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It is widely accepted that the flow theory of plasticity significantly overestimates buckling
stresses and strains and, in some cases, fails to predict buckling at all, while the
deformation theory, which lacks physical rigor compared to the flow theory, predicts
results that are in better agreement with experimental ones. The deformation theory
is therefore recommended for use in practical applications of the buckling of shells.
This paper aims to review in detail the causes behind the seeming discrepancies in the
results predicted by both the flow and deformation theories of plasticity, and to propose
an explanation for this so-called “plastic buckling paradox” on the basis of some recent
research work in the field.
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INTRODUCTION

Buckling in most engineering applications is a physical phenomenon which occurs when the
deformed configuration of a structure undergoes a relatively sudden variation in shape with
a noticeable increase in displacements and strains. The most well-known example is that of a
reasonably straight and slender column which suddenly deviates from its original position due to
compression forces, which may result in a catastrophic collapse of the whole. However, from both
a theoretical and an engineering viewpoint, the most important phase of buckling generally occurs
before deformations become significantly large, that is, when the buckled structure appears to the
naked eye only slightly deformed (Bushnell, 1982).

Plastic buckling is both a geometrical and material nonlinear problem. The geometrical
nonlinearity stems from the nonlinearity of the kinematic relations which represent the large
displacements and rotations of the structure, while the material nonlinearity, such as plasticity,
is due to the nonlinearity of the material constitutive relationships.

Plastic buckling of structures has been the subject of many research studies since the end of the
nineteenth century. The first study on the inelastic stability of structures was published in 1889 by
Engesser for simple compressed metal struts (Hutchinson, 1974) by substituting the elastic modulus
E with the tangent modulus Et in the Euler’s formula for the buckling load.

In 1895, Engesser corrected his original simplified theory by accounting for the different tangent
modulus of the tensioned side of the cross section. He thus proposed to evaluate the buckling load
of a strut by replacing the elastic modulus with a reduced modulus of elasticity E in the Euler’s
formula. This proposal was validated by a series of tests conducted by von Karman on mild-steel
columns (Gerard, 1962).

However, for years, engineers wondered if the reduced modulus theory was actually correct
because experimental buckling loads of aluminum alloy columns were closer to those predicted
by the tangent-modulus theory. Shanley (1947) resolved this dilemma by carefully conducting
experiments on aluminum columns in conjunction with a critical revision of the theory. He
suggested that the plastic buckling load obtained by the tangent-modulus theory could be
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considered the lowest load at which a straight column remained
stable and it should be therefore considered as the actual buckling
load. During the buckling process, the mean stress on the bucked
column might exceed the tangent-modulus stress but it would
never go beyond the reduced-modulus stress.

In the following years, Duberg and Wilder (1952) confirmed
Shanely’s hypothesis and concluded that if the initial imperfection
of the column tended to vanish, the buckling load of the
column was in line with tangent-modulus theory at which the
lateral deflection started to take place. They pointed out that
the structural behavior of the perfect column beyond the load
predicted by the tangent-modulus theory depends on the stress–
strain relationship of the material.

However, inelastic buckling for shells and plates is a much
more complex phenomenon. In fact, the equations for shells and
plates are more applicable to the approximations than those for
a deflected beam (Guarracino, 2007; Guarracino and Walker,
2008) and the constitutive relationships are not limited to a
simple uniaxial stress–strain law, which is obtained by means of
a simple tensile test.

Several shells and plates tests were carried out in the late
1940s and early 1950s and solutions for the bifurcation load
were obtained for many cases of interest. However, many studies
reported that the deformation theory of plasticity, which is clearly
less physically sound than the flow theory of plasticity (Hill,
1950; Mendelson, 1968), seemed to predict buckling loads in
better agreement with experimental results than those obtained
from the flow theory of plasticity. This fact was called the
“plastic buckling paradox” and has been observed in a wide
range of shell structures, such as cruciform columns, plates,
tori spherical domes, and circular cylinders under different
loading conditions and with different boundary conditions.
As a result, intensive research studies, including numerical,
analytical, and experimental investigations, have been carried
out to resolve the plastic paradox since the early 40s. Some
studies concluded that the possible reason for the discrepancies
in the results between the plasticity theories was likely due
to the assumption of small deformation or the exclusion of
transverse shear deformation in buckling analysis, while other
studies concluded that including imperfections in conjunction
with the flow theory could reduce the discrepancies in the
results between the flow and the deformation theory. Other
researchers suggested that the deformation theory tended to
predict lower buckling stresses than those predicted by the flow
theory since it predicted a lower plastic shear modulus as the
level of plasticity increased. In the early 90s Yun and Kyriakides
(1990) claimed that the plastic buckling paradox had to be
still considered “unresolved” and available explanations were
still judged “inconclusive” (Teng, 1996). Since then, research
studies have confirmed once again that the deformation theory
predictions are more in-line with experimental results than those
of flow theory. Several researchers accepted this fact and made
reference only to the deformation theory in their analytical
analysis (Mao and Lu, 2002; Zhang et al., 2015). The main aim
of this paper is thus to present a critical review of the available
literature and to illustrate the most recent explanations proposed
by Shamass et al. (2014; 2015a; 2015b; 2017) and Guarracino

and Simonelli (2017, 2018). The review is directed to a broad
audience and, for this reason, many concepts are recalled and
simplified as much as possible in order to be palatable to non-
specialists in the field.

THE FLOW AND DEFORMATION
THEORIES OF PLASTICITY AND THE
PLASTIC BUCKLING PARADOX

Two main plasticity models are commonly in use in the strain
hardening range: the “deformation theory” of plasticity and the
“flow theory” of plasticity. In both of these theories, the plastic
deformations do not allow volume changes as plastic yielding is
governed by the second invariant J2 of the deviatoric part of the
stress tensor, and in this respect they are both called J2 theories
(Shamass et al., 2014). The main difference between these two
theories is that the deformation theory of plasticity assumes that
the stress is uniquely determined by the current state of strain
at any time and point of a solid body, and therefore, it is in a
special class of path-independent nonlinear elastic constitutive
laws, while the flow theory of plasticity assumes that the stress
at any point and time is a function not only of the current strain
but also of the strain history at the same point. In the deformation
theory of plasticity, after a strain reversal in the plastic range, the
initial loading curve is followed. On the contrary, as it is found
experimentally in physical tests, according to the flow theory of
plasticity after a strain reversal in the plastic range the unloading
takes place following the initial elastic path, and when the loading
is totally removed, a permanent plastic strain is left. This makes
the constitutive relationship path-dependent. In this respect, the
flow theory is an incremental theory of plasticity.

For the incremental theory, the Prandtl–Reuss flow rule is

ε̇
p
ij =

3 ˙̄εp

2σ̄
sij =

3 ˙̄σ
2Hσ̄

sij =
3 ˙̄σ
2σ̄

(
1
Et
−

1
E

)
sij (1)

where E and Et are the elastic modulus and tangent modulus,
respectively (see Figure 1), and σ̄ is the effective stress, sij = σij

FIGURE 1 | Elastic E, tangent Et and secant Es moduli in a simple tensile test.
σo is the linear elastic limit stress.

Frontiers in Built Environment | www.frontiersin.org 2 April 2020 | Volume 6 | Article 35

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles


fbuil-06-00035 April 21, 2020 Time: 14:37 # 3

Shamass Plastic Buckling Paradox: A Review

-σkk δij /3 is the stress deviator, and δij is the Kronecker symbol,
equal to one for i=j and zero otherwise.

It is assumed that the total rate of strain can be split into a sum
of the elastic part and of the plastic part.

ε̇ij = ε̇e
ij + ε̇

p
ij (2)

The elastic strain rate according to generalized Hook’s Law is
given by

ε̇e
ij =

1+ ν

E
ṡij +

1− 2ν

3E
δij σ̇kk (3)

where ν is the Poisson’s ratio.
Therefore, by adding Eqs (1) and (3), the complete

relationship between the rate of stresses and strains results in:

ε̇ij =
1
E

(
(1+ ν) ṡij +

1− 2ν

3
δij σ̇kk +

3 ˙̄σ
2σ̄

(
E
Et
− 1

)
sij

)
(4)

With respect to the deformation theory, Hencky (1924) proposed
a stress–strain relationship in which the total strain is related
directly to the total actual stress status. The total plastic strain is
(Mendelson, 1968)

ε
p
ij =

3
2

ε̄p

σ̄
sij (5)

where ε̄p is the effective plastic strain.
As it refers to the plastic strain function of the current state

of the stress only, it is independent from the loading history.
This assumption significantly simplifies the plastic problem
with respect to the actual physical behavior, since experimental
evidence shows that the plastic strains are generally dependent
on the loading path. In order to explicate Eq. (5), it is observed
that, under the small strain hypothesis, the total strain can again
be written in terms of an elastic and a plastic part as

εij = εe
ij + ε

p
ij (6)

The elastic strain according to generalized Hooke’s law is given
again by

εe
ij =

1+ ν

E
sij +

1− 2ν

3E
δijσkk (7)

Replacing into Eq. (6) it is

Eεij = (1+ ν) sij +
1− 2ν

3
δijσkk +

3
2

E
ε̄p

σ̄
sij (8)

and the ratio between the effective plastic strain and the effective
stress is

ε̄p

σ̄
=

1
Es
−

1
E

(9)

where Es is the secant modulus (see Figure 1).
Eq. (8) can be re-written as:

εij =
1
E

[
(1+ ν) sij +

1− 2ν

3
δijσkk +

3
2

(
E
Es
− 1

)
sij

]
(10)

In the J2 flow theory of plasticity the unloading takes place along
a line parallel to the initial linear elastic path, as experimentally
observed for most metals (see Figure 2), while in the J2

FIGURE 2 | Unloading in the flow theory of plasticity.

FIGURE 3 | Torsional buckling of cruciform column under axial compression.

deformation theory the loading and the unloading take place
along the same nonlinear stress–strain path.

Therefore, the general agreement among engineers and
researchers is that the flow theory of plasticity is more physically
acceptable than the deformation theory of plasticity. However,
it has been repeatedly found by many authors (e.g., Lee, 1962;
Durban and Zuckerman, 1999; Mao and Lu, 1999) that the
deformation theory predicts plastic buckling loads that are more
in-line with experimental ones than those obtained by the flow
theory of plasticity, which tends to overestimate the value of
the plastic buckling load. One of the simplest examples of
this paradox is found in the study of the torsional buckling
of a cruciform column under axial compression, as shown in
Figure 3.

The torsional buckling of an axially compressed cruciform
column was first discussed by Stowell (1948) and Onat and
Drucker (1953). If the compressed column is not too slender,
it tends to buckle in a torsional mode. When the applied stress
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FIGURE 4 | Cross-section of cruciform column.

exceeds the material yield stress, the twisting structure attains a
plastic state in the entire cross-section. In the pre-bifurcation,
only compressive stress is present, while the torsional mode
involves a combination of compression and shear stress.

Denoting by t and b the thickness and width of the flanges
of the cross-section, in the elastic range (see Figure 4), under
the assumptions that the length L is not enough to trigger Euler
buckling, and that b>> t, the critical stress initiating torsional
buckling is

σcr = G
t2

b2 (11)

where G is the elastic shear modulus

G =
E

2 (1+ ν)
(12)

According to the J2 flow theory of plasticity, any increment of the
plastic strains in the plastic domain takes places normally at the
yield surface. Since the stress status in the pre-buckling state is
a simple uniaxial compression and given that the yield surface
is smooth, (see Figure 5) the increments in the shear stress
and strain components are related by the elastic shear modulus.
Therefore, the Eq. (11) still holds true.

However, the instantaneous shear modulus can be derived
from the deformation theory of plasticity by taking into
consideration a state of pure shear stress. Since εij =γ /2 and σkk
=τ, the Eq. (10) becomes

1
2
γ =

1+ ν

E
τ+

3
2

(
1
Es
−

1
E

)
τ

Therefore, the shear modulus predicted by the deformation
theory is

Gs =
τ

γ
=

Es

3+ (2ν− 1) Es
E

(13)

FIGURE 5 | Plastic strain increment for a perfect cruciform column according
to the flow theory.

TABLE 1 | The dimensions and the aluminium alloy materials of the specimens.

Specimen b (mm) t (mm) L (mm)

S1 262.5 25 1,500

S2 262.5 25 1,500

S3 200.0 24 1,500

FIGURE 6 | Torsional buckling stress for perfect crucified columns obtained
using the flow and deformation theories of plasticity vs test results (Guarracino
and Simonelli, 2017).

The torsional buckling stress is thus

σcr = Gs
t2

b2 (14)

Hopperstad et al. (1999) tested three cruciform column
specimens, namely S1, S2, and S3, made from aluminium alloy,
as specified in Table 1. The specimens S1 and S2 were made from
AA6082-T4 and AA6082-T6, respectively, while the specimen S3
was made from AA6061-T6. Figure 6 shows the experimental
critical stresses for cruciform column specimens made from
aluminium alloy and tested by Hopperstad et al. (1999). The
critical stresses predicted by the flow theory, Eq. (11), and
the deformation theory, Eq. (14), are compared with the tests
results (Guarracino and Simonelli, 2017). It is clear that the
flow theory overestimates the torsional buckling stresses while
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the deformation theory results are in good agreement with
the experimental results. It has to be pointed out that the
predicted torsional buckling stresses shown in Figure 6 have been
calculated for a perfect column.

INVESTIGATIONS OF THE PLASTIC
BUCKLING PARADOX IN THE
LITERATURE

Replacement of the Effective Shear
Modulus
Onat and Drucker (1953) found that collapse loads predicted
by the flow theory for cruciform columns with a small initial
twist were slightly higher than the bifurcation loads predicted
by deformation theory. It seemed that a small amount of
imperfection-related shear strains in the pre-bifurcation analysis
were enough to reduce the elastic shear modulus value G
predicted by the flow theory to the value closer to the effective
shear modulus predicted by deformation theory (Bushnell, 1982).
However, the extreme sensitivity of shear modulus to small
imperfection-related shearing strains applied in the plastic range
led to the proposal of a replacement of the elastic shear modulus
considered by the flow theory with the effective shear modulus
predicted by the deformation theory in the buckling analyses
(Bushnell, 1982; Teng and Rotter, 1989). Ore and Durban
(1989) studied the elastic-plastic buckling of annular plates
subjected to pure shear using both the flow and deformation
theories of plasticity. They again found that the discrepancies
in the predictions between the flow and deformation theories
of plasticity were due to the difference in the magnitude
of the instantaneous moduli in the plastic range with the
flow theory modulus considerably higher than the deformation
theory one.

Lay (1965) also proposed that a modified shear modulus
in the plastic range should be employed when using the
flow theory. Drucker (1949) had pointed out that taking
into account a small initial imperfection or twist in a
compressed plate would greatly reduce the shear modulus
predicted by the flow theory and might well provide a
solution to the paradox. Tuğcu (1991a) studied analytically
the effect of small amounts of in-plane shear stresses in
thin rectangular plates under biaxial loading conditions on
the flow and deformation theories buckling stress predictions.
Tuğcu concluded that a considerable reduction in the flow
theory buckling stresses could be achieved when small non-
zero in-plane shear stresses were included in the analysis. In
a later paper, Zhang and Wang (2011) analytically obtained
the elastoplastic buckling stresses for thick rectangular plates.
Similarly to the previously mentioned argument by Bushnell
(1982) and Ore and Durban (1989), they observed that as the
level of plasticity increased, the deformation theory predicted
an in-plane shear modulus smaller than the one predicted
by the flow theory, which resulted in lower buckling stress
values by the deformation theory. However, Teng and Rotter
(1989) revealed that the buckling pressures for an internally

pressurized Tori spherical Head yielded to the flow theory,
considering the effective shear modulus were almost identical
to those without considering the effective shear modulus.
Furthermore, Giezen (1988) found, using the BOSOR5 program
(Bushnell, 1986), that the use of the effective shear modulus
from the deformation theory in the flow theory led to a certain
reduction in the buckling pressures for cylinders subjected
to non-proportional loading, but not as much as to make
them comparable with the buckling results predicted by the
deformation theory. In recent papers, Shamass et al. (2017)
found that employing the effective shear modulus in the flow
theory can reduce the buckling loads but the results are still
greater than the buckling loads predicted by the deformation
theory. Additionally, they found that as the boundary of
the cylinders were more restrained, the flow theory failed to
predict correctly the buckling loads for cylinders subjected
to high values of axial loads even with the use of the
effective shear modulus.

Becque (2010) proposed a theory for the inelastic buckling
of perfect plates based on a new proposal for the shear
stiffness in the flow theory from second order considerations.
Becque claimed that the proposed relation between the shear
stress increments and the total shear strain at the onset of
plastic buckling effectively overcame the plastic buckling paradox
for long simply supported plates under axial thrust (Becque,
2010) or for annular plates subjected to pure shear (Becque,
2013). Shamass (2017) assessed the efficiency of Becque’s in
reducing the discrepancy in the results between the flow
and deformation theories for cylinders subjected to combined
external pressure and axial tension with different boundary
conditions. It was found that the employment of the shear
modulus proposed by Becque (2010) in the flow theory led
to a certain reduction in the value of the buckling pressures
but not as much as to make them comparable with the
predictions from the deformation theory for high values of
the axial tensile stress. Moreover, by increasing the level of
restraint of the cylinders, the flow theory failed to predict
buckling at all. Thus, Shamass et al. (2015b), Shamass (2017)
concluded: “it is so clear that the difference in buckling predictions
between flow and deformation theory can be only partially
attributed to the difference in the shear modulus used for
the bifurcation buckling analysis.” However, Moghadam (2015)
expressed some concerns about Becque’s approach and noticed
that the use of Mohr’s circle to obtain the plastic shear strain
variation was questionable, since it implied multiplying the
plastic strain variation by small rotations, which led to zero
plastic shear strain. Moghadam also added that, in his/her
view, the Becque’s plastic shear modulus related the shear stress
increment to the shear strain in an arbitrarily rotated reference
system, given that the plastic strain increment in the original
system did not possess any plastic shear strain components.
Furthermore, Moghadam stated that for the derivation of the
incremental stress–strain relationship, Becque did not take
into account the influence of the stress increment in the
short direction of the long simply supported plates on the
plastic strain increment in the normal direction, given that
biaxial stresses were induced from buckling. Becque (Private
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communication, 2020) argued that the ratio of the shear
stresses and the infinitesimal shear strains during the small
rotations provided the finite value of the shear modulus. Since
the shear stresses or the transversal bending stresses in the
plate are initially infinitesimal, they do not affect the flow
rule, and this addresses Moghadam’s comment about the bi-
axial stress state. Furthermore, Becque (Private communication,
2020) pointed out that the rotated co-ordinate system is
not arbitrary, as claimed by Moghadam, but follows the
material as it deforms: buckling problems always require
consideration of the deformed state and Becque’s proposed
model shows that this should also apply to the application of
the flow rule in order to get realistic results. It is a fact that
Becque’s model shows a very good correlation with extensive
experimental data.

At the time of the present review Becque’s (2010) and
Guarracino and Simonelli’s (2017) contributions appear to be the
most recent attempts to get to the root of the problem through
a comprehensive analysis of all the parameters involved in the
constitutive laws.

Considerations on the Initial
Imperfections
Following Onat and Drucker (1953); Hutchinson and Budiansky
(1976) showed that more accurate predictions could be obtained
from the flow theory if extremely small imperfections were
taken into account for axially compressed cruciform columns.
Neale (1974) estimated the plastic buckling of cylinders
subjected to torsion using the flow theory of plasticity in
the presence of imperfections and found that the critical
torsional stress was reduced by extremely small and unavoidable
imperfections, but that it was not sensitive to the magnitude
of imperfections.

Cicala (1950) concluded in his approximate analysis
of strips that small imperfections in the specimen would
reduce the bifurcation load predicted by flow theory to
the level of the deformation theory. Hutchinson (1972)
investigated the imperfection sensitivity of spherical shells
subjected to external pressure in the plastic range. He found
that the deformation theory predictions were smaller than
those of the flow theory by about 7%. However, once the
imperfection amplitude became about 10% of the shell
thickness, there were no differences between the flow and
deformation theory buckling pressures. This indicated that
the imperfection-sensitivity of spherical shells was potentially
important in the plastic range. Furthermore, Tuğcu (1991a)
investigated the effects of out-of-plane defects of thin rectangular
plates under biaxial loading on the plastic buckling and
observed that the variation of the buckling stresses was
greater for the flow theory than for the deformation theory.
However, the imperfection sensitivity in the plastic range
is not as severe a problem as it is in the elastic range for
shell structures since the plastic buckling of shell structure
generally occurs at high thickness-to-radius ratios. Furthermore,
Shamass et al. (2014), via an accurate geometrically non-
linear finite-element analysis, showed that both the flow

FIGURE 7 | Comparison between the torsional buckling stresses obtained by
the plasticity theories and experimental results (with imperfection size 10% of
the flange thickness) (Guarracino and Simonelli, 2017).

and deformation theories displayed low imperfection
sensitivity in the case of axially compressed circular shells
with high thickness-to-radius ratios, while both theories
showed an increase in the imperfection sensitivity for low
thickness-to-radius ratios.

On the other hand, a recent research by Guarracino and
Simonelli (2017) investigated the torsional buckling of cruciform
columns by means of the classical formulations of the flow
and deformation theories of plasticity and concluded that “it is
not only necessary to consider an imperfect column, as generally
suggested in the past, but also to account correctly for the effects of
the imperfection up to the point where the limit load is attained.
In such manner a very good agreement between the results from
the flow theory of plasticity and other analytical and experimental
results can be obtained on the basis of classic formulae only.”

Guarracino and Simonelli examined the problem from its
roots and derived an enhanced expression for the tangent
shear module. Figure 7 illustrates the torsional buckling stresses
calculated using the flow theory based on their proposed
procedure and the deformation theory of plasticity, together with
available experimental results conducted by Hopperstad et al.
(1999). It is evident that the proposed procedure achieved results
that were in very good agreement with both the deformation
theory and the experimental results.

Considerations on Different Material
Constitutive Models
Some researchers attempted to address the paradox by taking
into account different formulations of the material constitutive
model and its associated factors. Batdorf and Budiansky (1949)
stated that it was very possible that both the flow and
deformation theories of plasticity were, after all, incorrect.
Therefore, they proposed “a theory of plasticity based on the
concept of slip for the relationship between stress and strain
for initially isotropic materials in the strain hardening range.”
Batdorf (1949) developed an entirely new plasticity theory
that was neither flow nor deformation type and was based
on the concept of slip theory. Sewell (1973) investigated the
bifurcation stress using the flow theory with different yield
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surfaces for a simply supported plate in uniaxial compression.
He concluded that the existence of a corner on the yield
surface, such as Tresca yield surface, could give origin to a
substantial reduction of the bifurcation stress in comparison
to that obtained using a smooth yield-surface such as von
Mises. The amount of the reduction was about 10–30% and
depended on the values of several parameters considered for
the problem. However, Hutchinson (1974) pointed out that if
the Tresca yield surface was used in the analysis of cruciform
columns, the effective shear modulus of the flow theory
could not be reduced.

Bardi and Kyriakides (2006) tested stainless steel tubes
subjected to axial compression. They reported the experimental
critical stresses and strains at the onset of wrinkling, and the
number and wavelength of buckling modes. Furthermore,
they calculated analytically the same quantities using the flow
and deformation theories of plasticity under the assumption
of either isotropic or anisotropic material behavior. They
concluded that the flow theory over-predicted the critical
stresses, strains, and the wavelength of wrinkles while the
deformation theory led to critical stresses and strains in
good agreement with the test results. The influence of
anisotropy on the wavelength of the wrinkles predicted
by the flow theory was very significant. Additionally,
they observed that when the anisotropy was modeled
in flow and deformation theories, the critical stress and
strain were hardly affected. On the other hand, Tuğcu
(1998) stated that although the evaluation of the material
anisotropy was not expected to play a vital role in reducing
the flow theory predictions on account of the limited
value of buckling strain, the existence of an intrinsically
anisotropic material could be an important factor when
the shear was involved in a critical buckling mode such as
torsion buckling of cylinders or shear buckling of panels.
Therefore, accurate representations of the material behavior
and test conditions were essential to obtain reliable flow
theory predictions.

Considerations on the Transverse Shear
Deformation
Ambartsumjan (1963) investigated the inelastic buckling of
plates subjected to combined bi-axial compressive and shear
loading and recommended taking into account the transverse
shear deformation of the plate when using the flow theory
of plasticity. Wang et al. (2001) considered the effect of the
transverse shear deformation by using the Mindlin thick plate
theory in the analytical study of rectangular plates subjected to
uniaxial or equi-biaxial loading and circular plates subjected to
uniform radial load. Once more, they found that the buckling
stresses obtained by the flow theory were larger than those
obtained by the deformation theory, particularly for clamped
plates. The differences in the buckling results between these
two theories increased with the ratio E/σy, plate thickness,
and the exponent n in the Ramberg–Osgood expression, where
E and σy are the Elastic modulus and the yield stress of
the material.

Considerations on the Deformations in
the Pre-bifurcation State
Murphy and Lee (1971) investigated the inelastic buckling
behavior of cylindrical shells subjected to axial compressive
loads with edge constrains and using a modified flow theory
of plasticity based on the material stress history. The nonlinear
strain-displacement relationship, initial imperfections, and edge
constrains were taken into consideration and their effects were
analyzed in the pre- and post-buckling phases. Murphy and Lee
(1971) concluded that when a modified flow theory of plasticity
was employed with inclusion of edge radial restraints and finite
deformation in the pre-buckling phase, the critical stresses were
accurate for the case of cylinders subjected to axial compression.

In another paper, Wang and Huang (2009) examined the
inelastic buckling of rectangular plates subjected to biaxial
loading (with σ2 = −σ and σ1 = ξσ, tensile, or compressive
load in the perpendicular direction). The authors concluded
that the infinitesimal deformation assumption for the strain–
displacement relationships used in the governing of differential
equations for buckling might possibly be the reason for the
large discrepancy in the results predicted by the flow and the
deformation theory of plasticity. Therefore, such an assumption
should be checked after obtaining the buckling stress results
from flow and deformation theories. For the numerical examples
considered in their investigation, they found that this assumption
was always satisfied when the deformation theory was used,
while the assumption was satisfied for the flow theory only
for a small range of loading parameters ξ . In other words,
the critical buckling loads obtained by flow theory were
not valid when they were diverted from the deformation
theory predictions.

Considerations on the Actual Boundary
Conditions
Bushnell (1982) performed numerical investigations using
the code BOSOR5 about the end effect of cylindrical
shells under axial compressive load. The numerical model
included end radial constraints and was based on the
flow theory of plasticity. He showed that the end radial
constraints essentially erased the differences between
the experimental and the theoretical buckling stresses
predicted by flow theory.

Gjelsvik and Lin (1976) studied the plastic buckling of plates
subjected to biaxial compressive stress together with shear
stress along the edges, which represented unavoidable boundary
stresses. They found that buckling compressive stresses obtained
by the flow theory of plasticity were in excellent agreement
with test results. In another paper, Tuğcu (1998) investigated
the effect of the axial load, applied in one direction of infinitely
long simply supported panels, on the critical shear stress applied
in the other direction. He noticed that the buckling shear
stresses predicted by the flow theory were more sensitive to
axial load than those predicted by the deformation theory.
Based on this observation, he suggested that the details of the
experimental set-up and boundary conditions, which caused
secondary stresses, should be investigated in depth before
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assessing the reliability of flow theory predictions. However,
Damkilde (1985) showed, by means of numerical analysis of
cruciform columns subjected to axial compressive stress, that the
deformation theory results were considerably lower than those by
the flow theory even if the frictional restrain on the loaded edges
was considered.

Sensitivity of the Predictions by Different
Plasticity Theories
Many studies have been focused on the sensitivity of both
the flow and the deformation theory predictions to non-
proportional loading, shell geometry, and material parameters.
Kadkhodayan and Maarefdoust (2014) investigated the plastic
buckling of thin rectangular plates subjected to either uniformly
or linearly varying biaxial in-plane loading with different edge
conditions. They found that the discrepancies in the buckling
results between the flow and deformation theories increased
by applying boundary conditions closer to fully clamped
plates and increased by increasing the thickness-to-length ratio.
Moreover, good agreement between the flow theory and the
deformation theory results were found for plates subjected
to equi-biaxial loading rather than for plates subjected to
uniaxial loading. Durban and Zuckerman (1999) examined
analytically the elastic-plastic buckling of rectangular plates
subjected to simultaneous biaxial loads (uniform compressive
load σ2 = −σ and tensile or compressive load σ1 = ξσ in
the perpendicular direction, where ξ is the “biaxial loading
ratio”). Different thickness ratios, aspect ratios, biaxial loading
ratios, and boundary conditions were considered in the analysis.
They observed that the compressive plastic buckling stresses
predicted by the flow theory were consistently higher than those
predicted by the deformation theory. However, the discrepancies
in the compressive buckling loads predicted by the two theories
reduced with the reduction of transverse tensile load and plate
thickness ratio. They found that the flow theory was more
sensitive to the stabilizing tensile load than the deformation
theory. On the other hand, the deformation theory predictions
were more sensitive to the plate thickness ratio than the
flow theory ones.

Kosel and Bremec (2004) studied the plastic buckling
of an annular circular plate with inner diameter a, outer
diameter b, and plate thickness t, subjected to axial in-plane
loads on the inner and outer edges. The material model
assumed in the analytical analysis was elastic with plastic
linear hardening. The slenderness η = b/t and its limit ηpl =(
b/t

)
pl, the discrepancies in the buckling results predicted by

the flow and deformation theory increased by increasing the
plastifications (i.e., decreasing the ratio η/ηpl) and the ratio a/b.
Moreover, Ore and Durban (1992) analytically investigated
the plastic buckling of axially compressed cylindrical shells
and observed that the discrepancies in the buckling results
by the flow and deformation theories were noticeable only
at low values of the strain hardening parameter in the
Ramberg–Osgood expression. Blachut et al. (1996) conducted
experimental and numerical analyses on various cylinders made
from mild-steel and subjected to constant axial tension and

increasing external pressure. Using BOSOR5 (Bushnell, 1986),
they found that the agreement between the buckling pressures
predicted by the flow and the deformation theory were strongly
dependent on the length-to-diameter ratio and on the value
of the applied axial tension. Good agreement between plastic
buckling pressures predicted by the flow theory with those
predicted by the deformation theory were noticeable only
when the cylinders were rather short and the tensile axial
load vanished, or for certain ranges of combined loading
for longer cylinders. In all other cases, the flow theory
overestimated experimental buckling pressures and predicted
unrealistic large plastic strains. In a similar study, Giezen et al.
(1991) conducted experiments on tubes made of aluminium
alloy 6061-T4 characterized by a length-to-diameter ratio equal
to one and subjected to combined axial tension and external
pressure. Additionally, they conducted numerical analyses on
the same tubes once again using the code BOSOR5. The
numerical results showed that the buckling pressures predicted
by the flow theory increased with increasing applied tensile
load while the test results showed a reduction in buckling
pressure with increasing axial tensile load. On the other
hand, the buckling pressures predicted by the deformation
theory revealed the same trend of the experimental results.
However, it significantly under-predicted the buckling pressures
observed experimentally for some loading paths. Therefore,
Giezen (1988) concluded that neither the flow theory nor the
deformation theory could reliably predict the plastic buckling
load. Tugcu (1991b) investigated analytically the buckling of
cylinders subjected to combined axial load and torque or
subjected to combined external pressure and torque. Again,
he found that the flow theory was more sensitive to the
interactive loading than the deformation theory, although
the critical loads predicted by flow theory were smaller
than those predicted by the deformation theory in some
loading regions.

Effects of the Kinematic Constraints
Used in Analytical Treatments
Shamass et al. (2014; 2015a; 2015b; 2017) investigated
numerically the plastic buckling of cylindrical shells subjected
to axial compressive load (Figure 8A) or to combined external
pressure and axial tensile load (Figure 8B). The numerical results
were compared with accurate physical test results conducted
by Lee (1962) and Batterman (1965) for cylinders under axial
compressive load and Blachut et al. (1996) and Giezen et al.
(1991) for cylinders subjected to combined actions. In Lee and
Batterman’s experiments, the specimens were cylinders made
of aluminium alloy 3003-0 and 2024-T4. In the test carried out
by Blachut et al. (1996) and Giezen et al. (1991), the specimens
were made of mild steel and aluminium alloy 6061-T4. Shamass
et al. noticed that the assumed harmonic buckling shapes
adopted for the calculation of the plastic buckling stresses and
of the corresponding buckling mode resulted in kinematically
constraining the buckled shell, causing a stiffer response of the
structure and, as a result, an overestimation of the buckling
stresses. This assumption was reproduced numerically for axially
compressed cylinders with axisymmetric shell elements (SAX1
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FIGURE 8 | (A) a cylinder subjected to axial compressive load. (B) A cylinder
subjected to combined axial tension and external pressure.

TABLE 2 | Geometry of aluminium alloy 3003-0 cylinders tested by Lee (1962).

Specimen A330 A320 A220 A310 A110 A300

Radius (mm) 50.8 50.8 50.8 50.8 50.8 50.8

Wall thickness (mm) 5.43 2.62 2.62 1.74 1.74 1.10

Length (mm) 213.9 208.3 321.1 206.3 516.1 205.2

in ABAQUS) and with imposed kinematic constraints in order
to reproduce the same number of half waves predicted by the
analytical solution, for both the flow and deformation theories.
The dimensions of these cylinders are shown in the Table 2.
Figure 9 illustrates some experimental plastic buckling results
for cylinders subjected to axial compression and tested by Lee
(1962), together with the numerical plastic buckling results
obtained using both the flow and deformation theories with and
without kinematical constraints. As seen from Figure 9, Shamass
et al. (2014), by means of a geometrically non-linear finite
element modeling, found that both the flow and deformation
theories without kinematic constraints predicted buckling
loads with an acceptable level of plastic strains. In fact, the
buckling loads calculated by the flow theory were in very good
agreement with the test results. On the other hand, the flow
theory overestimated the plastic buckling when the kinematic
constraints were imposed in the numerical models. They
concluded that the reason for the “plastic buckling paradox”
seemed to be due to the over-constrained kinematics assumed in
many analytical treatments, when a certain harmonic buckling
shape was prescribed. This resulted in an overestimation of the
buckling load when the flow theory of plasticity was employed,
while the deformation theory naturally counterbalanced the
excessive constraining and provided results which were much
lower that the flow theory ones. On the other hand, the kinematic
was free in the finite element analysis.

Overall, the analytical analyses of the elastic-plastic buckling of
cylinders subjected to non-proportional loading (i.e., combined
external pressure and tensile load) studied by Shamass et al.
(2015a) showed that the discrepancies in the analytical plastic
buckling pressures predicted from both the flow and deformation
theories of plasticity take place when the buckling modes
predicted by the plasticity theories do not coincide. This was also
noticed by Guarracino and Simonelli (2018), who pointed out

FIGURE 9 | Comparison between the buckling stresses obtained numerically
with and without kinematic constraints (Shamass et al., 2014, 2015a,b, 2017).

that a mode switching phenomenon can also lead to critical loads
predicted by the deformation theory higher than those by the flow
theory. It was concluded by Guarracino (2019) that “the different
approach in modeling the material behavior is capable to generate
a mode jumping from the shape of the initial imperfection which
may reverse the reported superior reliability of the predictions by
the deformation theory of plasticity with respect to the flow theory
of plasticity.”

CONCLUSIONS

Shell structures are extensively used in many engineering
applications and can be found in a variety of natural structures,
from geology to biology. As a consequence, the buckling of
shells and plates in the elastic-plastic range has received extensive
attention by a very large number of researchers over many years.
The present review has attempted to comment on the results
from several studies on the so called “Plastic Buckling Paradox,”
i.e., that the results from the two main plasticity theories used
to predict the buckling stress, namely the incremental or flow
theory of plasticity and the deformation theory of plasticity,
seem to provide quite different results. In fact, the flow theory
has been reported to overestimate the buckling loads observed
experimentally while the deformation theory provides results
more in-line with test results.

Various explanations for the plastic buckling paradox have
been proposed in the literature and have been here recalled.

The author’s point of view is that, contrary to the common
belief, there is no “Plastic Buckling Paradox.” The flow theory can
predict buckling with good accuracy if geometrical and material
analyses including imperfections are conducted. The apparent
paradox is not due to the limitations of the flow theory, but
rather to a number of combined approximations, which have
been here reviewed.
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