
Web Mashups with WebMakeup

Oscar Díaz1, Iñigo Aldalur1, Cristóbal Arellano1, Haritz Medina1,
Sergio Firmenich2

1 University of the Basque Country (UPV/EHU), San Sebastián (Spain)
(oscar.diaz, cristobal.arellano, inigo.aldalur)@ehu.es,

2 LIFIA, Universidad Nacional de La Plata and CONICET (Argentina)
sergio.firmenich@lifia.info.unlp.edu.ar

Abstract. Modding refers to the act of modifying hardware, software, or
virtually anything else, to perform a function not originally conceived or
intended by the designer. The rationales for modding should be sought
in the aspiration of users to contextualize to their own situation the
artifact at hand. Websites are not exception. WebMakeup targets mod
scenarios where web pages are turned into canvases users can tune to
account for their situational, idiosyncratic, and potentially, short-lived
needs. By clicking, users turn DOM nodes into widgets. Widgets can next
be rearranged, deleted, updated or stored for later reuse in other pages. In
addition, widgets can be involved in “blink” patterns where interactions
with a widget might affect the related widgets. This empowers users to
tune not only what but also when content is to show up in an AJAX-like
way. WebMakeup is publicly available as a Chrome extension.

1 Context and Goals

A mashup has been defined as “a composite application developed starting
from reusable data, application logic, and/or user interfaces typically, but not
mandatorily, sourced from the Web” [1]. It has been observed that mashups tend
to be limited in their scope, addressing what is being referred to as the long tail
of the software market whose limited demands and/or benefits make mashups
fall outside mainstream applications [1]. This observation rises the question of
who develops mashups, i.e., the profile of those addressing the long tail. Hence,
it is relevant to start by first characterizing this audience. Differences between
mashup tools frequently rest on the different user profiles being targeted. In
other words, tool success very much depends on the accuracy to which these
profiles are pinpointed.

Our mashup scenario is characterized as being situational, idiosyncratic and,
potentially, short-lived. These aspects challenge traditional software develop-
ment, and shift the focus from professional programmers to hobby programmers
or even, laymen. This changes the rules of the game. Available time, available
skills or motivation greatly differ depending on the target developers. For
professional programmers, development takes place in a working setting where
time and skills are assumed, and motivation is turned into duty. This setting

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/323096624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


changes when development is handed over to laymen. It might well be part of
work or not. Some support might be available but most of the time, development
is conducted on layman’s own account. Basically, we characterize our target
audience (i.e. the mashup developer) along three features:

1. available expertise: no programming experience. Our target audience should
not need to known HTML, APIs, JavaScript or other programming environ-
ment in which mashup are realized.

2. available time: 30’. The expectation is for the mashup to be developed in
around 30’

3. sparking motivation: improving the Web Experience.

Broadly, our approach can be characterized as follows. First, and unlike
traditional mashup approaches, we do not aim at creating a brand new
application (the mashup) but customizing an exising one. Second, we do not
consider any kind of data source but HTML pages. The term “modding” is used
to refer to the possibility of users to tune HTML content and interactions to fit
their own patterns. The ultimate goal is improving the User Experience (UX).
This is achieved through modding mashups (here after referred to as “mods”).
This vision accounts for a post-production (i.e. once the modded website is in
operation), user-driven Web customization. This paper describes WebMakeup, a
Chrome plug-in for mod development. Specifically, we focus on the mashup side
of WebMakeup, i.e. how WebMakeup allows for copying HTML fragment from
the Web to be later pasted into the modded website. A more complete account
of WebMakeup’s functionality can be found at [3]. This paper focuses on the
case study at the Mashup Contest held at the International Conference on Web
Engineering (ICWE) in 2015.

2 A mod scenario

Consider a layman browsing The New York Times website (NYT). What can
make him mod this website? Better said, how strong should this mod desire be for
the user getting down to work and develop a mod? Although motivations vary,
a common source of discomfort is when other websites need to be visited. This
might involve opening new tabs, and moving back and forth between different
tabs. This makes the user loose focus and break the reading flow. Consider three
scenarios when reading the NYT (see Figure 1):

1. the user is a frequent traveller between Amsterdam Central Station and
Rotterdam Central Station. Periodically, the user checks when the next train
leaves. NYT is often read while waiting at the train station. Checking next
train, involves googling in a new tab,

2. the user is a broker. He needs to keep an eye on share prices even when
reading the newspaper,

3. the user likes to check how headlines are covered by media other than the
NYT (e.g. NBC news).



Fig. 1. Websites accessed while reading the NYT (in clockwise order): Google Search,
Science section of the NYT, Visual Economy, and search facility at the NBC website.

4. the user is interested in two sections of the NYT: Science and Sports. He
doesn’t always check them fully but like to have a glance to the headlines in
these sections

These scenarios involve a tab shifting from the NYT website to other websites.
Despite its simplicity, the few clicks involve might well break the reading flow.
This is not a main discomfort except if conducted in a regular basis. If you are a
frequent train traveler, working as a broker, curious about NBC news coverage,
or interested in Science and Sports, tab shifting might be a main discomfort
in your UX when accessing the NYT website. Modding might help by moving
scattered Web content to the website when the main task is conducted, in this
case the NYT website. Next section addresses how this NYT scenario can be
tackled by WebMakeup.

3 A session with WebMakeup

WebMakeup is both an editor and an engine for Web modding. As an editor, it
offers a GUI for obtaining mods. As an engine, it interprets mods, and modifies
the target page accordingly. WebMakeup is available at the Chrome Web Store:
https://chrome.google.com/webstore/detail/alnhegodephpjnaghlcemlnpdknhbhjj.



Fig. 2. The WebMakeup scrollable menu.

Usability studies were conducted and reported at [3]. This section describes the
creation of a mod for supporting the NYT scenario.

The process starts by the user focusing on the website causing the disconfort.
If disconfort is due to visual clutter, then he can start by removing some
content. If disconfort is due to disperse content, then he can start by singling
out this content, and somehow making it appear at the host website. Finally,
he should decide whether all content should be readily available or rather,
become visible provided some user interaction occurs. More specifically, this
notion of content that is singled out to be operated upon is captured in terms of a
“widget”. For our purposes, a widget is basically an HTML fragment that is being
singling out and equipped with some operations and additional meta-properties.
Therefore, modding is achieved in terms of widgets, specifically, through four
main interventions: widget creation, widget mining, widget handling and widget
animation. Next subsections present each intervention with the help of the
running example.

3.1 Widget Creation

WebMakeup is a plugin for Google Chrome. Its installation is reflected by the
WebMakeup button at the right of the address bar. On clicking this button, a
scrollable menu pops up (see Figure 2). Clicking on “New” causes the following
effects:

1. the current page is turned into an editor canvas where the pointer is turned
into a camera,

2. a grid-like structure is interspersed on top of the current DOM tree, and
3. two tabs pops up: the piggyBank tab and the patterns tab.

By mousing over the page, the underlying DOM nodes are highlighted. By
clicking, the user singles this node out as a meaningful HTML fragment, i.e.
a widget. A limitation is the handling of “hidden nodes”, i.e. DOM nodes that do
not have a graphical counterpart and hence, they cannot be pinpointed through
the cursor. For instance, a table row (<tr>) is graphically hidden if its graphical
space is totally taken by its content. If the row does not explicitly have some



Fig. 3. DOM nodes are turned into widgets. A decorator permits to operate upon the
widget: remove, visibility-state modification and un-widgetization (i.e. turning back to
a mere DOM node).

graphical counterpart (e.g. a border), then all the space is occupied by the row’s
content so that the cursor will always select the row’s content rather than the
row element itself. To overcome this problem, we resort to the keyboard. Keys
“w”, “s”, “a” and “d” help to move up, down, left and right along the DOM tree,
respectively, w.r.t to the node being pinpointed by the cursor.

No matter the mechanism (i.e. cursor vs. keyword), the selected node is
surrounded by a decorator. In other words, the HTML fragment is turned into
a widget, and hence, amenable to be manipulated. Figure 3 depicts the DOM
nodes from the NYT website once three DOM nodes are turned into widgets,
namely, linkBar, headline, and rightColumn. Broadly, widgets are “those page
chunks” to be operated upon in order to be deleted, re-allocated or changed in
some of its content. But before moving to widget handling, it is important to
note that widgets are not limited to those of the modded page (e.g. the NYT
page) but they can be obtained from any place in the Web sphere. This moves
us to widget mining.

3.2 Widget Mining

For our purposes, Web mashuping involves putting together otherwise scattered
Web content. The basic aim: avoiding tab switching and, in some case,
copy&paste operations between websites. In the NYT example, we aim at



offering train information, stock exchange data or headlines for other newspa-
pers, all without leaving the NYT page. In this example, Google (for the train
information), Visual Economy (for the share prices) or NBC (for the headlines)
act as the information providers. This information is supported in terms of
HTML pages in their respective websites. Therefore, the process goes along a
similar pattern as the one described in the previous section, i.e. HTML fragments
are turned into widgets. Nevertheless, some subtle differences exist.

Widgets can be mined any time while browsing, not just when creating the
mod. To this end, the right-click contextual menu is extended with the mineIT
item (see Figure 4). When you come across with a content of interest, select it,
and a grid-like structure will be interspersed on top of the current page. Due to
mouse hovering, the DOM node under the current cursor location is highlighted.
Once the desired node is highlighted, click mineIT to be prompted to name the
just-created widget. So, mined widgets are kept in the PiggyBank, a clipboard-
like facility that is later reachable through the PiggyBank tab (see later).

Worth noting, a mined widget might stand not just for a single node but a set
of nodes can be agglutinated upon the same widget as long as all come from the
very same page. Just provide the same widget name, and the highlighted node
will be merged with the existing widget’s structure. The NBC widget is a case
in point (see Figure 4). It aggregates the search bar and the node standing for
the first answer. When inlayed, this widget will allow to obtain the first answer
without leaving the NYT page.

Besides NBC, the running example extracts four widgets (see Figure 5):
namely, sportHL from http: // www. nytimes. com/ pages/ sports/ international/

index. html , scienceHL from http: // www. nytimes. com/ section/ science ,
stockMarket from http: // www. visualeconomy. com/ , and trainData from
googling “next train from Amsterdam to Rotterdam Central Station”. These
widgets will be available in the PiggyBank clipboard.

From a users perspective, all widgets are obtained in the same way, i.e.
through the contextual menu. However, their internal representation might
greatly differ based on the underlaying HTML code. Though the technical details
are outside the scope of this work [3], readers can gain some insights by looking
at the previous examples:
– sportHL and scienceHL, capture static and always-visible content,
– trainData holds also static content but some parts are initially hidden (e.g.

trip details) and become visible after some user interaction,
– stockMarket holds dynamic data. Share prices are continuously being

updated, i.e. frequent server requests are needed to keep the content in sync.
These examples serve to get an insight into the complexities of widgetization. It
is rarely the case that just cloning the DOM node will do. More often, CSS and
associated JS scripts should also be considered.

3.3 Widget Handling

Previous subsections illustrate how widget can be obtained from the modded
page itself or mined from somewhere else. Mined widgets are kept in the



Fig. 4. Widget mining from http://www.nbcnews.com/ : right click, select MineIT,
highlight the desired node, and press enter. A popup will request the widget name
(e.g. NBC ). From them on, the widget is kept in the PiggyBank.

PiggyBank (available through the namesake tab), and moved to the canvas (i.e.
the current page) through drag and drop. Widget placement is automatically
handled by the engine through some built-in heuristics. Once on the canvas, all
widgets behave the same, i.e.

1. widgets can be deleted or moved around by interacting through the widget
decorator,

2. widgets have an initial state, either visible or collapsed, reflected in the
decorator through the opened-eye icon or closed-eye icon, respectively (see
Figure 3). At runtime, this state can be changed through user interactions
(see Subsection 3.4) so that widgets move from visible to collapsed, or vice
versa,

3. widgets can be parameterized. Parameters are automatically derived based
on the underlying HTML fragment. This includes labels, entry form
parameters or the refresh polling frequency (for mined widgets). Double
click upon the widget to see its parameters.



Fig. 5. Mining widgets for the sample scenario (in clockwise order): sportHL,
scienceHL, stockMarket and trainData. The widget’s node counterpart is highlighted.

Figure 6 shows the parameters after double clicking the linkBar widget.
Basically, labels and hrefs are made available so that the user can now change any
of them. In this case, we change the first link from pointing to the World News
to the ICWE program. Parameter assignment can be by value or by reference.
By value refers to the user manually providing the value as in the previous
example. By reference involves the system automatically retrieving the value by
applying an XPath upon the modded page at runtime. XPaths are derived from
user interaction upon the host page at parameterization time. Uses do not need
to know XPath. The NBC widget is a case in point. This widget’s parameters
include the searching text. If you type a value, the widget will always look for
this value. By contrast, a reference to some content of the NYT page can be set.
While the parameter list is visible, go to the canvas, copy the right hand-side



Fig. 6. Changing linkBar’s parameters. First hyperlink’s label is changed from World
to ICWE Program while its URL now points to the ICWE website.

headline, and next, paste it as the value of the searching parameter. Internally
the engine associates this parameter to the headline’s XPath expression. At
runtime, the engine enacts the XPath expression and assigns the result to the
NBC’s searching parameter “Personalities Clashing Over How to Handle Greek
Bailout”. In this way, the NBC widget will search for the current headline and
not for the headline at the time the mod was created.

3.4 Widget Animation

Modding happens in an existing page which will probably have most of its space
taken. Indeed, our running example handles seven widgets, namely:

– from the modded page: linkBar, headline, rightColumn



Fig. 7. Setting blinks between widgets. Widget below will be visible after clicking on
the widget above.

– from the websphere: trainData, stockMarket, NBC, SportHL, ScienceHL

Displaying all these widgets simultaneously will lead to an even more cluttered
NYT page, impacting the UX. Hence, it is common to turn some nodes into
widgets with the only purpose of deleting them, and making room for new
content. This is the case of rightColumn. This widget is removed to leave room
for stockMarket. But, this might not be enough. We should also consider which
widgets should be readily visible (i.e. at loading time), and which should be
visible on demand, i.e. subject to a previous user interaction upon another
widget. The latter is referred to as widget animation.

Widgets can be in two states: visible or collapsed. At design time, users decide
the initial state. At runtime, this state can be changed through “blinks”. Blink



relationships can be set between widgets so that interactions upon a widget
can impact another widget’s state. Blinks are graphically represented through
pipes. Widget decorators have in their right-hand side a yellow circle. This circle
denotes a pipe start. Click and drag from this point to expand till reaching
another widget. This sets a blink from the triggering widget (the pipe’s start) to
the triggered widget (the pipe’s end). An entry field on top of the pipe serves to
indicate the blink’s event. The default triggering event is click, though users can
select other DOM events. Figure 7 depicts such a pipe from headline to NBC.
NBC’ initial state is collapsed. This blink instructs that clicking headline will
change NBC state. Let’s see the rest of the animation (see Figure 7):

Specifically, buttons can be introduced to make widgets available on demand
(i.e. through button interaction).

Let’s see a possible animation strategy for our sample case (see Figure 7):

– headline and stockMarket are always visible (i.e. they are never involved as
triggered widgets in a blink),

– NBC is initially collapsed. It becomes visible when clicking on headline,
– trainData is initially collapsed. We introduce the nextTrain button to make

it available on demand. To this end, PiggyBank always holds three handy
widgets (i.e. link, image and button) which can be cloned and parameterized
as any other widget,

– sportHL is initially visible but collapsed when clicking on the whatElse
button,

– scienceHL is initially collapsed but becomes visible when clicking on the
whatElse button.

The later introduces a disjunction-blink pattern whereby two widgets are shown
in alternation on clicking upon a common widget. By letting users play with the
tool, we noticed other recurrent composition of blinks:

– click2erase. This pattern involves only one widget. It accounts for a single
blink. For instance, consider “stockMarket blinks stockMarket on clicking”.
stockMarket will be available till the user click on it. On clicking, stockMarket
is gone for the current session.

– click2alternate. This pattern involves two widgets which are shown alterna-
tively. It accounts for two blinks: ”scienceHL blinks sportHL.state=visible on
clicking” & ”sportHL blinks scienceHL.state=collapse on clicking”. Initially
only sportHL is visible. Click on it, and sportHL is substituted by scienceHL.
Click again, and sportHL shows up again.

– conjunction. These patterns involve three widgets or more: the triggering
widgets, and two triggered widgets that are shown simultaneously. It
accounts for two blinks: ”whatElse blinks sportHL on clicking” & ” ”whatElse
blinks scienceHL on clicking”. On clicking, both sportHL and scienceHL pops
up.

– disjunction. These patterns involve three widgets: the triggering widgets,
and two triggered widgets that are shown in alternation. It accounts
for two blinks: ”whatElse blinks sportHL.state=visible on clicking” & ”



whatElse blinks scienceHL.state=collapse on clicking”. Clicking successively
on whatElse shows sportHL and scienceHL in alternation.

– incremental. This pattern involves ”n” widgets which are gradually pre-
sented as the user clicks. It accounts for ”n-1” blinks. The first blink involves
the triggering widget (e.g. ”headline blinks sportHL on clicking”) while
subsequent blinks subordinate the rendering of a widget to click in its widget
predecessor (e.g. ”sportHL blinks scienceHL on clicking”). Therefore, widget
order matters.

– domino. It leverages the previous pattern so that clicking on the last widget
collapses all its predecesors except the triggering widget (i.e ”headline”).

These patterns are available through the namesake tab. Pattern definition is
achieved using a similar approach to PowerPoint’s SmartArts (see Figure 8).
Keeping the ALT key pressed down, select the involved widgets. As widgets
are being selected, the widget region is shadowed, highlighting the order of the
widget at hand. Once all the participating widgets are picked out, and keeping
the ALT key pressed down, choose the desired behavior in the pattern tab.
WebMakeup will automatically generate the blinks that jointly account for the
pattern at hand.

4 The mod lifecycle

Though previous subsections present the different operations in sequence, the
user is free to intermingle those operations as they come to mind. Indeed, we
envisage mod development to be characterized as being in ”perpetual beta” in the
sense of the mod being able to be easily modified at any time. Ease deployment
of partial mods allows users to get a glimpse of the development so far. To this
end, the WebMakeup menu offers the ”Deploy” option (see Figure 2). On clicking,
the page is reload but with the mod enacted. Now, the user can get a real feeling
on the result so far. For instance, Figure 9 depicts the NYT website with the
sample mod. By interacting with the different widget regions, the user can check
out the mod’s animation. Previous figure depicts the outcome after clicking
nextTrain and headline. Finally, important and export facilities are available for
mod sharing through the namesake options in the WebMakeup menu. Export
generates a .mkp file. This file can then be imported, or even easier, dragged
and dropped into the browser for the consumer to enjoy the mod.

5 Level of maturity & Discussion

WebMakeup is available at the Chrome Web Store: https://chrome.google.
com/webstore/detail/alnhegodephpjnaghlcemlnpdknhbhjj. It is then avail-
able for public download. The case study described in this paper was conducted
with this plug-in. More complex cases still present main chanllenges. Mining
widgets from content resulting from AJAX interactions is still difficult. Imple-
mentation details can be found at [3]. Technically, WebMakeup exhibit some
limitations that were highlighted during the Mashup contest:



Fig. 8. Setting patterns. Keeping the ALT key pressed down, select first the widgets,
and next, the blink pattern.

– upgrades on the NYT website can break the mod apart. Since widget
placement and data binding are based on the page structure, changes to
this structure can make the mod stop working. True. Notice however that
re-building the mod from scratch will take around 30’, and that after all,
the layout of the NYT website does not change so often. However, the risk
is there.

– mod reuse might be limited to users exhibiting the same browser settings. By
browser settings, we refer to those client-side aspects that might impact the
page structure. First, extensions. Mods might not be the only extensions
deployed at the user’s browser installation. Thousands of extensions are
available at browsers’ Web stores that might co-exist and interact with mods.
A common case is that of ad blockers. These popular extensions prevent



Fig. 9. The mod at work. Screenshot once nextTrain and headline have been clicked.

adverts from showing up. In so doing, they change the page structure, and
hence, they might impact the mod outcome.

– incremental development of mods might be penalized by rich, heavy Web
pages. The point is that mod enactment takes place once the page is fully
downloaded. That is, widgets start showing up once all the server content
is being loaded. No way to click nextTrain till all the content is available.
During the contest, this was a cause of distress since it took several seconds
for the NYT page to be fully loaded, hence hindering the quick feedback
that WebMakeup aims at.

– installability (i.e., the quality of requiring minimum installation burden) is
regarded as a main advantage of WebMakeup. Being an extension itself,
WebMakeup can be easily downloaded from Chrome Web Store: https://
chrome.google.com/webstore/detail/alnhegodephpjnaghlcemlnpdknhbhjj.



Mashup Feature Checklist Mashup Tool Feature Checklist
Mashup Type UI mashup Targeted End-User Non Programmers

Component Types UI components Automation Degree Semi-automation
Runtime Location Client-side only Liveness Level Level 33

Integration Logic UI-based integration Interaction Technique WYSIWYG
Instantiation Lifecycle Short-living Online User Community Private but sharable

Table 1. Characterizing WebMakeup as a mashup tool.

This makes the WebMakeup icon to show up in the browser bar. This is all
needed to start modding your favorite websites.

6 Related Work

The first question is whether modding should be considered a mashup technique.
The answer is unclear. It might be so in spirit but not in architecture. That
is, mods aim at improving the UX, and one way to achieve this is through
mashuping, here understood as side-by-side integration of Web content. However,
from an architectural perspective, mods are not self-contained Web applications
but browser extensions (a.k.a. plugs-in) to be frequently achieved at the back of
the website and by users who might not have server access. From this perspective,
modding falls within the area of Web Augmentation [2]. Table 1 sets WebMakeup
within the feature checklist put forward by the Contest organizers:

– mashup components (i.e. the artifact to be reused and that is accessible either
locally or remotely) are limited to HTML fragments which are extracted from
websites and included in the modded website.

– mashup logic (i.e. the internal logic of operation of a mashup) includes
aspects such as widget location within the modded page, data flow between
the modded page and the hosted widgets, or widget animation.

Specifically, WebMakeup pivots around the notion of “widget”. There already
exist W3C standards for UI Reuse like Widgets [?] and Web Components [?].
W3C Widgets are "full-fledged client-side applications that are authored using
Web standards such as HTML and packaged for distribution". Web Components
allow "Web application authors to define widgets with a level of visual richness
and interactivity not possible with CSS alone, and ease of composition and
reuse". Reusing such components is possible in our context. However, we decided
not to integrate them due to its immaturity and the low number of such
components that already exist on the Web.

Another possibility for widget creation is to create them based on a fragment
selected by the user. This process comprises two steps: the selection of the area
to be widgetized and the extraction of such area. For the selection step, it would
be useful any guidance. As introduced earlier, a widget is meaningful piece of
information support as a DOM element. It is trivial to allow users the selection
of any DOM element. However this is not the same for filter this selection to



such elements that are meaningful as a unit. In the accessibility area, there are
some works that face the problem of page segmentation. This page segmentation
is used to slice a webpage in meaningful units that are later consumed by
impaired users [?,?]. This algorithms can be used in our context to guide to
end-users while selecting a DOM element. For mirroring the fragment as closely
as possible, it would be needed to extract the content, style and functionality
of the original webpage. This is far from trivial. Whereas there are multiple
libraries to extract content and style automatically [?,?], as far as we know,
there is no automatic mechanism to extract the functionality. There are some
works that relates user interactions with the JavaScript code that handles them
[?,?], in order to help programmers during the maintenance tasks. Departing
from such point, it could be possible to extract such code and execute in the
augmented web in an automatic way. However, again, this is far from trivial.
A possible way could be the programatic generation of all possible interactions,
the extraction and dependency resolution of the executed code and its injection
in the augmented page.

Acknowledgments.

This work is co-supported by the Spanish Ministry of Education, and the
European Social Fund under contract TIN2011-23839 (“Scriptongue”). Aldalur
has a doctoral grant from the Spanish Ministry of Science & Education.

References

1. Daniel, F., and Matera, M. Mashups - Concepts, Models and Architectures.
Data-Centric Systems and Applications. Springer, 2014.

2. Díaz, O., and Arellano, C. The augmented web: Rationales, opportunities, and
challenges on browser-side transcoding. TWEB 9, 2 (2015), 8.

3. Díaz, O., Arellano, C., Aldalur, I., Medina, H., and Firmenich, S.
End-user browser-side modification of web pages. In Web Information Systems
Engineering - WISE 2014 - 15th International Conference, Thessaloniki, Greece,
October 12-14, 2014, Proceedings, Part I (2014), pp. 293–307.


