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Abstract: We discuss the domain of Toeplitz operators with radial symbols
in the Segal-Bargmann space: we point out and correct missleading staments
in previous works, establishing the conditions under which a given Toeplitz
operator is unitarily equivalent to a diagonal operator in the space l2(C) of
square summable complex sequences.
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1. Introduction

Toeplitz operators were introduced in physics by Berezin [1] [2] in the context
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of quantization procedures, i.e. in the association of a classical function in
phase space with a quantum observable. In this context Toeplitz operators
on the Segal-Bargmann space F 2(C, dµ) arise as a particular example of a
more general concept, that of linear operators with anti-Wick or contravariant
symbols defined on a Fock space [3].

Given a measurable function ϕ(z, z), the action of the Toeplitz operator Tϕ
with symbol ϕ(z, z) on a function f(z) ∈ F 2(C, dµ) is defined as the Bargmann
projection of the pointwise product ϕf . The operator has a natural domain
restricted to functions f such that the Bargmann projection of ϕf is well de-
fined. For the present discussion, notice that such domain may not be dense
in the Segal-Bargmann space, leading to a not well defined linear operator.
This fact poses a problem on various properties of Toeplitz operators, such as
composition closedness.

Well defined Toeplitz operators with radial symbols ϕ(|z|) are specially sim-
ple, and have been used elsewhere for elementary examples [4]. The underlying
reason is that such operators, under the unitary isometry relating the Segal-
Bargmann space with the space l2(C) of complex square integrable sequences,
are mapped into diagonal operators in the canonical orthonormal basis. Re-
cently, Grudsky and Vasilevski [5] presented a detailed description of this map-
ping and the corresponding behaviour of radial Toeplitz operators with the aim
of relating operator properties such as boundness and compactness to spectral
properties. However, not any radial symbol gives rise to a well defined Toeplitz
operator. We find that the class of symbols considered by these authors does
not guarantee the equivalence between radial Toeplitz operators and diagonal
operators on l2(C). This simple fact has been the source of erroneous assertions
in [5] and subsequent papers (see for instance [6]). A striking situation where
the claimed equivalence fails can be constructed in the form of a Toeplitz op-
erator with trivial natural domain (only the null vector), related to a diagonal
operator with dense domain in l2(C).

In the present work we review the Toeplitz operator facts mentioned above
and establish necessary and sufficient conditions for the unitary equivalence of
a radial Toeplitz operator on the Segal-Bargmann space with a diagonal oper-
ator on l2(C). We employ the Fock space formalism, usual in modern quantum
mechanics, in order to present a unified description of unitarily equivalent oper-
ators on F 2(C, dµ) and l2(C). The results are illustrated with simple examples,
to be contrasted with statements in Ref. [5].
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2. Preliminaries: Toeplitz Operators and Anti-Wick Operators

2.1. Toeplitz Operators

We denote L2(C, dµ) the Hilbert space of complex functions g(z, z) on the com-
plex plane C, not necessarily analytical, which are square integrable with respect
to the Gaussian measure dµ(z) = 1

πe
−|z|2dz dz (being dz dz the Lebesgue mea-

sure on C). The Segal-Bargmann space, denoted here F 2(C, dµ), is the Hilbert
subspace of L2(C, dµ) containing the square integrable analytic functions f(z)
on C, with respect to the same measure.

The Bargmann projection P relates L2(C, dµ) and F 2(C, dµ). It is defined
on functions g ∈ L2(C, dµ), with the help of the Poisson vectors

Kz(w) := ezw, (2.1)

as the inner product

P (g)(z) = (g,Kz) ≡
∫

C

ezwg(z)dµ(z). (2.2)

The Poisson vectors form an overcomplete set in F 2(C, dµ), then the Bargmann
projection maps L2(C, dµ) into F 2(C, dµ), and acts as the identity operator in
F 2(C, dµ). These features are essential for the definition of Toeplitz operators
(see for instance [7]):

Definition 1. Given a measurable function ϕ(z, z) defined on C, not
necessarily analytic, a Toeplitz operator with symbol ϕ(z, z) is a linear operator
Tϕ in the Segal-Bargmann space, acting on f(z) ∈ F 2(C, dµ) as

Tϕ(f)(z) = P (ϕf)(z), (2.3)

where P is the Bargmann projection.

In other words, the action of the Toeplitz operator on a function in the
Segal-Bargmann space is obtained as the Bargmann projection of the pointwise
multiplication of its symbol with the function. An explicit integral expression
reads

Tϕ(f)(z) =

∫

C

dµ(w)ezwϕ(w,w)f(w). (2.4)

For the aim of the present note it is crucial that, given a symbol ϕ, the
Bargmann projection in (2.3) may be not well defined for any f ∈ F 2(C, dµ):
the sufficient and necessary condition on f is that ϕf ∈ L2(C, dµ). We have
the following (see for instance [1]):
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Definition 2. Given a measurable function ϕ(z, z) defined on C, the nat-

ural domain for the Toeplitz operator with symbol ϕ is the subset of F 2(C, dµ)

Dom(Tϕ) = {f ∈ F 2(C, dµ) : ϕf ∈ L2(C, dµ)}. (2.5)

Remark. An endomorphism in a Hilbert space is said to be well defined
if its domain is dense in this space. Accordingly, we will say that the Toeplitz
operator Tϕ is well defined only when its natural domain is dense in F 2(C, dµ).

In order to deal with well defined Toeplitz operators, one must precise the
classes of symbols under consideration. We recall for instance that Berger
and Coburn [8] have developed a symbolic calculus for Toeplitz operators with
bounded symbols, whose natural domains are the whole space F 2(C, dµ). More
generally, Folland [9] considers a class containing unbounded symbols ϕ char-
acterized by

∃C > 0, δ < 1/2, such that |ϕ(z, z)| ≤ C exp(δ|z|2). (2.6)

Later, Coburn [4] defined a still more general class of symbols ϕ satisfying

∀z ∈ C, ϕKz ∈ L2(C, dµ) , (2.7)

that is requiring that all the Poisson vectors belong to the natural domain of
Tϕ.

In order to establish a natural unitary transformation between Toeplitz
operators and linear operators acting on complex sequences, we will resort in
the following to the definition of anti-Wick operators acting on an abstract Fock
space. This framework will also help in making apparent whether a Toeplitz
operator is well defined.

2.2. Fock Space Structure of F 2(C, dµ)

We use Dirac’s notation, usual in quantum physics, to distinguish abstract
Hilbert space elements from their concrete realizations as functions or sequences.
We also take the opportunity to present a brief summary of this notation and
its jargon (see Table 1).

A Fock space F (with one degree of freedom) is a Hilbert space containing
a unitary vector |0〉 (called vacuum vector in quantum physics), endowed with
an operator â such that â|0〉 = 0 (called annihilation operator), and its adjoint
â† (called creation operator), satisfying the canonical commutation rules ââ†−
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usual notation Dirac’s notation Dirac’s glossary

vector ψ |ψ〉 “ket”

dual linear form ψ∗ 〈ψ| “bra”

inner product (ψ, η) 〈η|ψ〉 “bracket”

(linear in ψ)

orthogonal projector Pψ |ψ〉〈ψ| “ket-bra”

linear operator Tψ T |ψ〉
(Tψ, η) 〈η|T |ψ〉

Table 1: Dirac’s notation for Hilbert spaces

â†â = I, with I the identity operator in F1. From these elements one can
construct the infinite numerable set of vectors

{
|n〉 = (â†)n|0〉√

n!

}

n∈N
, (2.8)

which is orthonormal and is assumed to be complete in the Hilbert space.
Completeness provides a resolution of the identity

I =
∑

n∈N
|n〉〈n| (2.9)

where the sum is understood in weak sense, meaning that for any pair of vectors
|ψ〉, |η〉 in the Fock space, 〈η|ψ〉 =

∑
n∈N〈η|n〉〈n|ψ〉.

The space F 2(C, dµ) has the structure of a Fock space with one degree of
freedom. The vacuum vector can be chosen as the constant function φ0(z) = 1,
while the annihilation and creation operators are given by the linear operators

â =
∂

∂z
, (2.10)

â† = z.

The recursive action of the creation operator â† on the vacuum vector generates
an infinite numerable set in F 2(C, dµ)

{
(â†)nφ0√

n!

}

n∈N
=

{
zn√
n!

}

n∈N
. (2.11)

1This Fock space provides a representation space for the Heisenberg-Weyl Lie algebra,
generated by

{
I, â, â†}.
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This set is complete, as it provides the expansion of any square integrable
analytic function as a Taylor expansion.

Remark. We will refer by abstract Fock space to the Hilbert space defined
from a vacuum vector and a pair of annihilation and creation operators (the
latter adjoint to the former with respect to some inner product) satisfying the
canonical commutation relations. Dirac’s notation in Table 1 will be used for
vectors, inner products and operators in the abstract Fock space. A concrete
example of a Hilbert space with such structure, such as F 2(C, dµ), will be
called in the following a realization of the abstract Fock space. In this sense,
the function φ0(z) realizes the vacuum vector |0〉, ∂

∂z realizes the operator â,
etc., in F 2(C, dµ).

Amongst the abstract Fock space F and any of its realizations there exists
a natural unitary isomorphism, that described by the identification of the vac-
uum vectors and the action of respective creation and annihilation operators.
Regarding the realization in F 2(C, dµ), we will denote by U : F → F 2(C, dµ)
such isomorphism and call ψ(z) = U(|ψ〉) the realization of |ψ〉. An explicit
expression can be given for ψ(z) in terms of Taylor expansions, but we will
provide a more convenient form in the next subsection.

2.3. Fock Space Coherent States

The realization of a Fock space vector |ψ〉 as a function ψ(z) ∈ F 2(C, dµ) can be
obtained by means of a construction closely related to the Bargmann projection.
In order to present this construction we introduce the so called coherent states
(see for instance [10]).

In a Fock space F with one degree of freedom one can define a set of vectors,
called coherent states, by

{
|z〉 = e−|z|2/2ezâ

† |0〉
}
z∈C

, (2.12)

where ezâ
†
stands for the series expansion

∑
n

1
n!z

n(â†)n. One can readily prove
that the coherent states |z〉 are the normalized eigenvectors of the operator â
labeled by their eigenvalues, â|z〉 = z|z〉.

The set of coherent states is not an orthogonal basis but forms an overcom-
plete set in F . The completeness is given by the resolution of the identity in
F

I =

∫

C

dz dz

π
|z〉〈z|, (2.13)
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with the integral understood in the weak sense, i.e.

〈η|ψ〉 =
∫

C

dz dz

π
〈η|z〉〈z|ψ〉 (2.14)

for any pair of vectors |ψ〉, |η〉 in the Fock space. From the the canonical
commutation rules one can show that coherent states are not orthogonal but

〈z|w〉 = e−
1

2
|z|2e−

1

2
|w|2ezw, (2.15)

implying that the set (2.12) is overcomplete. A general expansion of a vector
|ψ〉 in terms of coherent states is conveniently written as

|ψ〉 =
∫

C

dz dz

π
e−

1

2
|z|2f(z, z) |z〉 (2.16)

where, as before, it must be understood that

〈η|ψ〉 =
∫

C

dz dz

π
e−

1

2
|z|2f(z, z)〈η|z〉 (2.17)

for any vector |η〉 in F . It is important to notice that 〈ψ|ψ〉 <∞ if and only if
f(z, z) ∈ L2(C, dµ).

Overcompletness implies that, for a given vector |ψ〉, the function f(z, z) in
(2.16) is not unique. We can then consider an equivalence relation in L2(C, dµ)
: two functions are equivalent if they expand the same vector in (2.16). In
order to characterize the equivalence class of functions in L2(C, dµ) expanding
a a given vector |ψ〉, we compute from (2.16) the projections 〈z|ψ〉 on coherent
states obtaining

〈z|ψ〉 = e−
1

2
|z|2P (f)(z), (2.18)

where P (f) is the analytic Bargmann projection (2.2) of f . We then use (2.13)
to recover

|ψ〉 =
∫

C

dz dz

π
|z〉〈z|ψ〉 =

∫

C

dz dz

π
e−

1

2
|z|2P (f)(z)|z〉, (2.19)

showing that for a given vector |ψ〉 there exists an analytic square integrable
function ψ(z) := P (f)(z) expanding it in the coherent states set. Moreover, as
P 2 = P, this function ψ(z) is unique. With the help of (2.9) one can build the
power series expansion

ψ(z) =
∑

n∈N
〈n|ψ〉 z

n

√
n!

(2.20)
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showing that ψ(z) is the realization of |ψ〉 mentioned in the previous subsection.
We can then define the linear transformation U : F → F 2(C, dµ) by,

ψ(z) = U(|ψ〉) = e
1

2
|z|2〈z|ψ〉 (2.21)

It is invertible, with inverse read from (2.19) as

|ψ〉 = U−1(ψ(z)) =

∫

C

dz dz

π
e−

1

2
|z|2ψ(z)|z〉 (2.22)

and unitary, as it maps one-to-one the complete orthonormal set (2.8) onto the
complete orthonormal set (2.11). Thus equations (2.21) and (2.22) describe,
via coherent states, the isometry between the abstract Fock space F and its
realization F 2(C, dµ).

It is worth noticing that the concept of coherent states is far more general
than presented here. Coherent states [10] can be defined in any Hilbert space
providing a unitary irreducible representation for any compact semi-simple Lie
algebra. In those cases, generalized coherent states are labeled by points in
arising complex manifolds; vectors in the Hilbert space are realized as analytic
functions on these manifolds.

2.4. Isomorphism between the Fock Space and l2(C)

A vector |ψ〉 ∈ F can be expanded in the orthonormal set (2.11) as |ψ〉 =∑
m ψ|m〉 with coefficients ψm := 〈m|ψ〉 in l2(C), the Hilbert space of complex

square summable sequences. The linear transformation V : F → l2(C) defined
by

V (|ψ〉) = {〈m|ψ〉}m∈N (2.23)

is unitary, preserving the inner product
∑

m

η∗mψm =
∑

m

〈η|m〉〈m|ψ〉 = 〈η|ψ〉 (2.24)

because of (2.9). This makes l2(C) a realization the Fock space F , mapping
the set {|n〉} in (2.11) one-to one with the canonical complete orhonormal set
of sequences {〈m|n〉}m∈N.

Given the unitary isomorphism V , a linear operator A in F is realized
in l2(C) as the unitarily transformed operator t = V AV −1. In this way, the
creation and annihilation operators are realized in l2(C). Explicitly, if a vector
|ψ〉 belongs to the domain of A, t acts on the realization {ψm} as t ({ψm}) =
{ψ′

m} with
ψ′
m = 〈m|A|ψ〉 (2.25)
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Assuming that all the canonical basis vectors are in the domain of A on can
use (2.9) again to get

ψ′
m =

∑

n

〈m|A|n〉ψn, (2.26)

expressing as convergent series the elements of {ψ′
m} ∈ l2(C). The coefficients

〈m|A|n〉 are known in quantum physics as matrix elements of the operator A.
All the above can be used as a way to establish the isometry between

F 2(C, dµ) and l2(C), as realizations of the same Fock space 2 F . The isometry
is given transitively by W : F 2(C, dµ) → l2(C) defined by

W = V U−1. (2.27)

3. Toeplitz Operators as Realization of Anti-Wick Operators

In this section we show that some linear operators in the Fock space F are
realized as Toeplitz operators in F 2(C, dµ). This in turn provides an abstract
structure for their analysis.

We first introduce a class of integral operators on F formally given by a
diagonal expression in the coherent states set:

Definition 3. Given a measurable function ϕ(w,w), not necessarily ana-
lytic, let

Aϕ =

∫

C

dw dw

π
|w〉ϕ(w,w)〈w| (3.1)

The function ϕ(w,w) is known as the anti-Wick or contravariant symbol of
Aϕ [1], and we refer to Aϕ as an anti-Wick operator. The integral in (3.1)
is understood in the weak sense, meaning here that for any vector |ψ〉 in the
domain of Aϕ and for any vector |η〉 in F 2(C, dµ),

〈η|Aϕ|ψ〉 =
∫

C

dw dw

π
〈η|w〉ϕ(w,w)〈w|ψ〉. (3.2)

We emphasize that, for a given symbol ϕ(w,w), the operator in (3.1) may
be not well defined in F . According to original works by Berezin[1], we present
the following

2The present construction is one of the many ways to show the isometry between the Segal-
Bargmann space F 2(C, dµ) and l2(C). Indeed, since the Fock space is a unitary irreducible
representation of the Heisenberg-Weyl group [10], these isomorphisms are just examples of the
celebrated theorem by Stone and von Neumann [11] stating that any two unitary irreducible
representations of this group are unitarily equivalent.
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Definition 4. Given a measurable function ϕ(z, z), the natural domain

of the anti-Wick operator Aϕ is the subset of F

Dom(Aϕ) = {|ψ〉 ∈ F : ϕψ ∈ L2(C, dµ)}, (3.3)

where ψ(z) = e
1

2
|z|2〈z|ψ〉.

Of course, this is the subset of vectors |ψ〉 ∈ F with F 2(C, dµ) realization
ψ(z) in the natural domain (2.5) of the Toeplitz operator Tϕ. For such vectors,
(3.2) provides a strong sense to the formal definition of the anti-Wick operator
in (3.1). The operator Aϕ is a well defined endomorphism if and only if its
natural domain is dense in F .

Next, we explore the realization of anti-Wick operators in F 2(C, dµ). By
realization of an operator A in F as an operator in F 2(C, dµ), we mean the
unitarily transformed operator T = UAU−1, where U is the isometry in (2.21).
We have the following relation:

Proposition 5. Given a measurable function ϕ(z, z) defined on C, not
necessarily analytic, the operator UAϕU

−1 with U the isometry in (2.21), real-
izing the anti-Wick operator Aϕ in F 2(C, dµ), is the Toeplitz operator Tϕ.

Proof. Let |ψ〉 ∈ Dom(Aϕ) and denote ψ(z) = e
1

2
|z|2〈z|ψ〉 its realization in

F 2(C, dµ). The realization of Aϕ in F 2(C, dµ) acts on ψ(z) as

UAϕU
−1 (ψ) (z) = UAϕ|ψ〉 = e

1

2
|z|2〈z|Aϕ|ψ〉. (3.4)

The definition of Aϕ in (3.1) leads to

UAϕU
−1 (ψ) (z) =

∫

C

dµ(w)ezwϕ(w,w)ψ(w), (3.5)

a well defined Bargmann projection in L2(C, dµ),

UAϕU
−1 (ψ) (z) = P (ϕψ)(z). (3.6)

This is just the operator Tϕ as defined in (2.3). The natural domain Aϕ defined
in (3.3) is in one-to-one correspondence with the natural domain of Tϕ defined
in (2.5).

This result enables the discussion of Toeplitz operators properties in terms
of the more abstract anti-Wick operators. In particular, one can explore the way
that Toeplitz operators are realized in other isometric Fock space realizations.
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As mentioned in the Introduction, our interest points towards realizations on
complex sequences.

To end this section, let us comment on the origin of the anti-Wick name.
An operator form like (3.1) can be obtained for any operator with a polyno-
mial expression in â and â† [12]. The corresponding symbol is a polynomial
in w and w obtained by replacing â → w, â† → w after the operator terms
are arranged (by means of commutations) with creation operators acting be-
fore annihilation ones. This order is opposite to the normal or Wick order in
quantum physics, where annihilation operators act before creation ones, hence
it is called anti-Wick order. A well known example of operator with anti-Wick
form is the (dimensionless) Hamiltonian operator for a harmonic oscillator, usu-
ally written in normal order as Ĥ = â†â + 1/2. Its anti-Wick symbol results
H(w,w) = ww − 1/2. As we mentioned above, coherent states are defined
in more general contexts than the present one, leading to analytic functions
on complex manifolds. Contravariant operators, as defined in (3.1), lead to
generalized Toeplitz operators on those manifolds.[13]

4. Toeplitz Operators with Radial Symbols

Toeplitz operators with radial symbols ϕ(z, z) = ϕ(|z|) are relevant in physics.
They arise as realizations of anti-Wick operators with a detailed balance of
â† and â operations (called particle number conservation); for operators with
polynomial form in â† and â, a radial symbol means that each term must contain
the same number of â† and â factors, as in the harmonic oscillator example.

The main point in our discussion is that well defined Toeplitz operators with
radial symbols are particularly simple when realized in l2(C). This property
has been worked out in detail in Ref. [5], as a tool to analyze some Toeplitz
operators properties. However, not any radial symbol gives rise to a well defined
Toeplitz operator. This simple fact has been source of erroneous assertions in
[5] and following papers. The aim of the present work is to give a correct
formulation of these assertions.

The first step is the definition of an appropriate class of radial symbols:

Definition 6. We denote P the class of radial symbols

P = {ϕ(|z|) : ∀n ∈ N, zn ∈ Dom(Tϕ)} . (4.1)

where Dom(Tϕ), defined in (2.5), is the natural domain of the Toeplitz operator
Tϕ.
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For symbols in this class, a Toeplitz operator Tϕ is well defined, having a
dense domain in F 2(C, dµ) containing at least any polynomial (correspondingly,
the anti-Wick operator Aϕ has a dense domain in F , containing any vector |n〉).
We are in conditions to prove:

Theorem 7. Given a radial symbol ϕ(|z|) ∈ P, the Toeplitz operator Tϕ
defined in (2.3) is unitarily transformed by the isometry W defined in (2.27)
into a linear operator which is diagonal in the canonical basis of l2(C).

Proof. Given a radial symbol ϕ(|z|) ∈ P, consider the anti-Wick operator
Aϕ defined in (3.1). Its natural domain, in one-to-one correspondence with
the natural domain of the Toeplitz operator Tϕ, contains any vector |n〉 in the
canonical basis (2.8), so that the matrix elements 〈m|Aϕ|n〉 are well defined.
They are given by

〈m|Aϕ|n〉 =
∫

C

dµ(z)ϕ(|z|) z
m

√
m!

zn√
n!
. (4.2)

Here ϕ(|z|) ∈ P ensures that the integral is a well defined inner product in
L2(C, dµ). Using polar coordinates for z it is straightforward to show that

〈m|Aϕ|n〉 = δmnϕn (4.3)

with δmn the Krnecker delta and

ϕn =
2

n!

∫ ∞

0
ϕ(r)r2n+1e−r

2

dr. (4.4)

Then, the linear operator tϕ = V AϕV
−1 realizing Aϕ in l2(C), expressed in the

form (2.26), has only diagonal non vanishing matrix elements. Applied to the
sequence {ψn}, it gives

tϕ ({ψn}) = {ϕnψn}.
On the other hand, from Proposition 5, Aϕ is unitarily transformed by U in
(2.21) to the Toeplitz operator Tϕ with symbol ϕ(|z|), Tϕ = UAϕU

−1. Then
WTϕW

−1 = tϕ.

A key point in the proof above is that Aϕ can be applied to any vector in
the set (2.8). Without this assumption, some of the matrix elements in (4.2)
would be not well defined and the unitary equivalence between Tϕ and tϕ would
fail. This is the content of

Proposition 8. Given a radial symbol ϕ(|z|) /∈ P, the Toeplitz operator
Tϕ is not unitarily equivalent to any diagonal linear operator in the canonical
basis of l2(C).



A DISCUSSION ON THE NATURAL DOMAIN OF... 91

Proof. Let ϕ(|z|) /∈ P, then there exists n ∈ N such that n(z) = zn√
n!

does

not belong to the natural domain of the Toeplitz operator Tϕ. Now assume that
an operator S : F 2(C, dµ) → l2(C) is a unitary transformation. Then STϕS

−1

is not defined for the finite sequence S(n(z)). But finite sequences belong to
the domain of any diagonal linear operator in l2(C). Thus, STϕS

−1 cannot be
a diagonal operator in the canonical basis of l2(C).

From Theorem 7 one learns that well defined Toeplitz operators with radial
symbols are indeed very simple operators. The unitarily equivalent diagonal
form in l2(C) allows to read the infinite numerable spectrum with eigenvalues
ϕn. Using the isometry W , the corresponding normalized eigenfunctions in
F 2(C, dµ) are zn/

√
n!. All of this allows to characterize properties such as

boundness or compactness of a radial Toeplitz operator in terms of its symbol.

Remark. The importance of caring about the domain of definition of the

operators. A study of radial Toeplitz operators has been carried out in Ref. [5],
with some erroneous statements. The authors use the well established isome-
try between F 2(C, dµ) and l2(C), but they consider a class of radial symbols
L∞
1 (R+, e

−r2), defined as the set of all measurable functions ϕ(r) on R+ such
that

∀m ∈ N,

∫ ∞

0
|ϕ(r)|rme−r2dr <∞ , (4.5)

and claim that Toeplitz operators with radial symbols in this class are unitarily
equivalent to diagonal operators in l2(C). We observe that the condition (4.5)
just makes ϕn in (4.4) computable. As we showed in Proposition 8, P is the
largest class of radial symbols such that Toeplitz operators can unitarily trans-
formed into diagonal operators in l2(C). The class L∞

1 (R+, e
−r2) is too wide

and contains symbols that are not in our class P. To make this clear we present
the following

Example 9. Let ϕ(r) = e(
1

2
+

√
3

2
i)r2 . It belongs to L∞

1 (R+, e
−r2) allowing

to compute, by (4.4), an associated (bounded) sequence ϕn = (12 −
√
3
2 i)

−(n+1).
However, ϕ(|w|) /∈ P: it is enough to observe that for n = 0, n(z) does not
belong to Dom(Tϕ). In consequence, the Toeplitz operator Tϕ is not unitarily
equivalent any diagonal operator in l2(C). Moreover, Dom(Tϕ) = {0} in this
example, while Dom(tϕ) = l2(C)!

Then, discussion of properties such as boundness or compactness of radial
Toeplitz operators, founded on the mapping in Theorem 7, must be restricted
to operators with symbols in P.
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5. Related Open Problems

We have proven that P is the largest class of radial symbols where Toeplitz
operators can be unitarily mapped into diagonal operators in l2(C). The inverse
problem is then relevant: given a sequence defining the spectrum of a diagonal
operator in the canonical basis of l2(C), is it possible to map such operator into
a Toeplitz operator in F 2(C, dµ)?

In Ref. [5], by means of a nice construction based on analytic contin-
uation and Fourier transforms, the authors were able to build functions in
L∞
1 (R+, e

−r2) producing by (4.4) any bounded complex sequence. However, as
discussed in Section 4, taking a function in this set as a radial symbol for a
Toeplitz operator does not guarantee that it is equivalent with a diagonal op-
erator in l2(C). In consequence, their claim in Theorem 3.7 mapping diagonal
operators in l2(C) with bounded spectrum into Toeplitz operators with radial
symbols is not valid. In particular, for the sequence in Example 9, the resulting
symbol leads to a Toeplitz operator with trivial domain.

The described inverse problem is still an open one. We limit ourselves
here to provide a family of situations (generalizing the previous example) that
illustrate several possibilities.

Example 10. Consider the sequences {γ(k)n } with γ
(k)
n = k−n, k ∈ C.

For Re(k) > 1/2, these sequences are obtained by (4.4) from a radial sym-

bols γ(k)(|z|) = ke(1−k)|z|
2

belonging to P. Then, The Toeplitz operator T
(k)
γ is

equivalent to the operator in l2(C) with diagonal matrix elements {γ(k)n }. This
holds even for unbounded sequences, when |k| < 1.

For 0 < Re(k) ≤ 1/2, these sequences are still obtained by (4.4) from a
radial symbols γ(k)(|z|) = ke(1−k)|z|

2

belonging to L∞
1 (R+, e

−r2), but not to P.
The Example 9 falls in this case, with |k| = 1.

We make some remarks on these examples:

— Symbols γ(k)(|z|) = ke(1−k)|z|
2

belong simultaneously to the sets P in
(4.1), Folland’s class in (2.6) and Coburn’s class in (2.7), or to none of them.
They thus illustrate the equivalence of Toeplitz radial operators with diagonal
operators in l2(C) also in those contexts.

— As an application in quantum physics, the density matrix operator ρ̂ at
inverse temperature β is constructed from a Hamiltonian Ĥ as proportional to

e−βĤ . For a harmonic oscillator with Ĥ = â†â+1/2, the operator ρ̂ can be writ-
ten as an anti-Wick operator with a symbol of the present form, proportional
to e(1−k)|z|

2

with k > 1. The spectrum in this case is bounded.
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— Finally, we recall the kind of example provided in Ref. [4] as an obstruc-
tion for the composition of Toeplitz operators to be closed, which is included
in our analysis. Indeed, consider a symbol γ(k)(|z|) with Re(k) > 1/2 but

0 < Re(k2) < 1/2, and |k| = 1 (such as k = 3
4 +

√
7
4 ). The Toeplitz oper-

ator T
(k)
γ is equivalent to a diagonal operator in l2(C) with matrix elements

1/kn. Now consider the composition of T
(k)
γ with itself: it is straightforwardly

worked out when realized in l2(C), as a diagonal operator with matrix elements
1/k2n. Following [5], one could construct from this bounded sequence a symbol
η(|z|) = k2e(1−k

2)|z|2 in L∞
1 (R+, e

−r2), but not belonging to P. While their

claim in Theorem 3.7 implies that T
(k)
γ T

(k)
γ can be written as a Toeplitz opera-

tor with symbol η(|z|), our results prove, as discussed in Ref. [4], that TϕTϕ is
not a well defined Toeplitz operator, i.e. the composition is not closed.
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