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End vertices in containment interval

graphs

Liliana Alcon Noemi Gudiño Marisa Gutierrez

Abstract

An interval containment model of a graph maps vertices into

intervals of a line in such a way that two vertices are adjacent if

and only if the corresponding intervals are comparable under the

inclusion relation. Graphs admitting an interval containment model

are called containment interval graphs or CI graphs for short. A

vertex v of a CI graph G is an end-vertex if there is an interval

containment model of G in which the left endpoint of the interval

corresponding to v is less than all other endpoints. In this work,

we present a characterization of end-vertices in terms of forbidden

induced subgraphs.

1 Introduction and previous results

A graph G is a containment graph of intervals (or CI for short) if there

is a collection of intervals of the real line (Iw)w∈V (G) satisfying that uw

is an edge of G if and only if Iu ⊂ Iw or Iw ⊂ Iu; the collection is called

a CI model of G. Without loss of generality, it can be assumed that the

intervals of a CI model are closed, with positive length and no two have
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Figure 1: These graphs, together with the complement of the graphs in

Figure 2, constitute a minimal family of forbidden induced subgraphs for

comparability graphs.

a same endpoint [5, 8]. Let lw and rw denote, respectively, the left and

the right endpoint of the interval Iw. A vertex v is an end-vertex of G if

there exists a CI model of G where lv < lw for every w ∈ V (G)− {v}.
In this paper, we describe end-vertices of CI graphs using a self - com-

plementary family of forbidden induced subgraphs. In addition, in Section

3, homogeneously representable CI graphs (all vertices are end-vertices)

are characterized by a simple finite family of forbidden induced subgraphs.

A transitive orientation
−→
E of a graph G is an assignment of one of the

two possible directions, −→uw or −→wu, to each edge uw ∈ E(G), such that

if −→uv ∈
−→
E and −→vw ∈

−→
E then −→uw ∈

−→
E . Graphs admitting a transitive

orientation are called comparability graphs [5, 8].

Next theorem, due to Gallai, provides a characterization of compara-

bility graphs in terms of forbidden induced subgraphs. The complement

of a graph G is the graph G =
(
V (G), E(G)

)
such that uv ∈ E(G) if and

only if uv /∈ E(G).

Theorem 1 ([3]). A graph G is a comparability graph if and only if G

contains none of the graphs depicted in Figure 1, nor the complement of

those in Figure 2, as induced subgraphs.

A vertex v of a comparability graph G is a sink (respectively, a source)
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Figure 2: The complement of these graphs, together with the graphs in

Figure 1, constitute a minimal family of forbidden induced subgraphs for

comparability graphs.
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if there exists a transitive orientation
−→
E of G such that −→vw /∈

−→
E (−→wv /∈

−→
E )

for all w ∈ V (G). Olariu and Gimbel, almost simultaneously, obtained

a characterization of sinks in terms of forbidden induced subgraphs as

follows.

Theorem 2 ([4, 6]). Let G be a comparability graph. A vertex v of G is

a sink if and only if G contains none of the graphs A, B, C, D2k+1 with

k ≥ 2, En with n ≥ 3, in Figure 3, with v as the designated vertex.

CI graphs have been widely studied and characterized in different ways.

For instance, they are co-comparability graphs, and in [1, 8] is showed the

relationship between CI graphs and the partially ordered sets (or posets)

of dimension at most 2. Given a poset P = (V,≤), the comparability

graph of P is GP = (V,E) with E = {uv : u < v or v < u in P}. The

dimension of a poset P is the minimal number of linear extension of P

whose intersection is P [1]. The CI graphs are exactly the comparability

graphs of posets with dimension at most 2.

Theorem 3 ([1]). A graph G is CI if and only if G and its complement

G are comparability graphs.

In addition, the class of CI graphs is equivalent to the class of permu-

tation graphs [2, 7].

2 Characterization of end-vertices of CI graphs

In the proof of the main Theorem 5, we will use the following two results.

Remark 1 ([1]). If
−→
E is a transitive orientation of a CI graph G then

there exists a CI model (Iw)w∈V (G) of G compatible with
−→
E ; ie. for each

pair of vertices u,w ∈ V (G), Iu ⊂ Iw if and only if −→uw ∈
−→
E .

Given a CI model of a graph G, the right set Rv of a vertex v ∈ V (G)

is {w : lw < rv < rw}; and the left set Lv is {w : lw < lv < rw}. Clearly, if

w ∈ Rv ∩ Lv then Iv ⊂ Iw, and, consequently, w is adjacent to v.
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Lemma 4. Let (Ivi)0≤i≤k be a CI model of a chordless path P = [v0v1 . . . vk]

with k ≥ 2. If Iv1 ⊂ Iv0 then exactly one of the following statements holds:

(i) v2 ∈ Rv0 and rv0 < rvi for 2 ≤ i ≤ k. (ii) v2 ∈ Lv0 and lvi < lv0 for

2 ≤ i ≤ k.

Proof. We proceed by induction. The proposition holds trivially when

k = 2. Let k > 2 and assume Iv1 ⊂ Iv0 . Since v2 is adjacent to v1 and

nonadjacent to v0, we have that v2 ∈ Rv0 \ Lv0 or v2 ∈ Lv0 \Rv0 .

Assume, w.l.g., that v2 ∈ Rv0 . Thus, rv0 < rvi for 2 ≤ i ≤ k − 1. To

complete the proof, we will show that rv0 < rvk .

Since vk is adjacent to vk−1, it follows that Ivk−1
⊂ Ivk or Ivk ⊂ Ivk−1

.

In the former case, it is clear that rv0 < rvk−1
< rvk . Thus, assume

Ivk ⊂ Ivk−1
; and, in order to derive a contradiction, suppose that rvk < rv0 .

Since rv0 < rvk−1
and vk−1 is not adjacent to v0, we have that lv0 < lvk−1

.

Therefore lv0 < lvk−1
< lvk , and so Ivk ⊂ Iv0 , which contradicts the fact

that vk and v0 are nonadjacent. �

Theorem 5. Let G be a connected CI graph. A vertex z is an end-vertex

of G if and only if G contains none of the graphs A, A, B, B, C, C,

D2k+1, D2k+1, E3, E2k, E2k, for k ≥ 2, as induced subgraphs with z as

the vertex highlighted in Figure 3.

Proof. Let (Iw)w∈V (G) be a CI model of G with lz < lw for all w ∈
V (G)− {z}. Let

−→
E be the orientation of G obtained by orienting u to v

(−→uv) whenever Iu ⊂ Iv. Recall that two vertices are adjacent if and only

if the interval corresponding to one of them is contained in the interval

corresponding to the other. Clearly,
−→
E is a transitive orientation of G and

z is a sink; thus, by Theorem 2, G does not contain the graphs A, B, C,

D2k+1 with k ≥ 2 and En with n ≥ 3 as induced subgraph with z as the

designated vertex. Observe that E3 = E3.

Let H be any induced subgraph of G containing vertex z. Denote by

H ′ the graph H plus a vertex z′ adjacent to z, that is, H ′ = (V (H) ∪
z′, E(H) ∪ z′z) and denote by H ′′ the graph H ′ plus a vertex z′′ adjacent
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Figure 3: The highlighted vertices in the graphs A, B, C, D2k+1 with

k ≥ 2, En with n ≥ 3, cannot be a sink of a comparability graph. The

highlighted vertices in the graphs A, A, B, B, C, C, D2k+1, D2k+1, E3,

E2k, E2k, for k ≥ 2, cannot be an end-vertex of a CI graph.
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to z′, that is, H ′′ = (V (H ′′) ∪ z′′, E(H) ∪ z′′z′). We claim that H ′ and

H ′′ are CI graphs .

Indeed, CI models ofH ′ andH ′′ can be obtained by adding to (Iw)w∈V (H)

the intervals Iz′ = [lz + ε, lz + 2ε] and Iz′′ = [lz − ε, lz + 3ε] with ε small

enough.

Now, in order to derive a contradiction, assume that H is any one of

the graphs A, B, C, D2k+1, E2k, with k ≥ 2, and z is the vertex of

H highlighted in Figure 3. Notice that (A)′′ = (B)′ = T in Figure 2;

(C)′ = M in Figure 2; (D2k+1)′ = J2k+1 in Figure 1 and E2k
′ = N2k+1 in

Figure 2.

Thus, by the previous claim (2), these graphs are CI, which contradicts

the fact that neither the graphs depicted in Figures 1 and 2 nor their

complements are CI graphs.

To prove the converse, notice first that, by Theorem 2, the vertex z

must be a sink of G, which means there exists a transitive orientation
−→
E

of G in which all edges incident in z are oriented towards z.

Let G′ be the graph G plus a pendent vertex z′ adjacent to z. Since a

transitive orientation
−→
E′ of G′ can be obtained adding

−→
z′z to

−→
E , it follows

that G′ is a comparability graph and z is a sink of G′.

Assume, in order to derive a contradiction, that G′ is not CI. Thus,

G′ contains an induced subgraph H which is either a graph in Figure 2 or

the complement of a graph in Figure 1; even more, H must contain z′, so

H must have a vertex of degree one and z must be the only neighbor of

that vertex.

An inspection of those figures reveals that H has to be one of the graphs

T , S, M , G1, G2, G3 or Nn for some n ≥ 4, in Figure 2; or the complement

of the graph J2k+1 for some k ≥ 2 in Figure 1. In the following paragraph,

we will show that each case implies a contradiction, therefore G′ is a CI

graph.

* If H is any one of the graphs S, G1, G2 or G3, then G contains the

graph A in Figure 3 with z as the highlighted vertex.

* If H is the graph T , then G contains the graph B in Figure 3 with z
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as the highlighted vertex.

* If H is the graph M , then we have to consider two cases depending on

which vertex of degree one is z′: its neighbor z is adjacent to two vertices

with degree 3, or its neighbor z is adjacent to a vertex with degree 3 and

other with degree 2. In the first case, G contains the graph A in Figure 3

with z as the highlighted vertex; and, in the latter, G contains the graph

C in Figure 3 with z as the highlighted vertex.

* If H is the graph N4, then G contains the graph E3 in Figure 3 with

z as the highlighted vertex.

* If H is the graph Nn for some n > 4, then, again, we consider two

cases depending on which vertex of degree one is z′: if z′ is the vertex

labelled 1 (or n) then G contains the graphs En−1 and Dn−1 in Figure 3

with z as the highlighted vertex. Notice that En−1 is forbidden when n

is odd and Dn−1 is forbidden when n is even. If z′ is neither the vertex

labelled 1 nor the vertex labelled n, then G contains the graph A in Figure

3 with z as the highlighted vertex.

Thus, we have proved that G′ is CI. By Remark 1, there exist a CI

model (Iw)w∈V (G′) compatible with
−→
E′, i.e. −→uv ∈

−→
E′ implies Iu ⊂ Iv.

Clearly, if Iz is an end interval in this model, the vertex z is an end-

vertex of G, and the proof follows.

So, we assume that the left set Lz and the right set Rz of z are non

empty. The fact that z is the only neighbor of z′ implies Lz ∩ Rz = ∅.
Let x be a vertex of Lz minimizing the distance to z in G′; and Pzx =

[v0 = z, v1, v2, ...vk−1, vk = x] be a shortest path joining z with x. Since z

is a sink, we have that −→v1z ∈
−→
E′, which implies that Iv1 ⊂ Iz. Therefore,

by Lemma 4, v2 ∈ Rz and rz < rvi for every i, or v2 ∈ Lz and lvi < lz for

every i. Since vk = x ∈ Lz, the former is not possible; thus, v2 ∈ Lz which

implies k = 2 and the existence of the induced path [z, v1, x]. Analogously,

there exist vertices v′1 and y ∈ Rz inducing the path [z, v′1, y].

The proof will be complete showing that the concatenation of both

paths induces the graph A with z as the highlighted vertex.

Clearly, x and y are non-adjacent. We claim that x is non-adjacent to
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v′1. Indeed, if x is adjacent to v′1, we have that rv′1 < rx; on the other hand,

since z′ has degree 1 and Iz′ ⊂ Iz, it follows that rx < rz′ and lz′ < ly.

Therefore, lz′ < ly < lv′1 < rv′1 < rx < rz′ which implies Iv′1 ⊂ Iz′ , contrary

to the fact that z′ is adjacent only to z. Analogously, y is non-adjacent to

v1. �

As a consequence of Theorems 2 and 5, we have the following result.

Corollary 6. Let G be a CI graph. A vertex z is an end-vertex of G if

and only if z is a sink of G and G.

3 Characterization of CI homogeneously repre-

sentable graphs

A CI graph G is homogeneously representable if every one of its vertices

is an end-vertex.

Theorem 7. Let G be CI. The graph G is homogeneously representable

if and only if it contains none of the graphs A, A, C, C, E3, depicted in

Figure 3, as induced subgraphs.

Proof. It is a straightforward consequence of Theorem 5 and the facts: A

is an induced subgraph of B and of D2k+1, for k ≥ 2; and E3 is an induced

subgraph of E2k, for k ≥ 2. �

In the previous theorem, the condition that G is a CI graph can be

relaxed by adding C5 to the family of forbidden induced subgraph.

Theorem 8. A graph G is CI homogeneously representable if and only if

it contains none of the graphs C5, A, A, C, C, E3, depicted in Figure 3,

as induced subgraphs.

Proof. The direct implication follows from Theorem 7 and the fact that

C5 is not a comparability graph.

To prove the converse, keep in mind that the graphs depicted in Figures

1 and 2 and their complements are a family of forbidden induced subgraphs

of a CI graph; and notice that C5 and E3 are self-complementary. �
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