
For Review Only
Do all roads lead to Rome? Exploring community 

trajectories in response to anthropogenic salinisation and 
dilution of rivers

Journal: Philosophical Transactions B

Manuscript ID RSTB-2018-0009.R1

Article Type: Research

Date Submitted by the 
Author: n/a

Complete List of Authors: Gutierrez-Cánovas, Cayetano; Universitat de Barcelona, Departament de 
Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, 
Institut de Recerca de la Biodiversitat (IRBio)
Sánchez-Fernández, David; Instituto de Ciencias Ambientales (ICAM), 
Universidad de Castilla-La Mancha; Universidad de Murcia, 
Departamento de Ecología e Hidrología
Cañedo-Argüelles, Miguel; Universitat de Barcelona, Grup de Recerca 
Freshwater Ecology, Hydrology and Management (FEHM-Lab), 
Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, 
Facultat de Biologia, Institut de Recerca de l’Aigua (IdRA)
Millán, Andrés; Universidad de Murcia, Ecología e Hidrología
Velasco, Josefa; Universidad de Murcia, Ecología e Hidrología
Acosta, Raúl; Universitat de Barcelona, Grup de Recerca Freshwater 
Ecology and Management (FEM), Departament de Biologia Evolutiva, 
Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca 
de l’Aigua (IdRA)
Fortuño, Pau; Universitat de Barcelona, Grup de Recerca Freshwater 
Ecology and Management (FEM), Departament de Biologia Evolutiva, 
Ecologia i Ciències Ambientals, Facultat de Biologia
Otero, Neus; Universitat de Barcelona, Grup de recerca MAiMA, 
Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de 
Ciències de la Terra)
Soler, Albert; Universitat de Barcelona, Grup de recerca MAiMA, 
Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de 
Ciències de la Terra)
Bonada, Núria; Universitat de Barcelona, , Grup de Recerca Freshwater 
Ecology and Management (FEM), Departament de Biologia Evolutiva, 
Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca 
de la Biodiversitat (IRBio)

Issue Code (this should have 
already been entered but 

please contact the Editorial 
Office if it is not present):

SALT

Subject: Ecology < BIOLOGY

http://mc.manuscriptcentral.com/issue-ptrsb

Submitted to Phil. Trans. R. Soc. B - Issue



For Review Only

Keywords: aquatic insects, community assembly, functional traits, global change, 
Mediterranean rivers, osmotic stress

 

Page 1 of 25

http://mc.manuscriptcentral.com/issue-ptrsb

Submitted to Phil. Trans. R. Soc. B - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Phil. Trans. R. Soc. B. article template 

Phil. Trans. R. Soc. B.
doi:10.1098/not yet assigned

1

Do all roads lead to Rome? Exploring community 
trajectories in response to anthropogenic 

salinisation and dilution of rivers

Cayetano Gutiérrez-Cánovas1*, David Sánchez-Fernández2, Miguel Cañedo-Argüelles3, 
Andrés Millán4, Josefa Velasco5, Raúl Acosta6, Pau Fortuño7, Neus Otero8, Albert Soler9 

& Núria Bonada10

1. tano.gutierrez@ub.edu, Grup de Recerca Freshwater Ecology, Hydrology and Management (FEHM-Lab), Departament 
de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), 
Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain, ORCID: 0000-0002-6785-4049

2. David.SFernandez@uclm.es, Instituto de Ciencias Ambientales (ICAM), Universidad de Castilla-La Mancha, Toledo, 
Spain; Departmento de Ecología e Hidrología, Universidad de Murcia, 30100 Murcia, Spain, ORCID: 0000-0003-1766-
0761

3. mcanedo-arguelles@ub.edu, Grup de Recerca Freshwater Ecology, Hydrology and Management (FEHM-Lab), 
Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de l’Aigua 
(IdRA), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain, ORCID: 0000-0003-3864-7451

4. acmillan@um.es, Departmento de Ecología e Hidrología, Universidad de Murcia, 30100 Murcia, Spain,ORCID: 0000-
0003-0036-363X

5. jvelasco@um.es, Departmento de Ecología e Hidrología, Universidad de Murcia, 30100 Murcia, Spain,ORCID:000-002-
7457-2017

6. racosta@ub.edu, Grup de Recerca Freshwater Ecology, Hydrology and Management (FEHM-Lab), Departament de 
Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de l’Aigua (IdRA), Universitat 
de Barcelona (UB), 08028 Barcelona, Catalonia, Spain

7. pfortuno@ub.edu, Grup de Recerca Freshwater Ecology, Hydrology and Management (FEHM-Lab), Departament de 
Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, 
Catalonia, Spain, ORCID: 0000-0002-2198-3486

8. notero@ub.edu, Grup de recerca MAiMA, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de 
Ciències de la Terra), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain, ORCID: 0000-0001-6553-7958

9. albertsolergil@ub.edu, Grup de recerca MAiMA, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat 
de Ciències de la Terra), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain, ORCID: 0000-0003-3140-182X

10. bonada@ub.edu, Grup de Recerca Freshwater Ecology, Hydrology and Management (FEHM-Lab), Departament de 
Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), 
Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain, ORCID: 0000-0002-2983-3335

Keywords: aquatic insects; community assembly; functional traits; global change; Mediterranean rivers; 
osmotic stress

Page 2 of 25

http://mc.manuscriptcentral.com/issue-ptrsb

Submitted to Phil. Trans. R. Soc. B - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Phil. Trans. R. Soc. B. article template 

Phil. Trans. R. Soc. B.
doi:10.1098/not yet assigned

2

4 SUMMARY

5

6 Abiotic stress shapes how communities assemble and support ecological functions. However, it 

7 remains unclear whether artificially increasing or decreasing stress levels would lead to communities 

8 assembling predictably along a single axis of variation or along multiple context-dependent trajectories 

9 of change. In response to stress intensity alterations, we hypothesise that a single trajectory of change 

10 occurs when trait-based assembly prevails, while multiple trajectories of change arise when dispersal-

11 related processes modify colonisation and trait-filtering dynamics. Here, we test these hypotheses using 

12 aquatic macroinvertebrates from rivers exposed to gradients of natural salinity and artificially diluted 

13 or salinised ion contents. Our results showed that trait-filtering was important in driving community 

14 assembly in natural and diluted rivers, while dispersal-related processes seem to play a relevant role in 

15 response to salinisation. Salinised rivers showed novel communities with different trait composition, 

16 while natural and diluted communities exhibited similar taxonomic and trait compositional patterns 

17 along the conductivity gradient. Our findings suggest that the artificial modification of chemical 

18 stressors can result in different biological communities depending on the direction of the change 

19 (salinisation or dilution), with trait-filtering, and organism dispersal and colonisation dynamics having 

20 differential roles in community assembly. The approach presented here provides both empirical and 

21 conceptual insights that can help anticipating the ecological effects of global change, especially for 

22 those stressors with both natural and anthropogenic origins.

23

24 INTRODUCTION

25

26 Abiotic stress, defined as the harmful environmental conditions exceeding the normal range 

27 experienced by organisms, is a key force determining how communities assemble and support 

28 ecosystem functions and services [1–3]. Chronic abiotic stress may arise naturally or be caused by 

29 ongoing global change [4,5], as occur with fire disturbance frequency, flow intermittence or water 

30 salinity. However, it remains unclear whether anthropogenically modified stress levels would result in 

31 communities assembling along a single axis based on organism’s stress tolerance or along multiple 
1 *Author for correspondence (tano.gutierrez@ub.edu).
2
3
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32 trajectories of change depending on differential dispersal and colonisation abilities and population 

33 dynamics [6,7]. 

34

35 Empirical and theoretical evidence suggests that abiotic filtering and interspecific competition are the 

36 most important mechanisms driving the predictable assembly of communities in response to 

37 environmental change [2,7] (trait-filtering processes). At a given stress level, abiotic filtering would 

38 select the organisms showing the most suitable response traits (i.e. physiological, morphological and 

39 life-history adaptations conferring resistance to environmental stress) within the regional species pool. 

40 Among them, the proportion of organisms able to cope with stress depends on each lineage’s 

41 evolutionary context [8,9] and the stressor historical persistence within the region [10]. Besides having 

42 a suitable set of traits, organisms showing a better ability to compete for resources or exploit 

43 underutilised alternatives would show greater abundances [11]. However, other factors, such as 

44 population dynamics and organism’s dispersal and colonisation capacities, can influence community 

45 assembly leading to multiple trajectories of change along stress gradients [6,12] (dispersal-related 

46 processes). For example, organisms may have optimum environmental conditions in habitats that are 

47 difficult to reach because of their low dispersal ability or landscape barriers [6]. In contrast, organisms 

48 may establish in a newly disturbed habitat despite suboptimum conditions, when they are good 

49 dispersers and have multiple population sources well connected through the landscape [13]. When 

50 these first colonisers have appropriate resources to thrive, they may act as a barrier impeding further 

51 colonisation (founder effect), shaping historically contingent communities [7,12]. 

52

53 Rivers offer a promising avenue to identify the mechanisms driving community responses to stress, as 

54 they exhibit marked natural and anthropogenic environmental gradients [14]. For example, as a result 

55 of global change, the salt concentration of most rivers is changing worldwide [15,16]. Many freshwater 

56 rivers are being salinised by anthropogenic salt inputs (e.g. salt mining, de-icing salt), whereas many 

57 other naturally saline rivers are being diluted by human activities that reduce their salt concentration 

58 (e.g. agricultural drainages). Furthermore, climate change may intensify both processes as a result of 

59 altered rainfall and evapotranspiration regimes (either increasing or decreasing effective precipitation) 

60 or because of sea level rise or intrusion [17]. It is already well known that aquatic organisms show a 

61 strong specificity along the salinity gradient [14] and that both impacts are driving strong detrimental 

62 changes in the diversity and community composition of rivers [13,16] and their ecosystem functioning 

63 [18,19]. Studies performed so far have investigated biological responses along a limited span of the 
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64 salinity gradient, considering only salinisation or dilution, but not both processes. Therefore, it remains 

65 unclear if artificially modifying river salinity could yield similar or novel communities respect to 

66 naturally assembled communities.

67

68 Here, we test three competing hypotheses of community assembly (Fig. 1) by exploring if 

69 macroinvertebrate diversity and composition of natural, diluted and salinised rivers follow a single or 

70 multiple trajectories of change along a wide salinity gradient (electrical conductivity: 0.3 to >100 mS 

71 cm-1). Firstly (H1), we hypothesise that community assembly in response to dilution and salinisation 

72 will be explained by abiotic filtering and competition. Taxa showing the most suited traits to cope with 

73 a given salinity will be selected (trait-based assembly). As a result, communities with altered salt 

74 concentrations will resemble natural communities at the same salinity. Secondly (H2), dispersal-related 

75 processes will influence community assembly in response to dilution and salinisation. Opportunistic 

76 colonisation by good dispersers followed by trait-based abiotic and biotic filtering will result in novel 

77 communities and multiple trajectories of change (dispersal-based assembly). Thirdly (H3), trait-based 

78 assembly and dispersal-related processes have differential importance depending on the direction of 

79 change along the stress gradient (directional-dependent assembly).

80

81 METHODS

82

83 Identifying diluted and salinised rivers

84

85 A total of 107 sampling sites were surveyed in rivers across the Eastern part of the Iberian Peninsula 

86 (Fig S1). Each site was sampled up to four times (170 samples), mostly during spring and summer 

87 (period 2000-2018). Sampling sites included lowland and mid-mountain rivers (<1,200 m a.s.l.) of 

88 Mediterranean climate, which exhibit a substantial variation in mean annual precipitation (250 to 900 

89 mm) and different combinations of natural, semi-natural and anthropogenic land-uses. 

90

91 These rivers have a varying concentration of salts, which depends on natural and anthropogenic factors. 

92 Natural saline rivers were found in areas with increasing aridity and evaporitic outcrops [16]. However, 

93 some naturally freshwater rivers were salinised due to potash and sodium chlorine mining activities 

94 [20], whereas some of the naturally saline rivers were diluted mainly due to irrigation agriculture [19]. 

95 We performed dissolved sulphate isotopic analyses (δ34SSO4 and δ18OSO4), and compiled bibliographic 
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96 data [20–22] to distinguish if salinity was due to natural water-rock interaction or to the influence of 

97 potash mine tailings (Supplementary Information S1 and Table S1); other important sources of sulphate 

98 in the basin (fertilizers, urban effluents) [20] were also considered. On the other hand, to establish 

99 which naturally saline rivers (flowing over evaporitic outcrops) can be anthropogenically diluted, we 

100 selected those showing ≥ 20% of irrigating agriculture at the entire catchment scale or ≥50% at the 

101 local scale. Local land-use estimation was carried out through the intersection between the entire 

102 catchment and a 1-km-radius buffer centred on the sampling point. Anthropogenically reduced levels 

103 of salinity have been previously reported in rivers exposed to intensive irrigation agriculture due to 

104 freshwater inputs from agriculture drainages and from irrigation channels leaks [16,19]. When 

105 classifying rivers as anthropogenically diluted, we focused on rivers of potentially high mineralisation 

106 (historically exceeding 5 mS cm-1), excluding freshwater rivers draining calcareous-dominated 

107 catchments without evaporitic outcrops. 

108

109 Environmental data

110

111 Electrical conductivity and pH were determined using a multiparametric probe. Water samples were 

112 filtered through glass fibre filters (GF/F) (Whatman, Maidstone, UK), transported to the laboratory on 

113 ice, and finally frozen for subsequent analysis. Major anions (chloride, sulphate, nitrite and nitrate) 

114 were analysed by HP liquid chromatograph, alkalinity was measured by titration, and ammonium and 

115 soluble reactive phosphorous concentrations were estimated using standard colorimetric methods [23]. 

116 As water chemistry, and especially salinity [24], may vary over time, we compiled water chemistry 

117 data covering previous months or years from own data, water agencies and published papers [25,26] 

118 to estimate a time-integrated value for each variable and site, when possible (Table S2). 

119

120 We also delineated basins and compiled information to characterise other key environmental features 

121 at site and catchment scales that can influence river biological composition such as site elevation, 

122 latitude, longitude, basin area, basin mean annual precipitation and land-use. Major land-uses (natural, 

123 non-irrigated agriculture, irrigated agriculture and urban zones, Corine Land Cover 2012) were 

124 characterised for the whole river basin and just for 1-km-basin upstream sampling point. To control for 

125 other anthropogenic impacts beyond salinisation or dilution, we estimated the number of pressures 

126 affecting each river through the Mediterranean Reference Criteria (MRC) [27], which ranges from zero 
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127 (reference undisturbed condition) to 20 pressures (extremely disturbed). The number of pressures 

128 affecting our sites ranged from zero to 12 pressures.

129

130 Taxonomic and functional metrics

131

132 To assess biological responses along natural and anthropogenic gradients, we estimated several 

133 taxonomic and functional metrics. 

134

135 All macroinvertebrate samples were collected following a multi-habitat semiquantitative kick-sample. 

136 Samples were preserved in 70%-96% ethanol and specimens were identified and counted to species 

137 for Coleoptera, Hemiptera and Trichoptera, genus for most taxa or family in some few cases (e.g. 

138 Diptera). Abundances were aggregated into classes to avoid distortions in statistical analysis due to 

139 large abundance differences (0: 0; 1: 1-3; 2: 4-10; 3: 11-100; 4: >100 individuals). To estimate 

140 taxonomic-based metrics, some genera and subfamilies belonging to the same family were aggregated 

141 into families when part of them were identified at family-level to avoid distortions and double-counting 

142 (taxonomic sites x taxa matrix with 166 taxa). For trait-based metrics, we used a sites x taxa matrix 

143 with the finest taxonomic units, resulting in 220 taxa. For community composition analysis, we used a 

144 matrix including species, genus and family levels (261 taxa).

145

146 To characterise macroinvertebrate traits, we compiled a database including four fuzzy-coding response 

147 traits for the 220 taxa [28–30]: lifespan, number of generations per year, reproduction and respiration 

148 modes (Table S3). These response traits, that include 18 trait categories, are potentially related to 

149 resilience and resistance to osmotic stress [31–33]: short life-span is linked to reduced time and energy 

150 to reach adult stage and reproduce earlier, and enhanced microevolutionary processes; multivoltinism 

151 provides higher capacity to increase population and recover after disturbances; ovoviparity and 

152 terrestrial reproduction give more independence from the aquatic environmental conditions; and aerial 

153 respiration (i.e. spiracle and hydrostatic vesicle modes) are mechanisms which allow coping with low 

154 dissolved oxygen concentrations, which may occur at high salinities. For each invertebrate genus, a 

155 degree of affinity (i.e. ranging from 0 up to a total of 3, 5, 7) was assigned to each trait category, 

156 according to the frequency of occurrence within the genus. Prior to analysis, fuzzy coded data were 

157 converted into percentages of affinity for each trait. 

158
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159 Firstly, as taxonomic-based metrics, we estimated taxonomic, the proportion of Ephemeroptera, 

160 Plecoptera and Trichoptera genera (EPT) taxa, Odonata, Coleoptera and Hemiptera (OCH) taxa and 

161 non-native taxa for each sample, using the sites x taxa matrix with 166 taxa. Secondly, as functional 

162 metrics, we calculated response trait diversity and response trait richness based on a functional space 

163 built on a Gower’s pair-wise functional dissimilarity matrix that included 220 taxa (fuzzy-coding-

164 adapted Gower’s index [34], see Table S3 for further info on functional metric estimation). Pairwise 

165 dissimilarity matrix was based on a taxon x trait category matrix, including the 18 trait categories. We 

166 selected a 7D functional space because it represented well the original Gower dissimilarity matrix 

167 (mean SD error=0.017) [35], and functional spaces with more dimensions did not substantially 

168 improved such representation (10D, mean squared deviance error=0.013) (Table S3). Response trait 

169 diversity, which represents the functional dispersion of taxa with respect to the average response trait 

170 values, was estimated as the mean distance of each taxon to the mean abundance-weighted centroid in 

171 the 7D functional response space [36]. Response trait richness, which represents the response trait 

172 range variation for the community [37], was estimated as the ratio (from 0 to 1) between the 3D 

173 functional space volume of the convex hulls enclosing all the taxa occurring at each sample and that 

174 encompassing the 233 taxa studied. Despite the 7D functional space better represented the original trait 

175 matrix [35], we used a 3D functional space to estimate response trait richness to avoid multiple non-

176 defined values at sites with low diversity (see methodological details in Table S3).

177

178 Furthermore, we estimated the community weighted means for four trait categories and combinations 

179 of them that could be positively related to higher resilience and resistance to osmotic stress: the 

180 proportion of organisms with short life-span, multivoltinism, ovoviparity and terrestrial reproduction 

181 and aerial respiration (combining spiracle and hydrostatic vesicle modes).

182

183 Data analysis

184

185 To assess if biological responses to salinity differed between communities exposed to natural and 

186 altered salt concentrations, we used Boosted Regression Trees (BRT), Linear Mixed-effect Models 

187 LMM, lme4 R package [38] and multivariate generalised linear models (manyglm function, mvabund 

188 R package) [39]. Before analyses, we applied a log-transformation to family richness and response trait 

189 richness and a square-root transformation to the proportion of organisms showing aerial respiration. 

190 Besides, logit-, log- or square-root-transformations were applied to quantitative environmental 
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191 predictors to reduce their distribution skewness and improve linearity, when necessary. In all models, 

192 we used mean conductivity for each site to have a time-integrated measure of osmotic stress.

193

194 To summarise the main axes of biological variation, we also performed a non-metric MultiDimensional 

195 Scaling (MDS) based on a Bray-Curtis dissimilarity matrix, built upon the matrix of macroinvertebrate 

196 family, genus and species abundances excluding rare taxa (i.e. taxa occurring in less than 5 sampling 

197 sites). The first MDS axis represented well the original Bray-Curtis similarities (r=0.88).

198

199 We used BRT to rank predictor importance for taxonomic richness, response trait diversity and 

200 response trait richness, community mean trait categories and MDS axis 1. BRT is a non-parametric 

201 regression technique able to handle heterogeneous predictors, non-linear relationships and missing 

202 values. As predictors, we included water chemistry (conductivity, pH, ion contents, and nutrients), 

203 catchment descriptors (basin area, climate, elevation, and geographic coordinates), land-uses (irrigation 

204 agriculture and urban intensity) and multiple anthropogenic impacts (alteration salinity class, MRC). 

205 The results of these analyses showed that mean conductivity was the most important predictor across 

206 response variables (median rank=2) (Table S4). In addition, mean conductivity was highly correlated 

207 with sulphate (r=0.91), alkalinity : salinity ratio (r=-0.88), chloride (r=0.90) and chloride : salinity ratio 

208 (r=0.75), suggesting that ionic composition is well represented by mean conductivity. 

209

210 Using LMM we modelled salinity effects on taxonomic richness, response trait diversity and response 

211 trait richness, community mean trait categories and MDS axis 1. Each model included conductivity, a 

212 factor indicating alteration class (levels: natural control, diluted and salinised), and the pairwise 

213 interaction between conductivity and alteration class. To control for other environmental covariates 

214 and assisted by BRT results, we also included sampling site elevation, latitude, catchment area, mean 

215 catchment annual precipitation and percentage of irrigation agriculture and urban land-uses as fixed 

216 factors. LMM are ideal statistical techniques to cope with residual dependent structures caused by 

217 repeated measures in the same location [40], through the use of a random intercept factor (Site code). 

218 To quantify predictor’s effect sizes and significance, we adopted a multi-model inference approach 

219 [41], using the MuMIM R package [42]. This statistical technique ranks all the models generated using 

220 all the possible combination of predictors using the Akaike’s Information Criterion (AIC). Then, a set 

221 of top models is selected to produce an average model only if the model ranking first is ambiguously 

222 supported (model weight<0.90). We chose top models differing in no more than four AIC units 
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223 (delta≤4) from the model ranked first (minimum AIC). We adopted a natural average method to 

224 conduct the model averaging, which consists in averaging predictors only over models in which the 

225 predictor appears and weighting predictor’s effect size by the summed weights of these models [43]. 

226 For each LMM model, two measures of goodness-of-fit were estimated [44]: marginal goodness-of-fit 

227 (r2
m) indicates the variance explained only by the fixed factors, while conditional goodness-of-fit (r2

c) 

228 shows the variance accounted for by both fixed and random terms.

229

230 Given that taxonomic and trait diversity and richness can be correlated by chance (selection probability 

231 effect) [45], we performed null models to confirm whether the observed response diversity and richness 

232 patterns were not simply a consequence of the underlying taxonomic variation. Methodological details 

233 are described in Table S7. 

234

235 Multivariate generalised linear models (manyglm function [39], mvabund R package) were fitted to 

236 explore community composition changes (matrix at family, genus and species levels, 220 taxa) and 

237 taxon-specific univariate responses to natural and altered salinity and other covariates, using a 

238 negative-binomial error distribution (after exploring mean-variance assumption), excluding rare taxa 

239 and selecting one sample per site (n=107). As predictors, we selected mean conductivity, alteration 

240 class and their interaction. We also added a mean conductivity quadratic term to capture bell-shaped 

241 responses around species’ osmotic optimums. Additionally, we tested if including more environmental 

242 covariates, such as those used in the LMM, could reduce model AIC, resulting in the inclusion of 

243 precipitation and geographical longitude. Predictors were tested for significance with a Likelihood 

244 Ratio Test (LRT) and a PIT-trap resampling with 999 iterations [39]. We also used Wald tests to 

245 examine model terms significance and corrected univariate taxon-specific p-values for multiple testing.

246

247 All models were validated by visually checking their residuals for normality and homoscedasticity. 

248 The code and functions used to run all these analyses are available in Supplementary Information 2, 

249 which were conducted using the R version 3.4.1 [46]. 

250

251

252 RESULTS

253
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254 In sites showing natural salinity, communities at low conductivity (0.3-1.0 mS cm-1) have similar 

255 proportions of the salt-sensitive EPT taxa and salt-tolerant OCH taxa (ranging from 20%-60%) (Fig. 

256 S4). However, these groups followed opposing trends in response to increasing conductivity so that 

257 the proportion of EPT taxa declined sharply while the proportion of OCH taxa increased up to the 

258 complete domination of communities at higher conductivities. 

259

260 Our LMM models showed that conductivity effects differ between natural and salinised sites for 

261 taxonomic richness (r2
m=56.7%) and response trait diversity (r2

m=37.8%), as observed by the 

262 significant interactions (Table 1, Fig. 2a-c; see Tables S5 and S6 for detailed results). Sites under 

263 natural (control) conditions showed a significantly stronger reduction of taxonomic richness and 

264 response trait diversity with conductivity compared to salinised sites (Fig. 2a,b), while the response of 

265 diluted sites did not differ from the natural and salinised sites (Table 1). Response trait richness 

266 declined similarly with increasing conductivity across alteration classes (r2
m=38.1%; (Fig. 2c). 

267 Remarkably, while taxonomic and response trait richness declined in salinised sites of higher 

268 conductivities, response trait diversity increased along the conductivity gradient. Null models showed 

269 that response trait richness patterns were linked to trait filtering rather than simply to taxonomic 

270 variation. However, in the case of response trait diversity, only one model parameter (salinisation) was 

271 indistinguishable from the null distributions (Table S7).

272

273 Traits responded differently to conductivity, showing in some cases distinct responses among the 

274 salinity alteration classes, as revealed by their significant interactions with conductivity (Table 1; Fig. 

275 2d-g; see Tables S5 and S6 for detailed results). The most evident case was the proportion of organisms 

276 with short lifespan, which was higher at salinised sites over the whole gradient, and increased with 

277 conductivity, while natural and diluted rivers show progressively a lower proportion of short lifespan 

278 organisms along the conductivity gradient (Fig 2d, r2
m=67.9%; see differences in effect size 95% 

279 confidence intervals in Table 1). Salinised sites were dominated by short lifespan organisms such as 

280 the dipterans Ceratopogonidae, Chironomidae, Ephydridae and Simuliidae. The proportion of 

281 organisms with multivoltine life cycle showed contrasting patterns across alteration classes, showing 

282 great disparities at low conductivities but converging progressively at higher salinities (>100 mS cm-

283 1) (Fig 2e, r2
m=40.4%). In this case, the response of the diluted sites was significantly different from 

284 that of the natural sites, but indistinguishable from salinised sites’ response. The proportion of 

285 organisms with ovoviviparous and terrestrial reproduction increased with conductivity across salinity 
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286 alteration classes (Fig 2f, r2
m=25.8%). However, the proportion of organisms with aerial respiration 

287 showed a more complex trend in response to conductivity for the three alteration classes (Fig 2g, 

288 r2
m=46.8%), showing a greater increase at salinised sites compared to natural sites, which decreased 

289 with higher conductivity. The response of diluted sites was statistically indistinguishable from the other 

290 alteration classes. Finally, we did not observe any significant trend for the proportion of non-native 

291 taxa (Fig 2h).

292

293 Community composition changes in response to conductivity also differed among natural and salinised 

294 sites. The MDS ordination showed a first axis along which communities where distributed in relation 

295 with increasing conductivity towards the positive side of this axis (Fig. 3a). When aggregated by 

296 conductivity classes (from freshwaters to hypersaline waters, Fig. 3b), salinised samples were generally 

297 placed far from the natural and diluted community centroids. Natural and diluted samples showed a 

298 greater overlap, although diluted sites displayed substantial differences at mesosaline conductivities. 

299 The variation of the MDS axis 1 values in response to conductivity revealed significantly different 

300 compositional change trajectories for salinised communities relative to natural and diluted 

301 communities, as showed by the significantly less pronounced slope in salinised communities (Fig 2i, 

302 r2
m=85.6%; see differences in effect size 95% confidence intervals in Table 1), while diluted and 

303 natural sites’ responses did not differ. The results of the multivariate GLM (Tables S8 and S9) indicated 

304 that macroinvertebrate responses to conductivity differed across alteration classes (LRT=193.4, 

305 p<0.001). However, such differences seemed to be a result of organisms responding differently 

306 between salinised and natural sites (“conductivity x salinised” coefficient significance, Wald test value 

307 = 8.21; p<0.001), while organisms’ response to salinity was statistically indistinguishable between 

308 diluted and natural sites (“conductivity x diluted” coefficient significance, Wald test, value = 6.37; 

309 p<0.711). Furthermore, taxon-specific responses to conductivity varied across natural and altered 

310 classes (Fig. S5), including salt-intolerant responses, wide range of conductivity tolerance 

311 irrespectively of the alteration class, preference for naturally saline and salinised rivers, and preference 

312 for natural saline and diluted rivers. 

313

314

315 DISCUSSION

316
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317 Our results suggest that different ecological processes may shape community assembly in response to 

318 anthropogenic alterations, depending on the direction of change along the same environmental 

319 gradient. Trait filtering processes seemed to drive community assembly in natural and diluted rivers, 

320 whereas dispersal-related processes were more relevant in response to salinisation. Communities at 

321 salinised rivers tended to show strong differences in diversity and composition respect to natural 

322 communities. However, we found a much evident overlap between the taxonomic composition of 

323 diluted and natural communities, despite observing significant differences in other aspects of diversity 

324 and trait composition. Overall, these results support our third hypothesis (H3), indicating divergent 

325 trajectories of change between salinised rivers, which resulted in novel communities [13], and diluted 

326 rivers, whose communities resembled those of natural rivers with the same conductivity.

327

328 Abiotic filtering is often considered one of the major forces determining biological responses to stress 

329 [4]. In our study, we observed a consistent richness and diversity decline, and strong compositional 

330 changes as salinity increases, which can be attributed to increasing abiotic filtering. However, these 

331 changes arose in divergent trajectories when comparing natural and salinised rivers, which supports 

332 the role of dispersal-related processes in structuring salinised communities [12]. Generally, organisms 

333 show a differential capacity to tolerate osmotic stress as a result of specialised physiological and life 

334 history traits [47,48], confirmed by experiments in absence of competition [8,49]. Thus, while 

335 organisms inhabiting freshwaters need to actively uptake ions to maintain metabolic functions, taxa 

336 tolerating mineralised waters need to match their internal concentrations to external salinity or even 

337 actively excrete ions when salinity is sufficiently high. Nonetheless, salt-tolerant organisms are also 

338 able to cope with freshwater conditions, as observed experimentally [50]. Diversity declined sharply 

339 after conductivities 5-20 mS cm-1, which could be reflecting a critical physiological threshold after 

340 which most organisms are unable to thrive. Considering that aquatic insect haemolymph is roughly 15 

341 mS cm-1 [47], only few saline specialists with appropriate physiological mechanisms can live above 

342 this threshold. Our data reflected such pattern in natural and altered communities, matching the results 

343 of previous studies finding stronger salinity effects after conductivities ranging 5-30 mS cm-1 

344 [15,51,52].

345

346 Besides, our results showed that conductivity tends to select organisms with multivoltine life cycle, 

347 aerial respiration and ovoviviparous or terrestrial reproduction across alteration classes, as previously 

348 observed in natural [32,53] and salinised rivers [54,55]. These trait categories are probably key to cope 
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349 with the stressful environment of saline rivers [31]. However, we found shorter lifespan organisms in 

350 salinised rivers which contrast not only with our patterns for diluted and natural rivers but also with 

351 previous studies performed on natural and salinised locations [53,55]. In our study, salinisation could 

352 have favoured short lifespan organisms in absence of better suited organisms because of their rapid 

353 reproductive cycles. Alternatively, it could have been reflecting a trait syndrome, were other correlated 

354 trait is explaining the success of the organisms successfully colonising salinised rivers

355

356 The fact that the studied salinised sites were relatively distant from naturally saline rivers could have 

357 favoured their colonisation by a mix of opportunistic species and saline specialist with good dispersion 

358 capacities. Our analyses revealed that some taxa which are highly abundant in naturally saline rivers 

359 (genera Ochthebius and Nebrioporus) were absent from salinised rivers, perhaps due to limited 

360 dispersion [56,57] or other biotic factors [50]. However, although it remains unknown if organisms 

361 already established at salinised sites could act as also as biological barrier for saline specialists, this 

362 possibility seems unlikely given the reduced competition pressure at meso- and hypersaline 

363 environments [2]. Contrary to previous findings [52,54,55], we did not find estuarine taxa or invasive 

364 species frequently occurring at salinised rivers. This could suggest that saline tolerant species available 

365 within the inland species pool are preventing invasions from other habitats via competition or estuarine 

366 taxa could not reach the salinised spots. On the other hand, dilution led to communities assembling 

367 along the same axis of variation than natural communities. Although reducing stress levels allowed a 

368 greater number of organisms to colonise diluted rivers, a great extent remain too saline for most 

369 opportunistic colonisers (ca. 60% of diluted rivers have conductivities >20 mS cm-1). In addition, 

370 naturally saline rivers are typically clustered within arid regions with evaporitic outcrops, which 

371 constitute abundant sources of potential saline specialist colonisers.

372

373 Our study is the first in comparing the ecological effects of bidirectional anthropogenic salinity 

374 modifications along a wide osmotic gradient, and one of the few examples in a wider context of 

375 stressors and systems [58]. Nonetheless, our data are limited due to the reduced available number of 

376 rivers primarily affected by dilution or salinisation, and not by other human impacts, and because 

377 quantifying the precise magnitude of the salinity change requires pre-disturbed data, which is typically 

378 unavailable. Particularly, the fact that all salinised sites were concentrated within the same basin 

379 (Llobregat River basin), could have affected our capacity to detect biological changes in response to 
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380 salinisation. Future research using manipulative experiments should be performed to overcome these 

381 limitations and compare against the observational patterns presented here.

382

383 Two major management implications arise from this study. Firstly, salinisation may cause less 

384 predictable biological responses compared to dilution, and would depend on the proportion of salt-

385 tolerant species in the regional pool and their dispersal and colonisation capacities [13]. However, 

386 reducing osmotic pressure in salinised rivers (e.g. diverting brine effluents) might be an effective 

387 restorative measure when rivers are easily accessible by close, abundant sources of freshwater 

388 colonisers. On the other hand, dilution reduces the habitat availability for a substantial fraction of meso- 

389 and hypersaline specialists, which can threaten their populations [59]. Therefore, the conservation of 

390 this unique fraction of biodiversity requires preserving sufficient natural habitats along the full 

391 conductivity gradient. Furthermore, these results can be also relevant to predict the impacts of other 

392 anthropogenic stressors that also occur naturally and whose frequency and intensity are expected to 

393 increase with global change, such as flow intermittence or fire disturbance [60]. In this case, ecological 

394 responses would depend on the proportion of tolerant organisms within the regional species pool and 

395 their capacity to colonise such novel environments [61].

396

397 In conclusion, we showed how the artificial modification of chemical stressors can result in directional-

398 dependent effects along the same stress gradient, where trait-filtering and dispersal-related processes 

399 have differential roles in community assembly. The approach presented here provides empirical and 

400 conceptual insights that can help anticipating ecological effects of global change and improving 

401 environmental management.

402
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TABLES

Table 1.

Metric cond diluted salinised
cond x 
diluted

cond x 
salinised

cond x diluted 
95% CI

cond x salinised 
95% CI

r2
m r2

c

Taxonomic 
richness -0.343*** -1.243 -1.559 0.146 0.231* (-0.046, 0.338) (0.165, 0.297) 56.7 82.1

Response diversity -0.031*** -0.11 -0.309** 0.015 0.038** (-0.010, 0.040) (0.014, 0.062) 37.8 63.2

Response richness -1.015*** 0.81 -0.763 0.003 0.687 (-0.821, 0.827) (-0.127, 1.501) 38.1 74.9
% short lifespan -0.031*** 0.27 -0.224 -0.028 0.046* (-0.064, 0.008) (0.008, 0.084) 67.9 71.8
% multivoltine 0.013** 0.548*** 0.206 -0.048*** -0.018 (-0.070, -0.026) (-0.041, 0.005) 40.4 40.4

% ovoviviparous & 
terrestrial rep. 0.076*** -0.094 0.033 0.019 -0.049 (-0.040, 0.078) (-0.106, 0.008) 25.8 48.6

% aerial respiration -0.007 -0.131 -0.942*** 0.018 0.114*** (-0.043, 0.079) (0.055, 0.173) 46.8 78.4

% non-native taxa -0.003 0.017 -0.003 -0.004 0.001 (-0.013, 0.005) (-0.008, 0.010) 7.2 51.0

MDS axis 1 0.385*** -0.442 1.485** 0.037 -0.201*** (-0.080, 0.154) (-0.311, -0.091) 85.6 96.0
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FIGURE AND TABLE CAPTIONS

Fig. 1. Hypothetical community change trajectories in response to anthropogenic dilution and 
salinisation. Natural communities: blue squares; Diluted: orange circles; Salinised: red triangles H1: 
communities with anthropogenically altered salinity could resemble natural communities with the 
same salinity (trait-filtering). H2: communities with altered salinity could differ from natural 
communities following convergent trajectories (dispersal related-processes). H3: communities of 
salinised and diluted rivers would follow divergent trajectories of change (trait-filtering and 
dispersal-related processes would have different importance depending on the salinity change 
direction).

Fig. 2. Plots of the models examining the effect of conductivity, altered salinity classes (diluted and 
salinised) and their interactions (cond x diluted, cond x salinised) on taxonomic richness, response 
trait diversity, response trait richness, community weighted mean traits (proportion of organisms with 
short life-span, multivoltinism, ovoviparity and terrestrial reproduction and aerial respiration), 
proportion of non-native taxa and MDS axis 1. Conductivity axis is represented in log-scale. Control: 
blue filled squares; Diluted: orange empty circles; Salinised: red empty triangles.

Fig. 3. Plot showing the first two axes of the MDS ordination for all samples (a) and grouped by 
conductivity classes (b) to show the degree of overlap between control, diluted and salinised 
communities. Control: blue filled squares; Diluted: orange empty circles; Salinised: red empty 
triangles. Conductivity classes: fresh: < 0.1 mS cm-1; sub: 0.1 – >5.0 mS cm-1; hypo: 5 – >30 mS 
cm-1; meso: 30->100 mS cm-1; hyper:  100 mS cm-1. Parameter d represents the proportion of the 
representation scale between MDS 1 and 2 axes (e.g. d=0.5 means that the scale of MDS axis 2 is 
magnified by 2 respect to MDS 1).

Table 1. Results of the models examining the effect of conductivity (cond), altered salinity classes 
(diluted and salinised) and their interaction (diluted x cond, salinised x cond) on taxonomic richness, 
response diversity, response richness, community weighted mean traits and MDS axis 1. Predictor 
effect sizes and their significance are shown for each model (Significant terms are showed in bold: * 
p<0.05, ** p<0.01, ***p<0.001). 95% Confidence Intervals (CI) were also showed for the interaction 
terms to allow SES comparison. Information for the effect sizes and significance of the other 
environmental variables can be found in Table S5. Goodness-of-fit is also shown for the fixed factors 
(r2

m) and fixed plus the random factor for each site (r2
c).

SUPPLEMENTARY MATERIAL

Fig. S1. Geographical location of the sampling sites.

Table S1. Results of the δ34SSO4 and δ18OSO4 analysis and sulphate concentrations for rivers 
potentially affected by salinisation.

Table S2. Description of the environmental variables used in the study.

Table S3. Pearson correlation coefficients between functional space (PCoA) axes and original 
response trait categories.

Supplementary Information S1. Identification of rivers affected by salinisation through isotopic 
analysis
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Supplementary Information S2. R code and data to reproduce the analysis presented in this study.

Supplementary Information S3. Additional model details and results.
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