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Abstract: Presently, there is a critical need to analyze traffic accidents in order to mitigate their terrible
economic and human impact. Most accidents occur in urban areas. Furthermore, driving experience
has an important effect on accident analysis, since inexperienced drivers are more likely to suffer
fatal injuries. This work studies the injury severity produced by accidents that involve inexperienced
drivers in urban areas. The analysis was based on data provided by the Spanish General Traffic
Directorate. The information root node variation (IRNV) method (based on decision trees) was
used to get a rule set that provides useful information about the most probable causes of fatalities
in accidents involving inexperienced drivers in urban areas. This may prove useful knowledge in
preventing this kind of accidents and/or mitigating their consequences.
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1. Introduction

Currently, an estimated 1.27 million people die and 20–50 million people are injured in traffic
accidents every year [1], with a devastating human and economic impact. For this reason, it is
fundamental to analyze the main causes of the serious severity in traffic accidents to avoid fatal
injuries. According to Reference [2], many accidents occur in urban areas. Furthermore, according to
Reference [3], the factors that affect road accident severity in urban and non-urban areas are different.
A lot of works in the literature are focused on the analysis of this kind of accidents.

As stated by the authors of [4], accidents which occur in intersections have different characteristics,
so they must be analyzed separately. Other works [5,6] are focused on accidents that did not occur in
intersections, remarking this point.

In addition, many works in the literature, such as References [7–9], have revealed that driving
experience is an important factor in accident analysis, since inexperienced drivers are more likely to
suffer or cause fatal injuries. For instance, References [10] concludes that adolescents, inexperienced
in most cases, are not really worried about certain dangers, and that this lack of experience is the
reason of many crashes. Further, according to References [11,12], novice drivers have a different
perception of risk. Moreover, References [13,14] reveal that novice drivers have less visual attention
than experienced ones.

This paper studies accidents in urban areas in Spain involving drivers with 3 or fewer years of
driving experience. In particular, our essential goal was to analyze the main causes of fatal injuries in
this kind of accidents. This will help road safety analysts and managers to identify the main problems
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related to inexperienced drivers and take measures to try to reduce the number of accidents of this
type and alleviate their consequences. Accidents in intersections were analyzed separately.

The Spanish General Traffic Directorate (DGT) provides three data sets for accident analysis.
The first one contains data about the accidents themselves, such as month, weekday, weather conditions,
visibility conditions, etc. The second data set contains data about each person involved in the accidents
(sex, age, driver yes/no, year the driving license was granted, etc.). The third data set contains data
about the vehicles involved in the accidents (type of vehicle, year of registration, and so on).

In the literature, Regression, Logit, and Probit models have been applied for this purpose [15–17],
providing good results. Nevertheless, these models establish their own dependence relation between
variables and their own model assumptions. When these assumptions and relations are not fulfilled,
models estimate the severity erroneously [18]. Thus, data mining is commonly applied to traffic
accidents databases to extract information and knowledge [15,19–21]. Data mining techniques are
nonparametric and do not require any previous assumption about the problem.

Often, original data are not ready for knowledge extraction techniques. A preprocessing step is
required to get the data in a suitable format for the methods used. This is the most important task in
knowledge extraction and the one that requires the most processing time. Specifically, it is necessary to
select the relevant features and transform some variables to extract useful information from the data in
an easy way. Further, the instances that are not relevant for problem at hand must be filtered out.

In the field of data mining, several techniques have been applied to accident analysis. For example,
in References [4,22,23], Bayesian networks were used to analyze the severity of an accident and the
dependency relationships between the variables related to the accident. In Reference [24], artificial
neural networks were used to research the prediction of the severity of accidents.

Decision trees (DTs) have been applied as well to analyze the severity of accidents [5,6,18,25,26].
DTs provide a very useful model to identify the causes of accidents because they can be easily
interpreted and, most importantly, decision rules can be easily extracted from them. These rules can be
used by road safety analysts to identify the main causes of accidents.

However, DTs also have some weaknesses. One of their most relevant limitations is that the rules
obtained from the tree depend strongly on its structure. More specifically, a DT only allows to extract
rules in the sense indicated by the top variables, and so these rules are constrained by the root variable.
So, if the root node is changed, the resulting rule set will probably be quite different. Because of this,
the information root node variation (IRNV) method was applied to extract suitable rules to identify
causes of fatal injuries. This method, which has already been used in References [6,26] for the analysis
of severity of accidents, varies the root node to generate different rule sets through DTs. Since the
resulting rule sets can be very different, this method returns a final rule set by combining all the rule
sets generated by each of the DTs.

Apart from the root node, the main difference between the DTs is the split criterion.
In Reference [26], three split criteria were used to build different DTs. One of them is the info-gain
ratio (IGR) classic split criterion, which is the criterion used in the C4.5 algorithm [27] and is based
on general entropy. The other two criteria are the imprecise info-gain (IIG) criterion [28], based on
the imprecise Dirichlet model [29], and the approximate nonparametric predictive inference model
(A-NPIM) criterion [30], based on a nonparametric model of imprecise probabilities. In Reference [26],
it was shown that using IIG and A-NPIM, a much wider rule set can be obtained than by using only
a classic criterion. These two criteria, IIG and A-NPIM, use imprecise probabilities and the maximum
entropy measure to select the most informative variables to branching the tree.

The whole data mining process returns a rule set from which the most useful rules must be
selected. This selection requires choosing the rules that provide the most general match of the data set
(i.e., the rules for which the antecedent is most frequently matched, with corresponding high-frequency
matches of their consequent). Two measures are applied in this step: Probability and support.

Therefore, the IRNV method was used with three split criteria (the classical IGR, the imprecise IIG,
and A-NPIM) to get a large rule set of accidents in urban areas in Spain. The best rules were selected,
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and the resulting rule set provides useful information to the Spanish Directorate General of Traffic
(DGT) for the identification of the causes of accidents involving novice drivers in urban areas and for
raising awareness of these dangers among this group of drivers to help them become more cautious.

Hence, the main aim of this paper was to obtain a rule set about the causes of fatal injuries in
accidents of inexperienced drivers in urban areas via the IRNV method with different split criteria.
Using this technique with several split criteria, a wide set of rules was obtained. Subsequently,
the most useful rules were selected. These rules will help the DGT to take measures to avoid this kind
of accidents and/or mitigate their consequences.

The rest of this paper is structured as follows: Section 2 describes the data set, the preprocessing
step, and the methods that are used. Section 3 shows the results and includes the pertaining discussion.
Finally, Section 4 is devoted to the conclusions.

2. Data and Methods

2.1. Accident Data

The Spanish Directorate General of Traffic (DGT) collected accident data over a period of 5 years
(2011–2015). These data contain three tables per year. One of these tables (accidents) refers to the
characteristics of the crashes (weather conditions, time, weekday, and so on). The second table (people)
contains data about the people involved in each accident. Finally, the third table (vehicles) covers the
information of the vehicles involved in each crash. A description of the meaning of possible variable
values for these tables can be found in https://sedeapl.dgt.gob.es.

2.2. Preprocessing Step

This subsection describes the preliminary steps required to obtain the final data sets. The data
mining algorithms used to extract knowledge was applied to these preprocessed databases.

The first step consists of creating the class variable: The severity of the accident. Following
previous studies, such as those in References [5,6], we considered two possible severity states:
Accidents with slightly injured people (1) and accidents with killed or seriously injured people (2).
A reason we merged serious injuries and deaths is that, in both categories, there are really few
instances in comparison with slight injuries. Notwithstanding, in agreement with other works in
the literature [4,15,18,31,32], the severity of an accident is defined as the severity of the most injured
people in the crash. This variable must be created through the combination of variables that refer to
the death toll, the number of seriously injured people, and the number of injured people. It is created
as follows: If the number of seriously injured people or the death toll in the accident is greater than 0
(when the crash occurred or within 30 days after the crash), the severity of the accident is labeled as
a fatal Injury, i.e., killed or seriously injured. Otherwise, the severity is labeled as a slight Injury.

Since not all the variables will be useful to predict the severity of a crash, it is appropriate to
eliminate those variables that we know are not related with the severity. For example, the accident
identifier or the year of the accident are unnecessary to predict the fatality.

The aim of this work was to study accidents of inexperienced drivers in urban areas, so the specific
area where the accident occurred was not considered. Variables that are not related to urban areas
were also removed. Variables totally or partially associated with actions of pedestrians or passengers
were not considered either, for obvious reasons. Neither were variables for which most values are
missing, or that have two possible values and one of them predominates.

In addition to the variable subset selection step, we grouped some variable values. For instance,
instead of distinguishing between the different types of collisions, we only observed that the type of
accident was collision. This grouping was required because variables with many possible values often
have a negative impact on the performance of data mining algorithms. For the variable corresponding
to the section of the week, we distinguished the weekend, which includes Saturday and Sunday,
the end and the beginning of weekdays, i.e., Friday and Monday, and the rest of the weekdays:

https://sedeapl.dgt.gob.es
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Tuesday, Wednesday, and Thursday. This separation was based on the different patterns of car traffic
on weekends and weekdays [33]. The separation of the age variable into these groups was done in
consistency with Reference [5]. Further, some continuous variables were discretized. Most of these
transformations were extracted from the work of Reference [5]. The most important transformation
was the creation of the variable driver_type, which has value 1 if the driver has three years experience
or less, and 2 otherwise.

Once the data set with the variables of interest is available, instances belonging to our subject
of study are selected. Since we wanted to study the impact of driving inexperience on the fatality of
accidents in urban areas, only data corresponding to accidents in urban areas and drivers with three
years experience or less were selected.

Accidents in intersections have different characteristics [4], so they are studied separately. To do so,
the entries in the resulting data set were divided into those that correspond to accidents in intersections
and those that do not.

Table 1 show the variables for both databases, their meaning, and their possible values. For each
data set and each feature, the number of instances (N_I) and the number of instances with a missing
value (N_Ni) are also illustrated.

Table 1. Description of the variables from the resulting data sets.

Feature Value Meaning N_I N_Ni

SE: Season 1 Winter (between Decenber and February) 7108 6446
2 Spring (between March and May) 7378 6599

The accident occurred in 3 Summer (between June and August) 7318 6594
4 Autumn (between September and November) 8204 7692

F_T: Fringe time 1 0:01 and 6:00 2489 2433
The accident happened between 2 6:01 and 12:00 75,112 6780

3 12:01 and 18:00 11,510 10,406
4 18:01 and 0:00 8897 7712

S_W: Section Week 1 On Monday 4302 3962
The accident occurred 2 On Friday 4939 4745

3 Between Tuesday and Thursday 13,598 12,473
4 On Saturday or Sunday 7169 6151

I_L: Degree of involvement 1 One vehicle 3510 6733
Vehicles involved in the accident 2 More than one vehicle 26,498 20,598

TR_N_INT: Traced no intersection Missing value 5039
The no intersection tracing of the accident is a 1 Straight line 20,470

2 Curve 1822

I_T: Intersection type 1 T o X 7028
2 X o + 17,882

The intersection of the accident was 3 A roundabout 4587
4 An exit or entrance link 511

PR: Priority Missing value 18,134
1 Traffic officer directions 18
2 A semaphore 3286
3 A stop signal 2838

There was priority indicated by 4 A pedestrian crossing signal 3596
5 Road signs 1218
6 General rule 591
7 Other 327

RO_SU: Road Surface Missing value 2032 55
1 Dry and clean 25,326 23,982
2 Wet 58 98

The surface was 3 Snowy/Frozen 2364 2863
4 Oily 34 71
5 Other state 194 262

LUM: Luminosity 1 In broad daylight 19,701 18,278
2 In twilight 1280 1377

The accident happened 3 During the night with sufficient road illumination 8965 7483
4 During the night with insufficient road illumination 62 193
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Table 1. Cont.

Feature Value Meaning N_I N_Ni

WE_CO: Weather conditions Missing value 2460 430
1 Good weather conditions 25,489 24,370

The accident occurred with 2 Fog 61 96
3 Light rain 1727 2122
4 Adverse weather conditions 271 313

RES_VIS: Restricted Visibility Missing value 22,512 20,003
1 No restrictions 6588 6588
2 Buildings 29 54
3 Land configuration 57 77

Visibility restrictions during the accidents due to 4 Weather conditions 60 69
5 Glare 43 52
6 Dust 37 30
7 Other restrictions 416 458

PAV: Pavements Missing value 262 575
Pavements at the accident scene 0 Yes 28,982 25,400

1 No 764 1356

ACT_TY: Accident type 1 A collision 25,114 19,621
2 Running over a pedestrian 1984 3225

The accident was 3 An overturn 500 615
4 A road exit 1500 2004
5 Another kind of accident 910 1866

AG_FR: Age group 1 20 years old or younger 7373 6609
2 21–27 years old 10,673 9695

The driver was 3 28–59 years old 11,401 10,528
4 60+ years old 561 499

SEX Missing value 37 26
The driver was 1 A man 22,306 20,338

2 A woman 7935 6967

MAN: Maneuvers Missing value 1342 1354
1 Following the road 7511
2 Overtaking 530 726
3 Turning 2410 761
4 Entering from another road or access 714 249

The driver was 5 Crossing an intersection 2217 653
6 Driving in reverse 85 247
7 Doing an abrupt gear shift 379 880
8 Doing another maneuver 14,820 13,687

SP_IN: Speed Infraction Missing value 8801 7694
1 Too fast 920 1325

The driver was driving 2 Too slow 19 24
3 At an appropriate speed 20,268 18,288

DR_INFR: Driving Infraction Missing value 3219 4660
0 Did not commit any traffic violation 14,014 12,817
1 Failed to observe a traffic sign 3328 1028
2 Driving on the wrong side of the road, or invading it partially 165 267

The driver 3 Was overtaking in a forbidden zone of the road 152 188
4 Failed to observe the security distance 454 1166
5 Committed other type of infraction 8676 7205

OL_VEH: Old vehicle Missing value 13,932 9248
1 Two or less years old 2661 2968

The vehicle was 2 Three or more years old 13,415 15,115

VEH_TY: Vehicle type Missing value 52 19
1 A motorbike or equivalent 10,900 9109

The vehicle was 2 A car or equivalent 18,516 17,556
3 A heavy vehicle 416 518
4 Another type of vehicle 123 129

AN: Anomaly Missing value 5484 7602
1 No 24,281 19,478

Was there any malfunction in the vehicle? 2 Yes 243 251

O_L: Number of passengers 1 Only the driver 20,610 17,329
How many people were in the vehicle 2 Two 4346 3807

3 More than two 5052 6195

SEV: Severity 1 Slight injury 27,889 25,164
The severity of the accident was 2 Fatal injury 2109 2167
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2.3. Decision Trees

A decision tree (DT) is a predictive model that can be used for both classification and regression
tasks. In our case, the class variable has only two states, which means that it is a discrete variable.
Hence, in this work, DTs were used to represent classification problems.

DTs are commonly used in the literature because they are hierarchical structures presented
graphically. Therefore, they are quite interpretable models. DTs are also simple and transparent.

Within a DT, each node represents a predictor variable and each branch represents one of the
states of this variable. Each node is associated to the most informative attribute that has not already
been chosen from the path that goes from the root to this node. To select the most informative variable,
a specific split criterion (SC) is used. A terminal node (or leaf) represents the expected value of the class
variable depending on the information contained in the set used to build the model, i.e., the training
data set. This leaf node is created with the majority class for the partition of the data set corresponding
to the path from the root node to that leaf node.

DTs are built descending in a recursive way. The process starts in the root node with the full
training data set. A feature is selected depending on the split criterion. The data set is then split into
several smaller datasets (one for each state of the split variable). This procedure is applied recursively
to each subset until the information gain cannot be increased in any of them. In this way, we obtain the
terminal nodes. The procedure for building DTs is shown in Figure 1 and described in Reference [28].

Procedure BuildTree(N, γ)

1. If γ = ∅ then Exit
2. Let D be the partition associated with node N
3. Let δ = maxX SC(C, X) and Xi be the node for which δ is obtained
4. If δ ≤ 0 then Exit
5. Else

6. γ = γ \ {Xi}
7. Assign Xi to node N
8. For each possible value xi of Xi

9. Add a node Ni and make Ni a child of N
10. Call BuildTree(Ni, γ)

Figure 1. Procedure used for building decision trees (DTs).

To classify a new instance (usually an instance of the test data set) using the DT, the sample values
and the tree structure were used to follow the path in the tree from the root node to a leaf.

One important advantage of DTs is that decision rules (DRs) can be extracted easily. A DR is
a logical conditional structure written as an “IF A THEN B” statement, where A is the antecedent and
B is the consequent of the rule. In our case, the antecedent is the set of values of several attributes, and
the consequent is one state of the class variable.

In a DT, each rule starts at the root node, where the conditioned structure (IF) begins. Each
variable that appears in the path represents an IF condition of a rule, which ends in leaf nodes with
a THEN value, associated with the state resulting from the leaf node. This resulting state is the state of
the class variable that has the highest number of cases for the leaf node in question.

2.4. Information Root Node Variation

As mentioned above, DTs allow an easy extraction of DRs. However, rules that can be obtained
from a single decision tree depend strongly on the variable corresponding to the root node. Thus,
within a DT, it is only possible to extract knowledge in the sense indicated by the root variable.

The method proposed in Reference [6], information root node variation (IRNV), varies the
root node to generate different DTs. In this way, different rule sets can be obtained, since we have
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a considerable number of trees with different structure. Therefore, the number of rules in the resulting
rule set will be much larger than in a rule set generated using a single DT.

The first step in the IRNV method is to choose a split criterion. Let us suppose that there are m
features and that RXi is number i in the importance ranking according to the split criterion (SC) for
i = 1, . . . , m. Then, RXi is used as the root node to build DTi for i = 1, . . . , m. For each of the m DTs,
once the root node has been fixed, we build the rest of the tree following the same process used for
building DTs. After building DTi, the corresponding rule set RSi is extracted ∀i = 1, . . . , m. All the
rule sets RSi i = 1, . . . , m are added to the final rule set, RS. The process just described is repeated for
each SC.

A more systematic explanation of the entire procedure is given in Figure 2.

Procedure IRNV(γ)

1. RS = ∅
2. If γ = ∅ then Exit
3. Select a SC
4. Use the SC to sort the attributes {RXi}, i = 1, 2, . . . , m
5. For each i = 1, . . . , m

6. Build DTi calling BuildTree(RXi, γ)
7. Extract RSi from each DTi
8. RS = RS ∪ RSi

9. Select another split criterion and go to step 4. If there is no SC left
then Exit

Figure 2. Procedure used to obtain decision rules (DR) using the IRNV method.

Figure 3 illustrates graphically the IRNV procedure for each SC. Keep in mind that the rule sets
obtained for all SCs are ultimately combined in a single rule set.

Dataset Select a SC

Build DT1 as root

Build DT2 as root

Build DTm as root

RS1

RS2

RSm

Add to the final RS

Figure 3. Graphic explanation of the information root node variation (IRNV) method.

2.5. Split Criteria

This section describes the different split criteria used to build the DTs for each root node.
Let D be a data set. Let us suppose that the possible states of the class variable are c1, . . . , ck. Let

us consider a variable X with values x1, . . . , xt.
The three criteria used are the following.
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2.5.1. Info-Gain Ratio (IGR)

The Shannon Entropy [34] for the class is given by Equation (1):

HD(C) =
k

∑
i=1

p(ci) log2(1/p(ci)), (1)

where p(ci) is the estimation of the probability of ci based on the data set D (by computing
relative frequencies).

In the same way, the entropy for attribute X can be defined:

HD(X) =
t

∑
i=1

p(xi) log2(1/p(xi)). (2)

The entropy of class C given attribute X is given by the following expression:

HD(C|X) =
t

∑
i=1

p(xi)HDi (C|X = xi), (3)

where Di is the partition associated with value xi, i.e., the subset of D in which X = xi, and p(xi) is the
estimation of the probability that X = xi in D, ∀i = 1, . . . , t.

Once the measures given by Equations (1) and (3) have been defined, the info-gain is defined
as follows:

IG(C, X)D = HD(C)− HD(C|X). (4)

Finally, the info-gain ratio can be obtained using the IG and the expression given by Equation (2):

IGR(C, X)D =
IG(C, X)D

HD(X)
. (5)

2.5.2. Imprecise Info-Gain (IIG)

The imprecise info-gain (IIG) [28] is based on the Imprecise Dirichlet model [29]. According to
this model, for each possible value of class C, ci, an imprecise probability interval is given instead of
a precise estimation: [

nci

N + s
,

nci + s
N + s

]
, (6)

where nci is the number of cases in which C = ci in the data set, ∀i = 1, . . . , k, s is a given parameter
of the model, and N is the number of instances in the data set. The higher the value of s, the larger
the interval will be. Deciding what is the most appropriate value of s is not trivial. In Reference [29],
the value s = 1 is recommended. This work also uses s = 1.

This set of probability intervals gives rise to a credal set of probabilities on feature C, which is
defined in Reference [35] as follows:

KD(C) =
{

p|p(ci) ∈
[

nci

N + s
,

nci + s
N + s

]
, ∀i = 1, . . . , k

}
. (7)

Now, the imprecise entropy H∗ can be defined as the maximum entropy for the credal set
mentioned above. Formally:

H∗(KD(C)) = max{HD(p)|p ∈ KD(C)}. (8)
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In a similar way, the imprecise entropy generated by feature X, H∗(KD(C|X)) can be defined
as follows:

H∗(K′D(C|X) =
t

∑
i=1

p(xi)H∗(K′D(C|X = xi) (9)

We use Equations (8) and (9) to define the imprecise info-gain (IIG) [28]:

I IG(C, X)D = H∗(KD(C))− H∗(KD(C|X)). (10)

This paper does not include the computation of the probability in KD(C) that gives the maximum
entropy. A detailed explanation of this procedure can be found in Reference [36].

Unlike info-gain, the value of IIG can be negative. This is an important characteristic since IIG
excludes features that worsen the information on the class [37]. In the IRNV method, when a variable
has a negative value for the IIG, the rule set obtained for that variable will be empty.

2.5.3. Approximate Nonparametric Predictive Inference Model (A-NMPI)

Let N be the number of total instances in the data set, and nci the number of instances in the data
set in which C = ci, ∀i = 1, . . . , k. For class C, the following credal set of probabilities is considered:

K′D(C) =
{

p|p(ci) ∈
[

max
{

0,
nci − 1

N

}
, min

{
nci + 1

N
, 1
}]

, ∀i = 1, . . . , k
}

. (11)

It should be considered that, in this case, the credal set defined above does not depend on
any parameter.

In a similar way to the definition of IIG, the approximate nonparametric predictive inference
model (A-NPIM) [30] can be defined as follows:

A-NPIM(C, X)D = H∗(K′D(C))− H∗(K′D(C|X)), (12)

where:
H∗(K′D(C)) = max{HD(p)|p ∈ K′D(C)}, (13)

and:

H∗(K′D(C|X)) =
t

∑
i=1

p(xi)H∗(K′D(C|X = xi)). (14)

Reference [30] describes the algorithm that returns the probability distribution in K′D(C) with
maximum entropy.

2.6. Selection of the Best Rules

A priori, a decision rule can be obtained for each leaf node in a DT. However, in a considerable
number of cases, some of these rules are not significant because a rule should not necessarily represent
a large number of instances of the data set. Rules of this kind do not provide useful information for
defining safety measures.

For this reason, sufficiently significant rules are extracted using a mechanism based on two parameters:

• Support (S): Let us consider a rule of type ‘IF A THEN B’ (A → B). We define support as the
fraction of the data set where A and B are present. In other words, it is the probability that both
the antecedent and the consequent occur.

• Probability (Pr): It is the probability that the consequent is present given that the antecedent is
present. If we have a rule A→ B, then Pr = P(B|A) = P(A,B)

P(A)
where P(A, B) is the probability of

A ∩ B.
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The selection method consists of choosing only the rules in the set that meet a minimum value
(threshold) for both parameters. According to Reference [6], the more suitable threshold values for
support and probability depend on some characteristics, such as the nature of the data (balanced or
unbalanced), the interest in the minority class, and the data sample. Our two data sets are relatively
small (slightly over 30,000 instances) and the nature of our data is clearly unbalanced (less than the
10% of the instances have fatal severity), like the data set considered in Reference [38]. Similarly, we
are strongly interested in extracting rules where the consequent is fatal injury. For this reason, we
selected the same support and [robability thresholds used in Reference [38]: 10% for Pr and 0.1% for S.
In References [5,6], different thresholds were used: 60% for Pr and 0.6% for S. However, the data sets
used in these works are considerably more balanced.

In other works, such as References [5,6], the rules obtained using the procedure mentioned above
were validated using a test set. In this research, validation was not performed due to the imbalance of
the data set. If a portion of this data set is extracted for validation, very few rules will be obtained.

3. Results and Discussion

3.1. Procedure to Obtain the Rule Set

We applied the IRNV method to the two data sets obtained in Section 2.2, respectively,
corresponding to intersections and no intersections. More specifically, for each dataset, a DT was
applied for each variable and each split criterion. The software used to build the DTs was Weka [39].
We added the necessary methods to build decision trees using the split criteria and the IRNV algorithm
explained in previous sections.

Consistently with other works in the literature, such as References [5,6,26], we built the DTs with
only four levels to get rules which could be useful, simple and easy to understand for road safety
analysts. We did not use pruning to build the DTs. The minimum number of instances per leaf was
set to two instances (its default value). Missing values were dealt with by splitting the corresponding
instances into pieces (i.e., as in C4.5).

After building the DTs, we extracted the corresponding decision rules to get useful knowledge.
Some of the rules obtained in the previous steps were not valid as they did not match the data.

Thus, we only selected the rules that verified the minimum thresholds of support (S) (0.1%) and
probability (Pr) (10%) set in Section 2.6. Since the goal was to determine the causes of fatal injuries,
we only selected the rules for which the consequent was fatal injury.

Tables 2 and 3 show, respectively, the rules obtained for intersections and no intersections
following the procedure described above. For each rule, we can see its antecedent. It is given
by four columns (A1, A2, A3, and A4), each one corresponding to one value of some variable (i.e., the
antecedent consists of the values of four variables). The consequent (Co) is the same for every rule:
Fatal injury (FI). The last two columns of the tables show the support (S) and probability (Pr) for the
rule. The rules are sorted by probability, so the most interesting rules for analysis are shown first.

Table 2. Final set of rules related to accidents in intersections. Column “NR” is the number of the rule.
For all the rules Co = FI.

NR A1 A2 A3 A4 S Pr

2 F_T = 1 SP_IN = 1 VEH_TY = 1 DR_INFR = 5 0.1033% 68.8%
3 WE_CO = 1 ACT_TY = 2 DR_INFR = 5 SP_IN = 1 0.23% 59.5%
4 RO_SU = 1 ACT_TY = 2 DR_INFR = 5 SP_IN = 1 0.2166% 58.03%
5 MAN = 1 PAV = 0 SP_IN = 1 ACT_TY = 2 0.1466% 57.89%
6 RO_SU = 1 ACT_TY = 5 DR_INFR = 5 MAN = 1 0.1166% 57.38%
7 DR_INFR = 5 SP_IN = 1 ACT_TY = 2 0.2432% 57.03%
8 I_L = 1 DR_INFR = 5 SP_IN = 1 ACT_TY = 2 0.2266% 56.66%
9 LUM = 1 ACT_TY = 2 DR_INFR = 5 SP_IN = 1 0.1733% 56.52%
10 I_T = 2 DR_INFR = 1 MAN = 8 O_L = 1 0.1033% 56.36%
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Table 2. Cont.

NR A1 A2 A3 A4 S Pr

11 SP_IN = 1 DR_INFR = 5 ACT_TY = 2 RES_VIS = 1 0.2% 55.55%
12 MAN = 8 SP_IN = 1 DR_INFR = 1 0.166% 50.5%
13 ACT_TY = 2 DR_INFR = 1 SP_IN = 1 SEX = 1 0.17% 46.79%
14 AG_FR = 2 PAV = 0 SP_IN = 1 ACT_TY = 2 0.16% 46.6%
15 VEH_TY = 1 ACT_TY = 2 MAN = 1 SP_IN = 1 0.2% 44.03%
16 LUM = 1 PAV = 0 SP_IN = 1 ACT_TY = 2 0.33% 38.17%
17 AN = 1 PAV = 0 SP_IN = 1 ACT_TY = 2 0.45% 37.6%
18 WE_CO = 1 PAV = 0 SP_IN = 1 ACT_TY = 2 0.423% 37.02%
19 F_T = 3 PAV = 0 ACT_TY = 2 SP_IN = 1 0.1766% 36.8%
20 RES_VIS = 1 PAV = 0 ACT_TY = 2 SP_IN = 1 0.397% 34.9%
21 AG_FR = 3 PAV = 0 SP_IN = 1 ACT_TY = 2 0.1866% 32.75%
22 AG_FR = 2 ACT_TY = 2 SP_IN = 1 I_T = 2 0.11% 31.73%
23 SEX = 1 DR_INFR = 1 ACT_TY = 1 PR = 1 0.213% 17.2%
24 RO_SU = 1 ACT_TY = 1 DR_INFR = 1 PR = 1 0.29% 16.86%
25 PR = 1 DR_INFR = 1 LUM = 1 0.24% 16.78%
26 WE_CO = 1 ACT_TY = 1 DR_INFR = 1 PR = 1 0.29% 16.6%
27 AN = 1 ACT_TY = 1 DR_INFR = 1 PR = 1 0.296% 16.45%
28 ACT_TY = 1 DR_INFR = 1 PR = 1 0.296% 16.42%
29 PAV = 0 DR_INFR = 1 ACT_TY = 1 PR = 1 0.296% 16.42%
30 S_W = 3 ACT_TY = 1 DR_INFR = 1 PR = 1 0.11% 14.86%
31 RES_VIS = 1 ACT_TY = 1 DR_INFR = 1 PR = 1 0.246% 14.77%
32 LUM = 1 ACT_TY = 1 DR_INFR = 1 PR = 1 0.183% 14.66%

Table 3. Final set of rules related to accidents in no intersections. Column “NR” is the number of the
rule. For all the rules Co = FI.

NR A1 A2 A3 A4 S Pr

1 SP_IN = 1 ACT_TY = 2 DR_INFR = 5 MAN = 8 0.117% 71.11%
2 S_W = 3 ACT_TY = 2 DR_INFR = 5 SP_IN = 1 0.314% 64.18%
3 F_T = 4 ACT_TY = 2 DR_INFR = 5 SP_IN = 1 0.245% 62.03%
4 TR_N_INT = 1 ACT_TY = 2 DR_INFR = 5 SP_IN = 1 0.574% 59.25%
5 LUM = 3 ACT_TY = 2 DR_INFR = 5 SP_IN = 1 0.179% 59.03%
6 ACT_TY = 2 DR_INFR = 5 SP_IN = 1 RO_SU = 1 0.56% 58.85%
7 MAN = 1 ACT_TY = 2 DR_INFR = 5 SP_IN = 1 0.38% 58.76%
8 SEX = 1 ACT_TY = 2 DR_INFR = 5 SP_IN = 1 0.46% 58.6%
9 AN = 1 ACT_TY = 2 DR_INFR = 5 SP_IN = 1 0.59% 58.06%
10 DR_INFR = 5 ACT_TY = 2 SP_IN = 1 O_L = 1 0.49% 58%
11 LUM = 1 ACT_TY = 2 DR_INFR = 5 SP_IN = 1 0.377% 57.54%
12 I_L = 1 DR_INFR = 5 ACT_TY = 2 SP_IN = 1 0.56% 57.52%
13 ACT_TY = 2 DR_INFR = 5 SP_IN = 1 RES_VIS = 1 0.5% 56.61%
14 VEH_TY = 2 ACT_TY = 2 DR_INFR = 5 SP_IN = 1 0.465% 55.95%
15 ACT_TY = 2 SP_IN = 1 DR_INFR = 1 PAV = 0 0.135% 54.41%
16 VEH_TY = 1 SP_IN = 1 DR_INFR = 5 F_T = 1 0.113% 53.45%
17 S_W = 1 ACT_TY = 2 SP_IN = 1 PAV = 0 0.143% 43.82%

3.2. Some Remarks about the Rules Related to Accidents in Intersections

As can be seen in rules corresponding to intersections, the kind of accident that produces the most
serious severity is running over pedestrians. In fact, in rules 1–9, part of the antecedent is ACT_TY = 2
(the accident type was running over a pedestrian), except for rules 2 and 6 (see Table 1). This shows
that inexperienced drivers should pay special attention to pedestrians when they are driving.

Another essential fact is that, in most of the rules, one of the antecedents is SP_IN = 1, i.e.,
infraction of the driver due to their high speed. This means that driving too fast is a key factor for fatal
injuries in accidents involving novel drivers. It can also be seen that antecedent DR_INFR = 5 implies
a violation that is not common (see Table 1). It is quite probable that this violation is a consequence
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of excessive speed. In addition, some rules show that this fact usually produces fatal severity even
when the environmental conditions are favorable, such as good weather (rule 3), dry and clean surface
(rule 4), good lighting (rule 9) or good visibility (rule 11). Therefore, raising awareness about the
importance of speed moderation among people who are starting to drive is critical.

According to rule 1, which implies the highest probability, and rule 5, among others, the situation
is more dangerous if there are no pavements. Inexperienced drivers between 21 and 27 years old
should be very careful in these cases (rule 14). Drivers over 28 years old should also be cautious
in roads with no pavements (rule 21). In addition, the lack of pavements with good environmental
conditions can cause accidents with fatal injury (good lighting, rule 16, good state of the vehicle, rule 17,
good weather, rule 18, good visibility, rule 20). Hence, novice drivers must be even more careful in
roads without pavements. Furthermore, this suggests that building pavements in urban areas will
reduce the danger. Further, rule 19 shows that drivers with three years experience or less should be
careful between 18:00 and 24:00 while driving in roads without pavements.

There is also evidence that riding motorbikes at night is dangerous for inexperienced riders.
In fact, rule 2 shows that motorbike accidents between 0:00 and 6:00 at high speed have a very high
probability of fatal injury accident (Pr = 68.8%).

Rules 12 and 13 show that it is very important to observe the signals (part of the antecedent in
both is DR_INFR = 1). Moreover, excessive speed is part of the antecedent in both rules. Hence, speed
moderation is very important. Among other things, driving with moderate speed allows to observe
the signals. More specifically, men should pay special attention when the intersection type is “in X o +”
(rule 13).

As mentioned previously, the type of accident that causes more fatalities is running over
pedestrians. Nevertheless, there are also some rules where part of the antecedent is ACT_TY = 1,
(the accident was a collision), although these rules have a lower probability (from rule 23). This means
that collisions can also cause fatal injuries. In all these rules, the probability is equal to 1 and the driver
made a mistake by not observing a signal (DR_INFR = 1). It means that the driver failed to observe the
directions of a traffic officer (see Table 1).

3.3. Some Remarks about the Rules Related to Accidents That Do Not Occur in Intersections

In this case, too, collisions with pedestrians are the most frequent type of accident causing
fatal injuries. In fact, we see that in most rules, part of the antecedent is ACT_TY = 2 (collision
with a pedestrian). Thus, novice drivers should always pay special attention to pedestrians, not
only in intersections.

As was the case for the rules corresponding to intersections, most of these rules include SP_IN = 1
(infraction due to excessive speed) and DR_INFR = 5 (a driver infraction which is not common).
This means that, in the case of inexperienced drivers, excessive speed usually gives rise to some traffic
violation that is not common and often causes a fatal injury. Therefore, it is critical to raise awareness
among drivers about the importance of avoiding excessive speed, especially during the first few years.

It can be deducted from some of the rules that the previous points can be aggravated if they
are combined with certain circumstances. These circumstances can be driving on Fridays (rule 2) or
between 18:00 and 24:00 h (rule 3). Rule 4 shows that excessive speed often triggers accidents of fatal
severity in straight road conditions. Furthermore, according to rule 8, men are more likely to suffer
fatal injuries because of excessive speed.

Some rules also remark that driving too fast usually produces fatal injuries even with favorable
environmental conditions, such as a dry and clean surface (rule 6), good lighting (rule 11) or good
visibility (rule 13).

In rules 15 and 17, part of the antecedent is PAV = 0, which implies absence of pavements. It means
that the excess of speed in some cases can be aggravated if there are no pavements. Thus, drivers with
little experience should be especially careful when there are no pavements.
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3.4. Summary of the Rules Obtained

Collisions with pedestrians are the type of accident of inexperienced drivers that causes the most
fatal injuries in urban areas. Hence, road safety analysts should urge inexperienced drivers to exercise
extreme caution to prevent pedestrian accidents while driving.

We have also observed that in most of the accidents with fatal severity involving inexperienced
drivers, the speed of the vehicle was excessive. Therefore, speed moderation is crucial for novice
drivers, especially during the first few years. Since this is a very common infraction, advertising
campaigns should be run to raise awareness about this issue among inexperienced drivers.

The issues mentioned above often give rise to fatal severity in accidents, even when external
conditions are good. However, the situation could be aggravated under certain circumstances.
These circumstances can be the hour, the weekday and, most importantly, the lack of pavements.
This factor can lead to fatal injuries, especially in intersections. Thus, apart from warning novice
drivers to moderate the speed in areas without pavements, building more pavements in urban areas
(especially in intersections) is desirable.

Another point to consider is that novice drivers must obey traffic officer directions in intersections.
They should be aware that the directions given by a traffic officer have priority over the rest of the
signals and general rules. Therefore, advertising campaigns should be run to raise awareness about
this point among inexperienced drivers.

4. Conclusions

This research was focused on the analysis of accidents in urban areas involving drivers with three
years experience or less. For this purpose, we used data about accidents provided by the Spanish
Directorate General of Traffic (DGT). As a first step, the data were preprocessed for the problem
targeted. Next, they were classified into accidents in intersections and accidents that did not occur
in intersections. Then, the information root node variation (IRNV) method was applied to obtain
a final rule set. These rules were validated to select only those that matched the data and had a fatal
injury consequent.

Thus, we created two rule sets for the main causes of fatal injuries in accidents involving
inexperienced drivers in urban areas: One corresponding to accidents in intersections and the other
one for accidents that did not occur in intersections. From these rule sets, it follows that collisions
with pedestrians are the accident type of inexperienced drivers that causes most fatalities. In addition,
excessive speed is the main cause of serious injuries in novice drivers. Other circumstances can
aggravate the situation; The most relevant one is the lack of pavements. Another important conclusion
is that failing to observe the directions of a traffic officer is the cause of some of the fatal injuries
in intersections.

Therefore, it is crucial to make inexperienced drivers understand that they should moderate their
speed and pay attention to pedestrians, and exercise caution in certain circumstances (e.g., lack of
pavements). Increasing the number of pavements in urban areas is also desirable. Finally, inexperienced
drivers should be aware of the importance of observing the directions of traffic officers in intersections.

To summarize, in this work, a rule set about causes of fatal injuries in accidents in urban areas
with inexperienced drivers was obtained via the IRNV method and a posterior selection process.
These rules will be useful to DGT to inform novice drivers about the importance of paying attention to
pedestrians and moderating their speed, especially in certain situations, such as where there is a lack
of pavements.
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