fe10(MeO-3Mehmp-)8(\mu 3-O)4(\mu 3$
- 85 OH)4(NO3)8]2+ cluster starting in this case from 3-methyl-2-pyridinecarboxaldehyde. This set of
- 86 reactions proves for the first time that this synthetic strategy is a convenient way to obtain high
- 87 nuclearity FeIII clusters. Synthetic details are provided in the ESI.[†] IR and powder X-ray spectra are
- shown in Fig. S1 and S2.†

- 89 The structures of 1–3 show a common core that consists of ten FeIII cations in an octahedral
- 90 environment and sixteen bridging O-donors, Fig. 1. Crystallographic details and selected bond distances
- 91 and angles are summarized in Tables S1–S4.† The core contains eight μ 3-O/ μ 3-OH bridges and eight μ -
- 92 O bridges which are provided by the O-alcoxo arms from eight MeO-hmp- ligands. The remaining
- 93 coordination sites are occupied by six nitrato ligands and two thiocyanates for 1 and only mono or
- 94 bidentate nitrato ligands for 2 and 3.
- 95 Four FeIII cations (Fe1, Fe3, Fe5 and Fe7 for 1 and 2 or Fe(1) and symmetry related for 3, Fig. S4⁺) link
- two bidentate MeOhmp-ligands each and show a FeN2O4 environment. The MeO-hmp-ligands are
- 97 chiral but four of them correspond to the (R)-enantiomer and the other four to the (S)-enantiomer. The
- 98 iron cations linking (R)-ligands show a Δ conformation, whereas the iron cations linking (S)-ligands
- 99 exhibit a Λ conformation, showing the expected transference of chirality from the ligand to the cation
- 100 environment, Fig. S5.[†]
- 101 Fe4, Fe8, Fe9 and Fe10 for 1 and 2 or Fe(3) and symmetry related for 3 have a FeO6 environment
- formed by one O-alcoxo, three μ 3-O and one bidentate nitrato ligands, whereas the apical Fe2 and Fe6
- 103 cations are linked by two O-alcoxo, two µ3-O, one N-thiocyanate and one monodentate nitrate ligands,
- 104 resulting in a FeNO5 environment for 1, by one bidentate and two monodentate nitrates for 2 and by two
- 105 monodentate nitrates for the case of 3, resulting in FeO6 environments, Fig. 2. The inner {Fe10(O)8}
- 106 core of the clusters is defined in all the cases by μ 3-O and μ 3-OH donors which are linked by means of a
- strong H-bond with the monodentate nitrato ligands. The Fe–Npy and Fe–Onitrate bond distances take
- 108 large values, up to 2.226 Å, whereas the Fe-(μ 3-O/OH) distances are much shorter with values reaching
- 109 1.85 Å.
- 110 The ten FeIII cations determine a rare polyhedron with exclusively triangular faces, which is
- 111 unprecedented in cluster chemistry. The most common distortion of a cube biaugmented on two
- 112 opposite faces (the elongated square bipyramid Johnson solid J15) consists of the rotation of the
- 113 opposite apicated faces to produce the classical gyroelongated square bipyramid (Johnson solid J17),
- 114 which can be alternatively described as a biaugmented square antiprism, Scheme 2, left.
- 115 This regular deltahedron has 16 faces, 24 edges and 10 vertexes with configuration 2×34 ; 8×35 . The
- new polyhedron reported in this work is also derived from the J15 polyhedron but distorted by the
- 117 displacement of two opposite pairs of edges of the central cube in opposite directions, Scheme 2, right.
- 118 The resulting polyhedron also has 16 faces, 24 edges and 10 vertexes but with configuration 6×34 ; $4 \times$
- 119 36 related by an S4 improper symmetry axis. The $\{M10(\mu 3-O)8\}$ inner core, which is shown in Scheme
- 120 2, is unprecedented in cluster chemistry and the search in the CCDC database shows that it can only be
- 121 found as a fragment of two larger Fe14 clusters which have the S4 edge, ESI Fig. S6.† 22,23 The
- topological analysis with TOPOS24,25 describes the new $\{M10(\mu 3-0)8\}$ core as 4,4,6M10-1.
- 123 The room temperature χ MT product for 1–3 ranges between 12.47 and 14.8 cm3 mol-1 K which is
- much lower than the expected value for ten isolated FeIII cations (43.75 cm3 mol-1 K), suggesting a
- very strong antiferromagnetic coupling, Fig. 3. The χMT value decreases continuously upon cooling,

- tending to zero at low temperature. The large number of low-lying spin states, partially populated even
- 127 at low temperature, makes difficult the observation of the χ M maxima but for 2, a susceptibility
- 128 maximum at 6 K was reached, evidencing unambiguously the S = 0 ground state. The size of the cluster
- and the large number of superexchange pathways exclude the calculation of the J coupling constants and
- 130 prevent the fit of the experimental data. This drawback has been overtaken by the fact that the
- 131 interactions mediated by Fe–O–Fe bridges have been widely studied and their strong dependence on the
- 132 bond angles and on the Fe–O distances has been well established: the antiferromagnetic interaction
- 133 increases for large bond angles and short distances and empirical expressions to evaluate the magnitude
- 134 of the superexchange have been proposed by different authors.26–28
- 135 Magnetostructural semiempirical correlations (MSCs) have been recently proposed by Christou et al.28
- to predict the J values (2J Hamiltonian, cm-1) for the interactions promoted by Fe–O–Fe bridges as a
- 137 function of the mean Fe–O distances and the corresponding bond angle, according to the expression:
- 138
- 139 $J = 1.23 \times 10^9 \cdot (-0.12 + 1.57 \cos \phi + \cos^2 \phi) \cdot \exp(-8.99 \cdot r).$
- 140

141 In our case all the FeIII cations of the inner $\{Fe10(\mu 3-O)8\}$ core are linked among them by 16 Fe–O–Fe

bridges with bond angles comprised between 129.5° and 121.6° and short Fe–Odistances that induce

strong AF interactions. The double Fe–O–Fe bridges involving the lower μ 3-O angle and the alcoxo

donor of the MeO-pym- ligands show angles around 100° and, consequently, a poorly efficient

- superexchange pathway that does not compete with the interactions promoted by the μ 3-O/OH
- 146 pathways. The MSC calculated J values for the representative complex 1 are shown in Fig. 4, left. These
- 147 interactions are cooperative and determine the antiparallel alignment of five up and five down local
- spins which are consequently related among them by a S4 symmetry, Fig. 4 right.
- 149

150 CONCLUSIONS

- 151
- 152 As a conclusion, we report here the initial exploration of a new synthetic route to obtain high nuclearity
- FeIII clusters generated by the in situ reaction of pyridylaldehydes with alcohols. The reported Fe10
- 154 complexes 1–3 show the largest nuclearity of the FeIII/pyridyl-alcoxo family, exhibiting a new
- 155 ${M10(\mu 3-O)8}$ core. The complete study of this new synthesis strategy starting from different
- 156 counteranions, cations and co-ligands will be reported in a future paper.
- 157

158 ACKNOWLEDGEMENTS

159

160 Financial support from CICYT, Project CTQ2018-094031-B-100, is acknowledged.

162 **REFERENCES**

164	1	G. Christou, D. Gatteschi, D. N. Hendrickson and R. Sessoli, MRS Bull., 2000, 25, 66.
165	2	D. Gatteschi and R. Sessoli, Angew. Chem., Int. Ed., 2003, 42, 268.
166	3	A. L. Barra, A. Caneschi, A. Cornia, F. Fabrizi de Biani,
167		D. Gateschi, C. Sangregorio, R. Sessoli and L. Sorace, J. Am. Chem. Soc., 1999, 121, 5302.
168	4	A. Nava, L. Rigamonti, E. Zangrando, R. Sessoli,
169		W. Wernsdorfer and A. Cornia, Angew. Chem., Int. Ed., 2015, 54, 8777.
170	5	J. Mayans, M. Font-Bardia and A. Escuer, Dalton Trans., 2018, 47, 8392.
171 172	6	L. A. Kushch, A. V. Nikolaev, E. B. Yagubskii, S. V. Simonov, R. P. Shibaeva, A. V. Sadakov, O. E. Omel'yanovskii and V. S. Mironov, Inorg. Chem. Commun., 2012, 21, 57.
173 174	7	K. Mason, A. Prescimone, M. Schau-Magnussen, S. Piligkos, P. A. Tasker and E. K. Brechin, Curr. Inorg. Chem., 2013, 3, 76.
175 176	8	T. Taguchi, T. C. Stamatatos, K. A. Abboud, C. M. Jones, K. M. Poole, T. A. O'Brien and G. Christou, Inorg. Chem., 2008, 47, 4095.
177 178	9	E. K. Brechin, M. J. Knapp, J. C. Huffman, D. N. Hendrickson and G. Christou, Inorg. Chim. Acta, 2000, 297, 389.
179 180	10	C. A. Christmas, HL. Tsai, L. Pardi, J. M. Kesselman, P. K. Gantzel, R. K. Chadha, D. Gatteschi, D. F. Harvey and D. N. Hendrickson, J. Am. Chem. Soc., 1993, 115, 12483.
181	11	W. Wang, B. Spingler and R. Alberto, Inorg. Chim. Acta, 2003, 355, 386.
182	12	K. C. Mondal, O. Sengupta and P. S. Mukherjee, Inorg. Chem. Commun., 2009, 12, 682.
183 184	13	V. Bertolasi, G. Annibale, G. Marangoni, G. Paolucci and B. Pitteri, J. Coord. Chem., 2003, 56, 397.
185	14	A. Ch. Kalita, S. K. Gupta and R. Murugavel, Chem. – Eur. J., 2016, 22, 6863.
186	15	M. G. B. Drew, S. Nag, P. K. Pal and D. Datta, Inorg. Chim. Acta, 2008, 361, 2562.

187 188	16	A. M. Guidote Jr., K. Ando, Y. Kurusu, H. Nagao and Y. Masuyama, Inorg. Chim. Acta, 2001, 314, 27.
189 190	17	P. Dhal, A. Sasmal, C. J. Gómez-García, A. Bauzá, A. Frontera, G. Pilet and S. Mitra, Eur. J. Inorg. Chem., 2014, 3271.
191 192	18	M. Enamullah, A. C. Chamayou, K. S. Banu, A. C. Kautz and C. Janiak, Inorg. Chim. Acta, 2017, 464, 186.
193 194	19	D. Pijper, P. Saisaha, J. W. de Boer, R. Hoen, C. Smit, A. Meetsma, R. Hage, R. P. van Summeren, P. L. Alsters, B. L. Feringa and W. R. Browne, Dalton Trans., 2010, 39, 10375.
195 196	20	G. Abbas, M. Ibrahim, S. F. M. Schmidt, E. Moreno-Pineda, C. E. Anson and A. K. Powell, Polyhedron, 2019, 158, 255.
197	21	O. A. Adebayo, K. A. Abboud and G. Christou, Polyhedron, 2017, 122, 71.
198	22	C. A. Grapperhaus, M. G. O'Toole and M. S. Mashuta, Inorg. Chem. Commun., 2006, 9, 1204.
199	23	J. Burger and P. Klüfers, Angew. Chem., Int. Ed. Engl., 1991, 36, 776.
200	24	G. E. Kostakis, V. A. Blatov and D. M. Proserpio, Dalton Trans., 2012, 41, 4634.
201	25	V. A. Blatov, IUCr CompComm. Newsletter, 2006, 7, 4.
202	26	S. M. Gorum and S. J. Lippard, Inorg. Chem., 1991, 30, 1625.
203	27	H. Weihe and H. U. Güdel, J. Am. Chem. Soc., 1997, 119, 6539.
204	28	K. J. Mitchell, K. A. Abboud and G. Christou, Inorg. Chem., 2016, 55, 6597.
205		

206	Legends	to	figures
	0		<u> </u>

207	
208	Scheme 1. R-MeO-hpm- ligand found in complexes 1-3. Asterisks
209	denote the chiral C-atoms. Its origin can be from hydrolysis of L1 or the
210	direct reaction of the intermediate reagents.
211	
212	Figure.1 Left, view of the molecular structure of complex 2. Right,
213	common $\{Fe10016\}$ core for clusters 1–3. The labeled core for 3 is
214	shown in Fig. S4.†.
215	
216	Figure.2 Core of complexes 1–3 showing the different coordination
217	environment for Fe2 and Fe6 and the H-bonds between the monodentate
218	nitrates and the µ3-OH donors.
219	
220	Scheme 2 The two different distortions of J15 which result in the conventional
221	J17 dodecahedron (left) or in the new polyhedron of clusters
222	1-3 (right). Center, Fe10 metallic core of complexes 1-3 and a view of
223	the unprecedented $\{M10(\mu 3-O)8\}$ fragment (the orange bold edges
224	enhance the distorted inner cube).
225	
226	Figure.3. Susceptibility vs. temperature product for complexes 1–3. Inset,
227	χ M plot for complex 2, showing the susceptibility maximum at 6 K.
228	
229	Figure.4 Left, core of complex 1 showing the MSC predicted J values.
230	Right, derived spin alignment rationalizing its $S = 0$ ground state.
231	
232	

FIGURE 3

