
An Aspect-Oriented Approach for
Spatial Concerns in Web Applications

Matias Urbieta, Gustavo Rossi, Silvia E. Gordillo
(LIFIA, Facultad de Informática, UNLP, La Plata, Argentina

 {murbieta,gustavo,gordillo}@lifia.info.unlp.edu.ar)

Armanda Rodrigues, Joao Araujo, Ana Moreira
(CITI, Departamento de Informática, FCT/Universidade Nova de Lisboa, Caparica, Portugal

{ar, ja, amm}@di.fct.unl.pt)

Abstract: The growing availability of on-line geographical information, since the advent of
open map servers in the 2000s, originated a new generation of Web applications, those which
combine “conventional” Web functionality with typical features of traditional Geographic
Application System (GIS). The rapid growth in number and complexity of Web applications
with geo-referenced data together with the need to support fast requirements change, demands
for increased modularity. The volatility of some of these changing requirements, both in the
scope of their geographic nature or in the period of time in which they are valid, stresses the
importance of the applications’ modularity. A solution is to take into consideration the
crosscutting nature of these requirements and decouple their realization from “conventional”
requirements in separate software modules.
This paper proposes an end-to-end Aspect-Oriented approach to deal with spatial requirements
from the early stages of applications development throughout to implementation. A significant
contribution of this approach is the characterization of the most common spatial requirements
in Web-GIS applications. The result is the improvement of the overall application’s modularity,
thus facilitating its evolution.

Keywords: spatial concerns, aspect-oriented software development, Web application
Categories: D.2.1, D.2.2, D.2.10, D.2.13

1 Introduction

The development of map APIs to add geospatial components to Web indexing
services (e.g., Google Maps, Open Street Maps), along with the widespread
availability of Global Positioning devices, has led to an increase in the availability of
applications with geographical features [Chow, 08]. These applications belong to
diverse domains, including environmental applications1,2, local government3,
territorial planning [Rodrigues, 09] and citizens’ government4. Social networks and
applications that share contents in the Web have also began to exhibit these features,

1 Drought Monitor, http://drought.unl.edu/DM/monitor.html
2 USGS Portal, www.usgs.gov
3 New York Finantial Digital Tax Map. http://gis.nyc.gov/dof/dtm/mapviewer.jsf
4 Google Flu Trens, http://www.google.org/flutrends/

Journal of Universal Computer Science, vol. 19, no. 1 (2013), 110-131
submitted: 16/8/11, accepted: 28/12/12, appeared: 1/1/13 © J.UCS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/323096832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

e.g., Flickr5, Youtube6. This increasing use of maps has enriched community
knowledge.

In some cases, the introduction of geographical features to a Web application can
be achieved in a transparent way, by decoupling and isolating the geographic features,
for example using mashups [Yee, 08]. Mashups are black-box service-based solutions
that help implementing most of the application logic describing the interaction of
components, particularly the geographical one. Unfortunately, these solutions many
times do not work. This happens when we need to add geographical functionalities
not included in the black-box services (e.g. as provided by Google maps) and
therefore we cannot consider the spatial features as completely monolithic.

As we show in Section 2, including geographical features in Web applications
pose two challenging problems to designers. The first one is related with the very
nature of geographic functionality which involve algorithms and data that should be
designed to evolve according to the requirements without compromising maintenance.
The second problem lies in the impact of these features in design and/or
implementation layers of the Web application, such as the user interface or the
underlying business objects. The difficult in modularizing geographical functionality
leads to introduce behaviour related to those features in several layers

Summarizing, we face two different though related research problems:
 Geographical functionalities and data not only evolve with requirements but

they need to be designed to make this evolution seamless.
 These functionalities affect different aspects of Web applications and as a

consequence cannot be just considered as black-box services which can be
transparently added in this software.

We exemplify the previous problems in Section 2 with a motivating example and
in Section 3 with a more analytical discussion.

These phenomena has been already studied in the broader field of software design
The existence of spread code describing a certain concern or behaviour among several
modules is known as crosscutting and two of its major issues are known as scattering
and tangling [Filman, 04] in aspect-orientation. It has been shown [Filman, 04] that
scattering and tangling compromise maintenance and evolution. In the context of our
research we have found that several of the added geographic requirements to Web
applications are crosscutting in nature.

Unfortunately aspect-oriented techniques have not been widely used so far in our
target fields (Web applications and Geographical Information Systems) and have been
completely ignored as a way to solve the problems resulting in the integration of the
two fields. While a further discussion is left to Section 6 on related work we can state
here that most approaches to use aspects to deal with geographical functionality are
focused on implementation rather than design or requirements issues. In the Web
arena meanwhile there are some aspect-oriented development approaches which work
well with “conventional” multimedia data but fall short to capture the richness of the
integration of geographical features in Web applications.

This paper has two outstanding contributions to solve the previously exposed
problems:

5 Flickr, http://www.flickr.com/map/
6 YouTube, http://www.youtube.com

111Urbieta M., Rossi G., Gordillo S.E., Rodrigues A., Araujo J., Moreira A. ...

 We first propose a characterization of geographic requirements in Web
applications according to their impact on the application’s architecture.

 We propose an aspect-oriented approach to deal with geographic
requirements uniformly throughout the development cycle.

To make the presentation concrete and practical, the characterization is

exemplified with real cases and the aspect-oriented approach is illustrated with Web
applications that use open cartographies (such as Open Street Maps [Open, 11]),
where developers can introduce new features, such as custom path-finding algorithms,
without the limitations (e.g., a fixed API, restricted information access, and reduced
extensions mechanisms) found in proprietary formats (Google Maps).

The remaining of this paper is structured as follows. Section 2 motivates the
research problem with a real example. Section 3 presents our characterization of
spatial concerns. Section 4 starts with a background section on aspect-oriented
software development and follows by describing the major steps of the aspect-
oriented approach to deal with geographic concerns. Section 5 illustrates the proposed
approach and concerns characterization through a case study. Section 6 presents
related work in engineering complex GIS applications and highlights our contribution
with respect to those works. Finally, Section 7 concludes this work discussing the
lessons learned, our main conclusions and some future work.

2 Motivating Example
This section discusses how new and unexpected requirements impact an application’s
architecture at different levels, from basic algorithms to user interface features.

Suppose that we need to develop a Web-based delivery service application for
mail and package distribution providing some kind of package tracking. To improve
the system functionality, we decided to add geographical features to support path
routing report. A path routing report is a plan, used by a messenger, which provides
the shortest paths from the company to the package target or from one package
delivery address to the next. Once a delivery request is registered, customers can login
on the company web application to track package delivering in real-time. Since we
need to have open access to cartography and algorithms, we choose to implement
some of the geographical features and use open services instead of relying on
proprietary applications (which in fact provide some similar support) like Google
maps.

To make the example more concrete, let us suppose that we are in Montpellier,
France, and we want to deliver a package from Place de la Comédie to L’Antigone.
For planning a package delivery, the system must resolve the shortest route between
both points. Fig. 1 shows the map of the area using the outdoor representation and two
possible paths to reach the target. While the slashed path uses the streets and,
therefore, is calculated using the road network, the dotted path shows a shortcut that
crosses a shopping centre, shortening the distance to the target. However, the latter
implies a combination of outdoor and indoor representations since it requires passing
inside a building. For simplicity, in this example, we do not consider path properties
which may lead to the preference of one path over others, such as how fast is the path
or which kind of packages can be delivered over it.

112 Urbieta M., Rossi G., Gordillo S.E., Rodrigues A., Araujo J., Moreira A. ...

Figure 1: Available paths from Place de la Comédie to L’ Antigone

If indoor paths were not planned when the application was built, we need to
improve it by establishing a new criterion for the path search that takes into account
indoor paths (corridors, lifts, stairs, etc.). In this way, the “best” path from the current
point of sales to the target (using the shorter distance criteria of the well-known path-
finding A* algorithm [Schiller, 04]) may be a mixed solution, involving the road
network, as well as indoor paths going through buildings. Eventually, it might happen
that the messenger must pose additional requirements considering time, vehicle, etc..
These requirements stress one specific aspect of path finding algorithms; more
specifically, when layers are modelled as a graph with nodes linked by edges, the
introduction of this new functionality affects the way in which a node resolves its
available edges. The scenario can be more complex when the system evolves,
requiring some kind of integration with shops’ timetable services to determine in real-
time whether some paths are available. The impact is very precise: there is a specific
part of a geographical object (a graph) behaviour that must be frequently edited to
realize these new requirements.

Indoor paths-finding features will be tangled with other path resolution features
such as public transportation, city roads, etc., and scattered on each place a path is
resolved such as graph nodes which calculate adjacencies.

In some of these examples, it can be argued that the required functionality may be
obtained by building new data layers as in GIS applications [Longley, 05]. The new
layer hosts the map “irregularity” (e.g., blocked streets), and the graph will be
obtained by a complex process of layers composition. To implement this solution, the
data composition logic and the corresponding user interface features must be
introduced; without a suitable methodology, these changes will be detrimental to the
software maintenance. It is often impossible to frame these “irregularities” in static
layers, as when applications use third-party Web services that provide this
information dynamically, i.e., when the graph structure is computed on the fly. This is
the case when we want to consider problems such as accidents (e.g., in the public
transportation system), which are informed in a service invocation basis.

113Urbieta M., Rossi G., Gordillo S.E., Rodrigues A., Araujo J., Moreira A. ...

3 Spatial concerns in Web applications
In software engineering a concern represents a matter of interest that groups a
coherent set of requirements [Sutton, 02]. In this context, we consider a spatial
concern as a special kind of concern that refers to the set of requirements that deal
with geographical features of an application, such as locations captured by a Global
Positioning System (GPS), maps (indoor and outdoor) and routing algorithms. For
this analysis, we assume the availability of typical and basic geographical resources
[Longley, 05] such as Maps, Graphs and Layers, provided and managed by an open
source geographical server such as OpenStreetMap [Open, 11].

3.1 Typical Spatial Concerns

This section characterizes the five most common types of spatial concerns, classified
based on the impact they have on the underlying application. These types of concerns
are: spatial business object, rich spatial data, spatially-constrained behaviour, map
adjustments, and geographic interfaces. For each type we provide guidelines to
facilitate their identification and simplify their realization in Web software. These
guidelines are presented in a template composed of three fields: Name (as title),
Description & Example, and Impact. The examples will focus on the type of
applications described in Section 2, although most of the discussion can be applied to
a broader range of applications.

As shown later in Section 5, we propose that these concerns be used as patterns,
for achieving modularized design solutions through the reuse of their specification
and implementation recommendations.

3.1.1 Spatial Business Object

Description & Example. To enhance applications adding some sense of location to
business objects, as well as the corresponding spatial functionality to manipulate this
location. For instance, a bus service management system can be improved by
providing real-time bus locations, offering more precise and timely information to
managers and passengers. This requires adding location and estimated arrival time to
the original bus stop map.

Impact. This problem involves the introduction of spatial operations (to compute
distances) and location information to describe the object’s geographical features. The
latter may consist in enriching the object with latitude and longitude variables or with
a variable pointing to a full-fledged location entity. In the example of the Bus object
that becomes location-aware, we might have tangling code because new presentation
logic is demanded for adding a map to the Bus information view (and the same
happens in every similar example) and scattered code. Additionally, to the operation
that returns the current bus’s position, new business logic may be appended to
compute the arrival time to a given bus stop. Moreover, if we have several location-
aware objects, such as ferries or taxies, with the same code for supporting this
functionality becomes scattered. The introduction of location-aware requirements also
demands new user interface widgets for presenting the location information in a map.

114 Urbieta M., Rossi G., Gordillo S.E., Rodrigues A., Araujo J., Moreira A. ...

3.1.2 Rich Spatial Data

Description & Example. To enrich a geographical object with information describing
non-spatial characteristics and to provide ways to manipulate this information. A
typical example arises when adding videos to a specific location on a map.

 Impact. Already defined data structures must be modified or new ones may need to
be created to support this new kind of functionality. Additionally, the application’s
linking structure may be modified. Finally, presentation issues must be adjusted (e.g.,
by introducing rich interaction support). We might also experience tangling when
including the logic that enables adding or removing movies to/from specific locations.

3.1.3 Spatially-Constrained Behaviour

Description & Example. To modify the behaviour of an object according to its actual
location. For example, in a real estate agency, different houses are shown in a city
map (the houses are business objects enriched with spatial information). As customers
get interested in the taxes to be paid when owning a house, the agency must add a
new behaviour that computes the tax according to the geographical area where the
house is located. The situation might get more complex if some tax is only applied
during a certain period of time (e.g., as a consequence of an unusual meteorological
event).

Impact. The introduction of new (geographically constrained) business logic may
either involve a complete set of methods or enhance already defined ones. These
changes may generate tangled code, when combined with existing algorithms, such as
other taxes, and may generate scattered code, when the same logic is introduced
within different objects types. For example, when a zone suffers a flood, the
government may promote a tax reduction policy for those fields and buildings
affected by the catastrophe. The behaviour for computing the tax may be scattered in
those objects responsible of tax computation. In an object-oriented model, the Field
and Building objects could be responsible of their own tax computation. Alternatively
we could delegate the computation to strategy objects but we would still have a
conditional statement on location variables to configure the strategy.

3.1.4 Map Adjustments

Description & Example. To extend or restrict the available spatial information
according to the application’s constraints. The spatial data available in a Web
application may be restricted or extended according to a specific concern, which may
imply that certain parts of a map are unavailable or are useless for specific operations
or services. These types of extensions or restrictions may be temporal or permanent.
When geographic objects un/availability is temporal, status calculation can be done in
real-time and may require collaboration with other artefacts, components, or external
systems. This type of concern may arise in (at least) two different ways:
augmentation, and restriction of the available geographical data.

Impact. A concrete and very direct impact arises in algorithms that manipulate spatial
data; specifically, the respective requirements lead to changes in path-finding
features. For example, in the case of adding new transportation services, computing
node adjacencies (segments in a graph) should change, since new edges, such as

115Urbieta M., Rossi G., Gordillo S.E., Rodrigues A., Araujo J., Moreira A. ...

public transportation and highways, must be taken into consideration. This introduces
scattered and tangling code at each place where a path is resolved. In graph-based
representation of streets, the feature introduces scattered code each place where a
node is asked for its adjacencies, because each search algorithm defined in the
application is affected by the requirement. In the case of blocked or unavailable
streets, the graph is modified, by removing the corresponding edges. Applying graph
changes directly to the corresponding database may be unmanageable when the nature
of changes is volatile. For example, the responsibility for determining whether a given
street segment must be pruned or not can be delegated to a third-party service
provided by the highway administration. In this case, it is unreasonable to modify the
database because the information is volatile and only available on demand.

3.1.5 Geographic Interfaces

Description & Example. To modify or upgrade the user interface of geographic
objects. Though not strictly a spatial concern, it is clear that most of the previously
cited examples might introduce changes in the application’s user interface,
specifically in the geographic objects (e.g., maps). Adjusting the spatial dataset
availability (“Map Adjustments”) are changes related to spatial objects’ behaviour.
However, as previously mentioned, a lack of a suitable presentation may produce a
misleading perception of the application functionality. For example, if blocked streets
are taken into account in a path search, they must be appropriately visualized in the
map (i.e. using a standard red colour).

Impact. The presentation layer needs to be improved in order to provide a proper
presentation for spatial concerns such as: map widgets when enabling spatial
behaviour to business objects (“Spatial Business Object”); and labelling
availability/unavailability reason of spatial objects (“Map Adjustments”).

3.2 Discussion

Although the classification presented does not intend to be comprehensive, it covers
an exhaustive set of common types of concerns related with geographic information
in the context of Web software. The following conclusions can be drawn: (i) most
concerns, if not all, introduce code tangling or scattering in other concerns. Indeed,
some specific concerns are more affected than others (e.g., path finding and
manipulation). Consequently, if we want to avoid the well-known problems that arise
when dealing with tangled or scattered code [Filman, 04], a good alternative is to use
an improved modularization mechanism to allow us to keep these concerns separated,
and treat them independently during the development process; (ii) some concerns are
volatile, as it was shown in the Map Adjustments examples. Volatile concerns should
be kept separated from core concerns, to facilitate evolution. Aspect-oriented
mechanisms can also be used to support their modularization [Moreira, 06]; (iii) the
classification presented aims at providing reusable solutions, once the concern is
identified and matched against this concern characterization.

116 Urbieta M., Rossi G., Gordillo S.E., Rodrigues A., Araujo J., Moreira A. ...

4 Our Approach in a nutshell

4.1 Background

We next outline some background concepts helpful to understand our approach. For
conciseness, we reference the reader to the most important literature in each field.

4.1.1 Aspect-Oriented Software Development

Abstraction, modularization and encapsulation are crucial principles to achieve
separation of concerns [Dijkstra, 76] in any type of systems. Geographic Information
Systems are no exception. Traditional Software Engineering approaches (e.g., object-
oriented) cannot modularize broadly scoped properties, such as response time,
visualization and persistence. Typically the specification and implementation of such
concerns that do not align well with the main decomposition criteria end up spread
across many modules and thus tangled with modules that address other concerns. This
crosscutting phenomenon is not limited to non-functional requirements; functional
requirements can also often cut across parts of a system [Rashid, 06].

Aspect-Oriented Software Development (AOSD) [Kiczales, 97] provides
mechanisms to identify, modularize, represent and compose crosscutting concerns
[Rashid, 03]. Crosscutting concerns are encapsulated in separate modules, known as
aspects, and composition mechanisms are later used to weave them back with other
core modules, at loading time, compilation time, or run-time [Baniassad, 04]. The
result is a reduction of software development complexity and improvement of
understandability, minimizing the impact of change through encapsulation of different
concerns in separate modules [Kiczales, 97]. The main concepts included in AOSD
are aspects, joinpoints, pointcuts and advices. A joinpoint specifies a well-defined
point in the execution of the base program that will be affected by an aspect, such as a
method call, an access to a variable, etc.. A pointcut specifies a set of joinpoints and
data associated to them. An advice defines code that can be executed when a joinpoint
is reached in the program execution.

From the various existing aspect-oriented modelling approaches, we have chosen
MATA [Whittle, 07] to support modelling and composition in our approach.

4.1.2 MATA

MATA (Modelling Aspects Using a Transformation Approach) is a representative of
UML structural and behavioural modelling development with aspects, considers
aspect composition as a special case of model transformation, and uses some of the
mechanisms provided by Pattern Specifications(PS) [France, 04], like roles, described
next. It supports a very good set of expressive composition types, when compared to
other approaches (e.g., Jacobson’s aspectual use cases [Jacobson, 04]). For example,
an aspect sequence diagram can be composed with a base sequence diagram, using
parallel, alternative and loop fragments as part of the composition rule. Most of other
approaches have often been limited to the AspectJ advices (i.e., before, after, around).

The composition mechanism of MATA is based on graph transformations. A
graph transformation is a graph rule r: L → R from a left-hand side (LHS) graph L to
a right-hand side (RHS) graph R. In MATA the composition of a base model, Mb,

117Urbieta M., Rossi G., Gordillo S.E., Rodrigues A., Araujo J., Moreira A. ...

with an aspect model, Ma, which crosscuts the base, is specified by a graph rule, r:
LHS RHS:
 A pattern is defined on the left-hand side (LHS), capturing the set of points in

Mb where new model elements should be added;
 The right-hand side (RHS) defines those new elements and specifies how they

should be added to Mb.
MATA supports composition for several UML diagrams (e.g., class, sequence,

activity and state diagrams). Its graph rules are specified in the UML’s concrete
syntax, with some extensions to allow for more expressivity in the compositions. The
following stereotypes are used in MATA rules given in a diagram:
 «create»: applied to any model element, specifying the creation of an element.
 «delete»: applied to any model element, specifying the deletion of an element.
 «context»: used with container elements that are created; it avoids creating an

element inside a created element, forcing it to match an element in the base.
Examples of MATA usage will be found in section 5 when describing approach’s

instantiation.

4.1.3 Pattern Specifications

Pattern Specifications (PSs) [France, 04] are a way of formalizing the reuse of
models. The notation for PSs is based on the Unified Modelling Language (UML). A
pattern specification describes a pattern of structure or behaviour defined over the
roles which participants of the pattern play. Role names are preceded by a vertical bar
(“|”). A PS can be instantiated by assigning concrete modelling elements to play these
roles. A role is a specialization of a UML metaclass restricted by additional properties
that any element fulfilling the role must possess. Hence, a role specifies a subset of
the instances of the UML metaclass. A model conforms to a PS if its model elements
that play the roles of the PS satisfy the properties defined by the roles. Thus, a
conforming diagram must instantiate each of the roles with UML model elements,
multiplicity and other constraints. Note that any number of additional model elements
may be present in a conforming diagram as long as the role constraints are
maintained. As in [Whittle, 04], we extend the notion of pattern specification from
that of [France, 04] by allowing both role elements and concrete modelling elements
in a PS. This provides greater flexibility in reuse as often one may wish to reuse a
partially instantiated model rather than a model only containing role elements.

4.2 An Overview of the Approach

This sections presents end-to-end approach outlined in Fig. 3, covering activities from
requirements analysis to implementation. This approach particularly focuses on
requirements evolution, where classification, composition and instantiation are the
most important tasks to develop a highly evolvable system. During the design
process, crosscutting spatial concerns will be modelled using MATA. First, a
conventional requirement gathering is done by means of meetings with stakeholders
producing a set of use cases. Next, the relationship among core and spatial
requirement is realized in a crosscutting matrix that, later on, will help designers to
get a better modularization in designs. After specifying requirements, for example
with use cases of both kinds, base and aspectual, these must be modelled using class

118 Urbieta M., Rossi G., Gordillo S.E., Rodrigues A., Araujo J., Moreira A. ...

and sequence UML diagrams with MATA. These diagrams establish a connection
between elements of core and (crosscutting) spatial use cases.
Finally, these models are translated to the underlying aspect-oriented programming
language (In this paper, and in our case studies, we used aspectual extensions of
existing languages such as Java and Python).

This approach consists of height major steps, each one briefly introduced next. As
Step 3 plays a fundamental role in the process and deals mostly with spatial issues, we
describe it in detail in Section 5.

Step 1: Identify and specify core concerns. To identify core concerns of the

problem domain we use traditional requirement gathering techniques for
identifying stakeholders’ needs and relate these in coherent groups, so
called concerns. To identify the requirements, we can use, for example,
interviews, elicitation requirements workshops, or use any information
available about the system. Each concern can be then described using
several different techniques, instantiating a particular template such as
those in [Moreira, 06]. We can also use viewpoints or use cases, for
example, if we look for a more standard technique from the very beginning.

Figure 2: Overall process to develop web applications with spatial concerns

Step 2: Identify and specify spatial concerns using characterization. As in step
1, a spatial concern is elicited using traditional requirement gathering
techniques, and later documented. The characterization process aims at
classifying spatial concern depending on the impact they introduce in the
application. The spatial concern is checked against each spatial concern
characterization (Section 3.1) through a pattern matching. There are cases
where the studied concern can be mapped to more than one concern

119Urbieta M., Rossi G., Gordillo S.E., Rodrigues A., Araujo J., Moreira A. ...

characterization (e.g., due to its complexity or the granularity of its
description). In this case, the concern must be decomposed.

Step 3: Relate concerns and identify aspects. Detect possible crosscutting by
studying occurrences of spatial concerns in each use case of steps 1 and 2,
and build a relation matrix describing crosscutting relationships [Conejero,
09]. For each use case, analysts must identify and identify the presence of
concern requirements that cause tangled behaviour assigning a value (0 or
1) to the jointpoint cell in the Table 1. The jointpoint cell vji in the table
specifies that Concerni affects UseCasej.
Tangling behaviour is detected when the sum of weights is greater than one.
On the other hand, when a concern is present in several use cases, there is
likely a scattered behaviour. This information is marked with an S (for
scattered), and C (for Core), as illustrated in last column of Table 1.
The number of concerns that crosscut a given use case is the metric we use
to help detecting aspects that can be modularized in an aspect hierarchy and
thus be reusable by extending the hierarchy. In this hierarchy, an abstract
aspect defines common elements such as pointcut definition and behaviour
shared by all crosscutting concerns, and each aspect specialization
encapsulates specific behaviour in an advice. For example, suppose two
new different concerns such as “Public demonstration” and “Ferry line”
(see Section 3.1.4); as they reduce and augment available spatial data, they
crosscut the path-finding use case (used to query paths) producing
enhancements in Nodes adjacencies computation for filtering or appending
adjacent Nodes. When detecting this scenario earlier, designers will be able
to model an abstract aspect that defines a common pointcut (the specific
place in Node object behaviour where the advice must be introduced) and
routines, and extend the abstract aspect with specifications containing
custom behaviour for augmenting spatial data in the case of “Ferry line”
concern and reduce the available data for “Public demonstration” concern.

 Use cases

U
se

C
as

e 1

U
se

C
as

e 2

…
.

C
on

ce
rn

s Concern1 v11 v21 vj1 [C, S]
Concern2 v12 v22 vj2 [C, S]
Concern3 v13 v23 vj3 [C, S]
… v1i v2i vji [C, S]

Concern count per UC

Table 1: Matrix describing crosscutting

Step 4: Core requirements modelling. Model concern structure and behaviour
using UML structural diagrams (e.g., classes, components) and UML
behavioural diagrams (e.g., sequence diagrams) using the heuristics of

1=0 2=0 =0

120 Urbieta M., Rossi G., Gordillo S.E., Rodrigues A., Araujo J., Moreira A. ...

[Moreira, 06].
Domain objects, such as Cars, Building, and Orders, as well as their
relationships are modelled using UML class diagrams, constituting the base
models. Application architecture is specified using component diagrams
that package application concerns, and complex scenarios are configured
using deployment diagrams.

Step 5: Aspectual requirements modelling. Use the MATA approach, introduced
in Section 4.1.2, to describe flexible aspect’s advices to eliminate tangling
or scattering behaviour introduced by spatial concerns. Detected
crosscutting behaviour in step 3 is modelled using MATA extensions for
class and sequence UML diagrams. Tangled and scattered behaviour is
modelled in such a way duplicate behaviour is encapsulated reducing
application complexity. New class variables, methods and relationships are
reflected in a UML class enhanced with MATA rules. After the weaving
process, the new elements are merged with the base class models. The new
behaviour is also modelled with MATA extensions producing a set of rules
that configures the way in which the behaviour is merged in the base
sequence diagrams.

Step 6: Non-aspectual implementation. Implement the modelled components
obtained in step 4 using standard programming languages (such as Java,
JavaScript, Python, etc.).

Step 7: Aspect-oriented implementation. Implement aspect advices using aspect-
oriented languages (e.g., AspectJ [AspectJ, 11] for Java, Aspyct [Aspyct,
11] for Python). Pointcuts are defined from the diagrams obtained in step 5
and later refined with each relationship between use cases and spatial
concerns available in the matrix built in step 3.
Following models produced in step 5, tangled and scattered geographic
behaviour is coded in aspect artifacts.

Step 8: Artefacts weaving. Finally a weaving activity, which can be realized either
at compilation or run time, will merge core and spatial concerns to obtain a
complete application. This is usually performed by the underlying
implementation technology such as AspectJ compiler or Python virtual
machine.

All these activities will be further illustrated in Section 5, after we explain how to
identify and specify spatial concerns.

5 Illustrating the approach with a case study
This section describes the application of our approach to the delivery system example
introduced in Section 2. For the sake of conciseness we specifically focus on spatial
concerns.

121Urbieta M., Rossi G., Gordillo S.E., Rodrigues A., Araujo J., Moreira A. ...

5.1 Identify and specify concerns (steps 1 and 2)

This activity starts by eliciting requirements using traditional techniques, such as
interviews and workshops, and then follows by grouping related requirements in
concerns. Table 2 presents a set of core requirements that the application must meet
and lists requirements grouped in coherent sets, which basically relate to concerns.
Some of them define the Delivery, Office, Route planning and Transportation
concerns.

Let us now introduce some new realistic geospatial concerns. As a consequence,
the system’s designers will have to introduce these new unexpected and possibly
volatile concerns that increase the system’s complexity. Table 3 lists some new
functional requirements extending the system’s functionality, where column “Type
Ref.” (described in Section 3.1) characterizes the requirement that provides additional
information to designers, for the next steps.

Concern Req. ID Description

Delivery
R1 An employee records a delivery service request.
R2 For each package, a label with a unique id is assigned.

Office

R3 The user can check delivery office points in a map.
R4 A new office point can be added.
R5 Additional information can be added to office points.
R6 Office points can be printed as a report.

Route planning
R7

A route plan is elaborated for the truck driver or biker, which
describes the sequence of street segments s/he must take into
account for delivery.

R8 The truck driver can visualize the route plan as a sequence of
street segments and the streets on a map.

Transportation R9
The system manages transportation vehicles (trucks and
bicycles) for package delivery.

Table 2: Basic requirements of the system

Concern Req. ID Type Ref. Description

Delivery
tracking

R10 3.1.1
A customer, using issued id, can query the package location
in real-time.

R11 3.1.5 The package location is shown in a company dashboard.

Blocked
streets

R12 3.1.4
For express delivery service, the route plan computation
must take into account blocked streets to avoid unsuitable
plans.

R13 3.1.5
The user interfaces and the report must describe the
blocked streets in detail.

Table 3: Geospatial concerns set

For simplicity, we have not included the Map concern with its requirements
(which enables users to manage and visualize Maps).

122 Urbieta M., Rossi G., Gordillo S.E., Rodrigues A., Araujo J., Moreira A. ...

5.2 Relate concerns and identify aspects (step 3)

For each use case, we now detect concern requirements causing tangled behaviour. In
Table 4 we can see that Delivery requirements are present just in the use case
“Request delivery route”, meaning that it is a core concern. On the other hand,
Tracking is present at “Query package status” and at “View transportation
information”, meaning that the latter two are altered with new tangled logic.

When a concern is present in several use cases, we have scattering. Core concerns
are marked with a C and scattered ones are marked with S (for scattered) in Table 4.
The last row in this table shows the total number of requirements that crosscuts a use
case, detecting candidate crosscutting behaviour. This may result in an aspect
hierarchy, where an abstract aspect defines functionality shared by all crosscutting
concerns, and each aspect specialization specifies specific behaviour, as explained in
Section 4. Localizing abstract aspects helps designers to elaborate a model with less
coupling and defining abstract aspect advices. A design arising from this concern
analysis will be described later on.

 Use cases

 R
eq

ue
st

 d
el

iv
er

y

 r
ou

te
 p

la
n

 D
el

iv
er

y
R

eq
ue

st

 Q
ue

ry
 p

ac
ka

ge

 s
ta

tu
s

F
il

l d
el

iv
er

y
pa

pe
rs

V
ie

w

tr
an

sp
or

ta
tio

n

in
fo

rm
at

io
n

C
on

ce
rn

s Delivery 1 0 0 0 0 C
Route planning 0 1 0 0 0 C
Delivery tracking 0 0 1 0 1 S
Blocked streets 1 0 1 0 0 S

 Concern count per UC 2 1 2 0 1

Table 4: Concerns analysis by use case

5.3 Structural and behavioural modelling

In this step, models that detail concerns will be designed using the MATA approach
[Whittle, 07]. For illustration purposes, we focus here on the blocked streets concern,
specifically on two of its requirements: taking into account blocked streets in route
planning task (Req. 12) and showing blocked streets in a suitable way (Req. 13).
(Section 5.4 shows how we implement these requirements.)

Blocked streets are, for example, those streets in which traffic is not allowed in
one or more segments, during a period of time.

5.3.1 Core requirements modelling (step 4)

In this step, base requirements are modelled using UML class diagrams and sequence
diagrams. Fig. 3 shows a class diagram corresponding to the main business entities
(Client, Package and Employee) and Route planning concern classes. The latter
comprise Path finding resolvers that encapsulate path finding logic (in a Strategy
pattern style [Gamma, 95]) and StreetSegmentNode that defines information for a

123Urbieta M., Rossi G., Gordillo S.E., Rodrigues A., Araujo J., Moreira A. ...

road segment (Street name, id, city, etc.) and address range covered (for example,
address in range 100–150).

+getAdjacents()

-streetName
-addressRange

StreetSegmentNode

1

+adjacents

0..*

+searchFromTo()

PathFindingResolver

AStarResolver BreadthFirstResolver
-id
-description

Package
-name
-id

Employee

+deliver

*

-name
-id

Client

-ow
ns

*

Figure 3: Application class diagram

Path finding functionality is depicted in the sequence diagram shown in Fig. 4. A
path request goes through the Web interface layers up to reach a PathFindingResolver
that collaborates with a set of StreetSegmentNodes for obtaining the expected path.

For simplicity, these diagrams specify only relevant classes and behaviour, which
will be further discussed in the following sections.

Figure 4: Sequence diagram for the Path finding requirement

5.3.2 Aspectual requirement modelling (step 5)

The main requirement of the Blocked street concern (“the route plan computation
must take into account blocked streets to avoid unsuitable plans”) aligns with the
concern type “Map Adjustments” presented in Section 3.1.4, where a dataset can be
augmented or reduced to include or exclude spatial data. The route plan computation

124 Urbieta M., Rossi G., Gordillo S.E., Rodrigues A., Araujo J., Moreira A. ...

is based on a path-finding algorithm [Schiller, 04], which is supported by the use of a
graph, where nodes represent the street network. The algorithm visits each node in the
graph asking for its adjacent nodes, which are used for selecting the best option (in
this case shortest path).

The augmentation or reduction of a dataset can be achieved by externalizing this
special behaviour with aspect-oriented techniques. In this particular case, an aspect is
defined to modularize the augmentation or reduction of the set of objects that are
processed, as shown in Fig. 5.a. A caller object requests a list of adjacent nodes,
which is annotated with a MATA context (“<<context>>”) stereotype, serving as a
pointcut. In the advice of the aspect, the adjacent nodes are computed by triggering
the original StreetSegmentNode’s getAdjacents method (returning all adjacent nodes)
pointed with an “Any” operator, which allows that any sequence of messages can
happen in the base. Next, blocked streets are filtered using the filterBlockedStreets
method introduced by the aspect. This method uses a blocked street service
(BlockedStreetService class), which determines if a given street segment is blocked
using the isBlocked method. Finally, the filtered list is returned to the caller object,
which does not know the aspect’s behaviour.

To improve the user experience, requirement R13 demands a suitable
presentation of blocked streets in the user interface; this is also accomplished using an
aspect that enriches the map rendering process. Fig. 5.b shows an aspectual design for
the view controller RouteController which decorates the renderPath method with the
needed logic for rendering blocked Streets. The renderBlockedStreet method is
invoked after the renderPath logic is executed, drawing a light blue line in the map
for blocked streets, and adding pop-ups for describing the situation.

As Table 4 depicts, several concerns may crosscut the same use case generating
tangled code. For example, the Request delivery route plan use case is affected by
some requirements of the Blocked Street concern. Additionally, a new City
transportation policies concern (not present in the table) crosscuts the use case. This
allows restricting paths depending on transportation used for delivering; for example,
bikes can be used for downtown deliveries since it is easy to drive in narrowed streets
while trucks can be used for long distances. City transportation policies concern will
have a solution pattern quite similar to that presented for Blocked Street and presented
at Fig. 6.a. Notice that designers can profit from this fact to produce better and more
reusable aspect designs. The pointcut definition for filtering node’s adjacencies, and
eventually the advice, can be generalized in an abstract aspect. Additionally, the
abstract aspect may also define and introduce methods shared by each concrete
aspect. A more advanced design can be attained by modelling the aspect’s advice as a
template method pattern [Gamma, 95] for describing shared filtering logic. In Fig. 6.a,
AbstractFilteringAspect is modeled as a template method, defining a common
behaviour for node filtering. Behaviour specialization is achieved by implementing
the processItem method. In Fig. 6.b, we show how different aspects reuse logic
defined by the abstract aspect.

For sake of space, we are not showing the composed model.

5.4 Implementation (steps 6 and 7)

This section presents a running example that implements the Blocked Streets concern
modelled in Section 5.3. For the sake of conciseness, we will not cover the

125Urbieta M., Rossi G., Gordillo S.E., Rodrigues A., Araujo J., Moreira A. ...

implementation of core concerns; instead we will base the discussion on the design
presented at Section 5.3.1.

The two main concern requirements (R12 and R13 in Table 3) have been
implemented using aspects. The delivery component uses the A* algorithm, which is
a best-first graph search algorithm that finds the lowest-cost path from a given initial
node to a target node, using a heuristic function to determine the order in which the
search visits nodes in the tree.

Our prototype system is a Web Application that allows users to search paths
presenting the result in a map. The process is based on algorithms from the PyRoute
Library [PyRL, 11] project, which consumes information from an OpenStreetMap
[Open, 11] server. Following the rationale of our approach, the previously described
aspectual models must be implemented using an aspect-oriented language. Our
solution is divided into two parts: the aspect that introduces the notion of blocked
segments within the search, and the controller that manages the introduction of the
suitable presentation of blocked segments.

Figure 5.a: Blocked Street filtering aspect

design
Figure 5.b: Aspect scenario for a

suitable blocked street presentation

Figure 6.a: Abstract advice for street
adjacency filtering

Figure 6.b: Aspect hierarchy for Street
adjacency filtering

5.4.1 Processing blocked street segments

The algorithm works over a directed graph where each node is visited to reach the
endpoint. When it is not reached, the algorithm traverses adjacent nodes repeating the

126 Urbieta M., Rossi G., Gordillo S.E., Rodrigues A., Araujo J., Moreira A. ...

process once and again until the end point is reached. In this context, the aspect,
which encapsulates the Blocked street concern, adds the needed behaviour after the
original algorithm performs the search of the potential adjacents. This behaviour is
achieved by wrapping the #getAdjacents (returns all the adjacent nodes of the current
one) method in the StreetSegmentNode class. Thus, when the algorithm stops in a
particular segment, it checks if the next segment corresponds to a blocked street. To
do this, it builds (using the #getAdjacents method) a collection including all the
possible segments that have not yet been traversed to reach the aimed destination.
When this collection is returned, the aspect filters the blocked segments, using the
blocked street service. Then, the aspect returns this new collection and the original
algorithm continues normally. It worth to note that this geographical crosscutting
feature is encapsulated in an aspect following its design taking advantage of AOP
benefits. This aspect allowed reducing duplicated code present each point in the
application where blocked streets should be computed.

5.4.2 Presenting blocked street segments

Blocked streets must be clearly presented to the user, allowing him/her to understand
the result at a glance. The application uses the OpenLayers [OpenLayers, 11]
framework, which provides facilities for rendering maps by overlapping different
graphic layers. In our case, the application overlaps the basic map (in one layer) with
the resolved path (in another layer). In order to implement the design presented in
Section 5.3.2, we must introduce the logic for rendering street segments.

The solution for rendering blocked streets was applied as a new map layer (from
now on the blocked streets layer) which is overlapped over both the basic map and the
calculated path layers.

Furthermore, taking into account that presentation layers are usually defined
using XML derived documents such as HTML, the solution section of the concern
type proposes to use interface transformations for applying the changes. In [Ginzburg,
07] we presented an oblivious approach for introducing aspects in the interface Web
tier, by means of user interface transformation. Using this approach, user interface
structures and behaviour related to the blocked street concern are included in a map
view, through EXtensible Stylesheet Language Transformation (XSLT).

Therefore, new widgets, labels, event handlers, etc. are appended to the map view
without being aware of the changes produced by the blocked street concern.

Additionally, the single map controller, on the server-side, was enriched with the
logic for handling requests generated by the blocked street layer, on the client side.
The enrichment was applied using an intercepting aspect, which captures each request
coming from the browser; it performs custom processing to map tiles requests coming
from the blocked street layer, for generating the corresponding tile.

As a result of combining these two solutions, it is possible to introduce visual
aspects in the application, keeping user interface and server side components free of
tangling and scattered code.

127Urbieta M., Rossi G., Gordillo S.E., Rodrigues A., Araujo J., Moreira A. ...

6 Related work
Separation of concerns [Parnas, 72], as a research area, has provided an invaluable
contribution to software engineering, improving modularity and, therefore,
maintenance, evolution and reuse of applications. Our work proposes a refinement of
some techniques of Aspect-Oriented Software Development (AOSD) [Filman, 04] to
address the specificities of Web-GIS applications (applications that combines both
Web and GIS features). We aim at providing better ways to isolate these kinds of
application concerns and provide different types of support for the late weaving of
software components, which realize these concerns.

In [Zipf, 03] the authors discuss the use of aspects in GIS applications. However,
they only focus on the programming level, which aligns with our work. Our approach
goes further by providing evaluation tools for analyzing spatial concerns in the early
stage of the development process.

Web Modeling Language (WebML) has provided a language extension [Di, 07]
to its visual formalism for modelling navigation, which comprises GIS operations. By
arguing that Web-GIS is a particular class of data-intensive Web applications, they
have provided different types of units [Ceri, 00] that allow presenting and dealing
with geographic information. The extension demands a declarative specification of
GIS features, without means for describing GIS crosscutting concerns in a seamless
way.

AMACONT [Niederhausen, 09] is a Web design framework with orthogonal
facilities for extending functionality in a transparent way by implementing some
AOSD concepts. The tool can be used for developing applications that use the
approach described in our research, since MATA designs can be translated to
AMACONT aspects in a straightforward way.

In [Gordillo, 99], design patterns [Gamma, 95] have being used for providing
solutions to recurrent problems appearing in the GIS domain. The proposed approach
allows designers to decouple the conceptual definition of application objects, from
their spatial representations, through the application of different patterns. Our
research uses these ideas by first identifying recurrent problems (see Section 3) and
then complementing them with a software engineering approach, which allows
detecting GIS crosscutting concerns earlier, during the requirement gathering step.

In [Digital, 08], the authors propose a catalogue of common functionalities that
can be used for defining a basic Web-GIS application. Nevertheless, the set of
requirements fail to address the last generation of Web-GIS applications, which are
saturated of tangled concerns. Additionally, it provides an implementation solution
for merging third-party GIS engines with proprietary business models, but lacks a
comprehensive approach to address the whole development process.

7 Concluding Remarks and Further Work
We have presented a novel approach to develop complex Web GIS applications
involving spatial behaviours, such as those dealing with maps. This approach uses
concepts of aspect-oriented software development to clearly separate the spatial
concerns from other core application’s concerns.

128 Urbieta M., Rossi G., Gordillo S.E., Rodrigues A., Araujo J., Moreira A. ...

By carefully studying recurrent cases, we have defined a characterization that
describes a “catalogue” of the most usual crosscutting spatial concerns defining their
intent, scope and a solution according to their impact on the application. In order to
support these crosscutting spatial concerns, our approach first identifies these
concerns on the early steps of the software engineering process, and provides
conceptual tools to isolate them and describe them separately from other application
components. Spatial components are later weaved onto the core components with the
typical aspect-oriented approach, therefore supporting seamless evolution and reuse
of these isolated components. We have applied this approach on an open map servers,
and in this paper we illustrated the use of our approach with a realistic case study,
showing the whole process from design to implementation, even describing how we
adapted a path search algorithm by extending it with aspects.

We are now working on several research lines related with this approach. Firstly,
we are extending the characterization of spatial concerns to use it as a pattern-like
catalogue that can help developers to reuse the solutions in the catalogue when similar
cases arise. This work involves providing different “implementations” for the same
pattern; for example, we are also describing heuristics to map our aspect-oriented
solutions to “conventional” GIS software. These heuristics show how an aspect can be
mapped for example to a Layer according to the type of problem being solved. A
further research line in this direction is to include a more detailed analysis of the
consequences of this kind of solutions, e.g. evaluating performance issues, which
were not relevant in all our case studies but might arise in some critical Web-GIS
software projects.

Acknowledgements

This work has been partially funded by CITI grant PEst-OE/EEI/UI0527/2011 and the
project PO-07-09 between Mincyt (Argentina) and FCT MCTES (Portugal). The
authors also want to thank Mr. Lucas Hahn and Mrs. Alejandra Lliteras who worked
on implementation issues.

References

[AspectJ, 11] AspectJ http://www.eclipse.org/aspectj/, Accessed 4 June 2011.

[Aspyct, 11] Aspyct, http://www.aspyct.org/ , Accessed 4 June 2011.

[Baniassad, 04] Baniassad, E., Clarke, S.: Theme: An approach for aspect-oriented analysis and
design, 26th International Conference on Software Engineering (ICSE), Scotland, 2004.

[Ceri, 00] Ceri, P., Fraternali, P., Bongio, A.: Web Modeling Language (WebML), A Modeling
Language for Designing Web Sites, Computer Networks and ISDN Systems, 33(1-6), 2000.

[Chow, 08] Chow, T. E.: The Potential of Maps APIs for Internet GIS Applications, T. GIS
12(2): 179-191, 2008.

[Conejero, 09] Conejero, J. M., Hernández, J., Moreira, A., Araújo, J.:Adapting Software by
Identifying Volatile and Aspectual Requirements, JISBD 2009:103-114, 2009.

129Urbieta M., Rossi G., Gordillo S.E., Rodrigues A., Araujo J., Moreira A. ...

[Di, 07] Di Martino, S., Ferrucci, F., Paolino, L., Sebillo, M., Vitiello, G., Avagliano G.: A
WebML-Based Approach for the Development of Web GIS Applications. Web Information
Systems Engineering (WISE),2007.

[Digital, 08] Digital Earth Summit on Geoinformatics: Tools for Global Change Research.
International Journal of Digital Earth, 1: 1, 171 — 173.

[Dijkstra, 76] Dijkstra, E.: A Discipline of Programming. 0-13-215871-X. Prentice-Hall, 1976.

[Filman, 04] Filman, R., Elrad, T., Clarke, S., Aksit, M.: Aspect Oriented Software
Development. Addison Wesley, 2004.

[France, 04] France, R., Kim, D., Ghosh, S., Song, E.: A UML-Based Pattern Specification
Technique, IEEE Transactions on Software Engineering, Volume 30(3), 2004.

[Gamma, 95] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of
reusable object-oriented software. Addison Wesley,1995.

[Ginzburg, 07] Ginzburg, J., Rossi, G., Urbieta, M., Distante, D.: Transparent Interface
Composition in Web Applications, 7th International Conference on Web Engineering
(ICWE2007), July, Italy, pp. 152-166,2007.

[Gordillo, 99] Gordillo, S. E., Balaguer, F., Mostaccio, C., Das Neves, F.: Developing GIS
Applications with Objects: A Design Patterns Approach. GeoInformatica 3(1): 7-32, 1999.

[Jacobson , 04] Jacobson, I., Ng, P.W.: Aspect Oriented Software Development with Use
Cases. Addison-Wesley Professional, 2004.

[Kiczales, 97] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.,
Irwin, J.: Aspect-Oriented Programming, 11th European Conference Object-Oriented
Programming (ECOOP'97), Finland, LNCS 1241, Springer, pp.220-242,1997.

[Longley, 05] Longley, P.A., Goodchild, M.F., Maguire, D.J. and Rhind, D.W.: Geographic
Information Systems and Science. Chichester: Wiley. 2nd edition, 2005.

[Moreira, 06] Moreira, A., Araújo, J., Whittle, J. Modeling Volatile Concerns as Aspects,
CAiSE, pp. 544-558, 2006.

[Niederhausen, 09] Niederhausen, M., van der Sluijs, K., Hidders, J., Leonardi, E., Houben,
G.J., Meißner, K.: Harnessing the Power of Semantics-Based, Aspect-Oriented Adaptation for
AMACONT, ICWE 2009 Conference, San Sebastián, Springer, pp. 106-120, 2009.

[Open, 11] OpenStreetMap, http://www.openstreetmap.org/, Accessed 4 June 2011.

[OpenLayers, 11] OpenLayers, http://openlayers.org/, Accessed 4 June 2011.

[Parnas, 72] Parnas, D. L.: On the Criteria To Be Used in Decomposing Systems into Modules,
Commun, ACM (CACM) 15(12):1053-1058, 1972.

[PyRL, 11] PyRouteLib, http://wiki.openstreetmap.org/wiki/PyrouteLib, Accessed 4 June 2011.

[Rashid, 06] Rashid, A., Moreira, A.: Domain Models Are NOT Aspect Free, Proc. MoDELS,
ACM/IEEE, pp. 155-169, 2006.

[Rashid, 03] Rashid, A., Moreira, A., Araújo, J.: Modularisation and Composition of Aspectual
Requirements, ACM International Conference on AOSD, pp. 11-20, 2003.

[Rodrigues, 09] Rodrigues, R., Rodrigues, A.: Spatial Operators for Collaborative Map
Handling, Groupware: Design, Implementation, and Use, Proc. of the 15th International
Workshop, CRIWG 2009, Peso da Régua, Douro, Portugal, LNCS, Springer-Verlag, 2009.

130 Urbieta M., Rossi G., Gordillo S.E., Rodrigues A., Araujo J., Moreira A. ...

[Schiller, 04] Schiller, J., Voisard, A.: Location-Based Services. Morgan Kaufmann, Elsevier.
USA. ISBN: 1-55860-929-6., pp. 67, 2004.

[Sutton, 02] Sutton, S., Rouvellou, I.: Modeling of Software Concerns in Cosmos. Proc. of
ACM Conf. AOSD 2002, pp. 127-133, ACM Press 2002,

[Whittle, 04] Whittle, J., Araújo, J.: Scenario Modeling with Aspects, in IEE Proceedings
Software, Vol. 151, no. 04, 2004, pp. 157-172,2004.

[Whittle, 07] Whittle, J., Moreira, A., Araújo, J., Rabbi, R., Jayaraman, P., Elkhodary, A.: An
Expressive Aspect Composition Language for UML State Diagrams, Int. Conference on Model
Driven Engineering, Languages and Systems (MODELS), Springer, 2007.

[Yee, 08] Yee, R.: Pro Web 2.0 Mashups: Remixing Data and Web Services, Apress, Berkeley,
California, 1-59059-858-X, 978-1-59059-858-0, February, 2008.

[Zipf, 03] Zipf, A., Merdes, M.: Is aspect-orientation a new paradigm for GIS development?,
6th Agile Conference on Geographic Information Science, Lyon, 2003.

131Urbieta M., Rossi G., Gordillo S.E., Rodrigues A., Araujo J., Moreira A. ...

