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Abstract  

Objective: The aim of this study was to investigate patterns of cortical atrophy associated with 

mild cognitive impairment  in a large sample of non-demented PD patients, and its relation with 

specific neuropsychological deficits.  

Methods: MRI and neuropsychological assessment were performed in a sample of 90 non-

demented PD patients and 32 healthy controls. All underwent a neuropsychological battery 

including tests that assess different cognitive domains: attention and working memory, 

executive functions, memory, language and visuoperceptual-visuospatial functions. Patients 

were classified according to their cognitive status as PD patients without mild cognitive 

impairment (n=43) and PD patients with mild cognitive impairment (n=47). Freesurfer software 

was used to obtain maps of cortical thickness for group comparisons and correlation with 

neuropsychological performance. 

Results: Patients with mild cognitive impairment  showed regional cortical thinning in parieto-

temporal regions, increased global atrophy (global cortical thinning, total gray matter volume 

reduction and ventricular enlargement), as well as significant cognitive impairment in memory, 

executive and visuospatial and visuoperceptual domains. Correlation analyses showed that all 

neuropsychological tests were associated with cortical thinning in parieto-temporal regions and 

to a lesser extent in frontal regions.  

Conclusion: These results provide neuroanatomic support to the concept of MCI classified 

according to Movement Disorders Society  criteria. The posterior pattern of atrophy in temporo-

parietal regions could be a structural neuroimaging marker of cognitive impairment in non-

demented PD patients. All the neuropsychological tests reflected regional brain atrophy but 

there were no specific patterns corresponding to impairment in distinct cognitive domains.  
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INTRODUCTION 

Parkinson’s disease is associated with cognitive decline [Aarsland et al., 2009; Elgh et al., 2009; 

Foltynie et al., 2004; Muslimovic et al., 2005] that may predict dementia at later stages 

[Aarsland et al., 2009; Janvin et al., 2006; Pedersen et al., 2013].Between 18.9 and 38.2% of 

patients meet mild cognitive impairment (MCI) criteria [Litvan et al., 2011a]. Indeed, the 

proportion of patients fulfilling MCI criteria increased from one-third to approximately 50% of 

patients without dementia after five years from diagnosis [Broeders et al., 2013]. There is a 

great variability in the description and proportion of subtypes of MCI in PD [Aarsland et al., 

2009; Caviness et al., 2007; Janvin et al., 2006], due perhaps to the number and type of tests 

used and the classification of the tests by domains.  

The recognition of PD patients with MCI (PD MCI) has led to studies searching for biological 

markers associated with this diagnosis. Several MRI studies have investigated the relationship 

between brain atrophy and specific cognitive deficits in non-demented PD, such as deficits in 

memory  [Brück et al., 2004; Camicioli et al., 2003; Ibarretxe-Bilbao et al., 2008; Junqué et al., 

2005; Litvan et al., 2012; Pereira et al., 2013; Riekkinen et al., 1998; Tam et al., 2005], verbal 

fluency [Pereira et al., 2009a], visuospatial and visuoperceptual ability [Pereira et al., 2009b] 

and decision-making and emotional processing [Ibarretxe-Bilbao et al., 2009]. Recently, Filoteo 

et al., using region-of-interest analyses, associated subtle changes in multiple cognitive 

domains with distinct patterns of regionally-specific volume changes in non-demented PD 

patients [Filoteo et al., 2014]. However, to the best of our knowledge, no published MRI studies 

have focused on whole brain neuroanatomical correlates of the different tests included in 

cognitive domains assessed by an extensive neuropsychological battery. 

Few studies have investigated the neuroanatomical correlates of MCI. Initially, voxel based 

morphometry (VBM) analyses showed that PD-MCI had reduced cortical gray matter (GM) 

density in the left middle frontal gyrus, precentral gyrus, left superior temporal lobe and right 

inferior temporal lobe in comparison with cognitively intact PD patients [Beyer et al., 2007]. In 

contrast, Song et al. reported gray matter density decreases in frontal regions of PD-MCI 

patients in comparison to PD without MCI (PD non-MCI) [Song et al., 2011]. Recently, VBM 

analyses with a large sample of 148 PD patients did not reveal any areas of significant GM loss 

in participants with PD-MCI compared with controls [Yarnall et al., 2014]. 
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In order to clarify these controversial results, certain methodological issues need to be 

addressed. VBM and volumetric analyses may be insufficient to detect early cortical changes in 

PD MCI patients. Recent studies using cortical thickness measures suggest that this method 

may be more sensitive than VBM to identify regional GM changes associated with PD [Pereira 

et al., 2012]. Cortical changes associated specifically with MCI in PD have not been 

investigated in depth. In a small sample, Biundo et al. showed significant regional thinning in 

right parietal-frontal areas and in left temporal-occipital areas in PD MCI in comparison with PD 

non-MCI [Biundo et al., 2013]. Studying a bigger sample, Pagonabarraga et al., using an 

uncorrected level of significance showed both increases and decreases in cortical thickness of 

PD MCI patients in comparison to PD non-MCI [Pagonabarraga et al., 2013], and Hanganu et 

al. did not find significant cortical thinning in PD MCI subjects compared with PD non-MCI, but 

detected a small cluster with increased thickness in the left middle temporal gyrus [Hanganu et 

al., 2013]. Recently, Pereira et al. studied a large multicentric cohort of drug-naïve PD patients 

with early PD, the authors found mainly temporal and parietal cortical thinning in the PD MCI 

group compared to PD non-MCI patients, using a cognitive-domain approach [Pereira et al., 

2014].  

In light of these previous results, the aims of this study were (1) to investigate whether different 

anatomical patterns of cortical atrophy distinguish PD patients with mild cognitive impairment 

from patients without cognitive impairment in a large sample of non-demented PD patients, and 

(2) whether different anatomical patterns of cortical atrophy are associated with 

neuropsychological deficits commonly related to specific cognitive domains. This is of crucial 

importance for validating MCI criteria, and may help to clarify the neural correlates of cognitive 

impairment in PD. 

 

Methods  

Subjects  

The study included 121 consecutive PD patients recruited from an outpatient movement 

disorders clinic (Parkinson’s Disease and Movement Disorders Unit, Department of Neurology, 

Hospital Clinic, Barcelona, Spain) and 49 healthy subjects who volunteered to take part in 

studies addressing age-related processes at the Institut de l’Envelliment (Aging Institute). The 
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inclusion criteria were: (i) fulfilling the UK PD Society Brain Bank (PDSBB) diagnostic criteria for 

PD [Daniel and Lees, 1993]; (ii) no surgical treatment with deep brain stimulation. The exclusion 

criteria were: (i) presence of dementia according to the Movement Disorders Society criteria 

(34), (ii) Hoehn and Yahr scale score >3 (iii) juvenile-onset PD, (iii) presence of psychiatric or 

neurological comorbidity, (iv) low global IQ estimated by the Vocabulary subtest of the Wechsler 

Adult Intelligence Scale, 3rd edition (scaled score ≤ 7 points), (vi) Mini-mental state examination 

(MMSE) score <25, (vii) presence of claustrophobia, (viii) pathological magnetic resonance 

imaging (MRI) findings other than mild white matter hyperintensities in long-TR sequences, and 

(ix) MRI artifacts.  

Ninety PD patients and 32 healthy volunteers were finally selected. Twelve patients and eight 

controls were excluded because they fulfilled criteria for dementia or other neurological disease, 

six PD patients for psychiatric comorbidity, one PD patient who scored higher than 3 on the 

H&Y scale, one PD patient who presented young-onset PD, three PD patients and one control 

who presented low global IQ scores, two PD patients for claustrophobia, three healthy subjects 

who did not complete the neuropsychological assessment, and two controls and two PD 

patients due to MRI artefacts. We also excluded four patients and three controls aged below 50 

years.  

Motor symptoms were assessed by means of the UPDRS-III, motor section. All PD patients 

were taking antiparkinsonian drugs, consisting of different combinations of L-DOPA, COMT 

inhibitors, MAO inhibitors, dopamine agonists and amantadine. 

This study was approved by the ethics committee of the University of Barcelona. Written 

informed consent was obtained from all study subjects after full explanation of the procedures 

involved. 

 

Neuropsychological assessment 

We selected a neuropsychological battery to assess cognitive functions usually impaired in PD 

[Aarsland et al., 2009; Muslimovic et al., 2005]. This battery is recommended by the Movement 

Disorder Society task force to evaluate cognitive functions in PD  [Daniel and Lees, 1993; Litvan 

et al., 2011b], and is able to detect mild cognitive impairment in PD (Level I or Level II criteria 
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for PD-MCI, bar language, for which a single measure was used [Litvan et al., 2012]. Attention 

and working memory were assessed with the Trail Making Test (TMT) (in seconds), part A 

(TMT-A) and part B (TMT-B), Digit Span Forward and Backward and the Stroop Color-word 

Test and Symbol Digits Modalities Tests (SDMT); executive functions were evaluated with 

Phonemic (words beginning with the letter “p” in one minute) and Semantic (animals in one 

minute) fluencies; language was assessed by the total number of correct responses in the short 

version of the Boston Naming Test (BNT), memory through total learning recall (sum of correct 

responses from trial I to trial V) and delayed recall (total recall after 20min) through scores on 

Rey’s Auditory Verbal Learning Test (RAVLT). Visuospatial and visuoperceptual functions were 

assessed with Benton’s Judgement of Line Orientation (JLO) and Visual Form Discrimination 

(VFD) tests. 

Initially, z scores for each test and for each subject were calculated based on the control 

group’s means and standard deviations. Expected z scores adjusted for age, sex and education 

for each test and each subject were calculated based on a multiple regression analysis 

performed in the healthy control group [Aarsland et al., 2009].  

We classified subjects as having MCI if the z score for a given test was at least 1.5 lower than 

the expected score in at least two tests in one domain, or in at least one test per domain in at 

least two domains. As expected [Muslimovic et al., 2005], most subjects with abnormalities had 

deficits in more than one function, precluding the creation of patient groups with single-domain 

impairments. Patients’ cognitive complaints were recorded during the clinical interview.  

Z composite scores were computed in order to obtain global cognitive measures (attention and 

working memory, executive, memory and visuospatial/ visuoperceptual functions).  

Neuropsychological and Clinical Statistical Analysis 

All statistical analyses were performed using SPSS Statistics 20, release version 20.0.0 

(Armonk, NY, http://www-01.ibm.com/software/analytics/spss/). Statistical significance threshold 

was set at p<0.05. Pearson’s chi-square test was used to compare categorical variables (sex 

and Hoehn and Yahr stage). Separate-variance test (Welch t) was used to test between-group 

differences (HC, PD MCI, PD non-MCI) in quantitative clinical and demographic variables. 

ANCOVAs including age and education as confounding variables were used to compare the 

http://www-01.ibm.com/software/analytics/spss/
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performance on neuropsychological tests and composite scores for each domain. Bonferroni 

correction was used to control for the number of intergroup comparisons. 

Image acquisition  

Magnetic resonance images were acquired with a 3T scanner (MAGNETOM Trio, Siemens, 

Germany). The scanning protocol included high-resolution 3-dimensional T1-weighted images 

acquired in the sagittal plane (TR=2300 ms, TE=2.98 ms, TI 900 ms, 240 slices, FOV=256 mm; 

matrix size=256x256; 1 mm isotropic voxel) and axial FLAIR sequence (TR=9000 ms, TE=96 

ms). 

Cortical thickness  

Cortical thickness was estimated using the automated FreeSurfer stream (version 5.1; available 

at: http://surfer.nmr.harvard.edu). The procedures carried out by FreeSurfer software include 

removal of non-brain data, intensity normalization [Sled et al., 1998], tessellation of the gray 

matter/white matter boundary, automated topology correction [Fischl et al., 2001; Ségonne et 

al., 2007] and accurate surface deformation to identify tissue borders) [Dale et al., 1999; Dale 

and Sereno, 1993; Fischl and Dale, 2000]. Cortical thickness is then calculated as the distance 

between the white and gray matter surfaces at each vertex of the reconstructed cortical mantle 

[Fischl and Dale, 2000]. In our study, results for each subject were visually inspected to ensure 

accuracy of registration, skull stripping, segmentation, and cortical surface reconstruction. Maps 

were smoothed using a circularly symmetric Gaussian kernel across the surface with a full width 

at half maximum (FWHM) of 15 mm. 

Comparisons between groups were assessed using a vertex-by-vertex general linear model. 

The model included cortical thickness as a dependent factor and diagnosis (controls, PD non-

MCI, PD MCI) as an independent factor, and also included age and education as nuisance 

variables (https://surfer.nmr.mgh.harvard.edu/fswiki/FsgdFormat). All results were corrected for 

multiple comparisons by using a pre-cached cluster-wise Monte-Carlo Simulation. Significance 

level was set at p<0.05.  

In the PD patient group, the vertex-by-vertex general linear model was used to assess the 

relationship between cortical thickness and neuropsychological tests. Positive and negative 

associations between a specific neuropsychological test and cortical thickness were analyzed 

using Qdec. Initially, a simple model without covariates was tested for each neuropsychological 

https://surfer.nmr.mgh.harvard.edu/fswiki/FsgdFormat
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measure. Complementarily, we performed a conservative analysis of covariance including age, 

education and gender as confounding variables. An initial vertex-wise threshold was set to 

p=0.005 to find clusters. In order to avoid clusters appearing significant purely by chance (i.e., 

false positives), Monte-Carlo simulation with 10,000 repeats was tested (absolute value). 

Results were reported at cluster-wise probability significance level set at p<0.05. 

 

Global atrophy measures  

Global average thickness for both hemispheres was calculated ((left hemisphere thickness*left 

hemisphere surfarea)+(right hemisphere thickness*right hemisphere surface area))/(left 

hemisphere surface area+right hemisphere surface area)).  

Total GM volume and total subcortical volumes, as well as mean lateral ventricular volume and 

estimated Total Intracranial Volume (eTIV) were obtained automatically via whole brain 

segmentation [Fischl et al., 2002]. An ANCOVA including eTIV, age and education was used to 

compare subcortical volumes between groups. Significant p values were adjusted using post-

hoc Bonferroni tests considering the number of intergroup comparisons.  

 

Results 

Forty-seven patients (52.2%) fulfilled the criteria for MCI. Table 1 shows sociodemographic and 

clinical data and the corresponding group comparisons.  

Insert Table 1 

Neuropsychological differences between groups.  

Table 2 shows differences in neuropsychological performance between groups. MCI patient 

scores were significantly worse than those of non-MCI patients and healthy controls in all tests 

except Forward and Backward Digits. Forty-two patients (46.6%) showed impairments in 

attention and working memory, 31 (34.4%) in memory, 26 (28.8%) in executive and also 

visuoperceptual and visuospatial domains, and only four (4.4%) in language. 

Insert Table 2 

Global atrophy comparison between groups 

There were significant differences in global atrophy between healthy controls and PD patients 

groups according to MCI status. PD MCI patients showed decreased total mean thickness and 
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total GM volume, as well as increased mean lateral ventricle volume in comparison to healthy 

controls and PD non-MCI. There were no significant differences in total subcortical volume 

(Table 3).  Finally, there were no significant results after the inclusion of disease duration as a 

nuisance variable in the covaried model.  

Insert Table 3 

Cortical thickness comparison between groups  

Surface-based cortical thickness analyses showed a group effect according to cognitive status 

(Figure 1). PD MCI (PD MCI < HC ) showed cortical thinning in widespread bilateral regions, 

including parietal (superior and inferior, supramarginal and also precuneus regions), temporal 

(posterior middle temporal, inferior temporal, fusiform and parahippocampal regions) and 

occipital cortices (bilateral posterior occipital), but also in left frontal superior and rostral middle 

areas. There were significant differences between controls and PD non-MCI (PD non-MCI < 

HC) specifically in bilateral superior parietal regions. PD MCI (PD MCI < PD non-MCI) showed 

significant thinning in right precuneus and supramarginal regions compared to PD non-MCI. 

There were no significant results after including disease duration as a nuisance factor in the co-

varied model. 

Insert Figure 1 and supplementary material Table 1 

Correlations between neuropsychological tests and cortical thickness in PD patients 

Vertex-wise regression analyses showed correlations between regional cortical thickness and 

neuropsychological test performance (Supplementary Material).  We found a common posterior 

atrophy pattern for all the neuropsychological tests evaluated, and there were no specific 

patterns of atrophy related to neuropsychological domains. 

Stroop Test (Words, Colours and Word-Colours), TMT A, Semantic fluency and RAVLT total 

learning performance correlated with gray matter thinning in bilateral medial and lateral areas. 

Performance on VFD, JLO and TMT B was associated only with medial temporal-parietal 

atrophy. Atrophy in anterior regions, mostly left superior frontal gyrus, also correlated with 

Stroop Test, TMTA, SDMT, phonemic fluency and RAVLT total learning. In addition, negative 

correlations with SDMT and JLO were also found in rostral middle frontal gyrus (Supplementary 

Figure 1 and material table 2). After controlling for the effect of age, education, and gender, only 

Stroop Words Test and Semantic fluency showed a significant positive correlation with cortical 
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thickness. Stroop Words Test correlated with left medial orbitofrontal, right superior temporal 

and right insula. Semantic fluency correlated with right precuneus and lingual gyrus thickness. 

(Figure 2. and supplementary material 3). There were no significant results after including 

disease duration as a nuisance factor in the covaried model.  

Insert Figures 2  

 

Discussion 

Patients with MCI showed a posterior pattern of atrophy, characterized by cortical thinning in the 

bilateral superior parietal and supramarginal regions and in the inferior temporal area, 

parahippocampal gyrus, fusiform gyrus and precuneus. Cortical thinning was also observed in 

the  left rostral frontal region. Moreover, PD MCI and PD non-MCI patients differed in right 

lateral parietal regions and precuneus.  

Our results of cortical thickness reductions in the parietal, temporal and frontal regions could be 

related to previous PET data [Garcia-Garcia et al., 2012] showing that PD-MCI patients 

exhibited reduced FDG uptake in the parietal and occipital lobes and in localized areas of the 

frontal and temporal lobes compared with controls. In addition, longitudinal neuropsychological 

studies suggest that the dementia process is heralded by posterior-cortically-based cognitive 

deficits [Williams-Gray et al., 2007; Williams-Gray et al., 2009]. In sum, parieto-occipital 

changes seem to correspond to the deterioration that may eventually lead to dementia, possibly 

reflecting gradual loss of synaptic terminals, dendritic arborisation and size of neuronal cell 

bodies.  

In our study, PD groups differed by degree of atrophy in right lateral parietal regions and the 

precuneus. This finding, together with the right asymmetry of atrophy detected in the PD non-

MCI group compared to controls, suggested an asymmetric pattern of deterioration, initially 

involving parietal and temporal regions, and progressively widespread to bilateral atrophy. 

Asymmetric atrophy has been found in previous studies when PD patients were compared to 

controls [Pereira et al., 2012]. 

Recently, PD MCI patients have been studied using cortical thickness measures.  However, no 

consensus has been reached in relation to cortical thickness differences between PD MCI and 
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PD non-MCI; both increases and decreases have been reported in PD MCI, probably due to 

small sample sizes [Biundo et al., 2013; Hanganu et al., 2013; Pagonabarraga et al., 2013]. As 

expected, we observed thinning in PD MCI involving the sumpramarginal gyrus and the 

precuneus.  

In addition to differences in regional cortical thickness, PD MCI patients had a reduction of 

global GM volume together with increased ventricular volume in comparison to PD non-MCI and 

healthy controls. These results, similar to those of previous studies [Apostolova et al., 2012; 

Dalaker et al., 2010; Weintraub et al., 2011], confirm that cognitive deficits seen in PD MCI are 

related to structural brain changes, probably in combination with neurochemical changes.  

The current study also aimed to establish whether specific neuropsychological tests used in 

clinical practice reflect the degree of regional atrophy in PD patients. Cognitive domains are 

defined under the assumption that they represent specific functions mediated by specific brain 

regions. The ‘anterior’ (frontal) pattern is putatively associated with executive functions, the 

‘posterior’ (temporo-parietal) pattern with visuospatial and visuoperceptual functions, and 

hippocampal degeneration with the amnestic pattern [Lezak, 2004]. Grouping different tests into 

a single function without knowing the specific correlates of each test may generate confusion. 

The study of neuroanatomical correlates of specific tests is the first step in the discussion of 

domains and in determining whether subtypes of mild cognitive impairment exist in PD, and 

consequently whether they are useful in predicting the evolution to dementia. In line with this 

statement, our results showed a common posterior atrophy pattern for all the 

neuropsychological tests evaluated. Only the Stroop Test, SDMT and phonemic fluency, 

classified by recent guidelines [Litvan et al., 2012] as measures of attention and executive 

function respectively, had an extended pattern including medial anterior regions.  We did not 

observe any specific  dorsolateral prefrontal or limbic pattern of correlations. Analysing the 

global patterns of correlations, a group of tests including Stroop Test (Words, Colors and Word-

Colors), TMT-A, Semantic fluency and RAVLT total learning correlated with extensive gray 

matter loss involving bilateral medial and lateral cortical regions, whereas VFD, JLO and TMT-B 

only correlated with medial temporal-parietal regions. Analyses of covariance only showed a 

positive correlation between semantic fluency and temporal-parietal regions and a positive 

correlation between Stroop words and left medial orbitofrontal, right superior temporal and right 
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insular regions. In sum, we did not find specific patterns of atrophy related to the 

neuropsychological domains, either with or without the use of covariates in the analyses.  

Interestingly, semantic fluency performance remained significantly correlated with the 

precuneus after controlling for the effects of age, education, and gender. These results agree in 

part with current pathophysiological models that dissociate the substrates and prognostic values 

of different types of cognitive impairment in PD, and show that tests with posterior cortical bases 

(semantic fluency and ability to draw an interlocking pentagon) reflecting probable non-

dopaminergic cortical Lewy body or Alzheimer’s type pathology were associated with dementia, 

whereas frontostriatal executive deficits were not [Williams-Gray et al., 2009]. Our results 

indicate that semantic fluency is an easily administered test that should be included in the 

neuropsychological assessment of PD patients. 

The consecutive recruitment of PD patients from an outpatient movement disorders clinic 

involves certain differences in clinical and demographical variables between PD groups. In this 

regard, disease duration was longer in PD-MCI than PD non-MCI patients. In our study, 

additional analyses including disease duration as nuisance variable in the co-varied models did 

not show significant results. A previous study has shown that neurodegeneration is likely to 

occur faster in PD patients with MCI [Hanganu et al., 2013]. Cortical degeneration was more 

advanced in patients who have PD MCI than in those without at the same stage of disease. In 

accordance with previous longitudinal studies [Williams-Gray et al., 2007; Williams-Gray et al., 

2009], disease duration is correlates with PD patients’ deterioration, including cognitive 

impairment and brain atrophy. In this sense, controlling for the effects of disease duration could 

represent an overcorrection, masking actual intergroup effects.  

One possible limitation of our study is that, despite the inclusion of a variety of tests in the main 

cognitive domains defined in recent guidelines (attention and working memory, executive 

functions, memory and visuospatial and visuoperceptive functions) [Litvan et al., 2011b] we did 

not include the same number of tests in each cognitive domain, and language was assessed 

only with the BNT. This limitation may have raised the possibility of false negative cases in the 

PD non-MCI group, but would not have affected the classification of subjects currently included 

in PD MCI group.  
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In sum, degeneration was characterized by a posterior pattern of atrophy mostly involving 

posterior parietal-temporal areas, which extended to frontal regions in the PD MCI group 

compared to healthy controls. All the neuroanatomical correlates associated with 

neuropsychological tests involve this posterior pattern of atrophy, semantic fluency being the 

neuropsychological test with the most significant association. Our findings therefore suggest the 

presence of posterior structural degenerative brain changes in PD MCI patients, evidencing a 

structural neuroimaging marker of this pathological condition and its possible evolution to 

dementia.  

 

 

Acknowledgment 

Without the support of the patients, their families and control subjects this work would have not 

been possible.  

AUTHOR ROLES:  

1. Research project: A. Conception, B. Organization, C. Execution;  

2. Statistical Analysis: A. Design, B. Execution, C. Review and Critique;  

3. Manuscript: A. Writing of the first draft, B. Review and Critique 

Segura: 1B, 1C, 2A, 2B, 3A; Baggio: 1B, 1C, 2B, 2C, 3B;  Marti: 1B, 1C, 2C, 3B; Valldeoriola: 

1B, 1C, 2C, 3B; Compta: 1B, 1C, 2C, 3B; Garcia-Diaz: 1C, 2B, 2C, 3B; Vendrell: 1B, 1C ,2C, 

3B; Bargallo: 1B, 1C, 2C, 3B; Tolosa: 1B, 1C, 2C, 3B ; Junque: 1A, 1B, 1C, 2A, 2B, 2C, 3B; 

 

Financial Disclosures of all authors (for the preceding 12 months). 

Segura B. Grants: Spanish Ministry of Education and Science PSI2010-16174; Catalonia 

Government, 22009SGR94. Employment: Postdoctoral position University of Barcelona. 

Baggio HC. Grants: Spanish Ministry of Education and Science PSI2010-16174; Catalonia 

Government, 22009SGR94. 



14 
 

Marti MJ. Grants: Fundació la Marató de TV3 2006” (N-2006-TV060510), Instituto de Salud 

Carlos III (FISS). PI041600. Employment: Hospital Clínic i Provincial de Barcelona.   

Valldeoriola F. Grants: FIS (Instituto de Salud Carlos III), Advisory boards: Boehringer, 

Ingelheim, Solvay. Employment: Hospital Clínic i Provincial de Barcelona.  

Compta Y. Grants: FEP_Premios11 (Federación Española de Parkinson). PI041833. 

Employment: Hospital Clínic i Provincial de Barcelona, University of Barcelona 

Garcia-Diaz AI. Spanish Ministry of Education and Science PSI2010-16174; Catalonia 

Government, 22009SGR94.  

Vendrell P. Spanish Ministry of Education and Science PSI2010-16174; Catalonia Government, 

22009SGR94. Employment: Full Professor University of Barcelona. 

Tolosa E. Grants: European Project on Mendelian Forms of Parkinson’s Disease (MEFOPA). 

CP-FP PI040438.  Catalonia Government  PI040510. Instituto de Salud Carlos III FISS 

CP06/00126. PI08015. Michael J. Fox Foundation for Parkinson Disease (MJFF) PI041639, 

PI042534, PI042549, PI042548. Spaniard Network for Research on Neurodegenerative 

Disorders: Center of Biomedic Investigation in Neurodegenerative Diseases (CIBERNED), 

PI2010/05. Employment: Hospital Clínic i Provincial de Barcelona, University of Barcelona 

Junque C. Grants: Spanish Ministry of Education and Science (Spanish Ministry of Education 

and Science PSI2010-16174, Catalonia Government 22009SGR94, Intellectual Property Rights: 

Books Editorial: Masson, Sintesis, Glosa, Ariel, Ars Medica, Employment: Full Professor 

University of Barcelona. 

 

 

 

 

 

 

 



15 
 

 

 

 

 

 

 

Table 1. Sociodemographic and clinical data from study groups.  
 

HC 

n=32 

PD non-MCI 

n=43 

PD MCI 

n=47 

Test stats/p 

Age (yrs.) 64.69±8.63 60.77±10.51 67.72±9.71 5.243/0.007 
Sex 
(female/male) 

17/17 29/21 23/17 0.61 χ /0.738 

Years of 
education 

11.00±4.15 12.02±5.05 9.19±5.24 3.47/0.036 

MMSE 29.69±0.47 29.47±0.74 28.68±1.29 11.998/<0.001 
BDI 6.00±5.65 8.71±5.41 12.63±6.41 11.174/<0.001 
Disease 
duration 

 6.23±4.05 9.73±6.37 9.845/0.002 

LEDD  692.81 
±452.801 

916.15 
±507.944 

4.863/0.030 

HY 
(1/1.5/2/2.5/3) 

 14/5/19/3/2 8/0/25/6/8 11.900 χ/0.018 

UPDRS-III  13.16±7.67 17.79±11.07 6.378/0.023 
 

MMSE: mini-mental state examination. BDI: Beck’s Depression Inventory-II scores. Disease 

duration: duration of motor symptoms, in years. LEDD: Levodopa equivalent daily dose, in mg. 

HY: Hoehn and Yahr scale. Pearson’s chi-square (χ).  Age showed significant differences 

between PD MCI and PD non-MCI patients (p=.0003, Bonferroni correction). MMSE showed 

significant differences between PD MCI and both PD non-MCI and HC (p<.001, Bonferroni 

correction). BDI showed significant differences between PD MCI and both PD non-MCI (p<.010, 

Bonferroni correction) and HC (p<.001, Bonferroni correction).  
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Table 2. Neuropsychological performance results for healthy controls and Parkinson’s disease 

patients according to MCI status. 

 HC 
n=32 

mean (SD) 

PD non-MCI 
n=43 

mean (SD) 

PD MCI 
n=47 

mean (SD) 

F (p) 

Neuropsychological tests 
VFD 29.44 

(2.75) 
29.47  
(2.22) 

26.17 
(3.81) 

11.171 
(<0.001)  

JLO 23.88  
(3.46) 

23.42  
(3.93) 

19.67  
(4.99) 

7.90 
(0.001)  

RAVLT total 44.75  
(6.27) 

46.19  
(8.23) 

32.81  
(7.47) 

33.05 
(<0.001)  

RAVLT retrieval 9.13 
(2.12) 

9.26 
(2.60) 

6.00 
(2.30) 

18.92 
(<0.001) 

SDMT  48.41  
(9.59) 

46.68  
(10.59) 

31.45 
(15.13) 

23.76 
(<0.001) 

Digits Forwards 5.87 
(1.43) 

6.12 
(1.22) 

5.21 
(1.30) 

2.429 
(0.093)  

Digits Backwards  4.19  
(1.28) 

4.51  
(0.99) 

3.83 
(0.89) 

1.982  
(0.142) 

Stroop Words 100.16 
(14.31) 

98.90  
(21.28) 

72.68  
(17.12) 

24.465  
(<0.001) 

Stroop Colours 62.47  
(15.32) 

66.31  
(12.39) 

47.30  
(11.91) 

18.50  
(<0.001) 

Stroop Words-Colours 35.81  
(11.91) 

38.81  
(11.06) 

26.30  
(10.72) 

8.66  
(<0.001) 

TMT A 38.94  
(14.90) 

37.09  
(15.69) 

80.83  
(61.78)  

10.283   
(<0.001)  

TMT B 90.41  
(31.54) 

90.21  
(35.94) 

187.78 
(122.34) 

21.40  
(<0.001) 

Phonemic fluency 16.71  
(5.15) 

18.02  
(4.92) 

12.02  
(5.11) 

11.05  
(<0.001) 

Semantic fluency 21.61 
(5.94) 

20.65  
(5.259) 

15.32  
(7.390) 

7.42  
(<0.001) 

BNT 13.66  
(1.07) 

13.67  
(1.02) 

12.83  
(1.28) 

3.119  
(0.05) 

Z composite score 
Attention/Working memory 
 

0.07  
(0.47) 

0.09  
(0.39) 

-0.07 
 (0.47) 

0.974 (0.381) 

Executive   
 

0.06  
(0.88) 

0.14 
(0.86) 

-0.97 
(0.97) 

12.821 
(<0.0001) 

Memory  
 

0.05  
(0.93) 

0.19  
(1.24) 

-1.67 
(1.01) 

32.511 (<0.0001) 

Visoperceptual/visuospatial  0.01  -0.05  -1.10  16.78 (<0.0001) 
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(0.71) (0.67) (1.08) 
Language z score (BNT) 0.13 

(0.87) 
0.14 
(0.83) 

- 0.55 
(1.21) 

3.12  
(0.048) 

Impaired subjects per domain 
Attention/Working memory*  4 11 42  
Executive* 0 4 26  
Memory* 1 5 31  
Visoperceptual/visuospatial*  0 4 26  
Language* 1 3 4  

 

MCI patients’ scores were significantly worse than non-MCI patients’ and healthy controls’ 

(p<.05, Bonferroni correction). * Number of subjects impaired in one or more tests in this 

domain. In the healthy control group, no subjects showed impairments in more than one test, 

i.e., none fulfilled criteria for MCI. Trail Making Test (TMT) part A (TMT A) and part B (TMT B), 

Symbol Digits Modalities Tests (SDMT); short version of the Boston Naming Test (BNT), Rey’s 

Auditory Verbal Learning Test (RAVLT); Benton’s Judgement of Line Orientation (JLO) and 

Visual Form Discrimination (VFD). 

 

Table 3. Global atrophy results for healthy controls and Parkinson’s disease patients according 

to MCI status, controlling for the effect of age and education.  

 
 HC 

n=32 

mean (SD) 

PD non-MCI 

n=43 

mean (SD) 

PD MCI 

n=47 

mean (SD) 

F(p) 

Global thickness (mm) 2.49 (0.09) 2.47 (0.10) 2.41 (0.10 6.412 (0.002) 

Total GM (cm3) 610.36 (51.79) 605.06(59.68) 589.95 (57.85) 3.652 (0.029)* 

Subcortical GM (cm3) 168.97(20.07)  173.14(20.98) 171.02 (18.44) 1.533 (0.220)* 

Lateral ventricles (cm3) 9.60 (4.05) 10.65 (5.57) 13.64 (7.85) 3.058 (0.051)* 

 

*ANCOVA analyses with age, education and eICV as confounding variables. Global cortical 

thickness showed significant differences between HC and PD MCI patients (p<0.006, Bonferroni 

correction). Total GM showed significant differences between HC and PD non-MCI patients 

(p=0.031, Bonferroni correction). Mean lateral ventricular volumes showed significant 

differences between HC and PD MCI patients (p=.046, Bonferroni correction). 
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Figure 1. Vertex wise comparison of cortical thickness between healthy controls (HC), 

Parkinson’s disease patients without mild cognitive impairment (PD non-MCI) and Parkinson’s 

disease patient with mild cognitive impairment (PD MCI), after controlling for the effect of age 

and education. The scale bar shows p values. 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

 

 

 

 

 

Figure 2. Significant correlation between cortical thickness and neuropsychological tests, after 

controlling age, education and gender effects. The scale bar shows p values.  
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Supplementary Material Table 1. Cortical thickness for healthy controls and 

Parkinson’s disease patients according to MCI status, after controlling for the effect 

of age and education.  

 

Cortical region Size 
(mm2) 

MNI  
coordinates (x y z)* 

z-
Max 

Corrected 
cluster  p-

value 
HC > PD nonMCI 
RH Superior Parietal 2219.34 27.1 -60.5 45.0  4.001 0.0020 

LH Superior Parietal  2398.29 -19.8 -72.2 38.0 2.972 0.0013 

HC > PD MCI 
RH Superior Parietal 27428.22 27.4 -60.0 45.8 5.660 0.0010 

LH Lateral Occipital  24385.79 -24.9 -94.8 14.1 5.740 0.0001 

PD nonMCI > PD MCI 
RH Supramarginal  1580.07 53.1 -26.5 37.9 3.291 0.0260 

Precuneus 2764.79 8.0 -66.8 29.8 2.764 0.0003 

 

* MNI305 space. Results were obtained using Monte Carlo simulation with 10.000 

iterations applied to cortical thickness maps to provide clusterwise correction for 

multiple comparisons (1.3). Significant clusters were reported at p<0.05. z-Max 

indicates the maximum -log10(pvalue) in the cluster. 
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Supplementary Material Table 2. Cortical areas showing significant correlation 

between cortical thickness and neuropsychological tests, within PD patients group.  

 

Cortical region 
Coordinates  
(x y z)* 

Size 
(mm2) 

z-Max 
Corrected 
cluster  
p-value 

Stroop Words 
R Superior frontal -13.9   41.4   13.5   1016.84     5.728    0.0002   
R Fusiform -30.5  -63.9   -5.9   1430.51     5.327     0.0001   
R Insula -34.4  -15.3   17.9   5406.54     4.868   0.0001   
R Banksts -55.3  -48.9    4.2   1556.88     4.708   0.0001   
R Posterior cingulate -5.7  -26.9   36.9   2820.44      3.966    0.0001   

L Insula 35.9  -10.4   18.6   7124.40      6.664   0.0001   

L Fusiform 32.0  -75.0   -4.1   1783.32      5.145    0.0001  

L Supramarginal 57.2  -23.8   37.7   2178.13      5.142   0.0001   

L Precuneus 5.7  -63.8   32.0   1200.89       4.216    0.0001   

L Superiorparietal 33.6  -35.3   36.2   688.49      3.258   0.0078  

Stroop Colours 
L Insula -31.2  -23.8   15.3 1810.45 6.218 0.0001 

L Posterior cingulate -5.5  -31.0   34.9 1741.69 5.662 0.0001 

L Superior frontal -9.7    4.1   45.0 2140.27 5.101 0.0001 

L Fusiform -30.5  -65.8   -4.3 974.31 4.982 0.0005  

L Inferior parietal -48.3  -61.2   12.5 964.95 4.812 0.0006   

L Precentral -13.8  -10.8   60.1 819.32 3.933 0.0017 

R Insula 32.6  -20.3   16.5 5343.71 7.405 0.0001   

R fusiform 32.1  -72.9   -5.6 1797.47 6.397 0.0001   

R Precuneus 5.7  -63.0   30.0 1820.89 4.630 0.0001   

R middle temporal 53.4  -56.3    8.0 868.00 4.431 0.0008   

R superior temporal 42.5    4.9  -21.6 806.48 4.252 0.0025   

R superior frontal 20.6   12.5   51.3 691.36 4.126 0.0075   
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R supramarginal 34.0  -35.0   36.2 1343.18 3.864 0.0001   

R Paracentral 6.3  -22.9   51.0 603.83 3.774 0.0165   

R lingual 22.2  -50.2   -3.5 689.39 3.417 0.0077   

R superior parietal 26.3  -67.9   26.2 491.82 3.107 0.0406 

Stroop Words and Colours 
L fusiform -34.3  -44.1   -8.9 2038.27 7.546 0.0001 

L insula -34.6  -13.7   17.8 6865.11 7.153 0.0001 

L precuneus -12.2  -54.2   12.3 3555.51 5.765 0.0001 

L superiorfrontal -9.8    4.7   43.4 2574.41 5.309 0.0001 

L precentral -50.8   -0.5   37.7 705.52 4.235 0.0049 

L supramarginal -46.3  -37.1   40.7 678.20 3.663 0.0074 

L lateralorbitofrontal -41.2   25.8  -10.9 453.99 3.565 0.0473 

R superiortemporal 44.2    1.1  -19.2 9480.53 7.191 0.0001 

R fusiform 28.1  -44.5  -11.4 3165.48 6.054 0.0001 

R precuneus 4.7  -55.0   18.6 3700.90 5.696 0.0001 

R paracentral 6.1  -21.9   50.2 682.05 5.126 0.0082 

R rostralmiddlefrontal 24.9   40.1   17.0 467.44 -4.410 0.0499 

R precentral 54.3    1.2   36.3 870.57 4.095 0.0008 

R superiorfrontal 22.7    1.8   43.4 643.42 3.817 0.0116 

TMT A 
L superiortemporal -45.9  -37.3   12.4 2596.58 -5.034 0.0001 

L posteriorcingulate -5.2  -30.0   34.7 2812.62 -4.652 0.0001 

L inferiorparietal -47.6  -61.2   12.3 501.20 -4.567 0.0330 

L fusiform -34.3  -44.1   -8.9 1030.37 -4.067 0.0002 

R superiortemporal 39.8    5.2  -23.1 5966.78 -6.499 0.0001 

R lingual 7.2  -66.7    5.0 2678.34 -5.452 0.0001 
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R middletemporal 54.1  -54.4   10.3 894.92 -4.879 0.0006 

R precuneus 8.0  -51.5   20.9 1454.84 -3.957 0.0001 

R precentral 39.0  -11.0   55.1 1442.20 -3.345 0.0001 

TMT B 
R precuneus -5.3  -55.8   20.0 635.93 -3.845 0.0099 

R fusiform -30.4  -66.1   -6.1 591.22 -3.541 0.0145 

SDMT 
L precuneus -5.3  -58.2   17.3 2789.11 6.323 0.0001 

L fusiform -35.4  -42.4   -8.7 1382.66 5.407 0.0001 

L superiortemporal -45.1  -37.6   12.8 944.63 5.318 0.0006 

L inferiorparietal -48.2  -61.5   11.7 1515.09 3.858 0.0001 

L superiortemporal -47.7  -17.5   -0.5 580.28 3.378 0.0164 

L superiorfrontal -13.4   19.3   30.2 938.31 3.207 0.0006 

R rostralmiddlefrontal 23.8   41.2   17.8 3095.34 -5.933 0.0001 

R precuneus 8.1  -50.1   20.3 2054.89 5.896 0.0001 

R supramarginal 50.0  -34.7   17.7 2941.42 5.577 0.0001 

R fusiform 29.1  -52.5   -8.5 1631.70 5.347 0.0001 

R superiortemporal 42.6    7.0  -22.2 1025.13 4.787 0.0002 

Digits Backwards 

R  superiortemporal 51.5    7.4  -16.4 679.70 3.256 0.0117 

Semantic Fluency  
L posteriorcingulate -5.6  -27.9   37.5 2460.93 5.147 0.0001 

L fusiform -34.3  -43.0  -
10.0 

1153.99 5.021 0.0001 

L insula -31.7  -28.4   13.2 3103.69 4.589 0.0001 

L bankssts -53.0  -39.4    7.2 1246.19 4.373 0.0001 

R lingual 22.3  -46.4   -4.6 2858.65 6.853 0.0001 
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R precuneus 4.6  -55.2   19.8 2581.56 6.552 0.0001 

R superiortemporal 59.6   -6.2    0.1 6365.59 5.248 0.0001 

R middletemporal 57.2  -56.8    6.3 486.53 4.573 0.0427 

R rostralmiddlefrontal 25.4   39.8   16.7 862.24 -4.000 0.0011 

R inferiorparietal 52.2  -49.5   31.1 484.87 3.942 0.0436 

Phonemic Fluency 
L superiorfrontal -13.1   42.5   14.2   817.27     5.176    0.0019   

L superiortemporal -51.4   -2.9   -6.6   911.90     4.527    0.0007   

L fusiform -30.6  -65.2   -5.0   729.44     4.023   0.0041   

L posteriorcingulate -13.6  -11.2   38.7   529.75     3.413   0.0265   

R superiortemporal 44.0    1.1  -19.4 2135.47 6.585 0.0001 

R precuneus 23.0  -55.9   19.9 1612.36 5.257 0.0001 

R postcentral 37.7   -6.1   16.7 1074.58 5.004 0.0003 

R superiortemporal 60.2  -18.3   -0.0 1108.06 4.228 0.0003 

R lingual 25.3  -59.4   -1.6 972.18 3.573 0.0004 

RAVLT TOTAL 
L fusiform -29.9  -64.5   -2.1 823.29 5.415 0.0015 

L inferiorparietal -48.0  -61.4   10.4 566.60 4.858 0.0188 

L precuneus -5.9  -56.8   23.9 1469.20 3.738 0.0001 

L transversetemporal -48.5  -20.5    7.2 488.49 3.581 0.03630 

L precuneus -8.9  -41.5   45.7 522.68 3.434 0.02830 

L caudalanteriorcingulate -11.3   31.8   16.4 718.86 3.376 0.00470 

L fusiform -29.9  -64.5   -2.1 823.29 5.415 0.00150 

R middletemporal 53.5  -57.2    7.4 5191.17 5.423 0.00010 

R fusiform 31.4  -39.6  -13.5 2238.94 5.073 0.00010 

R precuneus 5.5  -53.5   18.9 1680.13 5.014 0.00010 

RAVLT delayed 
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L insula 32.3  -26.5   13.8 651.27 4.228 0.01450 

JLO 
L precuneu -4.4  -58.6   19.5 1019.66 4.380 0.00020 

L fusiform -28.9  -71.7   -4.2 714.35 3.710 0.00480 

R precuneus 6.6  -56.7   36.4 1486.99 5.447 0.00010 

R fusiform 28.4  -69.9   -3.4 944.91 5.112 0.00050 

R superiortemporal 41.2    1.9  -20.7 743.64 5.054 0.00680 

R rostralmiddlefrontal 18.9   58.6    8.5 764.63 -3.801 0.00590 

VFD 
R superiortemporal 51.1    8.9  -16.1 523.83 5.831 0.03930 

R lingual 7.4  -67.1    4.4 571.40 4.951 0.02570 

 
JLO: Judgment Line Orientation; RAVLT: Rey Auditory Verbal Learning Test; TMT: 

Trail Making Test; VFD: Visual Form Discrimination; L= Left hemisphere; R= Right 

hemisphere.  Results were obtained using Monte Carlo simulation with 10,000 

iterations applied to CTh maps to provide clusterwise correction for multiple 

comparisons 2.3. Significant clusters were reported at p<0.05. * MNI305 space. z-

Max indicates the maximum -log10(pvalue) in the cluster. 
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Supplementary Material Table 3. Cortical areas showing significant correlation 

between cortical thickness and neuropsychological tests after controlling for the 

effects of age, education and gender, within PD patients group,.  

 

Cortical region 
Coordinates  
(x y z)* 

Size 
(mm2) 

z-
Max 

Corrected 
cluster  
p-value 

Semantic Fluency  
R Lingual  20.3  -45.9   -5.4   657.55     6.051   0.0098   

R Precuneus 13.3  -42.5   37.2 494.59      2.753    0.0398   

Stroop P 
L medialorbitofrontal -6.4   55.6  -12.1   651.88      3.686    0.0088   

L superiortemporal 44.2    4.5  -20.4   533.79      3.092    0.0266 

L insula 33.0   10.1   11.1   634.09      4.132    0.0121 

 

Results were obtained using Monte Carlo simulation with 10,000 iterations applied 

to CTh maps to provide clusterwise correction for multiple comparisons 2.3. 

Significant clusters were reported at p<0.05. * MNI305 space. z-Max indicates the 

maximum -log10(p value) in the cluster. 
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Supplementary figure 1. Significant correlation between cortical thickness and 
neuropsychological tests. The scale bar shows p values.  
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Supplementary figure 2.  Mean cortical thickness of significant clusters from verex-
wise comparison between healthy controls (HC), Parkinson’s disease patients 
without mild cognitive impairment (PD non-MCI) and Parkinson’s disease patient 
with mild cognitive impairment (PD MCI), after controlling for the effect of age and 
education.  

 

 

 

 


