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Abstract 
A growing amount of evidence demonstrates the role 

of non-coding RNAs (ncRNA) in the 

etiopathogenesis of cancer. ncRNA are the product 

of the transcription of genes which are not further 

translated into proteins, thus they exert their 

functions as they are or  more frequently  after post-

transcriptional modifications. In the last decades, 

several different classes of ncRNA had been 

described, both long (lncRNA) and short (sncRNA). 

The former are molecules usually longer than 200 

nucleotides (nt), while the latter usually include 

species of a few tens of nucleotides in length, 

although exceptions are present (for example, 

circRNA span a length of 100-1600nt; snoRNA are 

60-300nt). Y RNA belong to the sncRNA family and 

are in the range of ca. 80-120nt. Here we summarize 

the current knowledge about Y RNA biology, their 

role in normal cellular homeostasis, and their 

expression variations in human cancers. 

Keywords 

hY1; hY3; hY4; hY5; RNY1; RNY3, RNY4; RNY5; 

cell cycle; DNA replication; RO60; 

ribonucleoprotein particle 

Discovery, evolutionary 
conservation and structure 

The first discovery of Y RNA (Lerner et al. 1981) 

has been made by immunopurification with auto-

antibodies in patients affected by the autoimmune 

diseases systemic lupus erythematosus (SLE) and 

subsequently confirmed in (i) primary Sjogren 

syndrome, (ii) subacute cutaneous lupus 

erythematosus, (iii) neonatal lupus erythematosus, 

(iv) ANA-negative lupus erythematosus, and (v) 

systemic lupus erythematosus-like disease. These 

diseases are characterized by having as autoantigen 

targets, among the others, the soluble 

ribonucleoproteins (RNP) (also known as SSA or 

TROVE2 - TROVE domain family, member 2) 

(Deutscher et al. 1988; Ben-Chetrit et al. 1989) and 

(small RNA-binding exonuclease protection factor - 

also known as La) (Chambers et al. 1988). Y RNA 

are small non-coding RNAs that were originally 

identified as the RNA component of RO60 and SSB 

in these patients (Lerner et al. 1981; Hendrick et al. 

1981). Y RNA, like other small RNAs, are 

transcribed by RNA Polymerase III (Pol III) 

(Hendrick et al. 1981; Wolin and Steitz 1983). After 

transcription, they may either remain inside the 

nucleus or be exported in the cytoplasm (Kowalski 

and Krude 2015). They were originally termed as 'Y' 

RNA to distinguish their cytoplasmic localization 

from that of the nuclear 'U' RNA (Lerner et al. 1981). 

There are four known Y RNA members in humans, 

named hY1 (length: 112 nucleotides, nt), hY3 

(101nt), hY4 (93nt) and hY5 (83nt) RNA; the 

presence of hY2 RNA was later confuted, as it was 

found that it is a degradation product of hY1. 

According to ENSEMBL 75, there are also an 

additional 52 transcripts which are pseudogenes 

based on the 4 human Y RNA, and a further 966 

hYRNA pseudogenes (Perreault et al. 2005), with 

878 predicted transcripts, that make up the Y RNA 

category. In the most common use, hY1-5 are the 

names of the RNAs, while the HGNC approved gene 

symbol for the four genes are RNY1-5, respectively 

(i.e. , , and ).  
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Figure 1: structure of a generic human Y RNA. For the structure of specific genes, please see for example (Köhn et al. 2013); 
note that the loop domain is the less conserved both in length and structure, among all studied organisms and among the four 
human RNAs. Image taken from the Rfam database release 9.1 (http://rfam.xfam.org/family/RF00019) and partially modified 
(picture rotation; indication of domains). Nucleotide coloring indicates sequence conservation between the members of this 

family. 

 

Y RNA have two recognized functions: repressors of 

RO60 and other Ro proteins, and initiation factors 

for DNA replication (Christov et al. 2006; Zhang et 

al. 2011; Hall et al. 2013). Y RNA are conserved 

molecules, and confirmed (true Y RNA) or putative 

(stem-bulge RNAs, sbRNA (Boria et al. 2010)) 

members of this family are found in mammals, birds, 

amphibians, fishes, worms, insects, tunicates and 

even bacteria (Mosig et al. 2007; Perreault et al. 

2007; Boria et al. 2010; Duarte Junior et al. 2015, 

2019). However, in some lower organisms such as 

Caenorhabditis elegans (CeY RNA), Branchiostoma 

floridae (BfY RNA) and Deinococcus radiodurans 

(DrY RNA) the sequence similarity to vertebrate Y 

RNA is only partial and does not include the upper 

stem domain (Gardiner et al. 2009); moreover, their 

function is not essential in them, since mutant 

organisms with missing Y RNA are viable. To date, 

only plants and fungi do not have any candidate Y 

RNA or sbRNA, thus the evolution of these 

molecules is still a debated topic in eukaryotes. 

The stem-loop organization of Y RNA is conserved 

as well, and it is schematically reported in Figure 1. 

Four specific regions can be identified. (i) A poly-

uridine tail that is important for SSB binding and for 

Y RNA stabilization (target of exonucleases); 

moreover, some authors suggest that, at least hY1 

and hY3, potentially contain a variety of 3' ends, 

with the most abundant species being at positions -5 

and -4 relative to the previously mapped 3' ends 

(Shukla and Parker 2017). (ii) A lower stem domain, 

which is the binding site of RO60 and is important 

for nuclear export; this region is frequently flanked 

by a bulged region that is essential for RO60 binding 

and separates the lower stem from (iii) an upper stem 

domain, which is important for the initiation of DNA 

replication. Finally, (iv) a loop domain, which is the 

most variable portion of the Y RNA. In particular, 

the loop domain length and sequence are the most 

discriminating parameters among the four human Y 

RNA, the longest loop being that of hY1 (65 nt) and 

the shortest that of hY5 (31 nt). Also the three-

dimensional folded structure of the loops differ 

significantly among the four hY RNA: it is likely 

very flexible (Teunissen 2000) and fulfills different 

tasks such as modulation of chromatin association,  

protein binding site (such as those reported in Table 

1) (Fabini et al. 2001; Fouraux et al. 2002; Belisova 

et al. 2005; Hogg and Collins 2007; Gallois-

Montbrun et al. 2008; Sim et al. 2012; Köhn et al. 

2013, 2015; Shukla and Parker 2017; Donovan et al. 

2017) and site of cleavage for the formation of 

YsRNA (Y RNA-derived small RNAs, stretches of 

22-36 nucleotides that are produced in apoptotic 

cells - see the specific section below) (van Gelder et 

al. 1994; Teunissen 2000; Kowalski and Krude 

2015). It is expected that Y RNA contemporarily 

bind at least two proteins, one of which is a core 

protein bound on the stem domain (such as RO60) 

and another on the loop domain; indeed, experiments 

using gel filtration show that Y RNP range in size 

from 150 to 550 kDa (see (Köhn et al. 2013) and 

references therein). All human Y RNA genes map 

inside the region 7q36.1 (Maraia et al. 1994; Maraia 

1996) and, in particular, RNY3 is on the opposing 

DNA strand from the gene RNY1 (Wolin and Steitz 

1983); interestingly, despite their high homology, 

these two RNAs do not cross-hybridize (Wolin and 

Steitz 1983). This clustering of Y RNA coding genes 

on chromosomes has been described also in other 

vertebrates (O'Brien et al. 1993; Farris et al. 1996; 

Mosig et al. 2007).  

Role of Y RNA in RO60 function 

Ro ribonucleoproteins (Ro RNP) are implicated in 

RNA processing and quality control (Hogg and 

Collins 2007; Sim and Wolin 2011), as well as in 

intracellular transport, bringing other Y RNA 

binding proteins to their specific targets (Belisova et 

al. 2005). It has been recently proposed that an 

evolutionarily conserved function of non-coding 

RNAs (ncRNA), including Y RNA, might be the 

assembly and function of RNP complexes; in this 

case, these molecules could act as scaffolding factors 

necessary to form functional RNP (Täuber et al. 

2019). 
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Protein (HGNC) Synonyms Interacting Y RNA Domain involved Function 

 CEM15 1, 3, 4, 5 unknown unknown 

 NEB1 1, 3 loop histone pre-mRNA processing 

 EXOSC11 (1), (3) polyU tail Y RNA stabilization 

 DIS3L1 1, 3 polyU tail Y RNA degradation and turnover 

 PMSCL2 1, 3, 4, 5 polyU tail Y RNA trimming, stabilization 

 HNRPK 1, 3 loop unknown 

 C20ORF183 (1), 3 loop nuclear Export of RO60 and Y3 

 nucleolin, C23 1, 3 loop unknown 

 DAN 1, 3, 4, 5 polyU tail Y RNA trimming, stabilization 

 hnRNP I, PTB 1, 3 loop unknown 

 RoBP1, FIR (1), (3), 5 unknown unknown 

 PRCA1, RNS4 1, (3), 4, 5 loop cell cycle arrest and apoptosis 

 La, LARP3 1, 3, 4, 5 polyU tail nuclear localization, protection of Y RNA 3' ends 

 PAPD5 1, 3, 4, 5 polyU tail Y RNA oligoadenylation, degradation 

 PCH7 1, (3) polyU tail Y RNA degradation and turnover 

 TROVE2, Ro60, SSA 1, 3, 4, 5 lower stem stabilization, nuclear export, RNA quality control 

Table 1 - Y RNA binding proteins. Numbers inside parentheses indicate unconfirmed data or minor effects. Protein names 
(column 1) are those approved by the HUGO (Human Genome Organisation) Gene Nomenclature Committee (HGNC). Proteins 

are listed in alphabetical order according to data in column 1. 

 

RO60 is a 60kDa ring-shaped RNA-binding protein 

(Stein et al. 2005) important in the response to 

environmental stress, such as exposure to UV 

radiation or heat, in both animal cells and bacteria. It 

is highly conserved (Sim and Wolin 2011; Wolin et 

al. 2013), able to bind aberrant non-coding RNAs 

such as mis-folded 5S rRNA or U2 snRNA (O'Brien 

and Wolin 1994; Chen et al. 2003) and possibly 

acting as a cellular stress sensors (reviewed in 

(Kowalski and Krude 2015; Boccitto and Wolin 

2019)).  

Structural and biochemical studies have shown that 

the binding affinity of Y RNA for RO60 is higher 

than that of mis-folded RNA, suggesting that Y RNA 

might act as a RO60 repressor (Stein et al. 2005; 

Fuchs et al. 2006), although some evidence support 

the hypothesis that these molecules (or, at least, hY5) 

might also enhance the recognition of mis-folded 

ncRNA (Hogg and Collins 2007).  

It has been suggested that the interaction of Y RNA 

with nucleolin (NCL), polypyrimidine tract-binding 

proteins (PTB) and Z-DNA binding protein 1 

(ZBP1) (Köhn et al. 2013) might modulate the 

subcellular localisation of RO60 (Sim and Wolin 

2011).  

Indeed, RO60 can move between nucleus and 

cytoplasm, in a Y RNA-dependent way (Sim et al. 

2009; Sim and Wolin 2011) and, in turn, RO60 

protects them from degradation and allows their 

accumulation in several species (Chen and Wolin 

2004). Consequently, some authors suggest a model 

where Y RNA and bound RO60 can dissociate under 

certain conditions, so that RO60 can act in cellular 

recovery by salvaging mis-folded RNAs. In this 

context, it is possible to hypothesize that other RNA-

binding proteins could complex Y RNA in a similar 

fashion, to fulfill additional tasks, such as mRNA 

regulation (Köhn et al. 2013).  

Role of Y RNA in DNA replication 

Y RNA functions during DNA replication seem 

quite distinct from those related to RO60 functions 

(Langley et al. 2010). Indeed, Langley and 

collaborators showed that immunodepletion of 

RO60 and SSB RNP from human cytosolic extracts 

does not inhibit DNA replication in human cell 

nuclei (Langley et al. 2010). Similarly, deletion of 

RO60 and SSB binding sites on the lower stem 

domain of vertebrate Y RNA does not inhibit the 

DNA replication activity of the mutant Y RNA 

(Christov et al. 2006; Gardiner et al. 2009) indicating 

that the role of Y RNA in DNA replication is 

uncoupled from Ro RNP binding. Instead, RNA 

interference (RNAi)-mediated depletion of either 

hY1, hY3, or hY4 RNA in cell cultures eliminates or 

reduces DNA replication in these cells (Christov et 

al. 2006, 2008; Krude et al. 2009; Collart et al. 2011), 

and DNA replication is restored back by artificial 

reintroduction of any of them; the only exception 

being for hY5, which is consequently thought to be 

refractory to RNAi. Similarly, functional 

inactivation of Y RNA (sbRNA in worms (Boria et 

al. 2010)) via microinjection of antisense 

morpholino oligonucleotides (MOs) in embryos, is 

sufficient to impair DNA replication in Xenopus 

laevis, Danio rerio and Caenorhabditis elegans, 

where this treatment impairs DNA replication and 

causes cell cycle arrest and embryonic lethality 

(Collart et al. 2011; Kowalski et al. 2015). In this 

context, it is not surprising that Y RNA are over-
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expressed in some human solid tumors (Christov et 

al. 2008) (see also the specific sections below).  

Y RNA function in DNA replication is fulfilled by 

the upper stem domain (Gardiner et al. 2009; Wang 

et al. 2014; Kowalski et al. 2015) which is important 

also for the recognition of specific chromatin 

domains and DNA replication initiation proteins 

(Zhang et al. 2011; Collart et al. 2011). Interestingly, 

however, this interaction does not include replication 

fork proteins (Zhang et al. 2011) suggesting that the 

interaction is restricted to the DNA replication 

initiation complex (Kheir and Krude 2017). Indeed, 

Y RNA localize inside nuclei in G1, before DNA 

replication, and they are displaced upon DNA 

replication initiation (Zhang et al. 2011). To date, 

there is no certainty about their role in this process, 

and only hypotheses may be drawn (Kowalski and 

Krude 2015). Interestingly, although all Y RNA 

localize inside the nucleus, only hY1, hY3 and hY4 

co-localize with each other on early-replicating 

euchromatin; instead, hY5 is prevalently localized in 

nucleoli (Zhang et al. 2011). This different behavior 

of hY5 is recurrent also in some of the tumors 

described below. This localization is controlled, in 

all Y RNA, by the loop domain. Differently, the 

nuclear export of Y RNA is controlled by the lower 

stem domain and is dependent on the small GTPase 

Ran (Rutjes et al. 2001).  

Y RNA derivatives 

Intracellular localization of Y RNA is dependent on 

cellular stress (Chen and Wolin 2004); specifically, 

both RO60 and Y RNA are up-regulated and 

accumulate inside the nucleus following UV 

irradiation, starvation, heat stress, γ-irradiation, and 

desiccation (Sim et al. 2009, 2012; Boccitto and 

Wolin 2019). However, it has been noted that this 

phenomenon could also be just a byproduct of the 

inhibition of RanGTP gradient under stress 

conditions (Köhn et al. 2013). The RNA component 

of Ro RNP is partly degraded during apoptosis and 

generates the so called Y RNA-derived small RNAs 

(YsRNA), such as miR-1975 and miR-1979. 

However, is not required for the production of these 

YsRNA (Nicolas et al. 2012; Langenberger et al. 

2013) and indeed, after their identification as 

byproducts of Y RNA degradation, miR-1975 and 

miR-1979 were removed from miRBase 

(http://www.mirbase.org/), the primary database for 

micro RNAs. These shorter fragments are 

specifically, abundantly and rapidly generated from 

all four Y RNA during apoptosis, in a caspase-

dependent manner (Rutjes et al. 1999), but it is not 

yet clear if they have any causal role in these 

phenomena, or are just a product of apoptosis-

mediated cellular changes (Rutjes et al. 1999; Meiri 

et al. 2010). These Y RNA degradation products 

remain bound to the RO60 protein and, in part, also 

to the SSB protein (Rutjes et al. 1999). This suggests 

that the rapid degradation of these molecules might 

occur at an early step during the systemic 

deactivation of the dying cell. Despite the role of 

these molecules is currently unknown, YsRNA have 

been identified both in healthy tissues (Nicolas et al. 

2012; Yamazaki et al. 2014) and in precursor B cells 

of acute lymphoblastic leukaemia patients (Schotte 

et al. 2009) as well as in solid tumors (Meiri et al. 

2010); for these reasons, they are under investigation 

as possible biomarkers in cancer and/or other 

conditions (Meiri et al. 2010; Nicolas et al. 2012; 

Dhahbi 2014; Vojtech et al. 2014; Ikoma et al. 2018). 

Indeed, these fragments - especially those derived 

from hY4 - are particularly abundant in plasma, 

serum (Dhahbi et al. 2013; Yeri et al. 2017; Umu et 

al. 2018) and other biofluids (Vojtech et al. 2014; 

Godoy et al. 2018), where they circulate as part of a 

complex with a mass between 100 and 300 kDa but 

not included in exosomes or microvesicles (Dhahbi 

et al. 2013). Some authors suggest that, beyond what 

described before, Y RNA and their derivatives might 

also fulfill a signaling (Dhahbi et al. 2013) or a gene 

regulation (Van Balkom et al. 2015) function; 

actually, a role in gene regulation has also been 

described for the maturation of histone mRNA 

through hY3 and its derivative, hY3** (a smaller 

60nt-long Y RNA) (Köhn et al. 2015; Köhn and 

Hüttelmaier 2016). Noteworthy, these fragments are 

not confined inside cells, but can be found also in 

blood circulation, with a specific enrichment of hY4 

derivatives (Dhahbi et al. 2013), and inside 

extracellular vesicles (EV) for hY5 derivatives 

(Chakrabortty et al. 2015). More detailed 

descriptions of these fragments can be found in the 

following specific sections on human tumors.  

Y RNA and human cancer 

The role of Y RNA in DNA replication (and, 

consequently, in the regulation of cell cycle) sets the 

basis to hypothesize their possible role in cancer 

etiology. Indeed, there are reports showing that Y 

RNA are significantly up-regulated (4- to 13-fold for 

hY4 and hY1, respectively) in human cancer tissues 

(carcinomas and adenocarcinomas of the lung, 

kidney, bladder, prostate, , and ) compared to normal 

tissues (Christov et al. 2008), and are also required 

for the proliferation of cancer cells, since their RNA 

interference (RNAi)-mediated degradation results in 

a significant cytostatic (but not cytotoxic) effect in 

cell lines, probably by inducing a significant 

inhibition of chromosomal DNA replication in 

cultured human cells (Christov et al. 2008). 

Interestingly, hY5 seems under control of an 

independent mechanism since its cellular amount is 

frequently different from that of the other three Y 

RNA, although over-expressed as well in at least 

some tumors (Christov et al. 2008).  

As said, it has been reported in 2008 that hY1 and 

hY3 are highly over-expressed in (Christov et al. 
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2008). Instead, in 2017 Tolkach and collaborators 

reported that all Y RNA are down-regulated in BC 

(Tolkach et al. 2017), with the low abundance of 

hY1, hY3 and hY4 typical of muscle-invasive 

bladder cancer (MIBC) compared to non-muscle-

invasive bladder cancer (NMIBC) and that low 

amount of hY1, hY3 and hY4 also correlates with 

lymph node metastases and advanced grade. No 

correlation was found with age or gender. Further 

studies are needed to assess with certainty if, in 

bladder cancer, Y RNA are indeed down-regulated.  

Dhabi and collaborators detected inside the serum 

and plasma the presence of RNA fragments, 

including YsRNA (Dhahbi et al. 2013). Using this 

approach, they later verified if their abundance can 

be related to (Dhahbi et al. 2014). They found a 

major population of 30-33nt long fragments mostly 

derived from Y RNA 5' end, and a minor population 

of 25-29nt long fragments almost exclusively 

derived from their 3' end. Interestingly, some 

fragments increase while other decrease their 

amount, in a specific pattern. This result is in good 

agreement with a previous study describing an 

enrichment of 3'-end fragments - derived from 

human hY5 - detected in MCF 7 (mammary 

adenocarcinoma) cells (Nicolas et al. 2012). More 

recently (Guo et al. 2018), another study on (TNBC) 

showed similar results for RNY1, RNY5 and, above 

all, RNY4 expression, while another group (Tosar et 

al. 2015) found fragments of 31-33nt greatly and 

significantly enriched in the extracellular space of 

cultured breast cancer cells, suggesting that this 

fragments are specifically excreted by these cells.  

As for (the most common tumor of the brain), to 

date, only one manuscript was published, dealing 

with Y RNA (Wei et al. 2017). In glioma cells, all 

extracellular fractions, especially non-vesicular 

RNPs, are highly enriched in specific Y RNA 

fragments ca. 32nt in length, especially belonging to 

hY1, hY4 and hY5.  

Martinez and collaborators reported that in 

(HNSCC), Y RNA-derived small RNAs are 

significantly deregulated in the sera of patients 

(Martinez et al. 2015). These patients have, among 

the others, an enrichment of 30-33nt-long fragments 

deriving from Y RNA degradation, and these 

fragments proportion either increases or decreases 

significantly for specific RNA species, suggesting a 

remodeling of the small non-coding RNA networks 

in HNSCC. Recently, Dhahbi and coworkers 

analyzed Y RNA fragments in (OSCC), a form of 

HNSCC and the most common type of head and neck 

cancer (Dhahbi et al. 2019). Also in this case, the 

authors found that multiple 5' Y RNA fragments 

displayed significant differential expression levels in 

circulation and/or tumor tissue, as compared to their 

control counterparts.  

Bernatsky and collaborators demonstrated that many 

cancer types, and hematologic malignancies in 

particular, are substantially increased in patients 

affected by systemic lupus erythematosus 

(Bernatsky et al. 2013). Chakrabortty and coworkers 

(Chakrabortty et al. 2015) demonstrated that primary 

cell cultures are sensitive to apoptosis induction 

either by treatment with K562 cells EV, or by the 

ectopic over-expression of 31nt-processed fragments 

of hY5. Instead, this treatment is inefficient on 

cancer cells, suggesting that this might be a way for 

cancer cells to create a favorable microenvironment 

(Chakrabortty et al. 2015). More recently, a study on 

(CLL) (Haderk et al. 2017) revealed that (i) hY4 is 

highly enriched in exosomes; (ii) it is sufficient to 

activate cytokine release in monocytes and trigger in 

these cells the activation of Toll-like receptor 7 ( ), 

(iii) the pharmacologic inhibition of endosomal TLR 

attenuates CLL development in vivo; (iv) in CLL 

patients, the PD-L1 pathway is activated, allowing 

the tumor cells to escape the immune response.  

It has been shown (Nientiedt et al. 2018) that in 

(ccRCC) patients, the expression of RNY3 and 

RNY4 is significantly increased and that the 

expression levels of RNY4 alone is inversely 

correlated with ccRCC stage and the presence of 

lymph node metastases.  

In (ADC) and (SQCC) patients, Li and collaborators 

(Li et al. 2018) showed that 5' hY4-derived 

fragments have a significantly higher expression in 

plasma EV compared to controls, while they are 

down-regulated inside cancer; moreover, over-

expressing hY4 inhibits the proliferation of lung 

cancer cell line A549, suggesting for hY4 fragments 

a role of tumor suppressors in this pathology. These 

results show evident differences from those reported 

before (Christov et al. 2008), thus a further 

validation of either data is advisable.  

The analysis of ncRNA content of EV of the cell line 

MML-1 (Lunavat et al. 2015) demonstrated that 

there is a specific signature of Y RNA present in EV, 

with hY1, hY4 and hY5 significantly more abundant 

in EV than inside melanoma cells, while hY3 

amount is similar inside EV and MML-1 cells. These 

data were partly validated by the recent work of Sole 

and collaborators (Sole et al. 2019) who found an 

enrichment of hY4 and, to a lesser extent, of hY1 and 

hY3, but only in patients with stage 0 disease.  

Quantification of Y RNA in samples (Tolkach et al. 

2018) revealed a down-regulation of these molecules 

two to fourfold, compared to normal tissue. The 

authors also found that higher RNY5 expression is 

associated with poor prognosis, measured as 

biochemical recurrence-free survival. Interestingly, 

these results are in contrast with those found for 

bladder cancer (see above), further supporting the 

use of Y RNA as a valid biomarker for cancer 

identification. Also for prostate cancer, these data 

contrast with those reported before (Christov et al. 

2008) thus a more in depth analysis is required to 

validate either results.  
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