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Abstract 
 

Wetlands support biodiversity and provide critical ecosystem services but have been 

severely impacted by human activity. Shorebirds are a diverse group of waterbirds that 

usually forage in shallow water, making them highly dependent on wetlands. Coastal 

shorebirds are increasingly threatened in the East Asian-Australasian Flyway where 

coastlines are heavily developed and wetlands have been extensively modified and 

degraded. In this human-dominated landscape, shorebirds sometimes aggregate in 

artificial wetlands associated with human production activities including agriculture, 

aquaculture and salt production. However, it is unknown whether artificial habitat use is 

widespread by shorebirds across the flyway, if such habitats could help to offset negative 

population trends, or how artificial habitats should be managed alongside natural habitats 

to achieve conservation outcomes. This thesis investigates the use of artificial and natural 

habitats by shorebirds in heavily developed coastal regions of the East Asian-Australasian 

Flyway, and suggests conservation and management actions in this setting.  

 

Chapter 2 presents the first large-scale review of coastal artificial habitat use by shorebirds 

in the East Asian-Australasian Flyway. Analysing data from multiple monitoring programs 

and the literature, it shows that 83 shorebird species have occurred on more than 170 

artificial sites of eight different land uses throughout the flyway, including 36 species in 

internationally important numbers. However, occurrence and foraging on artificial habitats 

is uneven among species, and different land uses support varying abundances and 

species diversity. Saltworks host a larger and more diverse shorebird assemblage than 

other artificial habitats, but are threatened by conversion to land uses of lesser habitat 

value. 

 

Chapter 3 presents a detailed case study of artificial habitat use in a critical stopover area 

comprising ~150 km of coastline in Jiangsu province, China. It shows that most shorebirds 

are completely limited to artificial habitats during high tide because natural intertidal 

wetlands are covered by seawater and no natural habitat remains in the supratidal zone. 

Further, most shorebirds were observed using artificial habitats almost exclusively for 

roosting (rather than foraging), and selected larger ponds with less water and vegetation 

cover and fewer built structures nearby, characteristics that can be cultivated through 

management. These results suggest that jointly managing artificial supratidal and natural 
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intertidal habitats would benefit shorebirds in this region, and this approach is likely 

applicable to sites throughout heavily developed regions of the flyway. 

 

Chapter 4 uses long-term monitoring data from five highly developed coastal regions of 

Australia to show that a high proportion of all shorebirds (more than one-third in four 

regions and more than two-thirds in two regions) use artificial habitats at high tide. It 

indicates that a relatively low proportion of migratory and coastal habitat specialist 

shorebirds use artificial habitats, suggesting they may be less flexible in their habitat use 

and thus less able to use non-tidal habitats than non-migratory and generalist/inland 

specialist species. Most species-region combinations did not show a significant temporal 

trend in the proportion of birds that use artificial habitats, suggesting relatively consistent 

use of artificial habitats over time. These results indicate that a framework for high tide 

habitat management that includes artificial habitats alongside preservation of remaining 

natural habitats could make a significant contribution to shorebird conservation in 

Australia.  

 

Smooth cordgrass Spartina alterniflora is a known threat to shorebirds along the heavily 

developed coast of mainland China. It spreads along intertidal flats and makes them 

effectively unavailable to shorebirds for foraging, and can reduce the quality of supratidal 

roost sites. The intersection of S. alterniflora invasion and loss of intertidal flats from other 

processes including land reclamation presents a double threat, with both pressures 

narrowing the extent of habitat available for foraging and roosting. However, the spatial 

overlap between S. alterniflora and shorebird distribution in mainland China is unknown. 

Chapter 5 therefore maps the extent of S. alterniflora coverage of coastal sites used by 

internationally important numbers of shorebirds, estimates recent change in the spatial 

extent of intertidal flats at the same set of sites, and investigates where these two threats 

to important shorebird habitat intersect. It shows that S. alterniflora occurs on > 50% of 

important shorebird sites, 79% of which also experienced a decrease in intertidal extent 

between 2000 and 2015. These results suggest an urgent need for targeted S. alterniflora 

control, and can help to guide investment. 

 

This thesis demonstrates that shorebirds in heavily developed coastal areas of the East 

Asian-Australasian Flyway use natural intertidal wetlands and artificial supratidal habitats 

as an inter-connected landscape. Significant threats remain to both types of habitat, 

requiring additional conservation and management action. Urgent needs include formally 
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incorporating artificial habitats into conservation frameworks (Chapter 2; Chapter 4); 

securing or creating large roost sites with unvegetated areas of shallow water in the 

supratidal zone of human-dominated coastal areas (Chapter 3); and, controlling S. 

alterniflora at important shorebird sites in China, especially those that have already 

experienced intertidal flat loss (Chapter 5). 
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Chapter 1 General Introduction 
 

1.1 Overview 

 

Human activities are degrading ecosystems and driving global losses of biodiversity. One 

consequence is that much of the world's wildlife now occupies highly altered, human-

dominated landscapes for at least part of its life cycle. The shorebirds of the East Asian-

Australasian Flyway inhabit and migrate along the most highly developed coasts in the 

world. They depend on wetlands, which have been highly impacted by human activity. 

Shorebirds exemplify both the biodiversity crisis caused by human activity and the need for 

wildlife to find habitat in human-dominated landscapes. This PhD demonstrates that many 

of these increasingly threatened birds use both natural and artificial habitats, necessitating 

joined-up conservation. It provides evidence that additional management and threat 

mitigation actions are needed on both natural intertidal wetlands and ‘working coastal 

wetlands’ such as salt production and aquaculture sites to aid the survival of the region’s 

coastal shorebirds. 

 

1.2 Human impacts on biodiversity and wetlands 

 

Humans have impacted landscapes for thousands of years, but the pace, scale and 

intensity of human activity have accelerated rapidly in the last half century (IPBES, 2019). 

Since 1950, human population size, GDP, transportation activity, water consumption and 

energy use have all shown exponential growth (Steffen et al., 2015). The ‘human footprint 

map’, which combined population density, land transformation, accessibility and electrical 

power infrastructure to illustrate global human influence, showed that only a few regions of 

the world remained largely free from human influence at the turn of the century 

(Sanderson et al., 2002). In the last two decades, one-tenth of this remaining global 

wilderness was destroyed (Watson et al., 2016). 

 

Many species have been unable to adapt to the rapid escalation of human activity. Current 

extinction rates are significantly higher than pre-human extinction rates (e.g. Barnosky et 

al., 2011; de Vos et al., 2015; Ceballos et al., 2015; IPBES, 2019). “Defaunation”, the 

widespread reduction in non-human animal populations, is rife, with at least 322 vertebrate 

extinctions since 1500 and an average decline rate of 25% across remaining vertebrate 
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populations (Dirzo et al., 2014). In October 2019 the International Union for the 

Conservation of Nature (IUCN), which assesses the conservation status of thousands of 

species around the world, issued “an urgent call to massively scale up species 

conservation action in response to the escalating biodiversity crisis” (IUCN, 2019a). 

 

Biodiversity loss has profound impacts on ecosystem function and can negatively impact 

large-scale processes such as nutrient recycling, carbon sequestration, and crop, wood 

and fisheries production that humans depend on to survive (Cardinale et al., 2012; 

Johnson et al., 2017; IPBES, 2019). Reflecting the importance of ecosystems, the IUCN 

Red List, which historically has assessed the conservation status of individual species, 

now also assesses the status of ecosystems (Rodriguez et al., 2011). Several of the 

ecosystems that have been assessed under this framework meet the criteria for 

Collapsed, Critically Endangered, or Endangered (IUCN-CEM, 2016). 

 

Wetland ecosystems support high levels of biodiversity and critical ecosystem services 

including climate regulation and air and water purification (de Groot et al., 2018; Neubauer 

& Verhoeven, 2019), but have been greatly reduced and modified by human activities. 

Wetlands declined worldwide by about 35% between 1970 and 2015, a rate three times 

higher than that of global forest decline (Ramsar, 2018a). Widespread degradation of 

many remaining wetlands has occurred through, for example, changed water regimes, 

intensive harvesting and widespread pollution (e.g. Junk et al., 2013; Murray et al., 2015; 

Melville et al., 2016).   

 

The Ramsar Convention on Wetlands, a global intergovernmental environmental 

agreement to promote wetland conservation, was adopted in 1971. Its 170 parties have 

formally committed to protecting and managing over 2,300 wetlands that cover 250 million 

hectares and around 15% of global wetlands, including some artificial wetlands important 

to biodiversity (Ramsar, 2018a). However, fewer than half of these declared Ramsar 

wetlands have developed and implemented management plans to ensure they retain their 

quality and functionality (Ramsar, 2018a). 

 

1.3 Human impacts on shorebirds 

 

Shorebirds comprise a diverse group of waterbirds that share morphological 

characteristics suited to shallow water foraging. They generally have long legs compared 
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to their body size and have evolved a variety of bill lengths and shapes that access 

different prey below or on top of muddy substrates (Geering et al., 2007; Fig. 1-1). Most 

shorebirds rely on coastal and/or freshwater wetlands for at least part of their life cycle. In 

non-breeding areas, some species are coastal habitat specialists that rarely move inland, 

some are generalists that can move between coastal and inland wetlands, and some are 

inland habitat specialists (Piersma, 2003). Coastal shorebirds frequent intertidal flats, the 

muddy part of the coast that is exposed at low tide and regularly inundated with seawater 

at high tide, to forage (Bamford et al., 2008). 

 

Some shorebirds are among the ~12% of the world’s vertebrate species that make long-

distance movements (Robinson et al. 2009), and undertake regular seasonal migrations 

between breeding and non-breeding areas. The Bar-tailed Godwit Limosa lapponica 

completes some of the longest migrations of any species on earth with single distance 

flights of up to 11,000 km (Gill et al., 2005). Migratory species are particularly vulnerable to 

habitat loss because they depend on functional habitat at multiple stopping points along 

their migration route (Iwamura et al., 2013). Their conservation is challenging because the 

success of conservation measures taken at one site depend on similar action at other sites 

across the species’ range, and these sites may be separated by huge geographic, cultural 

and political differences (Runge et al., 2014). This challenge is well illustrated by the case 

of migratory birds, only 9% of which are adequately protected across all stages of their life 

cycle, compared with about 45% of non-migratory bird species (Runge et al., 2015). 

 

In the Asia-Pacific region, migratory shorebirds move through the East Asian-Australasian 

Flyway (EAAF). The term “flyway” is a geographic concept that refers to the entire region 

through which migratory birds move annually from breeding grounds to non-breeding 

grounds, including stopover sites (i.e. feeding and resting places) in between the two 

(Boere & Stroud, 2006). Though they are extremely widespread, migratory waterbirds 

have broadly similar movement patterns and their migration routes have been grouped into 

eight global flyways (Boere & Stroud, 2006), of which the EAAF is the largest. It stretches 

from Australia and New Zealand through East and Southeast Asia to Siberia, northern 

China, Mongolia and Alaska, encompasses more than 20 countries, and supports more 

than 50 million waterbirds from more than 250 populations (Fig. 1-2). One hundred and 

twenty-seven shorebird populations of 97 species occur in the EAAF, of which 68 are 

migratory and 59 are non-migratory (Bamford et al., 2008). 
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Figure 1-1. Example shorebird species. Many shorebirds share morphological 
characteristics suited to foraging in shallow waters. Clockwise from upper left: 
Ruddy Turnstone Arenaria interpres; Australian Pied Oystercatcher Haematopus 
longirostris; Banded Stilt Cladorhynchus leucocephalus; Bar-tailed Godwit Limosa 
lapponica; Pacific Golden Plover Pluvialis fulva; Beach Stone-curlew Esacus 
magnirostris (images Micha V. Jackson). 

 

In the EAAF, local population declines in migratory shorebirds including Far Eastern 

Curlew Numenius madagascariensis (Close & Newman, 1984), Bar-tailed Godwit and 

Curlew Sandpiper Calidris ferruginea (Creed & Bailey, 1998) were first reported from non-

breeding sites in southern Australia as early as the 1970s, and have escalated for multiple 

species in the last several decades (e.g. Reid & Park, 2003; Nebel et al., 2008; Creed & 

Bailey, 2009; Minton et al., 2012). Amano et al. (2010) revealed declines in 16 widely-

occurring species during southward migration in Japan, signalling a flyway at risk. 

Clemens et al. (2016) confirmed continental-scale decreases in the abundance of 12 of 19 

migratory species and four of seven non-migratory species between 1973 and 2014 in 

Australia, the terminus of the flyway for many species, with annual decline rates across the 

period as steep as ~10% in some migratory species. 
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Figure 1-2. The East Asian-Australasian Flyway encompasses the entire geographic 
range of more than 250 migratory waterbird populations (map source: BirdLife 
Australia). 

 

Fourteen regularly occurring migratory shorebird species in the EAAF are now of global 

conservation concern i.e. have been assessed as Near Threatened, Vulnerable, 

Endangered or Critically Endangered on the IUCN Red List (IUCN, 2019b; Table 1-1). The 

Numeniini, a tribe of 13 large migratory shorebird species, are faring poorly globally, but 

face the most threats in the EAAF (Pearce-Higgins et al., 2017). Non-migratory species 

are also at risk with seven of New Zealand’s and four of Australia’s non-migratory 

shorebirds globally threatened, as are the Southeast Asian species Javan Plover 

Charadrius javanicus and Malaysian Plover Charadrius peronei (Table 1-1).  

 

Human impacts on the landscape are the driving force behind declines in the EAAF’s 

shorebirds. Almost one-third of the global human population lives along the seaboards of 

East and Southeast Asia, placing enormous pressure on the coastal habitats of the EAAF 

(MacKinnon et al., 2012). Wetland loss has been severe throughout the flyway, with for 

example 70% of wetlands in coastal southwestern Australia lost between the mid-1800s 

and late 1900s (Davis & Froend, 1999), 61% of wetlands in Japan lost between 1925 and 

2000 (Geographical Survey Institute Japan, 2000), and 51% of coastal wetlands lost in 

China between 1950 and 2000 (An et al., 2007a). Loss and degradation of coastal 

wetlands in the Yellow Sea, a particularly important stopover area for the EAAF’s 

migratory shorebirds that encompasses coastline in China, Democratic People’s Republic 



6 
 

of Korea (DPRK), and Republic of Korea (ROK), has been particularly severe. Over two 

thirds of the extent of intertidal flats disappeared from the Yellow Sea between the 1950s 

and early 2000s (Murray et al., 2014), and the ecosystem is classified as Endangered 

using IUCN criteria (Murray et al., 2015). Loss of intertidal habitat is now well-accepted as 

the primary driver of severe population declines in multiple shorebird species in the EAAF 

(Amano et al, 2010; Piersma et al., 2016; Studds et al., 2017), partly because shorebird 

populations most dependent on Yellow Sea stopover sites are declining fastest (Studds et 

al., 2017). 

 

One driver of intertidal flat loss, particularly in East Asia, has been widespread land 

reclamation, which entails enclosure of coastal wetlands by a seawall to create new land, 

sometimes in enormous development projects that destroy many square kilometres of 

natural habitat at one time (Yang et al., 2011; Ma et al., 2014; Moores et al., 2016). Rapid 

shorebird declines have prompted a focussed research effort to highlight the negative 

consequences of land reclamation on waterbird populations and the wider ecosystem 

(Yang et al., 2011; Ma et al., 2014; Murray, et al., 2015; Piersma et al., 2017; Choi et al., 

2018), and there is now widespread awareness of the damaging impacts of coastal land 

reclamation and the need to preserve and restore remaining intertidal flats.  

 

Shorebirds also face increasing threats from climate change, including additional coastal 

habitat loss from sea level rise (Iwamura et al., 2013) and changed conditions on the 

breeding grounds that are likely to restrict breeding habitat for some species (Wauchope et 

al., 2017). 

 

1.4 Wildlife in human-dominated landscapes  

 

The escalation of global habitat loss is obviously unsustainable, and the importance of 

protecting the world’s remaining natural areas is clear (Watson et al., 2016; Jones et al., 

2018; Watson et al., 2018). Nonetheless, the scale of global landscape change and the 

patchy distribution of remaining wilderness means that much of the world's wildlife must 

now occupy highly altered, human-dominated landscapes for at least some of its life cycle, 

warranting consideration of how conservation aims can be achieved in such landscapes.  
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Table 1-1. Threatened and near-threatened shorebirds of the East Asian-
Australasian Flyway 

Species Scientific Name Status (IUCN, 2019b) 

Migratory   

Eurasian Oystercatcher  Haematopus ostralegus Near Threatened 
Northern Lapwing  Vanellus vanellus Near Threatened 
Far Eastern Curlew  Numenius madagascariensis Endangered 
Eurasian Curlew  Numenius arquata Near Threatened 
Bar-tailed Godwit  Limosa lapponica Near Threatened 
Black-tailed Godwit  Limosa limosa Near Threatened 
Great Knot  Calidris tenuirostris Endangered 
Red Knot  Calidris canutus Near Threatened 
Curlew Sandpiper  Calidris ferruginea Near Threatened 
Spoon-billed Sandpiper  Calidris pygmaea Critically Endangered 
Red-necked Stint  Calidris ruficollis Near Threatened 
Asian Dowitcher  Limnodromus semipalmatus Near Threatened 
Grey-tailed Tattler  Tringa brevipes Near Threatened 
Nordmann’s Greenshank  Tringa guttifer Endangered 
 
Non-migratory 

  

Beach Stone-curlew  Esacus magnirostris Near Threatened 
Black Stilt  Himantopus novaezelandiae Critically Endangered 
Plains-wanderer  Pedionomus torquatus Critically Endangered 
Chatham Oystercatcher  Haematopus chathamensis Endangered 
Northern Red-breasted Plover  Charadrius aquilonius Near Threatened 
Southern Red-breasted Plover Charadrius obscurus Critically Endangered 
Malaysian Plover Charadrius peronii Near Threatened 
Javan Plover Charadrius javanicus Near Threatened 
Hooded Plover  Thinornis cucullatus Vulnerable 
Shore Plover Thinornis novaeseelandiae Endangered 
Wrybill  Anarhynchus frontalis Vulnerable 
Australian Painted-snipe  Rostratula australis Endangered 
Chatham Snipe Coenocorypha pusilla Vulnerable 

 

Dense human settlement, intensive agriculture and/or industrial land uses are typical of 

human-dominated landscapes, and the effect of these landscape features on wildlife 

varies. A small fraction of native species thrive in human-dominated environments. For 

example, Coyotes Canis latrans in North America have exploited human-driven wolf 

population reductions and greatly expanded their range, including into human settlements 

(Levy, 2012). The Bonnet Macaque Macaca radiate and Rhesus Macaque M. mulatta are 

considered commensal urban primates and thrive in cities across India (Sinha & 

Vijayakrishnan, 2017). The Noisy Miner Manorina melanocephala is an Australian species 

that thrives in urban and degraded environments, so much so that its aggressive exclusion 

of small birds has led to its listing as a Key Threatening Process under national law, 

prompting suggestions of large-scale removals to protect other species despite its native 

status (Davitt et al., 2018).  
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Many native species that occur in human-dominated environments, however, are forced to 

use these spaces because natural habitat has been lost or restricted. In extreme cases, 

species may persist only in human-dominated landscapes, for example the 39 Australian 

species that exist only in cities (Soanes & Lentini, 2019). Indeed 30% of Australia’s 

threatened species occur in cities (Ives et al., 2016), making population recovery doubtful 

if action is only taken in wild settings. Managing wildlife in human-dominated landscapes 

can present conundrums for conservation and require new approaches to wildlife and 

habitat management. For example, while invasive species generally threaten native fauna 

and their removal is often beneficial to biodiversity, native butterflies in California are now 

dependent on invasive species to survive in urban and suburban areas (Shapiro, 2002).  

 

There has increasingly been a focus on recovering biodiversity in urban environments, 

partly because of the benefits that access to nature provides for urban residents (e.g. 

Alvey et al., 2006; Carrus et al., 2015; Taylor & Hochuli, 2015). However, a large 

proportion of global landscapes constitute neither wilderness nor urban areas, for example 

farmland, rangelands, and artificial wetlands, giving rise to the idea of conserving “working 

landscapes”. Such practices as agroforestry, silvopasture, and ecosystem-based forest 

management have arisen as biodiversity-based approaches to managing working 

landscapes for the benefit of both local people and wildlife (Kremen & Merenlender, 2018). 

There have been some successes for wildlife in these “shared landscapes” such as the 

recovery of multiple large carnivores across the European continent (Chapron et al., 

2014), and the use of market-based tools to incentivise farmers to provide high-quality 

habitat for migrating waterbirds in North America (Reynolds et al., 2017). 

 

Conservation and management of wildlife in human-dominated settings will clearly be an 

important aspect of the battle to curb accelerated species extinction. Successfully 

achieving this requires an in-depth understanding of species’ habitat use and 

requirements. Moreover, complexities in human social interactions including competing 

land use priorities, jurisdictional authority, etc. will necessitate innovative approaches to 

conservation in human-dominated landscapes that may be different from conservation 

practices in wilderness areas. 

 

1.5 Conserving shorebirds in human-dominated landscapes 
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In human-dominated landscapes there has been pervasive conversion of natural wetlands, 

the primary foraging habitat for shorebirds in non-breeding areas, to artificial (i.e. human-

made) wetlands. Artificial wetlands doubled in area between 1970 and 2015 and now form 

12% of all wetlands globally (Ramsar, 2018a).  

 

Despite the negative impacts of natural wetland loss on waterbirds, many waterbird 

species throughout the world occur regularly on artificial habitats associated with human 

production activities such as agriculture (e.g. Elphick & Taft, 2010), aquaculture (e.g. 

Navedo et al., 2014; Basso et al., 2017) and salt production (e.g. Masero, 2003; Athearn et 

al., 2012). Shorebird aggregations have been widely reported on such “working coastal 

wetlands” in the EAAF, for example on aquaculture ponds in mainland China (Choi et al., 

2014; He et al., 2016), Taiwan (Bai et al., 2018) and Thailand (Sripanomyom et al., 2011); 

salt production sites in mainland China (Wang, 1992; Barter & Xu, 2004; Lei et al., 2018), 

Australia (Houston et al., 2012) and Thailand (Sripanomyom et al., 2011); and, rice fields 

in Japan and ROK (Fujioka et al., 2010). 

 

A systematic assessment of shorebirds’ habitat use and requirements in human-

dominated landscapes at the scale of the EAAF has been lacking, and significiant 

knowledge gaps remain. For example, how pervasive is artificial habitat use across 

shorebird species and countries of the flyway? Which artificial habitat types are used most 

frequently at a large scale? Is the community of shorebird species different on different 

types of artificial habitats? Do artificial habitats provide regular foraging opportunities 

across the shorebird assemblage, or are they used primarily for roosting in conjunction 

with natural feeding grounds? Are there significant habitat-related threats in human-

dominated landscapes additional to wetland loss/conversion from land reclamation that are 

impacting shorebirds?  

 

Given the conservation crisis facing the EAAF’s shorebirds, its clear link to habitat loss in 

non-breeding areas, and the widespread reduction and degradation of wetlands in the 

region, it is imperative to fully understand the habitat requirements of the EAAF’s 

shorebirds and to implement habitat preservation and management accordingly. Given the 

scale of development and the large human populations present along the EAAF’s 

coastlines, this will require both conservation action aimed at protecting remaining natural 

habitats and strategies to provide habitat within artificial environments in human-

dominated landscapes.  
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1.6 Thesis overview 

 

The overarching aim of this thesis is to fill knowledge gaps about shorebirds’ habitat use 

and threats to shorebird habitat in human-dominated coastal landscapes. Its purpose is to 

inform conservation and management actions in the EAAF directed at arresting population 

declines in the short-term and fostering population recovery in the long-term.  

 

To better quantify the relationship between shorebirds and artificial habitats, Chapter 2 

opens the thesis with the first large-scale review of shorebirds’ use of artificial habitats in 

non-breeding areas of the EAAF. By analysing data from multiple monitoring programs 

and the literature this chapter documents: i) where shorebirds have been recorded on 

artificial habitats; ii) how often and for which species occurrence has been in internationally 

significant numbers (> 1% of the estimated flyway population); iii) what land uses occur on 

artificial habitats used by shorebirds; and, iv) which species traits are associated with 

occurrence and foraging frequency in artificial habitats. Results of this study provide a 

large-scale characterisation of artificial habitat use in the EAAF. 

 

Chapters 3-4 explore the dynamics of natural and artificial habitat use in multiple locales in 

more detail. Chapter 3 presents a field study from a suite of sites in a heavily developed 

but critically important migratory stopover area along ~150 km of coastline in Jiangsu 

province, China. It documents shorebird occurrence and foraging frequency in supratidal 

artificial habitats adjacent to natural intertidal feeding sites to determine how shorebirds 

use artificial habitats throughout the tidal cycle. It also explores the relationship between 

physical characteristics of artificial sites (e.g. water and vegetation cover, pond size and 

structure, vicinity to natural habitats) and shorebird occurrence. Results of this study are 

directly applicable to habitat conservation and management. They provide evidence of the 

need for joint artificial and natural habitat management and guidelines for managing 

artificial habitats for shorebirds based on preferred physical characteristics in artificial 

habitats.   

 

Chapter 4 presents an analysis of the distribution of multiple shorebird species across 

natural and artificial roost sites in five regions of Australia. This chapter: i) estimates the 

prevalence of artificial habitat use among shorebirds in each region; ii) determines whether 

the proportion of shorebirds using artificial habitats in each region has changed over time 
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at the assemblage and species-specific level; and, iii) investigates whether variation in the 

proportion of birds that use artificial habitats can be explained by species’ traits. Results of 

this study can inform local site management and provide the basis for establishing a 

national framework for managing artificial habitats. 

 

Chapter 5 investigates one of the most serious threats to the quality of shorebird habitat 

along the heavily developed coastline of mainland China, the spread of invasive smooth 

cordgrass Spartina alterniflora, which impacts both intertidal and supratidal habitat. This 

chapter: i) documents the extent of S. alterniflora coverage in 2015 of coastal sites that are 

used by internationally important numbers of shorebirds; ii) estimates change in the spatial 

extent of intertidal flats between 2000 and 2015 at the same set of sites; and, iii) 

investigates where these two threats to important shorebird habitat intersect. Results from 

this study could help to guide investment in S. alterniflora control. Further, they reinforce 

the need to maintain the quality of shorebird habitat as well as its extent. 

 

This body of work makes a significant contribution towards a holistic understanding of 

shorebirds’ habitat use and the threats to shorebird habitat in human-dominated coastal 

areas of the EAAF. It includes multiple recommendations that could be immediately 

enacted to improve shorebird habitat conservation and management in human-dominated 

landscapes. This is a critical step in the effort to recover the region’s shorebird populations 

and maintain one of the world’s most spectacular and imperilled migration spectacles.      
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Chapter 2 

 

The following submitted manuscript has been incorporated as Chapter 2: 

 

Jackson, M. V., Choi, C.-Y., Amano, T., Estrella, S. M., Lei, W., Moores, N., Mundkur, T., 

Rogers, D. I., Fuller, R. A. Navigating coasts of concrete: pervasive use of artificial habitats 

by shorebirds in the Asia-Pacific. In revision with Biological Conservation.  

 

M.V.J. conceived the initial concept with input from C.-Y.C. and R.A.F.; M.V.J. collated the 

data with assistance from C.-Y.C., T.A., S.E.M., W.L., N.M., T.M. and D.I.R and analysed 

the data with assistance on statistical analysis from T.A., S.M.E. and D.I.R.; M.V.J. led the 

writing of the manuscript. All authors contributed to revising and improving the manuscript 

and gave their approval for submission for publication. 
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Chapter 2 Navigating coasts of concrete: pervasive use of 

artificial habitats by shorebirds in the Asia-Pacific 

 
 

2.1 Abstract 

 

Loss and degradation of wetlands has occurred worldwide, impacting ecosystems and 

contributing to the decline of waterbirds, including shorebirds that occur along the heavily 

developed coasts of the East Asian-Australasian Flyway (EAAF). Artificial (i.e. human-

made) wetlands are pervasive in the EAAF and known to be used by shorebirds, but this 

phenomenon has not been systematically reviewed. We collated data and expert 

knowledge to understand the extent and intensity of shorebird use of coastal artificial 

habitats along the EAAF. We found records of 83 species, including all regularly occurring 

coastal migratory shorebirds, across 176 artificial sites with eight different land uses. 

Thirty-six species including eleven threatened species occurred in internationally important 

numbers. However, threatened species were less likely to occur, and larger-bodied, 

migratory and coastal specialist species less likely to feed, at artificial sites. Abundance, 

species richness and density varied across artificial habitats, with high abundance and 

richness but low density on salt production sites; high abundance and density on port and 

power production sites; and, low abundance and richness on aquaculture and agriculture. 

Overall, use of coastal artificial habitats by shorebirds is widespread in the flyway, 

warranting a concerted effort to integrate artificial habitats alongside natural wetlands into 

conservation frameworks. Salt production sites are cause for particular concern because 

they support large shorebird aggregations but are often at risk of production cessation and 

conversion to other land uses. Preserving and improving the condition of all remaining 

natural habitats and managing artificial habitats are priorities for shorebird conservation in 

the EAAF. 

 

2.2 Introduction 

 

Wetlands support biodiversity and contribute to climate regulation and air and water 

purification, yet have declined in area worldwide by about 35% between 1970 and 2015, 

three times the rate of global forest loss (Ramsar, 2018a). Wetland loss has been 

particularly severe in the Asia-Pacific, with for example 70% of wetlands in coastal 

southwestern Australia lost between the mid-1800s and late 1900s (Davis and Froend, 
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1999), 61% of wetlands in Japan lost between 1925 and 2000 (Geographical Survey 

Institute Japan, 2000), and 51% of coastal wetlands lost in China between 1950 and 2000 

(An et al., 2007a).  

 

In natural coastal areas where there are large river systems, extensive floodplain wetlands 

occur along estuaries, and under some conditions extensive intertidal flats form along the 

coast (Murray et al. 2019). However, in many parts of Asia, few intact natural coastal 

wetland systems now remain. In China and the Republic of Korea (ROK), for example, 

huge areas of intertidal flats have been reclaimed through seawall enclosure (Moores, 

2006; Ma et al., 2014; Murray et al. 2014; Moores et al., 2016; Choi et al., 2018). River 

damming has been extensive, and also contributes to intertidal flat loss through reduced 

sediment deposition (Murray et al., 2015). Human activity has also degraded many 

remaining coastal wetlands through for example water extraction, altered water regimes, 

intensive harvesting and widespread pollution (e.g. MacKinnon et al., 2012; Murray et al., 

2015; Melville et al., 2016).   

 

In addition to outright wetland loss, there has also been pervasive conversion of natural 

wetlands to human-made wetlands, with the latter doubling in extent between 1970 and 

2015 and now forming 12% of all wetlands globally (Ramsar, 2018a). Extensive areas of 

aquaculture occur along the coast of much of eastern and southern Asia, and much of this 

development has replaced intertidal flats and/or mangroves for example in China (Zhu et 

al., 2016; Cai et al., 2017; Ren et al., 2018), Thailand (Muttitanon & Tripathi, 2005), The 

Philippines (Mialhe et al., 2015), Indonesia (Ilman et al., 2016) and Vietnam (Seto & 

Fragkias, 2007). Southeast Asia has experienced the greatest proportion of mangrove loss 

in the world, with conversion for aquaculture and agriculture the primary drivers (Thomas 

et al., 2017). Salt production also sometimes occurs on reclaimed intertidal flats, 

particularly in China (e.g. Zhu et al., 2016). Rice farming is also extensive in this region, 

comprising for example 5-10% of total land area in the Democratic People’s Republic of 

Korea (DPRK), ROK and Japan, and rice paddies are often created through conversion of 

freshwater wetlands (Fujioka et al., 2010).  

 

Waterbirds are one of the many faunal groups dependent on wetlands for their survival, 

and the large scale of natural wetland loss has played a major role in waterbird population 

declines globally (Kirby, 2008). Shorebirds that migrate through the East Asian-

Australasian Flyway (EAAF; Conklin, 2014) have suffered severe population declines 
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across multiple species linked to coastal habitat loss and degradation, particularly loss of 

intertidal flats in East Asia (Amano et al., 2010; Murray et al., 2014; Clemens et al., 2016; 

Melville et al., 2016; Moores et al., 2016; Piersma et al., 2016). They also face significant 

threats related to climate change, including from loss of habitat through sea level rise 

(Iwamura et al., 2013) and changed conditions on the breeding grounds (Wauchope et al., 

2017). More than 20 regularly occurring shorebird species in the EAAF are globally of 

conservation concern i.e. listed as Near Threatened, Vulnerable, Endangered or Critically 

Endangered on the IUCN Red List (IUCN, 2019b), including ten as Endangered or 

Critically Endangered (Table 1-1). Alarming average annual decline rates of >5% have 

been documented in five migratory shorebird species between 1993 and 2012 (Studds et 

al., 2017).  

 

Many waterbird species around the world regularly occur on artificial (i.e. human-made or 

human-modified) wetlands such as those associated with agriculture (Elphick & Taft, 

2010), aquaculture (Navedo et al., 2014; Basso et al., 2017) and salt production (Masero, 

2003; Athearn et al., 2012). Use of “working coastal wetland” habitats (e.g. artificial 

wetlands used for aquaculture, mariculture, salt production and rice paddies) by shorebirds 

has been documented in multiple localities of the core non-breeding zone of the EAAF 

(Wang, 1992; Amano, 2009; Sripanomyom et al., 2011; Houston et al., 2012; Li et al., 

2013; Choi et al., 2014; He et al., 2016; Bai et al., 2018; Lei et al., 2018; Jackson et al., 

2019), which is generally highly developed with large human populations. This contrasts 

with northern latitude stopover and breeding sites, which generally have low human 

population density and more remaining wilderness (e.g. Gerasimov, 2003; Gerasimov & 

Huettman, 2006). 

 

Some studies have suggested that artificial wetlands might buffer the loss of natural 

habitat for waterbirds in some circumstances (e.g. Masero and Pérez-Hurtado, 2001; 

Sripanomyom et al., 2011; Dias et al., 2013; Navedo et al., 2014). Yet in some cases, 

species richness is lower in artificial habitats than in natural ones (e.g. Ma et al., 2004; Li 

et al., 2013), suggesting that not all species may be well suited to adapt to artificial habitat 

use. While natural habitats should remain a primary focus of waterbird management 

because artificial wetlands may have lesser habitat value (e.g. Li et al., 2013; Sebastián-

González & Green, 2016), artificial habitats also require management alongside 

preservation of natural wetlands, especially when natural wetlands have already been 

extensively reduced or degraded (e.g. Li et al., 2013; Jackson et al., 2019).  
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In the EAAF, Conklin et al. (2014) identified that 38 out of 52 regularly-occurring migratory 

shorebird populations primarily use coastal habitats outside the breeding season 

compared with 24 populations that primarily use non-coastal habitats, and hotspots of 

shorebird diversity occur primarily in coastal areas (Li et al., 2019). For coastal species, 

local-scale movements are often tide-driven with birds foraging on intertidal flats at lower 

tides, and roosting (an important period of sleep, rest and digestion) in supratidal areas at 

higher tides (Rogers, 2003; Choi et al., 2019; Jackson et al., 2019), sometimes in very 

large aggregations. Roosting habitat can encompass natural and/or artificial wetlands (e.g. 

Green et al., 2015; Crossland & Sinambela, 2017), non-wetland areas (e.g. Conklin & 

Colwell, 2007) and even artificial structures such as piers, seawalls, dykes, and fishing net 

poles (e.g. Wooding, 2016). There is evidence that some larger-bodied shorebird species 

are less likely to feed in artificial habitats than smaller-bodied species (Nol et al., 2014; 

Green et al., 2015), suggesting different-sized species may respond differently to the 

increasing availability of artificial habitats. An experimental feeding study showed that 

small-sized calidrid species have bill adaptations useful for capturing small prey common 

in salt production ponds (Estrella & Masero, 2007), and observations of wild shorebirds in 

a large salt production site in China showed that some species preferentially foraged in the 

salt ponds throughout the tide while others used them primarily for roosting (Lei et al., 

2018).  

 

Despite a number of local studies, there has not yet been a systematic review of the use of 

coastal artificial habitats by the EAAF’s shorebirds. It is therefore unclear how pervasive 

artificial habitat use is, which artificial habitat types are regularly used, whether artificial 

habitats provide regular foraging opportunities, and ultimately whether coordinated large-

scale conservation or management of artificial habitats may be warranted. We therefore 

collated data on the use of coastal artificial habitats by shorebirds in the EAAF to: (i) 

assess how extensively artificial habitats are used by shorebirds; (ii) determine how 

shorebird abundance and richness vary across different types of artificial habitats; (iii) 

explore the ecological function of artificial habitats for shorebirds; and, (iv) better 

understand anthropogenic pressures that could affect the suitability of artificial habitats for 

shorebirds. Through understanding the role of artificial habitats in the ecology of coastal 

shorebirds, we can better assess whether and how these sites should be managed to 

contribute positively to shorebird conservation and recovery efforts.   
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2.3 Materials and methods 
 

2.3.1 Study area 
 

We defined coastal artificial sites in the EAAF that provide shorebird habitat (henceforth 

“artificial sites”) as areas that (i) have been created, or substantially modified from their 

natural state, by mechanical means, (ii) occur within 20 km of the coast or a coastal 

estuary system (about the maximum distance that shorebirds move between foraging and 

roosting areas; Rogers, 2003; Jackson, 2017), and (iii) have supported at least 100 

individual shorebirds of one or more species at least once. Some sites are totally novel 

(i.e. are human-made wetlands that were formerly dry land, or are fully artificial structures) 

while others were made artificial or semi-artificial through modification of existing natural 

wetlands. We estimated the area of each artificial site based on: a description of the site 

from published literature; the area of the site on file with the relevant monitoring program; 

or, the area of the site provided by site counters to the authors. 

 

2.3.2 Data compilation 
 

We sought access to counts of shorebirds on artificial sites from the following waterbird  

monitoring databases: Asian Waterbird Census (EAAF; 1987-2018); BirdLife Australia’s 

National Shorebird Monitoring Program (formerly Shorebirds 2020; 1982-2017); Hunter 

Bird Observers Club (Australia; 1999-2017); Ministry of the Environment’s “Monitoring 

Sites 1000” (Japan; 2006-2017); Taiwan New Year Bird Count (Lin et al., 2018; 2014-

2018); and, Queensland Wader Study Group (Australia; 1996-2017). All of these 

databases include species-level counts of all shorebirds at each site.  

 

We also searched the peer-reviewed literature using Thomson Reuters Web of Science 

Core Collection from 1990-2018 using topic terms: “artificial”, “agriculture”, “aquaculture”, 

“constructed roost”, “port”, “power”, “salt”, and “wastewater” in conjunction with “shorebird” 

or “wader” (for example: TI/TS = artificial* AND shorebird*; TI/TS = artificial* AND wader*). 

We also used Google Scholar to search Stilt (an EAAF shorebird journal not indexed in 

Web of Science) using the same eight topic terms. We added shorebird counts from sites 

found in peer-reviewed articles to our dataset if the site was not already included in the 

waterbird databases described above and if raw count data were available either from the 

article or the author(s).  
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While we did not have detailed tide state information for all of the counts in the dataset, it 

is the standard practice of most regular monitoring programs to survey shorebirds at high 

tide, when many species congregate and roost. However, some artificial sites may also be 

used as foraging sites. To investigate this aspect, we completed a questionnaire 

(Appendix 2.1) when possible with a data custodian or counter familiar with each site and 

asked them to indicate which species they regularly observe roosting versus foraging at 

the site (though flock size and proportion of each species observed foraging was not 

explicitly accounted for). Questionnaires were completed in English except for sites in 

Japan, which were conducted in Japanese. 

 

It became apparent that much information on artificial sites in the EAAF is in the grey 

literature, non-English-language journals, individual observers’ personal records, and 

organisational reports. We therefore identified additional count data through grey literature 

references in peer-reviewed literature, discussions with questionnaire respondents and 

colleagues, and knowledge of such data within the author group. 

 

2.3.3 Data analysis 

 

We assigned each artificial site to one of eight land use types: i) aquaculture (e.g. shrimp, 

fish or crab ponds); ii) agriculture (e.g. rice fields, lotus fields, or grazing paddocks); iii) 

constructed roost (an area purpose-built or maintained for high tide shorebird roosting); iv) 

port or power generation (these two land uses lumped together for analysis due to 

similarity in habitat characteristics and low sample size; habitat within port and power 

generation sites was either dredge spoil ponds or waste ash ponds); v) reclamation (a 

formerly tidal area that has been enclosed by a seawall and is no longer fully tidal, but 

does not have a clear land use); vi) salt production; or, vii) wastewater treatment. 

 

To investigate overall shorebird use of artificial habitats, for each artificial site we 

calculated mean (± SE) total shorebird abundance and species richness, shorebird density 

(mean abundance at the site divided by area of the site in hectares), and identified species 

recorded at least once in internationally important numbers (i.e. > 1% of the estimated 

flyway population following Wetlands International (2019) except South Island Pied 

Oystercatcher Haematopus finschi, which followed Sagar & Veitch, 2014). We used counts 

from all years and seasons that were available for each site. 
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To determine how extensively individual species use artificial habitats, for each regularly-

occurring species we calculated mean count (± SE) and relative occurrence frequency. 

Relative occurrence frequency was the number of artificial sites where the species 

occurred divided by the total number of artificial sites in the dataset where the species 

would not be considered a vagrant according to its IUCN Red List assessment (IUCN, 

2019b). We then used questionnaire responses to assign a foraging proportion to each 

species by dividing the number of sites where respondents recorded the species foraging 

by the total number of sites where respondents reported the species occurring. While we 

did not have questionnaire responses for all sites, we have no reason to believe that there 

was a systematic bias against or in favour of sites in which foraging occurred frequently, 

so we consider it a random sample of all sites. 

 

To investigate the variation in species that use artificial sites we used generalized linear 

mixed‐effects models with binomial distributions to relate the relative occurrence frequency 

and foraging proportion of regularly-occurring shorebirds to: 

(i) average body mass (standardised in the models): larger shorebirds are less likely 

to forage in supratidal habitats than smaller species elsewhere (Masero et al., 2000; 

Nol et al., 2014), so we hypothesised a negative relationship between body mass 

(del Hoyo et al., 1996) and foraging proportion, but had no a priori reason to expect 

a relationship between body mass and occurrence frequency.  

(ii) migration status, (iii) conservation status: there is some evidence that non-

migratory birds exhibit more innovative behaviour, particularly foraging strategies, 

than migratory birds because of differences in the behavioural flexibility of their 

responses to seasonal changes in the environment (Sol et al., 2005). In addition, 

loss of intertidal coastal habitat is widely believed to be driving population declines 

in threatened migratory shorebirds (Clemens et al., 2016; Piersma et al., 2016; 

Studds et al., 2017), suggesting a limited ability to use non-tidal habitats. We 

therefore hypothesised that migratory species (i.e. species listed assessed as a 

“Full migrant” in their IUCN Red List assessment; IUCN, 2019b) and species of 

conservation concern (i.e. species listed as Critically Endangered, Endangered, 

Vulnerable or Near Threatened on the IUCN Red List; IUCN, 2019b) may be less 

likely to occur and forage in artificial sites than non-migratory (i.e. species listed 

assessed as a “Not a migrant” in their IUCN Red List assessment) and non-

threatened species (i.e. species listed as Least Concern on the IUCN Red List; 

IUCN, 2019b).  
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(iv) habitat category (i.e. whether the species is a coastal specialist, generalist or 

inland specialist; used in foraging models only): a subset of shorebirds that breed at 

higher latitudes are coastal specialists with more restrictive habitat requirements 

than generalist and inland specialist species (Piersma, 2003). In the EAAF, flocks of 

coastal migratory shorebirds have continued to remain at large intertidal staging 

sites even when food availability is low, also suggesting a lack of ability to move to 

other habitats to feed (Zhang et al., 2019). We therefore hypothesised that coastal 

specialist species may be less likely than generalist or inland specialist species to 

forage in artificial sites. 

Each model included random intercepts for family (Burhinidae, Charadriidae, Glareolidae, 

Haematopodidae, Jacanidae, Recurvirostridae, Rostratulidae and Scolopacidae) to 

partially account for phylogenetic effects on behaviour. Models were fitted using the lme4 

package (Bates et al., 2015) implemented in Rv3.5.0 (R Core Team, 2016). Prior to model 

fitting, we checked for multicollinearity among explanatory variables; all had variance 

inflation factors <1.2 in a linear model. We conducted model selection using an information 

theoretic approach (AIC) on candidate models that combined the variables described 

above. We considered models with a ΔAIC ≤ 2 to comprise the set of plausible models 

(Burnham & Anderson, 2004). Appendix 2.2 shows the dataset used for analysis.  

 

2.4 Results 
 

2.4.1 Literature review  
 

Web of Science and Stilt journal searches returned 185 and 80 articles, respectively, most 

of which were excluded for one or more of the following reasons: the study was conducted 

outside the EAAF; did not include artificial habitat; included shorebird counts that were 

pooled across natural and artificial habitats; focussed on individual species; or the site was 

already covered within the waterbird monitoring databases. We incorporated data directly 

from 14 published articles, and were able to source unpublished counts related to an 

additional 17 published articles. We also incorporated data from 11 articles in the grey and 

non-English literature, and additional unpublished data from multiple individual counters 

(count data sources for each site are listed in Appendix 2.3). 

 

2.4.2 Use of coastal artificial habitats by shorebirds in the EAAF 
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From the waterbird databases and literature review, we identified 176 artificial sites where 

more than 100 shorebirds have been reported (Appendix 2.3; Figure 2-1). More than a 

third of all sites were agriculture sites (34%, 60 sites) with the largest number in New 

Zealand (18 sites) and Japan (17 sites); more than a quarter (27%, 49 sites) were 

aquaculture sites found throughout East and Southeast Asia; almost a fifth (19%, 32 sites) 

were salt production sites, mostly in China (12 sites) and Australia (9 sites); and, a small 

proportion were constructed roosts (8%, 13 sites), reclamation sites (6%, 11 sites), port or 

power generation sites (3%, 6 sites) or wastewater treatment sites (3%, 5 sites; Figure 2-

1).   

 

Within our dataset, 36 species of shorebird occurred across 69 artificial sites in 

internationally important numbers, with 1,176 separate counts of individual species 

meeting the >1% of estimated flyway population threshold. Internationally important counts 

occurred most frequently at port and power generation, wastewater treatment and salt 

production sites (≥ 1 species in internationally important numbers at 35%, 30% and 28% of 

counts, respectively), less frequently at constructed roosts, aquaculture and reclamation  

sites (17%, 13% and 9% of counts, respectively) and very rarely on agriculture (~3% of 

counts). The species with the most internationally important counts included Red-necked 

Avocet Recurvirostra novaehollandiae (130 counts at 4 sites), Red-necked Stint Calidris 

ruficollis (128 counts at 11 sites), Curlew Sandpiper Calidris ferruginea (120 counts at 10 

sites), Grey-tailed Tattler Tringa brevipes (120 counts at 5 sites) and Sharp-tailed 

Sandpiper Calidris acuminata (81 counts at 10 sites; Appendix 2.3).  

 

Mean total shorebird abundance (± SE) was highest on salt production sites (4,608 ± 353, 

n = 569 counts across 32 sites), wastewater treatment sites (3,930 ± 330, n = 299 counts 

across 5 sites) and port and power generation sites (3,365 ± 222, n = 425 counts across 6 

sites); lower on reclamation sites (1,769 ± 193, n = 226 counts across 11 sites), 

constructed roosts (1,131 ± 33, n = 1,456 counts across 13 sites) and aquaculture (1,069 ± 

142, n = 370 counts across 49 sites) and low on agriculture (464 ± 33, n = 1,061 counts 

across 60 sites; Table 2-1; Figure 2-2A).   
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Figure 2-1. Artificial sites in the East Asian-Australasian Flyway where more than 
100 shorebirds have been reported. 

 

Table 2-1. Number of sites, total number of counts, average site size, mean total 
shorebird abundance, density, and mean shorebird species richness on eight types 
of artificial habitats used by shorebirds in the East Asian-Australasian Flyway 

 

Habitat 
Number 
of sites 

Number of 
counts 
(total) 

Average 
site size 
(ha) 

Mean total 
shorebird 
count (± SE) 

Density 
(average 
number of 
shorebirds/ha) 

Mean 
species 
richness  
(± SE) 

Agriculture 60 1061 644 464 ± 33 7.4 5.8 ± 0.2 
Aquaculture 49 370 1610 1069 ± 142 10.7 6.5 ± 0.3 
Port & Power 6 425 59 3365 ± 222 128.0 13.5 ± 0.3 
Reclamation 11 226 1257 1769 ± 193 58.0 9.6 ± 0.6 
Constructed roost 13 1456 103 1131 ± 33 329.0 8.6 ± 0.1 
Salt production 32 569 4465 4608 ± 353 11.6 10.9 ± 0.2 
Wastewater 5 299 175 3930 ± 330 12.1 10.7 ± 0.4 
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Figure 2-2. Shorebird abundance (A) and species richness (B) at 176 sites of eight 
land use types (port and power lumped for analysis). Middle line shows the median; 
lower and upper box hinges correspond to the 25th and 75th percentiles; upper and 
lower whiskers extend from the box hinge to the largest/smallest value no further 
than 1.5 times the inter-quartile range from the hinge; dots show any outlying 
values above or below the whiskers. 

Average shorebird density varied dramatically and was highest on constructed roosts (329 

birds/ha), port and power generation sites (128 birds/ha) and reclamation sites (58 

birds/ha) and low on wastewater treatment (12 birds/ha), salt production (12 birds/ha), 

aquaculture (11 birds/ha), and agriculture sites (7 birds/ha; Table 2-1).  
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Mean species richness was highest at port and power generation (13.5 ± 0.3), salt 

production (10.9 ± 0.2), wastewater treatment (10.7 ± 0.4), and reclamation sites (9.6 ± 

0.6); lower on constructed roosts (8.6 ± 0.1) and low on aquaculture (6.5 ± 0.3) and 

agriculture sites (5.8 ± 0.2; Table 2-1; Figure 2-2B). 

 

2.4.3 Species composition  

 

Across all sites, 83 species of shorebird were recorded on artificial sites including all 

regularly-occurring migratory coastal shorebird species that occur in the flyway, though 

some species were reported only infrequently and in small numbers. Amongst the 74 non-

vagrant species found in our study, 38 had a relative occurrence frequency of at least 0.4 

while only 11 had a relative occurrence frequency < 0.1, of which four species were snipes 

Gallinago, woodcocks Scolopax, or painted-snipes Rostratula (Figure 2-3; Appendix 2.4). 

Species with the highest relative occurrence frequency (> 0.75) included South Island Pied 

Oystercatcher (0.96), Masked Lapwing Vanellus miles (0.82), Marsh Sandpiper Tringa 

stagnatilis (0.82), Red-necked Avocet (0.81), Common Greenshank Tringa nebularia 

(0.79), Black-winged Stilt Himantopus himantopus (0.78) and Common Sandpiper Actitis 

hypoleucos (0.76), all of which are generalist or inland specialist species except the 

oystercatcher (Figure 2-3; Appendix 2.4). These results would to some degree reflect the 

relationship that, ceteris paribus, more abundant taxa would be expected to occur at more 

sites; indeed, none of the species listed above with the highest occurrence frequencies 

have population sizes in the lowest quartile amongst the species studied, but nonetheless 

there are >10 species with larger populations that have lower occurrence frequencies, 

suggesting that factors besides population size influence occurrence frequency. 

 

Although most shorebird species occurred on coastal artificial sites, of the 74 non-vagrant 

species recorded, 33 had a mean count across the sites where they occurred of < 10 

individuals, compared with 24 species with mean > 50 individuals and only 17 species with 

mean > 100 individuals (Figure 2-3; Appendix 3.4). Species with the highest mean count 

across sites where they occurred (> 200 individuals) were Banded Stilt Cladorhynchus 

leucocephalus (1104, n = 259), Dunlin Calidris alpina (641, n = 561), South Island Pied 

Oystercatcher (559, n = 319), Red-necked Stint (334, n = 1841), Great Knot Calidris 

tenuirostris (222, n = 963) and Bar-tailed Godwit (203, n = 1524), which includes a mix of 

coastal, generalist and inland specialist species (Appendix 2.4). Red-necked Stint and 

Dunlin, both habitat generalists with large populations, stand out as species that have both 
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a high mean count (> 300 individuals) and a high relative occurrence frequency (> 0.7) 

across artificial sites, as does South Island Pied Oystercatcher (Figure 2-3). 

 

Model selection showed that in the three occurrence frequency models with ΔAIC ≤2 

conservation status was always included, always significant and had a negative slope 

estimate (Appendix 2.5), showing that threatened species were significantly less likely to 

occur in artificial habitats than non-threatened species (Figure 2-4A). There is generally 

not a strong relationship within shorebird species between conservation status and 

population size, making it unlikely that this result reflects higher occurrence rates in 

species with larger populations. Migration status was included in two models with ΔAIC ≤2 

and body mass in one, but these variables were not significant at p = .05 (Appendix 2.5). 

 

Despite being less likely to occur on artificial habitats than non-threatened species, our 

results nonetheless suggest that coastal artificial habitats are regularly used by several 

globally threatened species (IUCN, 2019b). The Endangered Far Eastern Curlew 

Numenius madagascariensis had a high mean count (53) given its rather small population 

size (estimated 32,000; Wetlands International 2019), a high relative occurrence frequency 

(0.42), and was recorded in internationally important numbers at 10 sites (Appendix 2.3, 

2.4). The highest counts of this species were at large, inaccessible sites including the Yalu 

Jiang ash pond (max. count 3700, i.e. ~12% of the estimated flyway population; Wetlands 

International, 2019), Sejingkat Power Station (max. count 660), and several constructed 

roosts and ports in Australia (Appendix 2.3). The Endangered Great Knot had one of the 

highest mean counts of any species (223) and appeared on a variety of land uses with a 

relative occurrence frequency of 0.40 (Appendix 2.4). The Critically Endangered Spoon-

billed Sandpiper Calidris pygmaea occurred at 15 artificial sites across much of its range in 

China, Japan, Malaysia and Thailand, and the Endangered Nordmann’s Greenshank 

Tringa guttifer occurred at 16 artificial sites across much of its range in China, Japan, 

Malaysia, The Philippines, ROK and Thailand (Appendix 2.4). The Near Threatened 

Curlew Sandpiper had a high mean count (155) and relative occurrence frequency (0.49), 

and was recorded in internationally important numbers at eight sites, including in 

spectacular numbers at the Nanpu salt production site in China (max. count almost 62,000 

of an EAAF population estimated at 135,000; Wetlands International, 2019; Appendix 2.3, 

2.4). 
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Figure 2-3. Mean count and relative occurrence frequency of regularly-occurring 
shorebird species across all artificial sites (each dot represents a shorebird 
species; those with a high mean count and high relative frequency are labelled). 

 

2.3.4 Ecological function  

 

We completed questionnaires with managers or counters familiar with 37 artificial sites in 

seven countries. The average total number of species that questionnaire respondents 

reported occurring across these sites (23.2 ± 1.4) was significantly higher than the average 

number of species that questionnaire respondents reported foraging (13.3 ± 1.4; t = 5.0, df 

= 72, p-value < .01), and only counters from Japan reported the full shorebird assemblage 

foraging at artificial sites (which were all agriculture sites).  

 

Model selection showed that the foraging frequency model with the lowest AIC included 

body mass, migration status and habitat with all variables significant at p = .05 (Appendix 

2.5). Foraging frequency in artificial habitats declined significantly with body mass (Figure 

2-4B) and migratory and coastal specialist species were significantly less likely to forage in 

artificial habitats than non-migratory and generalist/inland specialist species (Figure 2-4C; 

Figure 2-4D). An additional model had ΔAIC ≤2, but it was identical to the model with the 

lowest AIC with the addition of conservation status, which was not significant and therefore 

an uninformative parameter (i.e. does not explain enough variation to justify its inclusion in 

the model; Arnold, 2010) and thus not an important predictor.  

Red-necked Stint Dunlin 

South Island Pied Oystercatcher 
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Figure 2-4. A. Mean relative occurrence frequency of threatened and non-threatened 
shorebirds on artificial sites. B. Relative foraging frequency and average body mass 
(i.e. weight in grams, untransformed) of threatened (black triangle) and non-
threatened (red circle) shorebirds on artificial sites. C. Mean relative foraging 
frequency of migratory and non-migratory shorebirds on artificial sites. D. Mean 
relative foraging frequency of coastal specialist and generalist/inland specialist 
species on artificial sites. Refer to Figure 2-2 for an explanation of the box plots. 
 
 

The species with the highest relative foraging frequency that occurred at 10 sites or more 

were Common Greenshank (0.97 n = 33), Marsh Sandpiper (0.88, n = 25), Common 

Redshank Tringa totanus (0.88, n = 16), Dunlin (0.88, n = 16), Spotted Redshank Tringa 

erythropus (0.87, n = 15), Masked Lapwing (0.83, n = 12) and Long-toed Stint Calidris 

subminuta (0.80, n = 10; Appendix 2.4). Consistent with model results, all of these species 

are generalists or inland specialists. 

 

2.5 Discussion 
 

Rapid declines in several shorebird populations along the EAAF make it important to fully 

understand shorebird habitat use to inform planning and management efforts towards 

conservation and recovery. Our results show that coastal artificial habitats are widely used 

by migratory shorebirds in the EAAF, and form a component of non-breeding coastal 
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habitat. Nonetheless, frequency and foraging occurrence in artificial habitats are highly 

uneven amongst species, reinforcing that artificial habitats may not be suitable for all 

species and underscoring the importance of preserving natural wetlands. Such extensive 

but varied use warrants a concerted effort to include artificial habitats in conservation 

frameworks. It also requires local managers to have a detailed understanding of the full 

extent of natural and artificial shorebird habitats, and to jointly manage both in many 

cases. 

 

2.5.1 Use of artificial habitats 

 

We identified 176 artificial sites where aggregations of >100 individual shorebirds have 

been recorded; most of these have not been discussed in detail in the published literature, 

and most counts in our dataset came from unpublished sources (Appendix 2.3). Eighty-

three species were recorded at least once across the 176 sites and internationally 

important numbers of 36 species including one Critically Endangered, three Endangered 

and seven Near Threatened species (IUCN, 2019b) were recorded across 69 sites. This 

suggests that a substantial assemblage of shorebirds is supported by artificial habitats.  

 

Land use on the sites in our dataset varied geographically, with for example salt 

production sites and constructed roosts prevalent in Australia, aquaculture widespread in 

East and Southeast Asia, agriculture dominant in New Zealand and Japan, and a mix of 

land uses in China (Figure 2-1; Appendix 2.3).  

 

Shorebird abundance, richness and density varied considerably between land use types 

(Table 2-1). The 33 salt production sites in our dataset supported the highest mean 

shorebird abundance (~4600 individuals) and high species richness (~11 species), though 

shorebird density was low (~12 birds/ha), reflecting very large average site size (4465 ha; 

Table 2-1). Wastewater treatment sites also had high abundance (~4000 individuals; Table 

2-1), but this result was driven by the many very large counts from the Western Treatment 

Plant (Australia), which has been managed for shorebirds for several decades (Loyn et al., 

2014). It was somewhat unexpected that the six port and power generation sites in our 

dataset supported very high shorebird abundance (~3400 individuals) and richness (~14 

species; Table 2-1) because we found few references in the published literature to these 

land use types as important shorebird habitat. The highest density occurred at constructed 

roosts and port and power generation sites (329 and 128 birds/ha, respectively), 
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unsurprising because these are usually small sites used almost exclusively for high tide 

roosting, attracting shorebirds that forage as far as 23 km away during low tide (Sebastian 

et al., 1993).  

 

It is also unsurprising that reclamation sites as defined in our study had a high mean 

shorebird abundance because they were generally reclaimed from former intertidal flats 

and still contained seawater and/or were adjacent to remaining tidal flats. However, while 

large shorebird aggregations may use undeveloped reclamation areas for many years 

when adjacent natural intertidal flats remain, as is the case for example at Dongtai, China 

(Jackson et al., 2019), when extensive tidal flats were enclosed by the Saemangeum 

reclamation in the ROK in 2006, the majority of local foraging habitat was removed and 

numbers of several shorebird species (especially Great Knot) declined very rapidly 

(Moores et al. 2016), suggesting that such sites may only remain useful to shorebirds as 

long as sufficiently extensive intertidal flats persist nearby. 

 

It is notable that agriculture and aquaculture sites supported substantially lower shorebird 

abundance, richness and density than the other land use types (Table 2-1). This may to 

some extent reflect the difficulty of defining 'sites' in these habitats where shorebirds may 

be patchily distributed, using for example only a handful of ponds with suitable conditions 

(e.g. shallow water levels) within a very large complex (e.g. Navedo et al. 2016; Jackson et 

al. 2019). It also may reflect that aquaculture ponds, particularly in China, often have deep 

ponds and steep banks which do not provide high quality habitat except when they are 

drained (e.g. He et al., 2016; Jackson et al., 2019). 

 

The high variation in density across different land use types likely reflects to some degree 

how counters define their count sites, with small roosts that support very large roosting 

flocks defined as a single site but other much larger areas that include multiple roosting 

and feeding ponds (e.g. salt production ponds, aquaculture ponds, rice fields) with smaller 

aggregations also recorded as a single site. 

 

Our results do not suggest that coastal artificial habitats provide analogous habitats to 

natural ones. Model results instead suggest that although many species use artificial sites, 

there are ecological limitations linked with body size and fidelity to intertidal flats that 

prevent some species from utilising artificial sites, particularly for foraging. Therefore, 

artificial habitats will not act as buffer habitats against the loss of natural feeding grounds 
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for all shorebird species, and large coastal obligate species may be particularly at risk. 

Despite some threatened species regularly occurring at artificial sites, threatened species 

were significantly less likely to occur in artificial habitats than non-threatened species, 

indicating a lesser ability to adapt to artificial sites. This result highlights the urgent need at 

a local level for managers to understand which habitats are used by shorebirds that occur 

on artificial habitats, and for this mosaic of habitats to be managed in a coordinated way 

(Li et al, 2013; Jackson et al., 2019). This may be particularly important in places where 

natural coastal habitats have been degraded or substantially reduced. In addition, 

conceptualising artificial habitats as potential complements to remaining natural intertidal 

habitats, rather than any form of replacement habitat, reduces the risk that artificial 

habitats could become “ecological traps” that increase the risk of regional population 

extinction (e.g. see Hale et al., 2015; Sievers et al., 2018). Moreover, detailed investigation 

is needed into the potentially harmful effects of congregating in such artificial habitats as 

stormwater drains, wastewater ponds and agricultural reservoirs that might contain 

contaminants (e.g. heavy metals, fertilisers, pesticides, excess nutrients; Sievers et al., 

2018). 

 

Foraging opportunities within artificial habitats relate to land use as well as the physical 

characteristics of shorebirds. Studies from salt production sites in China (Lei et al., 2018) 

and Thailand (Green et al., 2015) have shown preferential use of salt production pond over 

intertidal flats by some shorebird species, and salt ponds worldwide have been shown to 

provide significant foraging resources for shorebirds (e.g. Masero, 2003; Estrella & Masero 

2007; Dias et al., 2013). Estrella et al. (2007) showed that multiple species of migratory 

shorebirds use surface-tension transport to feed efficiently on small prey in salt pans in 

Spain. In contrast, few detailed foraging studies of shorebirds are available from 

aquaculture and agriculture sites, though Dunlins in China experienced lower feeding 

success on aquaculture ponds compared with intertidal flats (Choi et al., 2014) while 

shorebirds had similar feeding success on drained aquaculture ponds as on intertidal flats 

in Thailand when water levels were optimum (Green et al., 2015). There has been some 

exploration of how to manage shrimp ponds to increase foraging opportunities for 

shorebirds in other flyways (Navedo et al., 2016). Interestingly, all questionnaire 

respondents discussing rice or lotus paddies in Japan characterised their sites primarily as 

foraging habitats and reported the full assemblage feeding at the site, likely reflecting more 

use of these sites by generalist and inland species. 
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2.5.2 Data limitations and future research needs 
 

Our dataset was limited to sites where observers visit, record counts, and submit or 

publish count results, which inevitably biases the results to regions with a greater 

concentration of shorebird specialists and monitoring programs with public outputs. This 

affects not only the distribution of sites identified, but also the intensity of survey effort on 

the sites included. Another implication of uneven survey effort is that well-surveyed sites 

often include breeding season counts, which will tend to lower the mean count at the site 

for migratory species, whereas sites surveyed irregularly are likely to have been surveyed 

during peak migration or non-breeding periods. In addition, since many of the sites being 

investigated constitute stopover or staging sites, additional count methods like flyover and 

nocturnal counts would be beneficial in refining our understanding of artificial site use. 

Mean shorebird counts presented here (Appendix 2.3) should be treated with caution and 

should generally be considered minimum estimates, though we also note that our inclusion 

of some older counts could overestimate the current importance of some sites since some 

shorebird species have declined dramatically in the last several decades; more persuasive 

is the consistency with which artificial sites were used across the EAAF and over time. 

 

Anecdotal reports suggest that artificial site use is likely under-documented on aquaculture 

and agriculture in East and Southeast Asia. For example, wooden fishing stakes to support 

fish nets, stationary fish traps and floating fish farms are common in coastal bays in 

Indonesia, peninsular Malaysia, ROK and Thailand, and are sometimes used as roosts by 

shorebirds and other waterbirds (authors NM, TM, pers obs., and J. Howes, Y. R. Noor, 

pers comm.), though fishing gear may also cause accidental bycatch of shorebirds 

(Melville et al., 2016). Inshore installations for ports, oil/gas installations, buoys and 

lighthouses are also likely to serve as artificial roost sites for shorebirds, and restricted 

access to these sites may contribute to under-documentation of their use (author TM, pers 

obs.). In the ROK, more than half of agricultural land consists of rice paddies, but few 

focussed waterbird studies have been conducted in rice paddies (Kim et al., 2013), and a 

number of Asian Waterbird Census sites from the ROK include both natural and artificial 

coastal habitats, and so could not be included in our study. Multiple Asian Waterbird 

Census sites in Vietnam and The Philippines also contain both natural tidal areas and 

extensive aquaculture and agriculture, so could not be included in our analysis but indicate 

further use of these artificial habitats by shorebirds. Future analyses would benefit from 

encouraging surveyors to collect information separately for different habitat types. 
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Our study was limited to coastal habitats, but the distribution of sites in the Asian 

Waterbird Census, the Monitoring Sites 1000 program (Japan) and the Taiwan New Year 

Bird Count confirm that shorebirds also use agricultural sites further inland across an 

extensive geographic area. Nonetheless, survey effort on coastal agricultural areas in 

multiple regions within our dataset was extensive, yet across agriculture site counts in our 

dataset only a very low proportion (~3% of 1061 counts) contained internationally 

important counts of any shorebirds (Appendix 2.3). This may in part reflect that shorebirds 

tend to be highly dispersed in agricultural areas and use them ephemerally according to 

crop growth and harvest seasons, making them difficult to monitor in this artificial habitat. 

 

Recent satellite tracking of Great Knots showed that many stopover sites used were not 

documented from previous monitoring, with sites in Southeast Asia particularly unlikely to 

be known (Chan et al., 2019). Due to their association with human production activities, 

many artificial sites are owned or operated privately and/or have restricted access, making 

them particularly likely to remain unidentified as shorebird habitat. A systematic remote 

sensing analysis of the distribution of artificial wetlands comprising likely shorebird habitat 

in East and southeast Asia could help to quantify coverage deficiencies. Additionally, fine-

scale movement studies of shorebirds could help to enhance our understanding of the 

importance of artificial sites and how inter-connected they are with natural sites (Jackson 

et al., 2019). 

 

Conducting our literature search in English was also a significant limitation, though we 

believe that inclusion of the Asian Waterbird Census data, which has broad coverage 

across non-English speaking countries in Southeast Asia, and the ‘‘Monitoring Sites 1000” 

program, which has broad coverage in Japan, went some way towards ameliorating this 

limitation.  

 

Results from the questionnaires show that shorebirds do sometimes forage as well as 

roost in artificial habitats. However, since foraging data are not regularly collected across 

artificial sites, it was not possible to distinguish between roosting and foraging sites in our 

analyses of artificial habitats, and we are therefore only able to consider their importance 

based on the scale and distribution of shorebirds recorded. However, the extent to which 

artificial sites can provide both roosting and foraging resources is an important aspect 
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when considering their relative conservation importance, and it would be very beneficial for 

counters to collect additional foraging information about artificial sites.  

 

Finally, shorebirds are known to breed in artificial sites including rice fields (Pierluissi, 

2010) and salt production sites (Que et al., 2014; Rocha et al., 2016; author WL 

unpublished data). An analysis of shorebird breeding in artificial habitats at the scale of the 

EAAF would be a useful follow-up to this study to identify specific management needs for 

breeding birds. There may also be a greater risk that artificial habitats function as 

“ecological traps” for breeding shorebirds (e.g. Que et al., 2014; Atuo et al., 2018). 

 

2.5.3 Conservation of artificial habitats 

 

Our discovery that the use of coastal artificial habitats by shorebirds is widespread in the 

EAAF can be seen as symptomatic of the loss of natural coastal habitats that is driving 

substantial population declines. Nonetheless, there are some land uses and forms of 

management that can make artificial landscapes suitable for shorebirds, and it is critical to 

find ways to accommodate shorebirds within human-dominated landscapes (Li et al., 

2013; Jackson et al., 2019). This may be challenging because many artificial wetlands are 

working sites not specifically managed for waterbirds, and could be highly susceptible to 

minor or major land use changes that result in their loss or degradation as shorebird 

habitat.  

 

In the EAAF, salt production sites are of particular concern because they supported the 

largest shorebird aggregations and had a high proportion of counts (28%) that included 

internationally important concentrations of at least one species in our study, but they are 

also at risk of production cessation and conversion to other land uses. Australia has 

experienced production cessation at several large salt production sites used by shorebirds 

(e.g. Purnell et al, 2015; Rogers et al., 2016). Several salt production sites that supported 

large shorebird concentrations in the early 2000s in China (Barter et al., 2002, 2005; 

Barter & Xu, 2004) no longer exist, and the habitat conditions that have enabled use of the 

Nanpu salt production site by large numbers of shorebirds occur only sporadically (Lei et 

al., 2018). Salt production ponds in the Inner Gulf of Thailand that support high shorebird 

numbers are also under pressure from urban expansion (Green et al. 2015; EAAF 

Partnership Flyway Network site descriptions for Khok Kham and Pak Thale – EAAFP, 

2019). Preservation and management of some salt production sites as shorebird habitat is 
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therefore an urgent conservation need in the EAAF. Athearn et al. (2009) showed that 

converting abandoned salt ponds to a more natural tidal marsh system by restoring tidal 

flow is not necessarily beneficial to waterbirds, especially in the longer term, as it results in 

significant vegetation growth and a decrease in salinity, which is particularly detrimental to 

shorebirds; maintaining managed ponds is needed to support waterbird abundance. This 

could prove challenging given the large average area of salt ponds, the cost of maintaining 

habitat conditions similar to those of active production if salt production ceases, and the 

occurrence of salt production sites across multiple countries. Complementary economic 

activities for local people such as artisanal fishing (e.g. de Medeiros Rocha et al., 2012) 

could be explored as pathways for additional benefits to maintaining operational coastal 

salt pans.  

 

Whether shorebird habitat on some port and power generation sites will persist in the long 

term is also unclear, as illustrated by the uncertain future of the Kapar Power station in 

peninsular Malaysia, which is especially concerning given the limited other safe roosting 

options for shorebirds in the vicinity (EAAFP, 2016).  

 

Use of working coastal wetlands by threatened shorebirds means that biodiversity 

conservation should become a core governance goal of these sites, regardless of their 

original construction for human production activities. Inclusion of working coastal wetlands 

in such frameworks and declarations as the Ramsar Convention (Resolution XIII.20 – 

Ramsar, 2018b), the Convention on the Conservation of Migratory Species of Wild 

Animals (Resolution 12.25 – CMS, 2017), the Global Flyways Summit (BirdLife 

International, 2018) and the EAAF Partnership Flyway Site Network (EAAFP, 2019) 

highlight a growing recognition of their importance as wildlife habitat. However, a 

systematic prioritisation of artificial habitats in the flyway for conservation based on their 

importance as roosting and feeding habitat for shorebirds is urgently needed to guide 

conservation action and investment, particularly where land use change that could reduce 

the habitat value of artificial wetlands is an immediate or future threat. Preserving and 

improving the condition of all remaining natural habitats and managing artificial habitats 

(particularly where no natural habitats are available during high tide) are priorities for 

shorebird conservation in the EAAF. 
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Chapter 3 Multiple habitat use by declining migratory birds 

necessitates joined‐up conservation 

 

3.1 Abstract 
 

Many species depend on multiple habitats at different points in space and time. Their 

effective conservation requires an understanding of how and when each habitat is used, 

coupled with adequate protection. Migratory shorebirds use intertidal and supratidal 

wetlands, both of which are affected by coastal landscape change. Yet the extent to which 

shorebirds use artificial supratidal habitats, particularly at highly developed stopover sites, 

remains poorly understood leading to potential deficiencies in habitat management. We 

surveyed shorebirds on their southward migration in southern Jiangsu province, a critical 

stopover region in the East Asian Australasian Flyway (EAAF), to measure their use of 

artificial supratidal habitats and assess linkages between intertidal and supratidal habitat 

use. To inform management, we examined how biophysical features influenced occupancy 

of supratidal habitats, and whether these habitats were used for roosting or foraging. We 

found that shorebirds at four of five sites were limited to artificial supratidal habitats at high 

tide for 11–25 days per month because natural intertidal flats were completely covered by 

seawater. Within the supratidal landscape, at least 37 shorebird species aggregated on 

artificial wetlands, and shorebirds were more abundant on larger ponds with less water 

cover, less vegetation, at least one unvegetated bund, and fewer built around pond edges. 

Artificial supratidal habitats were rarely used for foraging and rarely occupied when 

intertidal flats were available, underscoring the complementarity between supratidal 

roosting habitat and intertidal foraging habitat. Joined‐up artificial supratidal management 

and natural intertidal habitat conservation are clearly required at our study site given the 

simultaneous dependence by over 35,000 migrating shorebirds on both habitats. Guided 

by observed patterns of habitat use, there is a clear opportunity to improve habitat 

condition by working with local land custodians to consider shorebird habitat requirements 

when managing supratidal ponds. This approach is likely applicable to shorebird sites 

throughout the EAAF. 

 

3.2 Introduction 
 

Long‐distance migratory birds, like all migratory species, depend on multiple habitats at 

different points in space and time. Consequently, a reduction in the quality of one habitat 
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used can have far‐reaching consequences for a species, even if its other habitat(s) remain 

in good condition. For example, the annual survival of Red Knot Calidris canutus rufa in 

North America is linked to the spawning abundance of horseshoe crabs at the midpoint of 

its annual migration (McGowan et al., 2011), and female American Redstart Setophaga 

ruticilla that occupy high‐quality nonbreeding habitat in Central and South America 

produce more young on their breeding grounds in Canada (Norris et al., 2004). Successful 

conservation of migratory species therefore requires adequate protection across large‐

scale habitat requirements. Yet formal habitat protection often fails to meet this 

requirement, with less than 10% of migratory birds adequately protected across their life 

cycle, compared with nearly half of sedentary species (Runge et al., 2015). 

 

Many bird species also have multiple habitat requirements on much smaller 

spatiotemporal scales. Habitat switching may be diurnal, such as for owls that roost in 

forests during the day and forage in grasslands at night (Framis et al., 2011). Coastal 

species may require different habitats over the course of the tidal cycle, as with breeding 

Black‐headed Gulls Larus ridibundus that switch between terrestrial and marine feeding 

sites based on prey availability linked with tide state (Schwemmer & Garthe, 2008). 

 

Migratory shorebirds of the East Asian Australasian Flyway (EAAF) are an imperilled 

group of species that use multiple habitats across both large and small spatiotemporal 

scales. 

 

At the scale of the annual cycle, migratory shorebirds travel enormous distances between 

breeding grounds in the arctic/subarctic, where they occupy open tundra and meadows, 

and nonbreeding grounds near the equator and into the southern hemisphere, where they 

occupy coastal and inland wetlands (Conklin et al., 2014). At stopover and staging sites in 

between, wetlands with high productivity provide critical feeding and resting habitat 

necessary to complete migration successfully (Ma et al., 2013). In the EAAF, the scale and 

rate of intertidal habitat loss and degradation in Yellow Sea staging areas (Murray et al., 

2014; Melville et al., 2016) are well accepted as the primary driver of severe population 

declines in multiple shorebird species (Amano et al., 2010; Piersma et al., 2016; Studds et 

al., 2017). This conservation crisis has prompted a focussed research effort to highlight 

negative consequences of coastal development and armouring on migratory waterbirds 

and the need to halt intertidal habitat loss (Yang et al., 2011; Ma et al., 2014; Murray et al., 

2015; Piersma et al., 2017; Choi et al., 2018). 
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Despite the focus on intertidal habitat conservation, at a relatively small scale on non-

breeding grounds (including staging and stopover sites), shorebirds regularly switch 

between intertidal habitat, generally used for foraging at lower tides, and supratidal habitat, 

often used for high tide roosting—an important period of sleep, rest, and digestion 

(Rogers, 2003; Choi et al., 2014). Supratidal habitats are also used by some shorebirds for 

foraging (e.g., Masero et al., 2000; Green, et al., 2015; Lei et al., 2018). The same coastal 

development that has contributed to intertidal flat loss in the Yellow Sea has also caused 

most natural supratidal wetlands to be replaced by artificial “working wetlands” including 

aquaculture, agriculture, and salt production (Xu et al., 2016; Cai et al., 2017), and 

shorebirds are known to utilize such artificial habitats as they do natural supratidal 

wetlands (e.g. Masero & Pérez‐Hurtado, 2001; Basso et al., 2017). Yet relatively little 

attention has been given in the EAAF to how coastal development affects the 

complementarity between intertidal and supratidal habitats for shorebirds at a site level, or 

the management that artificial supratidal wetlands created or modified by the land claim 

process may require to prevent further shorebird population declines. 

 

Here, we evaluate the importance of artificial supratidal habitats and the relationship 

between intertidal and supratidal habitats for shorebirds in Rudong, Jiangsu province, 

China, one of the most important stopover sites in the EAAF (Peng et al., 2017). We 

quantify shorebird abundance on artificial supratidal habitats and estimate how often 

inundation of intertidal habitat necessitates movement into the supratidal zone. To inform 

management needs, we determine which biophysical features of artificial supratidal 

habitats are associated with shorebird abundance, and identify whether artificial supratidal 

habitats are used for foraging, roosting, or both. We conclude by exploring potential 

approaches to implementing supratidal habitat management in Rudong for the benefit of 

migratory shorebirds, and the applicability of our results to other sites. 

 

3.3 Materials and Methods 

 

3.3.1 Study area 

 

The coastal zone around Rudong in southern Jiangsu province, eastern China, is one of 

the most important stopover regions for migratory shorebirds in the EAAF (Conklin et al., 

2014; Bai et al., 2015; Peng et al., 2017) with some of the widest remaining intertidal flats 
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on China's coast (Wang et al., 2002). More than 100,000 shorebirds occur here during 

migration including 20 species in internationally important numbers (Ramsar Convention 

Criteria 6, >1% of the estimated flyway population) during southward migration (Bai et al., 

2015; Peng et al., 2017). It is the most important known migration stopover site for the 

Critically Endangered Spoon‐billed Sandpiper Calidris pygmaea, with 225 individuals 

recorded in 2014 (Peng et al., 2017) of an estimated global population of < 250 breeding 

pairs (Clark et al., 2016). It is also the most important known migration stopover site for the 

Endangered Nordmann's Greenshank Tringa guttifer, with 1,110 individuals recorded in 

2015 (Bai et al., 2015; Peng et al., 2017), equal to almost the entire estimated global 

population (Conklin et al., 2014; Zöckler et al., 2018). According to the differentiation 

between stopover and staging sites proposed by Warnock (2010), this region functions as 

an important staging area during autumn migration for multiple species, that is an area 

with abundant, predictable food resources where birds prepare for an energetic challenge 

(i.e. long distance flights to sites used for the bulk of the non-breeding season). 

 

Most intertidal flats along the Rudong coast have been partially enclosed for land claim 

(i.e. upper parts of the flats have been claimed but some intertidal areas lower down the 

shore remain; Zhang et al., 2011; Piersma et al., 2017), and most of the shoreline is now 

formed by a concrete seawall. Almost no natural wetlands remain inside the seawall, with 

aquaculture, agriculture, and urban and industrial infrastructure dominating land use (Cai 

et al., 2017). Therefore, if seawater reaches the seawall at high tide thereby covering 

remaining intertidal flats, generally only artificial supratidal habitat (i.e. habitat occurring as 

a result of planned construction activities that have deliberately converted natural intertidal 

flats into artificial nontidal land) will be available for shorebirds. The limited availability of 

supratidal roosting sites is a known threat to shorebirds in the Rudong region (Peng et al., 

2017), but little detailed information on supratidal habitat use is currently available. 

 

3.3.2 Shorebird surveys 

 

We conducted surveys from August to October 2017, covering the peak southward 

migration period for shorebirds. We established five survey sites along ~75 km of coastline 

in Dongtai, Hai'an, and Rudong counties at intertidal and supratidal aggregation points 

identified during surveys in May 2017 (Zhang & Laber, 2017) and a 3‐day scoping trip in 

July 2017 (Figure 3-1A). From north to south, we counted shorebirds at Dongtai (supratidal 

undeveloped pond; Figure 3-1B), Hai'an (intertidal flats roost and supratidal aquaculture 
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ponds; Figure 3-1C), Fengli (supratidal aquaculture ponds; Figure 3-1D), Ju Zhen 

(supratidal undeveloped pond and aquaculture ponds; Figure 3-1E), and Dongling 

(intertidal flats roost and aquaculture ponds; Figure 3-1F). At Hai'an and Ju Zhen where 

we were able to systematically survey multiple aquaculture ponds, individual ponds were 

randomly selected from large aquaculture complexes (n = 21 ponds at Hai'an and n = 18 

ponds at Ju Zhen) and stratified by distance from intertidal flats (< 1 km and 1–2 km from 

intertidal flats) and size (< 3 ha and > 5 ha). At Fengli, all adjacent ponds (n = 11) of 

varying sizes within a subsection of an aquaculture complex were surveyed; a more 

detailed description of surveys sites is in Appendix 3.1. 

 

To quantify their use as roosting sites, we counted shorebirds on artificial supratidal 

habitats within three hours on either side of high tide. Because we expected birds to enter 

supratidal habitats when intertidal flats became covered with seawater, we recorded the 

state of adjacent intertidal flats during the survey as either covered (seawater had reached 

the seawall) or uncovered (seawater had not reached the seawall). We varied the timing of 

counts to provide an estimate of the minimum high tide height (China National Marine Data 

& Information Service, 2016) at which intertidal flats became covered (full count schedule 

in Appendix 3.2). Because the undeveloped ponds at Dongtai and Ju Zhen were directly 

adjacent to the seawall facilitating easy access during surveys, here we estimated how 

long intertidal flats were covered during high tide (measured as the time from when 

seawater first reached the seawall to when the first intertidal flats became exposed on the 

falling tide) to indicate how long shorebirds were without foraging opportunities on adjacent 

intertidal flats. 

 

To estimate shorebird numbers within the aquaculture complexes, we calculated a mean 

total aquaculture area count (counts were conducted across 1–2 days) at Hai'an, Fengli, 

and Ju Zhen using the maximum count for any ponds that were counted multiple times in 

the count period. It should be noted, however, that only a random sample of ponds from 

within these aquaculture complexes was surveyed so the total number of birds within the 

complex is expected to have been higher than our total aquaculture area counts. 

 

We identified migratory shorebirds to species level or as curlew sp. (i.e., Far Eastern 

Curlew Numenius madagascariensis or Eurasian Curlew N. arquata), godwit sp. (i.e., Bar‐

tailed Godwit Limosa lapponica or Black‐tailed Godwit L. limosa), Sand Plover sp. (i.e., 
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Greater Sand Plover Charadrius leschenaultii or Lesser Sand Plover C. mongolus), or 

unidentified small/medium shorebird when species‐level identification was not possible. 

 

Figure 3-1. Satellite images of count regions (Panel A Landsat, panels B–F Google 
Earth). Panel A shows the whole study area with letters B–F demarking survey 
regions that correspond to detailed images in panels B–F (rotated so that intertidal 
flats always appear on the righthand side of the image). Panel B: Dongtai 
undeveloped pond outlined and surveyed from the seawall. Panel C: Hai'an 
intertidal flats and aquaculture complex; intertidal flats and 21 randomly selected 
ponds stratified by distance from intertidal flats and size within the outline were 
surveyed. Panel D: Fengli aquaculture complex; wet ponds of varying sizes and 
larger dry ponds are intersected by a road; all ponds outlined (10 wet, one dry) were 
surveyed. Panel E: Ju Zhen undeveloped pond and aquaculture complex; 
undeveloped pond and 18 randomly selected ponds stratified by distance from 
intertidal flats and size within the outline were surveyed. Panel F: Dongling; ~1 km 
strip of intertidal flats were surveyed; aquaculture ponds within the outline were 
checked but no shorebirds were observed. 
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3.3.3 Factors affecting roost site choice 
 

 

Shorebirds choose roost sites that minimize predation risk, disturbance, and the energetic 

costs associated with travel distance from foraging grounds (Luis et al., 2001; Rogers, 

2003; Jackson, 2017). To minimize predation risk, shorebirds tend to avoid tall vegetation 

and built structures, favouring good visibility around the roost (Rogers et al., 2006; 

Zharikov & Milton, 2009). Water level also influences occupancy and foraging 

opportunities, with different species preferring different depths (Rogers et al., 2015) and 

some species roosting away from water altogether. We therefore recorded for each 

artificial supratidal pond: its distance to the seawall; water cover; vegetation cover; the 

number of unvegetated bunds (bund meaning the banks surrounding the pond, sometimes 

called berms) around the pond (0–4 for each rectangular pond); the number of structures 

in the vicinity of the pond; and, pond size as possible biophysical variables affecting roost 

choice (Table 3-1). 

 

We modelled total shorebird abundance on artificial supratidal habitats in relation to 

biophysical variables using generalized linear mixed‐effects models. Each model included 

random intercepts for survey region (Hai'an, Fengli, or Ju Zhen) and pond identifier to 

account for repeated counts of total abundance within ponds and within regions in our 

survey design. The undeveloped pond at Dongtai was excluded because access and 

logistical constraints meant that other ponds in Dongtai were not incorporated into a robust 

survey design in a comparable way to other regions (i.e., ponds randomly selected and 

stratified by size and distance). Prior to model fitting, we checked for multicollinearity 

among explanatory variables; all had variance inflation factors <1.4 in a linear model. 

Variables were scaled to z scores by subtracting the mean and dividing by standard 

deviation. Models were fitted using the glmmTMB package implemented in Rv3.5.0 (R 

Core Team, 2016) because it enables straightforward comparison of model distributions 

appropriate for animal counts, including zero‐inflated mixed models (Brooks et al., 2017). 
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Table 3-1. Biophysical survey variables 

Variable Description 

Intertidal flats cover 1 = seawater was against the seawall during the count 
0 = seawater did not reach the seawall during the count 

 
Water cover (%) 

 
It was not feasible to measure water depth throughout the 
pond so we estimated the percentage cover of water over 
the surface area of the whole pond 

 
Distance (km) 

 
Distance to seawall measured in kilometres using Google 
Earth 

 
Vegetation cover (%) 

 
Estimated nonwater surface area covered by vegetation, 
measured as < 10%, 10%–30%, 30%–50%, 50%–70%, or 
> 70% 

 
Bund 

 
Number of unvegetated bunds (i.e., the bank surrounding 
the pond, sometimes called berms) for each pond, 
recorded as 0–4, represented in the model as 1 = at least 
one unvegetated bund; 0 = no unvegetated bunds 

 
Structures 

 
Number of structures (telephone/electricity poles/wires, 
buildings and trees) within 10 m of the perimeter of the 
pond 

 
Size (ha) 

 
Pond size measured in hectares using Google Earth 

 

 

We first modelled the null and full models using a Poisson distribution; however, by 

calculating the sum of squared Pearson residuals and comparing it to the residual degrees 

of freedom, we identified overdispersion problems with selecting a Poisson distribution. A 

negative binomial distribution was instead selected to correct for overdispersion. We then 

conducted model selection using an information theoretic approach (AICc: Burnham & 

Anderson, 2001) on eight candidate models that combined variables we hypothesized 

would be highly important (intertidal flats cover and water cover), moderately important 

(vegetation cover, presence of an unvegetated bund, and an interaction term between the 

two), and less important (pond size, distance, and structures) for explaining variation in 

shorebird abundance. We used the R package DHARMa to check deviation of quantile 

residuals of the most supported model from expected values (Hartig, 2018). 
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3.3.4 Ecological function of supratidal habitats 

 

Supratidal habitats can serve different ecological functions for shorebirds including 

roosting habitat, supplemental foraging habitat, and/or preferred foraging habitat (Masero 

et al., 2000; Dias et al., 2013). To evaluate ecological function, we surveyed artificial 

supratidal ponds in each region (except Fengli) at least once when adjacent intertidal flats 

were exposed (i.e., seawater had not reached the seawall) to determine whether or not 

they were used by shorebirds when intertidal flats were available (i.e., not covered; 

Appendix 3.2). When time permitted, we also recorded the total number of individual birds 

of each species that was observed foraging (i.e., actively feeding rather than roosting or 

loafing) during artificial supratidal pond surveys. Foraging observations were made at the 

time each shorebird was counted; we did not observe the behaviour of individual birds for 

an extended duration. If supratidal habitats are not used when intertidal flats are available 

and a low proportion of shorebirds are observed foraging, this suggests that supratidal 

habitats are used primarily as roosting sites. 

 

3.4 Results 
 

3.4.1 Extent and frequency of supratidal habitat use 
 

By summing the maximum count of each species for each supratidal pond surveyed, we 

found that a minimum of 35,642; 29,562; and, 20,495 shorebirds of 37 species used 

artificial habitats during our count periods in August, September, and October, 

respectively, including internationally important numbers of Eurasian Curlew (globally Near 

Threatened (IUCN, 2019b), max count 2,400), Spotted Redshank Tringa erythropus (max 

count 485), Nordmann's Greenshank (globally Endangered (IUCN, 2019b), max count 

250), Dunlin Calidris alpina (max count 6,500), Spoon‐billed Sandpiper (globally Critically 

Endangered (IUCN, 2019b), max count 20), Far Eastern Oystercatcher Haematopus 

[ostralegus] osculans (globally Near Threatened (IUCN, 2019b), max count 360), Grey 

Plover Pluvialis squatarola (max count 2,000), and Kentish Plover Charadrius alexandrinus 

(max count 3,181; Figure 3-2; Appendix 3.3). Species composition differed among sites, 

with small species, particularly Dunlin, Kentish Plover, and Lesser Sand Plover dominating 

supratidal sites except Dongtai, where large shorebirds (i.e., Eurasian Curlew, Bar‐tailed 

Godwit, Grey Plover, and Great Knot Calidris tenuirostris) comprised 30–40% of the 

individuals recorded (Appendix 3.3; Appendix 3.4). 
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Figure 3-2. Migratory shorebirds (mostly Kentish Plover Charadrius alexandrinus) 
occupying a bund between active aquaculture ponds in Hai'an, Jiangsu Province, 
China 

 

Mean (±SE) shorebird count on artificial supratidal habitats when intertidal flats were 

covered by seawater was as follows: Dongtai (undeveloped pond): 17,534 ± 3,351, 

maximum 24 species recorded; Hai'an (aquaculture): 3,355 ± 641 (mean total aquaculture 

area count), maximum 19 species recorded in any one pond; Fengli (aquaculture): 4,810 

(total aquaculture area count; not presented as a mean because only surveyed once), 

maximum 10 species recorded in any one pond; Ju Zhen (undeveloped pond): 5,107 ± 

862, maximum 16 species recorded; and Ju Zhen (aquaculture): 19 ± 5 (mean total 

aquaculture area count), maximum five species recorded in any one pond (Table 3-2). We 

did not observe shorebirds using supratidal areas at Dongling, where the mean count on 

the intertidal flats roost was 12,832 ± 1,322 at high tide. Mean count for each individual 

aquaculture pond in Hai'an, Fengli, and Ju Zhen is in Appendix 3.5.  
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Based on the minimum tide level when we observed seawater hitting the seawall, we 

estimate that birds had to leave intertidal flats and enter artificial supratidal habitats on  

average 11 ± 0.6, 17 ± 0.3, 18 ± 0.3, 25 ± 0.3, and 2 ± 0.6 days per month at Dongtai, 

Hai'an, Fengli, Ju Zhen, and Dongling, respectively (Appendix 3.6). On spring high tides, 

intertidal flats were covered for about 1 hr at Dongtai and more than 4 hr at Ju Zhen. Given 

the semidiurnal nature of the tides in southern Jiangsu, this situation would occur twice 

daily during the spring tide period. The number of birds we counted was negatively 

correlated with the number of days that intertidal flats were covered at high tide (Pearson 

correlation coefficient = −0.84; Figure 3-3), suggesting that birds favour sites where 

intertidal flats remain accessible for longer. 

 

3.4.2 Factors affecting roost site choice 

 

The most supported model included all variables except distance to seawall (Table 3-3; full 

model output in Appendix 3.7). Shorebird counts were positively associated with intertidal 

flats being covered, the pond having at least one unvegetated bund, and pond size; and 

negatively associated with greater water cover, more extensive vegetation cover, and 

more structures in the vicinity of the pond (Figure 3-4).  

 

The single largest aggregation of birds occurred on the undeveloped pond at Dongtai 

(Table 3-2). In Ju Zhen, where there was both an undeveloped pond and a large 

aquaculture complex adjacent to intertidal flats, an average of ~5,100 birds used the 

undeveloped pond while almost none used the aquaculture ponds (Table 3-2). Both of the 

undeveloped ponds contained some water (30%–50% water cover in Dongtai over three 

survey months; 40%–50% water cover in Ju Zhen over two survey months) and bare mud 

interspersed with vegetation (vegetation cover 10%–30%; Appendix 3.4). In contrast, 

water cover approached 100% in many of the aquaculture ponds in Hai'an and Ju Zhen 

where fewer birds were found (Appendix 3.4). At Fengli, hundreds to thousands of birds 

used ponds with lower (< 60%) water cover, while ponds with water cover approaching 

100% held very few birds (Appendix 3.4). Although it was not feasible to measure water 

depth directly, ponds approaching 100% water cover appeared to contain water too deep 

for shorebirds to stand in (> 20 cm depth). Water cover also affected whether birds roosted 

on the bunds between ponds versus within the pond itself (Appendix 3.4). 
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Table 3-2. Shorebird survey results from roosting sites around Rudong in autumn 
2017 

Region 

Mean count ± SE  
(n counts); intertidal 
flats covered 

Max 
number of 
species 

Mean count ± SE  
(n counts); intertidal flats 
uncovered 

Max 
number of 
species 

Dongtai undeveloped 17,534 ± 3,351 (n = 3) 24 1,382 ± 619 (n = 5) 12 
Hai'an intertidal flats roost 5,212 b ± 1,046 (n = 6) 20 5,352c (n = 1) 12 
Hai'an aquaculturea 3,355d ± 641 (n = 4) 19 266d ± 258 (n = 3) 6 
Fengli aquaculturea 4,810e (n = 1) 10 Not observed NA 
Ju Zhen undeveloped 5,107 ± 862 (n = 3) 16 0 (n = 1) 0 
Ju Zhen aquaculturea 19d ± 5 (n = 3) 5 6e (n = 1) 2 
Dongling intertidal flats 
roost 

N/A N/A 12,832c ± 1,322 (n = 3) 22 

 
Table notes. Counts (mean ± SE) from individual aquaculture ponds in Hai'an, Fengli, and Ju Zhen are given 
in Appendix 3.5. 
a Total shorebird abundance within the aquaculture complex likely higher than reported counts because only 

a random sample of ponds from within the complex was surveyed 
b Birds were counted prior to intertidal flats being inundated and all birds departing the area 
c Birds remained on intertidal flats  
d Mean total aquaculture area count calculated using the maximum count for any ponds that were counted 

multiple times in one count period 
e Total aquaculture area count calculated using the maximum count for any ponds that were counted 

multiple times in the count period; not a mean as this area was only surveyed once 

 

 

 

 
 

Figure 3-3. Indicative extent of artificial habitat use by shorebirds in Rudong when 
intertidal flats were inundated at Dongtai, Hai'an, Fengli, and Ju Zhen supratidal 
areas, and at high tide at Hai'an and Dongling intertidal flats 
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Table 3-3. Candidate models of variables influencing shorebird abundance in 
artificial supratidal ponds. Most supported model shown in bold. Region (Hai'an, 
Fengli, or Ju Zhen) and pond treated as random effects and denoted by |. AICc is a 

second‐order form of AIC adjusted for small sample sizes; df is degrees of freedom. 

Model AICc df ∆AIC 

Null model: Shorebird abundance ~1 + (1 | Region) + (1 | Pond)    

NULL + Intertidal flats cover + Water cover + Vegetation cover + Bund + 
Size + Structures 

980.4 10 0.0 

NULL + Intertidal flats cover + Water cover + Vegetation cover + Bund + Size 
+ Distance + Structures 

982.7 11 2.3 

NULL + Intertidal flats cover + Water cover + Vegetation cover + Bund 986.7 8 6.3 

NULL + Intertidal flats cover + Water cover + Vegetation cover + Bund + 
Vegetation cover*Bund 

986.9 9 6.5 

NULL + Intertidal flats cover + Water cover 989.9 6 9.5 

NULL + Water cover + Vegetation cover + Bund + Size + Structures 1,001.4 9 21 

NULL + Water cover 1,007.4 5 27 

NULL + Intertidal flats cover 1,017.1 5 36.7 

NULL 1,032.9 4 52.5 

 

 

 

 

Figure 3-4. Effects of biophysical features on shorebird abundance in artificial 
supratidal ponds. Points show the estimated coefficients from the most supported 
model (Table 3-3) with 95% confidence intervals. 
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3.4.3 Ecological function of supratidal habitats 

 

Mean total shorebird counts were much higher when intertidal flats were covered by 

seawater than when they were exposed in all regions except Dongling (where intertidal 

flats were never covered; Table 3-2). At low tide and at high tides when intertidal flats 

remained uncovered, mean count at Dongtai was < 10% of the mean count when intertidal 

flats were covered (1,382 ± 619 vs. 17,534 ± 3,351), while almost no birds were observed 

at Hai'an or Ju Zhen when intertidal flats were uncovered (Table 3-2). 

 

When intertidal flats were covered and we recorded foraging behaviour, < 1% of the birds 

at Dongtai (n = 1 count), 1% at Hai'an (n = 56 counts), ~7% at Ju Zhen (n = 2 counts), and 

~7% at Fengli (n = 16 counts) were observed foraging (Appendix 3.8). However, the 

proportion of foraging birds differed by species; for example, at Fengli 94% of Red‐necked 

Stints Calidris ruficollis, 92% of Marsh Sandpipers Tringa stagnatilis, and 86% of Spoon‐

billed Sandpipers were observed foraging compared with < 3% of more numerous Kentish 

Plovers and Dunlins (Appendix 3.8). 

 

3.5 Discussion 

 

3.5.1 Need for joined‐up conservation 

 

It is clear that artificial supratidal habitats, particularly undeveloped ponds and aquaculture 

ponds, form an integral part of the daily cycle of shorebirds in Rudong during southward 

migration. We observed between ~20,000 and ~36,000 shorebirds using artificial habitats 

each month, including internationally important numbers of eight species, and believe 

these counts underestimated shorebird abundance because: (a) we only counted 

randomly selected aquaculture ponds in the Hai'an and Ju Zhen complexes; (b) we did not 

count Fengli in August and September or Ju Zhen in October; and (c) some shorebirds 

would have departed the study area before all individuals had arrived (Choi et al., 2016), 

meaning peak numbers observed across the period represent only part of the population 

that used the area. Among our survey regions, only shorebirds at Dongling were able to 

remain on intertidal flats throughout the tidal cycle and were only observed roosting on the 

seaward side of the seawall. This is consistent with the main finding of Rosa et al. (2006) 

that given the option between roosting on the top portion of intertidal flats and artificial 

supratidal habitats, shorebirds will choose to remain on intertidal flats to minimize 
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predation and disturbance risk. Yet subsequent to our fieldwork, land claim has occurred 

at the Dongling intertidal roost and it is now likely that these birds (averaging almost 

13,000 across three monthly counts) require artificial supratidal roosts at high tide as well 

(author LZ, pers. obs.).  

 

Widespread use of artificial supratidal habitats by migrating shorebirds in Rudong is 

unsurprising because the intertidal flats where they aggregate are covered by seawater 

during spring high tides and almost no natural supratidal habitat remains in this region 

following extensive land claim along the coast (Cai et al., 2017). Similar behaviour has 

been recorded elsewhere in the EAAF, for example, in Changhua (Bai et al., 2018), the 

Mai Po Nature Reserve (WWF Hong Kong, 2013), Inner Gulf of Thailand (Sripanomyom, 

et al., 2011), and elsewhere in mainland China (e.g. He et al., 2016). 

 

It is nonetheless clear from our results that birds concurrently depend on natural intertidal 

and artificial supratidal habitats in Rudong. Few shorebirds used artificial supratidal areas 

at low tides or high tides when intertidal flats were not covered by seawater. Warnock et al. 

(2002) found similar results in San Fransisco Bay, where over a million waterbirds in this 

highly developed region use coastal salt ponds at high tide, but significantly fewer birds 

use the same ponds at lower tides. In addition, most shorebirds did not appear to forage 

substantively in supratidal areas. This indicates that the two habitats serve different 

functional roles across one connected area, depending on the tide. There is therefore a 

management imperative to maintain both suitable artificial supratidal habitat and natural 

intertidal habitat, and degradation or loss of either could lead to further pressure on 

shorebird populations. Further research in Rudong should seek to identify precise 

movement patterns for individual shorebirds between intertidal feeding areas and 

supratidal habitats. Telemetry or mark‐resighting studies could be used to determine 

whether or not individual shorebirds consistently use supratidal habitats closest to their 

foraging areas; if this is the case, prioritizing management at supratidal sites adjacent to 

the largest shorebird aggregations (or target species aggregations) on intertidal flats would 

be effective. For those species that were observed foraging in artificial habitats, an 

analysis of relative energy intake rates in supratidal versus intertidal habitats would refine 

understanding of their relative role and importance. 

 

3.5.2 Management of artificial supratidal habitats 
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Shorebirds were more abundant in ponds with less water cover, less vegetation cover, an 

unvegetated bund, and fewer built structures in the vicinity, consistent with previous 

research in the flyway and predation avoidance tactics (Rogers, 2003; Zharikov & Milton, 

2009; He et al., 2016). A similar study of shorebird distribution in North American farm 

pastures also found that the likelihood of shorebird occurrence in pasturelands increased 

as vegetation height decreased (Colwell & Dodd, 1997), suggesting this characteristic is 

particularly important. Our model also associated larger ponds with higher shorebird 

abundance, but pond size is perhaps less important than water and vegetation cover 

because we surveyed several large ponds that had high water and vegetation cover that 

did not support any shorebirds across the survey period.  

 

Foraging observations suggest that only those ponds with water cover significantly below 

100% presented any substantive foraging opportunity (Appendix 3.8). In addition, the 

percentage of birds that we observed foraging differed significantly between species. 

Takekawa et al. (2009) showed that shorebirds with different feeding strategies consumed 

different prey items at different salinities and water depths in salt evaporation ponds; it is 

likely that the same factors would explain why we observed a high percentage of some 

species but a low percentage of others foraging at our study sites.  

 

Distance to the seawall was not included in the best‐fit model, likely because areas that we 

were able to survey were all within 2 km of the seawall and therefore well inside maximum 

observed travel distances from foraging to roosting sites for shorebirds (Rogers, 2003; 

Jackson, 2017). We nonetheless included this variable because if the distance between 

supratidal ponds and the seawall within 2 km had affected roost choice, this would be an 

important consideration for management; however, our results do not suggest that 

distance within 2 km was a significant influence on roost choice in our study area.  

 

Several areas of additional research would help to develop more specific management 

strategies for the region. One limitation of our study was that only the total shorebird 

abundance could be modelled because there were insufficient data to model individual 

species or size classes. Thus, the results are primarily driven by the more common 

species, most of which are not of immediate significant conservation concern. Completing 

additional counts of target species (e.g. threatened species) and modelling their 

occurrence against biophysical variables could clarify whether species of interest fit the 

general pattern described in this study. In addition, while water cover significantly below 
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100% is likely preferred across most shorebird species, optimum water depth differs by 

species (Rogers et al., 2015) and size‐class (i.e. leg length) has been used as a predictor 

affecting shorebird numbers at different water levels on artificial supratidal habitats 

elsewhere (e.g. Green et al., 2015). Future research could usefully explore whether 

foraging activity at supratidal sites in Rudong is negatively related to body size, as has 

been documented elsewhere (e.g. Nol et al., 2014). If smaller species are more likely than 

larger ones to forage during the high tide period when artificial supratidal habitats are 

being occupied, then managers should regulate water levels to optimum depth for shorter‐

legged species. Research on disturbance levels and their possible impacts on roosting 

shorebirds would also be beneficial to see if otherwise optimal roosting areas are not 

currently being utilized because disturbance levels are too high. Lastly, a more fully 

randomized selection of supratidal ponds may be more desirable in a future study; 

however, on‐ground realities relating to access and road condition make this challenging. 

 

Overall, we nonetheless feel confident in making a general recommendation based on our 

results that the maintenance of a network of ponds situated along the coastal seawall near 

large intertidal shorebird aggregations: (a) within at minimum 2 km of the mudflat; 

(b) with incomplete water cover (which would result in at least some areas of bare mud 

and shallow water of different depths across the pond); and (c) with minimal vegetation, 

would provide significant benefits to multiple species, particularly during peak migration 

months when energy budgets are most critical. 

 

3.5.3 Implementing joined‐up management 

 

Several studies have suggested partnerships with local authorities and land users as a 

means to provide shorebird habitat within existing working wetlands (e.g. Sripanomyom et 

al., 2011; Navedo et al., 2014). Innovative approaches to partnerships with local land 

users can ensure that resources are allocated efficiently and provide local benefits. For 

example, in California, a reverse auctioning system is used to create temporary wetlands 

in agriculture fields at locations and times most beneficial to migrating shorebirds 

(Reynolds et al., 2017). Potential strategies in Rudong could include sequential 

aquaculture harvesting (see Navedo et al., 2016), paying a fee to optimize water levels for 

shorebirds in aquaculture ponds during peak migration periods, or management of ponds 

in the supratidal landscape solely for waterbird conservation by an appropriate entity. 
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Nonetheless, significant research is required to determine the feasibility and relative 

efficiency of alternative strategies on a local level. 

 

Policy developments in China suggest that loss of intertidal flats from land claim for 

development will slow. A recent announcement from the Chinese government detailed that 

business‐related land claim is to cease and decisions on future land claim activities made 

only by the central government (Lei, 2018; Melville, 2018; Stokstad, 2018). Preventing 

further loss of intertidal flats will hopefully slow the rapid decline of many shorebird 

species, yet beneficial effects may be undermined unless adjacent supratidal habitats are 

also managed for shorebird conservation. 

 

Migrating shorebirds almost certainly rely on artificial supratidal habitats as they do in 

Rudong across several regions of the EAAF due to similarity in coastal development and 

land use. Coastal degradation associated with economic growth is widespread across 

China (He et al., 2014), an estimated 75% of intertidal flats have also been lost to land 

claim in the Republic of Korea (Moores et al., 2016), and supratidal land use patterns 

similar to Rudong's have been documented in areas important to shorebirds elsewhere in 

China (e.g. Yang et al., 2011; Xu et al., 2016; author CYC, pers. obs.) and in Thailand 

(e.g. Sripanomyom et al., 2011). Coastal aquaculture is very prevalent in Asia, which as a 

whole accounts for 89% of the world's production (by volume) with China the largest single 

producer (Bostock et al., 2010). Of all land claim of intertidal flats between 1977 and 2015 

along the central Jiangsu coast, 43% was for aquaculture (Cai et al., 2017), and 

aquaculture and salt production are both prevalent in other coastal regions of China (e.g. 

Xu et al., 2016). A large‐scale analysis is urgently needed to quantify the overall 

dependence of the migratory shorebirds of the EAAF on artificial supratidal habitats and 

prioritize management action accordingly.  
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Chapter 4 Widespread use of artificial habitats by shorebirds in 
Australia  

 

4.1 Abstract 
 

Shorebirds in the East Asian-Australasian Flyway have experienced population declines 

linked to loss of coastal wetlands. Despite this vulnerability to habitat loss, shorebirds 

regularly use artificial habitats, especially for roosting at high tide. Understanding the 

distribution of shorebirds in artificial and natural roosts in non-breeding areas, many of 

which have highly developed coastlines, could inform habitat management strategies 

aimed at population recovery. We analysed high tide shorebird monitoring data from five 

highly developed regions of Australia where use of artificial habitats has previously been 

documented. For 39 of 75 species-region combinations (52%), the average proportion of 

birds that used artificial habitats at high tide was > 50%. Migratory and coastal specialist 

species showed lower proportional artificial habitat use than non-migratory and 

generalist/inland specialist species, suggesting they may be less willing to use artificial 

habitats. For 63 of 75 species-region combinations (84%), the average proportion of birds 

that used artificial habitats did not show a significant temporal trend, suggesting relatively 

consistent use of artificial habitats over our time series’. The widespread use of artificial 

habitats by large shorebird aggregations at high tide in highly developed coastal regions of 

Australia warrants a more coordinated management effort, particularly in light of the risk 

that these sites could disappear from the landscape or undergo management changes that 

would impact their suitability as habitat. A framework for high tide habitat management that 

includes artificial habitats alongside preservation of remaining natural habitats could make 

a significant contribution to shorebird conservation in Australia.  

 

4.2 Introduction 
 

The shorebirds of the East Asian-Australasia Flyway (EAAF) are experiencing a 

conservation crisis. Significant declines have been documented in 16 widely-occurring 

migratory shorebirds in Japan (Amano et al., 2010) and in 12 of 19 migratory and four of 

seven non-migratory species in Australia (Clemens et al., 2016). More than 20 regularly 

occurring species in the EAAF are listed as Near Threatened, Vulnerable, Endangered or 

Critically Endangered on the IUCN Red List, including ten that are Endangered or Critically 
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Endangered (IUCN, 2019b; Table 1-1). Stroud et al. (2006) warned that almost 70% of the 

world’s globally threatened shorebirds occur in Asia and Oceania. 

 

Habitat loss is widely accepted as the primary driver of population declines in migratory 

shorebirds in the EAAF (Ma et al., 2014; Clemens et al., 2016; Melville et al., 2016; 

Piersma et al., 2016; Studds et al., 2017). Migratory species most dependent on Yellow 

Sea stopover sites, where loss of intertidal habitat has been particularly severe (Murray et 

al., 2014, 2015), are declining fastest (Amano et al., 2010; Studds et al., 2017), 

presumably because of higher mortality when migrating individuals pass through this 

region (Piersma et al., 2016).  

 

Despite this vulnerability to habitat loss, shorebirds have shown some capacity to cope 

with changes in coastal habitats by using artificial habitats created from human activity. 

For example, artificial ponds created to facilitate evaporation of seawater for commercial 

salt production can support high shorebird abundances (Masero et al., 2000; 

Sripanomyom et al., 2011; Houston et al., 2012; Dias et al., 2013). In the EAAF, 

shorebirds also occur on coastal ponds associated with aquaculture (Choi et al., 2014; He 

et al., 2016), agriculture (Amano, 2009; Fujioka et al., 2010), industrial sites such as 

dredge spoil ponds inside ports (Lilleyman et al., 2016a) and ash ponds within power 

production sites (Bakewell, 2009).  

 

Shorebirds often use artificial habitats in conjunction with natural habitats. Many species 

forage on intertidal flats when they are exposed, and roost (an important period of sleep, 

rest and digestion; Rogers, 2003) on artificial habitats at higher tides when intertidal flats 

are unavailable for foraging (e.g. Masero et al., 2000; He et al., 2016; Jackson et al., 

2019). Shorebird roost choice is driven by the need to reduce depredation risk and 

minimise energetic costs from commuting, disturbance and thermoregulation (Rogers et 

al., 2006; Jackson et al., 2017). Notwithstanding this general pattern, some shorebird 

species find supplementary or even preferential foraging opportunities on some artificial 

habitats, particularly saltworks, under some conditions (Masero et al., 2000; Green et al., 

2015; Lei et al., 2018). Thus it appears that artificial habitats can complement natural 

habitats, making it easier for shorebirds to continue foraging in what remains of the natural 

habitat in developed coastal areas. Yet species richness is often lower on artificial than 

natural habitats (Ma et al., 2004; Li et al., 2013) and use of artificial habitats is sometimes 

highly uneven across species (Ma et al., 2004; Nol et al., 2014; Chapter 2).  
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Few studies to date have considered the relative use of artificial and natural habitats by 

non-breeding shorebird assemblages, but relative use could have important management 

implications. At a regional level, if a large proportion of the shorebird assemblage or of any 

individual species uses artificial habitats regularly, it is important to include those habitats 

explicitly within management frameworks to ensure their availability and suitability is 

maintained in the long-term. Moreover, changes in the proportion of shorebirds using 

artificial habitats over time could imply changes in the quality of either natural or artificial 

habitats.  

 

The propensity to use artificial habitats varies among species, but the traits associated 

with this variation are not fully understood. There is some evidence of evolutionary 

divergence between migratory and non-migratory birds that results in more flexible habitat 

use by non-migratory birds (Sol et al., 2005). Further, loss of intertidal coastal habitat is 

known to be a major driver of population declines in migratory shorebirds (Piersma et al., 

2016; Studds et al., 2017), suggesting that threatened species may have reduced ability to 

use non-tidal habitats compared to non-threatened species. Also, shorebird species can 

be considered coastal specialists, generalists or inland specialists in relation to their non-

breeding habitat usage (Piersma, 2003) and while both coastal specialist and generalist 

species are widely found in coastal areas, coastal specialists may be more restricted in 

their use of non-tidal habitats at high tide. These differences among species suggest that 

migratory, threatened, and coastal specialist species may be less likely to use artificial 

habitats, which are generally supratidal.  

 

Here we use long-term high tide monitoring data in Australia (10-31 years) to study 

patterns and trends in the relative use of artificial versus natural habitats by shorebirds in 

five regions where use of artificial habitats has previously been documented. We: 

(i) estimate the prevalence of artificial habitat use among shorebirds in each region; 

(ii) determine whether the proportion of shorebirds using artificial habitats in each 

region changed over time at the assemblage and species level; and,  

(iii) investigate whether variation in the proportion of birds that use artificial habitats 

across regions can be explained by a species’ migratory status, conservation 

status, and/or habitat category. 
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4.3 Methods 
 

4.3.1 Study area and data collation 
 

Most people in Australia, the non-breeding terminus of the EAAF for many shorebird 

populations, live along the coast, resulting in transformation and degradation of much of 

the natural coastal habitat (Clark & Johnston, 2017). Chapter 2 identified 21 shorebird 

sites in Australia that: (i) were created or substantially modified from their natural state by 

mechanical means; (ii) occur within 20 km of the coast or a coastal estuary system (about 

the maximum distance that shorebirds move between foraging and roosting areas; 

Rogers, 2003; Jackson, 2017); and, (iii) have at least one record of at least 100 individual 

shorebirds present at one time. Among these sites, saltworks, ports, some constructed 

roosts and some wastewater treatment sites are entirely or almost entirely artificial, but 

some constructed roosts and some wastewater treatment sites are managed in tandem 

with surrounding natural habitats and/or contain some natural and some artificial roosts; 

since they are substantially anthropogenic in origin these semi-artificial sites were also 

categorised as artificial in our analyses.  

 

We delineated local geographic regions that contained one or more of the artificial sites 

identified in Chapter 2 and obtained shorebird counts for all natural and artificial sites in 

each region from BirdLife Australia’s National Shorebird Monitoring Program (formerly 

Shorebirds 2020; 1982-2017), the Queensland Wader Study Group (1996-2017), and the 

Hunter Bird Observers Club (1999-2017; Appendix 4.1). Our determination of regional 

boundaries took into account both natural features of the landscape (for example, if the 

region encompassed a large coastal bay) and the geographic area covered by long-term 

local shorebird monitoring programs.  

 

All shorebird counts included the site name and location, count date, and number of 

individuals present of each shorebird species. Counts were generally conducted within two 

hours of high tide, which is the roosting period for most shorebirds. As such we consider 

this study to be an analysis of natural and artificial high tide roost sites, but use “natural 

habitat” and “artificial habitat” for brevity. Count effort and consistency varied between 

regions with some sites counted once per non-breeding season and other sites counted 

monthly, and some sites with data missing for some years in some regions (discussed in 
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more detail below). Counts were generally implemented simultaneously across multiple 

sites over a short timeframe to reflect total regional shorebird numbers.  

 

With one exception we used data only from the core non-breeding season for migratory 

shorebirds (November to February for northern hemisphere breeding migratory species) 

for all analyses because this is when abundance and site fidelity are highest for migratory 

species (Clemens et al., 2016). Double-banded Plover Charadrius bicinctus, the sole 

southern hemisphere breeding migratory shorebird that occurs in Australia, was analysed 

separately from all other species using counts from its non-breeding occurrence in 

Australia (May to August).  

 

For each region we established the year when the newest artificial habitat was constructed 

and/or began to be surveyed, and began our time series at this year. Individual sites were 

included in the analysis if they were surveyed in at least 60% of the non-breeding seasons 

within the time series for the region (full list of regions and sites identified and reasons for 

exclusions in Appendix 4.1). Exclusion of sites with data from <60% of the years in the 

time series generally did not have a big effect on overall regional population size estimates 

because sites counted inconsistently tended to hold a relatively small proportion of the 

total number of shorebirds in the region (see average total non-breeding season shorebird 

count per site in Appendix 4.1). 

 

4.3.2 Data analysis 
 

Regional use of artificial habitats  

 
To focus on species for which the proportion of birds using artificial habitats would be a 

meaningful statistic, we analysed data only for species that occurred in at least nationally 

significant numbers in each region. To determine nationally significant numbers, we first 

generated a regional grand mean count across all sites and years for each shorebird 

species by summing the average count across the time series from each site by region. 

We considered a shorebird species’ regional grand mean count to be nationally significant 

if it was > 0.1% of the estimated flyway population for that species. Estimated flyway 

population for each species was based on the lower bound of the flyway population 

estimate in Hansen et al. (2016) for migratory species and Wetlands International (2019) 

for non-migratory species.  
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We determined the proportion of all shorebirds that used artificial habitats in each region 

by summing the average count of shorebirds at artificial sites and dividing it by the sum of 

the average count of shorebirds at all sites (natural and artificial) for each non-breeding 

season. We used the same process for all migratory shorebirds, all non-migratory 

shorebirds (except for Darwin where data on non-migratory species were not available) 

and each shorebird species that occurred in nationally significant numbers.  

 

We used generalised linear models to explore whether the proportion of all shorebirds, 

migratory shorebirds, non-migratory shorebirds and each shorebird species (only those 

that occurred in nationally significant numbers) that used artificial habitats showed a 

significant temporal trend across the time series in each region. Modelling was 

implemented in R version 3.6.0 (R core team, 2016). Our preliminary analysis with a 

binomial distribution showed signs of overdispersion (residual deviance / degrees of 

freedom >> 1) so we used a quasi-binomial distribution to account for this issue.  

 

In three regions (Gulf St Vincent, Moreton Bay and Port Phillip Bay) there were some sites 

that were not counted in some years. We imputed values for these years because, if 

ignored, missing surveys could have caused interannual variation in regional population 

size estimates that would have strongly affected calculations of proportional artificial 

habitat use by shorebirds. Multiple imputation (Rubin, 1996) is one method to address 

missing data that minimises the bias from discarding information (van Ginkel et al., 2019), 

and has been used in ecology where multiple species had missing information within the 

dataset being analysed (e.g. Fisher et al., 2003). Following Allison (2000) and Fisher et al. 

(2003) we completed the following steps:  

(i) for the regions with missing data, we imputed the raw dataset x times to 

construct x new complete datasets of shorebird counts for the regions with missing 

counts in some years. Following White et al. (2011), x was set to one imputed 

dataset for every percent of missing data, which was 20 for Gulf St Vincent, 10 for 

Moreton Bay and nine for Port Phillip Bay (Appendix 4.2);  

(ii) we modelled each of the x imputed datasets using quasi-binomial generalised 

linear models; and,  

(iii) we calculated pooled parameter estimates and standard errors for the x models 

for each species in each region following the formula described in Barnard & Rubin 

(1999). We considered temporal trends to be significant if the estimated 95% 
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confidence interval of the year coefficient (i.e., its pooled parameter estimates ± 

1.96 × its pooled standard error) did not overlap with zero.  

Multiple imputation was carried out in the R package Amelia II, which is designed for 

temporal and cross-sectional data (Honaker et al., 2011). Because Amelia II assumes a 

multivariate normal distribution, count data were log transformed before imputation and 

back-transformed after imputation. To keep imputed values realistic, we imposed an upper 

and lower limit on each imputation value comprising the minimum and maximum count of 

each species or species group across the time series. We used the overimpute function to 

assess the fit of the imputation models by checking that at least ~90% of the confidence 

intervals crossed the x-y line that indicates convergence between the real and imputed 

values (Honaker et al., 2011).  

 

Artificial habitat use in relation to species traits   

 

To investigate the variation in the proportion of birds that use artificial sites across species, 

we used generalised linear mixed models with a binomial distribution to relate the average 

proportion of birds (for species that occurred in nationally significant numbers) that used 

artificial habitats in each region to:  

(i) migration status as migratory or non-migratory. We assigned each species’ 

migration status as “Full migrant” or “Not a migrant” following the IUCN (2019b), 

except in the case of Black-winged Stilt because the regional subspecies of this 

globally-widespread species, Himantopus himantopus leucocephalus (often 

considered a full species called White-headed Stilt), is generally considered to be 

non-migratory in the East Asian-Australasian Flyway, notwithstanding a sighting of 

an Australian flagged individual in Indonesia and several long-distance movements 

recorded within Australia (Minton et al., 2017);  

(ii) conservation status as threatened or not threatened. We considered a species to 

be threatened if it was listed as Critically Endangered, Endangered or Vulnerable on 

the IUCN Red List (IUCN, 2019b) and not threatened otherwise; and,  

(iii) habitat category as a coastal specialist, generalist or inland specialist. 

Assessment of habitat category was compiled based on information from Piersma 

(2003), Commonwealth of Australia (2005), Marchant & Higgins (1993) and 

Marchant et al. (1996).   

Each model included random intercepts for region, year and family (Burhinidae, 

Charadriidae, Glareolidae, Haematopodidae, Jacanidae, Recurvirostridae, Rostratulidae 
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and Scolopacidae) to control for spatial, temporal and phylogenetic effects. To account for 

overdispersion in the data we also included an observation-level random effect (Harrison, 

2015). The migration status, conservation status, habitat category and family for each 

species are listed in Appendix 4.3.  

 

Generalised linear mixed models were implemented in R using the lme4 package (Bates 

et al., 2015). The variance inflation factor was smaller than 1.8 for all variables, indicating 

sufficient independence of the explanatory variables. We conducted model selection using 

an information theoretic approach (AIC) on candidate models that included every possible 

combination of the three variables described above. We considered models with a ΔAIC ≤ 

2 to comprise the set of plausible models (Burnham & Anderson, 2004). 

 

4.4 Results 

 

4.4.1 Regional use of artificial habitats 

 

We identified five regions in Australia where there were regular non-breeding counts at 

artificial and natural sites (18 and 57, respectively) for at least 10 years (Figure 4-1; 

Appendix 4.1). There were between six and 18 species per region with a regional grand 

mean that exceeded nationally significant numbers of birds (Appendix 4.4). In each region 

except Darwin, which has the smallest human population and least developed coastline, 

individual artificial sites consistently had higher average counts of total shorebird 

abundance than individual natural sites, sometimes by a substantial margin (Appendix 

4.1).  

 

In total there were 75 species/species group by region combinations for which we 

estimated the average proportion of birds that used artificial habitat and its change over 

time (Figure 4-2; Appendix 4.4). On average across the time series, 96% of all shorebirds 

in the Hunter Estuary, 77% of all shorebirds in Port Phillip Bay, 58% of all shorebirds in 

Gulf St Vincent, 35% of all shorebirds in Moreton Bay and 13% of migratory shorebirds in 

Darwin Harbour used artificial habitats at high tide (Figure 4-2; Appendix 4.4). The Hunter 

Estuary and Port Phillip Bay–the two regions with the highest average proportion of birds 

that used artificial habitats–also had the highest proportion of artificial sites (86% and 71%, 

respectively; Appendix 4.1).  
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Figure 4-1. General location and insets of study regions. A. Darwin Harbour; B. 
Moreton Bay; C. Hunter Estuary; D. Port Phillip Bay; and, E. Gulf St Vincent. 
Artificial/semi-artificial sites are shown with a square and natural sites with a 
triangle. Map data: Google, Maxar Technologies, TerraMetrics, CNES/Airbus. 
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Figure 4-2. Summary of the proportion of shorebirds that used artificial habitats in 
five regions of Australia and its change over time. Size of the circle shows the mean 
proportion of birds that used artificial habitats over the time series. Colour of the 
circle shows the slope of the modelled change in the proportion of birds that used 
artificial habitats over the time series (mean slope estimate of averaged models for 
regions where multiple imputation was used). Circles are filled if the slope estimate 
was positive and open if the slope estimate was negative. There is an asterisk next 
to the circle for species that showed a significant temporal trend. Far Eastern 
Curlew in the Hunter Estuary is not shown in the figure because its proportion was 
1 across the whole time series (and therefore it could not be modelled). 

 

For 39 of 75 species-region combinations (52%), the average proportion of birds that used 

artificial habitats was > 50% (Figure 4-2; Appendix 4.4). In Darwin, ≤ 10% of shorter-

legged migratory shorebirds (Greater Sand Plover Charadrius leschenaultii, Great Knot 
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Calidris tenuirostris, Red Knot Calidris canutus, Ruddy Turnstone Arenaria interpres and 

Sanderling Calidris alba) used artificial habitats comprising a port and a constructed roost, 

but 85% of the Endangered Far Eastern Curlew Numenius madagascariensis used 

artificial habitats (mostly the port; Figure 4-2; Appendix 4.1, 4.4). In Gulf St Vincent the 

proportion of non-migratory shorebirds (75%) was much higher than the proportion of 

migratory shorebirds (39%) that used artificial habitats comprising two saltworks (Appendix 

4.1, 4.4). In the Hunter Estuary, 96% of all shorebirds used artificial habitats comprising 

constructed roosts, more than in any other region (Figure 4-2; Appendix 4.1, 4.4). In 

Moreton Bay, despite only ~10% of the sites in the region being artificial > 40% of nine of 

18 species used artificial habitats comprising a port and constructed roosts (Figure 4-2; 

Appendix 4.1, 4.4). In Port Phillip Bay ≥ 70% of 12 of 18 species used artificial habitats 

comprising a wastewater treatment plant, three former saltworks and a beach constructed 

from dredge spoil (Figure 4-2; Appendix 4.1, 4.4).  

 

The proportion of total shorebirds and total non-migratory shorebirds that used artificial 

habitats showed a significant and increasing trend in Gulf St Vincent, but there were no 

other significant temporal trends in any region for the proportion of total, migratory, and 

non-migratory shorebirds (Figure 4-2; Appendix 4.4, 4.5). Across the 75 species/species 

group and region combinations assessed, the average proportion of birds that used 

artificial habitats increased significantly over time for nine species-region combinations 

(12%) and decreased significantly for three (4%), leaving 62 species-region combinations 

(84%) with non-significant temporal trends (Figure 4-2; Appendix 4.4, 4.5). 

 

4.4.2 Artificial habitat use in relation to species traits 

 

The model with the lowest AIC from the generalised linear mixed modelling included 

migration status and habitat category (Table 4-1). Consistent with our predictions, non-

migratory and generalist/inland specialist species showed higher proportional artificial 

habitat use compared to migratory and coastal specialist species (Figure 4-3; Table 4-1). 

The model with the second-lowest AIC was also within the set of plausible models, but this 

model included the same two variables as the best model plus conservation status; in this 

case the variable (conservation status) is defined as an uninformative parameter as its 

inclusion does not improve AIC (Arnold, 2010) and thus conservation status was not 

considered to be an important variable. Conservation status was also not significant at p = 

.05 (Table 4-1). 
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Table 4-1. Candidate models and full results of the set of plausible models testing 
the relationship between the proportion of birds using artificial habitats and three 
species traits 

Candidate models 
 
Model AIC df ΔAIC 

Null model: (artificial, natural) ~ 1 + (1 | Region) + (1 | Year) + (1 | Family) + 
                    (1 | observation level random effects)  

NULL + migration status + habitat 12566.6           7 0.0 

NULL + migration status + habitat + conservation status 12567.5      8 0.9 

NULL + habitat + conservation status 12587.0     7 20.4 

NULL + habitat 12587.1     6 20.5 

NULL + migration status 12592.4     6 25.8 

NULL + migration status + conservation status 12594.3     7 27.7 

NULL  12612.2     5 45.6 

NULL + conservation status 12614.2 6 47.6 

 
Set of plausible models (ΔAIC ≤ 2) 
 
Variable Estimate Std. Error z value Pr(>|z|)     

Model 1: (artificial, natural) ~ migration status + habitat + (1 | Region) + (1 | Year) +  
               (1 | Family) + (1 | observation level random effects)    
 
Intercept -0.145    1.209   
Status as non-migratory 1.453 0.151 9.655 <.01 
Status as generalist/inland specialist 0.776 .144 5.372 <.01 
     
Model 2: (artificial, natural) ~ migration status + habitat + conservation status + 

    (1 | Region) + (1 | Year) + (1 | Family) + (1 | observation level random effects)   

Intercept -0.208    1.213   
Status as non-migratory 1.478 0.153 9.695 <.01 
Status as generalist/inland specialist 0.817 0.150 5.449 <.01  
Status as threatened 0.286 0.274 1.045 0.296 
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Figure 4-3. Average proportion of: A. migratory and non-migratory shorebirds; B. 
threatened and non-threatened shorebirds; C. coastal specialist and 
generalist/inland specialist shorebirds that used artificial habitats across all 
regions. Middle line shows the median; lower and upper box hinges correspond to 
the 25th and 75th percentiles; upper and lower whiskers extend from the box hinge 
to the largest/smallest value no further than 1.5 times the inter-quartile range from 
the hinge. 

 

4.5 Discussion 

 

4.5.1 Importance of artificial habitats 

 

Our results demonstrate extensive use of artificial habitats by shorebirds at high tide in our 

five study regions (Figure 4-2; Appendix 4.4), all of which contain a major city associated 

with extensive coastal development and a large human population (Figure 4-1). Further, in 

all regions except Darwin, an artificial site had the highest average total count of any single 

roost site in the region (Appendix 4.1).  

 

It is well-documented that shorebirds often use natural intertidal flats for foraging at lower 

tides and move into artificial habitats during high tides when intertidal flats are covered by 

seawater (Masero et al., 2000; Finn et al., 2002; Rogers et al., 2010; Sripanomyom et al., 

2011; Choi et al., 2014; Lilleyman et al., 2016a; Fuller et al., 2019; Jackson et al., 2019). 

These movements between artificial and intertidal habitats occur despite artificial habitats, 
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particularly saltworks, providing foraging opportunities for some species (Masero et al., 

2000; Houston et al, 2012; Dias et al., 2013; Estrella et al., 2015; Purnell et al., 2017). This 

suggests that the willingness and ability of shorebirds to use artificial habitats helps them 

to persist in highly modified coastal landscapes, with artificial sites providing roosting (and 

sometimes supplementary foraging) habitats at high tide, allowing shorebirds to continue 

exploiting proximate intertidal flats at lower tides.  

 

Maintaining a network of stable, high quality roosting sites on artificial habitats could also 

have the potential to help mitigate the impacts of sea level rise for shorebirds, which 

threatens intertidal habitat (Iwamura et al., 2013) since many artificial sites are supratidal 

and less dynamic than intertidal flats.  

 

4.5.2 Patterns in artificial habitat use 

 

A lower average proportion of migratory and coastal specialist shorebirds used artificial 

habitats across the five study regions than non-migratory and generalist/inland specialist 

species (Figure 4-3; Table 4-1). Sol et al. (2005) found evidence among temperate 

Palaearctic passerines that non-migratory species display a wider range of foraging 

behaviours and use more types of habitat than migratory species. Our results are 

consistent with a similar hypothesis for shorebirds, suggesting that non-migratory species 

use a wider range of habitats than migratory species during the non-breeding season, as 

also noted by Piersma (2003), reinforced for Australia by Kingsford et al. (2010), and 

consistent with the strong association between migratory shorebird declines and loss of 

intertidal wetlands (Clemens et al., 2016, Studds et al., 2017). Studies of passerines have 

related more innovative foraging behaviour in non-migratory species to relative brain size, 

showing that migratory species usually have substantially smaller brains (relative to body 

size) than non-migratory species (Sol et al., 2005, 2010). However, there is no such 

pattern in the relative brain sizes of the shorebird species that we studied, which are 

virtually identical with the exception of Banded Stilts Cladorhynchus leucocephalus, Black-

winged Stilts and Red-necked Avocets Recurvirostra novaehollandiae, all three of which 

are non-migratory species with substantially smaller relative brain sizes than all other 

shorebird species in our study sample (see Franklin et al., 2014 for relative brain sizes of 

shorebird species).  
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Notwithstanding these patterns of artificial habitat use in relation to migratory behaviour 

and habitat preferences, for a given species, the proportion of individuals that used 

artificial sites varied markedly among regions. For example, only about 2% of Ruddy 

Turnstones in Darwin used artificial habitats while > 50% of Ruddy Turnstones in Moreton 

Bay did so, and average artificial habitat use by Black-winged Stilts across four regions 

ranged from 20% in Moreton Bay to 92% in the Gulf St Vincent (Figure 4-2; Appendix 4.4). 

This suggests that artificial site characteristics and local management of artificial sites play 

some role in determining their suitability as habitat for shorebirds. 

 

Increases or decreases in the proportion of shorebirds using artificial habitats over time 

could signal changes in the relative quality of either natural or artificial habitats. However, 

our analysis did not show a significant temporal trend in the proportion of total shorebirds 

that used artificial habitats in three of four regions, nor did most individual species. 

Nonetheless changes in relative habitat use by 12 species/species groups over time 

across five regions (Figure 4-2; Appendix 4.5) suggests that high tide habitat use can be 

somewhat dynamic, and that it may be possible to improve or decrease the relative quality 

of artificial and natural habitats for shorebirds with local management. In addition, our 

result of few significant temporal trends may in part reflect the difficulty in detecting trends 

over relatively short time series (Wauchope et al., 2019) and the added variability for the 

three regions with incomplete data.  

 

4.5.3 Managing artificial habitats 

 

The widespread use of artificial roost sites in the five highly developed regions of Australia 

that we studied suggests that maintaining and, if required, improving the extent and quality 

of artificial habitats should be considered because failing to manage artificial habitats 

appropriately in highly modified landscapes could affect the ability of shorebirds to access 

intertidal habitats. However, because many artificial sites have created shorebird habitat 

as a by-product of an industrial or other commercial land use, there is a risk that their long-

term suitability as shorebird habitat will not persist due to changes in land use or site 

management, and this is of some concern across our study regions. 

 

In Darwin, natural habitats provided most high tide habitat in the region but the Darwin Port 

was important high tide habitat for the Endangered Far Eastern Curlew. Given that the 

abundance of Far Eastern Curlew was stable in Darwin in recent years despite its steep 
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decline elsewhere around Australia (Lilleyman et al., in press), maintaining both natural 

and artificial habitat may help support this species’ population recovery. Since the 

shorebird habitat at Darwin Port, like many ports across Australia, is an accidental 

byproduct of industrial activity, active management is likely to be needed into the future for 

this habitat to be retained. Encouragingly, some management of dredge spoil ponds for 

shorebirds has commenced (Lilleyman et al., 2016a; Lilleyman and Garnett, 2018; 

Lilleyman et al., 2018).  

 

In Gulf St Vincent, the high average proportion (~90%) of long-legged non-migratory 

shorebirds (i.e. Banded Stilt, Black-winged Stilt and Red-necked Avocet) that used the two 

saltworks at high tide can be explained by the ability of these species to exploit the 

abundance of brine shrimp, brine fly larvae and chironomid larvae that occur in some 

ponds (Purnell et al., 2017). While we did not detect any decreasing trends in the 

proportion of birds using artificial habitats across the relatively short time series, some 

deterioration in the habitat condition at the Dry Creek saltworks, which was 

decommissioned in 2014, has been documented (Purnell et al., 2017), and the long term 

management of the site is not yet fully resolved. This uncertain situation presents both a 

risk that this site will no longer provide suitable shorebird habitat and an opportunity that it 

could be specifically managed over the long term for environmental values including 

shorebirds (Purnell et al., 2017). 

 

Shorebird roost management is particularly intensive in the Hunter Estuary. Stockton 

Sandspit, an artificially created landscape formed from dredge spoil that provides roosting 

habitat for about a quarter of the region’s shorebirds, now comprises largely natural 

habitats but requires regular mangrove and weed removal to retain its suitability for 

shorebird roosting (NSW National Parks & Wildlife Service, 2015). Parts of Ash Island 

Area E, a complex of wetlands with both tidal and freshwater influences, had tidal flood 

gates prior to the 1990s that were later removed, leading to the proliferation of mangroves, 

after which shorebird numbers declined significantly (Reid, 2019). Subsequent removal of 

mangroves from this site since 2016 with the goal of restoring shorebird habitat has led to 

an increase in shorebird numbers (Reid, 2019). Tomago Wetlands and Hexham Swamp 

were reclaimed for cattle grazing and later restored predominantly to saltmarsh (Stuart, 

2016). These areas did not provide suitable roosting habitat for shorebirds until about 2012 

when tidal gates were added or reinstated to allow for tidal flushing (Stuart 2016, 2019), 

and thus were not included in this analysis because the time series of shorebird counts to 
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analyse was too short. Since then these wetlands have attracted very large numbers of 

Sharp-tailed Sandpipers Calidris acuminata (peak counts of 7,000-8,000 birds, around 9% 

of the total population; Stuart, 2019), with an average total shorebird count during the non-

breeding season in 2014-2018 of ~1,000-1,300 birds (Appendix 4.1). This region typifies 

highly developed coastal landscapes because most of its wetlands have been significantly 

modified from a variety of different land use activities that have changed over time. As a 

result, active management of all important roost sites are likely to be required in perpetuity 

to ensure these sites remain suitable as high tide roosts for shorebirds. Indeed, not only 

are artificial roost sites important for shorebirds in the Hunter Estuary, but artificially-

impounded intertidal flats also provide important foraging habitat (Spencer, 2010). 

 

In Moreton Bay the Port of Brisbane provides high tide habitat for more than 5,000 

shorebirds during the non-breeding season (Appendix 4.1). The port supports the 

Queensland Wader Study Group to conduct regular counts within the port and maintains a 

purpose-built artificial roost for waterbirds (Cross, 2018; Fuller et al., 2019). However, 

much of the habitat within the port currently used by shorebirds is due eventually to 

become dry land, potentially necessitating creation of alternative habitats (Fuller et al. 

2019). The constructed roosts in Moreton Bay region generally have long-term 

management arrangements in place through state or local government bodies, and the 

Queensland Wader Study Group conducts habitat management at the Manly artificial roost 

to maintain suitability for shorebirds. 

 

In Port Phillip Bay, three former or current saltworks provide high tide habitat for > 10,000 

shorebirds during the non-breeding season between them (Appendix 4.1). The Cheetham 

Wetlands is now managed for environmental and recreational values alongside the 

adjacent (natural) Point Cooke Reserve; by contrast, significant deterioration in habitat 

condition has occurred at both the Avalon saltworks where salt production ceased in 2000 

(Rogers et al., 2016) and the Moolap saltworks where production ceased in 2007. The 

recently released Moolap Coastal Strategic Framework Plan indicates ongoing provision of 

bird habitat within the former Moolap saltworks (State of Victoria, 2019), and management 

plans for Avalon saltworks are now being developed by Parks Victoria, but implementation 

is only just commencing at both sites. The Western Treatment Plant is a very large 

sewage treatment complex that also supports > 10,000 shorebirds at high tide (Appendix 

4.1). It is managed both for its core purpose of treating waste-water and also to maintain 
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shorebird populations, and it provides both roosting and foraging habitat (Rogers & 

Maarten Hulzebosch, 2014). 

 

4.5.4 Conclusion 

 

This study explored the use of artificial versus natural high tide roost sites by shorebirds in 

Australia. While preserving foraging habitat is of primary importance for protecting 

shorebird populations, a lack of suitable roosting sites can constrain the carrying capacity 

of intertidal foraging sites. A network of stable, high quality high tide roost sites allows 

shorebirds to efficiently exploit proximate intertidal foraging grounds at lower tides. The 

widespread use of artificial habitats by large shorebird aggregations at high tide in highly 

developed coastal regions of Australia warrants a much more coordinated management 

effort, particularly in light of the risk that these sites could disappear from the landscape or 

undergo management changes that would impact their suitability as shorebird habitat. A 

helpful step in achieving this aim would be the establishment of clear guidelines at the 

national level to assist site managers of the four artificial habitats widely used by 

shorebirds in Australia (ports, saltworks, constructed roosts and wastewater treatment 

ponds). These could include guidance on establishing goals, implementing monitoring 

regimes, and taking adaptive management actions for the benefit of shorebirds. They 

could usefully build on lessons learned from those artificial sites that have been studied 

and/or managed for shorebirds over a long period, and include clear recommendations for 

the management of different species and species groups. 
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Chapter 5 Spartina alterniflora threatens important shorebird 

habitat in coastal China 

5.1 Abstract 

 

Smooth cordgrass Spartina alterniflora was intentionally introduced to the coast of China in 

1979 to promote the conversion of tidal flats into dry land. Since then it has spread rapidly, 

both naturally and through planting, and poses a threat to foraging and roosting habitat of 

shorebirds. Loss or degradation of important shorebird habitat from S. alterniflora 

encroachment is likely to compound flyway-scale shorebird population declines, and may 

be particularly detrimental where tidal flats have been also reduced by other factors (e.g. 

land reclamation, sea level rise). However, the extent to which S. alterniflora is 

encroaching upon important shorebird habitat in China is unknown. Here we: i) map the 

extent of S. alterniflora coverage in 2015 of coastal sites used by internationally important 

numbers of shorebirds; ii) estimate change in the spatial extent of tidal flats between 2000 

and 2015 at the same set of sites; and, iii) investigate where these two threats to important 

shorebird habitat intersect. We found that the total area of tidal flats across all sites 

decreased by 15% between 2000 and 2015, and that tidal flats decreased between 2000 

and 2015 at 39 of 52 individual sites (75%). Spartina alterniflora occurred at 28 of 52 sites 

(54%) in 2015, and covered more than 5% of the total area of six sites. Of the 28 sites 

where S. alterniflora occurred, 22 sites (79%) also underwent a decrease in tidal flat extent 

between 2000 and 2015. Combined pressures from S. alterniflora and loss of tidal flats 

were most severe in Jiangsu, Shanghai, Fujian, Zhejiang, Tianjin and Hebei provinces. 

These results underscore the urgent need to develop a comprehensive control program for 

S. alterniflora in coastal areas of China that are important for shorebirds. Experience from 

places where control efforts have been undertaken indicates that early control of S. 

alterniflora before it becomes densely established is necessary to avoid costly and 

protracted control programs that may involve extensive chemical treatment. 

 

5.2 Introduction 

 

Invasive plants are present globally in most ecosystems and threaten biodiversity and 

ecosystem function (Wardle et al., 2011; Barney et al., 2015). Plant invasions can modify 

communities and ecosystems significantly (Pyšek et al., 2012), and generally decrease 
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animal abundance, diversity and fitness, including that of birds, demonstrating the 

cascading effects of plant invasion up the food chain (Schirmel et al., 2016).  

 

Spartina alterniflora (smooth cordgrass) is a perennial rhizomatous grass native to the 

Atlantic coast of North America. Over the past two hundred years it and related species 

and hybrids have been introduced both intentionally and accidentally to parts of Europe 

(Cottett et al., 2007; Tang & Kristensen, 2010), the Pacific coast of North America (Civille 

et al., 2005), New Zealand (Hayward et al., 2008), China (An et al., 2007b; Mao et al., 

2019) and Australia (Kriwoken & Hedge, 2000), with broad-scale spread and invasion 

often following local introductions. S. alterniflora is considered an “ecosystem engineer” 

because it can alter key ecosystem processes including nutrient cycling, hydrology, and 

sediment deposition patterns. It grows seaward from the edge of salt marshes and 

facilitates accumulation of sediment, eventually replacing large areas of open tidal flats 

with dense, elevated S. alterniflora marshes (Crooks, 2002; Civille et al., 2005).  

 

Four Spartina taxa were introduced to China but only S. alterniflora has become firmly 

established (An et al., 2007b). Spartina alterniflora was intentionally introduced to the 

coast of Jiangsu province in 1979 to promote erosion control and create “new land” (Qin 

and Zhong, 1992; An et al., 2007b). Thereafter it expanded rapidly, sometimes forming 

dense marshes over 2 m tall, and by 2015 covered approximately 550 km2 mostly in 

Jiangsu, Shanghai, Zhejiang, and Fujian provinces (Liu et al., 2018). Spartina alterniflora 

invasion has been most extensive in Jiangsu province where it covered almost 200 km2 in 

2015 and accounts for > 30% of the total area of S. alterniflora in China (Liu et al., 2018). 

Spartina alterniflora occurs mostly on bare tidal flats, though it has also replaced some 

native salt marshes (Li et al., 2009). 

 

China’s coastal wetlands are critically important for waterbirds, supporting at least 75 

species in internationally important numbers (> 1% of the species’ estimated flyway 

population; Bai et al., 2015). Many shorebirds that occur in China are migratory species 

that move through the East Asian-Australasian Flyway (EAAF) between breeding grounds 

in northern China, Russia and Alaska and non-breeding areas in China and further south 

through Southeast Asia, Australia and New Zealand. The Yellow Sea, which includes a 

large area of the Chinese coast, has undergone extensive loss and degradation of tidal 

flats (Murray et al., 2014, 2015; Melville et al., 2016), which has contributed to population 
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declines in multiple populations of migratory shorebirds (Clemens et al., 2016; Piersma et 

al., 2016; Studds et al., 2017). 

 

Spartina poses a significant risk to shorebirds because it renders tidal flats, shorebirds’ 

primary foraging grounds, effectively unavailable for foraging to the birds by covering them 

with vegetation (Goss-Custard & Moser, 1988; Stralberg et al., 2004). In addition, 

significant changes to macrobenthic communities, the main prey for shorebirds, have been 

documented following Spartina invasion. In the Yangtze Estuary, macrobenthic 

assemblages in S. alterniflora marshes became more similar to that of native marshes 

over time (Wang et al., 2010); in the Wadden Sea, macrobenthic diversity was consistently 

higher in open mudflat areas than Spartina marshes (Tang & Kristensen, 2010); and, in 

Australia macrofaunal assemblages in Spartina marshes showed reduced species 

richness and diversity compared to those in bare mudflats and native saltmarsh not 

invaded by Spartina (Cutajar et al., 2012). All of these results signal a disruption to the 

macrobenthic community of tidal flats following Spartina invasion in regions important for 

shorebirds. Further, in Chongming Dongtan, an important site for shorebirds in Shanghai 

municipality, waterbird (including shorebird) diversity and density are significantly lower in 

habitats invaded by S. alterniflora than on bare tidal flats (Gan et al., 2009).  

 

Spartina can also impact nearshore and supratidal roosting habitat by reducing the space 

available that has the characteristics shorebirds prefer, namely shallow water or bare mud 

with unimpeded sight lines, which enable supplemental foraging opportunities and aid in 

predation avoidance (Prater, 1981; Goss-Custard & Moser, 1988; Melville et al., 2016; 

Jackson et al., 2019). 

 

Substantial loss of intertidal habitat in China has occurred as a result of land reclamation 

for agriculture, aquaculture and industrial uses (Ma et al., 2014; Murray et al., 2014; 

Piersma et al., 2017; Choi et al., 2018; Duan et al., 2019). Reduced sediment discharge to 

coasts, changed hydrological regimes and sea level rise are also thought to have 

contributed to tidal flat loss (Iwamura et al., 2013; Murray et al., 2014). The intersection of 

S. alterniflora invasion into shorebird habitat and tidal flat loss from other processes 

including land reclamation presents a double threat to coastal shorebird habitat with both 

pressures narrowing the extent of tidal flats that are available for foraging and roosting. 

Any further loss or degradation of intertidal shorebird habitat from S. alterniflora 

encroachment or other factors is likely to compound shorebird population declines.  
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The extent to which S. alterniflora is encroaching upon important shorebird habitat 

throughout coastal mainland China is unknown. Here we: i) map the 2015 extent of S. 

alterniflora coverage of coastal sites in mainland China where internationally important 

numbers of shorebirds have been recorded; ii) estimate change in the spatial extent of 

tidal flats between 2000 and 2015 at the same set of sites; and, iii) investigate where these 

two threats to important shorebird habitat intersect. 

 

5.3 Methods 

 

We generated a list of important coastal shorebird sites in mainland China (hereafter 

important shorebird sites) derived from Bai et al. (2015), which documents sites of 

international importance in China for waterbird species (i.e. meeting Ramsar Convention 

listing criterion 6, > 1% of the flyway population recorded at the site) and Conklin et al. 

(2014), which documents sites of international importance in the EAAF for shorebird 

species. We used the historical imagery in Google Earth to manually map the 2015 

coastline relevant to each important shorebird site for the purposes of our analysis. To 

determine the lateral extent of coastline at each site, we referred to either: i) the official site 

boundaries of national nature reserves or ii) survey routes of sites from Bai et al. (2015) 

provided by counters from the China Coastal Waterbird Census; for additional sites from 

Conklin et al. (2014) not included in i) or ii) we mapped ~3 km of coastline on either site of 

the coordinates for the site, a size roughly comparable to the sites from ii). A full list of 

sites included in this study and the corresponding data source used to map each site is in 

Appendix 5.1.  

 

5.3.1 Mapping tidal flat change at important shorebird sites 

 

To measure tidal flat change, we compared the extent of tidal flats at each important 

shorebird site in 2000 and 2015. We first exported a map of tidal flats along the mainland 

China coast in 1999-2001 and a map of tidal flats along the mainland China coast in 2014-

2016 from https://intertidal.app/ (Murray et al., 2019) and imported these two maps into 

QGIS (QGIS, 2019). We then generated an ‘area of interest’ for each site that extended 

from the coastline of the site to the seaward extent of tidal flats parallel to the coastline. 

For each site we clipped the 1999-2001 tidal flat map layer and the 2014-2016 tidal flat 

https://intertidal.app/
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map layer to the area of interest, and then calculated the area of tidal flats in 1999-2001, 

the area of tidal flats in 2014-2016, and the percentage change between the two.  

 

The tidal flat maps produced by Murray et al. (2019) were generated by applying a 

machine learning classification model to every 30-metre pixel of the coastal zone, and 

assigning each pixel as ‘tidal flat’, ‘permanent water’ or ‘other’ (the last of which represents 

terrestrial environments and vegetated intertidal systems including vegetated marshes and 

mangroves). Since S. alterniflora vegetates tidal flats gradually and becomes denser over 

time, it is likely that pixels of tidal flats infested with S. alterniflora would be classified into 

some combination of ‘tidal flat’ and ‘other’. Further, owing to extensive changes in the 

coastline over the study period, often resulting from land reclamation activities, the 2000 

coastline of a site sometimes differed from the 2015 coastline, so we manually mapped the 

coastline for each of the two time periods (2000 and 2015) for the purposes of calculating 

the area of tidal flats at the site in each year. This step helps to ensure that supratidal 

areas such as aquaculture ponds that may experience wetting and drying similar to tidal 

areas are not unintentionally represented in our map layer as tidal flats. Therefore, it is 

likely that tidal flat change in our analysis was identified primarily from some combination 

of land reclamation that resulted in a shift of the coastline (which we mapped manually), 

changes in sediment supply or other hydrological processes that affected the area of tidal 

flats present seaward of the coastline (reflected in the maps from Murray et al., 2019), and 

expansion or contraction of S. alterniflora marshes or other vegetated habitats in the 

intertidal zone (reflected in the maps from Murray et al., 2019).  

 

For an example of how tidal flat change was mapped for i) nature reserves, ii) sites derived 

from the China Coastal Water Bird Census survey routes, and iii) sites identified from 

coordinates in Conklin et al. (2014), see Appendix 5.2.  

 

5.3.2 Mapping S. alterniflora coverage of important shorebird sites 

 

To measure S. alterniflora coverage of each site, we used a map of S. alterniflora extent 

along the mainland China coast in 2015 developed from an analysis of Landsat-8 images 

acquired between 2014-2016 by Liu et al. (2018). This map was verified through field 

surveys and the performed classification from this analysis had an overall accuracy of 

96%, a kappa coefficient of 0.86, and producer and user accuracies greater than 0.85 (Liu 

et al., 2018). 
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The area of interest relevant to measuring S. alterniflora coverage at important shorebird 

sites differs somewhat from the area of interest generated above for measuring tidal flat 

change because S. alterniflora also impacts supratidal habitat inland from the seawall 

(which is not included in the area of interest for mapping tidal flat change) and tidal flats 

may extend much further seaward than the plausible extent to which S. alterniflora could 

spread seaward. Therefore, to reflect the impacts of S. alterniflora on both intertidal 

feeding habitat and supratidal roosting habitat and the plausible maximum seaward extent 

of S. alterniflora coverage, we generated an area of interest that extended 2 km inland 

(about the maximum distance that most shorebirds move from coastal feeding sites to 

supratidal roost sites; Choi et al., 2019; Jackson et al., 2019) to 5 km seaward (about the 

maximum distance that S. alterniflora occurred seaward from the coast in the maps from 

Liu et al., 2018) of the mapped 2015 coastline of each important shorebird site. We then 

clipped the 2015 S. alterniflora map to the area of interest for each site and calculated the 

area (km2) of each site covered by S. alterniflora. We compared this to the total area of the 

site to calculate the percent coverage of each site. For an example of how S. alterniflora 

coverage was mapped for i) nature reserves, ii) sites derived from the China Coastal 

Water Bird Census survey routes, and iii) sites identified from coordinates in Conklin et al. 

(2014), see Appendix 5.2.  

 

For sites identified as having no S. alterniflora coverage, we estimated the shortest 

distance between the nature reserve boundary, China Coastal Waterbird Census survey 

route or coordinates of the site and the closest occurrence of S. alterniflora. 

 

Thus, our final dataset comprised: i) a list of internationally important shorebird sites; ii) an 

estimate of tidal flat change between 2000 and 2015 at each site; and, iii) the extent to 

which S. alterniflora covered each site in 2015 or the distance from the site to the nearest 

occurrence if there was no coverage in 2015. 

 

5.4 Results 

 

We identified and mapped a total of 52 important shorebird sites, of which 11 are national 

nature reserves (Appendix 5.1).  
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Across all sites, the total area of tidal flats decreased by 15% from 3,890 km2 in 2000 to 

3,293 km2 in 2015. Tidal flats decreased between 2000 and 2015 at 39 sites (75%) and 

increased at 13 sites (25%; Figure 5-1A, 5-2; Appendix 5.1).   

 

Across all sites the total area of overlap between S. alterniflora and important shorebird 

sites was 215 km2, about 2% of the total area of interest for all sites combined. There was 

some S. alterniflora coverage at 28 sites (54%), and coverage exceeded 5% of the total 

site area at six sites (Figure 5-1B, 5-2; Appendix 5.1). Spartina alterniflora occurred < 20 

km away from an additional 8 sites (Figure 5-1C; Appendix 5.1).  

 

Of the sites 28 sites where S. alterniflora covered some part of the site, 22 sites (79%) 

also showed a decrease in tidal flat extent between 2000 and 2015, while 17 of the 24 

sites (71%) without S. alterniflora overlap showed a decrease in tidal flat extent between 

2000 and 2015 (Figure 5-2).  

 

Of the six sites with > 5% S. alterniflora coverage, four sites also showed a decrease in 

tidal flat extent between 2000 and 2015, including Sanmen Wan (Zhejiang province, 16% 

S. alterniflora coverage, -39% tidal flat extent), Nantong Coast (Jiangsu province, 10% S. 

alterniflora coverage, -50% tidal flat extent), Quanzhou Bay (Fujian province, 7% S. 

alterniflora coverage, -15% tidal flat extent) and Yancheng Nature Reserve (Jiangsu 

province, 6.2% S. alterniflora coverage, -34% tidal flat extent; Figure 5-2).  
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Figure 5-1. Map of sites where internationally important numbers of shorebirds have 
been recorded, showing (A) change in tidal flats between 2000 and 2015, (B) extent 
of S. alterniflora coverage of the site (sites with no coverage shown in grey) and (C) 
distance to nearest S. alterniflora in cases where S. alterniflora does not occur in 
the site (sites with S. alterniflora coverage shown in grey). 
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Figure 5-2. Percentage tidal flat change between 2000 and 2015 and extent of S. 
alterniflora coverage in 2015 for 52 important coastal shorebird sites in mainland 
China, each represented by a dot. Vertical line separates those sites where tidal flat 
extent (2000-2015) decreased from those sites where tidal flat extent (2000-2015) 
increased. Horizontal line separates those sites where S. alterniflora coverage was ≥ 
5% from those sites where coverage was ≤ 5%. Sites with high S. alterniflora 
coverage (≥ 5%) where tidal flats decreased are named. 
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5.5 Discussion 
 

5.5.1 Threats to shorebird habitat from S. alterniflora and tidal flat loss 

 

This analysis clearly demonstrates a pervasive threat from S. alterniflora to important 

shorebird habitat throughout much of the mainland China coast that is often compounded 

by loss of tidal flats. In 2015, S. alterniflora occurred in more than half of the important 

shorebird sites that we studied and occurred near (< 20 km away from) several more, and 

most of these sites also experienced tidal flat loss (Figure 5-1A-C; Appendix 5-1). 

 

Loss of tidal flats between 2000 and 2015 was most severe in Zhejiang, Shanghai, Tianjin, 

Hebei, and Liaoning provinces (Figure 5-1A). While the tidal flats in Jiangsu province did 

not show high decline rates in our analysis, these tidal flats are some of the widest in the 

world and form an extremely dynamic system (Wang et al., 2002); in several cases in our 

analysis loss of tidal flats from reclamation between 2000 and 2015 at sites in Jiangsu 

province was offset or partly offset by growth in tidal flats further seaward (see Appendix 

5.2-2A for an example from the ‘Rudong coast’ site). This may underestimate the threat to 

shorebird habitat from tidal flat loss because some shorebirds feed more intensively in the 

upper tidal flat zone (i.e. closer to the coast; Piersma et al., 2017), and shorebirds also 

roost on areas just seaward of the seawall that do not get submerged by seawater at high 

tide (Goss-Custard & Moser, 1988; Choi et al., 2014), making loss of the upper tidal flats a 

threat to shorebirds likely not mitigated by tidal flat growth further seaward. 

 

Overlap between S. alterniflora and important shorebird habitat was most widespread in 

Jiangsu, Shanghai and Zhejiang provinces, with all of the 28 sites where S. alterniflora 

occurred except one located in these provinces (Figure 5-1B, 5-1C).  

 

Historically, loss of tidal flats from reclamation has been considered one of the most 

pernicious threats to intertidal shorebird habitat in China (Ma et al., 2014; Murray et al., 

2014; Melville et al., 2016; Piersma et al., 2017; Choi et al., 2018). A recent announcement 

from the Chinese government indicated that business‐related land claim is to cease and 

decisions on future land reclamation activities should be made only by the central 

government (Melville, 2018; Stokstad, 2018). In addition, three intertidal sites (which 

encompass the Dongtai and Yancheng Nature Reserve sites from this study) were 

inscribed onto the World Heritage list in 2019 and another ~14 sites are to be included 
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within a second phase of this serial nomination to be considered for World Heritage Listing 

within the next three years, which should afford protection from destructive and extractive 

activities. Preventing further loss of tidal flats through protection and reduced land 

reclamation activities will hopefully slow the rapid decline in tidal flats that China has 

experienced over the last 50 years (Murray et al., 2014), but this ecosystem is already 

classified as Endangered using IUCN Redlist of Ecosystems criteria (Murray et al., 2015), 

and land reclamation is not the only cause of reduced tidal flat extent; lack of sediment 

delivery to coasts by rivers, changed hydrology and sea level rise all affect the size of tidal 

flats (Murray et al., 2014) and their quality is impacted by overfishing, pollution, run-off and 

algal blooms (Murray et al., 2015). Moreover, historical tidal flat loss has already had very 

adverse effects on shorebird populations (Clemens et al., 2016; Piersma et al., 2016; 

Studds et al., 2017). This makes maintaining and where possible improving the condition 

of remaining tidal flats of critical importance to shorebird population recovery. In turn, this 

makes reducing the overlap between S. alterniflora and shorebird sites and ensuring that 

S. alterniflora does not encroach on additional important shorebird sites a conservation 

priority for the EAAF’s shorebirds. 

 

5.5.2 Managing Spartina 

 

Like reclamation, and unlike other threats including sea level rise, reduced sediment flow 

or changed hydrology, S. alterniflora is a threat to tidal flats that can be managed directly 

through various forms of control. In the western United States, a combination of mowing 

and herbicide application has had the greatest efficacy in reducing densely colonised S. 

alterniflora marshes but this method is expensive (Hedge et al., 2003), and eradication has 

proved difficult to achieve even with a multi-decadal control effort (Patten et al., 2017). In 

the South Island of New Zealand, Spartina extent has been greatly reduced by ground-

based and aerial application of herbicides, but this effort has been ongoing since the 

1970s, and while eradication now seems potentially feasible it has not yet been fully 

achieved (Brown & Raal, 2013). These experiences demonstrate the urgency of 

eradicating S. alterniflora before it becomes well established.  

 

In North America, chemical control has been implemented with several different chemicals 

including Glufosinate, Glyphosate, and Imazethapyr (Knott et al., 2013; Patten et al., 

2017), while in the South Island of New Zealand, Haloxfop has been found to be more 

effective than Glyphosate (which was used in earlier control efforts) and has the added 



85 
 

benefit of being monocot-specific, allowing for large areas of Spartina to be destroyed 

without putting native plant communities at risk (Brown & Raal, 2013). 

 

Evans (1986) studied the response of shorebirds to chemical Spartina control in the United 

Kingdom and found that they foraged more on recently-cleared areas than on areas 

cleared 3-4 years before, and significantly more than on untreated Spartina marshes. In 

the western United States where S. alterniflora encroached on important shorebird habitat, 

became established, formed dense marshes, and was subsequently treated through 

chemical control, site usage by shorebirds following Spartina control increased significantly 

within ten years (Patten et al., 2017). These results demonstrate that tidal flats can remain 

viable as shorebird habitat following Spartina control. 

 

Various forms of S. alterniflora control have been implemented in China with mixed results 

(e.g. An et al., 2007b; Li & Zhang, 2008). For example, in Chongming Dongtan, multiple 

forms of physical control and some biological control via substitution with Phragmites 

australis were implemented in 2005-2006 with limited success after the first growing 

season (Li & Zhang, 2008). Following this, in 2013 a very large eradication and restoration 

project was undertaken at Chongming Dongtan Nature Reserve involving construction of a 

new seawall to encircle S. alterniflora, the stems of which were then cut and water levels 

manipulated to kill the rhizomes, with more success. Clearly however, such an approach is 

unlikely to be feasible on a large scale across multiple sites.  

 

Given the widespread threat that S. alterniflora poses to remaining shorebird habitat, 

controlling S. alterniflora at important shorebird sites where it already occurs and 

preventing encroachment into additional sites where it occurs nearby should be 

undertaken as a priority for shorebird conservation. At the site-level, S. alterniflora 

management should carefully consider local waterbird roosting and foraging dynamics at a 

finer scale than our relatively coarse large-scale assessment, but a national-level strategy 

is needed given the scope of the problem across a huge area of coastline and multiple 

provinces (Figure 5-1B, C). 

 

5.5.3 Limitations 

 

Our list of important shorebird sites is incomplete and may be somewhat outdated. For 

example, Chan et al. (2019) tracked 32 Great Knots and found that 63% of 92 stopover 
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sites were not known as important shorebird sites, including several in southern China. On 

the other hand, Ma et al. (2019) found that more than half of 38 Important Bird Areas 

studied had undergone significant modification from human land use, primarily land 

reclamation, suggesting that some of the sites in our dataset (some of which, particularly 

from the list in Conklin et al. (2014), were identified from fairly old counts) may already be 

unsuitable for shorebirds due to habitat modification. Further work is needed to accurately 

map the current full network of important shorebird sites along the coast of China and 

assess relative threats accordingly. 

 

5.5.4 Conclusion 

 

Habitat loss, particularly of tidal flats, has been the major factor behind widespread 

population declines in the EAAF’s migratory shorebirds, making the maintenance and 

improvement of remaining intertidal habitat a top priority for shorebird conservation. 

Controlling S. alterniflora at important shorebird sites where it already occurs and 

preventing encroachment into additional sites is required to safeguard habitat that 

shorebirds rely on for survival. A national action plan in China to control S. alterniflora that 

considers the combined pressures on shorebird habitat from S. alterniflora and tidal flat 

loss is urgently needed. Failing to reduce the current extent of overlap between S. 

alterniflora and important shorebird habitat and/or prevent encroachment into additional 

sites will likely contribute to further population declines. 
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Chapter 6 General Discussion 

 

6.1 Overview 

 

The East Asian-Australasian Flyway supports a higher proportion of waterbirds than any 

other flyway, but the scale and intensity of development along its coasts is unmatched in 

the world. This spatial overlap between intensive human activity and shorebird habitat has 

resulted in severe shorebird population declines across multiple species driven by loss and 

degradation of coastal habitats, and has also resulted in shorebirds adopting artificial 

wetlands as habitat.  

 

Previous studies identified the need to understand the extent of artificial habitat use by the 

EAAF’s shorebirds and the relationship between artificial and natural habitats. For 

example, Choi et al. (2014) identified an urgent need to better understand the relationship 

between shorebirds and aquaculture in China; Ma et al. (2004) called for a careful 

exploration of the relative value of natural and artificial wetlands to different species; 

Clemens (2016) called for identification of places where artificial wetland management 

could be applied to mitigate habitat loss; and, Australia’s Migratory Shorebirds Action 

Conservation Plan recognises the need to develop best practice guidelines for the 

creation, management and rehabilitation of artificial habitats for shorebirds (Weller & Lee, 

2017). 

 

I therefore set out to document the extent of shorebirds’ use of artificial habitats in the 

EAAF, determine how shorebirds use artificial habitats in relation to natural habitats, and 

consider threats to shorebird habitat in heavily developed coastal areas. The results of this 

exploration shed new light on the relationship between shorebirds, their habitats and 

human activity along the human-dominated coasts of the EAAF. They provide evidence for 

an urgent need for improved coastal wetland management to avert further population 

declines in the region’s imperilled shorebird taxa.  

 

In this general discussion I highlight the key scientific advances made in this thesis, 

contextualise these results in relation to other recent literature, reflect on limitations 

experienced and future research needed to build on the results of this PhD, outline key 
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conclusions, and consider how these findings relate to international conservation 

frameworks. 

 

6.2 Scientific advances  

 

Key Finding 1: Artificial habitat use by shorebirds in the EAAF is widespread in 

coastal non-breeding areas and sometimes obligatory. Saltworks are particularly 

important. 

 

Chapter 2 addressed the question of how extensively shorebirds use artificial habitats at a 

broad scale by compiling the best available monitoring data from non-breeding areas of 

the EAAF to produce the first list of coastal artificial sites at which shorebirds occur. It 

showed that shorebirds have occurred on more than 170 artificial sites of eight different 

land uses throughout the flyway. Across these sites, 36 species (48% of those recorded in 

this study) including eleven threatened species (55% of threatened species recorded in 

this study) occurred in internationally important numbers (> 1% of the estimated flyway 

population) at least once.  

 

These results demonstrate the pervasive use of multiple types of artificial habitats by the 

EAAF’s shorebirds. Nonetheless, our study was limited to formal monitoring programs and 

other studies discoverable through the grey and published English literature. There are 

anecdotal reports to suggest that artificial site use on aquaculture and agriculture in East 

and Southeast Asia is under-documented, and we undoubtedly missed reports of artificial 

habitat use in the non-English literature. Further, due to their association with human 

production activities, access to privately owned artificial sites is likely to be limited leading 

to further under-documentation of its use. The review presented in Chapter 2 should 

therefore be considered a minimum estimate of artificial habitat use that can be expanded 

upon in future.  

 

Chapter 3 addressed the question of artificial habitat use in more detail through a field 

study of multiple stopover sites in Jiangsu province, China. It showed that at least 35,000 

birds of 37 species used artificial habitats during southward migration in the region. It also 

showed that shorebirds at four of five sites were entirely limited to artificial supratidal 

habitats at high tide for 11–25 days per month because natural intertidal flats were 

completely covered by seawater and there were no roosting sites on natural habitats 
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available to the birds. Given the similarity in coastal development history in this region to 

others in China and elsewhere in East Asia, this situation is likely to occur at many non-

breeding sites and indeed has been recently documented in a number of other localities 

(e.g. He et al., 2016; Bai et al., 2018). 

 

Chapter 4 took advantage of the availability of long-term shorebird monitoring data in 

Australia to compare the use of artificial and natural habitats by shorebirds at high tide in 

five coastal regions with significant urban development. It showed that in four of those five 

regions more than a third of shorebirds at regularly counted sites used artificial habitats at 

high tide throughout the non-breeding season over time series ranging from 10–31 years. 

This shows that artificial habitat use is pervasive even in a country where coastal 

development has been relatively less extensive than elsewhere in the flyway, and forms a 

regular habitat component in the region where many shorebirds spend most of the non-

breeding season. As a complement to this study, it would be useful to investigate the 

proportional use of natural versus artificial habitats in other important non-breeding regions 

of the flyway. 

 

Both Chapter 2 and Chapter 4 identified that salt production sites are an important but 

vulnerable artificial habitat for shorebirds in the EAAF. Chapter 2 showed that at the flyway 

scale saltworks supported the largest shorebird aggregations of any artificial habitat, and 

had a high proportion of counts (28%) with internationally important concentrations of at 

least one species. However, there was also evidence that they face widespread risk of 

conversion to other land uses. Chapter 4 showed that saltworks provide high tide habitat 

for a sizeable proportion of shorebirds in both Gulf St Vincent and Port Phillip Bay in 

Australia, yet production has ceased at multiple sites and future management 

arrangements for sites in both regions is uncertain.  

 

The importance and vulnerability of saltworks has been reinforced by other recent studies. 

Lei et al. (2018) showed that the Nanpu Saltpan complex in Hebei province supported 

peak numbers of > 95,000 waterbirds and served a joint ecological function with adjacent 

tidal flats to form a key staging area for waterbirds in the EAAF, yet neither habitat 

currently has any formal protection. About 20 km2 of saltpans within the Nanpu complex 

have been converted to industrial land since 2010, and at least 100 km2 of other saltworks 

in the province also previously important for shorebirds lost since the early 2000s (Lei et 

al., 2018). Green et al. (2015) also noted that salt production ponds in the Inner Gulf of 
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Thailand that support high shorebird numbers are under serious pressure from urban 

expansion.  

 

Overall these findings re-characterise the relationship between shorebirds and human 

activity in the EAAF by revealing that they overlap significantly in heavily developed areas. 

They point to the need to find habitable space for shorebirds within working coastal 

wetlands and other human-dominated areas that may not fit the conventional notion of 

“habitat”. It was beyond the scope of this PhD to undertake a formal assessment of the 

land use conversion pressure on the artificial sites in the EAAF identified as shorebird 

habitat, but this could usefully inform conservation prioritisation. 

 

Key Finding 2: Shorebirds prefer certain characteristics in artificial habitats. 

 

To inform management, the field study presented in Chapter 3 investigated how 

biophysical features of artificial supratidal habitats influenced occupancy by shorebirds. It 

showed that shorebirds were more abundant on larger ponds with less water cover, less 

vegetation, at least one unvegetated bund (i.e. bank forming the edge of the pond), and 

fewer built structures nearby. These results are consistent with other literature, and relate 

primarily to predation avoidance, e.g. an unobstructed view and limited opportunities for 

perching by aerial predators. 

 

However, only the total shorebird abundance could be modelled in our study because 

there were insufficient data to model individual species or size classes. Thus, the results 

are primarily driven by the more common species, most of which are not of immediate 

significant conservation concern. Surveying target species (e.g. rare or threatened 

species) more extensively and modelling their occurrence against biophysical variables 

could clarify whether particular species of interest fit the general pattern described above.  

 

Further, while water cover is clearly an important predictor of shorebird occupancy of 

supratidal habitat, and water cover significantly below 100% likely preferred across most 

shorebird species, optimum water depth differs by species (Rogers et al., 2015). Future 

research could usefully explore whether foraging activity at supratidal sites in Jiangsu is 

negatively related to body size as has been documented elsewhere (e.g. Nol et al., 2014) 

and which was suggested by the results of Chapter 2 at the flyway scale. If smaller 

species are indeed more likely than larger ones to forage during the high tide period when 
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artificial supratidal habitats are being occupied, managers should potentially regulate water 

levels to optimum depth for shorter‐legged species. 

 

None of the chapters in this thesis analysed shorebird breeding in artificial habitats, which 

has been documented in the EAAF and elsewhere (e.g. Pierluissi, 2010; Que et al., 2014; 

Rocha et al., 2016), and may necessitate management action additional to or distinct from 

the roosting requirements detailed above. There may also be a greater risk that artificial 

habitats function as “ecological traps” for breeding shorebirds because they share 

characteristics with high quality breeding habitat but are in fact highly susceptible to 

breeding failure resulting from human activities (e.g. Que et al., 2014; Atuo et al., 2018). A 

systematic review of shorebird breeding on artificial habitats in the flyway would be a 

useful complement to this thesis. 

 

Key Finding 3: Occurrence on artificial habitats varies among shorebird species. 

 

More than 70 shorebird species, some migratory and some non-migratory, occur regularly 

in the EAAF. Each species has its own distinct ecology, with some species’ habitat 

preferences more restricted than others (Piersma, 2003).  

 

Chapter 2 explored the occurrence frequency of shorebirds in artificial habitats across the 

EAAF and revealed it to be uneven across species at the flyway level. Amongst the 74 

non-vagrant species recorded in artificial habitats, 38 had a relative occurrence frequency 

of at least 0.4 including seven generalist/inland specialist species with a relative 

occurrence frequency > 0.75, while 11 species had a relative occurrence frequency < 0.1. 

Larger-bodied, migratory and coastal specialist species were significantly less likely to 

occur on artificial habitats, suggesting they may be less flexible in their habitat use and 

thus less able to use non-tidal habitats than smaller-bodied, non-migratory and 

generalist/inland specialists.  

 

Chapter 4 showed that the proportion of shorebirds of different species that used artificial 

habitats also differed across five regions of Australia. Both the average proportion of birds 

that used artificial habitats, and the temporal trend in this proportion, varied significantly 

among species and regions. Consistent with the flyway-scale results from Chapter 2, 

migratory and coastal habitat specialist species were associated with a lower proportion of 

birds using artificial habitats. 
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Chapter 3 showed that artificial habitat use was more consistent across species in the 

Jiangsu study region. This is likely the case because extensive land reclamation has 

occurred in the region and the shoreline is formed by a concrete seawall, so there is often 

no natural habitat available at high tide, forcing all shorebirds to roost in artificial habitats. 

This finding highlights that artificial habitats are particularly important for shorebirds in 

heavily developed coastal regions. 

 

Together these results show that it is vital for local managers to study artificial habitat use 

at a species level, and to document clear species-specific goals for their management.  

 

Key Finding 4: In heavily developed coastal regions of the EAAF, artificial and 

natural wetlands form an interconnected landscape for shorebirds comprising 

foraging and roosting habitat. 

 

It is clear from previous research as well as the results of this thesis that natural wetlands 

often provide the primary foraging habitat for shorebirds. Chapter 2 showed that many 

shorebirds that occur in artificial habitats do not forage there. Further, foraging frequency 

declined significantly with body size and coastal specialist species were significantly less 

likely to forage in artificial habitats than generalist/inland specialist species. Nonetheless, 

managers from Japan reported the full shorebird assemblage foraging at multiple 

agricultural sites (comprising rice and lotus paddies), and several studies of shorebirds on 

salt production ponds have reported substantive foraging activity across the tide cycle (e.g. 

Estrella et al., 2015; Lei et al., 2018; Green et al., 2015). However, conditions that produce 

foraging opportunities are not always available on these sites due to variation in site 

management practices, particularly of water levels. This demonstrates that foraging 

opportunities vary across land uses and site conditions, as well as across species. 

 

Chapter 3 showed that in the Jiangsu study region, artificial habitats were used primarily 

as roosting sites with few birds present on artificial habitats during low tide and only a 

small percentage of birds on artificial habitats observed foraging at any tide height. 

Nonetheless, a large proportion of some species were observed foraging at some sites, 

underscoring interspecies differences.  
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On the whole, this calls for a reconceptualization of the coastal non-breeding landscape of 

the EAAF for shorebirds as an interconnected mix of natural and artificial habitats. As 

such, they require joint management to ensure that there are adequate foraging and 

roosting resources available throughout the geographic range of all coastal shorebird 

species. This entails preserving the extent and quality of intertidal foraging habitat 

(explored further below), and ensuring there is adequate supratidal roosting habitat with 

characteristics preferred shorebirds (as detailed above). 

 

Key Finding 5: The invasive plant Spartina alterniflora occurs in the majority of 

important coastal shorebird sites in mainland China.  

 

As documented above, both intertidal and supratidal wetlands are critical components of 

shorebird habitat in coastal regions. Spartina alterniflora is a known threat to both types of 

habitat, and was highly visible in the Chapter 3 study area in Jiangsu province. Results 

from Chapter 5 showed that S. alterniflora is a widespread threat to important shorebird 

habitat in coastal mainland China, including in Jiangsu province, by revealing that it occurs 

at more than half of the sites where internationally important numbers of shorebirds have 

been recorded.  

 

The intersection of S. alterniflora and intertidal flat loss caused by other processes 

including land reclamation presents a double threat to coastal shorebirds’ habitat with both 

pressures narrowing the extent of intertidal flats that are available for foraging and 

roosting. Of the sites where S. alterniflora occurred, 79% also experienced a decrease in 

intertidal extent between 2000 and 2015. Combined pressures from S. alterniflora and loss 

of intertidal habitat were most severe in Jiangsu, Shanghai, Fujian, Zhejiang, Tianjin and 

Hebei provinces. These results underscore the urgent need to develop a comprehensive 

control program for S. alterniflora in coastal areas of China that are important for 

shorebirds. 

 

6.3 General limitations  

 

6.3.1 Socio-economic context 

 

For applied conservation research to be effective, it needs to document not only the status 

and condition of species and ecosystems and the full suite of threats they face, but also to 
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present solutions to conservation problems in a systematic way. Additional to the chapter-

specific limitations discussed in the previous section, a more general limitation of the 

thesis is the lack of explicit links to socio-economic factors relevant to its ecological 

discoveries.  

 

Chapter 2 identified eight land uses that provide artificial shorebird habitat across the 

EAAF. It includes some qualitative discussion about land use change pressure that could 

affect the suitability of these areas as shorebird habitat at a site level. It does not, however, 

include a systematic analysis of regional or country-specific land use patterns or drivers of 

land use change. Recent land use change analyses from coastal China (e.g. Xu et al., 

2016; Cai et al., 2017) provide useful information about land uses such as salt production 

and aquaculture in important shorebird regions. However, a systematic flyway-scale 

analysis of land use change as it relates specifically to the availability of shorebird habitat 

would be very beneficial to identifying those habitats that may be most under threat.  

 

Further, Chapter 2 identified salt production ponds as the land use that supported the 

highest shorebird abundance and highest land use conversion risk amongst artificial 

habitats. Chapter 2 and Chapter 4 pointed to examples of where salt production has 

ceased with detrimental consequences for shorebird habitat. An assessment of the current 

status and long-term viability of this industry at a regional scale and in relevant countries, 

particularly China, Australia and Thailand, would be useful, as would a formal analysis of 

the cost of maintaining this habitat for shorebirds at important sites should the industry fail.  

 

Chapter 3 documented the importance of artificial supratidal habitats for shorebirds at 

multiple roost sites in the Rudong region of Jiangsu province, China, an area of 

international importance for shorebirds. Here the need for artificial habitat management is 

particularly acute because there is no natural habitat available during many high tides, yet 

at the time of the study no supratidal habitat in the study region was being managed for 

shorebirds. The study suggested the potential for artificial habitat management in 

partnership with local land managers but did not research this aspect directly. Other 

studies provide insight into how this could be undertaken. Green et al. (2015) completed 

socio-economic surveys of salt pans and aquaculture pond operators in the Inner Gulf of 

Thailand where these land uses provided habitat for large shorebird aggregations. These 

included quantitative measures such as revenue and cost estimates and a qualitative 

assessment of the motivation of land owners to switch land uses. They found that 
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investment risk and per capita profits were the key factors that determined whether or not 

salt pan farmers decided to switch to aquaculture farming (which provides less optimal 

habitat for shorebirds). Cai et al. (2017) studied land use change in coastal areas of 

Jiangsu province, China and contextualised results with a household survey aimed at 

determining attitudes that influenced land use decisions. They found that coastal farms 

were larger and generated higher income levels than inland farms, providing insight into 

the attractiveness of coastal reclamation practices.   

 

These types of studies, which directly link ecological and conservation research results to 

socio-economic realities, are needed to guide implementation pathways for conservation 

recommendations such as the ones described in this thesis.  

 

6.3.2 Additional threats 

 

This thesis focussed primarily on two key habitat-related threats to coastal shorebirds, 

namely a lack of suitable supratidal roosting habitat and the impacts of S. alterniflora on 

intertidal and supratidal shorebird habitat in human-dominated settings. It is nonetheless 

important to recognise that additional threats to shorebirds operate in coastal areas of the 

EAAF. 

 

Melville et al. (2016) provides a comprehensive overview of threats to shorebirds and 

shorebird habitat in the Yellow Sea region. Recent discoveries in the literature shed 

additional light on two key threats to shorebirds in the EAAF.  

 

Targeted hunting and accidental bycatch in nearshore fishing nets is a largely unquantified 

threat to shorebirds in non-breeding regions of the EAAF. The first spatially explicit 

synthesis of the evidence for shorebird hunting in the EAAF was recently undertaken, and 

shows that hunting has historically been widespread in the flyway, that hunting continues 

in some regions, and that major knowledge gaps about hunting persist in other regions (E 

Gallo-Cajiao, in prep). This discovery is an important reminder that habitat-related issues 

are not the only active threats to the EAAF’s shorebirds.  

 

The quantity and composition of benthic fauna is an essential aspect of intertidal foraging 

habitat quality for shorebirds that can be impacted by S. alterniflora invasion, but also by 

other influences. Zhang et al. (2019) demonstrated that at Yalu Jiang, an important 
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stopover site in northern China currently free from S. alterniflora, the density of intertidal 

mollusks, a key prey species for Great Knot and other shorebirds, declined 15-fold 

between 2011 and 2017, prompting major changes in digestive morphology and strategy 

by Great Knots. Additional to site-level threats, extensive sampling of bethic fauna along 

the Chinese coast shows that a few commercial species dominate the benthic biomass 

along the entire coast, implying that shorebirds feed extensively on commercial 

aquaculture species, which in turn makes them potentially vulnerable to any changes in 

aquacultural practices (H Peng, unpublished data).  

 

Shorebird conservation frameworks will need to consider the full suite of threats to be 

effective.  

 

6.4 Conclusions and Future Research  

 

6.4.1 Conclusions 

 

The results in this thesis suggest that both natural and artificial habitats in heavily 

developed regions require additional protection and management.  

 

Conclusion 1: Securing high quality high tide roosting habitat for shorebirds in 

highly developed non-breeding areas would complement conservation of remaining 

natural habitats and reduce some pressure on shorebird populations in these 

regions. As a result of coastal development history, high tide roosts will largely 

comprise artificial or modified wetland habitats, and active management is required 

to create/maintain preferred habitat features in this context. 

 

Migration makes enormous physical demands on shorebirds. High tide roosting at 

stopover sites is a critical period when shorebirds can rest, digest and replenish fat stores 

during migration. A lack of adequate roosting habitat can result in increased energy 

expenditure that can ultimately affect their survival (Rogers, 2003; Lilleyman et al., 2016b; 

Bai et al., 2018).   

 

Artificial habitats in the field study in Jiangsu province (Chapter 3) were mostly used as 

high tide roost sites when intertidal flats were covered by seawater. Consistent with other 

literature (e.g. He et al., 2016; Rogers et al., 2015), this study showed that shorebirds 
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prefer certain physical characteristics on artificial roost sites. These conditions were 

available infrequently, and were particularly rare in aquaculture complexes, where water 

levels were mostly too high to provide optimum roosting conditions. The best roost sites 

were on undeveloped reclamation ponds which are unlikely to remain in the landscape 

indefinitely. Indeed a follow-up visit to the study area in 2019 revealed that the largest 

roost site (average count ~ 17,500 shorebirds) no longer has the same physical 

characteristics as it did during our study, and has been abandoned by shorebirds. There is 

an urgent need to identify a management strategy in the study region that will provide and 

maintain a network of ponds situated along the coastal seawall near large intertidal 

shorebird aggregations: (a) as close as possible to intertidal foraging sites (and no more 

than 2 km away); (b) with incomplete water cover (which would result in at least some 

areas of bare mud and shallow water of different depths across the pond); and, (c) with 

minimal vegetation. Doing so would provide significant benefits to multiple species, 

particularly during peak migration months when energy budgets are most critical. Given 

the similarity in coastal development history in this region to others in China and elsewhere 

in East Asia, shorebirds are almost undoubtedly facing a shortage of optimal roosting 

habitat in many non-breeding areas of the EAAF. 

 

Conclusion 2: Better integration of artificial habitats into conservation and 

management frameworks, both inside and outside protected areas, would reflect a 

more holistic approach to shorebird habitat protection in the EAAF. 

 

As many artificial habitats are working sites not specifically managed for waterbirds that 

often create habitat ‘by accident’, they could be highly susceptible to land use changes 

that result in their loss or degradation as shorebird habitat. Chapter 2, which reviewed use 

of artificial habitats at a flyway scale, and Chapter 4, which explored the proportion of birds 

using artificial habitats at high tide in multiple regions of Australia, both contended that 

artificial habitats are inadequately integrated into conservation and management 

frameworks.  

 

At the flyway scale, Chapter 2 called for a systematic prioritisation of artificial habitats in 

the flyway based on their importance as roosting and feeding habitat to guide conservation 

action and investment. Chapter 4 noted the uneven management of artificial habitats in 

Australia, particularly at salt production and waste water treatment sites. It called for the 

establishment of clear guidelines to assist site managers to establish goals, implement 
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monitoring regimes, and take adaptive management actions for the benefit of waterbirds. 

Such a framework should build on lessons learned from those artificial sites that have 

been studied and/or managed for shorebirds over a long period, and include clear 

recommendations for management of different species. 

 

These results were reinforced by findings in Choi et al. (2019), who used radio and 

satellite tracking records, published literature, interviews and habitat mapping to show that 

wet artificial supratidal habitats were frequently used by migratory shorebirds (consistent 

with the finding in this PhD), but that coverage of these habitats in coastal protected areas 

in China was low. This result and the results in this PhD underscore the need to consider 

artificial habitats more formally within management frameworks in the EAAF, and to 

consider how habitat management is possible outside of formal protected areas. 

 

Indeed, much of the artificial habitat used by shorebirds throughout the world is not 

included within formal protected areas, necessitating either the expansion of protected 

areas to include artificial habitats (whether active or inactive, such as former saltworks), or 

arrangements outside of protected area management. Although not extensively explored, 

there is some emerging literature about how land owners could be incentivised to 

maximise artificial habitat quality for waterbirds. In particular, Reynolds et al. (2017) 

documented a project in California whereby a reverse auction marketplace is used to 

incentivise agricultural land owners to create temporary wetlands for migrating waterbirds 

on their properties during migration. This approach is a cost effective way of meeting the 

habitat needs of migrating birds, and may be particularly applicable to those land use 

types where shorebirds tend to be highly dispersed because these could be particularly 

expensive to manage through traditional conservation arrangements. Chapter 2 of this 

thesis showed that shorebird density was low on agriculture, aquaculture and salt 

production ponds, and Chapter 3 suggested the possibility of co-management 

arrangements with local land managers in the supratidal zone in Jiangsu province, where 

shorebirds are unable to access intertidal flats during high tide. 

 

Conclusion 3: A formal conservation framework for salt production sites could be a 

particularly beneficial form of artificial habitat protection for shorebirds. 

 

Given their particular importance to shorebirds in the EAAF, establishing a formal 

conservation framework for salt production sites could be particularly beneficial and there 
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is precedent for this elsewhere. Recognising threats to traditional saltpans in southern 

Europe and northern Africa, BirdLife partners along the East Atlantic flyway launched a 

“Saltpan Recovery Project” which “[aims] to restore and promote nature and birdfriendly 

management practices in saltpans” (https://www.birdlife.org/worldwide/projects/saltpan-

recovery-project). Similarly, De Medeiros Rocha et al. (2012) outlines how salt production 

sites in Brazil can be managed to support local artisanal fisheries, production of a range of 

commercial products, production of up-market specialty salts, and habitat for migratory 

birds. These frameworks point to the strong potential for achieving habitat conservation 

and improvement at salt production sites through promotion of the overall significance of 

salt production areas for birds and local livelihoods at a large scale, and implementation of 

a long-term management strategy across multiple sites, for example through business 

and/or management plans, communication and awareness-raising activities and 

ecotourism development.  

 

Conclusion 4: Given the occurrence of Spartina alterniflora at more than half of the 

important shorebird sites along the mainland China coast and its close proximity to 

additional sites, developing a national plan for Spartina control in China is needed 

to maintain the quality of coastal shorebird habitat and prevent further habitat-

related population declines. 

 

Given the extensive loss of intertidal habitat in the EAAF over the past several decades 

and its link to shorebird population declines, conserving remaining natural intertidal habitat, 

which provides most foraging resources for shorebirds, is critical. Several recent policy 

developments in China suggest that loss of intertidal flats from reclamation for 

development, one strong historical driver of intertidal habitat loss, will slow. An 

announcement in early 2018 from the Chinese government detailed that business-related 

land claim is to cease and decisions on future land reclamation activities made only by the 

central government (Melville, 2018; Stokstad, 2018). In addition, several intertidal sites 

(including one in the study region from Chapter 3) were inscribed onto the World Heritage 

list in 2019 and there are two additional serial nominations (one in the Republic of Korea 

and one in China) of intertidal sites scheduled to be considered for World Heritage Listing 

within the next three years. 

 

These developments are extremely good news for shorebirds and habitat conservation. 

However, while it is vital to maintain the extent of remaining natural intertidal flats, it is also 

https://www.birdlife.org/worldwide/projects/saltpan-recovery-project
https://www.birdlife.org/worldwide/projects/saltpan-recovery-project
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necessary to maintain their condition. It is clear from Chapter 5 that one serious threat to 

the condition of intertidal flats in China is the invasion of Spartina alterniflora, which now 

occurs at more than half the important shorebird sites in coastal mainland China and < 20 

km from several more. It is an urgent priority for shorebird conservation to address the 

threat of S. alterniflora at important shorebird sites where it already occurs, and to prevent 

infestation of sites where it does not yet occur. Experiences from other countries and some 

parts of China show that S. alterniflora can be controlled and even eradicated through 

chemical control, but that this becomes more difficult and expensive as Spartina marshes 

become more firmly established. This warrants immediate action to prevent S. alterniflora 

from becoming further established in China. 

 

6.4.2 Future research needs 

 

In addition to the socio-economic research discussed in section 6.3.1, there are several 

areas of further ecological research that would usefully build on the results of this PhD 

(Table 6-1). 

 

Chapter 3 explored the relationship between shorebird abundance and biophysical site 

characteristics of artificial habitats in Jiangsu province, China and found that shorebirds 

prefer larger ponds with shallow water, limited vegetation and few built structures around 

the ponds edges. Complementary to these results, Rogers et al. (2015) reviewed available 

literature to develop management guidance to maximise edible benthic fauna for 

shorebirds and control vegetation levels in supratidal ponds. However, these results are 

generally derived from observational studies, and manipulative experiments on artificial 

habitats that systematically document how different shorebirds respond to changed habitat 

conditions could be a useful way to verify expectations about shorebird behaviour and 

preferences. 

 

This thesis documents the widespread use of artificial habitats as roosting sites for 

shorebirds, and generally argues for additional conservation and management measures 

that will ensure the availability of artificial habitats with characteristics that shorebirds 

prefer at high tide. However, it is possible that shorebirds could be exposed to harmful 

pollutants on artificial sites, in particular aquaculture ponds and highly industrial sites such 

as waste ash or dredge spoil ponds. As such, it would be valuable to sample for potentially 

harmful pollutants at artificial sites with large shorebird aggregations to determine if such 
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risks are present and develop mitigation strategies if risks are identified.  However, this 

requires a good understanding of how and which pollutants affect shorebirds, which may 

also currently be lacking. 

 

Some artificial sites, particularly salt production sites, drained aquaculture ponds, some 

agricultural areas, and some wastewater treatment ponds provide significant foraging 

opportunities for shorebirds under the right conditions. In the Jiangsu field study (Chapter 

3), for example, when a complex of aquaculture ponds in Fengli was drained they attracted 

large numbers of Spoon-billed Sandpipers, which were observed foraging in the ponds 

even after the tide receded and other birds returned to intertidal flats. In such cases where 

shorebirds remain in artificial habitats throughout the tidal cycle, it is important to consider 

whether the nutritional quality of prey within artificial habitats is equivalent to that of natural 

habitats. If not, it may be undesirable to attract shorebirds to forage there throughout the 

tide cycle.  

 

More broadly, the long-term goal of shorebird conservation should go beyond extinction 

avoidance and the arrest of population declines and aim to recover species that have 

experienced population declines and maintain viable, healthy populations of the full 

shorebird assemblage. The EAAF has experienced widespread loss of natural wetlands, 

particularly of intertidal flats (Davis & Froend, 1999; Geographical Survey Institute Japan, 

2000; Murray et al., 2014; Moores et al., 2016). It therefore seems plausible that a lack of 

foraging habitat is limiting population recovery for some shorebird species, but there is a 

need to explore this question further and to quantify where historical habitat loss may be 

limiting population recovery. If intertidal habitat extent is limiting population recovery, more 

work is needed on how to restore and even create habitat in heavily developed coastal 

regions. This could include an exploration of the feasibility of re-connecting supratidal and 

intertidal habitats and prioritising where such efforts would provide the most benefit to 

shorebirds.  
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Table 6-1. Future research needs 

Research need Related actions 
Conservation/management 
implications 

 

Refine understanding of 

shorebird responses to 

changed conditions on artificial 

habitats to inform their 

management 

 

Structured experiments 

that manipulate 

environment conditions 

(e.g. water cover and 

depth, vegetation cover, 

salinity, pond size, 

structures in the vicinity) 

and document species-

specific responses 

 

Better integration of 

shorebird-specific and 

species-specific goals and 

practices into artificial 

habitat management, for 

example within 

development offset 

frameworks and in 

government-managed 

areas such as constructed 

roosts or protected areas 

 

Undertake a systematic review 

of the land use pressures on 

artificial habitat sites used by 

shorebirds in the EAAF 

 

Identify sites that face 

imminent threats to their 

suitability as shorebird 

habitat 

 

Prioritise sites with high 

habitat value and high land 

use conversion pressure 

for conservation action 

 

Determine whether shorebirds 

are exposed to detrimental 

levels of harmful pollutants on 

artificial habitats 

 

Soil and water testing on 

artificial sites; additional 

research into the effects of 

pollutants on shorebird 

health may also be 

needed 

 

If any harmfully high 

pollutant levels are 

detected, explore provision 

of habitat at alternative 

sites and deter shorebirds 

from foraging at sites 

where they are exposed to 

harmful pollutants 

 

Determine whether prey 

quality on artificial habitats is 

equivalent to that of natural 

habitats 

 

Benthic sampling and 

nutritional analysis of 

benthic fauna on artificial 

sites that attract large 

foraging aggregations or 

foraging by threatened 

species 

 

If prey availability is high on 

artificial habitats but has 

low nutritional value, it may 

be worth considering 

whether the habitat could 

act as an “ecological sink” 

with potentially detrimental 

effects on shorebirds, and 
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therefore whether 

shorebirds should be 

deterred from foraging at 

the site 

 

Determine the feasibility of 

reconnecting intertidal and 

supratidal wetlands in heavily 

developed areas to improve or 

expand available shorebird 

habitat 

 

Trial reconnection of 

intertidal and supratidal 

wetlands 

 

If successful, determine 

priority areas for 

investment in tidal 

reconnection based on 

conservation needs, 

economic feasibility and 

local habitat considerations 

 

 

6.5 Shorebird habitat and international conservation frameworks 

 

The results of this PhD include immediate recommendations for management that could 

improve habitat outcomes for shorebirds in the EAAF. It is therefore important to consider 

vehicles and frameworks through which these results could be highlighted and 

implementation pathways identified. 

 

6.5.1 Ramsar Convention and proposed global coastal forum 

 

The oldest broad-scale international framework relevant to preservation and management 

of shorebird habitat is the Ramsar Convention, a global intergovernmental environmental 

agreement adopted in 1971 to promote wetland conservation and designate globally 

important wetlands (Ramsar, 2018a). The Ramsar Convention is a site-based framework 

that identifies wetlands of international importance, and a large proportion of Ramsar sites 

have been identified by meeting one or both of two waterbird-specific criteria: i) a wetland 

is internationally important if it regularly supports 20,000 or more waterbirds; or, ii) a 

wetland is internationally important if it supports 1% of the individuals in a population of 

one species or subspecies of waterbird. 

 

Many Ramsar sites include artificial as well as natural habitats. Ramsar Resolution XIII.20 

Promoting the conservation and wise use of intertidal wetlands and ecologically-

associated habitats was recently passed, and highlights both the importance of and threats 
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to natural intertidal wetlands, and the importance of working coastal wetlands to both local 

communities and biodiversity, thus providing a potential mechanism through which joined-

up habitat management could be promoted. 

 

Ramsar Resolution XIII.20 also requests that the Ramsar Secretariat consider the 

establishment of a “multi-stakeholder global coastal forum”, which was proposed in the 

Declaration of the Global Flyway Summit (BirdLife International, 2018). This international 

forum would focus on the protection, management and restoration of coastal ecosystems. 

Establishment of such a forum could be a useful vehicle through which to promote artificial 

site conservation and management, in particular support for managers of the sites 

identified in Chapter 2 that may not be widely recognised as being important for 

shorebirds. 

 

6.5.2 East Asian-Australasian Flyway Partnership 

 

Another relevant international framework is the East Asian-Australasian Flyway 

Partnership, a multi-actor voluntary agreement for conserving migratory waterbirds in the 

EAAF (Gallo-Cajiao et al., 2017). While this agreement is already strongly habitat 

focussed, there has not to-date been an explicit subgroup (i.e. task force or working group) 

for working coastal wetlands or for S. alterniflora control, though multiple sites declared 

through the East Asian-Australasian Flyway Partnership Site Network include artificial 

habitats and the issue of Spartina has been raised at partner meetings. The biannual 

EAAFP Meeting of Partners, the newly-established Science Unit, the Shorebird and Yellow 

Sea Task Force groups, and species-specific shorebird working groups (e.g. for Spoon-

billed Sandpiper and Far Eastern Curlew to date) all provide channels and fora through 

which artificial and natural habitat conservation and management action could be 

highlighted and implemented. 

 

6.5.3 UNESCO World Heritage  

 

At the 43rd session of the UNESCO World Heritage Committee in Baku, Azerbaijan 

China's “Migratory Bird Sanctuaries along the Coast of the Yellow Sea-Bohai Gulf (Phase 

I)” were inscribed to the World Heritage List. This inscription is the first of a two-part serial 

nomination and includes three sites in the Yancheng region of Jiangsu province, to be 

followed by an additional ~14 sites situated throughout the Chinese coast in a planned 
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Phase II nomination. The Republic of Korea also has a “Getbol Korean Tidal Flats” World 

Heritage nomination scheduled for consideration in 2020, which includes large areas of 

intertidal flats. If all of the sites across these three nominations are successfully inscribed 

and subsequently protected from large-scale development, this would constitute an 

outstanding achievement for shorebird habitat conservation that has significant potential to 

curb the steep shorebird population declines that have occurred over the last thirty years. 

 

The Chapter 3 field study included the Tiaozini area of Jiangsu province (referred to as 

“Dongtai” in this thesis), which is the most important stopover site in the world for Spoon-

billed Sandpiper and Nordmann’s Greenshank and was one of the sites inscribed in 

China’s Phase I World Heritage nomination. Particularly given the large scale of intertidal 

reclamation activity expected to occur in the Tiaozini area as recently as 2017 (Piersma et 

al., 2017), this is a hugely positive development for shorebird habitat conservation. It also 

reflects encouraging follow-up to the Chinese government’s earlier announcement that that 

development-related coastal reclamation activities are to cease.  

 

However, the current Phase I World Heritage listing includes only intertidal habitat; 

adjacent supratidal areas are included as “buffer zones” (IUCN, 2019c) with unclear 

status. Also, while China committed as part of the Phase I inscription to developing 

comprehensive management arrangements for the World Heritage sites, it is not yet 

entirely clear what new protection and management frameworks will emerge for either the 

(inscribed) Phase I or (proposed) Phase II sites, particularly those sites (like Tiaozini) that 

are not currently included in National Nature Reserves, which have an existing 

management framework. It may be more difficult to establish management in supratidal 

habitats than on intertidal flats because the supratidal zone is already heavily developed 

and contains multiple economic activities and land uses among which shorebirds must find 

habitat. In addition, effective management of the new World Heritage sites will require not 

only conservation of the current geographic extent of shorebird habitat, but also 

improvement in its condition in many cases. This includes control of S. alterniflora as 

detailed in Chapter 5 and mitigation of threats not covered in this PhD such as benthic 

prey availability and hunting or accidental bycatch.  

 

Despite these potential challenges, serial World Heritage listings in China and the 

Republic of Korea provide a strong framework within which to address remaining 

conservation and management issues in the Yellow Sea. The Wadden Sea World Heritage 
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site, which was established in 2009 and is also a serial intertidal inscription that spans 

three countries, provides a useful model and lessons learned for intertidal site 

management within the World Heritage framework.  

 

This brief review shows that there are multiple wide-ranging international frameworks 

through which the conservation and management issues identified in this thesis can be 

explored, discussed and ultimately advanced. While significant challenges remain to 

protecting shorebirds in human-dominated landscapes, there is evidence of an increasing 

awareness of and commitment to the preservation and improvement of coastal habitats at 

a large scale. 

 

6.6 Final remarks 

 

The story of the annual migration that shorebirds undertake as a matter of course 

astounds almost everyone who hears it. When people learn that stints the size of a 

chocolate bar flap their way from Australia to Siberia in a matter of days and that godwits 

the size of a football travel the equivalent distance of a trip to the moon and back without 

help from thermals, they reflect on the meaning of endurance and challenge themselves to 

approach life with renewed determination. When people picture millions of birds from 

dozens of species traversing the globe from the air, completely ignoring the imaginary 

lines that humans have criss-crossed the planet with, they question the wisdom of such 

divisions. They become inspired to bridge language, culture and history and work together 

for the benefit of these intriguing birds. Moreover, coastal residents gain immense joy from 

observing the comings and goings of migratory and non-migratory shorebirds alike, as 

evidenced by the countless hours of volunteer effort across many countries to monitor their 

presence on local wetlands. Shorebirds’ gentle songs and restless foraging add an 

indefinable sense of magic to our shorelines, even when they are crowded with people and 

activity. The loss of our region’s great flocks of shorebirds, the largest on earth, would 

deprive its human population of one of the world’s most awe-inspiring natural spectacles. It 

would be an admission that humans are ill-equipped to accommodate other species within 

the landscapes they dominate, which form an ever-increasing part of the earth’s surface.  

 

None of this is to say that human enjoyment of wildlife should be the primary driver of 

conservation activity or investment. It is instead an argument that we should acknowledge 

it as a powerful motivator for individuals, including the author of this thesis, to contribute 
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their time, energy and imagination to the preservation of biodiversity. It can help people 

overcome barriers when coordinated conservation action is needed. The beauty and irony 

of shorebird conservation in the EAAF is that it is unachievable without a concerted 

transboundary effort that requires the people in the countries whose borders are ignored 

by the birds to overcome their differences and work cooperatively if not indeed 

collaboratively to facilitate their survival.  

 

Only time will reveal our success or failure to do so, but it is clear that a major hurdle along 

this journey is to arrest population declines driven by habitat loss. Inspired by decades of 

volunteer visits to shorebird roosts that warned of precipitous declines, cutting edge 

research that has advanced our knowledge of shorebirds’ movements and habitats, and 

tireless advocacy from inside and outside government frameworks that has secured 

important conservation outcomes for shorebirds, this PhD sought to advance our 

understanding of shorebird habitat in the human-dominated coastal regions of the EAAF 

so that it can be better managed and protected. It argues that only by acknowledging the 

irreversibly altered state of our region’s coasts and implementing conservation and 

management strategies adapted to human-dominated landscapes can we hope to avert 

further catastrophic declines in the EAAF’s shorebirds and safeguard their presence along 

our region’s coasts. 
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Appendix 2: Supplementary Materials for Chapter 2 
 

Appendix 2.1 - Site Questionnaire 

 

(1) Site location: 

Site:   GPS coordinates:     

 

(2) Did you survey or observe shorebirds at this site (circle which)? 

surveyed          observed          surveyed and observed 

 

(3) On which type(s) of artificial habitat did you survey/observe shorebirds (circle those that apply)? 

 

Industrial salt ponds  

Approximate size of total area used by birds (if known, in km2):  

Approximate size of surveyed area (if known, in km2): 

Aquaculture ponds (please specify product type(s) if known): 

Approximate size of total area used by birds (if known, in km2): 

Approximate size of surveyed area (if known, in km2): 

Port development (name if known): 

Approximate size of total area used by birds (if known, in km2): 

Approximate size of surveyed area (if known, in km2): 

Other artificial habitat: 

Approximate size of total area used by birds (if known, in km2): 

Approximate size of surveyed area (if known, in km2): 

 

 (4) Were shorebirds surveyed/observed on artificial habitat at (circle one): 

low tide (within 3 hours before or after)          high tide   (within 3 hours before or after)               

both low and high tide          unknown tide stage 

 

(5) Have you observed shorebirds on artificial habitat at this site at other tide times (circle all that apply): 

low tide          high tide          both low and high tide           

 

(6) On what type of tides do shorebirds use this artificial habitat (circle)? 

birds only use on neap (small) tides          birds only use on spring (big) tides           

birds use on both spring and neap tides          don’t know 

 

(7) Where you have observed shorebirds roosting on artificial habitats, how far away were the nearest 

natural intertidal flats? 

<1km  1-2km  2-3km  3-4km  4-5km  5-6km  6-7km          

7-8km  8-9km           9-10km    10-12km            12-14km           14-16km            16-18km           

18-20km            >20km 
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(8) For what purpose have you observed shorebirds using artificial habitat at this site? 

only roosting           mostly roosting but some foraging          roosting and foraging           

mostly foraging but some roosting          only foraging 

 

(9) Since you began working on this site have you noticed any land use change on artificial habitat used by 

shorebirds (for example salt ponds being converted to fish ponds, etc.)? Please be as specific as you can in 

your answer. 

 

(10) Which species have you observed roosting on artificial habitat at this site? 

 

(11) Which species have you observed foraging on artificial habitat at this site?
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Appendix 2.2 – Model data for regularly-occurring shorebird species 

Species 

Sites 
present 
(count data) 

Sites not 
present  
(count data) 

Sites foraging 
(questionnaire) 

Sites not 
foraging 
(questionnaire) Family Migration status* Habitat** 

Body mass  
(avg weight in 
grams)*** 

Conservation 
status**** 

Asian Dowitcher 26 150 8 6 Scolopacidae M C 186 T 

Australian Painted-Snipe 1 20 1 0 Rostratulidae NM G/I 127.5 T 

Australian Pratincole 4 29 NA NA Glareolidae M G/I 64.5 NT 

Banded Lapwing 5 16 2 1 Charadriidae NM G/I 178 NT 

Banded Stilt 10 11 5 1 Recurvirostridae NM C 225 NT 

Bar-tailed Godwit 89 88 11 15 Scolopacidae M C 295 T 

Beach Stone-curlew 2 60 1 1 Burhinidae NM C 1000 T 

Black-fronted Dotterel 18 27 4 5 Charadriidae NM G/I 34.5 NT 

Black-tailed Godwit 85 68 15 8 Scolopacidae M G/I 295 T 

Black Stilt 5 19 NA NA Recurvirostridae NM G/I 220 T 

Black-winged Stilt 137 40 25 7 Recurvirostridae NM G/I 48 NT 

Broad-billed Sandpiper 58 119 14 7 Scolopacidae M C 48 NT 

Bronze-winged Jacana 2 54 NA NA Jacanidae NM G/I 250 NT 

Common Greenshank 139 38 32 1 Scolopacidae M G/I 212.5 NT 

Common Redshank 96 58 14 2 Scolopacidae M C 120 NT 

Common Sandpiper 116 37 17 5 Scolopacidae M G/I 63 NT 

Common Snipe 57 75 5 0 Scolopacidae M G/I 126.5 NT 

Curlew Sandpiper 83 89 21 7 Scolopacidae M G/I 80.5 T 

Double-banded Plover 25 20 3 5 Charadriidae M G/I 61.5 NT 

Dunlin 74 32 14 2 Scolopacidae M G/I 59 NT 

Eurasian Curlew 54 75 1 6 Scolopacidae M C 710 T 

Eurasian Oystercatcher 15 93 1 4 Haematopodidae M C 615 T 

Eurasian Woodcock 6 98 NA NA Scolopacidae M G/I 310 NT 

Far Eastern Curlew 62 88 6 20 Scolopacidae M C 870 T 

Greater Painted-Snipe 25 101 5 0 Rostratulidae NM G/I 145 NT 

Greater Sand Plover 56 97 0 9 Charadriidae M C 88 NT 

Great Knot 61 91 7 15 Scolopacidae M C 181.5 T 

Green Sandpiper 45 87 10 7 Scolopacidae M G/I 86 NT 

Grey-headed Lapwing 23 95 4 4 Charadriidae M G/I 266 NT 

Grey Plover 102 51 5 15 Charadriidae M C 280 NT 

Grey-tailed Tattler 51 100 7 14 Scolopacidae M C 121 T 

Javan Plover 2 3 NA NA Charadriidae NM C 44 T 

Kentish Plover 96 36 13 4 Charadriidae M C 44 NT 
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Latham’s Snipe 20 53 2 4 Scolopacidae M G/I 186 NT 

Lesser Sand Plover 85 92 7 15 Charadriidae M C 74.5 NT 

Little Curlew 5 138 1 3 Scolopacidae M G/I 169.5 NT 

Little Ringed Plover 83 45 8 5 Charadriidae M C 39.5 NT 

Long-billed Plover 14 69 4 2 Charadriidae M G/I 55.5 NT 

Long-toed Stint 72 81 8 2 Scolopacidae M G/I 28.5 NT 

Malaysian Plover 4 43 0 1 Charadriidae NM C 42 T 

Marsh Sandpiper 125 28 22 3 Scolopacidae M G/I 81.5 NT 

Masked Lapwing 41 9 10 2 Charadriidae NM G/I 245.5 NT 

Nordmann’s Greenshank 16 116 1 8 Scolopacidae M C 147 T 

Northern Lapwing 33 73 5 2 Charadriidae M G/I 229 T 

Oriental Plover 9 48 0 2 Charadriidae M G/I 95 NT 

Oriental Pratincole 13 140 4 2 Glareolidae M G/I 77 NT 

Pacific Golden Plover 108 69 11 12 Charadriidae M G/I 164 NT 

Pheasant-tailed Jacana 7 112 0 2 Jacanidae M G/I 178.5 NT 

Pied Avocet 29 70 5 4 Recurvirostridae M G/I 296 NT 

Pied Oystercatcher 15 11 4 6 Haematopodidae NM C 653.25 NT 

Pin-tailed Snipe 10 122 2 0 Scolopacidae M G/I 133 NT 

Red-capped Plover 19 7 9 3 Charadriidae NM C 40.5 NT 

Red-kneed Dotterel 13 13 3 2 Charadriidae NM G/I 56 NT 

Red Knot 54 123 8 14 Scolopacidae M C 152.5 T 

Red-necked Avocet 17 4 4 3 Recurvirostridae NM G/I 330 NT 

Red-necked Phalarope 23 105 5 3 Scolopacidae M C 34 NT 

Red-necked Stint 123 54 27 9 Scolopacidae M G/I 34.5 T 

Red-wattled Lapwing 7 53 0 1 Charadriidae NM G/I 180 NT 

Ruddy Turnstone 77 100 10 11 Scolopacidae M C 137 NT 

Ruff 36 69 1 4 Scolopacidae M G/I 192 NT 

Sanderling 40 113 10 5 Scolopacidae M C 75 NT 

Sharp-tailed Sandpiper 71 106 20 8 Scolopacidae M G/I 83.5 NT 

Sooty Oystercatcher 10 11 0 3 Haematopodidae NM C 765 NT 
South Island  
Pied Oystercatcher 23 1 0 1 Haematopodidae M C 550 T 

Spoon-billed Sandpiper 14 77 4 2 Scolopacidae M C 31.75 T 

Spotted Redshank 59 61 13 2 Scolopacidae M G/I 163.5 NT 

Swinhoe’s Snipe 11 133 1 0 Scolopacidae M G/I 123 NT 

Temminck’s Stint 30 102 6 1 Scolopacidae M G/I 25.5 NT 

Terek Sandpiper 72 81 8 15 Scolopacidae M C 88 NT 

Variable Oystercatcher 12 12 0 1 Haematopodidae NM C 701 NT 
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Wandering Tattler 2 43 1 0 Scolopacidae M C 114.5 NT 

Whimbrel 99 78 6 17 Scolopacidae M C 409 NT 

Wood Sandpiper 101 76 11 5 Scolopacidae M G/I 66 NT 

Wrybill 6 18 NA NA Charadriidae M C 57 T 

 
*M = Migratory; NM = non-migratory; this assessment of migration status is based on the movement pattern listing as “Full migrant” or “Not a migrant” in each IUCN Red List 
species assessment (https://www.iucnredlist.org/) except in the case of Black-winged Stilt because the regional subspecies of this globally-widespread species, Himantopus 
himantopus leucocephalus (often considered a full species called White-headed Stilt) is generally considered to be non-migratory in the East Asian-Australasian Flyway. 

**C = coastal specialist; G/I = generalist or inland specialist 
*** from del Hoyo et al. (1996)  
****T = threatened (i.e. listed as Near Threatened, Vulnerable, Endangered or Critically Endangered on the IUCN Red List of Threatened Species https://www.iucnredlist.org/); 
NT = not threatened (i.e. listed as Least Concern on the IUCN Red List of Threatened Species https://www.iucnredlist.org/) 
  

https://www.iucnredlist.org/
https://www.iucnredlist.org/
https://www.iucnredlist.org/
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Appendix 2.3 – Artificial sites identified in the EAAF with a maximum count of at least 100 shorebirds (total abundance) of 

one or more species.  

 

Site Name 
Map 

Section 
Site 

Number Habitat Size (ha) Data source 

Mean total 
shorebird 

abundance 

Mean 
species 
richness 

Species with a count > 1% of the 
flyway population (max count)  
[Species codes in Appendix 2.4] 

Number of 
counts 

Years in 
dataset 

Erdao Saltworks 1 1 
Salt 
production 

25285 Barter et al. 2005 4182 21 SPRE (355) 1 2005 

Yalu Jiang ash pond 1 2 Port/Power 98 
S Zhang, Q-Q Bai 
and C-Y Choi 
unpublished data 

7340 6.7 
FACU (3700); GRPL (4000); 
KEPL (950); NOGR (14); SPRE 
(640) 

20 
2010-2012; 
2017 

Yalu Jiang aquaculture 1 3 Aquaculture 400 
S Zhang and Q-Q Bai 
unpublished data  

3700 6 GRKN (6095) 8 2017 

Jangsong-ku 1 4 Reclamation 100 Riegen et al. 2018 7427 17 FACU (1022) 1 2017 

Sokhwa-ri 1 5 
Salt 
production 

75 Riegen et al. 2018 139 11 none 1 2017 

Ryong Rim-ri  1 6 
Salt 
production 

24 Riegen et al. 2009 3401 19.5 FACU (750) 1 2009 

a. Nanpu Saltworks  
(inland ponds) 
b. Nanpu Saltworks 
(whole salt pans) 
c. Nanpu Saltworks 
(nearshore ponds) 

1 7 
Salt 
production 

8600 
9300 
700 

Lei et al. 2018 
16676 
20593 
7717 

13.2 
16.1 
20.3 

BLGO (17481); BWST (15188); 
CUSA (61891); KEPL (3619); 
MASA (15849); PIAV (14249); 
REKN (35276); REST (20587); 
SA (1376); SHSA (9470); SPRE 
(13487) 
BLGO (11790); CUSA (7647); 
EUCU (1250); GRKN (7390); 
KEPL (3629); MASA (12387); 
NOGR (39); PIAV (1347); REKN 
(5889); REST (4825); SA (879) 
CUSA (1413); EUCU (1250); 
GRKN (7390); GRPL (925); 
REKN (5809); SA (731) 

73 
8 
7 

2013-2016 
2015-2016 
2015-2016 

Wonub-Li  1 8 
Salt 
production 

200 Riegen et al. 2016 8803 20 none 1 2015 

Tianjin Haibin Yuchang 
Fish Farm 

1 9 Aquaculture unknown 
Asian Waterbird 
Census 

108 2 EUOY (100) 1 2004 

Zhongak-Ku 1 10 Reclamation 400 Riegen et al. 2016 3189 24 none 1 2015 
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Yellow River Delta 
aquaculture 

1 11 Aquaculture 1166 Li et al. 2013 3782 10 SPRE (1378) 1 
2007-2008 
seasonal 
maxima 

Seosan Ricefields 1 12 Agriculture 4500 
Birds Korea & AWSG 
unpublished data 

508 17 none 1 2008 

Hwaseong 
Reclamation Lake 

1 13 Reclamation 2500 
Hwaseong KFEM 
unpublished data 

1807 7.2 
EUCU (1650); EUOY (468); 
FACU (960); GRPL (1150) 

10 2016-2017 

Namyang Ricefields 1 14 Agriculture 1500 
Birds Korea & AWSG 
unpublished data 

2976 10 BLGO (1799) 1 2008 

Honwongri Ricefields 1 15 Agriculture 400 Moores, 1999 1706 2 BLGO (1701) 1 1998 

Ochi-gata 1 16 Agriculture 504 

‘‘Monitoring Sites 
1000” Ministry of the 
Environment, Japan; 
Japan Bird Research 
Association data 
extraction 

72 9 none 32 2006-2017 

Shibayama-gata 1 17 Agriculture 320 

‘‘Monitoring Sites 
1000” Ministry of the 
Environment, Japan; 
Japan Bird Research 
Association data 
extraction 

80 7.3 none 22 2006-2017 

Daishoji-gawa Karyu 
Suiden 

1 18 Agriculture 280 

‘‘Monitoring Sites 
1000” Ministry of the 
Environment, Japan; 
Japan Bird Research 
Association data 
extraction 

61 8 none 22 2006-2017 

Dongfeng Saltworks 1 19 
Salt 
production 

3170 Barter and Xu 2004 1716 5 SPRE (427) 1 2004 

Haida Saltworks 1 20 
Salt 
production 

3051 Barter and Xu 2004 1132 8 SPRE (530) 1 2004 

Kasumigaura Nangan 
Miho-mura 

1 21 Agriculture 236 

‘‘Monitoring Sites 
1000” Ministry of the 
Environment, Japan; 
Japan Bird Research 
Association data 
extraction 

241 7.2 none 24 2006-2017 
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Kasumigaura Nangan 
Iniki-shi Ukishima 

1 22 Agriculture 2772 

‘‘Monitoring Sites 
1000” Ministry of the 
Environment, Japan; 
Japan Bird Research 
Association data 
extraction 

609 18.5 RUTU (356) 33 2006-2017 

Yodaura Suiden 1 23 Agriculture 2778 

‘‘Monitoring Sites 
1000” Ministry of the 
Environment, Japan; 
Japan Bird Research 
Association data 
extraction 

463 5.8 GRTA (562); RUTU (902) 33 2006-2017 

Nagareyama-shi Shin-
kawa Kochi 

1 24 Agriculture 290 

‘‘Monitoring Sites 
1000” Ministry of the 
Environment, Japan; 
Japan Bird Research 
Association data 
extraction 

48 3.5 none 33 2006-2017 

Mangyeong River 
(lower) 

1 25 Reclamation 9500 
Asian Waterbird 
Census 

1622 3.1 EUOY (82); GRPL (3711) 20 
1999-2011; 
2013-18 

Kamisu-shi Takahama 1 26 Agriculture 357 

‘‘Monitoring Sites 
1000” Ministry of the 
Environment, Japan; 
Japan Bird Research 
Association data 
extraction 

340 3.8 WHIM (2000) 28 2006-2017 

Kamisu-shi Yatabe 1 27 Agriculture 115 

‘‘Monitoring Sites 
1000” Ministry of the 
Environment, Japan; 
Japan Bird Research 
Association data 
extraction 

63 5.1 none 28 2006-2017 

Gyeywha Ricefields 1 28 Agriculture 500 
Birds Korea & AWSG 
unpublished data 

2353 6.5 BLGO (3053) 4 2008 

Inba-numa 
chuouhaisuiro 

1 29 Agriculture 901 

‘‘Monitoring Sites 
1000” Ministry of the 
Environment, Japan; 
Japan Bird Research 
Association data 
extraction 

102 2.5 none 23 2009-2017 
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Chuo-bohatei Uchi 
Sotogawa Umetatechi 

1 30 Reclamation 4 

‘‘Monitoring Sites 
1000” Ministry of the 
Environment, Japan; 
Japan Bird Research 
Association data 
extraction 

293 16.6 RUTU (320) 33 2007-18 

Tokyo-ko Yachoen 1 31 
Constructed 
roost 

4 

‘‘Monitoring Sites 
1000” Ministry of the 
Environment, Japan; 
Japan Bird Research 
Association data 
extraction 

51 6.1 none 33 2007-2018 

Sada-gawa 1 32 Agriculture 207 

‘‘Monitoring Sites 
1000” Ministry of the 
Environment, Japan; 
Japan Bird Research 
Association data 
extraction 

18 2.8 none 32 2006-2017 

Ebina-shi Katsuse 1 33 Agriculture 10 

‘‘Monitoring Sites 
1000” Ministry of the 
Environment, Japan; 
Japan Bird Research 
Association data 
extraction 

13 4.2 none 33 2006-2017 

Aisai-shi Tatsuta 1 34 Agriculture 771 

‘‘Monitoring Sites 
1000” Ministry of the 
Environment, Japan; 
Japan Bird Research 
Association data 
extraction 

51 5.2 none 33 2006-2017 

Taibei Saltworks 1 35 
Salt 
production 

10123 Barter and Xu 2004 8701 18 SPRE (942); WOSA (1251) 1 2004 

Osaka Hokko Minami-
chiku 

1 36 Reclamation 390 

‘‘Monitoring Sites 
1000” Ministry of the 
Environment, Japan; 
Japan Bird Research 
Association data 
extraction 

1024 20.8 none 33 2007-18 
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Nanko Yachoen 1 37 
Constructed 
roost 

16 

‘‘Monitoring Sites 
1000” Ministry of the 
Environment, Japan; 
Japan Bird Research 
Association data 
extraction 

435 17 none 33 2007-18 

Tainan Saltworks 1 38 
Salt 
production 

4837 Barter and Xu 2004 2252 19 none 1 2004 

Xuwei Saltworks 1 39 
Salt 
production 

11638 Barter and Xu 2004 5181 18 REST (3380) 1 2004 

Guanxi Saltworks 1 40 
Salt 
production 

13442 Barter and Xu 2004 1970 20 none 1 2004 

Guandong Saltworks 1 41 
Salt 
production 

5000 Barter et al. 2002 14352 20 REST (5848) 1 2001 

Akisaijyou-
hatihonmatsu 

1 42 Agriculture 961 

‘‘Monitoring Sites 
1000” Ministry of the 
Environment, Japan; 
Japan Bird Research 
Association data 
extraction 

110 8.7 none 19 2010-2017 

Xintan Saltworks 1 43 
Salt 
production 

2500 Barter et al 2002 9881 16 SPRE (3078) 1 2001 

Iwakuni-shi Ozu 
Hasuda 

1 44 Agriculture 376 

‘‘Monitoring Sites 
1000” Ministry of the 
Environment, Japan; 
Japan Bird Research 
Association data 
extraction 

166 14.9 none 33 2006-2017 

Tsuyazaki 1 45 Agriculture 471 

‘‘Monitoring Sites 
1000” Ministry of the 
Environment, Japan; 
Japan Bird Research 
Association data 
extraction 

83 13 none 33 2006-2017 

Sheyang Saltworks 1 46 
Salt 
production 

13000 Barter et al. 2002 5096 23 none 1 2001 

Shirakawa River 
Estuary - Okishin 
district 

1 47 Agriculture 43 

‘‘Monitoring Sites 
1000” Ministry of the 
Environment, Japan; 
Japan Bird Research 
Association data 
extraction 

85 6.2 none 92 
2007-08; 
2012-14; 
2016-18 
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Shirakawa River 
Estuary - Kumamoto 
Port 

1 48 Reclamation 66 

‘‘Monitoring Sites 
1000” Ministry of the 
Environment, Japan; 
Japan Bird Research 
Association data 
extraction 

1081 5.6 none 88 
2007-08; 
2012-14; 
2016-18 

Dongtai  1 49 Reclamation 78 Jackson et al. 2019 13176 10 
EUCU (2400); EUOY (360); 
GRKN (4000); GRPL (2000); 
KEPL (1600); NOGR (250) 

4 2017 

Hai'an aquaculture 
ponds 

1 50 Aquaculture 306 Jackson et al. 2019 2771 15.5 KEPL (826) 6 2017 

Fengli aquaculture 
ponds 

1 51 Aquaculture 94 Jackson et al. 2019 4276 14.5 
KEPL (3128); SPSA (20); SPRE 
(308) 

2 2017 

Ju Zhen 1 52 Reclamation 502 Jackson et al. 2019 5107 8.3 none 3 2017 

Chongming Dongtan 
National Nature 
Reserve 

1 53 Aquaculture 8243 

Chongming Dongtan 
National Nature 
Reserve unpublished 
data 

56 1.5 none 90 2012-2016 

Fujian Minjiang River 
Estuary Wetland 
National Nature 
Reserve 

2 54 Aquaculture 52 

Minjiang Estuary 
National Nature 
Reserve, WWF Hong 
Kong unpublished 
data 

250 2.8 none 31 2004-2016 

Xinghua Bay 2 55 Aquaculture 360 Jin et al. 2008 4690 7 none 1 2007/2008 

Sanzhi 2 56 Agriculture 300 
Taiwan New Year 
Bird Count 

50 5.8 none 4 
2013; 2015-
16; 2018 

Chu-An 2 57 Aquaculture 848 
Taiwan New Year 
Bird Count 

2234 13.4 none 5 
2013; 2015-
17 

Provincial Highway 7 2 58 Agriculture 565 
Taiwan New Year 
Bird Count 

3901 10.6 KEPL (1313); PAGO (3355) 5 2014-17 

a. Yilan agriculture  
(yr 1) 
b. Yilan agriculture  
(yr 2) 

2 59 Agriculture 
14 
16 

L-C Lu unpublished 
data   

119 
169 

5.6 
7.6 

none 
14 
11 

2016-2017 
2017-2018 

Sinnan, Meifu 2 60 Agriculture 848 
Taiwan New Year 
Bird Count 

1654 12.4 none 5 
2014; 2016-
18 
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Lizejian 2 61 Agriculture 565 
Taiwan New Year 
Bird Count 

4433 14.2 KEPL (1319); PAGO (1455) 5 
2014-15; 
2017-18 

Nan'ao 2 62 Agriculture 282 
Taiwan New Year 
Bird Count 

66 6.4 none 5 
2014-15; 
2016; 2018 

Ta-Tu-Hsi  2 63 Aquaculture 848 
Taiwan New Year 
Bird Count 

2064 9.4 KEPL (1650) 5 
2014-16; 
2018 

a. Changhua 
agriculture 
b. Changhua 
aquaculture 

2 64 
Agriculture 
Aquaculture 

370 
630 

Taiwan Wader Study 
Group unpublished 
data 

145 
1649 

3.2 
9.8 

none 
BWST (631); CUSA (1384); 
GRTA (756); KEPL (1545); 
RUTU (850); SA (757) 

19 
36 

2004 
2004 

Dong-luo-Hsi 2 65 Agriculture 141 
Taiwan New Year 
Bird Count 

102 5.8 none 5 
2013; 2015-
17 

Tai-Xi 2 66 Agriculture 453 
Taiwan New Year 
Bird Count 

1367 9.5 none 2 2017-18 

Yiwu Wetland 2 67 
Constructed 
roost 

941 
Taiwan New Year 
Bird Count 

768 15.2 none 5 
2013; 2015-
18 

Ao-Ku 2 68 
Constructed 
roost 

242 
Taiwan New Year 
Bird Count 

707 16.8 none 5 2014-18 

Pu-Tai  2 69 Aquaculture 1205 
Taiwan New Year 
Bird Count 

6644 18.2 
KEPL (4590); PAGO (3498); 
PIAV (1674) 

5 2014-17 

Pei-Men 2 70 Agriculture 4 
Taiwan New Year 
Bird Count 

770 13.3 none 3 2016-18 

Qigu Dingshan 2 71 Aquaculture 241 
Taiwan New Year 
Bird Count 

1058 8.8 none 5 2014-17 

Tainan Tucheng 2 72 Aquaculture 331 
Taiwan New Year 
Bird Count 

1172 10.3 KEPL (936) 4 
2014; 2016-
17 

Szu-Tsao 2 73 Aquaculture 129 
Taiwan New Year 
Bird Count 

2104 16 KEPL (1051) 4 
2014; 2016-
17 

Qieding 2 74 Aquaculture 565 
Taiwan New Year 
Bird Count 

1985 12 KEPL (2240) 5 2014-18 

Yongan Wetland 2 75 
Salt 
production 

1028 
Taiwan New Year 
Bird Count 

1220 8 KEPL (960) 5 2014-18 

Kanding Wetland 2 76 Agriculture 25 
Taiwan New Year 
Bird Count 

97 6.4 none 5 2014-18 
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Mai Po gei wai ponds 
constructed roost 

2 77 
Constructed 
roost 

14.2 

Mai Po Nature 
Reserve; WWF Hong 
Kong; Agriculture, 
Fisheries and 
Conservation 
Department, HKSAR 
Government; and 
Hong Kong Bird 
Watching Society 

1727 12.5 
BLGO (1980); COGR (1359); 
CORE (1020); CUSA (4408); 
NOGR (18); PIAV (4160) 

117 2013-2016 

Dapeng Bay 2 78 Aquaculture 848 
Taiwan New Year 
Bird Count 

1056 17.4 none 5 2014-18 

Gondamara 2 79 
Salt 
production 

42 
S Chowdhury 
unpublished data 

2002 3 none 1 2018 

Lung-Luan-Tan 2 80 Agriculture 125 
Taiwan New Year 
Bird Count 

177 9.4 none 5 2014-18 

Borodia, Sonadia 
Island, Cox’s Bazar 

2 81 
Salt 
production 

60 
S Chowdhury 
unpublished data 

148 4 GRSA (1000) 2 2009; 2012 

Ha Nam Island 2 82 Aquaculture 11000 
Asian Waterbird 
Census 

43 2.8 none 4 
2001; 2004-
05; 2010 

An Hai 2 83 Aquaculture 4300 
Asian Waterbird 
Census 

411 14 none 1 2006 

Van Uc river mouth 2 84 Aquaculture 1800 
Asian Waterbird 
Census 

307 9 none 1 1992 

Tien Lang 2 85 Aquaculture 550 
Asian Waterbird 
Census 

115 2 none 2 2005 

Nghia Hung (Cua Day 
rivermouth) 

2 86 Aquaculture 5000 
Asian Waterbird 
Census 

378 5.3 none 6 
1992; 2003-
05; 2012-13 

Bangrin Mangrove 
Sanctuary: Apurao 
Fishponds Bani 

2 87 Aquaculture unknown 
Asian Waterbird 
Census 

377 8 none 2 2013-2015 

Brgy. Batang, 
Sasmuan 

2 88 Aquaculture unknown 
Asian Waterbird 
Census 

11669 7 
BRSA (2870); GRSA (10800); 
GRPL (20906); KEPL (2023); 
PAGO (2828);  

5 2013-18 

Bangkung Malapad, 
Sasmuan 

2 89 Aquaculture unknown 
Asian Waterbird 
Census 

2602 11 none 1 2018 

Brgy. Mabuanbuan, 
Sasmuan, Pampanga 

2 90 Aquaculture unknown 
Asian Waterbird 
Census 

142 5 none 1 2018 

Taliptip 2 91 Aquaculture 20 eBird 461 7.5 none 11 2017-18 
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Consuelo, Macabebe 
& Sasmuan 

2 92 Aquaculture unknown 
Asian Waterbird 
Census 

7686 8 
CORE (2133); KEPL (8600); 
LIPL (1500); PAGO (3000);  

3 
2009-2012; 
2018 

Bacoor Coastal Area 
Novelita Salt Fishpond 

2 93 Aquaculture unknown 
Asian Waterbird 
Census 

146 3 none 8 
198-2001; 
2003-06 

Sariaya Ricefields, 
Sariaya 

2 94 Agriculture unknown 
Asian Waterbird 
Census 

215 3.5 none 2 2017-18 

Khok Kham 2 95 
Salt 
production 

560 
Asian Waterbird 
Census 

2755 19 LESA (6241); NOGR (28) 7 
2003-07; 
2009; 2017 

Bang Khun Tien 2 96 Aquaculture 2470 
Asian Waterbird 
Census 

687 10.6 none 7 
2005-07; 
2009-10; 
2012; 2016 

a. Inner Gulf of 
Thailand (abandoned 
ponds) 
b. Inner Gulf of 
Thailand (drained 
ponds) 
c. Inner Gulf of 
Thailand (flooded 
ponds) 
d. Inner Gulf of 
Thailand (salt pans) 

2 97 Aquaculture 

9.27 
4.33 
13.2 
24.3 

Green et al. 2015 

48 
546 
17 

2070 

6 
5.6 
2.6 

13.1 

none 
BLGO (3000) 
none 
NOGR (8) 

2 
14 
7 
15 

2013 

Krasa Khao (Wat Bang 
Khut. Bang Krajao) 

2 98 Aquaculture 600 
Asian Waterbird 
Census 

1674 10.7 none 3 
2005; 2007; 
2013 

Kalong 2 99 Aquaculture 1500 
Asian Waterbird 
Census 

259 12.5 none 4 
2005-07; 
2009 

Don Hoi Lot (Bang 
Bor-Don Hoi Lot) 

2 100 Aquaculture 800 
Asian Waterbird 
Census 

754 11 none 10 

2005-07; 
2009-12; 
2014; 2016-
17 

Klong Khone-Klong 
Khut-Klong Chong-
Klong Yisan 

2 101 Aquaculture 2300 
Asian Waterbird 
Census 

357 9.2 none 6 
1994; 2003; 
2005-07; 
2017 

Wat Khao Takhrao-
Bang Tabun 

2 102 Aquaculture unknown 
Asian Waterbird 
Census 

639 10.1 none 8 
2003; 2005-
07; 2009; 
2016-17 
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Pak Thale Laem Phak 
Bia 

2 103 
Salt 
production 

2187 
Asian Waterbird 
Census 

2123 15.3 NOGR (20) 3 
2004; 2007; 
2010 

Pak Thale  2 104 
Salt 
production 

360 
Asian Waterbird 
Census 

4838 19.5 

BLGO (2641); BRSA (260); 
EUCU (1405); GRSA (1643); 
LESA (2012); LOST (262); 
SPSA (7);  

8 
2005-07; 
2012-14; 
2016-17 

Brgy. Hinactacan 
Fishponds 

2 105 Aquaculture 30 eBird 855 20 none 1 2017 

Kampot to Chhak Kep 2 106 Agriculture unknown 
Asian Waterbird 
Census 

103 7.3 none 3 
1996; 1997; 
1999 

Binh Dai 2 107 Aquaculture 9400 
Asian Waterbird 
Census 

1844 15 none 1 2007 

Don Roman, Porfirio, 
Ferdie Santos 
Fishpond 

2 108 Aquaculture unknown 
Asian Waterbird 
Census 

165 6.1 none 14 

1991-96; 
2000-04; 
2006; 2008; 
2015 

Crispin Betita 
Fishpond 

2 109 Aquaculture unknown 
Asian Waterbird 
Census 

142 6.3 none 10 
1991-96; 
2000; 2002-
04 

Pulau Langkawi 
Ricefield 

2 110 Agriculture unknown 
Asian Waterbird 
Census 

100 6 none 1 2007 

Brunei Bay: Mentiri 
Prawn Farm 

2 111 Aquaculture unknown 
Asian Waterbird 
Census 

192 5.6 none 12 

2007-09; 
2011-12; 
2014-15; 
2017-18 

Wasan Ricefield 2 112 Agriculture unknown 
Asian Waterbird 
Census 

220 5.7 none 23 

1987-88; 
1990-91; 
1993-98; 
2005; 2007; 
2009; 2011-
12; 2014; 
2016-17 

Bagan Percut 2 113 Aquaculture 7.5 
A Crossland 
unpublished data 

602 13 none 1 1995 

Tanjung Karang 
Ricefield 

2 114 Agriculture unknown 
Asian Waterbird 
Census 

443 5.8 none 4 
1990-91; 
2015; 2017 
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Kapar Power station 2 115 Port/Power 45 
Bakewell 2008; Chin 
& Khoo 2018 

7816 17.5 

BLGO (2000); CORE (3500); 
EUCU (7000); GRKN (3100); 
GRSP (2500); LESA (6722); 
NOGR (38); TESA (2100); 
WHIM (1501) 

28 
2008; 2015-
2016 

Sungei Buaya 
ricefields 

2 116 Agriculture unknown 
Asian Waterbird 
Census 

95 2.8 none 4 2014-17 

Southwest Johor 
Coast Sungai Balang 
Ricefield  

2 117 Agriculture unknown 
Asian Waterbird 
Census 

55 5.7 none 12 
2002-11; 
2015-16 

Sejingkat Power 
station 

2 118 Port/Power 15 Bakewell et al. 2017 929 11.6 FACU (660) 5 2011 

Sungei Buloh Wetland 
Reserve 

2 119 
Constructed 
roost 

87 
Sungei Buloh 
Wetland Reserve 
unpublished data 

795 6.4 PAGO (2000) 87 
1995-96; 
1998-2018 

Khatib Bongsu, Yishun  2 120 Aquaculture 40 
A Crossland 
unpublished data 

186 8 none 1 2002 

Pantai Hotekamp 2 121 Aquaculture 100 
Crossland and 
Sinambela 2017 

708 19 none 1 2017 

Kasemen (Sawah 
Luhur) 

2 122 Agriculture unknown 
Asian Waterbird 
Census 

64 4.6 none 7 

2002-03; 
2007; 2009-
10; 2015; 
2017 

Keputih Fishpond 2 123 Aquaculture unknown 
Asian Waterbird 
Census 

251 8 none 1 2010 

Biopolo fishponds 2 124 Aquaculture unknown 
Asian Waterbird 
Census 

67 6.5 none 2 2005; 2010 

Leanyer Sewage 
Works 

3 125 Wastewater 40 
National Shorebird 
Monitoring Program 
(BirdLife Australia) 

105 6.5 none 77 2004-2015 

East Arm Wharf 3 126 Port/Power 43.5 
A Lilleyman; Darwin 
Port unpublished data 

343 9.7 none 159 2009-2017 

Port Hedland Dampier 
Saltworks 

3 127 
Salt 
production 

10,300 
National Shorebird 
Monitoring Program 
(BirdLife Australia) 

9715 30.5 
BAST (7494); BRSA (537); 
SHSA (3885) 

5 
2012-2014; 
2016-2017 



149 
 

Dampier Saltworks 3 128 
Salt 
production 

9611 
National Shorebird 
Monitoring Program 
(BirdLife Australia) 

5743 21.2 
CUSA (1941); REPL (3854); 
REST (10594); SHSA (4204) 

13 

1982; 1984; 
1985; 2002-
2006; 2012-
2014; 2016-
2017  

Cheetham Saltworks 
(Queensland) 

3 129 
Salt 
production 

486 Houston et al. 2012 534 6.3 none 29 2008-2011 

Port Alma Saltworks 3 130 
Salt 
production 

377 Houston et al. 2012 185 5 none 26 2008-2011 

Western Basin 
Reclamation Area 

3 131 Reclamation  265 
Wildlife Unlimited 
2012-2018 

182 4 none 10 2013-2018 

Toorbul  3 132 
Constructed 
roost 

1 

Count data used in 
this publication 
supplied by the 
Queensland Wader 
Study Group (a 
special interest group 
of the Queensland 
Ornithological Society 
Incorporated) 

1292 7.6 
FACU (500); GRTA (600); 
WHIM (800) 

150 1992-2017 

Kakadu Beach 3 133 
Constructed 
roost 

2 

Count data used in 
this publication 
supplied by the 
Queensland Wader 
Study Group (a 
special interest group 
of the Queensland 
Ornithological Society 
Incorporated) 

990 8  FACU (490) 187 2002-2017 

Port of Brisbane 3 134 Port/Power 145 

Count data used in 
this publication 
supplied by the 
Queensland Wader 
Study Group (a 
special interest group 
of the Queensland 
Ornithological Society 
Incorporated) 

5092 19.2 

CUSA (2463); FACU (340); 
GRTA (1288); LESA (2433); 
PAGO (1090); PIOY (223); 
REAV (2810); REST (6803); 
SHSA (2078) 

160 2003-2016 
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Manly 3 135 
Constructed 
roost 

7 

Count data used in 
this publication 
supplied by the 
Queensland Wader 
Study Group (a 
special interest group 
of the Queensland 
Ornithological Society 
Incorporated) 

2142 16.7 GRTA (795); PIOY (342) 133 1992-2017 

Kooragang Dykes 3 136 
Constructed 
roost 

5 
Hunter Bird 
Observers Club 

1536 10 
FACU (530); REAV (4000); 
SHSA (3018) 

224 1999-2017 

Stockton Sandspit  3 137 
Constructed 
roost 

2 
Hunter Bird 
Observers Club 

1228 6.2 FACU (440); REAV (5800);  224 1999-2017 

Sydney Olympic Park 
Waterbird Refuge  

3 138 
Constructed 
roost 

1183 
P Straw unpublished 
data 

210 4 none 253 2012-2018 

Price Saltworks 3 139 
Salt 
production 

1183 
National Shorebird 
Monitoring Program 
(BirdLife Australia) 

5426 17.6 BAST (11000) 12 
2008-2010; 
2012; 2015-
2017 

Dry Creek Saltworks 3 140 
Salt 
production 

2600 
National Shorebird 
Monitoring Program 
(BirdLife Australia) 

7828 11.2 
BAST (17302); REPL (1152); 
REST (5730); SHSA (1643) 

27 2008-2018 

Whangarei Port 3 141 Port/Power 20 
Beauchamp and 
Parrish 2007 

196 2.5 none 30 

1995-1998; 
2001-2004; 
2006-2007; 
2012-2014 

Ruawai 3 142 Agriculture unknown 
Asian Waterbird 
Census 

1873 2.8 none 36 
1994-2014; 
2017 

Kakanui 3 143 Agriculture unknown 
Asian Waterbird 
Census 

648 2.6 none 5 
2012-14; 
2017 

Omaumau 3 144 Agriculture unknown 
Asian Waterbird 
Census 

1004 3.3 none 4 
2013-14; 
2017 

McLean's Farm 3 145 Agriculture unknown 
Asian Waterbird 
Census 

410 2.2 none 11 

1997-99; 
2004; 2006-
09; 2011; 
2013 

Lemon Tree Bay 3 146 Agriculture unknown 
Asian Waterbird 
Census 

164 2.5 none 23 
1998; 2000-
14 
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Hoteo Farm 3 147 Agriculture unknown 
Asian Waterbird 
Census 

637 2.4 none 28 
1996-98; 
2000-14; 
2017 

Waioneke 3 148 Agriculture unknown 
Asian Waterbird 
Census 

851 2.2 none 17 

1997; 2000-
01; 2003-
07; 2009-
12; 2014; 
2017 

Oyster Point 3 149 Agriculture unknown 
Asian Waterbird 
Census 

448 2.3 none 27 

1995; 1997-
99; 2001-
09; 2012-
14; 2017 

Haranui Road 3 150 Agriculture unknown 
Asian Waterbird 
Census 

379 2.4 none 30 
1996-98; 
2000-14; 
2017 

Parakai - Parkhurst 3 151 Agriculture unknown 
Asian Waterbird 
Census 

123 2 none 12 
1996; 1998; 
2000; 2003-
11 

Te Atatu - Horse 
Paddocks 

3 152 Agriculture unknown 
Asian Waterbird 
Census 

566 3 REKN (4000) 19 

1997-98; 
2000; 2003-
06; 2008-
10; 2012; 
2014; 2017 

Ambury Park Farm 3 153 Agriculture unknown 
Asian Waterbird 
Census 

1795 3.4 none 18 
2004; 2006-
14 

Mangere tidal storage 3 154 Reclamation 20 
Asian Waterbird 
Census 

5666 7 REKN (7000) 23 
1994-2006; 
2008 

Mangere Shellbanks & 
Crater roost 

3 155 
Constructed 
roost 

2 
Asian Waterbird 
Census 

3209 7.8 REKN (2050) 5 
2004; 2006; 
2010 

Seagrove 3 156 Agriculture unknown 
Asian Waterbird 
Census 

1217 3.3 REKN (3562) 39 
1994-97; 
1999; 2000-
14; 2017 

Kirks 3 157 Agriculture unknown 
Asian Waterbird 
Census 

1573 5.1 REKN (6000) 40 
1994-2014; 
2017 

Orongo 3 158 Agriculture unknown 
Asian Waterbird 
Census 

889 2.8 REKN (1500) 27 
2000; 2002-
14; 2017 
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Cheetham Saltworks 
(Victoria) 

3 159 
Salt 
production 

500 
Parks Victoria 
unpublished data 

3002 9.4 
CUSA (4252); DOPL (520); 
REST (8343); SHSA (1911) 

55 
1987-2004; 
2006-2016 

Werribee Treatment 
Plant 

3 160 Wastewater 4657 

National Shorebird 
Monitoring Program 
(BirdLife Australia), D 
Rogers unpublished 
data 

7422 16.2 
CUSA (12937); DOPL (731); 
REAV (1876); REST (12954); 
SHSA (6684) 

155 1981-2017 

Eastern Treatment 
Plant 

3 161 Wastewater 576 
National Shorebird 
Monitoring Program 
(BirdLife Australia) 

517 7.4 none 25 
2009-2015; 
2017 

Avalon Saltworks 3 162 
Salt 
production 

1018 
Arthur Rylah Institute  
unpublished data 

2053 10.5 
BAST (4500); CUSA (4818); 
DOPL (555); REST (5183); 
SHSA (2149) 

102 
1981-2014; 
2017 

Moolap Saltworks 3 163 
Salt 
production 

470 
National Shorebird 
Monitoring Program 
(BirdLife Australia) 

1493 8.1 
BAST (5200); CUSA (4981); 
REST (4859); SHSA (3811) 

160 1981-2016 

Triangle Flat 3 164 Agriculture unknown 
Asian Waterbird 
Census 

124 2.4 none 7 
2004; 2006-
07; 2009 

Lake Grassmere 
Saltworks  

3 165 
Salt 
production 

unknown 
Asian Waterbird 
Census 

475 4 none 1 2005 

Taranaki Creek 
Paddocks 

3 166 Agriculture unknown 
Asian Waterbird 
Census 

111 2.4 none 9 
2007-10; 
2012-14; 
2017 

Brooklands Lagoon 
Kaiapoi Sewage 
Works  

3 167 Wastewater 75 
Asian Waterbird 
Census; A Crossland 
unpublished data 

152 3.4 none 20 
2002-03; 
2008-12 

Bromley Oxidation 
Pond  

3 168 Wastewater 29 
A Crossland 
unpublished data 

233 3.4 none 22 1992-94 

Araparere  3 169 Agriculture unknown 
Asian Waterbird 
Census 

759 1.7 none 3 2014; 2017 
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Appendix 2.4 - Shorebird species (including vagrant species) counted at artificial habitats in the EAAF and their mean 

count, relative occurrence frequency (regularly-occurring species only), and relative foraging frequency (regularly-

occurring species only)  

Species Scientific name Mean count 
Relative occurrence 
frequency (from counts) 

Relative foraging frequency 
(from questionnaires) 

Asian Dowitcher (ASDO) Limnodromus semipalmatus 9.6 0.15 0.57 
Australian Painted-Snipe (AUPA) Rostratula australis 0.1 0.05 1.00 
Australian Pratincole (AUPR) Stiltia isabella 5.4 0.12 NA 
Banded Lapwing (BALA) Vanellus tricolor 1.4 0.24 0.67 
Banded Stilt (BAST) Cladorhynchus leucocephalus 1104.3 0.48 0.83 
Bar-tailed Godwit (BAGO) Limosa lapponica 202.5 0.51 0.42 
Beach Stone-curlew (BEST) Esacus magnirostris 0.4 0.03 0.50 
Black-fronted Dotterel (BLDO) Elseyornis melanops 4.4 0.40 0.44 
Black-tailed Godwit (BLGO) Limosa limosa 180.2 0.56 0.65 
Black Stilt (BLST) Himantopus novaezelandiae 0.1 0.21 NA 
Black-winged Stilt (BWST) Himantopus himantopus 121.3 0.78 0.78 
Broad-billed Sandpiper (BRSA) Limicola falcinellus 29.8 0.33 0.67 
Bronze-winged Jacana (BRJA) Metopidius indicus 2.2 0.04 NA 
Common Greenshank (COGR) Tringa nebularia 32.7 0.79 0.97 
Common Redshank (CORE) Tringa totanus 44.2 0.63 0.88 
Common Sandpiper (COSA) Actitis hypoleucos 5.4 0.76 0.77 
Common Snipe (COSN) Gallinago gallinago 9.3 0.44 1.00 
Curlew Sandpiper (CUSA) Calidris ferruginea 154.6 0.49 0.75 
Double-banded Plover (DOPL) Charadrius bicinctus 15.7 0.56 0.38 
Dunlin (DUNL) Calidris alpina 640.9 0.70 0.88 
Eurasian Curlew (EUCU) Numenius arquata 91.6 0.42 0.14 
Eurasian Oystercatcher (EUOY) Haematopus ostralegus 29.0 0.14 0.20 
Eurasian Woodcock (EUWO) Scolopax rusticola 0.2 0.06 NA 
Far Eastern Curlew (FACU) Numenius madagascariensis 52.6 0.42 0.23 
Great Knot (GRKN) Calidris tenuirostris 222.4 0.40 0.32 
Greater Painted-snipe (GRPA) Rostratula benghalensis 1.0 0.20 1.00 
Greater Sand Plover (GRSP) Charadrius leschenaultii 79.8 0.37 0.00 
Green Sandpiper (GRSA) Tringa ochropus 1.5 0.34 0.59 
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Grey Plover (GRPL) Pluvialis squatarola 83.1 0.67 0.25 
Grey-headed Lapwing (GRLA) Vanellus cinereus 7.5 0.20 0.50 
Grey-tailed Tattler (GRTA) Tringa brevipes 21.5 0.34 0.33 
Indian Pratincole (INPR) Glareola lactea 0.3 NA NA 
Javan Plover (JAPL) Charadrius javanicus 24.0 0.40 NA 
Kentish Plover (KEPL) Charadrius alexandrinus 195.8 0.73 0.76 
Latham's Snipe (LASN) Gallinago hardwickii 1.0 0.27 0.33 
Lesser Sand Plover (LESA) Charadrius mongolus 111.4 0.48 0.32 
Lesser Yellowlegs (LEYE) Tringa flavipes 0.1 NA NA 
Little Curlew (LICU) Numenius minutus 6.2 0.04 0.25 
Little Ringed Plover (LIRI) Charadrius dubius 15.7 0.65 0.62 
Little Stint (LIST) Calidris minuta 1.3 NA NA 
Long-billed Dowitcher (LODO) Limnodromus scolopaceus 0.9 NA NA 
Long-billed Plover (LOPL) Charadrius placidus 0.4 0.17 0.67 
Long-toed Stint (LOST) Calidris subminuta 8.8 0.47 0.80 
Malay Plover (MAPL) Charadrius peronii 46.7 0.09 0.00 
Marsh Sandpiper (MASA) Tringa stagnatilis 162.5 0.82 0.88 
Masked Lapwing (MALA) Vanellus miles 16.9 0.82 0.83 
New Zealand Dotterel (NEDO) Charadrius obscurus 1.8 NA NA 
Nordmann's Greenshank (NOGR) Tringa guttifer 6.1 0.12 0.11 
Northern Lapwing (NOLA) Vanellus vanellus 8.5 0.31 0.71 
Oriental Plover (ORPL) Charadrius veredus 20.0 0.16 0.00 
Oriental Pratincole (ORPR) Glareola maldivarum 20.3 0.09 0.67 
Pacific Golden-Plover (PAGO) Pluvialis fulva 73.1 0.61 0.48 
Pectoral Sandpiper (PESA) Calidris melanotos 0.2 NA NA 
Pheasant-tailed Jacana (PHJA) Hydrophasianus chirurgus 0.6 0.06 0.00 
Pied Avocet (PIAV) Recurvirostra avosetta 178.6 0.30 0.56 
Pied Oystercatcher (PIOY) Haematopus longirostris 16.6 0.58 0.40 
Pintailed Snipe (PISN) Gallinago stenura 0.3 0.08 1.00 
Red Knot (REKN) Calidris canutus 182.9 0.31 0.36 
Red Phalarope (REPH) Phalaropus fulicarius 0.2 NA NA 
Red-capped Plover (REPL) Charadrius ruficapillus 94.3 0.73 0.75 
Red-kneed Dotterel (REDO) Erythrogonys cinctus 6.4 0.50 0.60 
Red-necked Avocet (REAV) Recurvirostra novaehollandiae 191.5 0.81 0.57 
Red-necked Phalarope (RNPH) Phalaropus lobatus 1.1 0.18 0.63 
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Red-necked Stint (REST) Calidris ruficollis 334.3 0.70 0.75 
Red-wattled Lapwing (RELA) Vanellus indicus 3.8 0.12 0.00 
Ringed Plover (RIPL) Charadrius hiaticula 62.6 NA NA 
Rock Sandpiper (ROSA) Calidris ptilocnemis 1.4 NA NA 
Ruddy Turnstone (RUTU) Arenaria interpres 15.0 0.44 0.48 
Ruff (RUFF) Philomachus pugnax 0.9 0.35 0.20 
Sanderling (SAND) Calidris alba 22.7 0.26 0.67 
Sharp-tailed Sandpiper (SHSA) Calidris acuminata 150.6 0.40 0.71 
Sooty Oystercatcher (SOOY) Haematopus fuliginosus 0.2 0.48 0.00 
South Island Pied Oystercatcher 
(SOOY) Haematopus finschi 558.5 0.96 0.00 
Spoon-billed Sandpiper (SPSA) Calidris pygmaea 2.9 0.17 0.67 
Spotted Reshank (SPRE) Tringa erythropus 140.9 0.50 0.87 
Swinhoe's Snipe (SWSN) Gallinago megala 0.5 0.08 1.00 
Temminck's Stint (TEST) Calidris temminckii 3.6 0.23 0.86 
Terek Sandpiper (TESA) Xenus cinereus 10.6 0.47 0.35 
Variable Oystercatcher (VAOY) Haematopus unicolor 1.5 0.50 0.00 
Wanderling Tattler (WATA) Tringa incana 0.1 0.04 1.00 
Whimbrel (WHIM) Numenius phaeopus 22.4 0.56 0.26 
Wood Sandpiper (WOSA) Tringa glareola 43.3 0.57 0.69 
Wrybill (WRYB) Anarhynchus frontalis 79.9 0.25 NA 
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Appendix 2.5A - Candidate models of variables influencing relative occurrence 
frequency and relative foraging frequency of shorebirds in artificial habitats. The set 
plausible models (ΔAIC ≤ 2) are shown in bold. 
 
Model AIC df ΔAIC 

OCCURRENCE FREQUENCY    

Null model: Relative occurrence frequency ~1 + (1 | Family)     

NULL + migration status + conservation status 1912.1     4 0.0 

NULL + conservation status 1913.4 3 1.4 

NULL + body mass + migration status + conservation status  1913.9 5 1.8 

NULL + body mass + conservation status 1915.3 4 3.2 

NULL + migration status 1933.4 3 21.3 

NULL + body mass + migration status 1934.2 4 22.1 

NULL  1935.1 2 23.1 

NULL + body mass 1935.8 3 23.7 

 

 

FORAGING FREQUENCY 

   

Null model: Relative foraging frequency ~1 + (1 | Family)     

NULL + body mass + migration status + habitat 288.1 5 0.0 

NULL + body mass + migration status + conservation status 
+ habitat 

288.2 6 0.2 

NULL + body mass + conservation status + habitat 290.9 5 2.9 

NULL + body mass + habitat  291.2 4 3.1 

NULL + conservation status + habitat  303.4 4 15.3 

NULL + migration status + habitat 306.6 4 18.5 

NULL + habitat 307.8 3 19.7 

NULL + body mass + migration status + conservation status 328.3 5 40.2 

NULL + body mass + migration status  332.4 4 44.3 

NULL + body mass + conservation status  334.1 4 46.1 

NULL + body mass  339.6 3 51.6 

NULL + migration status + conservation status  357.4 4 69.3 

NULL + conservation status 362.2 3 74.2 

NULL + migration status 375.6 3 87.5 

NULL  381.6 2 93.5 
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Appendix 2.5B - Full model outputs of the set of plausible models 
 
A – Relative occurrence frequency 
 
Model: (Sites present, Sites not present) ~ migration status + conservation status + (1 | 
shorebird family) 
 
Variable Estimate Std. Error z value Pr(>|z|)     

Intercept -1.13     0.45   
Status as migratory -0.20     0.10 -1.84 0.07 
Status as threatened -0.26 0.05 -4.81 <.01 

 
Model: (Sites present, Sites not present) ~ conservation status + (1 | shorebird family) 
 
Variable Estimate Std. Error z value Pr(>|z|)     

Intercept -1.24     0.45   
Status as threatened -0.26 0.05 -4.85 <.01 

 
Model: (Sites present, Sites not present) ~ body mass + migration status + conservation status 
+ (1 | shorebird family) 
 
Variable Estimate Std. Error z value Pr(>|z|)     

Intercept -1.13     0.46   
Body mass 0.02 0.034 0.44 0.66 
Status as migratory -0.19 0.11 -1.85 0.07 
Status as threatened -0.27 0.06 -4.70 <.01 

 
B – Relative foraging frequency 
 
Model: (Sites present, Sites not present) ~ body mass + migration status + habitat + (1 | 
shorebird family) 
 
Variable Estimate Std. Error z value Pr(>|z|)     

Intercept 1.20     0.26   
Body mass -0.42     0.09   -4.26 <.001 
Status as migratory -0.62     0.29   -2.18     0.03     
Status as coastal 
specialist 

-1.04     0.16   -6.74 <.001 

 
Model: (Sites present, Sites not present) ~ body mass + migration status + conservation status 
+ habitat + (1 | shorebird family) 
 
Variable Estimate Std. Error z value Pr(>|z|)     

Intercept 1.21     0.27   
Body mass -0.39     0.10   -3.81 <.001 
Status as migratory -0.61     0.29   -2.10     0.04     
Status as threatened -0.25 0.18 -1.36 0.17 
Status as coastal 
specialist 

-1.02     0.16   -6.44 <.001 
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Appendix 3: Supplementary Materials for Chapter 3 
 

 

Appendix 3.1 - Detailed description of survey sites 

 

From north to south, we carried out shorebird surveys at: 

Dongtai (Figure 3-1B; approx. 32º45ʹ12ʺ N, 120º56ʹ60ʺ E): located just east of Jianggang, 

including the southern section of the Dongtai seawall (~4.3 km) and one of three large 

undeveloped ponds (~75 ha total area). Observations were made from the seawall. Water 

cover on the pond was 30-50% over the three months of the survey period, with the rest of 

the pond containing bare mud interspersed with vegetation (vegetation cover 10-30%) 

which included Phragmites australis in the pond and largely herbaceous vegetation up to 

~0.8 m tall on the bunds surrounding the pond. We checked the two undeveloped ponds 

adjacent to the survey pond occasionally and they did not appear to provide suitable 

habitat for shorebirds due to high water cover. Ideally all three ponds would have been 

systematically surveyed but this was not feasible due to logistical constraints. The smaller 

ponds further inland were not accessible for surveys. 

 

Hai’an (Figure 3-1C; approx. 32º40ʹ05ʺ N, 120º57ʹ13ʺ E): located just south of the 

Fangtang River, including a seawall (4.5 km) and adjacent aquaculture pond complex 

(~600 ha total area stretching approx. 2 km inland from the intertidal flats; most individual 

ponds 2 ha or smaller); surveys were conducted in the southern half of this area. To 

investigate whether any significant roosting occurred within the aquaculture complex, we 

conducted counts of randomly selected, accessible aquaculture ponds (determined 

primarily by track access and/or walking distance), stratified by distance from intertidal flats 

(< 1 km and 1–2 km from intertidal flats) and size (< 3 ha and > 5 ha). Nineteen randomly 

selected small ponds (< 3 ha) and both of the larger ponds (> 5 ha) in the survey area 

were surveyed. 

 

Fengli (Figure 3-1D; approx. 32º31ʹ31ʺ N, 121º07ʹ05ʺ E): located just to the east of the 

Yangkou chemical factory zone, including a triangular-shaped aquaculture pond complex 

(20 ha total; individual ponds 6 ha or smaller) and an adjacent large undeveloped dry area 

(~50 ha). Fengli was not originally selected as a survey area but was added to the survey 

schedule in October after shorebirds including Spoon-billed Sandpiper were observed 

aggregating there in September (L. Zhang pers obs). Eleven connected ponds of various 
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shapes, sizes and condition forming an overall triangular shape were all counted, as well 

as one large, dry undeveloped pond. 

 

Ju Zhen (Figure 3-1E; approx. 32º28ʹ19ʺ N, 121º13ʹ36ʺ E): located approximately 20 km 

southeast of Yangkou town, including a seawall (4 km) and adjacent aquaculture pond 

complex (~850 ha total stretching 2 km inland from the intertidal flats that included 4 large 

ponds immediately adjacent to intertidal flats (~150 ha total area) and small ponds mostly 

2ha or smaller) as well as a large claimed but currently undeveloped area immediately to 

the northwest of the intertidal flats (~380 ha). The borders of the undeveloped pond 

comprised a seawall on three sides; the remaining side (furthest from the intertidal flats) 

was defined somewhat arbitrarily from a point at which heavy growth of Spartina 

alterniflora commenced and the entirety of the ground was thickly covered with S. 

alterniflora, forming a de facto edge to the pond. Water cover on the pond was 40-50% 

over the two months of the survey period, with the rest of the pond containing bare mud 

interspersed with S. alterniflora. To investigate whether any significant roosting occurs 

within the aquaculture complex, we conducted counts of randomly selected, accessible 

aquaculture ponds (determined primarily by track access and/or walking distance), 

stratified by distance from intertidal flats (< 1 km and 1–2 km from intertidal flats) and size 

(< 2 ha and > 10 ha). Sixteen randomly selected small ponds (< 2 ha) and two of the four 

larger ponds (> 10 ha) in the complex were surveyed. 

 

Dongling (Figure 3-1F; approx. 32º19ʹ31ʺ N, 121º24ʹ58ʺ E): including approximately 1 km 

of seawall and adjacent intertidal flats roosting area. Aquaculture ponds in the vicinity of 

the intertidal flats roost were scanned on numerous occasions but no evidence of artificial 

supratidal habitat use was observed. 
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Appendix 3.2 - Count schedule and results 
 

Site Count date 
Tide 
condition* 

Intertidal flat 
state 

Total count all 
shorebirds 

Dongtai undeveloped 
ponds 

11/08/2017 
17/08/2017 
5/09/2017 
7/09/2017 
7/09/2017 
16/09/2017 
20/10/2017 
20/10/2017 

High  
High 
High 
Low 
High 
Low 
Low 
High 

Covered 
Uncovered 
Uncovered 
Uncovered 
Covered 
Uncovered 
Uncovered 
Covered 

21612 
102 
3300 
2200 
20100 
97 
1210 
10890 

Hai’an intertidal flats roost 12/08/2017 
28/08/2017 
12/09/2017 
15/09/2017 
18/10/2017 
18/10/2017 
21/10/2017 

High 
High 
High 
High 
High 
High 
High 

Covered** 
Covered** 
Covered** 
Uncovered 
Covered** 
Covered** 
Covered** 

2419 
8222 
8411 
5352 
3657 
3390 
5175 

Hai’an aquaculture (number 
of ponds) 

26/07/2017 (1) 
12/08/2017 (10) 
12/08/2017 (10) 
13/08/2017 (5) 
13/08/2017 (5) 
27/08/2017 (8) 
27/08/2017 (2) 
8/09/2017 (1) 
8/09/2017 (3) 
12/09/2017 (15) 
15/09/2017 (2) 
18/10/2017 (22) 
21/10/2017 (1) 

High 
Low 
High 
Low 
High 
Low 
High 
Low 
High 
High 
High 
High 
High 

Covered 
Uncovered 
Covered 
Uncovered 
Covered 
Uncovered 
Covered 
Uncovered 
Covered 
Covered 
Uncovered 
Covered 
Covered 

334 
762 
4468 
19 
3247 
13 
3463 
9 
3658 
628 
0 
1500 
36 

Fengli (number of ponds) 23/10/2017 (4) 
24/10/2017 (12) 

High 
High 

Covered 
Covered 

4511 
4165 

Ju Zhen undeveloped pond 14/08/2017 
16/08/2017 
9/09/2017 
9/09/2017 

High 
High 
High 
Low 

Covered 
Covered 
Covered 
Uncovered 

5052 
6627 
3641 
0 

Ju Zhen aquaculture 
(number of ponds) 

14/08/2017 (17) 
14/08/2017 (15) 
16/08/2017 (12) 
9/09/2017 (16) 

Low 
High 
High 
High 

Uncovered 
Covered 
Covered 
Covered 

6 
28 
12 
18 

Dongling intertidal flats 
roost 

10/08/2017 
7/09/2017 
21/09/2017 

High 
High 
High 

Uncovered 
Uncovered 
Uncovered 

12338 
15328 
10831 

 
*high = within three hours on either side of high tide; low = more than three hours from high tide 
**count was completed immediately before the intertidal flats were covered, at which point we observed all 
birds depart from the intertidal flats
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Appendix 3.3 - Maximum count of each shorebird species by location. Counts of international importance (> 1% of the 

estimated flyway population) indicated in bold italics. 

 AUGUST    SEPTEMBER    OCTOBER   
 
Location  
(n ponds) Dongtai (1) Hai'an (15) Ju Zhen (1) Ju Zhen (18) Dongtai (1) Hai'an (17) Ju Zhen (1) Ju Zhen (16) Dongtai (1) Hai'an (21) Fengli (11) 

 
Black-tailed Godwit 300 606 0 0 0 0 0 0 0 0 0 

Bar-tailed Godwit 3000 182 0 0 0 0 5 0 0 0 0 

Godwit sp 0 0 230 0 0 0 0 0 0 0 0 

Whimbrel 2 5 29 0 0 1 0 0 0 0 0 

Eurasian Curlew 2400 1 0 0 0 0 0 0 590 8 0 

Far Eastern Curlew 5 1 0 0 0 0 0 0 0 7 0 

Curlew sp 0 0 14 0 1100 0 1 0 0 0 0 

Spotted Redshank 1 0 0 0 0 0 0 0 0 1 485 

Common Redshank 2 5 10 0 8 5 0 0 0 0 0 

Marsh Sandpiper 6 1 0 0 3 0 1 0 0 0 56 

Common Greenshank 60 9 40 4 18 6 2 4 19 60 39 

Nordmann's Greenshank 250 0 2 0 4 0 0 0 0 0 0 

Green Sandpiper 7 0 0 0 0 0 0 0 0 0 0 

Wood Sandpiper 0 0 0 0 0 0 0 0 0 0 1 

Terek Sandpiper 100 56 200 0 100 9 1 0 0 10 1 

Common Sandpiper 0 4 1 5 0 3 0 3 0 4 3 

Grey-tailed Tattler 1 3 0 0 0 3 12 1 0 0 0 

Ruddy Turnstone 100 52 280 8 0 11 0 2 0 0 0 

Asian Dowitcher 2 2 0 0 0 0 0 0 0 0 0 

Great Knot 4000 125 30 0 0 5 1 0 0 0 0 

Red Knot 300 5 0 0 0 1 0 0 0 0 0 

Sanderling 100 1 0 0 0 1 0 0 0 0 15 

Red-necked Stint 1000 160 200 14 11 42 370 0 0 0 28 

Long-toed Stint 0 0 0 0 0 2 0 0 0 0 0 

Sharp-tailed Sandpiper 5 732 30 0 0 42 5 0 0 0 0 
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Dunlin 6500 2660 880 0 2 1093 1640 0 100 554 2909 

Curlew Sandpiper 0 2 0 0 0 0 0 0 0 0 0 

Spoon-billed Sandpiper 1 0 0 0 0 0 0 0 0 0 20 

Broad-billed Sandpiper 50 55 0 0 0 39 0 0 0 15 20 
Far Eastern 
Oystercatcher 234 3 0 0 200 0 3 0 360 0 0 

Black-winged Stilt 9 14 0 0 1 8 0 0 0 0 11 

Pied Avocet 17 0 0 0 200 0 0 0 0 0 11 

Pacific Golden Plover 0 0 0 0 0 0 0 0 0 0 1 

Grey Plover 1 10 102 0 2000 0 0 0 1490 0 0 

Little Ringed Plover 3 2 0 0 0 0 0 0 0 0 0 

Kentish Plover 1600 1265 0 5 16 1119 400 8 1091 826 3181 

Lesser Sand Plover 0 520 0 1 2 1621 0 0 0 50 78 

Greater Sand Plover 0 70 0 0 0 19 0 0 0 0 1 

Sand Plover sp 1600 280 0 0 0 0 800 0 0 0 0 

Oriental Pratincole 0 0 0 0 8 0 0 0 0 0 0 
Unidentified 
small/medium 0 300 4770 0 18000 200 400 0 8450 0 0 

TOTAL 21656 7131 6818 37 21673 4230 3641 18 12100 1535 6860 

 AUGUST TOTAL  35642 SEPTEMBER TOTAL 29562 OCTOBER TOTAL 20495 
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Appendix 3.4 - Detailed summary of count results and intertidal/supratidal dynamics 

in each survey region 

 

Dongtai. Very large aggregations of shorebirds were observed at high tide on the intertidal 

flats adjacent to the Dongtai seawall. We were unable to estimate numbers on the 

intertidal flats because birds occurred over a very large distance and the tide came in very 

quickly. However, on tides that covered the intertidal flats, almost all of the birds were 

observed crossing into the northernmost artificial supratidal pond shown in Figure 3-1B, 

which had a mean count of 17,534 ± 3,351 (n = 3; range 10,890 - 21,612) when the 

intertidal flats were covered and 1,382 ± 619 (n = 5; range 97 - 3,300) when the intertidal 

flats were uncovered. Birds were distributed in large groups throughout the dry areas of 

this pond. It was difficult to record shorebirds to species level within this pond because it is 

very large and could only be viewed from one side by standing on the seawall, so we were 

never able to record all birds to species level at this pond. We were nonetheless able to 

record a maximum of 24 shorebird species when the intertidal flats were covered 

compared with just 12 species over all counts when the intertidal flats were uncovered 

(Table 3-2). On the day (11 August 2017) when 24 species were recorded, Dunlin (~30%), 

Great Knot (19%), Bar-tailed Godwit (~14%) Eurasian Curlew (~11%), Kentish Plover 

(~7%) and Red-necked Stint (~5%) comprised almost 90% of all birds observed, though in 

later months Grey Plover also comprised a significant amount of the total (high count 2000 

in October, ~11% of the total count). A minimum of 250 Nordmann’s Greenshank were 

observed the August Dongtai count and this species was only observed in very small 

numbers at one other supratidal roost pond throughout the survey period, suggesting that 

the Dongtai roost is of particular importance to this species.  

 

Hai’an. Shorebirds were observed aggregating at high tide on the intertidal flats adjacent 

to the aquaculture complex at Hai’an (Figure 3-1C). Mean count on the intertidal flats when 

they were later covered by the tide was 5,212 ± 1,046 (n = 6) and 5,352 (n = 1) when the 

intertidal flats did not get covered by the tide (Table 3-2). On tides when the intertidal flats 

were covered, a significant number of shorebirds (generally small and medium sized) were 

observed flying inland from the seawall to roost within the aquaculture complex. However, 

the larger shorebird species were generally observed flying northward along the coast, 

possibly to join roosting flocks at Dongtai (located 8-10 km north of the Hai’an intertidal 

flats and the closest known roost in the direction they were seen flying).  
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In August, large flocks of shorebirds (> 3,500) were observed two adjacent aquaculture 

ponds next to the seawall, one wet and one dry. When the water levels were low enough 

to expose significant banks and several islands within the wet pond, shorebirds roosted 

here and none were seen on the bunds. However, water levels in this pond were 

subsequently raised making it less suitable for shorebird roosting. Initially, many of the 

birds roosted on one of the bunds of this pond and in an adjacent very dry pond. However 

by October both of these ponds had been largely abandoned by shorebirds, the former 

because of much higher water levels and the latter possibly as a result of disturbance (we 

observed dogs in this pond several times), and more birds were observed on smaller 

ponds throughout the rest of the aquaculture complex. In these smaller ponds, water cover 

was > 95% on most ponds and most of the birds roosted on the bunds in between ponds, 

with some limited foraging on the narrow mud banks (Figure 3-2).  

 

The average count across all aquaculture ponds at Hai’an was 3,355 ± 641 (n = 4; Table 

3-2). The maximum number of species recorded on the two adjacent aquaculture ponds 

discussed above in August was 19 species, compared with a maximum number of 20 

species observed on the intertidal flats. Nordmann’s Greenshank was observed on the 

intertidal flats but never in aquaculture ponds, and only very small numbers of Eurasian 

Curlew (max count on intertidal flats 435, max count on aquaculture ponds 8), Far Eastern 

Curlew (max count on intertidal flats 167, max count on aquaculture ponds 7) and Grey 

Plover (max count on intertidal flats 666, max count on aquaculture ponds 10) were seen 

on aquaculture ponds. Excepting the two aquaculture ponds discussed above that were 

mostly abandoned by shorebirds in October, the next highest number of species observed 

on any aquaculture pond was only 7 species. The species comprising the vast majority of 

individuals found in the aquaculture ponds at Hai’an were Dunlin, Kentish Plover, and 

Lesser Sand Plover (Appendix 3-3).  

 

Fengli. As this area was not originally selected to be surveyed, only one systematic survey 

of 11 ponds in a triangular-shaped aquaculture pond complex and an adjacent large dry 

area were carried out over two days, and only three ponds were surveyed more than once 

over the two days. A total of 4,810 birds (total aquaculture area count calculated using the 

maximum count for any ponds that were counted multiple times in the count period) was 

observed on these ponds but these were unevenly distributed. The dry undeveloped area 

(FE1) contained 429 (~10%) of the birds observed and four recently drained aquaculture 

ponds (FE2-FE5) contained 4,032 (~90%) of the birds observed (Appendix 3.5). Dunlin 
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(~65%), Kentish Plover (24%), Spotted Redshank (~6%) and Lesser Sand Plover (~2%) 

comprised more than 96% of all birds observed and no large shorebird species were 

present. The highest number of species observed on any one pond was 10 (Appendix 

3.5). Twenty Spoon-billed Sandpipers were observed on one pond (FE3) and a minimum 

of 23 individual Spoon-billed Sandpipers were observed over two days (known because 

three individuals with leg flags seen on the first day were not seen subsequently on the 

second day), a huge total for the Yangkou area which has seen numbers of Spoon-billed 

Sandpipers decrease dramatically in recent years (L. Zhang pers obs). On the ponds that 

had shorebirds present in large numbers, water cover was significantly < 100% and birds 

generally roosted or foraged in groups on exposed mud at the edges and in the centre of 

ponds. No birds were seen on bunds in this area. 

 

Ju Zhen. Shorebirds were observed flying directly into the large undeveloped pond 

adjacent to the seawall at high tide in Ju Zhen (Figure 3-1E) without large aggregations of 

shorebirds being observed on the intertidal flats prior to entering this pond. Construction 

was occurring on the seawall that comprised the seaward boundary of this pond, but within 

the pond there was a significant amount of bare mud and shallow water, and little human 

activity. Shorebirds generally roosted or foraged in large groups in the middle of this pond 

some distance (> 500m) inland from both the outer seawall and the wall adjoining it to the 

adjacent aquaculture complex. Mean shorebird count at this roost site when the intertidal 

flats was covered was 5,107 ± 862 (n = 3) with a maximum of 18 species recorded when 

the intertidal flats were covered; no shorebirds were observed at the pond the one time we 

checked it when the intertidal flats were uncovered (Appendix 3.5). While not all birds 

could be identified to species level due to the distance from the observer to the pond, 

small birds dominated with Dunlin (24%), Sand Plover sp. (9%), Red-necked Stint (6%), 

Kentish Plover (4%), Ruddy Turnstone (3%), Terek Sandpiper (2%) and unidentified 

small/medium shorebirds (49%) comprising 97% of the total across two counts (Appendix 

3.3).  

 

Very few shorebirds were observed within the aquaculture complex adjacent to this large 

undeveloped area. Of the 18 randomly selected ponds of varying size and distance from 

the intertidal flats surveyed, the highest mean count for any individual pond was only 11 

birds (Appendix 3.5) and we did not observe any large flocks flying inland from the 

intertidal flats past the undeveloped pond roost. Water cover in these ponds generally 
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approached 100% and birds were observed either on the bunds or on the very narrow 

muddy banks on the edge of ponds. 

 

Dongling. Large aggregations of shorebirds were observed on the intertidal flats at 

Dongling (Figure 3-1F) with a mean count of 12,832 ± 1,322 (n=3). This was despite this 

area being heavily covered with S. alterniflora for 1–2 km from the seawall out onto the 

intertidal flats. Even at very high tides, there was enough remaining intertidal flats around 

S. alterniflora patches that the birds could remain on the intertidal flats to roost. At a tide 

height of 753 cm, some birds (430 birds of 10,831 total observed) did leave the roost and 

move to inland areas, so presumably this intertidal flats roost would have been covered at 

tide heights above ~753 cm. However, this only occurred 1-3 times per month during 

August, September and October 2017, so it is expected that most shorebirds used this 

intertidal flat roost and did not need to move to supratidal areas for most of the migration 

period.
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Appendix 3.5 – Mean total shorebird count from each supratidal pond 
 

Survey region 
Mean count (n = number of counts) ± 
SE; intertidal flats covered 

Max number of species 
recorded; intertidal flats 
covered 

Mean count (n = number of counts) ± 
SE; intertidal flats uncovered 

Max number of  
species recorded; 
intertidal flats covered 

Dongtai undeveloped large pond 17534 (3) ± 3351 

 
 
 

24  1382 (5) ± 619 

 
 

12  

Hai’an intertidal flats roost  5212 (6) ± 1046  

(prior to intertidal flats being covered) 
20 5352 (1)  

(birds remained on the intertidal flats 
for the duration of high tide) 

12 

 
Hai’an aquaculture complex* 
 

 
Individual ponds: 

HS1-12D: 1549 (3) ± 851 
HS1-12W: 1459 (7) ± 670 
HS1-3: 1(3) ± 0.6 
HS1-5: 0 (3)  
HS1-8: 1 (3) ± 0.9 
HS2-1: 2 (3) ± 1 
HS2-6: 0 (3) 
HS2-8: 1 (3) ± 1 
HS3-1: 0.5 (2) ± 0.5 
HS3-4: 0 (2) 
HS3-12: 512 (2) ± 144 
HS3-18: 71 (2) ± 70 
HS3-20: 45 (2) ± 7 
HS4-4: 4 (2) ± 1 
HS4-9: 9 (3) ± 8 
HS4-13: 127 (2) ± 122 
HS4-14: 179 (2) ± 153 
HS4-21: 58 (3) ± 53 
HS5: 126 (3) ± 105 
HS6-4: 1 (2) ± 1 
HS6-5: 1 (2) ± 0 
HS6-6: 0(2) 
 
Total aquaculture area count**: 
3355 (4) ± 641 
 

 
 
17 
19 
1 
0 
3 
2 
0 
3 
1 
0 
6 
7 
3 
2 
3 
3 
3 
2 
7 
1 
1 
0 
 
 

 
Individual ponds: 

HS1-12D: 0 (1) 
HS1-12W: 130 (6) ± 126 
HS1-3: 0 (2)  
HS1-5: 0 (2) 
HS1-8: 0.5 (2) ± 0.5 
HS2-1: 0 (2) 
HS2-6: 0 (2) 
HS2-8: 0 (2) 
HS3-1: N/A 
HS3-4: N/A 
HS3-12: N/A 
HS3-18: N/A 
HS3-20: N/A 
HS4-4: N/A 
HS4-9: 3 (1) 
HS4-13: 0 (1) 
HS4-14: N/A 
HS4-21: 0 (1) 
HS5: 18 (1) 
HS6-4: 0 (1) 
HS6-5: 1 (1) 
HS6-6: 0 (1) 
 
Total aquaculture area count**: 266 
(3) ± 258  

 
 
0 
6 
0 
0 
1 
0 
0 
0 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
2 
0 
N/A 
0 
5 
0 
1 
0 
 

Fengli aquaculture complex FE1: 429 (1) 
FE2: 17 (1) 
FE3: 149 (3) ± 54 
FE4: 3668 (2) ± 29 
FE5: 147 (2) ± 82 

 
2 
4 
3 
10 

Not observed 
 
 

N/A 
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FE6: 5 (1) 
FE7: 1 (1) 
FE8: 0 (1) 
FE9: 2 (1) 
FE10: 0 (1) 
FE11: 0 (1) 
 
Total aquaculture area count***: 
4810  

8 
2 
1 
0 
1 
0 
 
 

 
Ju Zhen undeveloped large pond 

 
5107 (3) ± 862 

 

 
16 

 
0 (1) 

 
0 

Ju Zhen aquaculture complex* YHS3: 0 (3) 
YHS4: 0 (3) 
YHS9-2: 11 (3) ± 6 
YHS9-4: 3 (3) ± 1 
YHS9-5: 2 (3) ± 2 
YHS9-8: 1 (3) ± 0.6 
YHS9-9: 1 (3) ± 0.3 
YHS12-1: 0 (1) 
YHS12-2: 0 (1) 
YHS12-6: 0 (2) 
YHS17-1: 0 (3) 
YHS17-3: 0.7 (3) ± 0.3 
YHS17-6: 0.7 (3) ± 0.3 
YHS17-9: 0 (3) 
YHS17-10: 0.3 (3) ± 0.3 
YHS20-1: 0 (1) 
YHS20-4: 0 (1) 
YHS20-5: 0 (1) 
 
Total aquaculture area count**:  
19 (3) ± 5 

0 
0 
5 
3 
4 
2 
1 
0 
0 
0 
0 
1 
1 
0 
1 
0 
0 
0 
 

YHS3: 0 (1) 
YHS4: N/A 
YHS9-2: 1 (1) 
YHS9-4: 0 (1) 
YHS9-5: 0 (1) 
YHS9-8: 2 (1) 
YHS9-9: 1 (1) 
YHS12-1: 0 (1) 
YHS12-2: 0 (1) 
YHS12-6: 1 (1) 
YHS17-1: 0 (1) 
YHS17-3: 0 (1) 
YHS17-6: 0 (1) 
YHS17-9: 1 (1) 
YHS17-10: 0 (1) 
YHS20-1: 0 (1) 
YHS20-4: 0 (1) 
YHS20-5: 0 (1) 
 
Total aquaculture area count ***: 6 

0 
0 
1 
0 
0 
2 
1 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
 

 
Dongling intertidal flats roost 

 
N/A – intertidal flats was never 
covered at this site 

 
N/A 

 
12832 (3) ± 1322 

 
22 

*due to logistical constraints only a random sample of ponds from within these aquaculture complexes was surveyed so the total number of birds within the complex is expected to 
have been higher than the total observed in this study 
** mean total aquaculture area count calculated using the maximum count for any ponds that were counted multiple times in one survey  
*** total aquaculture area count calculated using the maximum count for any ponds that were counted multiple times in one survey; not a mean as this area was only surveyed once
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Appendix 3.6 – Estimated number of days per month when intertidal flats were 

covered in each survey region 

Region Tide height when intertidal 
flats were observed by the 
survey team to be 
covered 

Tide chart 
used 

Minimum number of days in 2017 the shorebirds 
were required to use supratidal habitat 
 
 
 
August                September        October 

Dongtai between 591 and 619 cm Jianggang 11 12 10 
Hai’an between 573 and 664 cm Yangkou 17 18 17 
Fengli unknown < 660cm Yangkou 18 18 17 
Ju Zhen unknown < 589cm Yangkou 25 25 24 
Dongling > 753cm* Yangkou 3 2 1 

 
*at tide height 753cm the vast majority of birds were able to remain on the intertidal flats roost but the roost 
was very crowded and some birds (430 birds of 10831 total observed) left the roost and moved to supratidal 
areas. It is therefore assumed that birds would have been pushed off the intertidal flats at tides > 753cm, but 
this was not actually observed. 
 

 
Appendix 3.7 – Full model output of most supported model 
 
Model: Shorebird abundance ~ Intertidal flats cover + Water cover + Vegetation cover + 
Bund + Size + Structures + (1 | Region) + (1 | Pond) 
Variable Estimate Std. Error z value Pr(>|z|)     

Intercept -1.71      1.25   -1.37  0.17     
Intertidal flats cover  2.61 0.50     5.20  2.02 e-07 *** 
Water cover -1.33      0.33    4.00 -6.54 e-05 *** 
Bunds   2.03      0.75     2.72  0.007 ** 
Vegetation cover -0.71      0.28   -2.53  0.01*   
Size  1.12      0.31     3.63  0.0003*** 
Structures -1.21      0.41   -2.95  0.003** 

 
Significance codes:  0 = ***; 0.001 = ** 0.01 = *  
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Appendix 3.8 – Foraging results 

 

At the undeveloped pond at Dongtai, during the one count (7 September 2017) when we 

estimated foraging proportion when the intertidal flats were covered, < 1% of the total 

number of sightings were birds observed foraging. During four counts in the pond when 

the intertidal flats were uncovered, across the 17 species observed, nearly half of the total 

number of sightings were birds observed foraging, including a high proportion of Lesser 

Sand Plover (100%), Little Ringed Plover (100%), Green Sandpiper (100%), Common 

Greenshank (69%), Red-necked Stint (65%), Kentish Plover (57%), Common Redshank 

(50%), unidentified shorebirds (50%), Marsh Sandpiper (44%), Pied Avocet (42%) and 

Black-winged Stilt (40%; Table A3.8.1). Combined these results suggest that this pond 

was primarily used as a high tide roost but that there were some foraging opportunities.  

 

Table A3.8.1 Shorebirds observed foraging during counts in the large undeveloped pond at 
Dongtai when the intertidal flats were uncovered (n = 4; counts in August, September and October) 
 

Species Total sightings Number observed foraging Proportion observed foraging 

 
Common Redshank 10 5 0.5 
Marsh Sandpiper 9 4 0.444 
Common Greenshank 48 33 0.690 
Nordman's Greenshank 4 0 0 
Green Sandpiper 7 7 1 
Asian Dowicher 1 0 0 
Red-necked Stint 23 15 0.652 
Sharp-tailed Sandpiper 1 1 1 
Dunlin 102 3 0.029 
Far Eastern Oystercatcher 200 0 0 
Black-winged Stilt 10 4 0.4 
Pied Avocet 41 17 0.415 
Grey Plover 1 0 0 
Little Ringed Plover 3 3 1 
Kentish Plover 1139 650 0.571 
Lesser Sand Plover 2 2 1 
Oriental Pratincole 8 0 0 
unidentified small/medium 2000 1000 0.5 
TOTAL 3609 1744 0.483 
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At Hai’an, across the 29 species observed during 56 counts when the intertidal flats were 

covered, the only species of which more than 2% of the total number of sightings were 

birds observed foraging were Black-winged Stilt (41%), Common Sandpiper (38%), 

Common Greenshank (13%), Red-necked Stint (5%) and Broad-billed Sandpiper (4%), 

and none of these occurred in large numbers; only 1% of the total number of sightings 

were birds observed foraging (Table A3.8.2). Combined, this indicates that the fish ponds 

at Hai’an, which generally had high water cover, were primarily used as high tide roosts.  

 

Table A3.8.2 Shorebirds observed foraging during counts at Hai’an when the intertidal flats were 
covered (n = 56; counts in August, September and October) 
 

Species Total sightings Number observed foraging Proportion observed foraging 

 
Black-tailed Godwit  606 0 0 
Bar-tailed Godwit 232 0 0 
Whimbrel 7 0 0 
Eurasian Curlew 10 0 0 
Far Eastern Curlew 9 0 0 
Spotted Redshank 1 1 1 
Common Redshank 15 1 0.07 
Marsh Sandpiper 1 0 0 
Common Greenshank 67 9 0.134 
Terek Sandpiper 116 0 0 
Common Sandpiper 8 3 0.375 
Grey-tailed Tattler 7 0 0 
Ruddy Turnstone 95 0 0 
Asian Dowicher 3 0 0 
Great Knot 228 0 0 
Red Knot 9 0 0 
Sanderling  3 0 0 
Red-necked Stint 312 16 0.051 
Long-toed Stint 2 0 0 
Sharp-tailed Sandpiper 1456 18 0.012 
Dunlin 6867 88 0.013 
Curlew Sandpiper 2 0 0 
Broad-billed Sandpiper 137 6 0.044 
Far Eastern  Oystercatcher 5 0 0 
Black-winged Stilt 17 7 0.411 
Grey Plover 14 0 0 
Kentish Plover 3626 14 0.004 
Lesser Sand Plover 2273 0 0 
Greater Sand Plover 92 0 0 
Sand Plover sp 280 0 0 
unidentified small/medium 500 0 0 
TOTAL 17000 163 0.01 
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At Ju Zhen, feeding behaviour was recorded during two of the three counts when the 

intertidal flats were covered. Across the 20 species observed, species of which more than 

5% of the total number of sightings were birds observed foraging included Red-necked 

Stint (88%), Sharp-tailed Sandpiper (71%), Far Eastern Oystercatcher (67%), Common 

Redshank (50%), Common Greenshank (29%) and Grey-tailed Tattler (25%); about 7% of 

the total number of sightings were birds observed foraging (Table A3.8.3). Combined, this 

indicates that this undeveloped pond was primarily used as a high tide roost with some 

opportunities for supplemental foraging for some species. 

 

Table A3.8.3 Shorebirds observed foraging during counts at Ju Zhen (large undeveloped pond) 
when the intertidal flats were covered (n = 2; counts in August and September) 
 

Species Total sightings Number observed foraging Proportion observed foraging 

 
Bar-tailed Godwit 5 0 0 
Godwit sp 230 0 0 
Whimbrel 22 0 0 
Curlew sp. 1 0 0 
Common Redshank 10 5 0.50 
Marsh Sandpiper 1 1 1 
Common Greenshank 42 12 0.286 
Nordmann's Greenshank 2 0 0 
Terek Sandpiper 201 1 0.005 
Common Sandpiper 1 0 0 
Grey-tailed Tattler 12 3 0.25 
Ruddy Turnstone 280 0 0 
Great Knot 31 0 0 
Red-necked Stint 570 500 0.877 
Sharp-tailed Sandpiper 35 25 0.714 
Dunlin 2520 82 0.033 
Far Eastern  Oystercatcher 3 2 0.667 
Grey Plover 102 0 0 
Kentish Plover 400 20 0.05 
Sand Plover sp 800 0 0 
unidentified small/medium 5000 50 0.01 
TOTAL 10268 701 0.06827 
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At Fengli, across the 17 species observed when the intertidal flats were covered, a 

significant proportion of the total number of sightings of Red-necked Stint (94%), Marsh 

Sandpiper (92%), Spoon-billed Sandpiper (86%), Black-winged Stilt (44%), Spotted 

Redshank (42%), Pied Avocet (36%), and Common Greenshank (14%) were birds 

observed foraging (Table A3.8.4). Authors MVJ and LZ remained for several hours on both 

days at the pond where Spoon-billed Sandpipers were found and observed individuals 

feeding vigorously for extended periods of time and remaining in the pond to feed after the 

large group of Kentish Plovers also using the pond had departed for the intertidal flats after 

high tide. However, still only about 7% of the total number of sightings were birds observed 

foraging due to the large number of Dunlin and Kentish Plover not observed foraging (< 

1% and < 3% of sightings, respectively). Overall this suggests that the partially drained 

fishponds at Fengli provided some substantive foraging opportunities for some species 

(including Spoon-billed Sandpiper) during late October, but were still used primarily as a 

high tide roost for the bulk of individuals observed at the site. 

 
 
Table A3.8.4 Shorebirds observed foraging during counts at Fengli when the intertidal flats were 
covered (n = 16; counts over two days in October) 
 

Species Total sightings Number observed foraging Proportion observed foraging 

 
Spotted Redshank 649 273 0.420647 
Marsh Sandpiper 71 65 0.915493 
Common Greenshank 57 8 0.140351 
Wood Sandpiper 1 0 0 
Terek Sandpiper 1 0 0 
Common Sandpiper 3 0 0 
Sanderling 17 2 0.117647 
Red-necked Stint 49 46 0.938776 
Dunlin 3814 29 0.007604 
Spoon-billed Sandpiper 35 30 0.857143 
Broad-billed Sandpiper 30 0 0 
Black-winged Stilt 16 7 0.4375 
Pied Avocet 11 4 0.363636 
Pacific Golden Plover 1 0 0 
Kentish Plover 3782 103 0.027234 
Lesser Sand Plover 138 0 0 
Greater Sand Plover 1 0 0 
TOTAL 8676 567 0.065353 



180 
 

Appendix 4: Supplementary Materials for Chapter 4 
 
Appendix 4.1 - Regions of Australia with artificial sites that are used by shorebirds (as per Chapter 2). For regions included in 
the analysis, all artificial and natural sites identified are listed, and reasons for any site exclusions given. For regions not 
included in the analysis, all artificial sites are listed, and reasons for regional exclusions given. 
 
INCLUDED REGIONS 
 
REGION: DARWIN HARBOUR 
 
Artificial/semi-artificial sites (as per Chapter 2) 

Site Habitat  
Included 
(Y/N) Reason for exclusion 

Average non-breeding 
total shorebird count 
(2009-2018) 

East Arm Wharf Port Y N/A 362 
Leanyer Sewerage Treatment Plant Wastewater treatment N Counts for <60% of time series 95 
Spot On Marine  
[not included in Chapter 2; data from A. 
Lilleyman unpublished data] 

Constructed roost Y N/A 429 

 
Natural sites (source: National Shorebird Monitoring Program (BirdLife Australia)) 

Site Habitat 
Included 
(Y/N) Reason for exclusion 

Average non-breeding 
total shorebird count 
(2009-2018) 

East Point Natural Y N/A 627 
Lee Point Natural Y N/A 3433 
Nightcliff Rocks Natural Y N/A 517 
Sandy Creek  Natural Y N/A 1048 
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REGION: GULF ST VINCENT 
 
Artificial/semi-artificial sites (as per Chapter 2) 

Site Habitat  
Included 
(Y/N) Reason for exclusion 

Average non-breeding 
total shorebird count 
(2009-2018) 

Dry Creek Saltworks Salt production Y N/A 7821 
Price Saltworks Salt production Y N/A 5643 
 
Natural sites (source: National Shorebird Monitoring Program (BirdLife Australia)) 

Site Habitat  
Included 
(Y/N) Reason for exclusion 

Average non-breeding 
total shorebird count 
(2009-2018) 

Bald Hill Natural Y N/A 386 
Clinton Conservation Park Natural N Counts for <60% of time series 1656 
Light Beach Natural Y N/A 1806 
Macs Beach Natural Y N/A 309 
Middle Beach Area Natural N Counts for <60% of time series 17 
Port Arthur Natural Y N/A 57 
Port Clinton Natural Y N/A 264 
Port Gawler Seafront Natural N Counts for <60% of time series 344 
Port Parham Natural Y N/A 212 
Port Prime  Natural Y N/A 1784 
Port Wakefield Natural N Counts for <60% of time series 736 
Section Banks Natural Y N/A 538 
Thompson's Beach Natural N Counts for <60% of time series 515 
Thompson's Beach North Natural Y N/A 423 
Thompson's Beach South Natural Y N/A 1100 
Tiddy Widdy Natural N Counts for <60% of time series 5 
Torrens Island Natural N Counts for <60% of time series 72 
Webb Beach Natural Y N/A 209 
Whicker Rd Wetlands Natural N Counts for <60% of time series 54 
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REGION: HUNTER ESTUARY  
 
Artificial/semi-artificial sites (as per Chapter 2) 

Site Habitat  
Included 
(Y/N) Reason for exclusion 

Average non-breeding 
total shorebird count 
(2001-2018) 

Ash Island Area E Constructed roost Y N/A 359 
Kooragang Dykes Constructed roost Y N/A 1516 
Stockton Sandspit  Constructed roost Y N/A 1345 
Stockton Channel [not included in 
Chapter 2; data from Hunter Bird 
Observers Club] 

Constructed roost Y N/A 12 

Fern Bay [not included in Chapter 2; 
data from Hunter Bird Observers Club] 

Constructed roost Y N/A 26 

Hexham Swamp [not included in 
Chapter 2; data from Hunter Bird 
Observers Club] 

Modified wetland N Counts for <60% of time series 1013 [2014-2018 only] 

Tomago Wetlands [not included in 
Chapter 2; data from Hunter Bird 
Observers Club] 

Modified wetland N Counts for <60% of time series 1347 [2013-2018 only] 

 
Natural sites (source: Hunter Bird Observers Club) 

 

Site Habitat  
Included 
(Y/N) Reason for exclusion 

Average non-breeding 
total shorebird count 
(2001-2018) 

Fullerton Cove Natural Y N/A 128 
 
REGION: MORETON BAY 
 
Artificial/semi-artificial sites (as per Chapter 2) 

Site Habitat  
Included 
(Y/N) Reason for exclusion 

Average non-breeding 
total shorebird count 
(2003-2018) 

Manly Constructed roost Y N/A 2030 
Port of Brisbane Port Y N/A 4800 
Kakadu Beach Constructed roost Y N/A 1080 
Toorbul Constructed roost  Y N/A 1253 
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Natural sites (source: Queensland Wader Study Group) 

 

Site Habitat  
Included 
(Y/N) Reason for exclusion 

Average non-breeding 
total shorebird count 
(2003-2018) 

Acacia Street  Natural Y N/A 272 
Amity Point North Stradbroke Island Natural N Counts for <60% of time series 1021 
Amity Point sandbank  Natural Y N/A 801 
Anne Beasley's Lagoon, Nudgee Natural N Counts for <60% of time series 44 
Base Street, Victoria Point Natural N Counts for <60% of time series 88 
Bishop Island Natural Y N/A 7141 
Bishop's Marsh Natural N Counts for <60% of time series 0 
Brisbane Airport northern beach Natural N Counts for <60% of time series 166 
Brisbane Airport southern beach Natural N Counts for <60% of time series 42 
Buckley's Hole Bribie Island  Natural Y N/A 139 
Buckley's Hole sandbar Bribie Island  Natural Y N/A 494 
Bullock Creek mouth claypan Natural N Counts for <60% of time series 84 
Cabbage Tree Point Pimpama 
Conservation Reserve 

Natural N Counts for <60% of time series 201 

Caboolture River mouth  Natural Y N/A 357 
Caloudra bar Natural N Counts for <60% of time series 260 
Coombabah Lake & Creek site 1 Natural N Counts for <60% of time series 0 
Crab Island off southern Moreton Island Natural N Counts for <60% of time series 315 
Currigee North, South Stradbroke 
Island 

Natural N Counts for <60% of time series 5 

Currigee South, South Stradbroke 
Island 

Natural N Counts for <60% of time series 48 

Day's Gutter, Moreton Island Natural N Counts for <60% of time series 670 
Dead Tree Beach, Moreton Island Natural N Counts for <60% of time series 4797 
Deception Bay central  Natural Y N/A 2 
Deception Bay claypan  Natural Y N/A 297 
Deception Bay south  Natural Y N/A 334 
Dohle's vic. Pine River north side Natural N Counts for <60% of time series 0 
Donnybrook claypan  Natural Y N/A 277 
Donnybrook Jetty Natural N Counts for <60% of time series 4 
Dunwich, (One Mile), North Stradbroke 
Island  

Natural N Counts for <60% of time series 33 
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Dux Creek, Bribie Island Natural N Counts for <60% of time series 1458 
East Geoff Skinner Reserve  Natural Y N/A 724 
Empire Point Natural N Counts for <60% of time series 72 
Fisherman Island claypan  Natural Y N/A 526 
Fisherman Island Visitor Centre Natural N Counts for <60% of time series 23 
Glass Mountain Creek, Pumicestone 
Passage 

Natural N Counts for <60% of time series 100 

Glasshouse Mountain Creek tree roost Natural N Counts for <60% of time series 146 
Goat Island south east Natural N Counts for <60% of time series 392 
Gregory Road, Hays Inlet Natural N Counts for <60% of time series 727 
Horsehoe Bay, South Stradbroke Island Natural N Counts for <60% of time series 132 
Jackson Creek Point Natural N Counts for <60% of time series 8 
Kedron Brook Wetlands Natural N Counts for <60% of time series 148 
Kianawah Road Wetland Natural N Counts for <60% of time series 157 
King Street Mudflat, Thornlands  Natural Y N/A 530 
Korman Road East claypan Natural N Counts for <60% of time series 14 
Lime Pocket, Pumicestone Passage Natural N Counts for <60% of time series 161 
Luggage Point  Natural Y N/A 1354 
Luggage Point riverside Natural N Counts for <60% of time series 37 
Lytton  Natural Y N/A 531 
Lytton Claypan No. 1  Natural Y N/A 387 
Lytton north Natural N Counts for <60% of time series 32 
Manly Lota Esplanade  Natural Y N/A 8 
Mirapool Beach sandbank Natural N Counts for <60% of time series 1693 
Mirapool beach, Moreton Island  Natural Y N/A 1606 
Mirapool, Moreton Island  Natural Y N/A 307 
Mission Point Natural N Counts for <60% of time series 97 
Mud Island north west rubble Natural N Counts for <60% of time series 4 
Mud Island northern rubble Natural N Counts for <60% of time series 3 
Nandeebie Park Cleveland  Natural Y N/A 155 
Nathan Road Redcliffe Natural N Counts for <60% of time series 154 
Nudgee transfer station Natural N Counts for <60% of time series 60 
Nudgeee Bike Track wetlands Natural N Counts for <60% of time series 87 
Oyster Point  Natural Y N/A 232 
Peel Island Jetty environs Natural N Counts for <60% of time series 0 
Peel Island north west corner Natural N Counts for <60% of time series 0 
Pimpama foreshore Natural N Counts for <60% of time series 96 
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Pine Rivers north  Natural Y N/A 415 
Pine Rivers Wetland Reserve  Natural Y N/A 709 
Point Halloran private land  Natural Y N/A 1 
Point Halloran reserve  Natural Y N/A 111 
Poverty Creek 1 km South Natural N Counts for <60% of time series 951 
Poverty Creek behind Mission Point Natural N Counts for <60% of time series 202 
Poverty Creek, Bribie Island Natural N Counts for <60% of time series 25 
Redcliffe airport north side  Natural Y N/A 457 
Reeders Point, Moreton Island  Natural Y N/A 1774 
Roy's Road, Pumicestone Passage Natural N Counts for <60% of time series 86 
Sandbank No. 1, Caloundra Natural N Counts for <60% of time series 147 
Sandbank No. 2, Caloundra Natural N Counts for <60% of time series 0 
Sandbanks No. 1 and No. 2, Caloundra Natural N Counts for <60% of time series 0 
Sandhills, Moreton Island Natural N Counts for <60% of time series 52 
Sandy Bank, Toondah Harbour Natural N Counts for <60% of time series 112 
Scarborough to Clontarf Natural N Counts for <60% of time series 59 
South Stradbroke Island (north) Natural N Counts for <60% of time series 1 
South Stradbroke Island tip  Natural Y N/A 151 
St Helena Island homestead Natural N Counts for <60% of time series 102 
St Helena Island north Natural N Counts for <60% of time series 84 
St Helena Island pier Natural N Counts for <60% of time series 60 
St Helena Island south east Natural N Counts for <60% of time series 122 
St Helena Island wetland Natural N Counts for <60% of time series 3 
Swan Bay North Stradbroke Island Natural N Counts for <60% of time series 578 
The Crescent Toorbul Natural N Counts for <60% of time series 17 
Thooloora Island north end Natural N Counts for <60% of time series 384 
Thooloora Island south east Natural N Counts for <60% of time series 0 
Thornlands Road, Thornlands  Natural Y N/A 318 
Thornside Mooroondu Point Natural N Counts for <60% of time series 40 
Thornside Queens Esplanade Natural N Counts for <60% of time series 155 
Toorbul George Bishop causeway Natural N Counts for <60% of time series 349 
Toorbul north  Natural Y N/A 259 
Toorbul sandfly  Natural Y N/A 126 
Toorbul sandspit  Natural Y N/A 11 
Wave Break, Sand Island Natural N Counts for <60% of time series 203 
West Geoff Skinner Reserve  Natural Y N/A 975 
Wickham Point  Natural Y N/A 5 
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REGION: PORT PHILLIP BAY 
 
Artificial/semi-artificial sites (as per Chapter 2) 

Site Habitat  
Included 
(Y/N) Reason for exclusion 

Average non-breeding 
total shorebird count 
(1987-2017) 

Avalon Saltworks Salt production Y N/A 2999 
Cheetham Wetlands Salt production Y N/A 4803 
Eastern Treatment Plant Wastewater treatment N Counts for <60% of time series 702 
Moolap Saltworks Salt production Y N/A 3970 
Sand Island & Queenscliff shore 
[not included in Chapter 2; data from 
National Shorebird Monitoring Program] 

Constructed roost Y N/A 800 

Western Treatment Plant Wastewater treatment Y N/A 12415 
 
Natural sites (source: National Shorebird Monitoring Program (BirdLife Australia)) 

Site Habitat  
Included 
(Y/N) Reason for exclusion 

Average non-breeding 
total shorebird count 
(1987-2017*) 

Boundary Rd Swamp Natural N Counts for <60% of time series 182 
Edithvale Wetlands A Natural N Counts for <60% of time series 588 
Edithvale Wetlands B Natural Y N/A 43 
Edwards Point Natural Y N/A 788 
Freshwater Lake Natural N Counts for <60% of time series 458 
Jawbone Reserve Natural N Counts for <60% of time series 119 
Kororoit Creek Natural N Counts for <60% of time series 156 
Kororoit Creek Mouth Natural N Counts for <60% of time series 135 
Lake Victoria Natural Y N/A 1542 
Lonsdale Lakes Natural Y N/A 118 
Mud Islands Natural Y N/A 1861 
Point Cook foreshore Natural N Counts for <60% of time series 2490 
Point Cook Lake Natural N Counts for <60% of time series 533 
Point Richards beach Natural N Counts for <60% of time series 24 
Seaford Wetlands Natural Y N/A 208 
Spectacle Ponds Natural N Counts for <60% of time series 58 
Swan Bay west Natural Y N/A 350 
*1987-2015 was the time series used for Double-banded Plover analysis 
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EXCLUDED REGIONS 
 
REGION: DAMPIER PENINSULA 
Artificial/semi-artificial sites (as per Chapter 2) 

Site Habitat  
Included 
(Y/N) Reason for exclusion 

Dampier Saltworks Salt production N Insufficient monitoring of natural sites in the region for 
comparison 

REGION: GLADSTONE HARBOUR 
 
Artificial sites (as per Chapter 2) 

Site Habitat  
Included 
(Y/N) 

Reason for exclusion 
 

Western Basin Reclamation Area Constructed roost N Average count for all species at the artificial site < national 
significance threshold 

Port Alma Saltworks Saltworks N Counted irregularly 
Cheetham Saltworks [Queensland] Saltworks N Counted irregularly 
 
REGION: PARRAMATTA RIVER 
 
Artificial/semi-artificial sites (as per Chapter 2) 

Site Habitat  
Included 
(Y/N) Reason for exclusion 

Sydney Olympic Park Waterbird Refuge Constructed roost N Average count for all species at the artificial site < national 
significance threshold 

 
REGION: PORT HEDLAND  
 
Artificial/semi-artificial sites (as per Chapter 2) 

Site Habitat  
Included 
(Y/N) Reason for exclusion 

Port Hedland Dampier Saltworks Salt production N Insufficient time series; insufficient monitoring of natural sites 
for comparison 
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Appendix 4.2 - Number of years that each site was missing data and resultant imputations in three regions with missing data 
 

Region Site 
# of years 
missing data 

Total 
years % missing data Number of imputations 

Gulf St Vincent Webb Beach 1 10 10%  

Gulf St Vincent Thompson's Beach South 2 10 20%  

Gulf St Vincent Thompson's Beach North 3 10 30%  

Gulf St Vincent Section Banks 2 10 20%  

Gulf St Vincent Price Saltworks 3 10 30%  

Gulf St Vincent Port Prime  3 10 30%  

Gulf St Vincent Port Parham 1 10 10%  

Gulf St Vincent Port Clinton 0 10 0%  

Gulf St Vincent Port Arthur 3 10 30%  

Gulf St Vincent Middle Beach Area 3 10 30%  

Gulf St Vincent Light Beach 1 10 10%  

Gulf St Vincent Dry Creek Saltworks 0 10 0%  

Gulf St Vincent Bald Hill 4 10 40%  

Gulf St Vincent REGIONAL TOTAL 26 130 20% 20 

Moreton Bay Acacia Street  1 16 6%  

Moreton Bay Amity Point sandbank  7 16 44%  

Moreton Bay Bishop Island 0 16 0%  

Moreton Bay Buckley's Hole Bribie Island  6 16 38%  

Moreton Bay Buckley's Hole sandbar Bribie Island  3 16 19%  

Moreton Bay Caboolture River mouth  0 16 0%  

Moreton Bay Deception Bay central  0 16 0%  

Moreton Bay Deception Bay claypan  0 16 0%  

Moreton Bay Deception Bay south  0 16 0%  

Moreton Bay Donnybrook claypan  5 16 31%  

Moreton Bay East Geoff Skinner Reserve  0 16 0%  

Moreton Bay Fisherman Island claypan  0 16 0%  

Moreton Bay Kakadu Beach 0 16 0%  

Moreton Bay King Street Mudflat, Thornlands  0 16 0%  
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Moreton Bay Luggage Point  1 16 6%  

Moreton Bay Lytton  0 16 0%  

Moreton Bay Lytton Claypan No. 1  5 16 31%  

Moreton Bay Manly  0 16 0%  

Moreton Bay Manly Lota Esplanade  0 16 0%  

Moreton Bay Mirapool beach, Moreton Island  2 16 13%  

Moreton Bay Mirapool, Moreton Island  5 16 31%  

Moreton Bay Nandeebie Park Cleveland  3 16 19%  

Moreton Bay Oyster Point  1 16 6%  

Moreton Bay Pine Rivers north  1 16 6%  

Moreton Bay Pine Rivers Wetland Reserve  1 16 6%  

Moreton Bay Port of Brisbane 0 16 0%  

Moreton Bay Point Halloran private land  2 16 13%  

Moreton Bay Point Halloran reserve  1 16 6%  

Moreton Bay Redcliffe airport north side  5 16 31%  

Moreton Bay Reeders Point, Moreton Island  4 16 25%  

Moreton Bay South Stradbroke Island tip  6 16 38%  

Moreton Bay Thornlands Road, Thornlands  0 16 0%  

Moreton Bay Toorbul 0 16 0%  

Moreton Bay Toorbul north  0 16 0%  

Moreton Bay Toorbul sandfly  0 16 0%  

Moreton Bay Toorbul sandspit  0 16 0%  

Moreton Bay West Geoff Skinner Reserve  0 16 0%  

Moreton Bay Wickham Point  0 16 0%  

Moreton Bay REGIONAL TOTAL 59 608 10% 10 

Port Phillip Bay Avalon Saltworks 2 31 6%  

Port Phillip Bay Cheetham Wetlands 2 31 6%  

Port Phillip Bay Edithvale Wetlands B 8 31 26%  

Port Phillip Bay Edwards Point 0 31 0%  

Port Phillip Bay Lake Victoria 1 31 3%  

Port Phillip Bay Lonsdale Lakes 7 31 23%  
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Port Phillip Bay Moolap Saltworks 1 31 3%  

Port Phillip Bay Mud Islands 2 31 6%  

Port Phillip Bay Sand Island & Queenscliff shore 1 31 3%  

Port Phillip Bay Seaford Wetlands 8 31 26%  

Port Phillip Bay Swan Bay west 0 31 0%  

Port Phillip Bay Western Treatment Plant 0 31 0%  

Port Phillip Bay REGIONAL TOTAL 32 372 9% 9 
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Appendix 4.3 - Migration status, conservation status, habitat category and family used for each shorebird species in 
generalised mixed models that related the average proportion of birds (for species that occurred in nationally significant 
numbers) that used artificial habitats in each region to species traits. 
 
Species Migration Conservation status Habitat Family 

 
Bar-tailed Godwit 
Limosa lapponica 

 
Migratory 

 
Not threatened 

 
Coastal specialist 

 
Scolopacidae 

Black-tailed Godwit 
Limosa limosa 

Migratory Not threatened Generalist/inland specialist Scolopacidae 

Common Greenshank 
Tringa nebularia 

Migratory Not threatened Generalist/inland specialist Scolopacidae 

Curlew Sandpiper 
Calidris ferruginea 

Migratory Not threatened Generalist/inland specialist Scolopacidae 

Double-banded Plover 
Charadrius bicinctus 

Migratory Not threatened Generalist/inland specialist Charadriidae 

Far Eastern Curlew 
Numenius madagascariensis 

Migratory Threatened Coastal specialist Scolopacidae 

Great Knot 
Calidris tenuirostris 

Migratory Threatened Coastal specialist Scolopacidae 

Greater Sand Plover 
Charadrius leschenaultii  

Migratory Not threatened Coastal specialist Charadriidae 

Grey Plover 
Pluvialis squatarola 

Migratory Not threatened Coastal specialist Charadriidae 

Grey-tailed Tattler 
Tringa brevipes 

Migratory Not threatened Coastal specialist Scolopacidae 

Lesser Sand Plover 
Charadrius mongolus 

Migratory Not threatened Coastal specialist Charadriidae 

Marsh Sandpiper 
Tringa stagnatilis 

Migratory Not threatened Generalist/inland specialist Scolopacidae 

Pacific Golden Plover 
Pluvialis fulva 

Migratory Not threatened Generalist/inland specialist Charadriidae 

Red Knot 
Calidris canutus  

Migratory Threatened Coastal specialist Scolopacidae 

Red-necked Stint 
Calidris ruficollis 

Migratory Not threatened Generalist/inland specialist Scolopacidae 
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Ruddy Turnstone 
Arenaria interpres 

Migratory Not threatened Coastal specialist Scolopacidae 

Sanderling 
Calidris alba 

Migratory Not threatened Coastal specialist Scolopacidae 

Sharp-tailed Sandpiper 
Calidris acuminata 

Migratory Not threatened Generalist/inland specialist Scolopacidae 

Terek Sandpiper 
Xenus cinereus 

Migratory Not threatened Coastal specialist Scolopacidae 

Whimbrel 
Numenius phaeopus 

Migratory Not threatened Coastal specialist Scolopacidae 

Banded Stilt 
Cladorhynchus leucocephalus 

Non-migratory Not threatened Coastal specialist Recurvirostridae 

Black-fronted Dotterel 
Elseyornis melanops 

Non-migratory Not threatened Generalist/inland specialist Charadriidae 

Black-winged Stilt 
Himantopus himantopus 
leucocephalus 

Non-migratory Not threatened Generalist/inland specialist Recurvirostridae 

Masked Lapwing 
Vanellus miles 

Non-migratory Not threatened Generalist/inland specialist Charadriidae 

Pied Oystercatcher 
Haematopus longirostris 

Non-migratory Not threatened Coastal specialist Haematopodidae 

Red-capped Plover 
Charadrius ruficapillus 

Non-migratory Not threatened Generalist/inland specialist Recurvirostridae 

Red-kneed Dotterel 
Erythrogonys cinctus 

Non-migratory Not threatened Generalist/inland specialist Charadriidae 

Red-necked Avocet 
Recurvirostra novaehollandiae 

Non-migratory Not threatened Coastal specialist Charadriidae 
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Appendix 4.4 - Average proportion of shorebirds in five Australian regions that used artificial habitats at high tide and change 
in the proportion over time. First line shows average proportion of shorebirds (±SE) that used artificial habitats over the time 
series with the regional grant mean count (sum of the average count from each site across the time series) in parentheses. 
Second line shows the results of generalised linear models with a quasibinomial distribution; for Darwin Harbour and Hunter 
Estuary the four values are the slope estimate, standard error, t value, Pr(>|t|); for Gulf St Vincent, Moreton Bay and Port Phillip 
Bay the four values are the mean slope estimate, pooled standard error, and 95% confidence interval of the year coefficient for 
averaged models of imputed datasets. Significant results are in italics with the trend direction (increased or decreased) on the 
third line. 

 Darwin Harbour Gulf St Vincent Hunter Estuary Moreton Bay Port Phillip Bay 

Time series 2009-2018 2009-2018 2001-2018 2003-2018 1987-2017 
      

Total abundance 
 
 

NA – non-migrant data not 
available 

0.58 ± .01 (20551) 
(0.16, 0.08, 0.32, 0.002) 

increased 

0.96 ± .01 (3385) 
(-0.01, 0.04, -0.15, 0.88) 

0.35 ± .004 (34375) 
(0.01, 0.01, 0.04, -0.02) 

0.77 ± .02 (29898) 
(-0.01, 0.02, 0.02, -0.04) 

Total migratory 
 
 

 0.13 ± .02 (6415) 
(-0.06, 0.06, -0.92, 0.39) 

0.39 ± .01 (9179) 
(0.10, 0.07, 0.23, -0.03) 

0.97 ± .01 (1386) 
(0.01, 0.04, 0.34, 0.74) 

0.35 ± .004 (32589) 
(0.02, 0.01, 0.04, -0.01) 

0.75 ± .01 (25668) 
(0.01, 0.01, 0.03, -0.02) 

Bar-tailed Godwit 
Limosa lapponica 

NA NA 1.0 ± .001 (558) 
(0.18, 0.09, 1.95, 0.07) 

0.35 ± .01 (10591) 
(-0.01, 0.02, 0.03, -0.06) 

0.10 ± .01 (432) 
(0.10, 0.06, 0.21, -0.01) 

Black-tailed Godwit 
Limosa limosa 

NA NA NA 0.13 ± .01 (331) 
(-0.02, 0.05, 0.07, -0.11) 

NA 

Common Greenshank 
Tringa nebularia 

NA 0.37 ± .01 (248) 
(0.03, 0.07, 0.17, -0.11) 

NA NA 0.63 ± .01 (241) 
(-0.04, 0.04, 0.04, -0.11) 

Curlew Sandpiper 
Calidris ferruginea 

NA 0.51 ± .02 (325) 
(0.07, 0.08, 0.23, -0.10) 

0.99 ± .01 (131) 
(0.69, 0.23, 3.05, 0.01) 

increased 

0.46 ± .004 (2744) 
(0.02, 0.01, 0.05, -0.003) 

0.86 ± .01 (4136) 
(0.003, 0.01, 0.03, -0.03) 

Double-banded Plover 
Charadrius bicinctus 

NA NA NA 0.54 ± 0.02 (79) 
(0.03, 0.04, 0.10, -0.03) 

(0.55 ± 0.01 (687) 
(0.01, 0.03, 0.06, -0.04) 

Far Eastern Curlew 
Numenius madagascariensis 

0.85 ± .05 (77) 
(0.14, 0.14. 0.97, 0.37) 

NA 1.0 ± 0 (193) 
Proportion = 1 for whole 

time series 

0.13 ± .003 (2325) 
(-0.003, 0.02, 0.04, -0.05) 

0.17 ± .01 (59) 
(-0.10, 0.05, 0.01, -0.20) 

Great Knot 
Calidris tenuirostris 

0.08 ± .04 (4448) 
(-0.41, 0.14, -2.95, 0.02) 

decreased 

NA NA 0.45 ± .01 (1034) 
(0.02, 0.03, 0.07, -0.03) 

NA 

Greater Sand Plover 
Charadrius leschenaultia  

0.10 ± .03 (938) 
(0.26, 0.08, 3.40. 0.01) 

increased 

NA NA 0.45 ± .01 (289) 
(0.04, 0.02, 0.07, 0.002) 

increased 

NA 
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Grey Plover 
Pluvialis squatarola 

NA 0.18 ± .01 (145) 
(-0.13, 0.12, 0.10, -0.36) 

NA NA NA 

Grey-tailed Tattler 
Tringa brevipes 

NA NA NA 0.55 ± .01 (1755) 
(-0.005, 0.02, 0.04, -0.04) 

NA 

Lesser Sand Plover 
Charadrius mongolus 

NA NA NA 0.48 ± .003 (2011) 
(0.01, 0.01, 0.03, -0.01) 

NA 

Marsh Sandpiper 
Tringa stagnatilis 

NA NA NA NA 0.88 ± .01 (133) 
(-0.07, 0.06, 0.05, -0.19) 

Pacific Golden Plover 
Pluvialis fulva 

NA NA NA 0.40 ± .004 (990) 
(-0.0001, 0.02, 0.03, -0.03) 

NA 

Red Knot 
Calidris canutus  

0.05 ± .02 (367) 
(-0.18, 0.12. -1.47, 0.19) 

0.19 ± .02 (1341) 
(0.17, 0.13, 0.42, -0.09) 

0.96 ± .03 (417) 
(1.15, 0.22, 5.20, <.01) 

increased 

NA 0.13 ± .02 (246) 
(0.10, 0.06, 0.23, -0.02) 

Red-necked Stint 
Calidris ruficollis 

NA 0.41 ± .01 (5445) 
(0.10, 0.08, 0.25, -0.05) 

NA 0.39 ± .004 (7550) 
(-0.01, 0.02, 0.02, -0.04) 

0.78 ± .01 (14745) 
(0.03, 0.01, 0.06, 0.01) 

increased 
Ruddy Turnstone 
Arenaria interpres 

0.02 ± .02 (45) 
(-0.87, 0.79. -1.10, 0.31) 

0.23 ± .01 (100) 
(0.06, 0.12, 0.30, -0.18) 

NA 0.53 ± .004 (172) 
(0.002, 0.01, 0.02, -0.02) 

0.14 ± .01 (66) 
(0.03, 0.03, 0.09, -0.03) 

Sanderling 
Calidris alba 

0.002 ± .001 (81) 
(0.05, 0.14. 0.35. 0.74) 

NA NA NA NA 

Sharp-tailed Sandpiper 
Calidris acuminata 

NA 0.57 ± .02 (810) 
(0.11, 0.12, 0.34, -0.12) 

0.97 ± .02 (250) 
(-1.41, 0.26, -5.50, <.01) 

decreased 

0.30 ± .01 (1650) 
(0.04, 0.04, 0.12, -0.03) 

0.75 ± .01 (5093) 
(-0.01, 0.04, 0.06, -0.09) 

Terek Sandpiper 
Xenus cinereus 

NA NA NA 0.74 ± .01 (53) 
(0.06, 0.05, 0.15, -0.03) 

NA 

Whimbrel 
Numenius phaeopus 

NA NA NA 0.24 ± .01 (780) 
(0.01, 0.02, 0.05, -0.03) 

NA 

Total non-migratory   NA – non-migrant data not 
available 

0.75 ± .01 (11563) 
(0.24, 0.12, 0.48, 0.01) 

increased 

0.95 ± .02 (2057) 
(0.003, 0.05, 0.06, 0.95) 

0.27 ± .004 (1774) 
(0.01, 0.02, 0.05, -0.02) 

0.86 ± .01 (4499) 
(-0.07, 0.03, 0.001, -0.13) 

Banded Stilt 
Cladorhynchus leucocephalus 

non-migrant data not available 0.88 ± .01 (10023) 
(0.12, 0.16, 0.43, -0.19) 

NA NA 0.77 ± .02 (2178) 
(-0.13, 0.04, -0.04, -0.21) 

decreased 
Black-fronted Dotterel 
Elseyornis melanops 

non-migrant data not available NA NA NA 0.76 ± .01 (18) 
(-0.004, 0.04, 0.08, -0.09) 
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Black-winged Stilt 
Himantopus himantopus 
leucocephalus 

non-migrant data not available 0.89 ± .01 (180) 
(0.25, 0.25, 0.73, -0.24) 

0.87 ± .02 (345) 
(-0.03, 0.02, -1.77, 0.10) 

0.19 ± .01 (768) 
(0.07, 0.04, 0.14, -0.01 

0.90 ± .01 (673) 
(-0.03, 0.04, 0.04, -0.10) 

Masked Lapwing 
Vanellus miles 

non-migrant data not available NA NA NA 0.73 ± .01 (471) 
(0.03, 0.02, 0.06, -0.003) 

Pied Oystercatcher 
Haematopus longirostris 

non-migrant data not available 0.12 ± .01 (63) 
(-0.05, 0.08, 0.11, -0.21) 

NA 0.41 ± .01 (513) 
(-0.03, 0.03, 0.03, -0.08 

0.94 ± .01 (68) 
(-0.12, 0.09, 0.06, -0.29) 

Red-capped Plover 
Charadrius ruficapillus 

non-migrant data not available 0.33 ± .01 (875) 
(0.20, 0.09, 0.38, 0.03) 

increased 

NA 0.27 ± .01 (275) 
(-0.01, 0.02, 0.03, -0.04) 

0.96 ± .01 (190) 
(-0.17, 0.12, 0.06, -0.41) 

Red-kneed Dotterel 
Erythrogonys cinctus 

non-migrant data not available NA NA NA 0.76 ± .01 (29) 
(0.11, 0.06, 0.23, -0.02) 

Red-necked Avocet 
Recurvirostra novaehollandiae 

non-migrant data not available 0.91 ± .01 (238) 
(0.003, 0.28, 0.55, -0.54) 

0.94 ± .02 (1956) 
(0.19, 0.07, 2.76, 0.01) 

increased 

0.40 ± .02 (134) 
(-0.02, 0.03, 0.04, -0.08) 

0.88 ± .01 (843) 
(-0.14, 0.09, 0.03, -0.31) 
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Appendix 4.5 - Actual values (dots) and model-predicted trend (line) from 
generalised linear models of the proportion of birds that used artificial habitats at 
high tide with a significant temporal result (Appendix 4.4). Results from x imputed 
datasets and models are shown for the three regions that had missing values (Gulf 
St Vincent, Moreton Bay, Port Phillip Bay). 
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Appendix 5: Supplementary Materials for Chapter 5 
 

Appendix 5.1 - List of important coastal shorebird sites in mainland China, S. alterniflora occurrence at each site in 2015, and 
change in tidal flat area at each site (2000-2015). 

Site Province Site boundary source 

S. alterniflora occurrence 
in 2015 
(% coverage within the 
area of interest or distance 
from the site to nearest 
occurrence) 

Tidal flat change  
(2000-2015) 

Chongming Dongtan National Nature Reserve Shanghai Nature Reserve boundary 4.1% -18.0% 

Deep Bay, Shenzhen side  Guangdong Nature Reserve boundary 40.0 km 4.3% 

Guangxi Beilun Estuary National Nature Reserve Guangxi Nature Reserve boundary 64.2 km -21.6% 

Haifeng Nature Reserve  Guangdong Nature Reserve boundary 144.8 km 39.2% 

Jiuduansha Wetland National Nature Reserve Shanghai Nature Reserve boundary 8.6% 37.7% 

Minjiang Estuary National Nature Reserve  Fujian Nature Reserve boundary 2.6% -26.8% 

Shuangtaizihekou National Nature Reserve Liaoning Nature Reserve boundary 330.6 km 6.7% 

Yalu Jiang estuarine wetland  Liaoning Nature Reserve boundary 300.8 km -14.8% 

Yancheng Nature Reserve Jiangsu Nature Reserve boundary 6.2% -34.0% 

Yellow River Delta Shandong Nature Reserve boundary 0.4% 14.3% 

Zhanjiang Nature Reserve Guangdong Nature Reserve boundary 0.0% -8.7% 

Beihai coast Guangxi China Coastal Waterbird Census count route 8.7 km -2.9% 

Cangzhou coast Hebei China Coastal Waterbird Census count route 0.02% -29.9% 

Dadeng Island and Weitou Bay  Fujian China Coastal Waterbird Census count route 0.8% -1.4% 

Dongling coast  Jiangsu China Coastal Waterbird Census count route 3.8% -40.0% 

Dongtai coast  Jiangsu China Coastal Waterbird Census count route 1.4% -10.8% 

Lianyungang coast  Jiangsu China Coastal Waterbird Census count route 3.4% -31.3% 

Nanhui coast  Shanghai China Coastal Waterbird Census count route 0.2% -29.4% 

Quanzhou Bay  Fujian China Coastal Waterbird Census count route 7.3% -15.0% 

Rudong coast  Jiangsu China Coastal Waterbird Census count route 12.7% 19.5% 

Tianjin coast  Tianjin China Coastal Waterbird Census count route 0.2% -68.3% 

Xitou coast  Guangdong China Coastal Waterbird Census count route 67.9 km -22.2% 
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Dandong Port East Liaoning Conklin et al. (2014) coordinates 339.1 km -30.5% 

Dongsha Shoals Jiangsu Conklin et al. (2014) coordinates 10.4 km 17.3% 

Erdao Saltworks, Yinghekou Liaoning Conklin et al. (2014) coordinates 380.6 km -54.5% 

Haicang Coast, Xiamen Fujian Conklin et al. (2014) coordinates 12.4 km -40.7% 

Hangzhou Wan Zhejiang Conklin et al. (2014) coordinates 0.40% -83.7% 

Jiazhou Wan Shandong Conklin et al. (2014) coordinates 0.08% -1.1% 

Laizhou Wan Shandong Conklin et al. (2014) coordinates 20.3 km -100.0% 

Laobian - Yingkou coast Liaoning Conklin et al. (2014) coordinates 373.8 km 21.8% 

Laoting (Daqinghe - Shijiutuo) Hebei Conklin et al. (2014) coordinates 44.2 km 16.9% 

Linghekou, Jin Liaoning Conklin et al. (2014) coordinates 328.7 km -80.8% 

Liuhewei Guangdong Conklin et al. (2014) coordinates 0.4% -37.2% 

Luannan Coast & Saltworks Hebei Conklin et al. (2014) coordinates 8.7 km 8.4% 

Meizhou Wan Fujian Conklin et al. (2014) coordinates 5.3 km -9.7% 

Nantong Coast Jiangsu Conklin et al. (2014) coordinates 10.1% -49.7% 

Pulandian – Jinzhou East Coast Liaoning Conklin et al. (2014) coordinates 245.1 km -3.6% 

Qidong County North Coast Jiangsu Conklin et al. (2014) coordinates 0.60% -8.4% 

Qidong County South Coast Jiangsu Conklin et al. (2014) coordinates 1.5 km -71.9% 

Qinhuangdao Hebei Conklin et al. (2014) coordinates 138 km -6.9% 

San Jia Gang (Pudong) Shanghai Conklin et al. (2014) coordinates 1.0% 10.3% 

Sanmen Wan Zhejiang Conklin et al. (2014) coordinates 15.6% -39.1% 

Shantou  (Nangankou) Guangdong Conklin et al. (2014) coordinates 13.8 km -100.0% 

Tongzhou-Haimen coast (Xinzhong Port) Jiangsu Conklin et al. (2014) coordinates 3.8% 7.8% 

Wenzhou Wan Zhejiang Conklin et al. (2014) coordinates 2.5% -34.9% 

Wudi-Zhanhua-Hekou Coast Shandong Conklin et al. (2014) coordinates 0.1% -22.0% 

Xiamen Coast (incl. Aotou & Fenglin) Fujian Conklin et al. (2014) coordinates 9.8 km -46.6% 

Xinghua Wan Fujian Conklin et al. (2014) coordinates 0.70% -6.2% 

Yueqing Wan & Xuanmen Wan Zhejiang Conklin et al. (2014) coordinates 2.6% -35.4% 

Yujiang Village, Xiangli Town Guangxi Conklin et al. (2014) coordinates 2.7% 8.1% 

Zhuanghe East Coast Liaoning Conklin et al. (2014) coordinates 293.6 km -11.1% 

Zhuanghe West Coast Liaoning Conklin et al. (2014) coordinates 270.7 km -98.1% 
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Appendix 5.2 - Example of how tidal flat change and S. alterniflora coverage were mapped for important shorebird sites 
 

1. NATURE RESERVES (example: Minjiang Estuary National Nature Reserve, Fujian Province) 

 

A. Tidal flat change. 2000 panel: Google Earth imagery from 2000; orange line shows nature reserve boundaries; white line shows area 

of interest derived from the 2000 manually mapped coastline to the seaward extent of tidal flats; purple polygon shows tidal flats (derived 

from the 1999-2001 map in Murray et al., 2019) within the area of interest. 2015 panel: Google Earth imagery from 2015; orange line 

shows nature reserve boundaries; white line shows area of interest derived from the 2015 manually mapped coastline to the seaward 

extent of tidal flats; purple polygon shows tidal flats (derived from the 2014-2016 map in Murray et al., 2019) within the area of interest. 

 
2000                 2015 

 
Area of tidal flats in 2000: 24.3 km2   
Area of tidal flats in 2015: 17.8 km2  
Percent decrease = (24.3 – 17.8)/24.3*100 = -26.8% 
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B. Spartina alterniflora coverage. Google Earth imagery from 2015; white line shows the 2015 manually mapped coastline; red line 

shows the area of interest (2 km inland and 5 km seaward of the mapped coastline); green polygon shows S. alterniflora (derived from 

maps described in Liu et al., 2018) within the area of interest. 

 

 
Area of interest area: 62.7 km2 

Area of S. alterniflora within the area of interest: 1.6 km2 

Site coverage = 1.6/62.7*100 = 2.6% of the site 
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2. CHINA COASTAL WATERBIRD CENSUS SURVEY SITES (example: Rudong coast, Jiangsu province) 

 

A. Tidal flat change. 2000 panel: Google Earth imagery from 2000; orange line shows the China Coastal Waterbird Census survey 

route; white line shows area of interest derived from the 2000 manually mapped coastline to the seaward extent of tidal flats; purple 

polygon shows tidal flats (derived from the 1999-2001 map in Murray et al., 2019) within the area of interest. 2015 panel: Google Earth 

imagery from 2015; orange line shows the China Coastal Waterbird Census survey route; white line shows area of interest derived from 

the 2015 manually mapped coastline to the seaward extent of tidal flats; purple polygon shows tidal flats (derived from the 2014-2016 

map in Murray et al., 2019) within the area of interest. 

 
2000                                            2015 

   
Area of tidal flats in 2000: 225.9 km2  
Area of tidal flats in 2015: 280.7 km2  
Percent increase = (280.7 – 225.9)/280.7*100 = +19.5% 
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B. Spartina alterniflora coverage. Image shows Google Earth imagery from 2015; orange line shows the China Coastal Waterbird 

Census survey route; white line shows the 2015 manually mapped coastline; red line shows the area of interest (2 km inland and 5 km 

seaward of the mapped coastline); green polygon shows S. alterniflora (derived from maps described in Liu et al., 2018) within the area 

of interest.  

 

 
Area of interest area: 147 km2 

Area of S. alterniflora within the area of interest: 12.7 km2 

Site coverage = 12.7/147*100 = 8.6% of the site 
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3. Sites from Conklin et al. (2014) that are not nature reserves or China Coastal Waterbird Census sites (example Wenzhou 

Wan, Zhejiang province) 

 

A. Intertidal flat change. 2000 panel: Google Earth imagery from 2000; yellow marker shows the coordinates from Conklin et al. (2014); 

white line shows area of interest derived from the 2000 manually mapped coastline to the seaward extent of tidal flats; purple polygon 

shows tidal flats (derived from the 1999-2001 map in Murray et al., 2019) within the area of interest. 2015 panel: Google Earth imagery 

from 2015; yellow marker shows the coordinates from Conklin et al. (2014); white line shows area of interest derived from the 2015 

manually mapped coastline to the seaward extent of tidal flats; purple polygon shows tidal flats (derived from the 2014-2016 map in 

Murray et al., 2019) within the area of interest. 

 
2000                 2015 

 
Area of intertidal flats in 2000: 20.9 km2  
Area of intertidal flats in 2015: 13.6 km2  
Percent decrease = (20.9 – 13.6)/20.9*100 = -34.9%  
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B. Spartina alterniflora coverage. Image shows Google Earth imagery from 2015; yellow marker shows the coordinates from Conklin et 

al. (2014); white line shows the 2015 manually mapped coastline; red line shows the area of interest (2 km inland and 5 km seaward of 

the mapped coastline); green polygon shows S. alterniflora (derived from maps described in Liu et al., 2018) within the area of interest.  

 

 

 
Area of interest area: 44.1 km2 

Area of S. alterniflora within the area of interest: 1.1 km2 

Site coverage = 1.1/44.1*100 = 2.5% of the site
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“We’re all born naked and the rest is drag.”  
RuPaul Andre Charles 


