
On monotonic determinacy and rewritability
for recursive queries and views

Michael Benedikt, Stanislav Kikot, Piotr Ostropolski-Nalewaja, and Miguel Romero

ABSTRACT

A queryQ is monotonically determined over a set of views V if
Q can be expressed as a monotonic function of the view image.
In the case of relational algebra views and queries, monotonic
determinacy coincides with rewritability as a union of con-
junctive queries, and it is decidable in important special cases,
such as for CQ views and queries [9, 23]. We investigate the
situation for views and queries in the recursive query lan-
guage Datalog. We give both positive and negative results
about the ability to decide monotonic determinacy, and also
about the co-incidence of monotonic determinacy with Data-
log rewritability.

ACM Reference Format:

Michael Benedikt, Stanislav Kikot, Piotr Ostropolski-Nalewaja, and
Miguel Romero. 2020. On monotonic determinacy and rewritability
for recursive queries and views. In Proceedings of ACM Conference

(Conference’17). ACM, New York, NY, USA, 31 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

View definitions allow complex queries to be represented by
simple relation symbols. They have many uses, including as a
means to protect access to data, as a means to raise the level
of abstraction available to data users, and as a means to speed
up the evaluation of queries [2]. Views represent a restricted
interface to a dataset, and thus an associated question is what
class of queries can be answered via accessing this interface.
More formally, given a queryQ expressed as a logical formula
over the base relations, can the answer to Q be obtained via
accessing the views. There are several different formulations of
this computational problem, depending on what one means by
“answering a query accessing the views”. One can ask whether
Q is expressible as an arbitrary function of the views, or as an
arbitrary monotone function of the views. Alternatively, one
can choose a particular query language L and ask whether Q
can be transformed to a query Q ′ over the views, where Q ′
is in L. The first choice is that Q is determined over the views,
the second that Q is monotonically determined over the views,
and the last thatQ is L-rewritable over the views. Each of these
notions can be relativized to finite instances.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

These questions were studied initially in the case where
both queries and views are given by conjunctive queries (CQs).
It is known that:
• determinacy of CQ query over a collection of CQ views
is equivalent to rewritability of Q over the views in
relational algebra [23]
• determinacy of a CQ over CQ views does not agree
neither with determinacy over finite instances [17] nor
with monotone determinacy [3]
• determinacy of a CQ query over CQ views is undecid-
able [17], and the same holds for determinacy over finite
instances [18]
• determinacy is decidable for queries and views given
as path-CQs [3]
• monotonic determinacy of a CQ query over CQ views
implies rewritability of Q as a CQ [9], agrees with
monotonic determinacy over finite instances and is NP-
complete to decide [21]

These results have been generalized to the case of queries
and views built up with more general constructs of active-
domain first-order logic (or equivalently, in relational alge-
bra). Then monotonic determinacy becomes, like determinacy,
undecidable, and monotonic determinacy, like determinacy,
disagrees with its variant over finite instances. But there is
still a relationship between determinacy/monotonic determi-
nacy and rewritability in a logic: determinacy is the same as
rewritability in first-order logic; monotonic determinacy is the
same as rewritability as a UCQ [9, 23].

Less is known where queries and views are recursive, for
example, when views and queries are in the common recursive
query language Datalog. For specialized recursive queries and
views over a graph schema, the regular path queries, both the
determinacy and monotonic determinacy problem have been
studied. For one- and two-way regular path queries and views

monotonic determinacy (aka “losslessness with respect to the

sound view assumption”) is decidable in ExpSpace ([10] for
1-way,[11] for 2-way), and implies Datalog rewritability [15],
while plain determinacy is undecidable [16]. It follows from
[14] that monotonic determinacy is undecidable for Datalog
queries and CQ views and implies rewritability in Datalog
over views.

The status of these questions for more general recursive
queries — e.g., queries and views in Datalog over higher-arity
relations — is to the best of our knowledge unknown.

Example 1. Consider a schema with a ternary relation T ,
and binary relation B and unary relations U1,U2. Consider the
Boolean Datalog query Q given as:

GoalQ ← U1(x),W1(x)
W1(x) ← T (x ,y, z),B(z,w),B(y,w),W1(w)

W1(x) ← U2(x)

ar
X

iv
:2

00
3.

05
89

8v
1

 [
cs

.L
O

]
 1

2
M

ar
 2

02
0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by London Met Repository

https://core.ac.uk/display/323101438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Consider the following CQ views:

V0(x ,w) := T (x ,y, z),B(z,w),B(y,w)
V1(x) := U1(x) V2(x) := U2(x)

V3(y, z) := U1(x),T (x ,y, z)
and the binary Datalog view V4:

GoalV4 (y, z) ← T (x ,y, z),B(z,w),
B(y,w),T (w,q, r),GoalV4 (q, r)

GoalV4 (y, z) ← B(y,w),B(z,w),U2(w)
We can see thatQ is monotonically determined over the views

V0-V2. In fact there is a Datalog rewriting, obtained from Q by

first replacing the second rule byW1(x) ← V0(x ,w),W1(w) and
then replacing each Ui by Vi in the other rules. Further Q is

monotonically determined using views V3 - V4, since it can be

rewritten as the CQ ∃y z V3(y, z) ∧V4(y, z).
Note that query Q is not contained in any of the classes con-

sidered in past work (e.g. regular path queries).

Our results. We give results on the complexity of deciding
monotonic determinacy and on the ability to rewritemonotonically-
determined queries into suitable languages, for views and
queries expressed inDatalog or in sublanguages such asMonadic
Datalog (MDL), or frontier-guarded Datalog (FGDL).

We provide new positive results about rewritability, show-
ing monotonic determinacy implies L-rewritability for some
natural query languages L. We show that monotonic determi-
nacy implies rewritability in Datalog for Datalog queries and
FGDL views (Theorem 1), as well as for MDL queries and a
collection of FGDL and CQ views (Theorem 2). We observe
that for CQ Q and Datalog V, monotonic determinacy implies
rewritability as a CQ, and the same holds if CQ is replaced with
UCQ. Note that an analysis of the “inverse rules” algorithm
[14] implies that FGDL queries monotonically determined over
CQ views have FGDL rewritings. On the negative side, we
show that MDL queries monotonically determined over CQ
views are not necessarily rewritable in MDL (Theorem 7). This
contrasts with the observation from [14] mentioned above. In
contrast to Theorem 2, we give an example of an MDL query
monotonically determined over UCQ views without a Datalog
rewriting (Theorem 8). Our results on rewritability are sum-
marized in Figure 1 where “nn” stands for “not necessarily”.

We now turn to results about deciding monotonic determi-
nacy. We show that monotonic determinacy is

– decidable in 2ExpTime for CQ queries and Datalog
views (Theorem 5),

– decidable in 2ExpTime for queries and views in frontier-
guarded Datalog (Theorem 3),

– decidable in 3ExpTime for MDL queries and a collection
of MDL and CQ views (Theorem 4),

– 2ExpTime-hard for CQ queries and MDL views and for
MDL queries and CQ views (Proposition 9)

– undecidable for MDL queries and UCQ views (Theo-
rem 6)

Known and new results on decidability of monotonic de-
terminacy are presented in Figure 2 where we use [upper
bound]/[lower bound] notation for sources.

Alongside with L-rewritability we can ask whether there
are computable functions lying within a certain complexity
class which separate the images of instances where Q is true
from images of those whereQ is false. We call such a function
a separator forQ over V. Note that Datalog rewritings give rise
to PTime separators, while UCQ-rewritings produce AC0 sep-
arators. Our additional observations on separators, outside of
those that follow from rewritability results, are: (1) for Datalog
queries and UCQ views there is always a separator in NP as
well as one in co-NP; (2) for any primitive recursive function
f there are Datalog queries monotonically determined over
Datalog views without a separator inT IME(f (x)) (Theorem 9).

Techniques. A contribution of the paper is to show how
techniques arising from earlier work can be adapted for the
analysis of monotone determinacy. For our positive results, a
key tool is an automata-theoretic technique, involving bounds
on the treewidth of view images and the forward-backward
method developed for analysis of guarded logics [8, 19]. For
our negative results, we show how to adapt some of the coding
ideas used in showing undecidability of determinacy [16–18]
to the setting of monotonic determinacy, and we also show
how tools from constraint satisfaction [4] can be used to pro-
vide monotonically-determined queries that have no Datalog
rewriting.

Organization. Section 2 contains preliminaries about Data-
log and monotonic determinacy, while Section 3 presents key
tools that we make use of in our positive results. Section 4
presents our rewritability results, while Section 5 gives results
on deciding monotonic determinacy. Section 6 contains lower
bounds on detecting monotonic determinacy, while Section 7
provides non-rewritability results. The paper ends with con-
clusions and some open questions in Section 8. The details of
many proofs are deferred to the appendix.

2 PRELIMINARIES

We will work with relational schemas, consisting of a finite
set of relations, with each relation R associated with a number
the arity of R. For R of arity n, an R-fact is an expression
R(c1 . . . cn), where c1 . . . cn are elements. A fact over schema
S is an R fact for some relation R of S. A database instance (or
simply instance when it is clear that we are discussing data) for
a schema is a set of facts over the schema. The active domain

of an instance I, denoted adom(I), is the set of elements that
occur as ci in some fact R(c1 . . . cn) of I. A query of arity n
over schema S is a function from instances of S to relations of
arity n. A Boolean query is a query of arity 0. The output of
a query Q on instance I is denoted as Output(Q,I). We will
also write I |= Q(c) or I,c |= Q to indicate that c is in the
output of Q on input I. A homomorphism from instance I to
instance I ′ is a mapping h such that R(c1 . . . cn) ∈ I implies
R(h(c1) . . .h(cn)) ∈ I ′. If there is a homomorphism from I to
I ′ then we write I → I ′.

The Gaifman graph of an instance I is the graph whose
nodes are the elements of adom(I) and whose edges connect
any ci and c j in a c such that R(c) holds. The radius of a graph
G is defined as minu ∈vertices(G)maxv ∈vertices(G) distG (u,v)
where distG (u,v) is the distance between u and v in G.

2

Query \Views CQ MDL, FGDL FGDL + CQ UCQ Datalog
CQ CQ [Prop. 8, (a)]
UCQ UCQ [Prop. 8, (b)]
MDL FGDL, nn MDL MDL Datalog, nn MDL

[14] and [Th. 7] [Th. 1] [Th. 2] and [Th. 7] not necessarily
FGDL FGDL [14] Datalog rewritability in Datalog [Th. 8]
Datalog Datalog [14] [Th. 1] Datalog is open

Table 1: Rewritability of Queries Monotonically Determined by the Views

Query \ Views CQ MDL, FGDL FGDL + CQ UCQ Datalog
CQ NP-c 2ExpTime-c Π

p
2 -c 2ExpTime-c

UCQ [21] [Th. 5]/[Prop. 9] [22] [Th. 5]/[Prop. 9]
in 3ExpTime [Th. 4] in 3ExpTime [Th. 4]

MDL 2ExpTime-hard 2ExpTime-hard
[Cor. 9] 2ExpTime-c [Prop. 9] Undecidable [Th. 6]

FGDL decidability [Th. 3]/[Prop. 9] decidability
is open is open

Datalog undecidable for a fixed atomic view [Prop. 9], see also [14], Th. 3.1
Table 2: Decidability and Complexity of Monotonic Determinacy

Conjunctive queries and Datalog. A conjunctive query (CQ)
is a logical formula of the form q(x) = ∃y ϕ(x ,y), where
ϕ(x ,y) is a conjunction of atoms. Given any CQQ , its canonical
database, denoted Canondb(Q), is the instance formed by
turning each atom R(x1 . . . xn) into a fact R(cx1 . . . cxn), where
for each variable or constant x in Q we have a constant cx .
Each CQ Q with free variables ordered as x1 . . . xn defines a
query of arity n in the obvious way: a tuple t1 . . . tn is in the
output ofQ on I if there is a homomorphism of Canondb(Q)
into I mapping each xi to ti . The radius of a CQ is the radius
of the Gaifman graph of its canonical database.

Datalog is a language for defining queries over a relational
schema S. Datalog rules are of the form:

P(x) ← ϕ(x)

where P(x) is an atom over a relation P that is not in S, ϕ is a
conjunctive query and every variable in P(x) occurs in ϕ. The
left side of the rule is the head, while the right side is the body
of the rule. In a set of rules, the relation symbols that occur in
the head of a rule are the intensional database predicates (IDBs).
The relations in S are called the extensional relations of the rule.
A Datalog program is a finite collection of rules. For a database
instance I and a set of Datalog rules Π by FPEval(Π,I) we
denote the minimal IDB-extension ofI satisfyingΠ. ADatalog

query Q = (Π,Goal) is a Datalog program Π together with
a distinguished intensional goal relation Goal of arity k ≥ 0.
The output of Datalog query Q on an instance I (denoted as
Output(Q,I) or simplyQ(I)) consists of all tuples c such that
Goal(c) ∈ FPEval(Π,I).

For example, consider a signature where there is a binary
relation R and unary relation U . The formula expressing that
x has a path consisting of R edges to an element in U would
be written in Datalog as the following query Conn(x) =

(Π,Goal(x)) where Π consists of the following rules:

P(x) ← U (x)
P(x) ← R(x ,y), P(x)

Goal(x) ← P(x)

Above, P(x) andGoal(x) are intensional relationswhileR(x ,y)
and U (x) are extensional. We follow conventions concerning
Datalog rules and omit the existential quantifiers on the vari-
ables in the body that do not appear in the head; we also use
“,” for conjunction.

A Datalog query Q1 is contained in a Datalog query Q2 if
Output(Q1,I) ⊆ Output(Q2,I) for every instanceI. Datalog
containment is known to be undecidable in general [25].

Fragments of Datalog. Monadic Datalog (MDL) is the frag-
ment of Datalog where all intensional predicates are unary.
Frontier-guarded Datalog (FGDL) requires that in each rule
all the variables in the head co-occur in a single extensional
atom of the body. Frontier-guarded Datalog does not contain
MDL; for example, in an MDL program we can have a rule
I1(x) ← I2(x), where I1 and I2 are both intensional. However
every MDL program can be rewritten to be in FGDL, and thus
we declare, as a convention, that any MDL program is Frontier-
guarded. Frontier-Guarded Datalog containment is known to
be decidable (e.g. [6]).

Conjunctive queries and approximating Datalog. A Datalog
query Q = (Π,Goal) can be approximated by CQs. We define
collections of CQs CQAppr(Π,U (x), i) with free variables x
for all atoms U (x) that occur in the head of a rule in Π by
induction on i . For the base case, CQAppr(Π,U (x), 1) consists
of all CQs obtained by taking the body of a rule with the head
U (x) in Π which contains no intensional predicate.

For the inductive step, CQAppr(Π,U (x), i + 1) consists of
all CQs obtained by taking any body of a rule whose head is

3

U (x) and replacing all intentional atoms V (y) with q(σ (z)),
where q(z) is in CQAppr(Π,V (z),k) for k ≤ i and σ unifies
V (z) with V (y) by sending z to y.

A CQ approximation of a Datalog query (Π,Goal(x)) is any
element of CQAppr(Π,Goal(x), i) for some i .

Proposition 1. For any Datalog query Q , if I,c |= Q then

there is a CQ approximation Q0 of Q such that I |= Q0(c).

We often identify an approximation Q0 of a Datalog query
Q with its canonical database; for example, for another Datalog
query Q ′, we can write Output(Q ′,Q0) to indicate the output
of Q ′ on Canondb(Q0). We can also talk about the approxi-
mation of an atom A in a Datalog program, which is defined
by considering the program with A as the goal predicate.

Views, determinacy, and rewritability. A view over some re-
lational schema S is a tuple (V ,QV) whereV is a view relation
and QV is an associated query over S whose arity matches
that of V . QV is referred to as the definition of view V . By V
we denote a collection of views over a schema S. We some-
times refer to the vocabulary of the definitions QV as the base
schema for V, denoting it as ΣB, while the predicates compo-
nentsV are referred to as the view schema, denoted ΣV. For an
instance I and set of views V = {(V ,QV) | V ∈ ΣV}, the view
image of I, denoted by V(I), is the instance where each view
predicateV ∈ ΣV is interpreted by Output(QV ,I). A queryQ
over schema S is determined over V if

for any two instances I1,I2 such that V(I1) =
V(I2) we have Output(Q,I1) = Output(Q,I2).

A queryQ over schema S ismonotonically determined over V if

for any two instances I1,I2 such that V(I1) ⊆
V(I2) we have Output(Q,I1) ⊆ Output(Q,I2).

Given views V and a query Q , a query R over the view
schema ΣV is a separator of Q with respect to V if: for each
I over S, the output of R on V(I) is the same as the output
of Q on I. A separator that can be specified in a particular
language L (e.g. Datalog, CQs) is an L-rewriting of Q w.r.t. V,
and if this exists we say Q is L-rewritable over V.

It is clear that ifQ has a rewriting in a language that defines
only monotone queries, like Datalog, then Q must be mono-
tonically determined. We will be concerned with the converse
to this question. The main questions we will consider, fixing
languages LQ and LV for the queries and views (e.g. Datalog,
fragments of Datalog) are:
• can we decide whether a Q in LQ is monotonically
determined over V?
• fixing another language L for rewritings, if Q is mono-
tonically determined over V, does it necessarily have a
rewriting in L?

In this paper, for simplicity we will always consider the deter-

minacy and rewritability problems restricting to the case when

the query Q is Boolean. But all of our results extend to the
non-Boolean case. In addition, we allow our instances to be
finite or infinite, but all of the results extend when the instances

are assumed to be finite. Ssee the appendix for details.

3 FORWARD AND BACKWARD

BETWEEN DATALOG AND AUTOMATA

We overview an automata-theoretic technique that will prove
useful in rewriting results. It involves treewidth bounds, along
with the idea of combining forward mappings from Datalog
to automata, projection of an automata onto a subvocabulary,
and backward mappings from an automaton to Datalog. The
approach derives from work on guarded logics [8, 19].

Treewidth and tree codes. For a number k a tree decomposi-

tion of width k for an instance I is a pairTD = (τ , λ) consisting
of a rooted directed tree τ = (V ,E) and a map λ associating
a tuple of distinct elements λ(v) of length at most k (called a
bag) to each vertex v in V such that the following conditions
hold:

– for any atom R(c) in I, there is a vertex v ∈ V with
c ⊆ λ(v);

– for any element c in I, the set {v ∈ V | c ∈ λ(v) } is
connected in τ .

Above we abuse notation slightly by using λ(v) also to refer
to the underlying set of elements as well as the tuple. Also in
the literature the width associated to such a decomposition
is k − 1, but this distinction will not be important for any of
our results. Will also talk about a tree decomposition of width
k for a pair (I,a) consisting of an instance and a tuple. In
this case we add to the requirements above that a is an initial
segment of λ(r) for r the root of the tree.

The treewidth of an instance I, tw(I), is the minimum
width of a tree decomposition of I. For a tree decomposition
TD of data instance I let l(TD) be the maximum over elements
e of I of the number of bags containing e .

We will now discuss how to represent tree decompositions
by labeled trees called codes. In this context, we will always
assume that in tree decompositions, all vertices v ∈ V have

outdegree at most 2. It is easy to show that if an instance has any
tree decomposition of width k , it has one with this property.

We represent such tree decompositions as instances in a
signature Code(S,k) which contains the following relations:
• for every relation R ∈ S of aritym and every sequence
n = n1, . . . ,nm of numbers of size at most k there is a
unary relation TR

n in Code(S,k) to mark the nodes v
in τ such that the atom R(bn1 , . . . ,bnm) is in I, where
λ(v) = (b1, . . . ,bk).
• for every partial 1-1 map s from {1, . . . ,k} to {1, . . . ,k},
there is a binary relation Ts to indicate the “same as”
relation between positions in neighboring bags. For
example, if (u,v) ∈ Ts and s(3) = 1, then the position 3
in u and the position 1 in v stand for the same element.
All relations Ts are directed from a parent to a child.

We use UnPred(S,k) and BinPred(S,k) to denote the sets of
all unary and binary predicates in Code(S,k) respectively. A
tree over this signature will be referred to as a tree code of

width k for S.
It should be clear how each tree decomposition of (I,a) of

width k gives rise to a tree code of width k for S; if there are
bags with less than k elements, we fill them up with dummy
elements to the length k . We now show how to decode an
instance from such a code T . For nodes u,v in a code T , we

4

write (u, i) ≡0 (v, j) if (u,v) ∈ Ts holds in T and s(i) = j.
For a node u and position i we let [u, i] be the equivalence
class of (u, i) in the equivalence relation generated by ≡0. In
words, the position i in the node u corresponds to the position
j in the node v if there is an undirected path leading from
u to v with the edge labels that in a step-by-step manner
establish a match between i in u and j in v . The decoding of T ,
denoted I = D(T), is the S database instance I consisting of
atoms R([v1, i1], . . . , [vr , ir]) where each R from S is applied
to exactly those tuples ([v1, i1], . . . , [vr , ir]) for which there
is some nodew ∈ dom(T) such thatw ∈ TR

j1 ...jr
and [w, jm] =

[vm , im] for allm ∈ {1, . . . , r }. In this case we also say the T
is a code of I.

Monadic Datalog Normalisation. A Monadic Datalog query
is said to be normalized if the body of any recursive rule does
not contain IDB atoms with the head variable. A well-known
and simple fact is that any MDL query can be transformed
into a normalized one.

Proposition 2 ([12]). For each MDL query Q there exists a

normalized MDL query Q ′ which is equivalent to Q .

Normalization is useful in connection with tree codes, since
it is easy to see that the CQ approximations of normalized
queries have decompositions with small “treespan”:

Lemma 1. Let Q be a normalized Monadic Datalog query.

Then there is a numberk = O(|Q |) such that all CQ-approximations

of Q have tree decomposition TD of width k with l(TD) ≤ 2.

Bounding the treewidth of view images. We will present
results showing that, for certain classes of sets of views V
and Datalog queries Q , we can find a uniform bound on the
treewidth of the V-image of the approximations of Q .

It is easy to see that expanding an instance with the evalua-
tion of all intensional predicates of a frontier-guarded program
does not blow-up treewidth:

Lemma 2. If Π ∈ FGDL and I is an instance of treewidth k ,
then FPEval(Π,I) is of treewidth k .

A locality argument shows that applying connected CQ
views preserves bounded treewidth:

Lemma 3. Let TD be a tree decomposition of a data instance

I of width k with l(TD) ≤ 2. Let V be a set of connected CQ

views, and V(I) the view image of I under V. Let r be the

greatest radius of a CQ in V. Then the treewidth of V(I) is at
most k ′ = k (kr+1−1)

k−1 .

Tree automata. We describe our variant of tree automata
that accept binary trees T with edges labelled by binary rela-
tions from the set BinPred(S,k) and nodes labelled with unary
predicates from a set UnPred(S,k). We consolidate node- and
edge-labels by considering a tree alphabetTreeAlph.TreeAlph
contains labels for internal nodes σ s1,s2L indexed by sets of
unary predicates L ⊆ UnPred(S,k) and pairs of binary pred-
icates s1, s2 ∈ BinPred(S,k). It also contains leaf labels σL
indexed by L ⊆ UnPred(S,k). We sometimes treat trees as
terms over this alphabet: a tree with root labeled σ s1,s2L with
children t1 and t2 would be written as σ s1,s2L (t1, t2).

A nondeterministic finite tree automaton (NTA) over TreeAlph
is a tuple A = (Q,Qf ,∆0,∆2), where
• Q is a finite set of states
• Qf ⊆ Q is a set of final states,
• ∆0 is a set of initial transitions of the form σL → q, and
• ∆2 is a set of transitions of the form q1,q2,σ

s1,s2
L → q.

A run of A on a tree T is a label function f : Nodes(T) → Q
satisfying the following: if tv = σ s1,s2L (tv1 , tv2) for σ

s1,s2
L ∈

TreeAlph, then (f (v1), f (v2),σ s1,s2L → f (t)) ∈ ∆2 and if
f (v) = q for a leaf v of T with tv = σL , then σL → q ∈ ∆0.
We say that T is accepted by A if there is a run of A on T that
labels the root of T with a final state.

Forward from Datalog to NTA. We now show how to create
a tree automaton accepting the view images of approximations
of a given Datalog query. We say that a class C of instances is
k-regular if the treewidth of instances in C is at most k , and
there is an automaton A such that
• for codes T of width k , A accepts T impliesD(T) ∈ C.
• for each instance F ∈ C there is a code T such that
D(T) = F and A accepts T .

In this case we say that A captures C. If the stronger con-
dition “for all codes T , A accepts T iff D(T) ∈ C” holds, we
say that A recognizes C.

The following simple “forwardmapping” proposition shows
that we can capture the approximations of Datalog queries
with an automaton:

Proposition 3. For any Datalog queryQ = (Π,Goal), there
is an ExpTime function that outputs an NTA AQ that captures

the set of canonical databases of CQ approximations of Q .

If we restrict to instances of a fixed treewidth, we can do
better, obtaining an NTA that recognizes all trees that satisfy
the Datalog program considered as a set of Horn clauses:

Proposition 4. For any Datalog program Π, the class {F |
F |= Π, tw(F) ≤ k} (here F are finite instances which con-

tain both EDBs and IDBs of Π) is k-regular and is recognized

by an NTA at most doubly-exponential sized in k and singly-

exponential in |Π |.

We also note that if we have captured a class of codes of
instances with an automaton, we can project away some of
the signature and still capture:

Proposition 5. If C is a k-regular class in Σ captured by

NTA A and Σ′ ⊆ Σ, then the class

C↾Σ′ = {F ↾Σ′ | F ∈ C}

is also k-regular, captured by an automaton of size at most |A |.
The same holds with “captured” replaced by “recognized”.

Our next “forward mapping” result shows that we can rec-
ognize the set of codes of small treewidth which fail to satisfy
clauses of a frontier-guarded program:

Proposition 6. For a FGDL query Q = (Π,Goal) the set
{(I,a) | I ̸|= Q(a), tw(I) ≤ k} is k-regular and recognized by
an NTA of size at most doubly-exponential in k .

5

Proof. Follows fromPropositions 4 and 5 since for a frontier-
guarded Q = (Π,Goal) we have, using Lemma 2,

{(I,a) | I ̸|= Q(a), tw(I) ≤ k} =
= {(F ↾Σ,a) | F |= Π, F ̸|= Goal(a), tw(F) ≤ k}

where Σ is the signature of the EBDs in Π.
□

In applying these results, we will sometimes use implicitly
that if C1 is captured by A and C2 is recognized by A′, then
C1 ∩ C2 is captured by the product of A and A′. Note that, in
contrast, classes of instances that are captured are not closed
under intersection.

Homomorphic determinacy. A query Q is said to be homo-

morphically determined by views V if:
Whenever we have two instances I1 and I2 and
a homomorphism h from V(I1) to V(I2), then
for each tuple (c1, . . . , ck) ∈ Q(I1) we also have
(h(c1), . . . ,h(ck)) ∈ Q(I2).

Note that if Q is rewritable over V in Datalog, or any other
homomorphism-invariant query language, then Q must be
homomorphically determined by V.

Homomorphic determinacy of Q over V always implies
monotonic determinacy of Q over V; monotonic determinacy
is simply the case where h is the identity. Surprisingly, for
Datalog queries and views the converse also holds:

Lemma 4. For any Datalog queryQ and Datalog viewsV, ifQ
is monotonically determined over V then it is homomorphically

determined over V.

Backwards from NTAs to Datalog. Consider arbitrary NTA
A that works on tree codes of width k . From A we construct a
Datalog program. For every transition of the formq1,q2,σ

s1,s2
L →

q with L = {TR1
n1 , . . . ,T

Rm
nm } we create a rule

Pq (x1, . . . ,xk) ←
k∧
i=1

Adom(xi) ∧ Pq1 (x11 , . . . ,x
1
k) ∧ Pq2 (x

2
1 , . . . ,x

2
k)

∧
∧

i ∈dom(s1)
xi = x1s1(i) ∧

∧
i ∈dom(s2)

xi = x2s2(i) ∧
m∧
l=1

Rl (xnl)

where j ranges over 1 and 2, x ji are fresh variables for indices
j ∈ {1, 2} and i ∈ {1, . . . ,k}, and for nl = (n1l , . . . ,n

d
l) we

have xnl = (xn1
l
, . . . ,xndl

). For initial transitions of the form

σL → q with L = {TR1
n1 , . . . ,T

Rm
nm } we have rules

Pq (x1, . . . ,xk) ←
k∧
i=1

Adom(xi) ∧
m∧
l=1

Rl (xnl).

For accepting statesqwe add the rulesGoalA ← Pq (x1, . . . ,xk)
for the goal predicate GoalA ; recall that we are assuming here
that the original query Q is Boolean, so we are looking for
a Boolean Datalog rewriting. We also add a standard set of
rules which, when evaluated on any data instance I under
fixed-point semantics, guarantee that the interpretation of the

IDB Adom(x) is the active domain of I. Denote the resulting
backward map Datalog query by QA .

We now get to the main result of this section, which states
that if we assume homomorphic determinacy and begin with
an automaton representing view images of approximations of
Q , then applying the backward mapping produces a Datalog
rewriting ofQ over V. The proof is mostly a matter of working
with the definitions. Homomorphic determinacy is used in the
direction from right to left.

Proposition 7. Let Q be homomorphically determined over

V andA be any automatonworking onk-codes such that {V(Qi) |
i ∈ ω} ⊆ D(L(A)) ⊆ {J | V(Qi) maps into J for some i ∈
ω}. That is to say, we require that

(1) for each CQ approximation Qi of Q there is a code T
such that D(T) = V(Qi) and T is accepted by A (first

inclusion);

(2) for each T accepted by A there is a CQ approximationQi
ofQ and a homomorphism from V(Qi) intoD(T) (second
inclusion).

Then for each data instance I we have I |= Q iff V(I) |=
QA(a) for some a ∈ adom(I)k .

4 REWRITABILITY

We are now ready to present our main results about rewrit-
ings of queries that are monotonically determined over views.
The following result exhibits how the forward and backward
mappings help us obtain Datalog rewritings.

Theorem 1. Suppose Q is a Datalog query and V is a collec-

tion of FGDL views. IfQ is monotonically determined by V, then
Q is rewritable over V in Datalog. The size of the rewriting is at

most double-exponential in |Q | and exponential in |V|. If Q is

MDL such a rewriting exists in MDL as well.

Proof. Consider the class C of canonical databases of CQ
approximations ofQ . By Proposition 3, C is k-regular for some
k = O(|Q |) and is captured by an NTA A′ of at most exponen-
tial size in |Q |. By Lemma 2, the treewidth of the class of view
images of C is also bounded by k . We claim that there is an
automaton A that captures V = {J | tw(J) ≤ k,V(Qi) ⊆
J for some i ∈ ω} of size at most double-exponential in |Q |
and single-exponential in |V| (“of required size” below) and
argue that it satisfies the conditions of Proposition 7.

Without loss of generality we assume that the sets of IDBs
of programs for different views are disjoint, and that their goal
predicates are identical with the view predicates. Denote by
ΠV the union of all rules in Datalog queries in V. Note that by
definition, for any instance I, the restriction of FPEval(ΠV,I)
on the view signature is exactly V(I).

By Proposition 4, there is an NTA AΠV of required size
which recognizes all codes of {F | F |= ΠV, tw(F) ≤ k}.
Therefore the class F = {F | F ↾ΣB ∈ C,F |= ΠV, tw(F) ≤
k} is captured by the intersection of A′ and AΠV , which is also
of required size. Observe that V is the projection of F on the
signature of view predicates and so V is captured by some
NTA A of required size by Proposition 5.

6

By Lemma 4, Q is homomorphically determined over V.
Since {V(Qi) | Qi is a CQ approximation of Q} is the projec-
tion of {FPEval(ΠV,I) | I ∈ C} on the signature of view
predicates, we have:

{FPEval(ΠV,I) | I ∈ C} ⊆
{F | F ↾Σ ∈ C,F |= ΠV, tw(F) ≤ k} ⊆

{F | F ↾Σ ∈ C,F |= ΠV},

The inclusions above are preserved when projecting to the
signature of view predicates. From this we can verify that
the condition of Proposition 7 holds for A. Now applying
Proposition 7, we conclude that Q is Datalog rewritable, and
that the rewriting is of required size.

If Q is MDL the construction can be refined to produce an
MDL rewriting; see the appendix for details. □

We can use the same technique in the setting where the
views are combinations ofMonadic Datalog and CQs, while the
query is Monadic Datalog, using normalization (Lemma 1) and
the bound of Lemma 3. Normalization is used to enforce the
bound on l required in Lemma 3. Although Lemma 3 requires
connectivity, we can show that disconnected views can be
replaced by connected ones.

Theorem 2. Suppose Q is a normalized Monadic Datalog

query and V is a collection of Monadic Datalog and CQ views. If

Q is monotonically determined by V, thenQ is rewritable over V
in Datalog. The size of the rewriting is at most double-exponential

in K = O(|Q | |V |).

The previous rewriting results involved restricting the views.
We now note that if we restrict the query to be a UCQ, mono-
tonic determinacy implies not only Datalog rewritability, but
even UCQ rewritability, for arbitrary Datalog views:

Proposition 8. For views V in arbitrary Datalog we have:

(1) if a CQ Q is monotonically determined by V, then there is a

CQ-rewriting of Q in terms of V;
(2) if a UCQQ is monotonically determined by V, then there is a

UCQ-rewriting of Q in terms of V.
In both cases the rewritings are polynomial size in |Q | and |V|.

Proof. This can be seen as a “degenerate” variant of the
forward-backward technique, which is well-known in the DB
and KR literature [3, 22, 23]. Let Q be the disjunction of Qi :
i ∈ S . Let Q ′ = ∨

i ∈S V(Qi) denote the query that holds on an
instance I ′ of the view schema exactly when for some i ∈ S ,
there is a homomorphism of V(Qi) into I ′. Equivalently, this
is the query obtained by applying the views to each canonical
database of a disjunct ofQ , and then interpreting the resulting
facts as a query.

We claim that if Q is monotonically determined by V, then
Q ′ is a rewriting of Q . In particular, if Q is a CQ, then Q ′ is
just a CQ. We need to show that for each instance I, I |= Q
iff V(I) |= Q ′.

(⇒) If some Qk maps into I, then V(Qk) maps into V(I).
(⇐) Suppose some V(Qk) maps into V(I). Monotonic de-

terminacy implies homomorphic determinacy by Lemma 4
In the definition of homomorphic determinacy, take I1 = Qk

and I2 = I. It is easy to check that V(I1) maps into V(I2) and
I1 |= Q . It follows that I2 |= Q , in other words, that I |= Q .

□

5 DECIDABILITY

We move from rewritability results to decision procedures for
monotonic determinacy.

Monotonic determinacy testing procedure. Our decidability
results will depend upon an characterization of monotonic
determinacy, which we review here. Given a Datalog query Q
and Datalog views V, a canonical test for Monotonic Determi-

nacy is a tuple (Qi ,D
′) that consists of:

• A CQ Qi that is a CQ-approximation of Q
• An instance D ′ of the input schema formed by taking
each fact F = V (c) in V(Qi), choosing a CQ approxima-
tionQ ′ ofQV , and replacing F with fresh elements and
facts from Q ′ that witness V (c). That is, firing the rule
∀x V (x) → Q ′(x). In this case we say thatD ′ is obtained
from V(Qi) by applying inverses of view definitions.

Such a test succeeds if D ′ satisfies Q . It is easy to see that
monotonic determinacy is characterized using tests:

Lemma 5. Q is monotonically determined over V if and only

if every test succeeds.

We show that monotonic determinacy is decidable for some
classes of views by bounding the treewidth of all instances D ′
that are the second component of some test.

Theorem 3. Suppose Q and V are Frontier-guarded Datalog

queries. Then there is an algorithm that decides ifQ is monoton-

ically determined by V in 2ExpTime.

Proof. In this proof the words “of required size” mean
“doubly-exponential inQ and single-exponential inV”,C stands
for the class of all CQ approximations of Q , ΣV is the view
signature and ΣB is the initial signature.

We must check whether Q holds on all tests. As observed
in the proof of Theorem 1, there is an integer k = O(|Q |, |V|)
bounding the treewidth of all CQ approximations of Q and
views in V. Let V = {F ↾ ΣV | F ↾ ΣB ∈ C, tw(F) ≤ k,F |=
ΠV}. As argued in the proof of Theorem 1, V is k-regular and
captured by an NTA AV of required size.

Since Q is a monotone query, instead of checking whether
all tests succeed, we will check an equivalent condition thatQ
holds on the class ETEST (Q,V) which consists of all instances
D ′ which can be obtained from an instance in V by apply-
ing inverses of view definitions while keeping the atoms of
the view signature. Note that the treewidth of all instances
in ETEST (Q,V) is also bounded by k . By Proposition 3, for
each viewV with definitionQV there exists an automaton A′V
running on codes T which for each atom V (c) at a node n
checks whether n has a descendant n′ such that n′ contains c
and the subtree of T rooted at n′ is a code of some CQ approx-
imation of QV . It should be clear that the automaton AET EST
obtained as the product of AV and A′V for all V ∈ V captures
ETEST (Q,V).

By Proposition 6, there is an NTAA′′ of required size which
recognizes those codes which do not satisfy Q . So to check

7

if Q is monotonically determined by V we construct the in-
tersection of AET EST and A′′ (which is of required size) and
check if it is empty. The latter check is linear in the size of the
automaton. □

Using MDL normalization and the treewidth bounds of
Lemma 3 we can use the same proof technique to extend this
to a mix of CQ and Frontier-guarded Datalog views, provided
that Q is in Monadic Datalog.

Theorem 4. Suppose Q is in Monadic Datalog, and V is a

collection of CQ and Frontier-guarded Datalog views. Then there

is an algorithm that decides if Q is monotonically determined

by V in 3ExpTime.

The previous cases of decidability required restricting the
views. We now observe that if we only restrict Q to be a CQ,
then we can reduce monotonic determinacy to checking equiv-
alence between a recursive and a non-recursive query, the one
created by the “simple forward backward method” of Proposi-
tion 8.

Theorem 5. If Q is a CQ and V is a collection of Datalog

views, then the problem of monotonic determinacy of Q over V
is decidable in 2ExpTime.

6 LOWER BOUNDS ON TESTING

MONOTONIC DETERMINACY

We now begin our negative results, starting with lower bounds
for testing monotonic determinacy. We first note some lower
bounds onmonotonic determinacy that can be obtained through
straightforward reductions from containment or equivalence:

Proposition 9. Monotonic determinacy is

• NP-hard for CQ queries and views [9, 21]

• Π
p
2 -hard for UCQ queries and UCQ views

• 2ExpTime-hard for CQ queries and MDL views

• 2ExpTime-hard for MDL queries and a fixed atomic view

• undecidable for Datalog queries and a fixed atomic view

(cf [14])

It is more challenging to get undecidability results in set-
tings where the equivalence problem for the views and queries
is decidable, as is the case for UCQs and Monadic Datalog [13].
The remainder of this section will be devoted to developing
techniques for this case.

A tiling problem is a tuple TP = (Tiles,HC,VC, IT , FT)
where Tiles = {T1, . . . ,Tk }, HC and VC are binary relations
(“horizontal and vertical compatibility”), and IT and FT are
subsets of tiles that must be placed at the bottom left and top
right corner respectively.

A solution to a tiling problem consists of numbers n andm,
and map τ : {1, . . . ,n} × {1, . . . ,m} → Tiles such that
(T1) (τ (i, j),τ (i + 1, j)) ∈ HC for 1 ≤ j ≤ m and 1 ≤ i < n ;
(T2) (τ (i, j),τ (i, j + 1)) ∈ VC for 1 ≤ j < m and 1 ≤ i ≤ n.
(T3) τ (1, 1) ∈ IT and (T4) τ (n,m) ∈ FT .

By a standard reduction from the halting problem for Turing
machines, it is easy to show that the problem “given a tiling
problem TP, tell if it has a solution” is undecidable. By reducing
this tiling problem to the problem of monotonic determinacy
for MDL queries and UCQ views we obtain

YEnd

XEnd

YProj

XProj

XProj

YSucc

YSucc

YSucc

XSuccXSuccXSucc

YProj

YProj

XProj

YProj

XProj XProj

XSucc

z1 z2

y

x1 x2

YProj

HA(z1, z2, x1, x2, y)

YSuccx

XProj

XProj

YProj

YProj

V A(z1, z2, x, y1, y2)

z1

z2

y1

y2

Figure 1: A grid-like test for monotonic determinacy (a)

and CQs for checking horizontal and vertical adjacency

between grid points (b)

Theorem 6. The problem of monotonic determinacy for MDL

queries and UCQ views is undecidable.

The idea of the reduction is, given TP, to constructQT P and
VT P which generate tests for monotonic determinacy that look
like (n,m)-grids with assignments of tiles. The queryQT P will
have disjuncts that return “true” when they detect violations
of conditions (T1)–(T4). ThusQT P and VT P will have a failing
test for monotonic determinacy iff the tiling problem TP has
a solution.

Figure 1, (a) shows such a test. We code the grid using
four binary relations YSucc, XSucc, XProj, YProj and unary
markers XEnd and YEnd. Vertical and horizontal axes are
represented as chains ofYSucc- andXSucc-atoms respectively.
The “grid points” are linked via XProj- and YProj-edges to
their projections on the axes. The unary predicates XEnd and
YEnd mark the ends of the axes.

Note howCQsHA(z1, z2,x1,x2,y) = YProj(y, z1)∧YProj(y, z2)∧
XProj(x1, z1)∧XProj(x2, z2)∧XSucc(x1,x2) andVA(z1, z2,x ,y1,y2) =
YProj(y1, z1) ∧ YProj(y2, z2) ∧XProj(x , z1) ∧XProj(x , z2) ∧
XSucc(y1,y2) (see Figure 1, (b)) can be used to check vertical
and horizontal adjacency between grid points. For example,
HA(z1, z2,x1,x2,y) says z1 and z2 have the same y-projection,
while the x-projection of z2 is next to the x-projection of z1.
QueryH (z1, z2) = ∃y∃x1∃x2 HA(z1, z2,x1,x2,y) holds of grid
points z01 and z

0
2 iff z02 is the right neighbour of z

0
1 .

Given a tiling problem TP , we define the query QT P as a
disjunctionQstart∨Qhelper∨Qverify where Monadic Datalog
query Qstart and UCQs Qhelper and Qverify are defined by
the following programs:

(1) Qstart ← A(x),B(x)
(2) A(x) ← XSucc(x ,x ′),A(x ′),C(x ′)
(3) A(x) ← XEnd(x)
(4) B(y) ← YSucc(y,y′),B(y′),D(y′)

8

(5) B(y) ← YEnd(y)
(6) Qhelper ← C(u),YProj(y, z),XProj(x , z)
(7) Qhelper ← D(u),YProj(y, z),XProj(x , z)

(8) Qverify ← HA(z1, z2,y,x1,x2),Ti (z1),Tj (z2)
for all pairs (Ti ,Tj) < HC

(9) Qverify ← VA(z1, z2,y1,y2,x),Ti (z1),Tj (z2)
for all pairs (Ti ,Tj) < VC

(10) Qverify ← YSucc(o,y),YSucc(y, z),XSucc(o,x),
XProj(x , z),Ti (z) for all Ti < IT

(11) Qverify ← YEnd(y),YProj(y, z),
Ti (z),XProj(x , z),XEnd(x) for all Ti < FT

The set of views VT P consists of
– the grid-generating view

S(x ,y) ← C(x),D(y)
S(x ,y) ← XProj(x , z),Ti (z),YProj(y, z) for all Ti in Tiles;

– the atomic views VYSucc, VXSucc, VYEnd, VXEnd and VTi
for EDBs YSucc,XSucc,YEnd, XEnd and each Ti in
Tiles;

– the following special views

V helper
C (u,x ,y, z) ← C(u),XProj(x , z),YProj(y, z)

V helper
D (u,x ,y, z) ← D(u),XProj(x , z),YProj(y, z)

VHA(z1, z2,y,x1,x2) ← HA(z1, z2,y,x1,x2)
VVA(z1, z2,y1,y2,x) ← VA(z1, z2,y1,y2,x)

VI (o,x ,y, z) ← XSucc(o,x),XProj(x , z),
YSucc(o,y),YProj(y, z)

VF (x ,y, z) ← XProj(x , z),XEnd(x),
YEnd(y),YProj(y, z)

A typical CQ-approximation ofQstart is shown in Figure 2
(a), and it generates the axes of the grid which are marked
with unary predicates C and D. The view-image of such CQ
is shown in Figure 2 (b). This view image for each grid-point
contains an S-atom, and so a grid-like test as in Figure 1 (a)
can be constructed out of this view image by replacing each
of these S-atoms with any of the disjuncts other than the first
disjunct in the definition of the grid-generating view.

When we run Q on the tests, Qverify comes into play. Note
the correspondence between rules 8) – 11) for Qverify and the
negations of conditions (1) – (4) in the definition of a solution
of a tiling problem. Thus, when executed on a grid-test from
Figure 1 (a), Qverify returns False iff a grid test is a solution
to TP. The query Qhelper ensures that we are not harmed in
the case where the grid-generating views are applied with the
first rule.

We can verify that a solution of our tiling problem corre-
sponds to monotonic determinacy, which will prove useful in
both our undecidability and non-rewritability results:

Proposition 10. QT P is not monotonically determined by

VT P iff TP has a solution.

7 NON-REWRITABILITY

We now turn to negative results concerning rewritability.
Pebble games. In order to prove non-definability in Datalog

and Monadic Datalog, we use the well-known tool of existen-
tial pebble games. A partial homomorphism from I to I ′ is
a mapping h from a subset D ⊆ adom(I) to adom(I ′) such

XSucc

YSucc

XEnd

YEnd

CCC

D

D

D

XEnd

(a) (b)

S

S

S

XSucc XSucc

YSucc

YSucc

YSucc

YSucc

YSucc

XSucc XSucc XSucc

YEnd

Figure 2: A typical approximation of a start atom (a)

and its view image (b). (b) is obtained from (a) by replac-

ing C and D with their cross-product S = C × D

that R(c1 . . . cn) ∈ I implies R(h(c1) . . .h(cn)) ∈ I ′, provided
each ci ∈ D. Let k ≥ 2. In the existential k-pebble game we
have two players, the Spoiler and the Duplicator, each having
a set of pebbles {p1, . . . , pk } and {q1, . . . , qk }, respectively.
The game is played on two instances I and I ′ over the same
schema. In each round, the Spoiler either places a pebble pi
on some element of I or removes pi from I, to which the
Duplicator responds by placing its corresponding pebble qi on
some element of I ′ or by removing qi from I ′, respectively.
The Duplicator wins the game if he has a winning strategy,
i.e., if he can indefinitely continue playing the game in such a
way that after each round, if a1, . . . ,ak are the elements in I
marked by the Spoiler’s pebbles {p1, . . . , pk }, and a′1, . . . ,a

′
k

are the elements in I ′ marked by the Duplicator’s pebbles
{q1, . . . , qk }, then the relation {(a1,a′1), . . . , (ak ,a

′
k)} is a par-

tial homomorphism from I to I ′.
Recall that if there is a homomorphism from I to I ′, we

write I → I ′. Similarly, if Duplicator wins the game on I and
I ′, then we write I →k I ′. Observe that I → I ′ implies
I →k I ′, for every k ≥ 2.

The following property relates the game to homomorphisms
from structures of bounded treewidth:

Fact 1. [5] Let k ≥ 2. Let I and I ′ be two instances over
the same schema. Then the following are equivalent:

(1) I →k I ′,
(2) for every instance I ′′ of treewidth ≤ k − 1, if I ′′ → I,

then I ′′ → I ′.

Existential pebble games with k pebbles preserve truth of
Boolean Datalog queries with rule bodies of size at most k .
Thus games can be used to show non-definability in Datalog:

Fact 2. [20] Let Q be a Boolean query. Suppose there exists

two instances Ik and I ′k such that Q(Ik) = True, Q(I ′k) =
False and Ik →k I ′k , for infinitely many k’s. Then Q is not

definable in Datalog.

Let I be an instance and k ≥ 2 be an integer. An instance
I ′ is a k-unravelling of I if there is a homomorphism Φ from
I ′ to I and a tree decomposition (τ , (λ(u))u ∈vertices(τ)) of I ′
of width at most k , such that:

(1) For each u ∈ vertices(τ), the mapping Φ|λ(u) is a par-
tial isomorphism from I ′ to I.

9

(2) For u ∈ vertices(τ) with children u1, . . . ,uℓ , the set
{Φ(λ(u1)), . . . ,Φ(λ(uℓ))} contains the collection of all
non-empty subsets of I of size ≤ k .

If, in addition we have |λ(u) ∩ λ(v)| ≤ 1 for all non-equal u
andv in vertices(τ), then we say that I ′ is (1,k)-unravelling
of I. Duplicator has a winning strategy between an instance
and its (1,k)-unravelling in a variation of the k-pebble games
in which at most one pebble can remain in place in each move.
Such games preserve Boolean Monadic Datalog queries with
bodies of size k , and hence each Boolean Monadic Datalog
query is preserved under (1,k)-unravellings for sufficiently
large k . So we have the following variant of Fact 2:

Fact 3. Let Q be a Boolean query. Suppose there exists two

instances Ik and I ′ such that Q(Ik) = True, Q(I ′k) = False

and I ′k is a (1,k)-unravelling of Ik , for infinitely many k’s. Then
Q is not definable in Monadic Datalog.

Note that the treewidth of any k-unravelling is at most
k − 1. Observe also that all k-unravellings of an instance I
are homomorphically equivalent. The following facts about
unravellings will be useful (see the appendix):

Fact 4. Let k ≥ 2. Let I be an instance and U be any k-
unravelling of I. Then the following hold:

(1) U → I and I →k U .

(2) For every instance I ′, we have I →k I ′ iffU → I ′.
Non-rewritability inMonadic Datalog.We recall thatMonadic

Datalog queries monotonically determined over CQ views al-
ways have FGDL rewritings (e.g. [14], or Thm 2). We show
that they may not be rewritable in MDL:

Theorem 7. There exists a Monadic Datalog query Q and a

set of CQ views V such that Q is rewritable with respect to V in

Datalog, but not in Monadic Datalog.

Proof. Consider the following Monadic Datalog query Q
W (x) ← A(x ,y),B(y,v),C(x , z),D(z,v),U (v)
W (x) ← A(x ,y),B(y,v),C(x , z),D(z,v),W (v)
Goal ← W (x),M(x)

and a set of views V
S(x ,y, z) ← M(x),A(x ,y),C(x , z)

R(y, z,y′, z′) ← B(y,v),D(z,v),A(v,y′),C(v, z′)
T (y, z,v) ← U (v),B(y,v),D(z,v).

Q checks whether the instance I contains the points s ∈
MI and t ∈ U I which are connected by a sequence of “dia-
monds” (see Figure 3, (a)).

We claim that there is no Monadic Datalog rewriting of Q
in terms of these views. To prove this, given an integer k , we
construct two instances Ik and I ′k such that Ik |= Q , I ′k ̸ |= Q ,
but Duplicator wins in the (1,k)-game for the view images
V(Ik) and V(I ′k).

Let Ik be a sequence of k + 1 diamonds from Figure 3, (a)
and Jk be the view image of Ik from Figure 3, (b). Let J ′k be
the (infinite) (1,k)-unravelling of Jk . Let I ′k be the result of
applying “inverse rules”:

S(x ,y, z) → M(x) ∧A(x ,y) ∧C(x , z)
R(y, z,y′, z′) → ∃v B(y,v) ∧ D(z,v) ∧A(v,y′) ∧C(v, z′)

T (y, z,v) → U (v) ∧ B(y,v) ∧ D(z,v).

s
A A A BBB

C C CD D D
M

U

(a)

S TR

(b)

R

Figure 3: An unravelling of Q (a) and its view image (b)

R R R. . .

k + 1

R

Figure 4: A long row of R rectangles

to J ′k and removing the view predicates. There are two types
of elements in I ′k , those that were present in J

′
k and those

introduced by the existential quantifier over v in the second
rule which are called anonymous.

We first claim that the view image of I ′k is J ′k . To see this,
consider a homomorphism h from the body of q(y, z,y′, z′) =
B(y,v),D(z,v),A(v,y′),C(v, z′) intoI ′k . Note thathmust map
v into an anonymous point, and so y, z,y′ and z′ must be
mapped to the points y0, z0,y′0, z

′
0 for some R(y0, z0,y′0, z

′
0) ∈

J ′k . If follows that any R-atom in V (I ′k) is in J
′
k . This also

holds for S-atoms thanks to the unary predicate M ; and also
for R-atoms, thanks to the unary predicateU .

Our next claim is that I ′k |= Q iff J ′k |= Q
′. Indeed, In maps

into I ′k iff Jn maps into J ′k .
Finally, we claim that J ′k ̸ |= Q ′. We show that for any n

there is no homomorphism fromJn toJ ′k . Indeed, asJ
′
k maps

homomorphically onto Jk , for any points s, t in J ′k with s ∈
π1(SJ

′
k), t ∈ π3(T J

′
k), the distance between s and t (measured

in the Gaifman graph for J ′k) cannot be less then k + 1. This
implies the claim for 1 ≤ n ≤ k . For n ≥ k+1 the claim follows
from the observation that there is no homomorphism from the
query describing the pattern in Figure 4 into J ′k . Indeed, it can
be easily shown by induction that if such a homomorphism
existed, then there would be a single bag in J ′k containing its
whole image. This is a contradiction, as all bags are of size k ,
and the query in question has 2k + 2 variables.

It follows that Ik and I ′k are as required. □

Non-rewritability in Datalog. Nowwe show that monotonic
determinacy does not imply Datalog rewritability, even for
Monadic Datalog queries and UCQ views:

10

Theorem 8. There exists a Monadic Datalog query Q and a

set of UCQ views V such that Q is monotonically determined by

V but there is no Datalog rewriting of Q over V.

The query Q and views V we will use have the form QT P ∗

and VT P ∗ for a particular tiling problemTP∗ as defined in Sec-
tion 6. We define a schema δ := {H,V , I , F } where H,V are bi-
nary and I, F are unary relations. LetTP = (Tiles,HC,VC, IT , FT)
be a tiling problem. Given a database instance I for schema
δ , we say that I can be tiled by TP if there is an assignment
of each element of I to a tile where H,V , I , F satisfy the hor-
izontal, vertical, initial and final constraints. We denote by
IT P the tiling problem TP viewed as a relational structure
for δ , with Tiles the domain. Then an instance for δ can be
tiled by TP exactly when it has a homomorphism into IT P .
For n,m ≥ 1, we denote by Iдr idn,m the database instance with
domain {(i, j) : 1 ≤ i ≤ n and 1 ≤ j ≤ m} and facts I((1, 1)),
F((n,m)), H((i, j), (i + 1, j)), for every 1 ≤ i < n and 1 ≤ j ≤ m,
and V((i, j), (i, j + 1)), for every 1 ≤ i ≤ n and 1 ≤ j < m. Then
TP has a solution in the usual sense if Iдr idn,m can be tiled with
TP .

We can adapt techniques of [4] to show that there is a tiling
problem for which no n ×m rectangular grid can be tiled, but
where for each k large enough grids can be “k-approximately
tiled”, in the sense of having k−unravellings that can be tiled.

Lemma 6. There is a tiling instanceTP∗ such that Iдr idn,m can

not be tiled with TP∗ for each n,m ≥ 1 but for each n,m ≥ 3
and each k with 2 ≤ k < min{n,m} any k-unravelling of Iдr idn,m
can be tiled with TP∗.

Proof of Theorem 8. Let TP∗ be the tiling instance from
Lemma 6 and let QT P ∗ and VT P ∗ be the MDL query and UCQ
views from Theorem 6. Recall thatQT P ∗ and VT P ∗ are defined
over the schema

σ := {XSucc,YSucc,C,D,XEnd,YEnd,XProj,YProj,T1, . . . ,Tp }

where {T1, . . . ,Tp } is the tile set of TP∗. Since Iдr idn,m cannot
be tiled with TP∗, for each n,m ≥ 1, the tiling instance TP∗
has no solution, and henceQT P ∗ is monotonically determined
by VT P ∗ .

Fix ℓ ≥ 10. We shall define instances Iℓ and I ′
ℓ
over σ

such that VT P ∗ (Iℓ) → ⌊√ℓ−1⌋ VT P ∗ (I ′ℓ), QT P ∗ (Iℓ) = True
and QT P ∗ (I ′ℓ) = False. By applying Fact 2, this implies that
QT P ∗ has no Datalog rewriting over VT P ∗ , as required. The
instance Iℓ has domain z0 ∪ X ∪ Y , where X := {x1, . . . ,xℓ}
and Y := {y1, . . . ,yℓ}, and facts D(xi),C(yi), for all 1 ≤ i ≤ ℓ,
along with

XSucc(xi ,xi+1),YSucc(yi ,yi+1) for all 1 ≤ i < ℓ

alongwithXEnd(xℓ),YEnd(yℓ),YSucc(z0,y1) andXSucc(z0,x1).
Figure 2 (a) depicts I3. Informally, Iℓ is the expansion ofQT P ∗
(more precisely of Qstart) representing the (ℓ × ℓ)-grid. In
particular, QT P ∗ (Iℓ) = True.

Intuitively, we would now like to define I ′
ℓ
so that its view

image contains a ⌊
√
ℓ − 1⌋ unravelling of the view image of

Iℓ . By Fact 4 we would have VT P ∗ (Iℓ) → ⌊√ℓ−1⌋ VT P ∗ (I
′
ℓ
) as

required. But using Lemma 6 and the definition of QT P ∗ we

hope to showQT P ∗ (I ′ℓ) = False. We will follow this intuition,
but to define the appropriate I ′

ℓ
we will need to construct

several auxiliary instances. Let Eℓ := VT P ∗ (Iℓ). Figure 2 (b)
depicts E3. Recall that view images are defined over schema τ :

{VXSucc,VYSucc,VXEnd,VYEnd,VT1 , . . . ,VTp ,V
helper
C ,V helper

D ,

VHA,VVA,VI ,VF , S}
Intuitively, Eℓ copies theXSucc,YSucc,XEnd and YEnd-facts
from Iℓ , while the S-facts correspond to the product Y × X .
Let Uℓ be a ⌊

√
ℓ − 1⌋-unravelling of Eℓ , which is witnessed

by a homomorphism Φ : Uℓ → Eℓ and a tree decomposition
(τ , (λ(u))u ∈vertices(τ)) ofUℓ .

In order to exploit Lemma 6, we need to interpret Uℓ as
an unravelling of the grid Iдr id

ℓ,ℓ
. The idea is to define a new

instanceWℓ over schema δ = {H,V , I , F } (recall that δ is the
schema of Iдr id

ℓ,ℓ
) whose domain consists of all the S-facts

ofUℓ and the horizontal and vertical successor relations are
interpreted in the natural way. Thus we can think ofWℓ as
an unravelling of the S-facts of Eℓ , which in turn correspond
to grid points of Iдr id

ℓ,ℓ
(the fact S(yj ,xi) corresponds to the

point (i, j)). Formally,Wℓ is defined as follows:
(1) The domain ofWℓ contains all pairs (w, z) such that

S(w, z) is a fact inUℓ .
(2) I((w, z)) is a fact iff Φ(w) = y1 and Φ(z) = x1. Similarly,

F((w, z)) is a fact iff Φ(w) = yℓ and Φ(z) = xℓ .
(3) H((w, z), (w ′, z′)) is a fact iff w = w ′ and VXSucc(z, z′)

is a fact in Uℓ . Similarly, V((w, z), (w ′, z′)) is a fact iff
z = z′ and VYSucc(w,w ′) is a fact inUℓ .

Claim 1. Wℓ can be tiled by TP∗.

Proof. We use the characterization for tilings of Wℓ as
homomorphisms into IT P ∗ . Then by Lemma 6 and Fact 1, it
suffices to show (a)Wℓ → I

дr id
ℓ,ℓ

and (b) tw(Wℓ) ≤ ℓ − 2.
For (a), we can take the homomorphism ψ such that for

every (w, z) inWℓ , we have ψ ((w, z)) = (i, j) iff Φ(w) = yj
and Φ(z) = xi , for 1 ≤ i, j ≤ ℓ. Let us argue that ψ is
a homomorphism. If I((w, z)) is a fact inWℓ , by definition
we have Φ(w) = y1 and Φ(z) = x1, and then I(ψ ((w, z))) =
I((1, 1)), which is a fact in Iдr id

ℓ,ℓ
. If H((w, z), (w ′, z′)) is a fact

in Wℓ , then w = w ′ and S(w, z), S(w ′, z′),VXSucc(z, z′) are
facts in Uℓ . It follows that Φ(w) = Φ(w ′) = yj , Φ(z) = xi
and Φ(z′) = xi+1, for some 1 ≤ j ≤ ℓ and 1 ≤ i < ℓ. Hence
H(ψ ((w, z)),ψ ((w ′, z′))) = H((i, j), (i + 1, j)), which is a fact in
Iдr id
ℓ,ℓ

. The argument is analogous for F and V-facts.
For condition (b), recall that (τ , λ)is a decomposition ofUℓ

with |λ(u)| ≤ ⌊
√
ℓ − 1⌋, for all u ∈ vertices(τ). We define

a decomposition (τ ′, λ′)for Wℓ with τ ′ := τ and, for each
u ∈ vertices(τ ′), we have
λ′(u) := {(w, z) : {w, z} ⊆ λ(u) and S(w, z) is a fact inUℓ

The connectedness condition is inherited from τ . Suppose
that we have a fact H((w, z), (w ′, z′)) inWℓ . Thenw = w ′, and
S(w, z), S(w ′, z′),VXSucc(z, z′) are facts inUℓ . There must exist
u ∈ vertices(τ) = vertices(τ ′) such that {w = w ′, z, z′} ⊆
λ(u) (as every clique is always contained in a bag). It follows
that {(w, z), (w ′, z′)} ⊆ λ′(u). The argument for V-facts is

11

analogous. Finally, note that |λ′(u)| ≤ |λ(u)|2 ≤ ℓ − 1, for all
u ∈ vertices(τ ′). We conclude that the treewidth ofWℓ is
≤ ℓ − 2 as required. ■

Using the tiling solution χ forWℓ given by Claim 1 and
“chasing with the inverse rules of the view definitions” we
can move to the desired instance I ′

ℓ
for the base schema

σ . The instance I ′
ℓ
is obtained from Uℓ by replacing each

fact VXSucc(w, z), VYSucc(w, z), VXEnd(w) and VYEnd(w), by
facts XSucc(w, z), YSucc(w, z), XEnd(w) and YEnd(w), re-
spectively; and by replacing each fact S(w, z) by factsXProj(z, sw,z),
YProj(w, sw,z), andTi (sw,z), where sw,z is a fresh element and
χ ((w, z)) = Ti . By construction, all facts of Uℓ are contained
in those of VT P ∗ (I ′ℓ) and henceUℓ → VT P ∗ (I ′ℓ). By Fact 4 (2),
we have VT P ∗ (Iℓ) → ⌊√ℓ−1⌋ VT P ∗ (I

′
ℓ
).

It remains to show that QT P ∗ (I ′ℓ) = False. Since there are
no C or D-facts in I ′

ℓ
, Qstart and Qverify cannot hold in I ′

ℓ
.

Towards a contradiction, suppose some rule (8)–(11) holds in
I ′
ℓ
. If rule (8) holds then there are elementsw, z, z′ in I ′

ℓ
and

facts

YProj(w, sw,z),YProj(w, sw,z′),XProj(z, sw,z),
XProj(z′, sw,z′),XSucc(z, z′)

along with Ti (sw,z), Tj (sw,z′), for tiles (Ti ,Tj) < HC for TP∗.
By construction ofI ′

ℓ
, we know S(w, z), S(w, z′) andVXSucc(z, z′)

are in Uℓ . In particular, H((w, z), (w, z′)) is a fact inWℓ . On
the other hand, by definition of I ′

ℓ
, we know χ ((w, z)) = Ti

and χ ((w, z′)) = Tj . Since χ is a valid tiling ofWℓ for TP∗,
(Ti ,Tj) ∈ HC in TP∗; a contradiction. The case of rule (9) is
symmetric. If rule (10) holds, there are u,w, z in I ′

ℓ
and facts

YSucc(u,w),XSucc(u, z),X (z, sw,z),Y (w, sw,z)

along with Ti (sw,z), for some tile Ti not an initial tile of TP∗ .
It follows that VYSucc(u,w),VXSucc(u, z) and S(w, z) are facts
inUℓ . Note that I((w, z)) is a fact inWℓ since Φ is a homomor-
phism from the unravelling Uℓ to Eℓ and then we must have
Φ(u) = z0, Φ(w) = y1 and Φ(z) = x1. Now by definition of I ′

ℓ
,

we know that χ ((w, z)) = Ti . Since χ is a valid tiling ofWℓ

for TP∗, Ti is an initial tile of TP∗, which is a contradiction.
The argument for rule (11) is analogous. We conclude that
QT P ∗ (I ′ℓ) = False. □

Complexity of separators. Thus far we have seen that there
may be no Datalog rewriting even in the case of UCQ views.
What about separators, which are like rewritings, but not
required to be in a logic? It is easy to see that for UCQ queries
and views, there is always a rewriting in co-NP and a rewriting
inNP. This is true because every view image is the view image
of a small instance; basically the same observation was made
for regular path queries in [15]. Thus if we want really strong
lower bounds, we need to deal with recursive queries, and we
need to look beyond regular path queries.

We show that when we turn to general Datalog queries and
views, there may be no separator in PTime. In fact, we can find
monotonically determined examples with no separator that
can be performed within any given computable time bound.

Theorem 9. There is no function F such that for allQ,V such

that V andQ are in Datalog andQ is monotonically determined

over V, there is a separator ofQ over V that runs in time F (V(I)).
The proof is inspired by a construction in [15] which ob-

tained Datalog views and queries where the certain answers
are difficult to compute. Roughly speaking, we modify this
by considering a query verifying that the base data represent
an input and a valid computation of a high-complexity de-
terministic Turing Machine, while the views verify that the
computation is halting and return the input. Determinism of
the machine will imply monotonic determinacy of the query
over the views. An efficient separator will contradict the high-
complexity of the machine. Details are in the appendix.

8 CONCLUSION

We have taken some basic steps in understanding monotonic
determinacy for recursive queries. We leave quite a number
of gaps in both the understanding of rewritability and decid-
ability/complexity of testing monotonic determinacy, as one
can see from Figures 1 and 2. To highlight just one, while we
have shown that monotonic determinacy of a Datalog query
over Datalog views does not imply a rewriting in any reason-
able complexity class, we do not know what can be said when
the query is restricted; e.g. to be in Frontier-guarded Datalog.
While we have shown that when a Monadic Datalog query
is monotonically determined over UCQ views, it may not be
Datalog rewritable, we do not know whether a rewriting can
be obtained by expanding the language, e.g. to stratified Dat-
alog; this is true of the particular rewritings constructed in
Theorem 8. See the appendix.

REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[2] F. Afrati and R. Chirkova. Answering Queries Using Views. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2019.

[3] F. N. Afrati. Determinacy and query rewriting for conjunctive queries and
views. Theoretical Computer Science, 412(11):1005–1021, 2011.

[4] A. Atserias, A. A. Bulatov, and V. Dalmau. On the Power of k-Consistency.
In ICALP, 2007.

[5] A. Atserias, P. Kolaitis, and M. Y. Vardi. Constraint propagation as a proof
system. In CP, 2004.

[6] V. Bárány, B. t. Cate, and L. Segoufin. Guarded negation. J. ACM, 62(3),
2015.

[7] M. Benedikt, P. Bourhis, G. Gottlob, and P. Senellart. Monadic datalog, tree
validity, and limited access containment. TOCL, 21(1):1–45, 2019.

[8] M. Benedikt, P. Bourhis, and M. Vanden Boom. Definability and interpola-
tion within decidable fixpoint logics. LMCS, 15(3), 2019.

[9] M. Benedikt, B. ten Cate, J. Leblay, and E. Tsamoura. Generating Plans from
Proofs: the Interpolation-based Approach to Query Reformulation. Morgan
Claypool, 2016.

[10] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Lossless
regular views. In PODS, 2002.

[11] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. View-based
query processing: On the relationship between rewriting, answering and
losslessness. Theoretical Computer Science, 371(3):169–182, 2007.

[12] S. Chaudhuri and M. Y. Vardi. On the equivalence of recursive and nonre-
cursive datalog programs. JCSS, 54(1):61–78, 1997.

[13] S. Cosmadakis, H. Gaifman, P. Kanellakis, and M. Vardi. Decidable opti-
mization problems for database logic programs. In STOC, 1988.

[14] O. M. Duschka, M. R. Genesereth, and A. Y. Levy. Recursive query plans
for data integration. J. Log. Prog., 43(1):49 – 73, 2000.

[15] N. Francis, L. Segoufin, and C. Sirangelo. Datalog rewritings of regular
path queries using views. LMCS, 11(4), 2015.

[16] G. Gluch, J. Marcinkowski, and P. Ostropolski-Nalewaja. Can one escape
red chains?: Regular path queries determinacy is undecidable. In LICS,
2018.

12

[17] T. Gogacz and J. Marcinkowski. The hunt for a red spider: Conjunctive
query determinacy is undecidable. In LICS, 2015.

[18] T. Gogacz and J. Marcinkowski. Red spider meets a rainworm: Conjunctive
query finite determinacy is undecidable. In PODS, 2016.

[19] E. Grädel, C. Hirsch, and M. Otto. Back and forth between guarded and
modal logics. TOCL, 3(3):418–463, 2002.

[20] P. Kolaitis and M. Y. Vardi. On the expressive power of Datalog: Tools and
a case study. JCSS, 51:110–134, 1995.

[21] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. Answering queries
using views. In PODS, 1995.

[22] C. Lutz, J. Marti, and L. Sabellek. Query expressibility and verification in
ontology-based data access. In KR, 2018.

[23] A. Nash, L. Segoufin, and V. Vianu. Views and queries: Determinacy and
rewriting. TODS, 35(3), 2010.

[24] Y. Sagiv and M. Yannakakis. Equivalences among relational expressions
with the union and difference operators. J. ACM, 27(4):633–655, 1980.

[25] O. Shmueli. Equivalence of datalog queries is undecidable. J. Log. Prog.,
15(3):231–241, 1993.

13

APPENDIX

FINITE VARIANTS

In the body of the paper we used a semantics in terms of arbitrary instances, but we claimed that all the results hold when instances
are restricted to be finite. One can relativize all of the definitions to finite instances. We say Q is monotonically determined over V
with respect to finite instances if whenever two finite instances agree on V they must agree on Q . Similarly we can talk about Q
being rewritable in logic L with respect to views V over finite instances if there is a query R ∈ L such that for every finite instance
I evaluating R on the V-image of I gives the same result as evaluating Q on I.

For the results about deciding monotonic determinacy and the positive results about rewriting monotonically determined
queries in Datalog, the equivalence of the finite and unrestricted variants follows from the following well-known fact:

Proposition 11. If Datalog queryQ is monotonically determined over Datalog views V for finite instances, thenQ is monotonically

determined over V (over all instances).

For all the languages L we consider here (Datalog, MDL, etc.) if Q is L-rewritable over V with respect to finite instances, it is

L-rewritable with respect to all instances.

Proof. We prove the first statement. Assume Q is monotonically determined over Datalog views V for finite instances, and
suppose we have two instancesI andI ′, perhaps infinite withV(I) ⊆ V(I ′) andQ(I) not contained inQ(I ′). Fix t ∈ Q(I)−Q(I ′).
There is a finite subinstance I0 of I with t ∈ Q(I0). V(I0) ⊆ V(I ′) and V(I0) is finite, so there is a finite subinstance I ′0 of I ′ with
V(I0) ⊆ V(I ′0). Now I0 and I

′
0 contradict the hypothesis on Q and V.

For the the second statement, we use the fact that equivalence of Datalog queries over finite instances implies equivalence over
all instances. □

It remains to consider our negative results about rewritings and separators. An easy case is Theorem 9, showing that no
computable function bounds the time of a separator for Datalog queries monotonically-determined over Datalog views. The query
and views in the example are monotonically determined over all instances, hence over finite instances; the argument that the
query does not have separators growing at a given time bound does makes no use of infinitary methods, and hence holds to show
that there is no such separator over finite instances.

The proofs of Theorems 7 and 8 both make use of unravellings, which can be infinite. For Theorem 7, we can argue just
by looking at the statement: if the query Q can be rewritten to a Monadic Datalog query R over the views V with respect to
finite instances, then consider the Datalog query RV formed by composing the rules for V and R, treating each view predicate
as an intensional predicate of RV. Then Q is equivalent to R′ over all finite instances. But then, using the fact that a witness to
non-containment of Datalog must be finite, we see that Q is equivalent to R′ over all instances, a contradiction of the theorem.
The same argument holds for Theorem 8.

14

REWRITABILITY RESULTS INHERITED FROM PRIORWORK

In the body of the paper we claimed that by simply applying the “inverse rules” algorithm [14] we can show that frontier-guarded
Datalog queries monotonically determined over CQ views have frontier-guarded Datalog rewritings over CQ views. We now
explain why this is the case.

We recall some basics about the inverse rules algorithm, which works by first constructing a logic program and then “de-
functionalizing the program”: mimicking the function symbols with annotated predicates. Logic programs are generalizations of
Datalog programs that allow function symbols in the head of rules. The semantics is via fixed point as with Datalog. If we have in
addition a distinguished Boolean intensional predicate, the goal predicate, we can talk about a logic program query, projecting the
output of the fixpoint onto the goal predicate.

Consider a collection of CQ views V = {(V ,QV) | V ∈ ΣV} over a base schema S. we associate a set of TGDs: ΓV = {V (x) →
∃yQV (x ,y)} consisting of inverse rules. By replacing the existential quantifiers with skolem functions, we can consider ΓV as a
logic program with input signature the view schema and the base schema as intensional relations.

Example 2. Suppose we have just one view, V (x ,y, z) = ∃u S(x ,y,u) ∧ S(u,y, z)
Then the corresponding inverse rules are:

S(x ,y, f (x ,y, z)) ← V (x ,y, z)
S(f (x ,y, z),y, z) ← V (x ,y, z)

where f is a skolem function.

Note that these rules have a single atom in each rule body. We call such rules atomic. We refer to the intensional predicates of
the rules as extensionally-based IDBs.

Let Q be a Boolean Datalog query over the base signature, with goal predicate GoalQ . We write Q ∪ ΓV, the inverse rules logic
program to indicate the query that unions the rules of Q and those of ΓV, using the goal predicate GoalQ . This is a a Boolean logic
program query over the base signature.

Example 3. Consider the frontier-guarded Datalog query Q with goal predicate Goal and rules:

Goal ← Conn(x ,x)
Conn(x ,y) ← S(x ,y, z),Conn(x , z),Conn(z,y)
Conn(x ,y) ← S(x ,y, z)

Then the inverse rules logic program Q ∪ ΓV for query Q and V the single view in Example 2 would have all the rules for Q along with

the two inverse rules for V coming from Example 2. Observe that S is now an intensional predicate along with Goal and Conn.

When Q is frontier-guarded, the inverse-rules logic program is not necessarily frontier-guarded. Indeed, the rules in ΓV contain
only intensional predicates. However, it is immediate that the head variables of each rule are contained in some atom with an
extensionally-based intensional predicate.

One can characterize the output of the inverse rules logic program on an arbitrary instance of the view schema, not just those
which are view images of an instance of the base schema. Given a query Q over the input schema and an instance J of the view
schema, the certain answers of Q with respect to V over J is the intersection of Q(I) over all I such that V(I) ⊆ J . It is easy to
see that:

Theorem 10. [14] For any such J , Q ∪ ΓV evaluated on J gives the certain answers of Q with respect to V over J .

It follows from the theorem that if Q is monotonically determined by V and I is any instance of the base schema, Q ∪ ΓV
evaluated over V(I) is the same as Q(I). Using the terminology from the body of the paper this can be restated as: Q ∪ ΓV is a
separator for Q with respect to V.

We now turn to the de-functionalization step of the inverse rules algorithm. This replaces the inverse rules logic program
with an ordinary Datalog program over a different set of intensional predicates. These predicates are obtained by annotating the
intensional predicates of the logic program. The idea is that an IDB atom R(x , f (x ,y)) containing skolem term f created during
the construction of the fixpoint of the logic program will be mimicked by an atom R1,f (1,2)(x ,y) created during the fixpoint of the
de-functionalized program. We refer to the original paper [14] for the details, but illustrate the idea with an example.

Example 4. We give part of the de-functionaliziation of the inverse rules logic program from Example 3. The inverse rules themselves

will translate to the rules:

S1,2,f (1,2,3)(x ,y, z) ← V (x ,y, z)

S f (1,2,3),2,3(x ,y, z) ← V (x ,y, z)
The following rule in the inverse rules logic program:

Conn(x ,y) ← S(x ,y, z),Conn(x , z),Conn(z,y)

15

will generate many annotated rules. One can consider the substitution x = f (x1,y1, z1),y = y1z = f (x2,y2, z2) into the rule above,
which gives the rule:

Conn(f (x1,y1, z1),y1) ← S(f (x1,y1, z1),y1, z1),Conn(f (x1,y1, z1), f (x2,y2, z2)),Conn(f (x2,y2, z2),y1)
The corresponding annotated rule would be:

Conn
f (1,2,3),2(x1,y1, z1) ←

S f (1,2,3),2,3(x1,y1, z1),Connf (1,2,3),f (4,5,6)(x1,y1, z1,x2,y2, z2),Connf (1,2,3),4(x2,y2, z2,y1)

We can see that annotated rules as produced by the standard inverse-rules algorithm are not frontier-guarded. However, we
note that:
• each IDB that is an annotation of an extensionally-based IDB appears in exactly one rule, and that rule is atomic. Hence in
particular the unique such rule has a view atom as a frontier-guard.
• the head variables of each rule co-occur in an atom that is an annotation of an extensionally-based relation.

From this it follows that we can conjoin to each rule a view atom that makes the rule frontier-guarded: namely, we can conjoin the
view atom corresponding to the annotated extensionally-based relation in the second item.

Example 5. Continuing the example above, the annotated rule:

Conn
f (1,2,3),2(x1,y1, z1) ←

S f (1,2,3),2,3(x1,y1, z1),Connf (1,2,3),f (4,5,6)(x1,y1, z1,x2,y2, z2),Connf (1,2,3),4(x2,y2, z2,y1)
is converted to the frontier-guarded rule:

Conn
f (1,2,3),2(x1,y1, z1) ←

V (x1,y1, z1), S f (1,2,3),2,3(x1,y1, z1),Connf (1,2,3),f (4,5,6)(x1,y1, z1,x2,y2, z2),Connf (1,2,3),4(x2,y2, z2,y1)

16

PROOFS FOR SECTION 3: TREEWIDTH BOUNDS AND THE FORWARD-BACKWARD

METHOD

Proof of Lemma 1

Recall the statement:

Let Q be a normalized Monadic Datalog query. Then there is a number k = O(|Q |) such that all CQ-approximations of Q have
tree decomposition TD of width k with l(TD) ≤ 2.

Proof. In fact, k is the maximal number of variables in a body of Q . Then the definition of a CQ-approximation gives rise to a
tree decomposition TD of width k . The property l(TD) ≤ 2 follows from the fact that Q is normalized. □

Proof of Lemma 2

Recall the statement:

If Π is a Datalog program such that all its rules are frontier-guarded, and I is an instance of treewidth k , then FPEval(Π,I) is
of treewidth k .

Proof. Monadic rules introduce only monadic predicates which do not increase the treewidth of the instance. Guarded rules
introduce atoms which are wholly inside the EDB guards. So treewidth does not increase when the rules are fired. □

PROOF OF LEMMA 3

Recall the statement:

Let TD be a tree decomposition of a data instance I of treewidth k with l(TD) ≤ 2. Let V be a set of connected CQ views, and
V(I) the view image of I under V. Let r be the greatest radius of a CQ in V. Then the treewidth of V(I) is at most k ′ = k (kr+1−1)

k−1 .

Proof. For a bag b of TD and an integer n define recursively its n-extension by setting ext(b, 0) = b and ext(b,n) = {u |
∃v ∈ ext(b,n − 1) such that u and v belong to a same bag of TD}. Since l(TD) ≤ 2, it is easy to see by induction that |ext(b,n)| ≤
k + k2 + · · · + kn+1 = k(kn+1−1)

k−1 . Let TD ′ be a tree of bags whose set of nodes is ext(b, r), with an edge between ext(b, r) and
ext(b ′, r) exactly when there is an edge from b to b ′ in T . We claim that TD ′ is a tree decomposition of V(I).

First we show that for any element v the set of all bags in TD ′ containing v is connected. Suppose that two nodes n1 and n2 of
TD ′ contain v . Then there are bags b1 and b2 inTD such that n1 = ext(b1, r) and n2 = ext(b2, r). Thus v belong in some bags b ′1 and
b ′2 which are at most r steps away from b1 and b2 respectively. Let π be a unique simple path connecting b1 and b2 in TD. Now we
have a number cases depending on the length of π and relative positions of b1 and b2 with respect to π (see Figure 5).

In each of the cases we use the fact that v must belong to all bags on a unique simple path between b ′1 and b
′
2 (highlighted

by bold lines) to conclude that v must also belong to all r -extensions of bags on π . For example, in Case 4, v belongs to all bags
between b ′1 and b

′
2, and so to their extensions. But also v belongs to all r -extensions of bags between b1 and b ′1, because all such

bags are within distance r from b ′1 and v belongs to b ′1. Similarly v belongs to all r -extensions of all bags between b ′2 and b2. In
Case 14 since v belongs to b ′2, by the same argument it follows that it belongs to all r -extension of all bags between b1 and b2.
Other cases are similar.

Secondly we show that for each atom S(c) from V(I) there is a node in TD ′ containing c . Suppose that S(c) was generated
by the view definition S(x) ← ϕ(x ,y) for a connected CQ ϕ(x ,y) with free variables x and quantified variables y under some
assignment η defined on both x and y. As ϕ is of radius at most r , it should have a variable z ∈ x ∪y such that all other variables
are at distance at most r from z in the Gaifman graph of ϕ(x ,y). Therefore the range of η lies within distance r from η(z). Let b be
any bag of TD containing η(z). If follows that c is contained in the r -extension of b.

Finally, it is easy to see that the sizes of bags of TD ′ are as required. □

Proof of Proposition 3

Recall the statement:

For any Datalog query Q = (Π,Goal), there is an ExpTime function that outputs an NTA AQ that captures the set of canonical
databases of CQ approximations of Q .

Proof. Without any loss of generality we assume that all rules of Π have either 0 or 2 IDB atoms.
The states of AQ will be rule heads of Π paired with an injective mappingm from the head variables to {1, . . . ,k}. For example,

if our state in node v is (P(x ,y), {x 7→ 1,y 7→ 3}) this means that we are looking for witnesses to the fact P([v, 1], [v, 3]).
In a state (U (x),m) we non-deterministically choose a rule body with the headU (x) and a consistent extensionm′ ofm to all of

the variables in the body. Consistent here means that for every EDB atom R(y) in the body of the rule, the unary predicate TR
m(x)

is in the label of the current node, and conversely each atom in the label of the current node corresponds to some EDB atom.
17

b1 b2

b1 b2

b1 b2

b1 b2

b′1 b′2

b′1

b′1

b′2

b′2

b′1

b′2

b1

b1

b1

b1

b2

b2

b2

b2

b′1

b′1

b′2

b′2

b′2

b′2

b′1

b′1

b1 b2

b1 b2

b1 b2

b1 b2

b′1

b′2

b′1

b′2

b′1

b′2

b′1b′2

1

2

3

4

5

6

7

8

9

10

11

12

b1 b2

b′2

14

b1 b2

b′1

13

b′2 b′1

Figure 5

Now let’s turn to intensional predicates. If there are no intensional atoms in the body, we accept. If F1(y1) and F2(y2) are the
intensional atoms in the rule body in some canonical order, then we have a transition which for i = 1, 2 goes to the i-th child of
the current node and switches the state into (Fi (yi),mi), wheremi is the restriction ofm to yi . We also check that the edge label
leading to the i-th child is the restriction of the identity map on {1, . . . ,k} to the image ofmi .

To see that the conditions for capturing hold, note that all CQ approximations ofQ have a standard tree decomposition of width
k , where there is one-to-one correspondence between bags and rule bodies. Therefore we have a standard k-code, where variables
in each rule body are ordered in such a way that common variables in two adjacent bags occur in exactly same positions. This
code is accepted by AQ , which gives the second requirement for capturing. And all codes that are accepted by AQ are one of these
standard codes, which gives the first required property of capturing. □

Proof of Proposition 4

Recall the statement
18

For any Datalog program Π, the class {F | F |= Π, tw(F) ≤ k} (here F are finite instances which contain both EDBs and
IDBs of Π) is k-regular and is recognized by an NTA of at most double-exponential size in k and single-exponential size in |Π |.

Proof. First we construct a two-way alternating tree automaton which, for each of the rules of Π of the form R(x) ← ϕ(x ,y),
guesses non-deterministically moving in both directions the valuations a and b of x and y, respectively, and then checks whether
¬ϕ(a,b) ∨ R(a) holds. Note that its size is linear in Π and single-exponential in k . Then using Theorem A.2 of [13] we convert it
into an NTA with an exponential blow-up. □

Proof of Proposition 5

Recall the statement:

If C is a k-regular class in Σ captured by NTA A and Σ′ ⊆ Σ, then the class

C↾Σ′ = {F ↾Σ′ | F ∈ C}
is also k-regular and is captured by an automaton of size at most |A |. The same holds with “capture” replaced by “recognize”.

Proof. We prove only the first part, with the second part being similar.
Consider an automaton A for C. It has transitions of the form q1,q2,σ

s1,s2
L → q. Let A′ have the same states and accepting

states as A, the alphabet σ s1,s2L′ with L′ ⊆ Σ′, and the transition table {q1,q2,σ s1,s2L↾Σ′ → q | q1,q2,σ s1,s2L → q is a transition of A}.
We claim that A′ is of required size and captures C↾Σ′. Indeed, take F ′ ∈ C↾Σ′. Then there is F ∈ C such that F ′ = F ↾Σ′. As A
captures C, there is a code T of F such that A accepts T . From the definition of A′ it follows that A′ accepts T ↾Σ′ which is a
code of F ′. And the other way round, if A′ accepts T ′ in Σ′ via a run f ′, then there is a run f of A which accepts some extension
T of T ′. As A captures C, it follows that there is a database instance F ∈ C such that T is a code of F , and so T ′ is a code of
F ↾Σ′. Thus D(T ′) ∈ C↾Σ′. □

Proof of Lemma 4

Recall the statement:

For any Datalog query Q and Datalog views V, if Q is monotonically determined over V then it is homomorphically determined
over V.

Proof. Assume monotonic determinacy and consider instances I1,I2 with I1 |= Q , and a homomorphism h from V(I1) into
V(I2).

It follows that there is a CQ Qi that is an approximation of Q , and a homomorphism α from Qi into I1. Note that α is also a
homomorphism from V(Qi) into V(I1). Thus α followed by h, denoted h(α), is a homomorphism from V(Qi) into V(I2).

We create an instance I ′ such that V(Qi) ⊆ V(I ′), along with a homomorphism h′ taking I ′ into I2. We will construct I ′ as
the union of a set of facts SF obtained by chasing each fact F in V(Qi) with the inverse of the view definitions (see also the proof of
Lemma 5). More precisely, consider a fact V (a1 . . . an) in V(Qi). Then V (h(α)(a1) . . .h(α)(an)) is in V(I ′), and thus there is some
CQ approximation ρ of QV such that ρ(h(α)(a1) . . .h(α)(an)) holds in I ′. We let SF be obtained from ρ(h(α)(a1) . . .h(α)(an)) by
replacing each h(α)(ai) with ai and each existentially quantified variable with a fresh null. One can easily check that I ′ is as
required. Thus by monotonic determinacy we have I ′ |= Q . But since there is a homomorphism of I ′ into I2, we conclude that
I2 |= Q as required. □

Jointly-annotated terms

We recall the definition of the backward mapping query QA = (ΠA ,GoalA):
For every transition of the form q1,q2,σ

s1,s2
L → q with L = {TR1

n1 , . . . ,T
Rm
nm } we create a rule

Pq (x1, . . . ,xk) ←
k∧
i=1

Adom(xi) ∧ Pq1 (x11 , . . . ,x
1
k) ∧ Pq2 (x

2
1 , . . . ,x

2
k) ∧

∧
i ∈dom(s1)

xi = x1s1(i) ∧
∧

i ∈dom(s2)
xi = x2s2(i) ∧

m∧
l=1

Rl (xnl) (1)

where j ranges over 1 and 2, x ji are fresh variables for indices j ∈ {1, 2} and i ∈ {1, . . . ,k}, and for nl = (n1l , . . . ,n
d
l) we have

xnl = (xn1
l
, . . . ,xndl

). For initial transitions of the form σL → q with L = {TR1
n1 , . . . ,T

Rm
nm } we have rules

Pq (x1, . . . ,xk) ←
k∧
i=1

Adom(xi) ∧
m∧
l=1

Rl (xnl). (2)

For accepting states q we add the rules GoalA(x1, . . . ,xk) ← Pq (x1, . . . ,xk) for the goal predicate GoalA . We also add a
standard set of rules which, when evaluated on any data instance I under fixed-point semantics, guarantee that the interpretation
of the IDB Adom(x) is the active domain of I.

19

Proof terms and annotated proof terms. To show correctness of the backward mapping construction (Proposition 7) we will
need the notion of a “proof certificate” for backward mappings of an automaton.

When a Datalog query Q = (Π,Goal) holds for a tuple d in an instance I, there is a derivation that witnesses this, which
has a tree-like structure. A proof term for I |= Q(d) is a labelled finite tree in which every node v is labelled with a ground fact
FactOf(v) over the predicates mentioned in Π, and every non-leaf node v is additionally labelled with a rule RuleOf(v) of Π
such that:
• If v is the root, FactOf(v) = Goal(d)
• If v is a leaf then FactOf(v) is a fact over the extensional predicates of Q , and this fact holds in I
• Ifv is not a leaf, let Iv be the instance consisting of FactOf(v) and all facts FactOf(c) for c a child ofv . Then there is a map
hv from the variables in the body of RuleOf(v) into the active domain of Iv that maps the facts in the body of RuleOf(v)
onto the facts of Iv , and maps the head of RuleOf(v) to FactOf(v).

It is well-known [1] and easy to see that proof terms represent a semantics for Datalog: I |= Q(d) exactly when there is a proof
term that witnesses this.

We now give a notion of a witness for acceptance of an automaton running over codes. A jointly-annotated term for automaton
A, instance I, and k-tuple a is a pair (T ,b) where

– T is a tree code accepted by A;
– the map b assigns each vertex of T to a k-tuple of elements from I, with the root of T mapped to a;

which satisfy the following condition: if tv = σ s1,s2L (tv1 , tv2) with L = {TR1
n1 , . . . ,T

Rm
nm }, b(v) = (b1, . . . ,bk), b(vj) = (b

j
1, . . . ,b

j
k)

for j = 1, 2 then

I |=
2∧
j=1

∧
i ∈dom(sj)

bi = b
j
sj (i)
∧

m∧
l=1

Rl (bnl). (3)

We also require that

if t = σL is a leaf symbol in T with L = {R1n1 , . . . ,R
m
nm } then the atoms Rl (bnl) are in I for l = 1, . . . ,m. (4)

In other words, b can be considered as a homomorphism from D(T) into I.
We now verify the key property of a jointly-annotated term:

Proposition 12. For each data instance I, I,ΠA |= GoalA(a) if and only if there is a jointly-annotated term for A,I, and a.

Proof. We prove the two directions of the if and only if separately.
(⇒) Take a proof term t that witnesses I,ΠA |= GoalA(a). We transform t into a jointly-annotated term (T ,b) on the set of

all vertices of t with FactOf(v) being an IDB. Note that this gives us a binary tree since all rule bodies in ΠA have either 0 or
2 IDBs by assumption. For each vertex v we take some ordering (uv1 , . . .u

v
k) of elements in Iv without duplicates; we use fresh

dummy elements to fill up the tuple if Iv has less then k elements. Now we define unary labels of T by setting TR
n1, ...,nm (v) ∈ T

iff R(uvn1 , . . . ,u
v
nm) ∈ Iv . We define edge labels s between a parent v and its childw by setting s(n) =m if uvn is the same element

as uwm ; it should be clear that s is a partial bijection. This constitutes the definition of T . It remains to define b by setting b(v) to be
(uv1 , . . .u

v
k). We can create an accepting run f by setting f (v) to be the state of the automaton q such that FactOf(v) is labelled

by and IDB Pq .
(⇐) It is easy to show by induction that if v is a vertex of a jointly annotated-term (T ,b) for A, I, and a and f is an accepting

run for A on T with f (v) = q, then I,ΠA |= Pq (b(v)). It follows that I,ΠA |= GoalA(a).
Indeed, if v is a leaf, then then I,ΠA |= Pq (b(v)) by the rule (2) because its body holds due to condition (4) and the fact that for

all u in b(v) we have I,ΠA |= Adom(u).
If v has children v1 and v2, then there must be q1 and q2 such that f (v1) = q1, f (v2) = q2, production (q1,q2,σ s1,s2L → q) is a

transition of A, and the vertex label of v is L while edge labels between v , v1 and v2 are s1 and s2.
We claim that I,ΠA |= Pq (b(v)) can be inferred by the rule (1) for this production under assignment {(x1, . . . ,xk) :=

b(v), (x11 , . . . ,x
1
k) := b(v1), (x

2
1 , . . . ,x

2
k) := b(v2)}. Indeed, we have I,ΠA |= Adom(u) for all elements in the body of the rule, we

have I,ΠA |= Pq1 (b(v1)) and I,ΠA |= Pq2 (b(v2)) by the induction hypothesis, and the rest of the rule by (3).
□

Proof of Proposition 7

Recall the statement:

Let Q be homomorphically determined over V and A be any automaton working on k-codes such that {V(Qi) | i ∈ ω} ⊆
D(L(A)) ⊆ {D | V(Qi) maps into D for some i ∈ ω}. More precisely, we require that

(1) for each CQ approximation Qi of Q there is a code T such that D(T) = V(Qi) and T is accepted by A;
(2) for each tree code T accepted by A there is a CQ approximation Qi of Q and a homomorphism from V(Qi) into D(T).

20

Then for each data instance I we have I |= Q iff V(I) |= QA(a) for some a ∈ adom(I)k .

Proof. Suppose Π is a Datalog program containing intensional predicateA, I is an instance for the extensional (input) signature
of Π, and a is a tuple of elements from I. Below we write

I,Π |= A(a)
to indicate that the least fixpoint of Π on I contains A(a).
(⇒) Suppose that I |= Q . Then there is an approximation Qi of Q and a homomorphism h from Qi into I, which is also a

homomorphism from V(Qi) to V(I). As Qi is an approximation of Q , by the first inclusion for L(A), A must accept some code
T of V(Qi). Choose an arbitrary element e0 from adom(V(I)). For a vertex v of T we define b(v) to be the tuple (e1, . . . , ek) of
elements of V(I) where each ei is defined as follows:

ei =

{
h([v, i]), if [v, i] ∈ adom(I)
e0, otherwise.

We claim that (T ,b) is a jointly-annotated term for A, V(I) and the b-image of the root of T . Indeed, if equation (3) contains an
equality [v, i] = [u, j], it follows that [v, i] and [u, j] are indeed equivalent. The R-atoms of equations (3) and (4) hold because h is a
homomorphism, and also because they are never applied to dummies. It follows (by Proposition 12) that V(I) |= QA(a) for some a.
(⇐) Suppose that V(I),ΠA |= GoalA(a). Let (T ,b) be a jointly-annotated term for the inference of GoalA(a) for V(I),ΠA

and a (which exists by Proposition 12), and f be an accepting run of A on T . Thus, by the second inclusion for L(A), there must
be a homomorphism h from V(Qi) for some i into D(T). Note that by Proposition 12, we know that b can be considered as a
homomorphism from D(T) into V(I). By composing h with b, we obtain a homomorphism д from V(Qi) into V(I). Now we have
a data instance I ′ = Qi such that I ′ |= Q and a homomorphism д from V(I ′) into V(I). Therefore, as Q is homomorphically
determined by V, we have I |= Q . □

21

PROOFS FOR SECTION 4: REWRITABILITY RESULTS

Proof of the last part of Theorem 1

Recall that Theorem 1 stated that if Q is in MDL, V are a collection of FGDL views, and Q monotonically determined by V then Q
has a rewriting in MDL. We sketch how to modify the prior argument for this claim.

A tree decomposition is frontier-one if the intersection of any two neighboring bags has at most one element. It is clear
that approximations of MDL queries have such decompositions, provide that we now allow decompositions that have arbitrary
outdegree, not necessarily binary. We can further normalize so that in each bag other than the root, the element that is shared
with its parent (if such exists) has the first local name in the code.

When we apply frontier-guarded views, we annotate the bags of the tree decomposition with view predicates, but we do not
change the intersection of neighboring bags. And when we project such a decomposition onto the view predicates, we do not
change this intersection either. Thus in the proof of Theorem 1, we can consider an automaton A that enforces the frontier-one
restriction.

We can modify the backward mapping for frontier-one decompositions so that it produces an MDL query; our modification
will have only unary intensional predicates Pq for each state q of the automaton, corresponding only to the element coded in the
frontier.

More formally, for every transition of the form q1 . . .qrσ
s1, ...sr
L → q with L = {TR1

n1 , . . . ,T
Rm
nm }, we know that for the ith child

node, the label L contains at most one equality of a local name ni with the first local name of the child.
We create a rule of the form:

Pq (x1) ←
k∧
i=1

Adom(xi) ∧
r∧
i=1

Pqi (xni) ∧
m∧
l=1

Rl (xnl)

Similar modifications are applied to the leaf rules.

Proof of Theorem 2

Recall the statement:

SupposeQ is a normalized Monadic Datalog query and V is a collection of Monadic Datalog and CQ views. IfQ is monotonically
determined by V, then Q is rewritable over V in Datalog. The size of the rewriting is at most double-exponential in K = O(|Q | |V |)
(“of required size” below).

Proof. We first argue that without any loss of generality we can assume that all CQ views are connected. IfV is a CQ view which
is not connected, then it can be replaced by a few connected CQs. For example, the disconnected viewV (x ,y) = Q1(x) ∧Q2(y) can
be replaced by the free-variable-connected views V1(x) = Q1(x) ∧ ∃yQ2(y) and V2(y) = (∃x Q1(x)) ∧Q2(y). Indeed, given V , we
can restoreV1 andV2 as its projections on x andy respectively. And the other way round, givenV1 andV2, we can restoreV as their
product sinceV1(x) ∧V2(y) = Q1(x) ∧ (∃yQ2(y)) ∧ (∃x Q1(x)) ∧Q2(y) is equivalent in first-order logic toQ1(x) ∧Q2(y) = V (x ,y).

We need to show that there is an automaton A such that

{V(Qi) | i ∈ ω} ⊆ D(L(A)) ⊆ {J | V(Qi) maps into J for some i ∈ ω}
Consider the class C of canonical databases of CQ approximations of Q . By Lemma 3 (applied with the maximal radius r of the

CQ views in V where r = O(|V |)), the treewidth of the class V(C) = {V(F) | F ∈ C} of view images of C is also bounded by some
K = O(|Q | |V |). We can strengthen Proposition 3 to show that for any treewidth K greater than or equal to the maximal number of
variables in the rules of Q , the class C of approximations is K-regular and there is an NTA Abase of at most exponential size in K
that captures C.

Without any loss of generality we assume that the sets of IDBs of programs for different views are disjoint, and that their goal
predicates are identical with the view predicates. Denote by ΠV the union of all rules in Datalog queries in V, including the rules
for the CQ views. By Proposition 4, there is an NTA AΠV of required size which recognizes all codes of {F | F |= ΠV, tw(F) ≤ K}.

We claim that the automaton A′ = Abase ∩ AΠV satisfies

{FPEval(ΠV,Qi) | i ∈ ω} ⊆ D(L(A′)) ⊆ {F | F ↾Σ ∈ C,F |= ΠV}
Now the automation A that is the projection of A′ on the signature of view predicates (which exists by Proposition 5) captures

V = {F ↾ΣV | F ↾ΣB ∈ C, tw(F) ≤ K ,F |= ΠV} and so satisfies two conditions of Proposition 7. Now applying Proposition 7, we
conclude that Q is Datalog rewritable over views, and that the rewriting is of required size.

Another observation will be useful later (see proof of Theorem 4) is that A captures V = {F ↾ ΣV | F ↾ ΣB ∈ C, tw(F) ≤
K ,F |= ΠV}.

Now applying Proposition 7, we conclude that Q is Datalog rewritable over views, and that the rewriting is of required size. □

22

PROOFS FOR SECTION 5: DECIDABILITY RESULTS ON MONOTONIC DETERMINACY

Proof of Lemma 5

Recall the statement:

Q is monotonically determined over V if and only if every test succeeds.

We first need a bit of infrastructure. When a Datalog query Q = (Π,Goal) holds for a tuple d in an instance I, there is a
derivation that witnesses this, which has a tree-like structure. A proof term for I |= Q(d) is a labelled finite tree in which every
node v is labelled with a ground fact FactOf(v) over the predicates mentioned in Π, and every non-leaf node v is additionally
labelled with a rule RuleOf(v) of Π such that:
• If v is the root, FactOf(v) = Goal(d)
• If v is a leaf then FactOf(v) is a fact over the extensional predicates of Q , and this fact holds in I
• Ifv is not a leaf, let Iv be the instance consisting of FactOf(v) and all facts FactOf(c) for c a child ofv . Then there is a map
hv from the variables in the body of RuleOf(v) into the active domain of Iv that maps the facts in the body of RuleOf(v)
onto the facts of Iv , and maps the head of RuleOf(v) to FactOf(v).

It is well-known [1] and easy to see that proof terms represent a semantics for Datalog: I |= Q(d) exactly when there is a proof
term that witnesses this.

We are now ready for the proof of the lemma.

Proof. We assume Q is Boolean for simplicity. In one direction, assume Q is monotonically determined over V, and consider
a test (Qi ,D

′). By virtue of (Qi ,D
′) being a test, we have V(D) ⊆ V(D ′). Monotonic determinacy and Qi |= Q thus imply that

D ′ |= Q .
In the other direction, assume every test succeeds, and consider instance I1 and I2 with I1 satisfying Q and V(I1) ⊆ V(I2).

As I1 |= Q , there is a homomorphism α from some Qi into I1. Since the views are preserved under homomorphism, α is also a
homomorphism from V(Qi) into V(I1).

We will now create a D ′ such that (Qi ,D
′) forms a test, along with an extension of α that is a homomorphism taking D ′

into I2. D ′ will be the union of a set of facts SF (defined below) for every fact F from V(Qi). For a fact F = V (c) from V(Qi) let
F ′ = α(F). Note that F ′ is in V(I1). By assumption, F ′ is also in V(I2). Thus there is a proof term τF ′ witnessing that I2 |= F ′.
Moving top-down on τF ′ , we form a proof term for F . The root of the term τF ′ is labelled with the fact GoalV (α(c1) . . . α(cn)) for
the goal predicate GoalV of the Datalog programQV . Since α is not injective, ci may not be unique, but we choose one such tuple
c1 . . . cn and fix it for the transformation of τF ′ . This choice will impact the proof term that we create, but will not impact the
homomorphism extending α . We first transform τF ′ by replacing any element α(ci) occurring in τF ′ by ci . We then continue our
transformation by proceeding top-down on the partially-transformed term. At the root of the term we do nothing more. In the
inductive step, we consider an intensional factU (d) in τF witnessed by a set of facts J that are a substitution instance of some rule
body B. In J , we uniformly replace any witnessw to an existentially quantified variable x of B by a fresh element dw , and extend
the homomorphism to take dw tow . We set SF to be the union of all EDB facts occurring in the proof term we have constructed
for F .

It is easy to see that the union of the facts SF forms an appropriate D ′ giving a test. By assumption this test succeeds, so D ′ |= Q .
But since D ′ is homomorphically embedded into I2, this means that I2 |= Q as required. □

Proof of Theorem 5

Recall the statement:

If Q is a CQ and V is a collection of Datalog views, then the problem of monotonic determinacy of Q over V is decidable in
2ExpTime.

Proof. Let Q ′ = V(Q) and let Q ′ inherit all answer variables x from Q . Let Q ′′ = (Π,Goal) where Π is obtained by taking all
rules defining V and adding the rule Goal(x) ← Q ′

It is easy to see that the following statements are equivalent:

(1) Q is monotonically determined by V;
(2) Q ′ is a CQ rewriting of Q in terms of V;
(3) for all I, I |= Q iff V(I) |= Q ′;
(4) Q ′′ is equivalent to Q ;
(5) Q ′′ is contained in Q .

Indeed, (1) implies (2) by the proof of Proposition 8, and all other implications between adjacent statements are trivial. It remains
to note that the containment (5) can be decided in 2ExpTime by Theorem 5.12 of [12]. □

23

Proof of Theorem 4

Recall the statement:

Suppose Q is in Monadic Datalog, and V is a collection of CQ and Frontier-guarded Datalog views. Then there is an algorithm
that decides if Q is monotonically determined by V in 3ExpTime.

Proof. In this proof the words “of required size” mean “doubly-exponential in K” where K is some integer defined below, C
stands for the class of all CQ approximations of Q , ΣV is the view signature and ΣB is the initial signature.

As in the proof of Theorem 2, we we can assume that all CQ views are connected.
We have to check whether Q holds on all tests. As observed in the proof of Theorem 2, there is an integer K = O(|Q | |V |) such

that both the treewidth of the view images of CQ approximations ofQ and the treewidth of the CQ approximations of the views in
V are at most K . Let V = {F ↾ΣV | F ↾ΣB ∈ C, tw(F) ≤ K ,F |= ΠV}. As argued in the proof of Theorem 2, V is K-regular and
captured by an NTA AV of required size.

We follow the template of Theorem 2 We will check the equivalent condition that Q holds on each element of the class
ETEST (Q,V), which consists of all instances D ′ which can be obtained from an instance in V by applying inverses of view
definitions while keeping the atoms of the view signature. Note that the treewidth of all database instances in ETEST (Q,V) is
also bounded by K . By Proposition 3, for each view (V ,QV) there exists an automaton A′V which for each atom V (c) at a node
n in T checks whether n has a descendant n′ such that n′ contains c and the subcode of T rooted at n′ is a code of some CQ
approximation of QV . The automaton AET EST defined as the product of AV and A′V for all views V in V (thus accepting the
intersection of these languages) captures ETEST (Q,V).

By Proposition 6, there is an NTA A′′ of required size which recognizes those codes which do not satisfy Q . So to check if Q
is monotonically determined by V we construct the intersection of AET EST and A′′ (which is of required size) and check if it is
empty. The latter check is linear in the size of the automaton. It should be clear that the time complexity of this procedure is
doubly exponential in K , and so triply exponential in the size of the input. □

24

PROOFS FOR SECTION 6: LOWER BOUNDS ON MONOTONIC DETERMINACY

Proof of Proposition 9

Recall the statement:
Monotonic determinacy is
• NP-hard for CQ queries and views
• Π

p
2 -hard for UCQ queries and UCQ views

• 2ExpTime-hard for CQ queries and MDL views
• 2ExpTime-hard for MDL queries and a fixed atomic view
• undecidable for Datalog queries and a fixed atomic view

The first three bullet items will follow from a reduction from Datalog equivalence:

Lemma 7. Let Q and QV be arbitrary Datalog queries. Then Q is monotonically determined by V = {(V ,QV)} iff Q and QV are

equivalent.

Proof. Let Q =
∨α
i=0Q

1
i and QV =

∨β
j=0Q

2
j with non-empty Q1

i and Q
2
j .

First we show that each Q1
i satisfies QV . Indeed, if QV is not true on some Qi , then there is a test built on Qi with no atoms.

Clearly this test does not satisfy Q .
Then we show that each Q2

j satisfies Q . Fix some CQ approximation Q1
0 of Q . We claim that (Q1

0 ,Q
2
j) is a test for Q and V for

any j ∈ α . Indeed, QV evaluates to true on Q1
0 , and then V = 1 during the inverse step can be replaced by any Q2

j . Thus Q
2
j must

satisfy Q .
□

The first bullet item now follows from the NP-hardness of equivalence of CQs; the second item follows from the Πp
2 hardness of

equivalence for UCQs [24], while the third follows from the 2ExpTime-hardness of a CQ and an MDL query [7].
The results for fixed views follow from a reduction found in [14]:

Lemma 8. Let Q1 and Q2 be arbitrary Datalog queries. Consider the query Q = Q1 ∧ e ∨Q2 where e is a fresh extensional predicate

of arity 0 and a set of views V which has views P ′ for all extensional relations P occurring in Q except e . Then Q1 is contained in Q2 iff
Q is monotonically determined by V.

Proof. (⇒) Note that the tests for Q and V consist of all CQ approximations of Q1 and Q2. It follows that if Q1 is contained in
Q2, then all tests pass.
(⇐)We assume monotonic determinacy and show that Q1 is contained in Q2. Pick some CQ approximation Q1

i of Q1. Then it’s
easy to see that (Q1

i ∧ e,Q
1
i) is a test for Q and V. By monotonic determinacy it follows that Q1

i |= Q , and so either Q1
i |= Q1 ∧ e or

Q1
i |= Q2. The first option is impossible because Q1

i contains no e-atoms. Therefore, Q1
i |= Q2. Thus Q1 is contained in Q2. □

The second to the last item now follows from [13] and the last item from [25], noting that the lower bounds only require a
single extensional predicate.

Proof of Proposition 10

Recall the statement:

QT P is not monotonically determined by VT P iff TP has a solution.

We recall the definition of the query and views, giving names to the special views.
(1) Qstart ← A(x),B(x)
(2) A(x) ← XSucc(x ,x ′),A(x ′),C(x ′)
(3) A(x) ← XEnd(x)
(4) B(y) ← YSucc(y,y′),B(y′),D(y′)
(5) B(y) ← YEnd(y)
(6) Qhelper ← C(u),YProj(y, z),XProj(x , z)
(7) Qhelper ← D(u),YProj(y, z),XProj(x , z)

(8) Qverify ← HA(z1, z2,y,x1,x2),Ti (z1),Tj (z2)
for all pairs (Ti ,Tj) < HC

(9) Qverify ← VA(z1, z2,y1,y2,x),Ti (z1),Tj (z2)
for all pairs (Ti ,Tj) < VC

(10) Qverify ← YSucc(o,y),YSucc(y, z),XSucc(o,x),XProj(x , z),Ti (z)
for all Ti < IT

25

(11) Qverify ← YEnd(y),YProj(y, z),Ti (z),XProj(x , z),XEnd(x)
for all Ti < FT

The set of views VT P consists of
– the grid-generating view

S(x ,y) ← C(x),D(y)
S(x ,y) ← XProj(x , z),Ti (z),YProj(y, z) for all Ti in Tiles;

– the atomic views VYSucc, VXSucc, VYEnd, VXEnd and VTi for EDBs YSucc,XSucc,YEnd, XEnd and each Ti in Tiles;
– the following special views

(SP1) V helper
C (u,x ,y, z) ← C(u),XProj(x , z),YProj(y, z)

(SP2) V helper
D (u,x ,y, z) ← D(u),XProj(x , z),YProj(y, z)

(SP3) VHA(z1, z2,y,x1,x2) ← HA(z1, z2,y,x1,x2)
(SP4) VVA(z1, z2,y1,y2,x) ← VA(z1, z2,y1,y2,x)
(SP5) VI (o,x ,y, z) ← XSucc(o,x),XProj(x , z),YSucc(o,y),YProj(y, z)
(SP6) VF (x ,y, z) ← XProj(x , z),XEnd(x),YEnd(y),YProj(y, z).

We are now ready to begin the proof of Proposition 10.

Proof. Suppose that T = (Qi ,I ′) is a test for QT P and VT P . Following Gogacz and Marcinkowski [17], we call Qi the Green

instance and I ′ the Red instance of the test. We say that T = (Qi ,I ′) is a main test if its Green instance is generated from the
Qstart-atom. Otherwise T is said to be a side test. Note that due to the choice of special and atomic views, all side tests always
pass. Also note that all special views are empty when applied to an approximation of a Qstart-atom (see Figure 2, (a)).
(⇒) Suppose that QT P is not monotonically determined by VT P . Then there exists a test T = (Qi ,I ′) for QT P and VT P that

fails QT P . Note that T can’t be a side test. Therefore T must be a main test. Note that there are three kinds of main tests (see
Figure 2; all tests are obtained from (b) by non-deterministic replacement of the S-atoms by their definitions):

1) a test in which the second rule of the S view never fires. In this case the Red instance contains the same C and D atoms as in
the Green instance, and hence Qstart must hold.

2) a test in which both rules of the S view fire at least once. In this case, the Red instance will contain both C facts, D-facts, and
also some XProj-fact that joins with some YProj-fact, and thus using SP1-SP2 and Qhelper we see that Q will hold on the Red
instance

3) a test in the second rule of the S view which fires at least once, but the first rule never fires. In this case the Red instance is
isomorphic to a grid from the picture with some Ti -predicate at each point of the grid.

We claim that these Ti -predicates give rise to a correct tiling τ . Indeed, as 8) and 9) do not set Qverify to True on I ′, τ must
respect horizontal and vertical compatibility constraints. Similarly, due to rules 10) and 11), τ should have a tile from IT at (1, 1)
and from FT at (n,m).
(⇐) Suppose that there are integersm and n and a tiling of the n ×m grid with a tile from IT at (1, 1) and from FT at (n,m).

Then this tiling (when placed on the n ×m grid in Figure 1) is I ′ for some grid test of monotonically determinacy. Thus QT P is
not monotonically determined by VT P .

□

26

PROOFS FOR SECTION 7: NON-REWRITABILITY RESULTS

Proof of Fact 4

Recall the statement:

Let k ≥ 2. Let I be an instance andU be any k-unravelling of I. Then the following hold:
(1) U → I and I →k U .
(2) For every instance I ′, we have I →k I ′ iffU → I ′.
For the first part,U → I by definition. To seeI →k U , we form a strategy for the duplicator inductively, preserving the invariant

that the pebbles of the duplicator are contained in a single bag of the tree decomposition. The induction step is accomplished
using the second property of an unravelling.

We turn to the second part, fixing I ′. IfU → I ′ via some homomorphism h, we can apply h to the strategy witnessing I →k U
to see I →k I ′. Conversely, suppose I →k I ′. Given u ∈ U we know there is some some bag of the tree decomposition
containing u with at most k elements, and Θ is a partial isomorphism on this bag. Consider a play for Spoiler in the pebble game
from I to I ′ going down the branch of the tree decomposition to u. In this play, once Spoiler moves a pebble off of an element, he
will never move back on to the element. Let h(u) be the element in I ′ corresponding to u in the response of the duplicator playing
according to his winning strategy witnessing I →k I ′. One can verify that h(u) is a homomorphism.

Proof of Lemma 6

Recall the statement:

There is a tiling instanceTP∗ such that Iдr idn,m can not be tiled with TP∗ for each n,m ≥ 1 but for each n,m ≥ 3 and each k with
2 ≤ k < min{n,m} any k-unravelling of Iдr idn,m can be tiled with TP∗.

We can rephrase a tiling problem as a homomorphism problem. For a tiling problemTP = (Tiles,HC,VC, IT , FT), we denote by
IT P the database instance over δ = {H,V , I , F } with domain Tiles and facts H(T ,T ′) (resp. V(T ,T ′)) for every (T ,T ′) ∈ HC (resp.
(T ,T ′) ∈ VC), and I(T) (resp. F(T)) for every T ∈ IT (resp. T ∈ FT). Then an instance can be tiled according to TP exactly when it
has a homomorphism to IT P . We can thus rephrase the lemma as:

There is a tiling problem TP∗ such that Iдr idn,m ̸→ IT P ∗ for each n,m ≥ 1, but Iдr idn,m →k IT P ∗ for each n,m ≥ 3 and each k
with 2 ≤ k < min{n,m}.

Before going into the proof, we state a well-known characterization of winning strategies for the Duplicator in the existential
pebble game:

Fact 5. Let k ≥ 2 and let I,I ′ be two instances over the same schema. The Duplicator has a winning strategy in the existential

k-pebble game on I and I ′ if and only if there is a non-empty collectionH of partial homomorphisms from I to I ′ with domain size

≤ k such that: (1) if f ∈ H and д ⊆ f , then д ∈ H , and (2) for each f ∈ H with domain size < k and each a ∈ adom(I), there is
д ∈ H with f ⊆ д whose domain contains a.

Proof. Our proof is an adaptation of a construction from [4]. It was shown in [4] that if an instance I has a core of treewidth
strictly bigger than k with k ≥ 2, then there exists an instance I∗ such that I ̸→ I∗ and I →k I∗. We could apply this result to
each Iдr idn,m , where n,m ≥ 3, and obtain I∗n,m such that Iдr idn,m ̸→ I∗n,m and Iдr idn,m →k I∗n,m , for 2 ≤ k < min{n,m}. By adapting
the arguments in [4], we show that the family {I∗n,m }n,m≥3 can actually be collapsed into a single instance IT P ∗ with the desired
properties.

For n,m ≥ 1, letGn,m be the (n ×m)-grid graph. That is, vertices(Gn,m) := {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and edges(Gn,m) :=
{{(i, j), (i ′, j ′)} : |i − i ′ | + |j − j ′ | = 1}. Observe thatGn,m is precisely the Gaifman graph of the database instance Iдr idn,m . Intuitively,
a solution for our tiling problem on Gn,m will describe a 0/1 assignment to the edges of the grid Gn,m . In order to define TP∗, we
consider the grid G3,3. Intuitively, we want to think of grid points within G3,3 as “grid point types” that can be assigned to a grid
point in some larger grid Gn,m . For example, the tile (2, 1) that lies in the center of the lower border represents the type of all
elements that lie on the lower border of Gn,m , excluding the corner points. Our tiles will enhance each abstract grid point with a
0/1 assignment to its incident edges.

For each vertex u ∈ vertices(G3,3), we denote by du the degree of u (note that du ≤ 4) and fix an enumeration eu1 , . . . , e
u
du

of
all the edges in G3,3 that are incident to u. The set of tiles Tiles∗ of TP∗ contains all the tuples (u,b1, . . . ,bdu) such that

(1) u ∈ vertices(G3,3) and b1, . . . ,bdu ∈ {0, 1},
(2) b1 + · · · + bdu ≡ 0 (mod 2) if u , (1, 1),
(3) b1 + · · · + bdu ≡ 1 (mod 2) if u = (1, 1).

That is, we consider assignments where the number of edges set to 1 is odd for the left-lower point but the number of edges set to
1 is even elsewhere.

Let us denote π1 : Tiles∗ → vertices(G3,3) the first-coordinate projection. We define the set of initial and final tiles to be
IT ∗ := {t ∈ Tiles∗ : π1(t) = (1, 1)} and FT ∗ := {t ∈ Tiles∗ : π1(t) = (3, 3)}, respectively.

27

Our compatibility relation will ensure that the 0/1 assignment to incident edges is consistent among adjacent nodes: if a grid
point n has the outgoing edge to its right set to b ∈ {0, 1} and n′ is the neighbor of n to the right, then n′ has the incoming edge to
its left set to b.

We first give the constraints for pairs of grid points that are assigned to distinct abstract grid points in G3,3. For each edge
e = {u,v} = {(i, j), (i + 1, j)} ∈ edges(G3,3) with 1 ≤ i < 3 and 1 ≤ j ≤ 3, we add to the horizontal compatibility relation
HC∗ the pair ((u,b1, . . . ,bdu), (v,b ′1, . . . ,b

′
dv
)) iff e = eu

ℓ
= evm , for some ℓ,m and bℓ = b ′m . Similarly, for each edge e = {u,v} =

{(i, j), (i, j + 1)} ∈ edges(G3,3) with 1 ≤ i ≤ 3 and 1 ≤ j < 3, we add to the vertical compatibility relation VC∗ the pair
((u,b1, . . . ,bdu), (v,b ′1, . . . ,b

′
dv
)) iff e = eu

ℓ
= evm , for some ℓ,m and bℓ = b ′m .

We now give the consistency restrictions for pairs of grid points that are assigned the same abstract grid point. We add the
following pairs to HC∗ and VC∗:
• Foru = (2, j)with j ∈ {1, 3}, the pair ((u,b1, . . . ,bdu), (u,b ′1, . . . ,b

′
du
)) ∈ HC∗ iff e = {(2, j), (3, j)}, e ′ = {(1, j), (2, j)}, e = eu

ℓ
,

e ′ = eum , for some ℓ,m, and bℓ = b ′m ,
• For u = (i, 2) with i ∈ {1, 3}, the pair ((u,b1, . . . ,bdu), (u,b ′1, . . . ,b

′
du
)) ∈ VC∗ iff e = {(i, 2), (i, 3)}, e ′ = {(i, 1), (i, 2)}, e = eu

ℓ
,

e ′ = eum , for some ℓ,m, and bℓ = b ′m ,
• For u = (2, 2), the pair ((u,b1, . . . ,bdu), (u,b ′1, . . . ,b

′
du
)) ∈ HC∗ iff e = {(2, 2), (3, 2)}, e ′ = {(1, 2), (2, 2)}, e = eu

ℓ
, e ′ = eum , for

some ℓ,m, and bℓ = b ′m ; and the pair
((u,b1, . . . ,bdu), (u,b ′1, . . . ,b

′
du
)) ∈ VC∗ iff e = {(2, 2), (2, 3)}, e ′ = {(2, 1), (2, 2)}, e = eu

ℓ
, e ′ = eum , for some ℓ,m, and

bℓ = b
′
m .

Letn,m ≥ 3. We define a functionΨ from vertices(Gn,m) to vertices(G3,3) as follows.We letΨ((1, 1)) = (1, 1),Ψ((n, 1)) = (3, 1),
Ψ((1,m)) = (1, 3) and Ψ((n,m)) = (3, 3). For 1 < i < n and 1 < j < m, we define Ψ((i, j)) = (2, 2), Ψ((1, j)) = (1, 2), Ψ((n, j)) = (3, 2),
Ψ((i, 1)) = (2, 1) and Ψ((i,m)) = (2, 3). We can now enumerate incident edges of a in Gn,m according to the already-defined
enumeration for Ψ(a) in G3,3. For each a ∈ vertices(Gn,m), we define a bijection ∆a from its incident edges in Gn,m to the
incident edges of Ψ(a) in G3,3 in the natural way: if e corresponds to the incident edge of a to the “up” direction in the grid
Gn,m then ∆a (e) is also the incident edge of Ψ(a) in the grid G3,3 to the “up” direction; similarly for the “right”, “down” and
“left" directions. Then for each a ∈ vertices(Gn,m), we enumerate its incident edges as ea1 , . . . , e

a
da
= ∆−1a (e

Ψ(a)
1), . . . ,∆−1a (e

Ψ(a)
dΨ(a)
),

where eΨ(a)1 , . . . , e
Ψ(a)
dΨ(a)

is the enumeration for Ψ(a) already fixed in the construction of TP∗.
We now formalize the intuition that the parity and consistency conditions ensure that a rectangular grid cannot be tiled:

Claim 2. Iдr idn,m ̸→ IT P ∗ , for every n,m ≥ 1.

Proof. Note that Iдr idn,m ̸→ IT P ∗ if min{n,m} ≤ 2. Towards a contradiction, suppose Iдr idn,m → IT P ∗ for some n,m ≥ 3, via
a homomorphism h. By construction, we must have π1(h(a)) = Ψ(a), for every a in Iдr idn,m and hence h corresponds to a 0/1
assignment of the edges of the Gaifman graph Gn,m of Iдr idn,m . In particular, there exists a 0/1 vector (xe)e ∈E(Gn,m) such that for
each a ∈ vertices(Gn,m), we have h(a) = (Ψ(a),xea1 , . . . ,xeada). Now we have∑

a∈vertices(Gn,m)
(xea1 + · · · + xeada) =

(x
e (1,1)1
+ · · · + x

e (1,1)d(1,1)
) +

∑
a∈vertices(Gn,m)\{(1,1)}

(xea1 + · · · + xeada)

= 1 (mod 2)

But this is impossible as each edge e ∈ edges(Gn,m) is counted exactly twice in
∑
a∈vertices(Gn,m)(xea1 + · · ·+xeada); a contradiction.

■

While there is no total mapping from Iдr idn,m to IT P ∗ that is a homomorphism, by considering partial mappings with domains
that are not too large, we can easily satisfy the correct parity conditions, and hence we can define partial homomorphisms from
Iдr idn,m to IT P ∗ . The next claim tells us that these partial homomorphisms can be chosen to be consistent.

Claim 3. Iдr idn,m →k IT P ∗ , for every n,m ≥ 3 and 2 ≤ k < min{n,m}.

Proof. Let P = (a0,a1, . . . ,aℓ) be a walk in Gn,m . For every edge e ∈ edges(Gn,m), we define:
(1) xPe = 1 if P visits e an odd number of times.
(2) xPe = 0 if P visits e an even number of times.

We also define hP (a) := (Ψ(a),xPea1 , . . . ,x
P
eada
), for each a ∈ vertices(Gn,m) (i.e., in the domain of Iдr idn,m).

28

LetW be the collection of all walks P = (a0,a1, . . . ,aℓ) in Gn,m with a0 = (1, 1) and aℓ , a0. We claim that for each
P = (a0,a1, . . . ,aℓ) ∈ W and each a , aℓ in vertices(Gn,m), the tuple hP (a) always belongs to the domain of IT P ∗ . Note
that xPea1

+ · · · + xPeada
= |{e in P : e is incident to a}| (mod 2). For a , a0, we have |{e in P : e is incident to a}| = 2 · |{i :

0 < i < ℓ and ai = a}| = 0 (mod 2), and hence hP (a) = (Ψ(a),xPea1 , . . . ,x
P
eada
) belongs to IT P ∗ (as Ψ(a) , (1, 1)). On the other

hand, for a = a0, we have |{e in P : e is incident to a}| = 1 + 2 · |{i : 0 < i < ℓ and ai = a}| = 1 (mod 2), and hence hP (a) =
(Ψ(a),xPea1 , . . . ,x

P
eada
) belongs to IT P ∗ (as Ψ(a) = (1, 1)).

Thus we can define for each walk P = (a0,a1, . . . ,aℓ) ∈ W a partial mapping hP from Iдr idn,m to IT P ∗ with domain
vertices(Gn,m) \ {aℓ}. By definition of TP∗ and since hP is defined from a 0/1 vector (xPe)e ∈edges(Gn,m), we have that hP
is actually a partial homomorphism.

We define a non-empty collectionH of partial homomorphisms from Iдr idn,m to IT P ∗ as follows. For 1 ≤ p ≤ n and 1 ≤ q ≤ m,
we denote by Cp,q the (p,q)-cross of Gn,m defined as Cp,q := {(p, j) : 1 ≤ j ≤ m} ∪ {(i,q) : 1 ≤ i ≤ n}. For every non-empty
subset S ⊆ vertices(Gn,m) with |S | ≤ k (recall that 2 ≤ k < min{n,m}), and every walk P = (a0, . . . ,aℓ) ∈ W such that there
are p,q with aℓ ∈ Cp,q and Cp,q ∩ S = ∅, we add to H the restriction hP |S . We prove that H is a winning strategy for the
Duplicator and then Iдr idn,m →k IT P ∗ as required. Condition (1) of Fact 5 holds by definition, so we focus on condition (2). Let
hP |S ∈ H for some S with |S | < k and walk P = (a0, . . . ,aℓ) ∈ W such that aℓ ∈ Cp,q and Cp,q ∩ S = ∅ for some p,q. Let
a ∈ vertices(Gn,m) \ S and S ′ = S ∪ {a}. Since k < min{n,m}, there exist p′,q′ such thatCp′,q′ ∩ S ′ = ∅. Moreover, sinceCp,q is
connected and |Cp,q ∩Cp′,q′ | ≥ 2, there is a walk P ′′ = (aℓ ,aℓ+1, . . . ,aℓ+r) such that aℓ+i ∈ Cp,q , for all 0 ≤ i ≤ r , aℓ+r ∈ Cp′,q′
and aℓ+r , a0. Let P ′ = (a0, . . . ,aℓ+r) be the concatenation of P and P ′′. Then hP

′ |S ′ ∈ H . Finally, observe that hP (b) = hP ′(b),
for every b ∈ S , since xPe and xP

′
e can only differ for edges e = {b ′,b ′′} ⊆ Cp,q andCp,q ∩ S = ∅. It follows that hP |S ⊆ hP

′ |S ′ , and
hence condition (2) holds. ■

□

Additional comments on non-Datalog-rewritable examples

We mentioned in the conclusion of the paper that for the example query QT P ∗ in views produced in the proof of Theorem 8 there
is a rewriting in a slightly larger language, stratified Datalog. The details of stratified Datalog will not concern us here, except that
it includes positive Boolean combinations of Datalog queries and relational algebra queries. We will show that the example has a
rewriting that is such a Boolean combination. We now explain this. In fact, what we show is that for every tiling problem TP for
which rectangular grids can not be tiled, the query QT P from Theorem 6 has a rewriting that is a positive Boolean combination of
Datalog queries and relational algebra queries. In particular, this show that QT P always has a separator in PTime.

Denote by Q∗start the query obtained from Qstart by replacing C and D by the first and second projections of S , respectively.
Let Q∗verify be obtained from Qverify by using the views. That is, by replacing:
• CQ HA by view VHA and similarly for VA,
• relations Ti by the corresponding atomic views
• rewriting rules corresponding to the second to last bullet item as VI (o,x ,y, z),VTi (z), and similarly rewriting rules corre-
sponding to the final bullet item using VF .

Let ProductTest be a query that tests whether S is the product of its projections. ProductTest can be expressed in relational
algebra, hence in stratified Datalog.

Consider the query R formed by existentially quantifying

V helper
C ∨V helper

D ∨Q∗verify ∨ (Q∗start ∧ ProductTest)

Clearly R is a positive Boolean combination of Datalog queries and the relational algebra query ProductTest. We claim that R
is a rewriting of q.

In one direction, suppose Q returns true on I and let J be the view image. We do a case analysis depending on which of the
top-level disjuncts holds. If Qhelper holds on I then V helper

C or V helper
D is non-empty, and thus R holds in J . If Qverify holds on

I then Q∗verify holds on J and hence we conclude again that R holds on J . Finally, suppose Qstart holds on I. If ProductTest
fails, we know one of C or D is empty. But then Qstart cannot hold, a contradiction to our assumption. Thus ProductTest must
hold. From this, it is easy to see that Q∗start holds. This completes the proof of this direction.

Conversely suppose that R holds on the view image J . Again we do a case analysis on the top-level disjuncts. If V helper
C or

V helper
D is nonempty on J , then Qhelper holds on I and hence Q holds on I. If Q∗verify holds on J , then Qverify holds on I, and

again we conclude that Q holds on I. Finally, suppose Q∗start ∧ ProductTest holds on J , and suppose that none of the disjuncts
of Q hold. Note that since Qhelper fails, V helper

C and V helper
D must be empty. Thus we have two possibilities for S . There is the

“projection case”, where either one of C or D is empty, and all the S atoms are generated by the second rule. The alternative is the
“product case”, where both C and D are both nonempty and all the atoms of S are generated by the first rule.

29

We claim that we must be in the “product case” for S above. If we are in the projection case, then every pair must be associated
with a tile. Further, since Qverify and Qhelper fail, we have a tiling of a rectangular grid, contradicting the hypothesis that there is
no tiling. Since we have argued that we are in the product case, it follows thatQstart holds on I and thusQ holds in I as required.

Proof of Theorem 9

Recall the statement:

There is no integer-valued function F such that for allQ,V such that V andQ are in Datalog andQ is monotonically determined
over V , there is a separator of Q over V that runs in time F (V(I)).

We now give the proof of Theorem 9. We assume the opposite, aiming for a contradiction. We use the following fact, which is a
consequence of the time hierarchy theorem:

For any computable function F there is a deterministic Turing machineMF which halts on all of its inputs, and such that no
Turing machine running in time F can decide the same language asMF .

Fix such a machineM for F .
Let Σinput be the input alphabet ofM , and ΣM be a suitable alphabet for encoding configurations ofM .
We consider a base signature with relations Succ(x ,y),Ua (x) : a ∈ Σinput for the input signature of M along with symbols

Succ′(x ,y),U ′a (x) : a ∈ ΣM for the configuration signature ofM .
A pre-run-string is a string in the regular language formed by intersecting

σInpBegin (Σinput)∗ σInpEnd(Σ∗M ;)+σRunEnd
with a regular expression enforcing that the last maximal segment of ΣM strings that does not contain ; encodes a halting state.
Above:
• σInpBegin is a marker designating the beginning of the input while
• σInpEnd designates the end of the input;
• ; is a marker indicating the separator between configurations, while
• σRunEnd marks the end of the run.

A well-shaped string will consist of an initial letter with a special symbol σInpBegin and ending with σInpEnd, followed by a code
for a run of M , ending with a special symbol σRunEnd. A string is badly-shaped if it is not well-shaped. It is easy to see that a
badly-shaped stringw has at least one of the following bad properties:w is not a pre-run string,w contains a sub-string ;ci ;ci+1;
where ci+1 does not encode a next configuration after ci ,w contains a string σInpBeginwinσInpEndc1; such that c1 does not encode
initial configuration ofM with inputwin .

A pre-run instance will be a relational encoding of a homomorphic image of a pre-run string using the relations Succ(x ,y),Ua (x) :
a ∈ Σinput for the coding of the initial segment, symbols Succ′(x ,y),U ′a (x) : a ∈ ΣM for the remaining part of the run, and
additional symbols for the separators. That is, in the relational encoding we allow the same element to represent different places in
the string. A well-shaped string instance will be a relational encoding of a homomorphic image of a well-shaped string, again using
the relations Succ(x ,y),Ua : a ∈ Σinput for the initial segment and the primed copies for the remaining segments. We define a
badly-shaped string instance analogously.

A standard argument shows

Proposition 13. There is a Datalog query whose approximations are (up to isomorphism) exactly the badly-shaped string instances.

Note that if we had enforced that codings were alternating, with every other configuration reversed, then we could use a PDA
to detect bad properties on a string and a context-free path query to detect it on the encoding. With the power of general Datalog,
no alternation is needed.

Our views V will include:
• the input views, with one binary view returning exactly Succ(x ,y), and for each a ∈ Σinput a unary view returningUa (x).
• a nullary view V badly-shaped which returns True whenever the instance contains a badly-shaped string instance. That is,
V badly-shaped returns True when the input contains the homomorphic image of a relational encoding of a string starting
with the symbol σInpBegin and ending with the symbol σInpEnd which has one of the bad properties. By Proposition 13, a
Datalog view with this property exists.
• a unary view V pre-run(x) which holds for x if there is a subinstance that is a pre-run instance in which the occurrence of
σInpEnd corresponds to x .

Our query Q will be the sentence obtained from V badly-shaped disjoined with QAccept, where QAccept returns true exactly
when we detect a relational encoding of a pre-run string that ends in an accept state.

We now argue that Q is monotonically determined over V.
Consider instances I1 and I2 with V(I1) ⊆ V(I2) and Q(I1) being true.
Q(I1) could be true because V badly-shaped holds, in this case, Q(I2) also holds since V badly-shaped is one of the views. So we

can assume that V badly-shaped does not hold in I1 or I2, since if it does hold then I2 satisfies Q .
30

Q(I1) could also be true because V badly-shaped fails but QAccept holds. We know there is a relational encoding of some string

σInpBeginwσInpEndw0;w1; . . . ;wnσRunEnd

witnessing that QAccept holds in I1. Let x be the element corresponding to the label σInpEnd in this encoding. Note that V pre-run

must hold of x in I1, hence in I2. The latter must be witnessed via a relational encoding of some string of the form

σInpBeginw
′
0σInpEndw

′
1; . . . ;w

′
k

with σInpBeginw ′0σInpEnd relationally encoded in the unprimed signature, thew ′i encoded in the primed signature, with the element
labelled by σInpEnd corresponding to x . Note that by the definition of pre-run,w ′k must include a halting state.

Since we have views for all of the input signature elements, and V(I1) ⊆ V(I2), we know that we also have an encoding of a
string σInpBeginw0σInpEnd in I2, with the encoding done in the unprimed signature, with the

We now consider the string
s = σInpBegin w0 σInpEnd w

′
1; . . . ;w

′
k σRunEnd

s begins with the input string, and ends with a halting state. Note that since a relational encoding of σInpBegin w0 σInpEnd lies in
I1, the encoding of s must lie in I2, due to the input views. Since V badly-shaped is false in I2, we know that in I2:
• For every relational encoding of a string of form:

σInpBegin w0 σInpEnd w
′
1;

with σInpBegin w0 σInpEnd encoded in the unprimed signature andw ′1 encodes a state with tape configurationw0 and state
the initial state ofM , under the transition relation ofM .
• For every relational encoding a string of the form:

w ′1;w
′
2;

with the encoding being in the primed signature,w ′2 must encode a state that is a successor in the transition relation ofM
of the state encoded byw ′1.

From this we infer that s is an encoding of a run ofM onw0, ending at a halting state.
But sinceM is deterministic, s must be the same as

σInpBegin w0 σInpEndw1; . . . ;wnσRunEnd

which ends in an acceptance state.
Since a relational encoding of s lies in I2, we can conclude that Q holds in I2. This completes the argument for monotonic

determinacy of Q with respect to V.
Now, suppose Q has a separator R that runs in time F . Then R will allow us to check in time F whetherM accepts or rejects on

its input, a contradiction. Thus we have completed the proof of Theorem 9.

31

	Abstract
	1 Introduction
	2 Preliminaries
	3 Forward and backward between Datalog and automata
	4 Rewritability
	5 Decidability
	6 Lower bounds on testing monotonic determinacy
	7 Non-rewritability
	8 Conclusion
	References

