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Abstract. This work studies the neglected subject of plane symmetric
rigid-body motions. A plane symmetric motion is generated by reflect-
ing a rigid body in successive planes of a one parameter family of planes.
To make this a rigid-body motion we begin by reflecting the body in a
fixed initial plane before reflecting in the next plane of the family. In
particular the twist velocity and fixed axodes of these motion are inves-
tigated. Three families of planes can be associated to a space curve, the
osculating, normal and rectifying planes. The plane symmetric motions
generated by each of these families is investigated. The acceleration cen-
tre of the general plane symmetric motion is found together with some
other properties of the acceleration of this motion. Special curves are
known that have partner curves, the relationship between motions de-
fined by some of these curves and their partners is studied. Finally, line
symmetric motions generated by the normal and binormal lines to a
curve are studied as combinations of pairs of plane symmetric motions.
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1. Introduction

In [1, ch. IX §8] Bottema and Roth devote a short section to the subject
of plane symmetric rigid-body motions. The theoretical kinematics literature
contains very little else on this subject. By contrast, in the theory of mecha-
nisms and robotics plane symmetric mechanism are well known. Both single
loop mechanisms and parallel robots with this type of symmetry are well
represented in the literature. In this work we look in some detail at the prop-
erties of these rigid-body motions and their relationships with the geometry
of curves in space.

We begin with generalities: the definition of plane symmetric motions
and a proof that the axodes of these motions are always developable ruled
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surfaces. The next three sections deal with plane symmetric motions gener-
ated by reflections in the osculating, normal and rectifying planes of a space
curve. It is shown that any ruled surface that is a tangent developable surface
is the fixed axode for some plane symmetric motion. So, in some sense, the
case of the motion based on the osculating planes to a curve is the general
case. A connection is shown between the plane symmetric motion based on
the normal planes to a curve and the Bishop motion for the same curve. The
fixed axodes of the motions are the same, however the motions are different.
This demonstrates that the fixed axode is not sufficient to determine a rigid-
body motion. As well as looking at the motion based on the rectifying planes
to a curve a fourth case, given by the reflection in the normal planes to the
curve’s Darboux vector, is studied.

Section 6 deals with the acceleration properties of these plane symmetric
motions. It is shown that the acceleration centre of a motion based on the
osculating planes to a curve is the current point on the curve. The next section
deals with particular types of curves that have partner curves. In these cases
there are relations between the motions determined by the curve and the
motion determined by its partner curve.

The final section looks at what might be thought of as an application
of the results and methods developed in the rest of the article. The idea here
is to study line-symmetric motions by thinking of a reflection in a line as a
composite of reflections in orthogonal planes meeting at the line in question.
In this way we are able to find the twist velocity and fixed axodes of line
symmetric motions generated by reflections in the normal and binormal lines
of a space curve.

2. General Plane Symmetric Motions

Reflection in a plane with unit normal vector uuu can be represented by a 4×4
homogeneous matrix partitioned as,

M =

(
I − 2uuuuuuT 2duuu

0 1

)
where d is the perpendicular distance from the plane to the origin, see fig. 1.
Notice that an arbitrary point ppp, will be transformed to the point, ppp+ 2(d−
uuu ·ppp)uuu by such a reflection and this can be represented by the matrix product,

Mp̃ =

(
I − 2uuuuuuT 2duuu

0 1

)(
ppp
1

)
.

The notation p̃ here is intended to indicate an “extended vector”; p̃ = (ppp, 1)T .
A plane symmetric motion can be thought of as the result of successive

reflections in a continuous one-parameter family of planes. If a rigid body is
being reflected then clearly the reflection in planes will change the orientation
of the body. So, as an alternative description of a plane-symmetric motion an
initial plane can be fixed, the motion is then given by first reflecting in the
fixed plane and then reflecting in the successive planes in the family as before.



On Plane-Symmetric Rigid-Body Motions 3

x
y

z d

ppp

ppp′

uuu

Figure 1. Reflection in a Plane

If the fixed plane is the plane in the family associated with parameter value 0,
then the rigid-body motion passes through the identity in the group of rigid-
body displacements. It is also simple to see that subsequent displacements are
pure rotations about lines in the fixed plane, or possibly translations parallel
to the fixed plane.

In terms of 4 × 4 homogeneous matrices representing rigid-body dis-
placements a plane symmetric motion can then be written as,

G(µ) =

(
I − 2uuu(µ)uuu(µ)T 2d(µ)uuu(µ)

0 1

)(
I − 2uuu0uuu

T
0 2d0uuu0

0 1

)
,

where uuu0 and d0 are the unit normal and perpendicular distance to the origin
for the initial, fixed plane. Also µ is the parameter of the motion, this will be
suppressed in the following for brevity.

The twist velocity of such a motion can be computed as follows,

Sd = ĠG−1 = 2

(
u̇uuuuuT − uuuu̇uuT ḋuuu− du̇uu

0 0

)
,

where the dot denotes differentiation with respect to the parameter µ. It is
often more convenient to use a 6-vector representation of these Lie algebra
elements, see [6]. Note that since uuu is a unit vector, uuu · uuu = 1 and hence
uuu · u̇uu = 0. In partitioned form the velocity twist of a general plane symmetric
motion is given by,

sd = 2

(
uuu× u̇uu

rrr × (uuu× u̇uu)

)
, (2.1)

where, rrr = duuu + ḋ
|u̇uu|2 u̇uu. More generally, the point on the line can be written

as rrr = duuu+ ḋ
|u̇uu|2 u̇uu+ λuuu× u̇uu, where λ is arbitrary. This shows,
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Theorem 2.1. The velocity twist of a plane symmetric motion always has
pitch 0, and is hence what Study described as a Ribaucour motion, [10], see
also [9].

The result above immediately gives the fixed axode of the motion, but
also it can be shown that,

Theorem 2.2. The fixed axode of a plane-symmetric motion is a developable
ruled surface.

Proof. The condition for a ruled surface to be developable is that its distri-
bution parameter vanishes.

If a ruled surface is given in the form,

rrr + λ(uuu× u̇uu)

then the distribution parameter of the surface is given by,

δ =
det
(
ṙrr, (uuu× u̇uu), (uuu× üuu)

)
|uuu× üuu|2

,

see for example [11, ch. III]. Expanding the determinant as a scalar triple
product and remembering that uuu · u̇uu = 0, gives

δ =
(ṙrr · uuu)(uuu× u̇uu) · üuu
|uuu× üuu|2

.

Developing ṙrr finally gives,

δ =
ḋ

|uuu× üuu|2
(
uuu× (u̇uu× üuu)

)(
1 +

uuu · üuu
|u̇uu|2

)
.

But since uuu · u̇uu = 0, differentiating again gives u̇uu · u̇uu + uuu · üuu = 0 and hence
δ = 0. �

It is well known that there are just three possibilities,[2, Chap. 1]:

1. The planes are tangent to a cone.
2. The planes are tangent to a cylinder.
3. The fixed axode is the tangent developable to some curve.

If the planes are tangent to a cone all the planes will contain the vertex
of the cone. The successive displacements will be rotations about lines in the
initial plane passing through the vertex of the cone. So in this case the rigid-
body motion will be a sequence of rotations about a fixed point, the vertex
of the cone. That is, a spherical motion.

When the planes generating the motion are tangent to a general cylin-
der, the motion is clearly a planar motion.

The moving axode of a general plane-symmetric motion can be found in
a similar fashion. The twist velocity of the motion in the moving coordinate
frame is given by,

Sb = G−1Ġ = G−1SdG.

This is a conjugation in the group of the fixed-frame velocity twist, hence the
body-fixed velocity twist will have the same pitch as the frame-fixed velocity.
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That is, the body-fixed velocity twist will also consist of pure rotations and
the body-fixed velocity twists can be thought as the lines generating the
moving axode of the motion. As short computation shows that,

Sb = 2F0

(
uuuu̇uuT − u̇uuuuuT du̇uu− ḋuuu

0 0

)
F0,

where

F0 =

(
I − 2uuu0uuu

T
0 2d0uuu0

0 1

)
,

is the reflection in the initial plane. As for the fixed-frame velocity, this can
be cast into a 6-vector form,

sb = 2

(
U0 0

2d0U0 −U0

)(
uuu× u̇uu

rrr × (uuu× u̇uu)

)
. (2.2)

Here U0 = I − 2uuu0uuu
T
0 and the matrix U0 is the 3× 3 anti-symmetric matrix

corresponding to uuu0, that is U0xxx = uuu0 × xxx for any vector xxx. As above, rrr =

duuu+ ḋ
|u̇uu|2 u̇uu. From this we see that:

Theorem 2.3. The moving axode of a plane-symmetric motion is the reflection
of its fixed axode in the initial plane of the motion.

Proof. Equation (2.2) can clearly be written as,

sb =

(
U0 0

2d0U0 −U0

)
sd.

Now, by considering the effect of the reflection F0, on a pair of points it is
simple but tedious to compute that the effect of a reflection on the Plücker
coordinates of the line joining the pair of point is given by the 6× 6 matrix,(

U0 0
2d0U0 −U0

)
.

�

This means that the moving axode has the same type as the fixed axode;
if the family of planes has a fixed point then the axodes consist of a pair of
cones. When the family of planes are parallel to a fixed direction, the axodes
consist of a pair of cylinders. Otherwise the axodes are a pair of tangent
developable ruled surfaces.

These results appear in [1, ch. IX §8], the proofs above serve as an
introduction to the notation and methods used in the rest of the article.

3. Reflections in the Osculating Planes of a Space Curve

Given a curve in space there are many ways to use this to define a rigid-
body motion, the best known perhaps being the Frenet-Serret motion, [1, ch.
IX §2]. It is well known that at each point on a regular curve, three planes
can be found; the normal plane, osculating plane and rectifying plane. So as
the parameter of the curve changes there are three 1-parameter families of
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planes determined by the curve. Each of these three families of planes can
be taken as the continuous one-parameter family of planes determining a
plane-symmetric motion.

To make it simpler to refer to these constructions the following defini-
tions will be adopted.

Definition 3.1. The plane symmetric motion based on the osculating planes
of a curve γγγ will be called the osculating planes motion of γγγ. Likewise, the
normal planes motion and the rectifying planes motion of γγγ will denote the
plane-symmetric motions based on the normal planes and rectifying planes
of γγγ respectively.

For the osculating planes motion, the instantaneous twist velocity is
given by the intersection of consecutive planes, hence instantaneous rotations
about the tangent lines to the original curve. The fixed axode is clearly the
developable ruled surface generated by the tangent lines to the curve.

Consider a curve γγγ(µ). For the osculating planes to this curve uuu = bbb the
unit binormal vector of the curve. The perpendicular distance to the origin
can be found from any point on the plane, for example the point γγγ, so d = γγγ ·bbb.
Substituting this into equation (2.1) gives the twist velocity as,

sd = −2ντ

(
bbb×nnn

rrr × (bbb×nnn)

)
= 2ντ

(
ttt

rrr × ttt

)
,

where ν and τ are the speed and torsion of the curve respectively. As usual ttt
and nnn denote the unit tangent and principal normal vector to the curve. The
point rrr is a point on the axis of the instantaneous twist. From above we have
that,

rrr = duuu+
ḋ

|u̇uu|2
u̇uu = (γγγ · bbb)bbb+ (γγγ ·nnn)nnn

A general point on the axis of the instantaneous twist is given by,

rrr ′ = (γγγ · bbb)bbb+ (γγγ ·nnn)nnn+ λttt,

where λ is arbitrary. But choosing λ = (γγγ · ttt) shows that γγγ lies on this axis,
since,

(γγγ · bbb)bbb+ (γγγ ·nnn)nnn+ (γγγ · ttt)ttt = γγγ,

as ttt, nnn and bbb form and orthonormal system of unit vectors. This shows that
the fixed axode consists of the tangent lines to the curve γγγ. This confirms
the general argument given at the beginning of this section, however the
computation gives more information since it is clear that at each instant the
magnitude of the instantaneous twist is 2ντ .

Note that this is really the general case for a tangent developable axode.

Theorem 3.2. Any tangent developable ruled surface is the fixed axode of some
plane-symmetric motion.

Proof. For the planes generating a plane-symmetric motion it is sufficient
to take the tangent planes of the ruled surfaces as generating planes of the
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plane-symmetric motion. Note that these are the osculating planes to the
cuspidal edge of the tangent developable ruled surface. �

4. Reflections in the Normal Planes of a Curve

It is well known that the envelope of the normal planes to a curve form a
developable ruled surface. The cuspidal edge of this developable is known as
the pole curve, see [3]. Hence, the fixed axode of a plane-symmetric motion
based on the normal planes to a curve γγγ, will be the tangent lines to the pole
curve of γγγ.

In [9] it was shown that a Bishop motion (or RMF motion) based on
a curve γγγ has as its fixed axode the tangent lines to the pole curve of γγγ.
However, the normal planes symmetric motion and the Bishop motion are
not the same. To understand this, the velocity twists of the two motions will
be computed.

For the normal planes the relations uuu = ttt and d = γγγ ·ttt can be substituted
into equation (2.1) to give,

sd = 2

(
ttt× (νκ)nnn

rrr ×
(
ttt× (νκ)nnn

)) = 2νκ

(
bbb

rrr × bbb

)
.

Here, the point rrr is given by,

rrr = (γγγ · ttt)ttt+ (
1

κ
+ γγγ ·nnn)nnn.

Arguing as in the previous section, this can be written as,

sd = 2νκ

(
bbb

(γγγ + 1
κnnn)× bbb

)
. (4.1)

The Bishop motion based on the curve γγγ will be given by a curve in the group
SE(3),

G =

(
R γγγ
0 1

)
where the rotation matrix R has columns given by the tangent and normal
vectors of the Bishop frame,

R =
(
ttt
∣∣∣nnn1 ∣∣∣nnn2).

To find the velocity twist the Bishop frame equations can be written as,

ṫtt = ν(−k2nnn1 + k1nnn2)× ttt,
ṅnn1 = ν(−k2nnn1 + k1nnn2)×nnn1,
ṅnn2 = ν(−k2nnn1 + k1nnn2)×nnn2.

Where the vector −k2nnn1 + k1nnn2 = κbbb is the the binormal vector multiplied
by the curvature, see [9].

The velocity twist of this motion will be given by,

ĠG−1 = ν

(
κBR ttt

0 0

)(
RT −RTγγγ
0 1

)
= ν

(
κB ttt− κbbb× γγγ
0 0

)
,
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where B is the 3 × 3 anti-symmetric matrix corresponding to the binormal
vector bbb. The twist can be written as a partitioned 6-vector,

sd = νκ

(
bbb

(γγγ + 1
κnnn)× bbb

)
.

This proves the following,

Theorem 4.1. Given a curve γγγ the Bishop motion based on the curve and
the normal planes symmetric motion based on the curve have the same fixed
axode, but the magnitude of the twist velocity of the normal planes motion is
twice that of the Bishop motion.

Notice also, that the moving axodes of the two motions are different.
In theorem 2.3 it was shown that the moving axode of a plane symmetric
motion is a reflection of its fixed axode in the initial plane of the motion. For
a Bishop motion it is known that the moving axode is a sequence of lines
lying in a plane, [9].

5. Reflections in the Rectifying Planes of a Curve

The rectifying planes of a curve have normal vector uuu = nnn and the distance
to the origin of a rectifying plane is d = γγγ · nnn. The velocity twist of a plane-
symmetric motion based on such a family of planes is then,

sd = 2

(
nnn× ṅnn

rrr × (nnn× ṅnn)

)
,

where,

nnn× ṅnn = νnnn× (−κttt+ τbbb) = ν(τttt+ κbbb),

and points on the line are given by,

rrr = duuu+
ḋ

|u̇uu|2
u̇uu+ λuuu× u̇uu = (γγγ ·nnn)nnn+ (γγγ · ṅnn)

ṅnn

|ṅnn|2
+ λnnn× ṅnn.

Notice that, nnn and ṅnn are orthogonal, so if we choose the parameter λ to be,

λ =
(
γγγ · (nnn× ṅnn)

) nnn× ṅnn
|nnn× ṅnn|2

then we can see that the curve γγγ lies on the fixed axode, that is, the velocity
twist is given by,

sd = 2ν

(
τttt+ κbbb

γγγ × (τttt+ κbbb)

)
.

The cuspidal edge of the rectifying planes to a curve is known as the
rectifying curve and it is well known that the original curve is a geodesic on
the tangent developable to the rectifying curve, see [3, ch. I]. Here, of course,
the tangent developable is the fixed axode of the rectifying planes motion.
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Suppose we let δδδ = 1√
κ2+τ2

(τttt+κbbb). This is a unit vector in the direction

of the Darboux vector to the curve. The velocity twist of a rectifying planes
motion can be written,

sd = 2ν
√
κ2 + τ2

(
δδδ

γγγ × δδδ

)
.

This shows that, the velocity twist of a rectifying planes motion is a line in
the direction of the Darboux vector of the curve, passing through the curve.
A Frenet-Serret motion, based on the same curve would have a velocity twist
in the same direction but here the pitch of the twist is not zero and the axis
of the twist does not meet the curve, see [9].

This suggests another plane symmetric motion based on a curve. Imag-
ine reflecting in the family of planes normal to the Darboux vector of the
curve and passing through the curve at the current point on the curve. The
fixed axode for this motion is then,

sd = 2

(
δδδ × δ̇δδ

rrr × (δδδ × δ̇δδ)

)
,

see equation (2.1). Computations show that,

δ̇δδ =

(
κτ̇ − τ κ̇
κ2 + τ2

)
nnn× δδδ, δδδ × δ̇δδ =

(
κτ̇ − τ κ̇
κ2 + τ2

)
nnn

and

rrr = (γγγ · δδδ)δδδ +
1

|δ̇δδ|2
d(γγγ · δδδ)
dµ

δ̇δδ + λnnn = γγγ +
ντ√

κ2 + τ2
δ̇δδ + λ′nnn,

where λ′ is arbitrary. This demonstrates the following:

Theorem 5.1. Given a curve γγγ, the twist velocity of the plane symmetric
motion generated by the normal planes to the curve’s Darboux vector δδδ, is
given by,

sd = 2

(
κτ̇ − τ κ̇
κ2 + τ2

)(
nnn

(γγγ + ζζζ)×nnn

)
where,

ζζζ =
ντ(κτ̇ − τ κ̇)

(κ2 + τ2)
3
2

nnn× δδδ

and, as usual, ν, κ and τ are the speed, curvature and torsion of the curve.
So the lines of the fixed axode of this motion are parallel to the normals of
the curve, but through a point displaced from the curve by ζζζ.

6. Acceleration

Let ppp0 be a point in the rigid-body when the value of the parameter is µ = 0.
Now, at subsequent values of the parameter the location of the point will be
given by, (

ppp(µ)
1

)
= G(µ)

(
ppp0
1

)
.
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Differentiating gives the velocity of the point,(
ṗpp(µ)

0

)
= Ġ(µ)

(
ppp0
1

)
= Ġ(µ)G−1(µ)

(
ppp(µ)

1

)
= Sd

(
ppp(µ)

1

)
.

The acceleration of the point can be found by differentiating again,(
p̈pp(µ)

0

)
= (Ṡd + S2

d)

(
ppp(µ)

1

)
.

Now, suppose that the motion that the rigid-body is subject to is a plane-
symmetric motion given by reflection in the osculating planes to some curve
γγγ. Using the results above, and the Frenet-Serret relations for γγγ, the velocity
and acceleration of the arbitrary point ppp can be written as,

ṗpp = 2ντttt× (ppp− γγγ) = 2ντT (ppp− γγγ)

and

p̈pp = 2
(d(ντ)

dµ
T + ν2τκN + ν2τ2T 2

)
(ppp− γγγ).

In the above pair of equations ν, κ and τ are the speed, curvature and torsion
of γγγ; ttt and nnn are the tangent and normal vectors to γγγ at µ and T and N are
the 3× 3 anti-symmetric matrices corresponding to ttt and nnn respectively.

From this we can find the acceleration centre of the motion:

Theorem 6.1. At any instant of an osculating planes motion based on a space
curve γγγ the acceleration centre of the motion is located at the current point
on the curve γγγ.

Proof. The acceleration centre is the point whose acceleration is instanta-
neously zero. Clearly when ppp = γγγ the acceleration p̈pp vanishes. It remains to
check that the matrix,

W =
(d(ντ)

dµ
T + ν2τκN + ν2τ2T 2

)
is full rank so that the solution is unique. The determinant of W can be
evaluated using the results in the appendix to reference [7], the computations
give,

det(W ) = 8ν4τ3κ

which, in general, is non-zero. �

It is clear from this that the acceleration centre of a plane-symmetric
motion based on the normal planes to a curve γγγ, must lie on the polar curve
of γγγ. Similarly, if the motion is based on the rectifying planes of γγγ the accel-
eration centre will lie on the rectifying curve of γγγ.

For planes tangent to a cone, the vertex of the cone is the acceleration
centre, in fact it is a fixed point for all of the motion. For a motion based on
the tangent planes to a cylinder there is no acceleration centre.

From [7], it is to be expected that the inflection points of the motion
do not lie on a cubic curve but on a conic since the motion is always an
instantaneous pure rotation. In fact, it can be shown that:
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Theorem 6.2. At any instant of an osculating planes motion based on a space
curve γγγ the only point of inflection is the current point on the curve γγγ.

Proof. Without loss of generality we can write a point on the rigid body as,

ppp = γγγ + xttt+ ynnn+ zbbb

where x, y and z are variables and ttt, nnn and bbb are the tangent, normal and
binormal vectors to γγγ. Substituting this into the equations above for the
velocity and acceleration of the point gives,

ṗpp = 2ντ(ybbb− znnn)

and

p̈pp = 2
(
ν2τκzttt− (2ν2τ2y +

d(ντ)

dµ
z)nnn+ (

d(ντ)

dµ
y − ν2τκx− 2ν2τ2y)bbb

)
.

Comparing the coefficients of the mutually orthogonal vectors ttt, nnn and bbb it
can be immediately seen that z = 0 since ttt only appears in the expression
for p̈pp. Similarly, from the coefficient of nnn, y = 0. Then finally, looking at the
coefficients of bbb it can be seen that x = 0. �

Finally, in this section the Bresse hyperboloid for these motions in stud-
ied. The points on this surface are points in the moving body where, instanta-
neously the velocity and acceleration are perpendicular. The result obtained
is:

Theorem 6.3. At any instant of an osculating planes motion based on a space
curve γγγ, the points with perpendicular velocity and acceleration lie on an
elliptical cone whose vertex is the current point on the curve γγγ.

Proof. As in the proof of theorem 6.2, write an arbitrary point on the rigid
body as,

ppp = γγγ + xttt+ ynnn+ zbbb

so that,

ṗpp = 2ντ(ybbb− znnn)

and

p̈pp = 2
(
ν2τκzttt− (2ν2τ2y +

d(ντ)

dµ
z)nnn+ (

d(ντ)

dµ
y − ν2τκx− 2ν2τ2y)bbb

)
.

Now

ṗpp · p̈pp = 4ντ
(d(ντ)

dµ
(y2 + z2)− ν2τκxy

)
.

Setting the above to zero gives a homogeneous degree 2 equation in x, y and
z. This can be written as,

y2 + z2 − αxy = 0

where α = ν2τκ/d(ντ)dµ . This can be rearranged to read,

(y − αx

2
)2 + z2 =

(αx
2

)2
.
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Clearly x = y = z = 0 is a solution corresponding to the point γγγ on the
curve. Because the equation is homogenous, every point on a line joining this
point to another solution is also a solution. So the solutions form a cone with
vertex γγγ. Intersecting the cone with a plane parallel to the normal plane to
the curve at γ means fixing the value of x. The intersection is a circle with
centre located at γγγ + xttt+ αx

2 nnn. �

7. Motions Based on Curves with Mates

Many special types of curves have been defined in the literature by the prop-
erty that they can be used to define another curve, sometimes called a partner
curve, mate, offset or parallel curve. In this section some relations between
plane symmetric motions based on such curves and their mates are investi-
gated.

Bertrand curves are curves such that at any point the principal normals
to the curve and its partner curve coincide, [11, p.29]. Notice that this means
that the rectifying planes to the two curves are parallel. This leads to the
following theorem,

Theorem 7.1. Let Gr(µ) and G̃r(µ) be the rectifying planes motion based on

a Bertrand curve and its mate respectively, then the product, Gr(µ)G̃−1r (µ),
is always a pure translation.

Proof. Write,

Gr =

(
I − 2nnnnnnT 2dnnn

0 1

)(
I − 2nnn0nnn

T
0 2d0nnn0

0 1

)
for the motion associated with the Bertrand curve and

G̃r =

(
I − 2nnnnnnT 2d̃nnn

0 1

)(
I − 2nnn0nnn

T
0 2d̃0nnn0

0 1

)
for the partner curve. The dependence on the parameter µ has been sup-
pressed for brevity. Inverting the second matrix and multiplying then gives,

GrG̃
−1
r

=

(
I − 2nnnnnnT 2dnnn

0 1

)(
I 2(d0 − d̃0)nnn0
0 1

)(
I − 2nnnnnnT 2d̃nnn

0 1

)
=

(
I qqq
0 1

)
where,

qqq = 2(d− d̃)nnn+ 2(d0 − d̃0)(I − 2nnnnnnT )nnn0.

�

Mannheim curves, are also partner curves. Here the principal normal
line of the Mannheim curve coincides with the binormal line to the partner
curve at the corresponding parameter value, see [4]. The computations above,
proving theorem 7.1 will also show the following,
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Theorem 7.2. Let Gr(µ) and G̃o(µ) be the rectifying planes motion based
on a Mannheim curve and the osculating planes motion based on its mate
respectively, then the product, Gr(µ)G̃−1b (µ), is always a pure translation.

In [5], Menninger describes a pair of transformations from one curve to
another. These are named the successor transformation and the predecessor
transformation, one is the inverse of the other. The tangent vector to a curve
is the normal vector to its successor curve and so the normal vector to a curve
is the tangent vector to its predecessor. This gives another theorem in the
same vein as the previous two, and with an almost identical proof:

Theorem 7.3. Let Gn(µ) and G̃r(µ) be the normal planes motion based on a
curve and the osculating planes motion based on its successor curve respec-
tively, then the product, Gr(µ)G̃−1b (µ), is always a pure translation.

Note that we could also describe G̃r(µ) as the rectifying planes motion
of a curve and Gn(µ) as the normal planes motion of its predecessor curve.
Clearly, composing these plane symmetric motion as in the theorems of this
section will produce a motion that is composed of pure translations. Such
motions are well known in robotics, but under several different names. In
[8], it was shown that such motions are represented by curves in the Study
quadric which lie entirely in the B-plane a1 = a2 = a3 = c0 = 0. These
motions can also be described as point-symmetric motions, that is motions
consisting of successive reflections in the points of a curve in space.

8. Line Symmetric Motions

Some of the ideas introduced above can be used to look at line symmetric
motions. These are rigid-body motions generated by reflecting a rigid body
in successive lines of a ruled surface, see [1] for example. A reflection in a
line is simply a rotation of π radians about the line. Such a rotation can be
generated by reflecting in a pair of orthogonal planes that intersect along the
line. So for example, we can reflect in the normal and osculating planes of a
space curve to get the line symmetric motion generated by the normal lines
to the curve.

Consider a curve γγγ and let,

M =

(
I − 2bbbbbbT 2(γγγ · bbb)bbb

0 1

)
represent reflection in the osculating planes of the curve and

N =

(
I − 2ttttttT 2(γγγ · ttt)ttt

0 1

)
represent reflection in the normal planes to the curve. Reflection in both
planes gives a π-rotation about the normal line to the curve given by MN .
In [8] a line symmetric motion generated by a ruled surface was defined
as a π-rotation about the initial generator of the surface, at the parameter
value µ = 0, followed by π-rotations about successive generators of the ruled
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surface. This was done to ensure that the curve in the SE(3) representing
the motion passes through the identity of the group. In the Study quadric
the identity is the dual quaternion 1. In the following, omitting or including
this initial π-rotation makes no difference.

Theorem 8.1. The twist velocity of the line symmetric motion generated by
the normal lines to a curve γγγ is the sum of the twist velocities of the osculating
planes motion and the normal planes motion associated with the curve.

Proof. The line symmetric motion is given by,

G = MNM0N0

where M and N are the reflections in the osculating planes and normal
planes, as above; and M0 and N0 are the reflections in the initial osculating
and normal planes to the motion. The twist velocity is given, as usual, by
ĠG−1, where the dot denotes differentiation with respect to the parameter
µ. Substituting for G and remembering that reflections are self-inverse gives,

ĠG−1 = (ṀNM0N0 +MṄM0N0)N0M0NM = ṀM +MṄNM.

Now ṄN is the twist velocity of the normal planes motion so is represented
by a pitch zero twist about a line normal to the osculating plane of the curve
at the current point. The conjugation MṄNM , reflects the line ṄN in the
osculating plane and hence doesn’t change ṄN . That is, MṄNM = ṄN .
Hence we have the result,

ĠG−1 = ṀM + ṄN.

�

From this and the results of sections 3 and 4 it can be seen that the
twist velocity of the line symmetric motion generated by the normal lines to
a curve γγγ are given, as a 6-vector, by,

sd = 2ντ

(
ttt

γγγ × ttt

)
+ 2νκ

(
bbb

(γγγ + 1
κnnn)× bbb

)
= 2ν

(
τttt+ κbbb

γγγ × (τttt+ κbbb) + ttt

)
.

The pitch h, of this twist is easily found to be,

h =
(τttt+ κbbb) · (γγγ × (τttt+ κbbb) + ttt)

(τttt+ κbbb) · (τttt+ κbbb)
=

τ

κ2 + τ2
.

To find the axis of this twist `, that is, the generator line of the fixed axode,
we subtract h times the first three components of the twist from the last
three components, this gives,

` =

(
τttt+ κbbb

γγγ × (τttt+ κbbb) + κ
κ2+τ2 (κttt− τbbb)

)
=

(
τttt+ κbbb

(γγγ + κ
κ2+τ2nnn)× (τttt+ κbbb)

)
Note, that we are now treating the components of this 6-vector as Plücker
coordinates. Since these are homogeneous coordinates we may ignore overall
multiplicative factors. Hence, we have shown the following:
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Theorem 8.2. The Plücker coordinates of the fixed axode of the line symmetric
motion generated by the normal lines to a curve γγγ are given by,

` =

(
δδδ

(γγγ + κ
κ2+τ2nnn)× δδδ

)
.

This shows that the fixed axode consists of lines parallel to the Darboux vector
δδδ of the curve passing through a point displaced from the current point on the
curve by κ

κ2+τ2 along the normal to the curve.

This method can also be used to investigate the line symmetric motion
generated by reflections about the binormal lines to a curve. In this case
the two plane symmetric motions which combine to produce this motion are
reflections in the normal and rectifying planes. Let N be as above, the 4× 4
matrix representing a reflection in the normal plane to the curve γγγ, and let,

C =

(
I − 2nnnnnnT 2(γγγ ·nnn)nnn

0 1

)
be the matrix representing a reflection in the rectifying plane of γγγ. Writing
the line symmetric motion as,

G = CNC0N0

it is clear from the proof of theorem 8.1, that the twist velocity of the motion
is,

ĠG−1 = ĊC + CṄNC.

This time however, the twist ṄN must be reflected in the rectifying plane of
the curve. A straightforward computation reveals that the 6-vector represen-
tation of the twist CṄNC is,

2νκ

(
−bbb

(−γ−γ−γ + 1
κnnn)× bbb

)
.

Hence the velocity twist of the line symmetric motion generated by the bi-
normal lines to a curve γγγ is given by,

sd = 2ν

(
τttt+ κbbb

γγγ × (τttt+ κbbb)

)
+ 2νκ

(
−bbb

(−γ−γ−γ + 1
κnnn)× bbb

)
= 2ντ

(
ttt

γγγ × ttt+ 1
τ ttt

)
.

From this have the following:

Theorem 8.3. The pitch of the twist velocity of a line symmetric motion
generated by the binormal lines to a curve γγγ is h = 1/τ and the fixed axode
of the motion is generated by the tangent lines to the curve.

9. Concluding Remarks

The differential geometry of curves and surfaces is a classical subject with
little recent attention from mainstream mathematics. This applies even more
to theoretical kinematics which has been neglected for several decades. The
advent of modern robotics has, to some extent, rekindled an interest in kine-
matics and this work can certainly be considered a product of that theme.
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This work was prompted by the striking relation between the normal
planes motion and the Bishop motion for any curve. It would be useful if
there was a simple way to construct a Bishop motion from a plane symmetric
motion. The difficulty seems to be that it is difficult to tell when a plane
symmetric motion is the normal planes motion for some curve. This problem
would appear to be similar to the classical problem of determining when a
curve is the pole curve to some other curve.

Although most of the results in this article refer to the axodes and twist
velocities of motions we have been able to say a little about the acceleration
properties of plane symmetric motions. It would be useful to extend this to
higher order properties of these motions and to other special motions.

Finally, the work on curves with partners, although rudimentary, sug-
gests possible new connections between the classical differential geometry of
curves and theoretical kinematics.
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