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Abstract 

The challenge of improving the performance of current processors is achieved by increasing the 
integration scale. This carries a growing vulnerability to transient faults, which increase their 
impact on multicore clusters running large scientific parallel applications. The requirement for 
enhancing the reliability of these systems, coupled with the high cost of rerunning the application 
from the beginning, create the motivation for having specific software strategies for the target 
systems. This paper introduces SMCV, which is a fully distributed technique that provides fault 
detection for message-passing parallel applications, by validating the contents of the messages to 
be sent, preventing the transmission of errors to other processes and leveraging the intrinsic 
hardware redundancy of the multicore. SMCV achieves a wide robustness against transient faults 
with a reduced overhead, and accomplishes a trade-off between moderate detection latency and 
low additional workload.  

Keywords: transient fault, silent data corruption, multicore cluster, parallel scientific application, 
soft error detection, message content validation, reliability. 

1 Introduction 
The challenge of improving the computation performance of current processors has been achieved by increasing 
integration scale, which implies that the number of transistors within chips is growing. Additionally, the in-
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volved increment of the power density has caused a raise in the internal operation temperature. These factors, 
added to a decrease in supply voltage, cause processors to be more vulnerable to transient faults [14,17]. 
A transient fault is the consequence of interference from the environment that affects some hardware component 
in the computer. This can be caused by electromagnetic radiation, overheating, or input power variations, and 
can temporarily invert one or several bits of the affected hardware element (single bit-flip or multiple bit-flip) 
[2].  
The way in which each transient fault occurs is unique; any given transient fault does not occur exactly the same 
never again throughout the lifespan of the system. These faults are short-lived and do not affect the regular oper-
ation of the system, although they can result in the incorrect execution of an application. Physically, they can be 
located anywhere in the hardware of the system; in this context, the faults that affect processor registers and 
logics are critical, since other parts of the system, such as memories, storage devices and buses, have built-in 
mechanisms (such as ECCs1 or parity bits) capable of detecting and correcting this type of faults [1]. 
From the perspective of the program being run, the fault can alter the status of a hardware component that con-
tains important information for the application. Depending on the time and specific location of the fault, it can 
affect application behavior or results and, therefore, system reliability [3]. 
The impact of transient faults becomes more significant in the context of HPC2. Even if the mean time between 
faults (MTBF) in a commercial processor is of the order of one every two years, in the case of a supercomputer 
with hundreds or thousands of processors that cooperate to solve a task, the MTBF decreases as the number of 
processors increases. Since the year 2000, error reports due to large transient faults in large computers or server 
groups have become more frequent [1,20]. This situation is worse with the advent of multicore architectures, 
which incorporate a great degree of parallelism at hardware level. Also, the impact of the faults becomes more 
significant in the case of longer applications, given the high cost of relaunching execution from the beginning. 
These factors justify the need for a set of strategies to improve the reliability of high-performance computation 
systems. In this way, the first step is detecting the faults that affect application results but are not intercepted by 
the operating system and, therefore, do not cause the application to be aborted.   
Traditionally, the existing proposals for providing transient fault tolerance have been divided into those that 
tackle the problem from a hardware standpoint, and those that do so from the software perspective. 
Hardware-based techniques [8,9,11,13] aim to protect the various elements in the processor by adding additional 
logics to provide redundancy. These are most widely used in critical environments, such as flight systems or 
high-availability servers, where the consequences of a transient fault can be disastrous. 
Hardware-redundancy-based techniques, however, are inefficient in general purpose computers. The cost of 
designing and verifying redundant hardware is high, and the environmental conditions in which the processors 
are used and processor ageing are the main causes for faults that cannot be predicted during the development 
stage. On the other hand, in many applications (audio or video on demand), the consequences of a fault are not as 
severe, so there is no critical need to add thorough fault-tolerance mechanisms [21]. 
The compromise between the achieved reliability and the resources involved makes software-redundancy-based 
strategies [19] to be the most appropriate for general purpose computational systems. The basic idea for detect-
ing faults, called DMR3, consists in duplicating application computation. Both replicas operate over the same 
input data and compare their outputs [8,11]. These techniques are characterized by their low cost and flexibility, 
allowing various configuration options to adapt to specific application needs [4].  
An important aspect of detection lies in the validation interval. If results are compared only at the end, the fault 
that affects the application is detected with little additional workload, but the cost of relaunching the application 
from the beginning is high, especially in the case of large parallel applications. On the other end, if partial results 
are validated frequently, a high workload is introduced but the cost of re-executing the application from the last 
consistent state is lower than in the previous case. Therefore, a compromise must be reached between the detec-
tion interval and the additional workload introduced. 
There are numerous proposals for detection, based on duplication, designed for serial programs, whose purpose 
is ensuring execution reliability. From this standpoint, a parallel application can be viewed as a set of sequential 
processes that have to be protected from the consequences of transient faults by means of the set of adopted 
techniques. 
In this context, SMCV (Sent Message Content Validation) is presented, which is a proposal specifically designed 
for the detection of transient faults in scientific, message-passing parallel applications that execute on the nodes 
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of a multicore cluster. SMCV uses software techniques that leverage the intrinsic redundancy existing in multi-
cores, replicating each process of the parallel application in a core of the same processor. The detection is per-
formed by validating the contents of the messages to be sent using a moderate validation interval and adding a 
reduced additional workload and a low overhead with respect to execution time. SMCV is a distributed strategy 
that improves the reliability of the system (formed by the cluster and the parallel application), isolating the error 
produced in the context of an application process and preventing it from propagating to the others. The end goal 
is to ensure that the applications that finish do so with correct results.  
The rest of this paper is organized as follows: in Section 2, the theoretical context related to transient faults and 
their consequences in message-passing parallel applications is reviewed. In Section 3, related work is discussed. 
Section 4 describes this work´s proposal and explains the choices made. In Section 5, the methodology proposed 
is described in detail. Section 6 discusses the initial experimental validation. In Section 7, future lines of work 
are described, and Section 8 presents the conclusions.  

2 Background 
2.1 Soft Errors. Classification. 

The errors (external manifestations of an inconsistent internal status) produced by transient faults are called soft 
errors. While transient faults affect system hardware, soft errors can be observed from the perspective of pro-
gram execution. 
Figure 1 shows the classification of the possible consequences of transient faults [24]. 

 
Figure 1: Classification of possible outcomes of a transient fault (adapted from [24]) 

 
The soft error rate (SER) of a system is given by [18]: 
 

 ���	 � 	���	 � 	��		 � 	
� (1) 

A Detected Unrecoverable Error (DUE) is a detected error that has no possibility of recovery. DUEs are a conse-
quence of faults that cause abnormal conditions that are detectable on some intermediate software layer level 
(e.g. Operating System, communication library). Normally, they cause the abrupt stop of the application. For 
instance, an attempt to access an illegal memory address (segmentation fault) or an attempt to run an instruction 
that is not allowed (e.g. zero division). 
A Silent Data Corruption (SDC) is the alteration of data during the execution of a program that does not cause a 
condition that is detectable by system software. Its effects are silently propagated through the execution and 
cause the final results to be incorrect. From a hardware point of view, this is caused by the inversion of one or 
several bits of a processor´s register being used by the application, causing the program to generate faulty results. 
A Latent Fault (LF) is a fault that corrupts data that are not read or used by the application so, despite the fault 
effectively happening, it does not propagate through the execution and has no impact on the results. 
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As a consequence, it is important that strategies are developed to intercept SDCs, which are the most dangerous 
type of faults that can occur from the point of view of reliability, because the program appears to be running 
correctly but, upon conclusion, its output will be corrupted.   

2.2 Transient Faults in Message Passing Parallel Applications 

The occurrence of a transient fault that causes an SDC in a core that is running one of the processes of a mes-
sage-passing parallel application can have two different consequences:   

 ��		 � 	��		 � 	��	 (2) 

A Transmitted Data Corruption (TDC) is an error in which the fault affects data that are part of the contents of a 
message that has to be passed. If undetected, the corruption is propagated to other processes of the parallel appli-
cation. 
On the other hand, in the case of a Final Status Corruption (FSC), the fault affects data that are not part of the 
contents of the message, but is propagated locally during the execution of the affected process, corrupting its 
final state. In this case, the behavior is similar to that of a sequential process. 
Since a parallel application consists in the collaboration among multiple processes to perform a task, its success 
is based on communicating the local computation results obtained by each process to the others. Therefore, all 
faults that cause a TDC have a high impact on the end results. On the other hand, the faults that cause an FSC are 
related to the centralized part of the computation, and can therefore be detected by comparing the end results. 
Following this line, it follows that, if the task is divided among a larger number of processes, there will be a 
larger number of messages and a consequent growth in the TDC portion. 
In this context, SMCV proposes a detection scheme that is focused on those faults that cause TDCs, and adds a 
final stage for comparing results to ensure system reliability. The solution proposed is discussed in Sections 4 
and 5. 

3 Related Work 
Fault Tolerance (FT) involves three phases: detection, protection and recovery.  One of the ideas most common-
ly used for detecting faults, proposed by Rotenberg [23], is duplicating the execution of a process hosted in a 
given core, using another core that works as redundancy. Both replicas operate on the same input data, compare 
their partial results every given period of time, and only one of them writes to memory or sends a message to 
another process [7,8,9,10,11].  
Among the proposals that are based on software redundancy, code duplication, with several variants, has been 
the idea most widely adopted in the field of transient fault detection. SRT (Simultaneous & Redundant Thread-
ing) [5] is a first approximation to this, which consists in simultaneously running two replicas of a program as 
separate threads, dynamically scheduling hardware resources between them, and providing detection through 
input duplication and output comparison. In [6] CRT (Chip-level Redundant Threading) is proposed, which is 
the application of this technique to CMP4 environments. SRTR (SRT with Recovery) [7] proposes improvements 
to the detection mechanism and provides recovery through reexecution in the pipeline. CRTR (CRT with Recov-
ery) [8] improves detection by separating execution from threads to mask the communication latency between 
cores, and it applies the recovery mechanisms proposed in [7] for a CMP environment. In [9], DDMR (Dynamic 
DMR) is proposed, a technique in which the cores that run the application in redundant mode are dynamically 
associated to prevent defective cores from affecting reliability, dealing with processing asymmetries and improv-
ing scalability. It introduces the possibility of configuring the system to operate in redundant mode or using the 
cores separately for processing. All these solutions involve some modification to system hardware.  
In [4], the Mixed Mode Multicore model is proposed, which allows running the applications that require reliabil-
ity in redundant mode and, for applications that require high performance, avoiding this penalty, thus providing 
flexibility through configuration settings. 
In [12], the proposal is obtaining a reduced version of the application by removing inefficient computation and 
computation related to predictable control flow. The full application and its reduced version are run in separate 
threads, providing redundancy and advance results that speed up the execution of the application. The authors in 
[11] propose selecting a core to carry out monitoring tasks over the processes that are run in the other cores, 
cyclically verifying their states. As an alternative, more than one core can be used for diagnosis operations, and 
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the coverage level in case of faults can be configured, as well as the maximum overhead allowed. Thus, there is 
no need to produce a full replica of the program.  
Among the solutions that are purely based on software, PLR [21] proposes the creation of a set of redundant 
processes for each application, being transparent to it. The implementation allows the Operating System to intel-
ligently manage available hardware resources. This technique is designed for sequential programs. 
In the context of these options, SMCV proposes a detection solution that is specific to message-passing parallel 
applications, not requiring any hardware modifications and leveraging the redundant resources that already exist 
in the multicore environment. 

4 Work Hypothesis. Proposed Solution 
In this section we present the rationale for SMCV. First, the usefulness of validating message contents is ex-
plained, and the features provided by the methodology are mentioned. Then, the leverage of redundant hardware 
resources by SMCV to increase system reliability is described.  
 

4.1 Validating Contents of Sent Messages  

The detection methodology proposed in this paper is essentially based on the hypothesis that, in a system formed 
by a multicore cluster that is running a message-passing parallel application, most of the significant computation 
(understood as that which impacts application results) will be part of the content of a message that is sent to oth-
er application process at some point during execution. Faults can corrupt data, flags, addresses or instruction 
code. However, if the corrupted value is significant for the results of the application, this situation will eventual-
ly be reflected on message incorrectness. Thus, of the total faults that can cause SDC, most will belong to the 
TDC category. Therefore, to detect faults that corrupt important data, the contents of the messages should be 
monitored. As regards the sequential phase, during which there are no communications, the end results are veri-
fied to ensure reliability. 
SMCV is a detection strategy based on validating the contents of the messages to be sent. Each application pro-
cess is duplicated, and both replicas compare all the fields that form message contents before sending; the mes-
sage is sent only if the comparison is successful. 
This technique allows detecting all faults that cause TDCs; from the point of view of the parallel application, 
SMCV ensures that any fault that affects the state of a process is not propagated to other process of the applica-
tion, which confines the effects of the fault to the local process. Faced with an error, SMCV currently notifies the 
application and produces a safe stop. If a final comparison of the results is added to detect faults in the serial 
portion, SMCV ensures system reliability and, therefore, that the results of any application that finishes execu-
tion are correct. 
Message contents are validated before sending the message. Thus, only one of the replicas effectively sends the 
message, which means that no additional network bandwidth is consumed. Taking into account that current net-
works have protocols that ensure reliable communications, there is no need to verify the contents of the messag-
es upon reception (which would involve the transmission of two messages). 
SMCV provides the following features:  

• Each process and its replica are locally validated. The strategy is distributed in each application process. 
It is decentralized. 

• It prevents the propagation of errors among application processes. Also, it detects errors in the serial 
part of the application by checking the end results. 

• It introduces a low overhead in execution time, since only one comparison is added for each byte of 
each outgoing communication and the end result (it should be noted that the cost of comparison is lower 
than that of communication).  

• A conservative detection strategy, designed for sequential programs, consists in duplicating application 
computation; to protect program outputs, each memory write operation is checked before being written 
[8]. Compared with this type of alternatives, SMCV involves a reduced work overload. In this sense, it 
can be said that it is a lightweight technique. 

• When a fault is detected, the application is stopped, allowing immediately re-launching the execution. 
There is no need to wait for the conclusion with incorrect results to re-execute, so SMCV narrows error 
latency. This carries a gain in reliability, but also in time, which becomes particularly significant in sci-
entific applications that can run for several days. 
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• SMCV increases system reliability, understood as the number of times the application ends correctly, 
because it is able to detect faults that cause TDC.  

• It achieves a trade-off between detection latency, additional workload and involved resources. SMCV 
introduces extra latency in detection, since no verification is carried out when the corrupt value is first 
used. This postpones detection until the time when the altered data are part of the contents of the mes-
sage. However, this implies a lower additional workload than validating each write operation (which 
produces low latency with high workload), and better leverages the resources than an only final com-
parison (which involves duplicating all computation to detect only at the end, producing high latency 
with low workload). The less frequent communication between processes, the higher latency and the 
lower workload. 

4.2 Leveraging Redundant Hardware Resources 

Hardware manufacturer’s trend is to add more cores to processors. However, many applications do not take ad-
vantage of all computation resources efficiently. On the other hand, the increase in the amount of transient faults 
goes hand in hand with the rise in the number of processing cores. As a consequence, the focus is no longer only 
processor performance, but factors such as reliability and availability have become more relevant. Therefore, the 
use of cores to carry out tasks related to fault tolerance has advantages both as regards to leveraging these re-
sources as well as adding a beneficial feature for the system. 
In this context, SMCV takes advantage of the intrinsic redundancy existing in multicores, using CMP cores to 
locate the replicas of the processes that perform useful computation for the application. As the computation is 
duplicated, half of the resources can be used as work power, whereas the other half is used for redundancy. The 
output to main memory is the critical aspect for selecting the cores that will be used to detect the faults that occur 
in the others. SMCV tries to exploit the memory hierarchy of the CMP, so that the redundancy of the computa-
tion that is executed in any given core is placed in another core with which some level of cache is shared. Thus, 
many comparisons will be resolved at LLC5, minimizing main memory access.  

5 Proposed Methodology Description 
As already explained, SMCV is a software-centric strategy that can detect transient faults in a multicore cluster 
on which a message-passing scientific parallel application is being run. Upon detection of a fault, a user report is 
issued and the application is aborted, thus increasing system reliability.  
Figure 2 shows an outline of the proposed detection methodology. Each process in the parallel application is run 
in a core of the CMP, and the computation it carries out is internally duplicated in a thread, which in turn is exe-
cuted in a core that shares some cache level with the core running the original process. Thus, there is no need to 
access the main memory, taking benefit from the hierarchy to solve comparisons. 
Each process is run concurrently with its replica, which means that a synchronization mechanism is required. 
When a communication is to be performed (point-to-point or collective), it temporarily stops execution and waits 
for its replica to reach the same point. Once there, all fields from the message to be sent are compared, byte to 
byte, to validate that the contents calculated by both replicas are the same. Only if this proves true, one of the 
replicas sends the message, ensuring that no corrupt data are propagated to other processes. 

   
Figure 2: SMCV methodology. (a) Proposed detection outline. (b) Behavior in presence of faults. 

                                                           
5 LLC: Last Level Cache 

(a) (b) 
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The recipient(s) of the messages stop upon reception and remain on hold. Once received, it copies the contents of 
the message to its replica (also using memory hierarchy) and both replicas continue with their computation. As-
suming that network errors are detected and corrected at the network layer, the validated message reaches its 
destination uncorrupted. By comparing the message before sending it, the message can be sent only once. Were 
it be compared on reception, two copies of the message would have to be sent through the network, which would 
be detrimental to bandwidth use and network fault vulnerability.  
Finally, when application execution finishes, the obtained results are checked once to detect faults that may have 
occurred after communications ended, during the serial part of the application.  

5.1 Characterizing SMCV’s Additional Workload 

Additional workload is related to computing amount added by the fault detection strategy. This metric is useful 
to compare this methodology with other options. To have an approach, a conservative strategy based on the vali-
dation of memory write operations, similar to those used in sequential applications, has been analyzed. In this 
case, parallel application processes are also duplicated in threads as described, but the results of all write opera-
tions are validated (as opposed to validating only the contents of the messages sent). This strategy can detect all 
faults, but with a significant increase in computation amount. On the other hand, it introduces less detection la-
tency, because the fault is detected when the corrupted value is written to memory, without the need of waiting 
to the next message to be sent. 
The work overload WWV introduced by the write validation technique is given by:  

 �� 	� 	 �� � 	�. ��	. �	���� �		����� (3) 

In Equation (3), S represents the number of write operations performed by the application, excluding those corre-
sponding to the messages it sends. It is assumed that the application sends M messages of k elements (average) 
each. Csync and Ccomp represent the costs of a synchronization operation and a comparison operation, respectively. 
The first factor in Equation (3) is therefore the total number of write operations performed by the application. If 
all write operations are validated, each will involve a synchronization operation and a comparison operation. 
On the other hand, the workload added by message validation, WMV is given by: 

 �� � �	. �	���� 	� �	. 	�����	 (4)	

In the case of message validation, for each message there is an only synchronization operation and k compari-
sons (one for each element in the message). 
The relation between the workload introduced by SMCV and a strategy that validates all write operations will 
then be given by: 
 

 �� 

�! 
�

�	.		"#$%&	'	�	.		(	.		"&)*+
,	.		�"#$%&	'	"&)*+�	'	�	.		(	.	"#$%&	'	�	.		(	.		"&)*+	

     (5) 

The quotient of Equation (5) is always a number lower than 1, which means that the additional computation 
overload for validating messages is lower than that for validating all write operations.  
The analysis was carried out for one of the processes that communicate all its results. In the case of a process 
that performs serial computing, the overload for comparing the end results is added, but this is the same in both 
techniques. Therefore, this analysis is sufficiently general and representative of various situations.  
It can be concluded that SMCV is a lightweight strategy that adds a reduced workload versus more conservative 
strategies that will detect faults that have no impact on the results of the application. 

6 Initial Experimental Validation 
The SMCV methodology has been assessed to determine its detection efficacy and the overhead introduced re-
garding to execution time. The results obtained are shown in this section. 

6.1 Testing SMCV’s Effectiveness  

Tests were run with the detection tool to test its efficacy. The application used for the tests was a parallel matrix 
multiplication (C = A * B), programmed following the Master/Worker paradigm with 4 processes (the Master 
and 3 Workers), with the Master also taking part of the computation of the C matrix [22]. The Master process 
divides matrix A among all Workers and sends each one the chunk assigned to it, keeping a chunk for itself to 
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participate in the calculation of the resulting matrix. Then, the Master sends each Worker a copy of the entire 
matrix B. After this, all processes compute their corresponding chunk of matrix C and, in the final stage, send the 
Master the part that they have calculated. The Master builds matrix C from what the Workers sent and its own 
computation. All messages used are non-blocking. The communications library used is OpenMPI. 
All the experiments were run on a cluster with 16 blades, each one having 2 Quad Core Intel Xeon 5405 2GHz 
processors, 12 MB of L2 cache and 2 GB of main memory. For this first test, an only blade was used, with the 4 
processes and their replicas mapped to the 8 cores of the blade. As mentioned, it can be noted that only half of 
computing resources are used for useful work from the standpoint of the parallel application. 
To implement SMCV, wrappers for some communication primitives of MPI library were developed, interposing 
MPI calls and adding functionality of fault detection by comparison upon sending, message contents duplication 
upon reception, and concurrency control between replicas. The Pthreads library was used for creating the repli-
cas, and replica synchronization was done with semaphores.  
The SMCV strategy was applied to the described application, replicating each of its processes in a thread as ex-
plained in Section 5 (for this, the source code of the application is required). The experiment consisted in inject-
ing faults at various points of the application by means of a debugging tool. To do this, a breakpoint is inserted at 
a certain point of the execution of one of the application processes; the value of a variable is modified, and com-
putation is resumed, so that the consequence of the fault at the end of the execution can be analyzed (this tech-
nique simulates a real fault in a processor register, since for data corruption to become apparent, it must be ob-
servable as a difference between the memory states of the replicas).  
Even though a transient fault can randomly occur at any point during execution, significant processing time 
points were selected for the simulated injection, both for the Master and the Workers. 
The strategy was capable of detecting all faults that affected message contents (TDC), as expected, notifying and 
aborting the application so that the corruption was not able to propagate. Thus, all Workers processing is protect-
ed. On the other hand, the faults that occurred in the data kept by the Master for local computation, and those 
that were produced after the partial results from all Workers had been collected by the Master in the last stage 
(corresponding to the FSC portion) were detected while comparing the end results. 

6.2 Overhead Measurements 

The overhead is a metric of the incidence of the detection tool on system performance, in the absence of faults. 
The overhead can be determined as the extra execution time implied by adding the SMCV strategy to the origi-
nal application, on the architecture described above. The time added by SMCV is a consequence of the duplica-
tion of each process, the synchronization between replicas, the comparison carried out before each message is 
sent, the duplication of the messages received, and the final verification of the results. 
Experiments were carried out by applying the SMCV methodology to the matrix multiplication application with 
2, 4 and 8 processes (including the Master), with square matrix sizes of 512, 1024, 2048, 4096 and 8192 ele-
ments. The mapping between processes and processors was made in a way that ensures the same conditions of 
execution with and without the SMCV strategy, in order to directly compare the execution times. Up to 4 pro-
cesses, an only blade was used, running application processes and its replicas using the all 8 cores. In the case of 
8 processes, two blades were used, each of them running 4 processes of the application (without SMCV) and 4 
processes and its replicas (8 cores) with SMCV. 
Each experiment was run five times, and the results were averaged to improve stability. The standardized results, 
with respect to the execution time of the application with no fault detection, are shown in Table 1 and Figure 3.  
 

Table 1: Overhead measurements     

Size (N) 2 4 8

512 0,87% 14,24% 55,11%

1024 0,01% 1,63% 21,40%

2048 0,39% 1,61% 10,05%

4096 -0,14% 0,91% 4,74%

8192 0,17% 0,92% 2,45%

Processes
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Figure 3: SMCV’s overhead in execution time 

As it can be observed, the overhead decreases as the size of the problem grows up. This is because, with larger 
matrixes, the application spends more time computing. However, for any given number of processes, the number 
of messages remains constant. Therefore, synchronization, comparison and message contents duplication times 
are overshadowed by processing time. On the other hand, small matrixes require a short computation time and 
therefore all communication-related detection activities become more relevant.  
Similarly, it can be seen that, for any given matrix size, overhead increases with the number of processes. This is 
explained by the fact that the number of messages (and therefore, synchronizations, verifications and copies) 
increases with the number of processes. 
The case of 2 processes was the one that presented a wider dispersion between different repetitions of the exper-
iment. A factor of randomness is present; inclusive, in the case of N = 4096, the incorporation of SMCV appears 
to perform better than the original application. However, with the precision of the obtained measurements, dif-
ferences below 1 %, which occur in all cases, are considered negligible.  
Based on the experiments carried out, it can be concluded that, when the size of the problem increases but the 
number of processes remains constant, the overhead is significantly low. This would mean that, in real applica-
tions with high performance requirements, handling large amounts of data, similar overheads can be obtained. 

7 Future Work 
This work is part of a more extensive proposal whose purpose is providing transient fault tolerance for systems 
formed by scientific, message-passing parallel applications that are run on multicore cluster architectures.  
Fault tolerance includes the phases of detection, protection, and recovery. In the context of permanent faults, the 
existing techniques most widely used are checkpointing and event log for protection, and rollback-recovery [24]. 
The proposal consists in integrating the transient fault detection methodology to the protection and recovery 
strategies available for permanent faults to provide transient fault tolerance. This means that there is no need of 
using triple modular redundancy (TMR) [16] with voting mechanisms to detect and recover from a transient 
fault. Also, since transient faults do not require system reconfiguration, recovery can be achieved by re-
executing the same core of the failed process. 
In the road towards achieving this goal, the following lines are open:  

1. Perfecting the detection strategy: 

• Expanding the experimental validation. A test that is more thorough than the one carried out so far re-
quires the use of the methodology with standard applications. In the next stage, HPL and NAS bench-
marks will be used, which are well-known applications, widely used environments for performance 
evaluation of highly parallel supercomputers. These benchmarks respond to other parallel programming 
paradigms, and also have the advantage of providing self-verification functions of the results, which is 
useful for validating the detection strategy. Also, the use of benchmarks will allow useful standardiza-
tion for comparing SMCV´s performance with other approaches. In this sense, the integration with fault 
injection tools is desirable, to improve validation capabilities by means of extensive random fault injec-
tion campaigns. The overhead obtained with these applications will be measured. 

• Achieving transparency for the application. At the current development level, SMCV's duplication pro-
cess, based on threads, requires minor changes in the application code (and recompiling) to support the 
location of the replica in shared-memory with the original process and the use of the communications 
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library with extended functionality. To obtain this transparency, replication must be implemented at the 
level of processes rather than threads. 

• Optimizing the methodology to improve the trade-off between reliability, overhead, additional work-
load, detection latency (related to the recovery cost) and resource utilization. A detailed characterization 
will allow suggesting new ways of improving performance, considering the possibility of configuring 
the robustness level based on application coverage needs or maximum overhead permitted [6,11,13].   

• Characterizing SMCV from the point of view of power consumption. The duplicated execution causes a 
power overhead that can be measured, in order to optimize the implementation to reduce it. 

• Making a formal comparison with other approaches to transient-fault detection, in order to quantify ad-
vantages and drawbacks of the proposed methodology. 

2. Providing full tolerance to SDC, restoring the system to its state previous to the fault: 

In a following stage, the distributed detection strategy (already optimized) will be integrated with fault tolerance 
architectures oriented to permanent faults. The goal is obtaining a system capable of tolerating both permanent 
and transient faults. In this sense, integration with RADIC [15] will be attempted; RADIC is a transparent, scala-
ble, flexible, and fully distributed architecture that provides fault tolerance through non-reliable elements and 
can recover after a permanent fault in a node. The aim is to leverage the methodology provided by RADIC for 
permanent faults (the rollback recovery mechanism, with non-coordinated checkpoints and message logs), and 
add transient fault tolerance. The resulting system will have to be tested to determine the reliability obtained, 
transparency for the application, resource utilization, overhead in absence of faults, and degradation in presence 
of faults. 

8 Conclusions  
In this paper, SMCV is presented, which is a transient fault detection methodology, purely implemented through 
software and specifically designed for scientific, message-passing parallel applications that are run on multicore 
clusters. Under the premise that in this type of applications, all information that is relevant for the end results is 
transmitted among the processes that are part of it, the SMCV strategy is based on validating the contents of the 
messages to be sent and comparing the end results to achieve a compromise between a high level of robustness 
against faults and the introduction of a low execution time overhead, consequence of the non-detection of the 
faults that would normally not affect the results. Also, it introduces a reduced additional workload versus the 
more conservative strategies that validate all write-to-memory operations, similar to the ones used in sequential 
applications. 
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