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Abstract 

 

By means of Perturbed Angular Correlation (PAC) analysis the resulting phases during 

mechano-chemical activation process on zircon (ZrSiO4) commercial fine powder (D500.8 

µm) were accurately identified and characterized.  

A high energy planetary mill was employed with 850 rpm up to 120 minutes. The 

phenomenological macroscopic confirmation of the structural change and mechanical 

activation consisted in an important enhancement of the sintering behavior of the treated 

fine zircon powders.  

Three different well known zircon phases were identified and quantified as a function of 

the milling time: a fully crystalline phase, an aperiodic phase and a distorted phase. A 



decrease in the first two phases was accompanied by the appearance of the third one; 

finally, at long term treatments, a partial dissociation was observed. Particularly the 

resulting zirconium oxide is a highly distorted one. The results were discussed together 

with those obtained using XRD, SEM and laser scattering. The XRD only showed the partial 

dissociation of zircon and failed in the differentiation of its nanoconfigurations observed 

by PAC. The milling of this hard material can be optimized through the performed 

characterization strategy. 
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1. Introduction 

Zircon is an easily accessible mineral and is the main source for zirconium oxide, the 

metallic zirconium and other materials production [1-3]. Besides, zircon ceramics present 

interesting physical and chemical properties for technological use. Its main properties are: 

important hardness (7.5 Mohs), a moderately low linear thermal expansion (4.10-6 °C-1) 



and a high dissociation temperature (1675 °C) [4-9]. It is also highly inert, even in contact 

with molten glass or slag. That is why it is used in applications at elevated temperatures 

(1300–1500 °C) with low chemical attack, as in the steel or glass industry [4] [10-12]. 

Its chemical stability makes zircon suitable for environmental barrier coatings in the 

chemical industry. For the same reason, it has been considered in the nuclear industry for 

high level waste disposal of actinides [13]. On the other hand, it possesses a high dielectric 

constant and a large energy gap, thus emerging as a high-κ gate dielectric material in the 

metal oxide-semiconductor technology [14]. 

The principal structural unit of zircon is a chain of alternating edge-sharing SiO4 tetrahedra 

and ZrO8 triangular dodecahedra extending parallel to the c-axis [4]. The chains are joined 

laterally by edge – sharing dodecahedra. The unit cell parameters are a= 6.6164 Å and c= 

6.0150 Å [15]. Zircon is a highly stable structure, which decomposes at about 1670 °C to 

yield zirconia and silica. Due to their high melting point, high density sintered ceramics 

from pressed powders are difficult to achieve. Additives or their combination with other 

phases such as SiO2, TiO2, Al2O3, clays, etc. are commonly used to increase the final density 

and reduce porosity. However, these additions may be detrimental to mechanical 

properties such as hardness or fracture toughness. The mechano-chemical activation 

process using high energy milling has proved to be an effective technique as pretreatment 

of raw materials to obtain dense ceramics. The effect of the high energy milling is to 

activate chemical and physical processes due to the increase of the superficial energy and 

at the same time, yielding homogeneous mixtures [16-17].  

The first attempt to study mechanical activation of zircon was by Motoi (1978). It was 

demonstrated that prolonged ball milling not only causes size reduction but also 



amorphizes the mineral, leads to partial decomposition into ZrO2 and SiO2 and, can 

enhance solubility in HF [18]. 

Welham (1998, 2002) used ball milling up to 150 h to accomplish mechano-chemical 

reaction of zircon with alkaline earth metal oxides in order to form zirconia or zirconates, 

either within the mill or during subsequent annealing at 1200 °C [19-20]. About tenfold 

increase in hydrochloric acid solubility was observed when zircon was milled alone and 

milled with the oxides. Abdel-Rehim (2005) showed that almost complete recovery of 

zirconium from zircon was possible by simultaneous ball milling and alkaline leaching 

using sodium hydroxide (1.5 times the theoretical requirement) at 250 °C for 3 hours [21]. 

Attrition milling of zircon was used by Amer (2006) as a pretreatment to enhance alkaline 

pressure leaching of zircon; however, no attempt was made to characterize the activated 

solid except for the change in particle size [22]. 

The phenomenological effect of the mechanical milling of coarse zircon powder (150 µm) 

was recently assessed; the structural analysis consisted in the XRD experiment and 

posterior alkali leaching tests for pondering the non-stoichiometric dissolution of SiO2 and 

ZrO2 [23]. The milling conditions were more drastic than other previous studies but milder 

to the ones studied in the present work. Final particle size was between 1 and 2 µm for 

long term treatments 240 – 480 minutes. In that work, based on the rate constant values, 

it was found that the rate constant for the dissolution of ZrO2 component is 1.6–5.0 folds 

higher than SiO2 component depending upon mechanical activation time and leaching 

temperature. The prospect of the mechanical activation assisted alkali leaching of zircon is 

highlighted.  

In a recent article we presented a systematic study of the effect of a high energy milling 

treatment in the subsequent direct sintering of fine zircon powder. The activated powders 



sintered 200 °C below the un-milled powders [24]. The XRD permitted to identify the 

incipient partial dissociation of the zirconium silicate after long term (60-120 minutes) 

high energy milling treatments. This slight dissociation was also observed after the 

thermal treatments of the studied powders. The traditional XRD analysis failed to observe 

any structural changes in the zircon phase after these high energy milling treatments that 

evidently enhanced the posterior sintering behavior. 

Details of the atomic arrangements of materials of technological uses were studied using 

short range methods as extended X-ray absorption fine structure (EXAFS) [25] and the 

perturbed angular correlations (PAC) techniques [26-27]. In particular, PAC technique has 

proved to be an efficient tool in the investigation of the milling effect of the monoclinic 

zirconia by showing the quadrupole interactions of special atomic arrays through which 

the monoclinic phase transforms into the tetragonal form [28-29]. 

The aim of the present work is to accurately identify and characterize the resulting phases 

during mechano-chemical activation process on fine zircon commercial powder (D500.8 

µm). Perturbed Angular Correlations technique has been applied to investigate 

nanoconfigurations content in ZrSiO4 as a function of milling time. The results will be 

discussed together with those obtained using XRD, SEM-EDS and laser scattering. The 

knowledge acquired will enlighten ceramic designers to improve ceramics properties and 

utilities; and other posterior industrial processing of this silicate. 

 

2. Experimental procedure  

 

2.1. Starting material 

 



A commercial zircon fine powder (Kreutzonit Super Extra Weiß, Mahlwerke Helmut Kreutz 

GmbH, Germany, 0.8 µm) was used (Z0). Its chemical composition is (wt. %): ZrO2:64–

65.5, SiO2:33–34, Fe2O3 0.1, Al2O3 0.1, TiO2 0.15. The average particle size is D50=0.8 

mm, and it has a surface area of 4.1 m2/g with a melting point of 2200 °C, and hardness of 

7.5  Mohs. Its specific gravity is 4.5 g/cm3. 

The zircon (Z0) milling was carried out in planetary mill high energy ball milling (HEBM - 7 

Premium Line, Fritsch Co., Ltd., Germany) in ethanol at 850 rpm. The treatment was 

performed for 10, 60 and 120 minutes, (Z10, Z60 and Z120, respectively). 85 mL magnesia 

stabilized zirconia jars were used with 60 g of zirconia balls (10 mm diameter) as milling 

media; the ratio between the weight of powder and the milling balls was 1:10 in each 

batch. The jars were naturally cooled down every 5 minutes. 

 

2.2. Powder characterization 

 

Milled zircon powders (Z10, Z60 and Z120) and original powder (Z0) were characterized 

by X-ray diffraction (XRD- Philips PW 3710 with Kα: Cu as incident radiation and Ni filter). 

The equipment was operated at 40 kV and 35 mA and the scanning was performed with a 

step of 0.04° and 2 seconds per step in the 2θ range between 10 and 80°. The particle 

shape and morphology were analyzed with scanning electron microscopy (SEM-JEOL JMS 

-6000, Japan). An EDS analysis was carried out as well. In order to observe the evolution 

of the particle size as a function of milling time, a Laser Diffraction Particle Size 

Distribution Analyzer (Malvern Hydro 2000G) was used. 

To evaluate the effect of the milling treatment on zircon powders, a simple sintering 

process was carried out. A heating rate of 5 °C/min and a soaking time of 120 minutes 



were employed, in an electric furnace in air atmosphere.  The final temperature was 1500 

°C. 1.0 gram and 15 mm diameter disc shape samples were prepared, first uniaxially 

pressed and then isostatically pressed at 1000 MPa. Apparent density and open porosity 

were evaluated as sintering parameters by the immersion method. A more systematic 

evaluation of the milling sintering relation has been previously published [24]. 

 

2.3. Perturbed Angular Correlation (PAC) analysis  of the milled zircon (ZrSiO4) 

 

The Perturbed Angular Correlation (PAC) technique provides a nanoscopic (i.e. short-

range) description of the crystalline lattice by determining the electric field gradients at Zr 

sites [30-31]. The nuclei of 181Hf, obtained by irradiation with thermal neutrons, (RA3-

reactor of the Comisión Nacional de Energía Atómica (CNEA)) of the 180Hf natural 

impurities in Zr constitute the radioactive probes of the material. Briefly, the method 

consists in the examination of the angular correlation of the 133–482 keV γ- γ cascade 

emitted during the 181Hf to 181Ta β− decay. The probe nuclei report on the intensity 

(through the quadrupole frequency Q), and the symmetry (through the asymmetry 

parameter:) of the electric field gradient and its abundance or relative population f, if 

non-equivalent Zr sites occur. In addition, the degree of local disorder due to the 

presence of impurities or defects in lattice can be measured through the frequency 

distribution widths (). On account of the r-3 dependence of the quadrupole interaction, 

the technique is extremely localized and non-equivalent probe surroundings can be 

determined (f relative population). Theoretical functions of the form A22G22(t), folded 

with the measured time resolution curve, were fitted to the experimental ratio R(t) to 

determine the magnitudes of interest. Measurements were performed at room 



temperature using a four BaF2-detector set up with high resolution (FWHM 0.6ns at Hf 

energies). Details on the experimental setup adopted in this work as well as fitting 

procedure can be found elsewhere [32]. 

 

 

3. Results and Discussion 

 

The effect of the high energy ball milling (HEBM) pretreatment might result in partial 

zircon dissociation [4]: 

 

       (   )          (         )    (1) 

 

Figure 1 compares the XRD patterns of the powder before and after the HEBM. 

Regardless of the milling time, all the observed diffraction peaks belong to the zircon 

phase. No important broadening of the peaks is observed, apparently showing that the 

pretreatment did not affect the zircon crystallinity. This is expected due to the high 

hardness of the silicate (7.5 in the Mohs scale). The inset in this figure shows the main 

peaks of the zirconia phases (m and t/c) in the 2θ range. Only after 60 minutes of 

pretreatment a small band appears at 30.3 degrees, which corresponds to the high 

energy (tetragonal and/or cubic) zirconia phases [33]. After the 120-minute treatment, 

this peak is bigger but still small.  It is accompanied by the main monoclinic (lower energy) 

zirconia  peaks located at 28.3 ° and 31.5 °, corresponding to the (-111) and (111) planes. 

All this was clear evidence of the incipient silicate dissociation. 

 



 

3.1. Milled powder particle size and morphology SEM and laser scattering analyses 

 

Figure 2 shows SEM images of the Z0 and Z120 samples at two magnifications (x10000 

and x30000). Figures 2a and 2c depict the SEM image of the as-received zircon powder, 

showing sharp edges and grain sizes between 0.1 μm and 2 μm. Figures 2b and 2d show 

the powder after 120 minutes of HEBM. After the milling process, the particles were more 

rounded, but no significant change in the particle size was detected, which was also 

observed by laser diffraction.  No important agglomeration was observed, evidencing that 

the milling treatment affected grain morphology rather than particle size.  

A global EDS analysis of the milled powder was carried out, (1000 seconds); the only 

detected elements were, as expected, zirconium and silicon. The milling media employed 

was magnesia stabilized zirconia. No magnesium was detected in the mentioned EDS test; 

hence, it can be stand that the milling treatments did not incorporate zirconia to the 

milled powder due to the jars or milling media. 

Particle size distribution analysis was performed for the original (Z0) and the milled 

samples at 10, 60 and 120 minutes (Z10, Z60 and Z120, respectively) in order to observe 

the particle size evolution. Table 1 lists the results of the particle size analysis. The 

observed effect of the milling treatment is negligible. The mean particle size remained 

constant even after 120 minutes of pretreatment. These results are concordant with the 

SEM images in figure 2a-d. 

 

3.2. Effect of the high energy milling treatment in zircon sintering. 

 



The milling treatment of these hard powders, if it is enough energetic, might activate 

several processes like acid leaching, thermal decomposition and sintering. Figure 3 shows 

the sintering parameters of the milled fine zircon powders. Evidently, the sintering 

process was enhanced by the milling treatment. The as received powder resulted in 8% 

porosity after the proposed thermal treatment; even short time treatment enhanced the 

sinterization. No porosity, negligible within the performed Archimedes method accuracy, 

was detected in the 60 and 120 minutes milled powders.  The achieved density of the 

materials after the heating treatment (1500 °C) was increased by the milling 

pretreatment. This is an experimental evidence of the structural changes during the 

milling treatment. These were difficult to observe in the XRD patterns, SEM and particle 

size distribution characterizations. All these evidence that the structural changes are 

subtle and consists in local distorted structural changes in the zircon structure. The PAC 

characterization arises as an adequate strategy for evaluating the milling effect in these 

hard powder materials.  

 

4. Effect of the high energy milling treatment in zircon, perturbed angular 

correlation (PAC) analysis. 

 

Figure 4 shows the spin rotation curves obtained from PAC experiments of the as-

adquired and milled powders.  

For the as-received zircon (Z0), a two-site hyperfine pattern had to be assumed to achieve 

a satisfactory fit. These two components are the well-known interaction describing 

crystalline zircon [6] hereinafter named Ic and a second one, Ia related to an aperiodic 

zircon highly asymmetric and distributed.  



As milling time proceeds, the hyperfine pattern changed requiring three components to 

well describe the whole pattern.  

As a consequence of the first 10 minutes of milling it is observed the appearance of the 

relative fraction of a distorted (Id) ZrSiO4 at expenses of that of the crystalline zircon that 

remains until the last milling step. This interaction has a similar quadrupole frequency to 

crystalline zircon with a high asymmetry parameter and wide spread, reflecting a 

significant local disorder [30]. This combination of three contributions Ic, Ia and Id persist 

up to 60 minutes of milling. Incorporating zirconium oxide phases did not improved the 

fitting results for Z60. It is worthy to note, that this feature is consistent with XRD 

analysis, since these three contributions describe different surroundings of Zr atoms in 

zirconium silicates (ZrSiO4). 

In addition, the quadrupole frequency mean value for Ia varies with milling time from 83 

for Z0 to 66 Mrad/s for the rest of the treatments, which is clearly appreciated in figure 4. 

After the last milling step (120 minutes) a new widely distributed hyperfine interaction 

appears which can be assigned to m/t-ZrO2. This new compound indicates that the 

decomposition of zircon has begun, at expenses of crystalline zircon. The m/t-ZrO2 phase 

was already reported by Scian et al. [25] when milling pure Zirconia, in similar 

experimental conditions. This fact is in agreement with the appearance of m/t-ZrO2 

diffraction peaks observed by XRD (fig. 1). However, the great amount of m/t ZrO2 

observed by PAC is probably due to the high local character of this nuclear technique. 

In table 2, the quadrupole parameters determined via the fitting procedure are listed 

together with references values for comparison. 



Figure 5 shows the milling time evolution of relative fractions corresponding to each  

quadrupole interactions. It is important to note that PAC technique only probes Zr 

containing compounds. 

Taking into account the observed evolution of the relative fractions determined by PAC 

(see figure 2) we can suggest the following sequence of reactions: 

 

      ( )        ( )    (2) 

      ( )        ( )    (3) 

 

Any of these three zircon phases (c, a, d) can dissociate into a zirconia and a silicon oxide 

phase [25]. 

      ( )      ( )          (4) 

 

However, our PAC results suggested that it is the crystalline structure which gives rise to 

the m/t ZrO2.  

By considering the results of XRD and PAC, the effects of milling on the fine zircon we can 

determine: The HEBM treatment did not modify notoriously the particle size of fine 

zircon, but its morphology changed, as can be observed in particle size distribution data 

(table 1) and in SEM images (Figure 2). By XRD, the main phase identified throughout the 

milling time range was zirconium silicate. There were no major changes except mild 

widening of the peaks and the incipient dissociation of silicate, evidenced by the 

appearance of peaks belonging to tetragonal and monoclinic zirconia. 



PAC analysis, being a very local technique, identified two equally populated sites in the 

original fine zircon corresponding to crystalline zircon and aperiodic zircon. As milling 

proceeds, many defects are introduced which give rise to a new interaction reflecting 

highly disordered sites. 

Thus, a transition from the more ordered zircon phases to lower ordered ones depending 

on the processing variable is clearly observed.  

In agreement with XRD results, after long milling times, PAC reported the presence of 

zirconium oxide. However, it is important to point out that the relative amount of 

zirconium oxide evaluated is higher than the amount of zirconia inferred by XRD. This 

could be explained by the low crystalline nature of the zirconium oxide produced by the 

milling treatment and to the different capabilities of the employed technique.  

Finally, it can be stand that the partial dissociation resulting in the appearance of 

zirconium oxide and amorphous silica will undoubtedly affect and, due to the second, 

enhance the sintering of this hard and refractory powder. 

 

5. Conclusions 

 

The milling effect of a hard mineral powder (ZrSiO4) was assessed by means of 

complimentary techniques. The phenomenological macroscopic confirmation of the 

structural change and mechanical activation consisted in the important enhancement of 

the sintering behavior of the treated fine zircon powders; presumably other post 

treatments like chemical leaching might be enhanced as well. 

No important change in the particle size distribution was observed, only a slight 

morphological change was detected by SEM. The XRD showed only the partial 



dissociation and failed in the differentiation of the zircon nano-configurations observed 

by PAC. By means of this technique, three different well known zircon phases were 

identified and quantified as a function of the milling time: a fully crystalline phase, an 

aperiodic phase and a distorted one, coming from the first two phases. 

With long term treatments a partial dissociation was observed, yielding a zirconium oxide 

highly distorted. The formed corresponding silica enhances the sintering of this hard and 

refractory fine powder. 

Finally, it is worth to point out that the processing conditions of this material can be 

optimized through the performed characterization strategy.   
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Figure 1: XRD patterns of the milled and un-milled fine zircon (ZrSiO4) powders. 
 
Figure 2: SEM images of the as-received and milled powders; a: Z0, x 10000; b: Z120, 
x10000; c: Z0, x30000; and d: Z120, x30000.  
 
Figure 3: Sintering parameters: apparent density and open porosity of the sintered 
powders heated at 1500 °C as a function of milling time. 
 
Figure 4: Spin rotation curves determined for the zircon powders. Full lines represent 
the fitting results. 

 
Figure 5: Evolution of relative fraction with milling time. 
 

Table 1: Particle size distribution of the milled zircon powders. 

Sample 
Milling 
time 
(min) 

D10 
(µm) 

D50 
(µm) 

D90 
(µm) 

Z0 0 0.5 1.1 2.6 

Z10 10 0.5 1.1 2.4 

Z60 60 0.5 1.1 2.7 

Z120 120 0.4 1.1 2.8 

 

 
Table 2: Fitted quadrupole parameters: quadrupole frequency, Q (Mrad/s); asymmetry 

parameter,  and frequency distribution  (%), for each of the following contributions, 
crystalline zircon (Ic); aperiodic zircon (Ia); distorted zircon (Id) and 
monoclinic/tetragonal zirconia (Im/t). Also references values are displayed. 

Paramet
er 

Interactions References 

Ic Ia Id Im/t 

Crystalli
ne 
[32] 

Aperiod
ic 
[26] 

Distort
ed 
[32] 

Monoclinic/tetrag
onal 
[28] 

Chemical 
formula 

ZrSi
O4 

ZrSi
O4 

ZrSi
O4 

ZrO

2 
ZrSiO4 ZrSiO4 ZrSiO4 ZrO2 

Q  

(Mrad/s) 
1061 661 983 

155

1 
1001 851 1002 1655 

 0.192 0.831 11 
0.5

1 

0.211 0.741 0.983 0.482 

 (%) 21 61 297 151 101 151 1 3 
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