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Measurements, quantum discord, and parity in spin-1 systems
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We consider the evaluation of the quantum discord and other related measures of quantum correlations
in a system formed by a spin-1 and a complementary spin system. A characterization of general projective
measurements in such system in terms of spin averages is thereby introduced, which allows one to easily visualize
their deviation from standard spin measurements. It is shown that the measurement optimizing these measures
corresponds in general to a nonspin measurement. The important case of states that commute with the total
Sz spin-parity is discussed in detail, and the general stationary measurements for such states (parity preserving
measurements) are identified. Numerical and analytical results for the quantum discord, the geometric discord,
and the one way information deficit in the relevant case of a mixture of two aligned spin-1 states are also presented.
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I. INTRODUCTION

There is presently a great interest in the investigation of
quantum correlations and “quantumness” in mixed states of
composite quantum systems. While in the case of pure states
such correlations can be identified with entanglement, the
situation in mixed states is more complex, as separable (i.e.,
nonentangled) mixed states, defined as convex mixtures of
product states [1], can still exhibit signatures of quantum
correlations, as the different products may not commute. The
interest has been further enhanced by the existence of mixed
state based quantum algorithms, such as that of Knill and
Laflamme (KL) [2], able to achieve an exponential speedup
over the classical algorithms with no entanglement [3]. In
contrast, entanglement is essential for achieving exponential
speedup in pure state based quantum computation [4].

Consequently, alternative measures of quantum correlations
for mixed states, such as the quantum discord [5–7], have
recently received much attention. Though coinciding with
entanglement in pure states, discord differs essentially from
the latter in mixed states, being nonzero in most separable
states and vanishing just for “classically correlated” states, i.e.,
states which are diagonal in a standard or conditional product
basis. The existence of a finite discord in the KL algorithm [8]
further increased the interest on this measure. Other measures
with similar properties were also recently introduced [9–16],
including in particular the geometric discord [11], which
allows an easier evaluation. Various fundamental properties
[10–15,17,18] and operational interpretations [14,15,19–26]
of these measures were recently unveiled. For instance,
from the results of [27] it follows that in a pure tripartite
system |9ABCi, the quantum discord between C and A (as
obtained due to a measurement in C) is the entanglement of
formation [28] between A and B plus the conditional entropy
S(A|B) [18,20,21]. This entails that such discord provides
the entanglement consumption in the extended quantum state
merging scheme from A to B [20,21]. Besides, states with
nonzero discord can be used, even if separable, to generate
entanglement in the protocols of [14] or [22], with the quantum
discord and the one-way information deficit [12,14] (a closely
related quantity) providing the minimum partial and total
distillable entanglement between the measurement apparatus
and the system after a von Neumann measurement on the

latter [14]. Operational interpretations of the geometric discord
were also recently provided [25,26]. See Ref. [15] for a recent
review.

A common feature of discord type measures is that
they involve a difficult minimization over a general local
measurement on one of the system constituents. Consequently,
most evaluations were so far restricted to two qubits (two
spins 1/2) or a qubit plus a complementary system, where
the most general projective measurement in the local qubit
reduces to a standard spin measurement and is hence easy to
parametrize [5,8,11,29–32]. Closed evaluations in Gaussian
systems with Gaussian type measurements were also achieved
[33,34]. Nonetheless, even for two qubits, general analytic
expressions are available just for the geometric discord [11]
and some related measures [32]. Here we will examine the
evaluation of the quantum discord (and related measures)
between a spin-1 and a complementary spin system. This
requires first a convenient characterization of measurements in
a spin-1 system (a qutrit), since they are no longer restricted to
standard spin measurements as in the spin s = 1/2 case, even
when considering just standard projective measurements. We
provide in Sec. II a simple description of such measurements
in terms of spin averages, and show that spin measurements
are not optimum in general for spin s > 1, even if the state is
described in terms of basic spin observables.

We then analytically identify, in Sec. III, the stationary
projective measurements for states exhibiting Sz parity sym-
metry, an ubiquitous symmetry present for instance in any
nondegenerate eigenstate of spin arrays with XYZ couplings
of arbitrary range in a transverse field [35] (for a pair of qubits
such symmetry leads to the well-known X states [29]). This
allows a considerable simplification of the problem of discord
evaluation in parity conserving systems. As application,
we present analytical results for the quantum discord, the
geometric discord and the one-way information deficit in the
important case of a mixture of two aligned spin-1 states.
Such mixture represents the reduced state of any spin pair
in the ground state of XYZ spin-1 chains in the immediate
vicinity of the transverse factorizing field [35,36], so that the
present results represent the universal limit of these quantities
at such point. We also explicitly determine the projective
measurements minimizing these quantities for this state and

022104-11050-2947/2012/86(2)/022104(7) ©2012 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/323096771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevA.86.022104


R. ROSSIGNOLI, J. M. MATERA, AND N. CANOSA PHYSICAL REVIEW A 86, 022104 (2012)

show that they exhibit important differences. Conclusions are
finally given in Sec. IV.

II. MEASUREMENTS IN SPIN SYSTEMS

A. General case

We first consider a spin s system, where we will denote with
S = (Sx,Sy,Sz) = S/h̄ the dimensionless angular momentum
and |mi the eigenstates of Sz (standard basis). Spin mea-
surements are measurements in a basis of eigenstates |mki =
e−iθ k ·S|mi of the spin component k · S along the direction of a
unit vector k, and are then specified by just two real parameters
which determine its orientation. For s > 1 these measurements
are, however, only a particular case of complete projective
measurement (von Neumann measurement), i.e., those defined
by a complete set of rank 1 orthogonal projectors. The latter
are determined by a general unitary transformation of the Sz

eigenstates,

|mU i = U |mi, (1)

and depend therefore on d(d − 1) real parameters, with d =
2s + 1 (U = eiH , with H Hermitian, depends on d2 real
parameters, but just d2 − d are sufficient to determine the set
of projectors {5U

m = |mU ihmU |} defining the measurement,
as the phase of each |mU i is irrelevant). The states (1) are
the eigenstates of the operator SU

z = USzU
†, which in general

is no longer a linear combination of the original Sμ (μ =
x,y,z). Such measurements can, nonetheless, be regarded
as measurements of a generalized spin SU

z (the algebra
[SU

μ ,SU
ν ] = i²μνσ SU

σ still holds), and can be implemented as
measurements in the standard Sz basis preceded by a single
qudit gate U †.

A first glimpse into the nature of these measurements can
be attained through the set of vectors

hSimU
= hmU |S|mU i, (2)

which, in contrast with the case of a spin measurement
(hSimk = mk), (i) may have any length between 0 and s and (ii)
are not necessarily collinear. Nonetheless, since S is traceless,
they always sum to zero:X

m

hSimU
= 0. (3)

While not fully identifying the measurement, the set of
averages (2) allow a rapid visualization of its deviation
from a standard spin measurement: if hSimU

= mk for m =
−s, . . . ,s, it is clearly a spin measurement along k due to the
orthogonality of the basis.

B. Spin-1 systems

In the case of a spin-1 system (d = 3), Eq. (3) entails that
the three vectors (2) are coplanar. Moreover, the operators SU

z

are at most quadratic functions of the Sμ, as any operator in
such a system can be written as a linear combination of the
three Sμ and the six operators (SμSν + SνSμ)/2. For example,
a nonspin measurement in such system is provided by the states
|mαi = e−iα(SxSy+SySx )|mi, i.e.,

|± 1αi = cos α |± 1i ± sin α |∓ 1i, |0αi = |0i, (4)

I II III IV

FIG. 1. (Color online) Representation of measurements in a
spin-1 system through the spin expectation values in the basis states.
I: Spin measurement along z. II: Collinear measurement, determined
by the definite parity states (4) or (5) [β = 0 in Eq. (7)]. III: Y -type
measurement, determined by the basis (8)–(10) [β = π/4 in (7)]. IV:
General measurement, determined by basis (7) and (8).

which satisfy Sα
z |mαi = m|mαi with

Sα
z = Sz cos 2α + ¡

S2
x − S2

y

¢
sin 2α.

They lead to

hSi±1α
= (0,0, ± cos 2α), hSi0α

= 0,

and hence to the second plot in Fig. 1: the vectors
hSimα

are still collinear but |hSi±1α
| 6 1. Moreover, for

α = π/4, hSimα
= 0 ∀m, showing that the average spin may

vanish in all elements of the basis: in this case |± 1αi =
(|± 1i ± |∓ 1i)/√2 become the zero eigenstates of Sy and
Sx , respectively, which form together with |0i an orthonormal
basis.

The most general basis (disregarding global phases and
permutations) leading to collinear averages along z for s = 1
can be obtained by rotating the states (4) around the z axis,
which leads to states¯̄

mφ
α

® = e−iφSz |mαi. (5)

These are the most general states with definite Sz parity:

Pz

¯̄
mφ

α

® = (−1)m+1
¯̄
mφ

α

®
, Pz ≡ eiπ(Sz+1). (6)

We now show that the six parameters specifying a general
projective measurement in a spin-1 system can be decomposed
into three angles (α,β,γ ) which determine the “intrinsic” plot
of vectors hSimU

(and hence the type of measurement), plus
three angles (ψ,θ,φ) which determine the orientation of this
plot and of the ensuing states. Assuming first hSimU

6= 0 for
some m, we choose the intrinsic z axis in the direction of
this vector. A state a|1i + b|0i + c|−1i giving rise to hSi =
(0,0,hSzi) should satisfy bā + b̄c = 0, which implies b = 0 if
hSzi 6= 0 (|a| 6= |c|). Discarding total phases, the most general
orthonormal basis containing such state is then¯̄1r

0r

® = cos β

sin β (e−iφ0 cos α|1i + eiφ0 sin α|−1i) ∓ sin β

cos βe−iγ |0i,
(7)

|−1ri = −e−iφ0 sin α|1i + eiφ0 cos α|−1i, (8)

where r ≡ (α,β,γ ). These states lead in general to non-
collinear spin averages of different lengths (plot IV in Fig. 1).
Choosing φ0 such that the diagram lies in the intrinsic x,z plane
(hSyimr = 0 ∀m), we obtain tan φ0 = tan γ tan(π/4 − α) and

hSi1r
0r

= ¡ ∓ sin 2β
√

(1 + cos 2γ sin 2α)/2,0,
cos2 β

sin2 β
cos 2α

¢
,

hSi−1r = (0,0, − cos 2α). (9)
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Hence, (α,β,γ ) determine respectively hSi−1r and the compo-
nents of hSi0r parallel and orthogonal to hSi−1r . Equations (9)
also show that the angle between vectors hSimr always
exceeds π/2: hSimr · hSim0

r
6 0 if m 6= m0, vanishing just if

one average is zero. The states (7) and (8) can be written as

|mri = ei(γ (S2
z −1)−φ0Sz)e−iα(SxSy+SySx )e

i
β√
2

(Sy+SySz+SzSy )|mi.
The most general orthonormal basis is then obtained by

applying a general rotation e−iψSze−iθSy e−iφSz to this basis.
This also includes the case hSimU

= 0 ∀m, since such basis are
always formed by the zero eigenstates of the components of
S along three orthogonal directions: for a state a|1i + b|0i +
c|−1i, the condition hSi = 0 implies bā + b̄c = 0 and |a| =
|c|. It is then the eigenstate with zero eigenvalue of k · S, with
(assuming, with no loss of generality, b real and c = −ā) k =
(−√

2 Re(a),
√

2 Im(a),b). Orthogonality of the basis states
then implies that of the associated vectors k (as kk0 = aā0 +
bb0 + āa0). Hence, these bases can be obtained, for instance,
through a suitable rotation of the intrinsic case α = π/4,β =
γ = 0, where Eqs. (7) and (8) reduce to the zero eigenstates of
Sy , Sz, and Sx .

We may then set α,β ∈ [0,π/4] and γ ∈ (−π/2,π/2] in
Eqs. (7) and (8), as other values can be mapped to these ranges
after suitable rotations (disregarding total phases). Notice that
if γ ∈ (0,π/2) and β 6= 0, the values ±γ lead to inequivalent
and conjugate basis [as φ0(−γ ) = −φ0(γ )], but the same set
of spin averages. The definite parity states (4) are recovered
for β = γ = 0.

Another relevant case is β = π/4 in Eq. (7), where¯̄1r
0r

® = 1√
2

(e−iφ0 cos α|1i + eiφ0 sin α|−1i ∓ eiγ |0i), (10)

satisfy Pz|1r
0r

i = |0r
1r

i, with Pz|−1ri = |−1ri, such that parity
also leaves this basis (i.e., the set of states) invariant. This
also implies h1r |Sz|1ri = h0r |Sz|0ri, entailing a symmetric
Y -type spin diagram (plot III in Fig. 1). For α = π/4, the Y

reduces to an horizontal line and the states (8)–(10) become,
for γ = φ0 = 0, eigenstates of Sx [as hSi0r

1r
= (±1,0,0)]. The

fully symmetric case β = π/4, γ = 0, sin 2α = 1/3, where
|hSimr |2 = 8/9 ∀m, leads to the maximum total squared
spin length: L2

S = P
m |hSimU

|2 = 8/3, larger than the value
L2

S = 2 obtained for a spin measurement.

III. EVALUATION OF QUANTUM DISCORD
AND RELATED MEASURES

A. General case

Let us now consider the evaluation of the quantum discord
between n − 1 arbitrary spins Si (system A) and a spin s

(system B), as obtained due to a local complete projective
measurement MB = {5U

m} on system B. If initially in a state
ρAB , the state of the total system after an unread measurement
MB becomes

ρ 0
AB =

X
m

¡
IA ⊗ 5U

m

¢
ρAB

¡
IA ⊗ 5U

m

¢
. (11)

For a local measurement of this type, the quantum discord [5,6]
can be expressed in terms of Eq. (11) as

DB(ρAB) = min
MB

[S(ρ 0
AB) − S(ρ 0

B)] − [S(ρAB) − S(ρB)],

(12)

where S(ρ) = −Trρ logρ is the von Neumann entropy and
ρB = TrAρAB the reduced state of B. It can then be con-
sidered as the minimum increase of the conditional entropy
S(A|B) = S(A,B) − S(B) due to such measurements, and
is a non-negative quantity [5,6]. For a pure state (ρ2

AB =
ρAB) it becomes the entanglement entropy S(ρB ) = S(ρA),
as in this case S(ρAB) = 0 and S(ρ 0

AB) = S(ρ 0
A) ∀MB of this

form. However, for a mixed state DB(ρAB) vanishes just for
classically correlated states with respect to B, i.e., states of
the form (11) (a particular case of separable state), which
are diagonal in a conditional product basis {|νmi ⊗ |mU i} and
remain hence unchanged under a particular von Neumann
measurement in B. Equation (12) actually provides an upper
bound to the quantum discord obtained with general POVM
measurements, although results for two-qubits indicate that
the difference is very small [15].

We will also consider here the minimum generalized
information loss due an unread local measurement of the
previous type [13,32],

IB
f (ρAB) = min

MB

Sf (ρ 0
AB) − Sf (ρAB) , (13)

where Sf (ρ) = Trf (ρ) denotes a general entropic form, with
f a smooth strictly concave function satisfying f (0) = f (1) =
0 [37]. Like DB , it can be shown [13] that IB

f (ρAB) > 0 for
any such f and ρAB , with IB

f (ρAB) becoming the generalized
entanglement entropy Sf (ρB) = Sf (ρA) for a pure state, while
for a general mixed state it vanishes just for states of the
general form (11), i.e., states diagonal in a conditional product
basis. Other properties, including the evaluation of IB

f for any
f in some specific states (mixture of a pure state with a max-
imally mixed state, Bell-diagonal states, etc.), were discussed
in [13,32].

Equation (13) contains as particular cases two important
measures: if f (ρ) = −ρ logρ, Sf (ρ) is the von Neumann
entropy and Eq. (13) becomes [13] the one way information
deficit from B to A [12,14]. This quantity is closely related
to the quantum discord (12), coinciding with it when the
minimizing measurement is the same for both quantities and
such that ρ 0

B = ρB (this occurs for instance when ρB is
maximally mixed, as in Bell diagonal states). It also reduces
to the standard entanglement entropy S(ρA) = S(ρB ) for pure
states. The one-way information deficit has been interpreted
as the amount of information that cannot be localized through
a classical communication channel from B to A [12,14]
and, as previously stated, an operational interpretation as the
minimum distillable entanglement between the system and the
measurement apparatus was recently provided [14].

On the other hand, if f (ρ) = f2(ρ) ≡ ρ(1 − ρ), Sf (ρ)
becomes the so-called linear entropy S2(ρ) = 1 − Trρ2 and
Eq. (13) becomes

IB
2 (ρAB) = min

MB

Tr
¡
ρ2

AB − ρ 02
AB

¢
.

This quantity is identical [13] with the geometric measure
of discord [11], the latter defined as the minimum squared
Hilbert-Schmidt distance from ρAB to a classically correlated
state: IB

2 = minρ 0
AB

||ρAB − ρ 0
AB ||2, where ||O||2 = TrO†O and

ρ 0
AB is a state diagonal in a conditional product basis with

respect to B. In comparison with the previous measures, the
geometric discord offers the advantage of an easier evaluation
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(yet vanishing for the same type of states), as the calculation
of Tr ρ2 does not require the explicit knowledge of the
eigenvalues of ρ. An analytic expression for general two qubit
states was in fact provided in [11], while its extension to
2 ⊗ d systems was given in [16]. An operational interpretation
related with the fidelity and performance of remote state
preparation [38] (a variant of the teleportation protocol) has
also been recently provided [25,26]. Besides, the geometric
discord for a 2 ⊗ d system can be measured or estimated with
direct nontomographic methods [16,39,40], which provide an
experimentally accessible scheme. For pure states ρAB , the
geometric discord becomes proportional to the square of the
concurrence [41] CAB =

√
2(1 − Trρ2

B).
The general stationary condition for Eq. (13) (a necessary

condition for the minimizing measurement) reads [32]

1B
f ≡ TrA[f 0(ρ 0

AB),ρAB] = 0, (14)

where f 0 denotes the derivative of f . In the case of the quantum
discord (12), an additional term −[f 0(ρ 0

B),ρB] should be added
to Eq. (14) to account for the local terms in Eq. (12), leading
to the modified equation [32]

1B
D ≡ TrA[f 0(ρ 0

AB),ρAB] − [f 0(ρ 0
B),ρB] = 0, (15)

where f (ρ) = −ρ logρ. Since 1B
f and 1B

D are anti-Hermitian
local operators with zero diagonal elements in the measured
basis [32], they lead to d(d − 1)/2 complex equations, which
determine suitable values of the d(d − 1) real parameters
defining the measurement in a d-dimensional system B. They
can be solved, for instance, with the gradient method. It is
then clear that standard spin measurements, defined by just
two real parameters, will not satisfy in general Eq. (14) or (15)
for s > 1/2, and hence cannot be minimum in general. In the
spin-1 case, Eqs. (14) and (15) lead to six real equations which
determine suitable values of (α,β,γ ) and the three rotation
angles.

B. States with Sz parity symmetry and parity
preserving measurements

Let us now examine the important case where ρAB com-
mutes with the total Sz parity,£

ρAB,P AB
z

¤ = 0, P AB
z = P A

z ⊗ P B
z , (16)

where P A
z = ⊗n−1

i=1 eiπ(Si
z−Si ). This is an ubiquitous symmetry.

For instance, general XYZ type couplings of arbitrary range
between spins in a transverse field, not necessarily uniform,
lead to a Hamiltonian

H =
X

i

biS
i
z −

X
i,j

X
μ=x,y,z

J
μ

ij Si
μSj

μ, (17)

which clearly satisfies [H,P AB
z ] = 0, irrespective of the

geometry and dimension of the array. The same holds even
if terms ∝ Si

xS
j
y are also present. Hence any nondegenerate

eigenstate of H , as well as the thermal state ρAB ∝ exp[−βH ],
will fulfill Eq. (16). Moreover, if Eq. (16) holds, parity is also
preserved at the local level, i.e., [ρB,P B

z ] = 0, as the partial
trace involves just diagonal elements in the complementary
system A. The reduced state of any subgroup of spins will
then also commute with the corresponding local Sz parity.

We also add that any system described by a Hamiltonian
containing just quadratic terms ∝ PiPj , QiQj , and QiPj in

standard coordinates and momenta Qi = bi+b
†
i√

2
, Pi = bi−b

†
i√

2i
,

with bi,b
†
i boson operators ([bi,b

†
j ] = δij , [bi,bj ] = 0), does

commute with the boson number parity PN = eiπN , where
N = P

i b
†
i bi . Hence, when restricted to a finite N subspace

(i.e., b
†
i bi 6 Nmax), such system is equivalent to a spinlike

system whose Hamiltonian commutes with the corresponding
Sz parity, defining Si

z = b
†
i bi − Nmax/2.

For an arbitrary ρAB satisfying Eq. (16), parity will be
preserved by the measurement MB , i.e.,£

ρ 0
AB,P AB

z

¤ = 0, (18)

when P B
z 5U

mP B
z = 5U

m∀m and also when P B
z 5U

mP B
z = 5U

m0 ,
where 5U

m0 is another element of the set of local projectors;
as in both cases the set will remain invariant: {P B

z 5U
mP B

z } =
{5U

m}. The last case corresponds to P B
z |mU i ∝ |m0

U i and, since
(P B

z )2 = IB , such basis can contain just pairs permuted by P B
z

and isolated eigenstates of P B
z . For a spin-1 system, parity will

then be preserved for type II as well as type III measurements,
i.e., those based on the states (4) and (5) or (8)–(10).

If Eqs. (16)–(18) hold, the commutator in Eq. (14) will also
commute with P AB

z , implying

£
1B

f ,P B
z

¤ = 0,
£
1B

D,P B
z

¤ = 0. (19)

This ensures the existence of parity preserving measurements
satisfying Eq. (14) or (15), as the number of independent
elements which have to vanish is reduced by Eq. (19), matching
exactly the reduced number of free parameters defining such
measurements [essentially ≈ d(d − 1)/2]. For instance, in the
spin-1 case and for type II measurements, Eq. (19) implies
(1B

f )m,0 = 0 in the measurement basis and Eq. (14) reduces
to a single complex equation [(1B

f )−1,1 = 0] determining α,φ.
For type III measurements, Eq. (19) implies (1B

f )0,1 imaginary
and (1B

f )−1,0 = (1B
f )−1,1 in the measured basis, and Eq. (14)

leads to one real and one complex equation, which determine
α,γ,φ. As there is a maximum and a minimum of IB

f within
these measurements, solutions are ensured. Moreover, if 1B

f is
real in the standard basis, as occurs for instance when ρAB and
all 5U

m are real in such basis (φ = γ = 0), Eq. (19) reduces to
a single real equation in both measurements:¡

1B
f

¢
−1,1 = 0, (20)

which determines the optimum α. These arguments also apply
for 1B

D , leading to (1B
D)−1,1 = 0 in the real case.

Parity preserving measurements are then strong candidates
for providing the actual minimum of DB or IB

f , although
“parity breaking” solutions of Eq. (14) may also exist. The
latter are degenerate, as the sets {5U

m} and {P B
z 5U

mP B
z } will

lead to the same values of DB and IB
f when Eq. (16) holds. Note

also that parity preserving spin measurements are just those
along z or an axis perpendicular to z (where Pz|mki ∝ |−mki)
and do not have enough parameters for satisfying Eq. (14) if
s > 1. In the real case, just those along x, y, or z will lead in
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general to a real ρ 0
AB and no continuous free parameter is left.

C. Application

As illustration, we consider a bipartite state formed by the
mixture of two aligned spin-1 states,

ρAB = 1
2 (|θθihθθ | + |−θ − θih−θ − θ |) , (21)

where |θi ≡ e−iθSy |1i = |1ki is the state with maximum spin
along k = (sin θ,0, cos θ ) (a coherent state). As Pz|θi = |−θi,
Eq. (21) fulfills Eq. (16). This state arises, for instance, as the
reduced state of any spin pair in the fixed parity states,

|9±i = |θ · · · θi ± |−θ · · · − θi√
2(1 ± h−θ |θin)

, (22)

if small overlap terms ∝ h−θ |θin−2 are neglected (h−θ |θi =
cos2s θ ) [30]. Such states are the exact ground states of an XYZ

spin chain described by Eq. (17) in the immediate vicinity
of the transverse factorizing field [35], existing in the case

of fixed anisotropy χ = J
y

ij −J z
ij

J x
ij −J z

ij

= cos2 θ∀i,j for |J y

ij | 6 J x
ij ,

irrespective of the geometry or coupling range.
The state (21) is separable (a convex mixture of product

states [1]) ∀θ , but classically correlated just for θ = 0 or π/2
(where h−θ |θi = 0). Accordingly, DB(ρAB) and IB

f (ρAB) will
be nonzero just for θ ∈ (0,π/2). As the state is symmetric, we
have DB = DA ≡ D and IB

f = IA
f ≡ If . As before, we will

consider just von Neumann type local projective measurements
MB .

Results for the quantum discord D, the geometric discord
I2, and the one-way information deficit (denoted here as I1) are

shown in Fig. 2. It is first confirmed that minimization over spin
measurements provides just an upper bound to the actual value
of these quantities, being nonetheless a good approximation
for small θ . The qualitative behavior of these three quantities
is similar (they are all maximum for θ slightly below π/4),
but important differences in the minimizing measurement do
arise. While D is minimized by a real (φ = γ = 0) type III
measurement ∀θ ∈ (0,π/2), leading to a smooth curve, I2

prefers a real type II (III) measurement for θ < θc (> θc),
exhibiting a II–III “transition”and hence a cusp maximum
at θ = θc. The same holds for I1 except that the transition
between the collinear and Y -type measurements is smoothed
through an intermediate region (0.19π . θ . 0.24π ) where a
parity breaking measurement [γ = 0, 0 < β < π/4 in Eq. (7)]
is preferred. These features resemble then the s = 1/2 case
[30,32], where D preferred a spin measurement along x ∀θ

[30], whereas I2 exhibited a sharp z → x transition, with
I1 selecting a parity breaking axis in a small intermediate
interval [32]. Hence, for s = 1, parity preserving type II and
III measurements play the role of the z and x measurements
respectively of the s = 1/2 case.

Remarkably, the minimizing value of α, obtained from
Eq. (20), is the same for D, I2, and I1 in all previous cases ∀θ

(i.e., for both type II and III measurements):

tan α = tan2 θ/2. (23)

At this value the largest eigenvalue of ρ 0
AB is maximum

and ρ 0
AB attains certain majorizing properties. The evaluation

of these measures becomes then analytic. For instance, the

0 π/4 π/2θ θ

θ θ
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0.2

0.3
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III
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0 π/4 π/2
0
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II
III
IV
S

0 π/4 π/2
0

0.1

0.2

0.3

I 2

II

III
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0 π/4 π/2
0.0

π/8

π/4

α
,β β I2β I1

β D

α

FIG. 2. (Color online) Quantum discord D (top left), the geometric discord I2 (top right), and the one way information deficit I1 (bottom left)
of the mixture of aligned states (21) as a function of θ for spin s = 1. The dotted lines depict the result obtained with a spin measurement, the
other curves the actual minimum, obtained with the indicated measurement (see Fig. 1). The bottom right panel depicts the angles characterizing
the minimizing measurement. D is minimized by a parity preserving type III measurement ∀θ , whereas I2 changes from type II to III at θ = θc,
and I1 changes from II to III through a small crossover region where a parity breaking type IV measurement is preferred. The angle α is the
same for all quantities Eq. (23). Normalization is such that D = I2 = I1 = 1 for a Bell state.
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quantum and geometric discords read

D = 2h 1
2
(pθ ) − 1 − h1[2qθ (1 − qθ )] + h1(qθ ) , (24)

I2 =
( 1

8 sin4 θ (3 + cos 2θ )2, θ < θc

1
16 cos4 θ (11 + 4 cos 2θ + cos 4θ ), θ > θc, cos θc = 1

4√3

, (25)

where hν(x) = −xlog2x − (ν − x)log2(ν − x), pθ = 1
4 − 1

16

( 115
8 − cos 2θ + 3

2 cos 4θ + cos 6θ + 1
8 cos 8θ )1/2, and qθ =

1
2 sin2 θ . Remarkably, θc ≈ 0.23π in I2 is determined by the
overlap condition h−θ |θi2 = 1/3, as in the s = 1/2 case [32],
with I2 = 2/9 at θ = θc (the same value as for s = 1/2). For
θ → 0, D ≈ θ2 while I2 ≈ 2θ4 (similar to the s = 1/2 case
[30,32]), whereas for θ → π/2, D ≈ [ 1

2 − log2e

4 − log2(π
2 −

θ )](π
2 − θ )4 while I2 ≈ 1

2 (π
2 − θ )4. In this limit D and I2

are then proportional to the overlap h−θ |θi2 = cos4s θ . We
also mention that, for small θ , the difference between the
approximate value of D obtained with spin measurements
and the actual D is very small [O(−θ6log2θ )], while in the
case of I2 and I1, such difference is O(θ4) (i.e., of leading
order in I2).

IV. CONCLUSIONS

We have first provided a simple characterization of orthog-
onal projective measurements in spin-1 systems, which can be
extended to arbitrary spin and allows a rapid visualization of
the (projective) measurements optimizing discord-type mea-
sures of quantum correlations. Standard spin measurements

are not optimum in general for minimizing such measures for
spin s > 1. Instead, we have shown that for the relevant case of
states with parity symmetry, parity preserving measurements
provide stationary solutions for all these measures. We have
identified such measurements for spin 1, where they are
described by just two or three parameters (or one in the
real case) allowing to considerably simplify the variational
problem associated with discord. Results for the mixture (21),
which represents the state of any spin pair in an XYZ chain
in the immediate vicinity of the factorizing field, confirm the
optimality of such measurements in most cases. They also
confirm the distinct behavior of the minimizing measurement
in the quantum discord as compared to that in the geometric
discord [or other measures of type (13) like the information
deficit]. The latter are more sensible to changes in the nature
of the state and hence more suitable for identifying transitions
between different regimes.
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