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1 Introduction

In an analysis of university admissions data, we find that one of the most prestigious
engineering programs in Chile frequently admits female applicants at a lower rate
than male applicants. This raises the question of what the reason for this disparity
is. If you are not familiar with the Chilean university admission system, you might
be inclined to think that university administrators are less likely to admit female
applicants because they hold explicit or implicit biases [42] against women in engi-
neering. Such biases have indeed been shown to play a role in hiring (e.g., [15], 81])
and university admission processes where each application is reviewed individually
(e.g., [24]). An easy solution to this problem then appears to be the automation of
the admission process based solely on grades or standardized test scores — after all,

this appears to leave no room for human biases.

However, this is exactly how the Chilean admission system is already working. In
their central admission system, students apply to a central institution that matches
applicants with university programs. Such centralized admission systems are used
in several countries worldwide, such as Turkey (see, e.g., [5, 87]), Germany (see,
e.g., [86]), China (see, e.g., [27]), and Ghana (see, e.g., [4]). The matching of stu-
dents to programs is typically based on the students’ grades and standardized test
scores [44]. This raises the question of how this admission process can still result in
such unequal admission rates. A large body of research (e.g., [6l 65] [73] [76]) points to
differences in grades and standardized test scores as the source of inequality. These
scores are — for various reasons discussed in Section [2] - correlated with demographic
markers, such as gender, race and income, which can then lead to unequal admis-
sion rates. As shown in [64], affirmative action policies can be applied to reduce
inequalities in such settings. Their objective is the increase of the representation of

groups that have historically been underrepresented.

Achieving this goal is challenging for a number of reasons. First, we assume that uni-
versities still want to reward merit and admit the best applicants — an objective that
may contradict the one of increasing representation of specific groups. A trade-off
between the two objectives has to be carefully considered. Second, the implemen-
tation of affirmative action policies should be transparent. Policies are therefore
typically announced before the start of the application period, and so they must
be designed under uncertainty about which students will apply to each program.

And third, the search for optimal and robust policies quickly becomes infeasible for
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human policy-makers as their limited computational capacities pose a constraint on

their ability to make rational choices [79).

The question we want to answer with this thesis is how computational methods
can be leveraged to evaluate a wider range of alternatives and therefore to identify
more robust policies. We develop an approach for designing robust and effective
affirmative action policies in the application scenario of university admissions. In
particular, we design bonus policies, i.e., policies that assign a number of bonus
points to applicants from disadvantaged backgrounds. These policies do not alter
the admission priority of applicants within each group and have equivalent effects to
setting admission quotas [64]. The technical problem we face is to choose the right
number of bonus points, so that the policy will have a robust beneficial effect on the

admission rate of the given group.

Our approach is based on the simulation of the application process as this will
allow us to compare the effects of different policies. Since we are unable to measure
the effect of a given bonus policy on next year’s application set (consisting of the
applicants with their applications), we could instead estimate its effect by evaluating
the policy on a large number of historical application sets. As historical application
data are, however, limited, we generate our own application sets. To this end, we
first sample sets of students based on application data from previous years. Even
though these students’ original applications are known, they cannot be used for
our purposes as some of the programs that students have applied to in the past no
longer exist. A predictive model trained on the most recent data is thus employed
to generate applications for the sampled students. We assume that a policy that
is on average beneficial to the resulting application sets will also reduce the gap
in admission rates in the upcoming application round. We develop this predictive
approach as an applied data analysis case over a large real dataset of university

admissions in Chile and demonstrate its performance.

The data analysis for this study is run on the University of Helsinki’s Ukko2 cluster
(urn:nbn:fi:research-infras-2016072533).

An earlier version of this work has been submitted to the Applied Data Science
track of ECML PKDD 2020 and is under review at the time of writing this thesis.
The thesis expands on the submitted paper in that it not only examines the design
of policies for a single demographic group but for multiple ones. Additionally, it

includes details that had to be omitted from the paper due to space limitations.



1.1 Research Gap

This thesis belongs to the field of algorithmic fairness. In this field, evaluating the
fairness of a given algorithm is common [71]. If biases are detected, the algorithm is
oftentimes adapted to not exhibit these biases anymore as seen in, e.g., [22], 55] 88].
The algorithm that could be adapted in this work is the algorithm that assigns
students to university programs. One possible adaption would be changing its input
variables. As previously mentioned, admission decisions are only based on grades
and standardized test scores. While these features are correlated with demographic
markers, we assume that they should remain the input variables as they are the
standard features for admission decisions. Another possible adaption would be the
change of the algorithm that assigns students to university programs. As there are
many possibilities to match students with university programs, even if the admission
priority is given by students’ scores, the algorithm could simply produce another
matching (see, e.g., [2, [78]). There is already a large body of research (see Section
2)) into how the algorithm can incorporate affirmative action policies, such as the
reservation of spots for female students, in order to increase the representation of
disadvantaged groups. However, there is little research into how the parameters of
these policies, such as the number of spots reserved for women, should be chosen.

This is what our research is aimed at.

Hence, instead of addressing inequalities through changes in the computational as-
pects of the admissions process directly, this thesis explores how computational
methods can be applied to the policy-making process. The policies then address the

inequalities in the admissions process.

1.2 Thesis Contributions

To our knowledge, this is the first study that discusses how historical data can be
leveraged in the design of affirmative action policies for university admissions when
the applicants are unknown. An advantage of our approach is that it incorporates
the knowledge of domain experts, i.e., university administrators. This is achieved
by allowing them to make conscious decisions about the trade-off between merit
and social inclusion, i.e., the potential decrease in the scores of admitted students
they are willing to accept for increased social inclusion. Central university admission
systems can adopt the presented approach to design robust policies based on existing
data.



1.3 Structure

We begin in Section [2] by situating this work in the broader fields of policy-making
and algorithmic fairness. In particular, we highlight a gap in the literature with
respect to how computational methods are oftentimes already utilized in policy-
making, but not in the design of affirmative action policies. Section [3] explores the
Chilean university admissions data with a focus on differences between demographic
groups and discusses the (un)predictability of admission rates. Section 4] discusses
explores ways to model students’ application behavior. The model decided on based
on experimental results is employed to generate application sets on which the effects
of different bonus policies are evaluated. Section [5| describes in detail how policy
suggestions are made based on the generated application sets and experimentally
compares our predictive approach to simpler strategies. Section [0 presents a method
for efficiently finding close-to-ideal combinations of bonus policies when policies for
multiple demographic groups are to be implemented. To achieve this goal, it extends
the strategies introduced in Section [5] Finally, Section [7] discusses possibilities for
future work as well as the implications of our findings for the design of affirmative

action policies.



2 Background and Related Work

This section examines literature at the intersection of the policy-making process and
algorithmic fairness. We begin with an introduction to affirmative action policies
and their current usage in Chile. We then highlight how computational methods
can be an aid in the policy-making process, but find a lack of research into how this
can be applied to the context of affirmative action policies. Since "fairness" has no
single definition, we conclude with a discussion of "fair" university admissions and

justify how we define fairness in the context of this work.

2.1 Affirmative Action Policies in Chile

Affirmative action policies aim at increasing the representation of disadvantaged
groups by treating them favorably, for example, in university admissions or hiring.
According to [60], Hobart Taylor, Jr., first introduced the term in Execute Order
10925 [72] in 1961. Since then affirmative action policies have been implemented and
debated in many countries, such as India (see, e.g., [16, 59]), Brazil (see, e.g., [50])
and South Africa (see, e.g., [63]).

Measures like this are necessary in Chile as the inequality in the education system
has persisted for years [2I]. While higher education is no longer regarded as a
privilege of the elites, multiple issues prevent equal access to higher education for
all students [30]. In 2009, the Chilean Ministry of Education found that a majority
of the students that choose vocational training for their upper secondary education
are from a disadvantaged socio-economic background [68]. Consequently, an OECD
report [69] found that students from low-income households are underrepresented

at universities.

Chile’s university admission system is already implementing affirmative action poli-
cies in order to reduce inequalities. In an effort to make grades more comparable
across schools, for example, a transformed version of the high school grade score
average has been introduced. The transformation compares each student’s grades
to students who have studied at similar schools in the past years. This measure has
been shown to help better judge students’ academic abilities [67]. Moreover, it can
be viewed as an affirmative action policy as it tends to increase the grade averages

of students from disadvantaged backgrounds [31].
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Additionally, one of the most prestigious universities in the country implements
its own affirmative action policies. Through these policies the first women on the
waiting list of certain science and engineering programs, such as industrial civil
engineering, and the first men on the waiting list of the social work program are
automatically admitted [84]. Bastarrica et al. [I0] evaluated the effect of this policy
and found not only a positive effect on the number of admitted women but also on

the number of applications received from women.

Similar studies have been conducted internationally (see, e.g., [25], B3], 48, 82] for
studies on affirmative action policies in the United States). Typically, they study
the effect of affirmative action policies on minority students by observing the out-
comes of the implementation or ban of such policies. Other studies, such as [7],
examined the effects of affirmative action policies in a laboratory setting. Specifi-
cally, Balafoutas and Sutter| compared four different types of affirmative action poli-
cies, e.g., giving bonus points to the disadvantaged group or preferring the member
of the disadvantaged group if two competitors are equal in terms of merit. The
mentioned studies have found that affirmative action policies are beneficial for the

representation of disadvantaged groups.

While the existing literature reveals differences between the various types of affirma-
tive action policies, it lacks a discussion of how the numerical parameters in these
policies affect the outcomes. Instead, numerical parameters are oftentimes seen as

a given.

2.2 Matching Algorithms

In centralized admission systems, algorithms are typically deployed to handle the
admissions process. Such algorithms are well-known in game theory where they are
referred to as matching algorithms. The case of matching a set of students with a

set of programs is a many-to-one, two-sided matching problem [1J.

This matching problem was first described in [38] in 1962 as the college admissions
problem. To match students with programs, Gale and Shapley| proposed the [Deferred]
|Acceptance (DA)| algorithm which they proved to have several desirable qualities.

One of them, called stability, is particularly important in the case of Chile. In a
stable assignment, there is no student-program-pair (s,p) where s prefers p over
their current assignment and p prefers s over any of the students it admitted. As

noted in [75], the admission results in Chile are publicly visible. Unstable matchings
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could therefore lead to lawsuits if students realize that someone with a lower score
has been admitted to a program that they would have preferred over their own.
Although the matching algorithm employed in Chile is not publicly available, it can
thus be assumed to be a version of the [DA] algorithm. This claim is supported by

the experimental results in [75].

Matching algorithms, such as [DA] can be implemented to incorporate affirmative
action policies. One possible affirmative action policy is that of a minority-reserve
that represents a lower bound on the number of minority students. [56] evaluates
this strategy for [1, 2, 43, 58] demonstrate further affirmative action extensions
of matching algorithms. However, as previously observed for the field of affirmative

action policies, how the parameters of such policies should be set is rarely considered.

2.3 Evidence-Based Policy Design

With the ongoing digitalization of many aspects of human life, there is an increas-
ing demand for data being used in the design of public policies. Computational
approaches to policy-making can be seen as part of the field of evidence-based pol-
icy design that grounds policy-making in data. Desouza and Lin [32] argue that
computational modeling methods enable the exploration of more scenarios which
helps to reduce uncertainty about the potential effects of a policy. This way, com-
putational methods create more robust policies. Such methods have, for example,
been applied to the design of policies in the fields of public health [9, 29] or counter-
terrorism [57, [66]. In the area of university admissions, recent work [64] addressed
the problem of policy design for affirmative action. Contrary to our work, it designed

policies for a given set of applications and not under uncertainty.

2.4 Notions of Fairness for Affirmative Action

As Abebe et al. [3| note, computing can bring attention to historical inequalities
by formalizing and quantifying them. The field of algorithmic fairness has thus
brought forth a variety of metrics to measure fairness between socio-demographic
groups which are distinguished by a sensitive attribute, e.g., gender. The literature
commonly focuses on the binary case where each sensitive attribute is associated

with two subgroups, e.g., female and male.
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We are particularly interested in measures for the fairness of university admissions.
While several fairness measures exist, we will see that the goal of this work — design-
ing affirmative action policies — and its underlying assumptions limit the number of

statistical measures to choose from.

Verma and Rubin [85] categorize fairness measures based on whether they measure
differences in predictions, outcomes or both. This makes sense in cases where the
fairness of a predictive algorithm is to be evaluated. In the case of our matching
algorithms, however, we do not produce predictions, but only outcomes, i.e., admis-
sion decisions. For this reason, we are restricted to measures based on outcomes,
which [Verma and Rubin refer to as statistical parity measures. Within this cat-
egory, two groups of measures are defined. Measures in the first group calculate
the disparity in the probability of being assigned a positive outcome. The second
group of measures conditions this disparity on "legitimate" attributes. Differences
in the distribution of these features are perceived to be legitimate reasons for un-
equal outcomes. Such attributes might, for example, be the grades and test scores

of students.

In order to decide which group of statistical parity measures we should select, we
need to understand the assumptions underlying each of these groups. Friedler et al.

[36] introduced two worldviews that differ in how they reason about differences in

feature distributions between demographic groups: [what you see is what you gef

(WYSIWYG)| and [we’re all equal (WAE)l WYSIWYG]| considers differences as in-
nate to the subgroups. On the other hand, WAE]sees them as the result of structural

biases and aims for equality of outcome, i.e., equal outcomes across subgroups. This

leads to disparate treatment of similar individuals, e.g., individuals who have simi-
lar grades but belong to different demographic groups. Green [41] refers to this as
the conflict between formal and substantive equality where formal equality refers to
equal treatment and substantive equality refers to equal outcomes. He states that in
an unequal society, equal treatment of individuals is guaranteed to lead to unequal
outcomes across subgroups. Thus, a seemingly "fair" algorithm that is free from di-
rect human bias might still indirectly reinforce patterns of structural discrimination
due to the underlying population inequity. An example of an algorithm free from
human bias is the previously mentioned [DA] matching algorithm. In the case of
Chilean university admissions, students are solely ranked on seemingly "legitimate"
criteria: their grades and standardized test score. Yet, such algorithms might still

create unequal outcomes due to the unequal nature of society.
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In the education system, structural bias can manifest itself in an achievement gap
across various groups, such as in a racial, indigenous, gender or income achievement
gap. The reasons for differences in the distribution of grades and standardized test
scores are complex and range from a lack of resources (see, e.g., [34]) through parental
education (see, e.g., [65]) to the fear of confirming stereotypes (see, e.g., [80]). This,
in turn, means that higher test scores do not necessarily imply more talent or more
diligence. The realization that merit is not sufficiently represented by test scores is

an argument for the WAE] worldview and thus for affirmative action policies.

As grades and test scores are imperfect proxies for merit and correlated to demo-
graphic variables, avoiding the reinforcement of existing inequalities demands the
usage of statistical parity measures that are not conditioned on scores. Instead the
probabilities of being assigned a positive outcome, i.e., admission, are compared

across subgroups. Two measures are typically used in this context. We follow the

notation used in [II] of referring to them as [statistical parity difference (SPD)| and
Idisparate impact (DI)| [SPD| calculates the difference in the probabilities while
refers to their ratio. [DIlis common in the United States where it is also referred to
as the 4/5ths rule. We choose as our fairness measure as it has already been

used in previous work on the same dataset [64].
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3 Dataset of Chilean University Admissions

This section begins by describing the dataset of Chilean university admissions used in
this study ( Based on the available data, sensitive attributes, i.e., demographic
groups to which we apply affirmative action policies, are chosen ( Then, we
explore current disparities in admission rates and possible reasons for them (§3.3
§3.5). We assume that if affirmative action policies are to be implemented for the
next year, the current year highly influences this decision. As Sections [5| and [
attempt to find bonus policies for the years 2016 and 2017, this section mainly
analyzes the data for the previous years, i.e., 2015 and 2016.

3.1 Data Description

We analyze anonymized data from the central admission system of Chile. This
dataset contains information of all students who applied for university programs
between 2004 and 2017, as well as the available programs. As seen in Table [I] the
number of students and programs has generally increased slowly across these years,
with a sharper increase in the number of programs in 2012, as multiple universities

joined the central admissions process in that year.

Table 1: Number of programs and applicants per year.

Year | Applicants | Programs
2004 | 40268 824
2005 | 44924 868
2006 | 46207 911
2007 | 48282 950
2008 | 48172 952
2009 | 48746 942
2010 | 50501 962
2011 | 49709 980
2012 | 51730 1335
2013 | 55488 1395
2014 | 57073 1419
2015 | 58773 1423
2016 | 59289 1436
2017 | 59743 1481

A variety of features is available for each student. Figure shows, for example,
how many years lie between students’ graduation and the start of university. One
year indicates that students start university right after their graduation, which is the
case for the majority of students (81% in both 2015 and 2016). More than a third
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of applicants in the dataset come from the metropolitan region, which includes the
capital Santiago. This is evident from Figure [3.2] which shows how many students
lived in each of Chile’s regions at the time of application. All regions — except for
the metropolitan region, which is referred to as RM — are listed with their official
Roman numeral. Other features in the dataset include the high school students

attended and information about their families, such as their parents’ education and

job.
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Figure 3.1: Distribution of number of years between high school graduation and

university start
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Figure 3.2: Geographic distribution of applicants by region

After taking standardized tests and obtaining their results, students submit a ranked
list of the university programs that they are willing to enter. We will refer to this
ranking of programs as the student’s preferences. Students can list up to ten pref-
erences, but typically only list a few programs: The average number of preferences
between 2004 and 2017 ranged between 1.6 and 2.1. For each preference, i.e., each

student-program-pair, a weighted score of the student’s grade average in high school
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and standardized test scores is calculated. The weight of the individual compo-
nents is determined by each program individually. The central institution knows
the available spots of each program and matches students to programs based on
these average weighted scores. We note that between 2012 and 2017 the majority

of programs received fewer applicants than the number of spots they offered.

3.2 Choice of Sensitive Attributes

For the further analysis of the effects of affirmative action policies, we first need to
decide what the demographic groups are to which we want to apply affirmative action
policies. Commonly used sensitive attributes for affirmative action policies are race,
gender and income [19, 28]. We have no data on the race or ethnicity of students,
but the data contain a binary gender variable and students’ household income. The
latter is given on a scale whose range varies between years. As mentioned in Section
2, we want to measure the equality of admission rates between two groups. We
therefore transform the household income variable into a binary variable. While
we could simply split students into two groups based on household income, this
would not reflect per capita income. For each student in the year’s applicant pool,
the household income per household member is thus calculated from the household
income and household size features. Students are categorized as low-income if their
household income per household member is below the median of the year’s applicant

pool, and high-income otherwise.

In what follows, we therefore compare the demographic subgroups women and men
for the sensitive attribute gender and low-income and high-income students for the
sensitive attribute income. While the share of female and male students is fairly
stable between years, the share of low- and high-income students varies more (see
Table . This can be attributed to the way in which students are split into income
groups: If a relatively high number of students fall into the median household-
income-per-household-member group in one year, the share of high-income students

is higher than average in that year.

3.3 Differences in Application Behavior across Subgroups

There are two main factors that determine which students are admitted to which
programs: the students’ scores and the students’ list of preferences. This section

explores potential differences in these factors between subgroups.
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Table 2: Share of subgroups per year as percentages.

Year | Women | Men | Low-income | High-income
2004 | 49 51 38 62
2005 | 48 52 40 60
2006 | 48 52 38 62
2007 | 49 51 37 63
2008 | 49 51 46 54
2009 | 48 52 46 54
2010 | 47 53 44 56
2011 | 47 53 41 59
2012 | 48 52 46 54
2013 | 48 52 45 55
2014 | 48 52 41 59
2015 | 48 52 39 61
2016 | 49 51 36 64
2017 | 49 51 47 53

3.3.1 Differences in Score Distributions

In order to apply to university programs that are part of the Chilean centralized
admissions system students have to take standardized tests. The two essential tests
are in mathematics and the Spanish language. In addition, students choose a test in
natural or social sciences (or both) depending on what is required by the programs
that they want to apply to. Each of these standardized tests is scored on a scale
from 150 to 850 with 850 being the highest achievable score.

We observe differences in the distributions of grades and test scores between gender
and income groups (see Figure in line with previous work (e.g., [0, 64 [73]).
These differences are persistent across years. Note that "grades" in Figure [3.3
refers to the original high school grades and not their transformed version discussed
in Section [2] In summary, women outperform men in high school, but do worse
on standardized tests, which is consistent with previous work that finds women
at a disadvantage when taking “high-stakes” tests (e.g., [8, [77]). The differences
between income groups are more marked than the differences by gender. High-
income students have slightly higher high school grades than low-income students
and much higher scores across all standardized tests. As programs generally put
more weight on standardized test scores than on high school grades, these differences

might lead to a disadvantage for both women and low-income students.
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Figure 3.3: Distributions of grades and standardized test scores.

3.3.2 Differences in Preferences

We also observe differences in the prestige of the programs to which students apply.
To describe these differences, we note that some programs are more sought-after
than others by high-scoring students. We define the prestige of a program as the
(weighted) average score of its admitted students in the previous three years. In
Figure [3.4] we show that there is no noticeable difference in the prestige of programs
women and men list as their preferences. In contrast, high-income students prefer
programs of higher average prestige compared to low-income students, particularly

in their first preference.

This difference of behavior could be intrinsic to the group, e.g., if high-income stu-

dents were more ambitious or optimistic about their chances than low-income stu-
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Figure 3.4: Average prestige of students’ preferences across subgroups.

dents. However, we note that high-income students tend to have higher scores than
low-income students, and hence, we should compare the prestige of preferences be-
tween groups controlling for test scores. Indeed, we find that this greatly reduces
differences, in particular for students with scores below the median. As Figure [3.5
shows, differences between low-income students and high-income students whose
scores are above the median are notably lower, too. This suggests that application
behavior is more driven by the scores of the applicants than by their demographics.
We note, however, that high-income students in the top decile of scores still apply to
programs of higher prestige than low-income students in the same score decile. This
is in line with research conducted by Hoxby and Avery [49] that found that high-
achieving high-income students in the United States apply to more selective colleges
than high-achieving low-income students. Reasons they mention for this disparity
are that low-income students are less often encouraged to apply to selective colleges

and that they are less likely to know a person who has attended such a college.
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Figure 3.5: Average prestige of first choice by income, controlled for score.

3.4 Differences in Admission Rates across Subgroups

We consider subgroups that are defined by a sensitive attribute A and as justified
in Section [2] measure the inequality between them through their [SPD}

P(Y =1|A=a) — P(Y = 1|A # a), (1)

where Y = 1 indicates a positive outcome, i.e., being admitted into the program. In
what follows, a always marks female students if the sensitive attribute A is gender
and low-income students if the sensitive attribute is income. Low absolute values of
[SPD) are desired — and perfect equality is achieved for a value of 0. As this might
be almost impossible to achieve in practice, we follow the thresholds given by [I1]
and consider values inside [-0.1, 0.1] as acceptable, while values outside this range

are considered strongly unequal.

Before setting out to design policies that would equalize admission rates, we first
explore their current disparities. For this, we measure the [SPD| between female and
male applicants as well as between low- and high-income applicants. Note that the
calculation of the admission rates for a program disregards students that had listed
this program as one of their preferences, but who were accepted into a program that
they had ranked higher, as such students were neither admitted nor rejected by the

program.

Figure [3.6] shows the distribution of [SPD] values for gender and income for all pro-
grams, ordered by their prestige. According to Eq. [I, values below 0 indicate a
lower admission rate for women and low-income students. While the is around
0 for most programs and hence well within the thresholds, 9% of programs in 2015

and 8% in 2016 have strongly unequal gender admission rates. 9% of programs in
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2015 and 10% of programs in 2016 have strongly unequal income admission rates.
However, not all programs with strongly unequal admission rates require affirmative
action policies: Among the programs with strongly unequal admission rates are also
programs that accept the underrepresented group at a higher rate than the over-
represented group. If we only consider programs where the group with the lower
admission rate is underrepresented, this leaves 4-5% of programs for gender and
6-7% for income in 2015 and 2016.

We note that these disparities occur despite two previously described observations:
First, high-achieving low-income students tend to "undersell" themselves by apply-
ing to less prestigious programs than high-income students with similar scores. Sec-
ondly, the high school grades between low- and high-income students have already
been equalized to some extent (see Section . The share of programs with strongly
unequal admission rates between low- and high-income students would likely be more
pronounced without the difference in application behavior and the described form

of affirmative action.

In order to identify in which types of programs particular subgroups are disad-
vantaged, we analyze the programs with strongly unequal admission rates to the
detriment of the underrepresented group. For 2015 and 2016, we find that 58-65%
of the programs that disadvantaged women are in the field of technology, such as
engineering. 44-48% of the programs that disadvantaged men in 2015 and 2016 are
in the field of health, in particular nursing and obstetrics. Low-income students are
at a disadvantage across a larger array of programs. In both 2015 and 2016, they
are primarily (37-39%) disadvantaged in the field of health. Different from the dis-
advantage of men in this field, low-income students tend to have lower acceptance
rates for medicine programs. We also note that the programs in which low-income
students are disadvantaged tend to be in the capital Santiago (41-45%). As this
is where the more prestigious programs tend to be found, this finding corroborates
what can be seen in Figure 3.6} Programs that are notably less likely to accept low-
income students than high-income students tend to be the most prestigious ones.
This is in line with previous observations that the most selective institutions tend to

be the ones in which the representation of minority students is lower (see, e.g., [46]).

We note that while the differences in score distribution (shown in Section [3.3)) might
seem small, their consequences are large, and men and high-income students could
“crowd out” women and low-income students. To demonstrate this, we consider a

hypothetical scenario in which all students apply to the same program. Figure |3.7
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Figure 3.6: Distribution of with crosses marking the mean. Programs have
been ranked by prestige (higher to lower). Labels in the x-axis indicate program

ranks in each bin.

shows the resulting difference in admission rates we would observe if all students
applied to the first, second, third, etc., most prestigious program. As the admis-
sion rates are bound to be very low if all students compete for a spot at the same
program, differences between admission rates would be extremely small and thus
uninformative. The plot therefore does not show the [SPD] but the previously men-
tioned [DI] measure, i.e., the ratio of the resulting admission rates. Values below 1
indicate a lower admission rate for women and low-income students compared to
men and high-income students, respectively. Programs have again been ranked by
their prestige (higher to lower). We see that under this hypothetical scenario, the

vast majority of programs would exhibit high disparities in admission rates.

In light of this, why do not all programs actually show such high disparities in their

admission rates?
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Figure 3.7: Distribution of DI assuming every student applied to the same program.

First, note that, while Figure |3.6| showed that differences in admission rates are
more pronounced for prestigious programs, this is not observed in the hypothetical
scenario of Figure [3.7, This is because in the actual data low-prestige programs
tend to get fewer applications (as mentioned in Section , a majority of programs
do not receive enough applications to fill all their seats) and often accept all their

applicants — which inevitably leads to perfect equality between admission rates.

The fact that the disparities of competitive programs are more pronounced in Fig-
ure [3.7] than in Figure 3.6] can be explained by what we saw in Section [3.3} The
application behavior of students depends heavily on their scores. Programs are thus
likely to receive applications from students with similar grades which makes the

differences less pronounced.

As all students apply to the same program in Figure [3.7], differences in admission
rates depend on the best students. The group of the best students differs between

programs as each program weighs high school grades and standardized test scores
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differently. For a generalization, we calculate a weighted average of each student’s
scores with the same weights. These weights are set to the median of the weights
programs used in the respective year. Figure [3.§| ranks students by the resulting
average scores and shows the share of women and low-income students for groups of
100 students. Women are underrepresented among the students with the highest and
lowest average scores. The share of low-income students is particularly low among
the best students. This underrepresentation of women and low-income students
in the group of the best students explains why men and high-income students are

admitted at higher rates in the hypothetical scenario shown in Figure [3.7]

1.0 210
c
S
0.8 Sos
S 7
(O]
Eos £05
> 3
0.4 § 0.4
® 2
0.2 002
@©
<
0079 100 200 300 400 500 600 @90 o 400 200 300 400 500 600
Score bin (size = 100) Score bin (size = 100)
(a) gender 2015 (b) income 2015
1.0 210
C
3
0.8 Sos
S 7
(0]
Eos6 £06
o g
0.4 L i En a2 P
7 3
0.2 ©0.2
—
©
<
0.0 ¢ 100 200 300 400 500 600 P00 ¢ 100 200 300 400 500 600
Score bin (size = 100) Score bin (size = 100)
(c) gender 2016 (d) income 2016

Figure 3.8: Demographics of students grouped by (weighted) average score (higher
to lower). Labels in the x-axis indicate the bin number. The dotted line marks the

share of women and low-income students in the entire applicant pool for comparison.
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3.5 Variance in Admission Rates across Years

The previous section has shown the difference in admission rates for one year at a
time. While the share of programs with strongly unequal admission rates is fairly
constant across years, this section demonstrates that this is not the case if we analyze

the [SPD] of each program individually across years.

To demonstrate to what extent the [SPD]of a program in a given year ¢ is predictable
based on its [SPD|in previous years, we train a regression model. The features on
which the model is trained are lags and differences [45]. Lags, in our case, are
the of previous years. The first lag, for example, is the [SPD] of the previous
year, denoted as SPD;_;. Differences are measured in the of two consecutive
years: SPD;_; — SPD;_; 1. To evaluate this regression approach, we build two time
series datasets on which we train separate regression models. One dataset includes
the lags (SPD,_;) and differences (SPD;_; — SPD,_; 1) of the previous three years
(1 = {1,2,3}) and one of the previous five years (i = {1,2,3,4,5}). We do not
evaluate higher values for ¢ as the construction of lags and differences is limited by
the number of years for which admission data is available and we want to ensure
that the model is trained and tested on a sufficient number of programs. As a first
inspection of the admission rates of individual programs has exhibited instances
where a program favored different subgroups between years, we do not expect the
relationship between the to be linear. Therefore, we train a random forest

regressor [18,139], i.e., a non-linear model, on the constructed time series data.

We compare this approach to three baselines: (i) always predicting 0 (i.e., equal
admission rates), (ii) assuming that the is the same as in the previous year,
and (iii) taking the average of the of the last five years as the predicted [SPD]
Specifically, we compare how well these approaches predict the difference in admis-
sion rates for gender and income groups in the years 2016 and 2017 — the years for

which we suggest bonus policies in Sections [f| and [6]

The first interesting result is that predicting perfectly equal admission rates leads
to the lowest [MAE] It thus performs better than predicting last year’s [SPD] or the
average of the last five years’[SPDg. The random forest approach showed the second-
best performance. Its results depend on the number of features included in the time
series data. In our experiments, we have not been able to find [MAEE lower than

baseline (i) by varying the number of years.
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Table 3: [Mean absolute error (MAE)|relative to true[SPD| Smaller values are better.

St di it
All programs rong disparity

predicted
Strategy Gender | Income | Gender | Income
Equal admission rates 0.0260 | 0.0276 | - -
Last year’s SPD 0.0383 0.0372 0.1791 0.1693

2016 | Last 5 years’ average SPD | 0.0395 0.0360 0.1281 0.0927
Random forest - 3 years 0.0278 0.0294 0.1059 0.1818

Random forest - 5 years 0.0314 0.0293 0.0861 | 0.0948

Equal admission rates 0.0205 | 0.0211 | - -

Last year’s SPD 0.0330 0.0310 0.1932 0.1737

2017 | Last 5 years’ average SPD | 0.0319 0.0276 0.1656 0.0887
Random forest - 3 years 0.0247 0.0251 0.1121 0.1458

Random forest - 5 years 0.0229 0.0234 0.0832 | 0.0887

This means that there are large variations in admission rates of the same program
over the years. This observation is important when it comes to applying affirmative
action policies, as we have to ensure that each suggested policy has the intended ef-
fect. If the admission rates favored women in the last year, but favor men in the next
year, we risk advantaging a group who without intervention would have the higher
admission rate. One of the reasons for why this might occur is the underrepresen-
tation of a subgroup in a program’s pool of applicants. In 2016, for example, two
engineering programs had similar statistics in terms of application numbers: Pro-
gram A received 2 applications by women and 53 by men while program B received
5 applications by women and 61 by men. Both programs accepted 2 women which
in the case of program A means an admission rate of 100% for women. Program B,
on the other hand, admitted 40% of the female applicants. The admission rate of
the smaller subgroup therefore heavily depends on the scores of the few members
that applied in that year. As these scores might vary between years, differences in

admission rates can easily vary, too.

If the goal of the policy is equalizing admission rates, we thus only want to apply our
policy to programs where this is not the case. Hence, we are particularly interested in
the programs that are predicted to have a strongly unequal [SPD] First, we note that
the number of programs that the random forest predicts to have strong inequalities
is much lower than the number of programs that actually show strong inequalities.
The reason for this is that predicted [SPDp tend to be close to 0 as we saw that
baseline (i) produces the lowest MAE] As we can see in Table 3] the smallest
is in the range of 0.08 to 0.09. Recall from Section that 90% of programs are
within the thresholds of -0.1 and 0.1. The variance in the predicted [SPD]is thus
quite high compared to most observed [SPDp, which means that often a subgroup
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that is predicted to be accepted at a lower rate is actually accepted at a higher rate
than the other subgroup in the following year. The [MAEp are therefore too high
for our context and we conclude that the difference in admission rates is difficult to
predict. This again underlines why the programs to which admission-rates-equalizing

affirmative action policies are applied have to be selected carefully.
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4 Predictive Models of Application Behavior

To ensure that the admissions process is transparent, potential affirmative action
policies have to be announced before the start of the application period when only
data about the programs are available. Consequently, the application behavior of
students (i.e., who will apply and for what program) is largely uncertain when
the policies are determined. To deal with this uncertainty, we generate samples
of possible future application sets based on historical data and, as we describe in

Section [o and [6], use them to estimate the effect of different bonus policies.

We generate application sets in the following two steps: First, we sample a pool
of applicants by randomly choosing students from previous years in the data. The
size of each pool is drawn from a Poisson distribution with rate s, where s is the
size of the student cohort for the most recent year. s is chosen as the rate because
Section [3] has shown that two consecutive years tend to receive similar numbers of
applicants. Second, we generate applications for the sampled applicants. Ideally, we
could simply sample students with their actual applications. This way, the result of
the sampling step would be an application set on which we can test different bonus
polices. While this is technically possible as the necessary data is available, it is not
useful in our context as programs change from year to year. The applications of stu-
dents who applied to university in previous years include applications to programs
that no longer exist. At the same time, older application data do not include appli-
cations to programs that have only been created in recent years. However, in order
to ensure that the application sets on which we test bonus policies are sufficiently
similar to next year’s application set, the programs in the dataset have to be similar.
We therefore train a model to predict which programs a given student will apply to.
This model is trained on the most recent year of data as we assume that the pro-
grams in that year largely overlap with the programs in the upcoming application
round. The resulting model is then used to generate random applications for the
aforementioned sampled applicant pools. In what follows, Section describes the
three different types of models we consider for predicting the application behavior

of students, while Section compares them experimentally.

4.1 Description of Predictive Models

We describe three different approaches to model students’ application behavior.

First, we compare two types of predictive models: a classifier and a regression. Both
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predict a (probabilistic or continuous) value for a given student and a given program.
Instead of trying to correctly predict the value of each program individually, we could
also attempt to rank all programs by their relevance to a student — without regard
to exact probabilistic or continuous values. The third approach that we examine
is therefore a ranking model that orders all programs for a given student. Each of
these three approaches can be used to select a set of n € {1,2,...,10} programs as

potential preferences of a given student.

4.1.1 [Multi-Label Probabilistic Classifier]

We first consider a classifier that takes a student’s features as input. These features
are the preprocessed data described in Section |3 and thus include, for example, the
student’s standardized high school grades and household size. The output could be
the programs to which a student is predicted to apply. This corresponds to a multi-
label classification task [83] where each student can be assigned multiple labels, i.e.,

programs. However, we are specifically interested in the probabilities with which

students are predicted to apply to each program. The |Multi-Label Probabilistic|

IClassifier (MLPC)|approach thus outputs the probability with which the given stu-

dent applies to the given program. To select the student’s predicted applications for
the generated application set, we sample n programs without replacement based on
the application probabilities predicted for all programs. The sampled programs are

then ranked by decreasing application probability.

4.1.2 [Multi-Output Regression|

As MLPC]| [Multi-Output Regression (MOR)| [74] also takes a student’s features as

its input. However, instead of outputting a binary variable (will the student apply to

this program or not?) or probability for a given program, outputs a continuous
value [I7]. This continuous value represents how relevant the program is to the given
student. We can then select the n programs with the highest predicted relevance as

the student’s applications.

To this end, each combination of student and program is assigned a relevance score
which is used as the target variable. As each student can list up to ten programs as
their preferences, the score ranges between 10 (for the top preference of the student)

and 0 (for programs not applied for).
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4.1.3 |[Learning-to-Rank]

While the previously described models consider each program individually,
ito-Rank (LTR)| models aim to solve ranking problems [61]. Their task is thus the

ordering of a list of items. In our case, the list of all programs should be ranked

by the relevance of each program to a given student. For this learning task, the
programs’ features are part of the training. These features include the location of
the university and the weights the programs assign to, e.g., the standardized test in

natural sciences.

Liu et al. [61] categorize models into three groups: the pointwise approach, the
pairwise approach and the listwise approach. The pointwise approach tries to predict
each item’s relevance individually to then rank the items based on the predicted
scores [61]. This is thus similar to— it simply additionally takes each program’s
features into account. Both the pairwise and the listwise approach, however, consider
the relevance of more than one item [61]. While the pairwise approach would in
our case learn to rank pairs of programs by relevance, the listwise approach would
directly order all programs. As the listwise approach has the advantage that it can
compare the rankings of all items (i.e., programs), it frequently outperforms the
other two (see, e.g., [23, 53]). We thus only consider a listwise ranking model for

our experimental evaluation.

In this case, the [LTR] approach’s input consists of the features of one student com-
bined with the features of all programs. It is trained to rank the programs by their
relevance, so that the output is a ranking of all university programs for the given
student. Out of these ranked programs the n highest-ranked ones are selected as

the student’s applications for the generated application set.

Having the programs’ features be part of the input has the advantage that this
approach could even be applied to previously unseen programs. Imagine, for ex-
ample, a program that is newly offered in the upcoming application round. As the
model was trained on a combination of student and program features, all we need
to know to make predictions for a new program are the program’s features, which

are available in advance.

4.2 Experimental Comparison of Predictive Models

Using data from the year 2016, we train the aforementioned predictive models and

evaluate their performance in predicting the application behavior of students. We
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use the well-known normalized discounted cumulative gain (nDCG)| [54] as the per-

formance measure. is a metric designed to evaluate rankings of results from
search engines. Its advantage is that it does not treat all search results equally, but
emphasizes the importance of giving highly relevant search results a high ranking.
This is important in the context of university applications where in our case stu-
dents apply to at most ten programs out of a pool of about 1500 programs. What
is most relevant to students is their first choice. Our metric therefore has to put a
large weight on the predicted first choice whereas it is less important whether the
predictor can correctly distinguish between a program that was a student’s 10th
choice and a program they did not apply to. This is achieved by the score

by discounting the influence of lower-ranked search results on a logarithmic scale.

Note that for all of the models, the number n of preferences listed by each student
is drawn from a (truncated) Poisson distribution with rate A, as n ~ Py, where A
is the average number of preferences students listed in the year on which we train
the model. The distribution is truncated to sample only values in {1,2,...,10} as

applying to more programs is not permissible in the Chilean admissions process.

4.2.1 Experimental Results of [Multi-Label Probabilistic Classifier|

Initially, we evaluate two baselines: random and unigram. For the random baseline,

we predict each program with the same probability; and for unigram, we predict

every program p with ;f i}‘;gi‘;ﬁiﬁi&i 2 The random baseline has an nDCG|score of
0.18 on the testing data and the unigram baseline achieves an score of 0.24.
We train a random forest classifier [I8] and tune its hyperparameters with Bayesian
optimization |70] over 100 iterations to reach an score of 0.43 on the testing

data (see Section |§| for technical details on Bayesian optimization).

4.2.2 Experimental Results of Multi-Output Regression|

A simple linear regression model serves as [MORJs baseline. It achieves an
score of 0.27. To improve on this metric, we run a random forest regression model [I8],

39] and tune its parameters with Bayesian optimization over 100 iterations. This
leads to an mDCGI score of 0.44.



28

4.2.3 Experimental Results of |Learning-to-Rank|

If we were to train an[LTR]model on an entire year, we would have to form all possible
combinations of students and programs in that year. For 2016, this would result in
a dataset of approximately 90 million rows. Such a large dataset considerably slows
down the training process, so we decide on working with a smaller dataset. For a

first evaluation, we sample 1000 students and combine them with all programs.

As for[MOR] a linear regression serves as the baseline for this approach. It reaches an
average of 0.29 on the testing set. In our attempt to find a better model than
the linear regression, we train a LambdaMART model [20], which is a tree boosting
model [37] adapted to the ranking problem. XGBoost’s [26] implementation of
LambdaMART allows for the performance of both pairwise and listwise ranking.
As described above, we choose the listwise approach that aims to optimize the
score. We train this model with XGBoost’s default parameters and reach an
score of 0.31. By manually testing small changes in the hyperparameters
(e.g., increasing the maximum depth of the boosted trees from 6 to 10) we reach an

nDCGI score of 0.35.
This score is notably lower than the benchmarks achieved by the previous

two approaches. However, we have trained and tested this model on less than 2%
of the actual dataset. While the performance could likely be improved by using the
full dataset and tuning the hyperparameters further, this first evaluation has already
shown that the [CTR] approach is inefficient for generating applications. The reason
for this is that for each sampled applicant pool, this approach would require building
the Cartesian product of the sampled applicants and all programs which would lead
to a dataset that is in size comparable to the previously described dataset with 90

million rows. We thus do not try to optimize the model’s performance further.

4.2.4 Choice of Model

We opted to use [MLPC] for the rest of the analysis, as it has practical advantages

over the other methods.

Both [MLPC| and [MOR] proved to be more efficient to train and deploy than [LTR]

Not using [LTR] as the prediction model means forgoing one of its advantageous

characteristics: Its ability to make predictions for new programs. However, such a

feature is not required in this context since affirmative action policies should only
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be implemented sparingly and when necessary. New programs are thus unlikely to

warrant such an intervention.

Contrary to[MOR] [MLPC|outputs categorical probability distributions. This allows
for randomness in the students’ applications as programs can be sampled from this
probability distribution. [MOR| on the other hand, always picks the n programs
with the highest predicted ranking, which often leads to unpopular programs never
appearing in the sampled preference lists because their values are always dominated
by more popular programs. As the performance of [MLPC] is slightly lower than
that of MOR] we thus trade this loss in performance for increased practicality.
For comparison, we also trained [MLPC| on the applications from 2015 to predict
students’ applications in 2016. Within 100 iterations of Bayesian optimization, we
found a model with an score of 0.42 on a separate testing set.
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5 Policy Design Strategies for Single Sensitive At-
tribute

As Section has shown, some programs have strongly unequal admission rates
due to differences in their applicants’ test scores. To reduce these gaps, we consider
the use of bonus policies. Essentially, we set out to award bonus points to students
from disadvantaged groups in order to make their admission rates similar to that
of students outside the group. Recall that, in the setting we study, such policies
have to be announced in advance, so that students can consider those bonuses when
applying. This section outlines and compares different strategies for designing a

robust bonus policy.

5.1 Policy Design

We formalize the goal of policy design in terms of an objective function — and then

describe the policy design strategies through which we aim to optimize it.

A design strategy is an approach for finding a bonus policy for a given program and
a given sensitive attribute. The strategies we compare suggest a policy based on the
ideal policies of multiple application sets. The ideal bonus policy for each application
set is found by evaluating the effects of bonus values in the interval of {0, 1, ..., 120}.
This interval is chosen as students’ weighted average scores range between 150 and
850. Since we want to balance utility with the equality of admission rates, we do

not expect ideal bonus point suggestions to exceed 120.

Bonuses in this interval are assigned to both subgroups of the given sensitive at-
tribute. In the case of the search for a gender bonus policy, bonuses for both women
and men are thus evaluated. Bonuses for low- and high-income students are com-
pared when searching for an income bonus policy. For practical reasons that will be
further described in Section [0}, this work always applies bonuses to the same sub-
group: In the case of gender policies, bonuses are always given to women and in the
case of income policies, bonuses are always given to high-income students. It can
easily be seen that increasing the scores of students with sensitive attribute A # a
by b points is equivalent to decreasing the scores of students with sensitive attribute
A = a by b points. Hence, bonus points to men and high-income students are in
practice implemented as negative bonus points for women and low-income students,

respectively.
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For each tested bonus policy, the algorithm (see Section is employed to
simulate the application process. The objective function is then evaluated on the
resulting matching. For each application set, the bonus that minimizes the objective
function is considered ideal for it. Each design strategy simply suggests the average

of the ideal bonuses over all its application sets.

5.1.1 Problem Definition

We wish our admission policy to lead to the admission of the students with the
highest scores, as well as to a reduction in admission rate disparities. This section
thus defines the objective function of the bonus policy as a linear combination of
both the equality of admission rates and utility, i.e., the scores of accepted students.
Specifically, we measure utility u, as the average score of the students who are
admitted when b bonus points are given. As utility might vary strongly between
application sets, we calculate the loss of p, compared to g, i.e., the utility when no

bonus policy is implemented.

Op = (,LLO — ,LLb> + A ’SPDb‘, A Z 0. (2)

5.1.2 Policies based on Predictive Model

Our strategy for suggesting policies is evaluating a range of possible policies on a
large number of generated application sets. As discussed in Section [ we choose
IMLPC] to model students’ application behavior and thus to generate these applica-
tion sets. To predict applications for 2017, we train the model on data from 2016;
and to predict applications for 2016, we train on data from 2015. Once we have
trained the model, we deploy it to sample a number n of possible application sets.
As explained in Section [4] each application set consists of a sampled pool of students
together with their predicted program preferences. We experiment with n = 50 and

n = 200 sampled application sets to evaluate possible bonus policies.

5.1.3 Policies based on Historical Data

A simple approach to choose a bonus policy is to compute what bonus policy would
have been optimal in the previous years. Such an approach has the disadvantage
that we are limited to the number of years for which we have data for the program

that we want to design a policy for. In addition, such historical data may be difficult
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to obtain. For example, it may be that, due to legal requirements, only aggregate
statistics about student applications can be used or made public — in such cases,
using a model built from such statistics would be necessary. Nevertheless, we also
include this approach in our empirical evaluation, as a baseline. Specifically, we
consider the design strategy that (in hindsight) computes the optimal bonus for the
application sets of the past one, three or five years, and then uses the average of

those bonus values as the bonus value for the upcoming application round.

5.2 Experimental Evaluation

We evaluate each strategy for both sensitive attributes — gender and income — and
for the years 2016 and 2017. To find a fitting value for A in Eq. 2] we calculate
the median differences in grades and test scores between subgroups. We weigh
the sum of the absolute differences with the median weights that programs give to
these factors. The resulting values are equal for 2016 and 2017, so we optimize the
objective function for gender subgroups with A = 23 and for income subgroups with
A = 28 in both years.

We first utilize the strategies to suggest policies for all programs and evaluate their
overall effect. As Section [3.5 demonstrated, bonus policies to equalize admission
rates should only be used sparingly in order to avoid adverse effects. We there-
fore also evaluate the strategies when policies are only applied to programs that
show consistent inequalities in admission rates over time. In both cases, we analyze
the effects of each policy separately for each program, i.e., assuming that only the

program under consideration enacts a bonus policy.

5.2.1 Policies for All Programs

We begin by comparing the objective function values resulting from applying the
different strategies to the smallest achievable ones, i.e., the values that result from
applying the ideal bonus policies. In Table ] we show the mean and
[distribution (SD)|of this difference for both sensitive attributes and the years 2016
and 2017. Note that, according to Table [d] policies that use more application sets

for their suggestions generally lead to both smaller errors and less variance in the

error.

Tables [5] and [0] split the findings from Table [ into its two components: utility
and [SPD] We note that while of course no strategy can find a better value for the
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Table 4: Error in objective function relative to ideal policies. Smaller values are
better.

Gender Income
Strategy Mean | SD Mean | SD
Historical - 1 year 0.52 1.47 | 0.62 1.76
Historical - 3 years 0.40 1.22 0.52 1.53
2016 | Historical - 5 years 0.42 1.23 0.49 1.49
Predictive - 50 sets 0.36 1.09 | 0.49 1.40
Predictive - 200 sets | 0.35 1.09 | 0.50 1.40
Historical - 1 year 0.37 1.11 0.44 1.31
Historical - 3 years 0.30 0.94 | 0.34 1.06
2017 | Historical - 5 years 0.32 0.99 | 0.33 0.98
Predictive - 50 sets 0.28 0.90 | 0.37 1.13
Predictive - 200 sets | 0.29 0.90 | 0.36 1.11

objective function than the ideal policy, it is possible for a strategy to suggest policies
that lead to a lower loss in utility or a smaller gap in admission rates. Indeed, we find
that on average all strategies produce a smaller utility loss than the ideal policies.
However, the difference in admission rates is on average higher. In most cases, more

application sets again lead to smaller and more robust errors.

Table 5: Difference in utility loss relative to ideal policies. Lower values are better.

Gender Income
Strategy Mean SD Mean SD
Historical - 1 year -0.0182 0.2882 -0.0238 0.3247

Historical - 3 years -0.0465 0.2162 -0.0466 0.3092
2016 | Historical - 5 years -0.0481 0.2172 -0.0480 0.2845
Predictive - 50 sets -0.0561 0.2108 | -0.0525 0.2864
Predictive - 200 sets | -0.0563 | 0.2109 -0.0530 | 0.2827
Historical - 1 year -0.0220 0.2238 -0.0425 0.3506
Historical - 3 years -0.0340 0.2077 | -0.0587 0.3196
2017 | Historical - 5 years -0.0358 0.2101 -0.0602 | 0.3191
Predictive - 50 sets -0.0443 | 0.2104 -0.0574 0.3256
Predictive - 200 sets | -0.0438 0.2103 -0.0576 0.3136

While optimizing the objective function, it is also important to ensure that the gap
in admission rates is decreased compared to when we do not intervene. Note that
no intervention (i.e., using no bonus, b = 0) is almost guaranteed to lead to the
lowest utility loss as utility is typically highest when no affirmative action policy is
applied. To explore the effect on the admission rates gap, Table [7] compares both
. Specifically, it compares the difference in the admission rate gaps (measured
as the absolute value of [SPD)]) with and without a bonus policy b: [SPD,| — [SPDy|.

Negative values thus indicate a lower admission rate gap through the intervention
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Table 6: Difference in absolute relative to ideal policies. Lower values are
better.

Gender Income

Strategy Mean SD Mean SD
Historical - 1 year 0.0233 0.0644 0.0230 0.0645
Historical - 3 years 0.0196 0.0580 0.0203 0.0586
2016 | Historical - 5 years 0.0202 0.0588 0.0193 | 0.0570
Predictive - 50 sets 0.0180 0.0542 | 0.0194 0.0549
Predictive - 200 sets | 0.0179 | 0.0542 | 0.0196 0.0551
Historical - 1 year 0.0169 0.0504 0.0171 0.0488
Historical - 3 years 0.0146 0.0452 0.0143 0.0438
2017 | Historical - 5 years 0.0156 0.0479 0.0139 | 0.0416
Predictive - 50 sets 0.0142 | 0.0451 | 0.0151 0.0470
Predictive - 200 sets | 0.0143 0.0451 | 0.0147 0.0463

— which is desirable. In general, we can see that the values suggested through more

application sets again exhibit less variance.

Table 7: Difference in absolute relative to no intervention. Lower values are
better.

Gender Income

Strategy Mean SD Mean SD
Historical - 1 year 0.0036 0.0378 0.0010 0.0373
Historical - 3 years 0.0003 0.0309 -0.0013 0.0295
2016 | Historical - 5 years 0.0010 0.0294 -0.0022 | 0.0309
Predictive - 50 sets -0.0013 0.0168 -0.0019 0.0268
Predictive - 200 sets | -0.0014 | 0.0167 | -0.0017 0.0267
Historical - 1 year 0.0014 0.0339 -0.0013 0.0383
Historical - 3 years -0.0005 | 0.0269 -0.0034 0.0266
2017 | Historical - 5 years 0.0005 0.0234 -0.0037 | 0.0270
Predictive - 50 sets -0.0003 0.0124 | -0.0020 0.0210
Predictive - 200 sets | -0.0002 0.0126 -0.0023 0.0215

The reason for this lies in the nature of the predictive approach which is more con-
servative in its suggestions. To see this, we compare the number of bonus points
given to each program under the different strategies (see Table[§). What is evident
is that the more application sets a strategy bases its suggestions on, the smaller the
proposed bonus values become and the less variance they show across all programs.
The bonus values suggested by the predictive approaches are thus closest to 0 and
vary the least. The ideal policies for the same year are much higher. Despite its sim-
ilar range in bonus values, the previous analysis has shown that the strategy based
on last year’s policies performs worse than the other strategies. This underlines the

need for a more conservative design strategy.
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Table 8: Comparison of bonus points for design strategies in 2016 and 2017.

Gender Income
Strategy Mean | SD Mean | SD
Historical - 1 year 2.32 6.95 | 2.56 6.93
Historical - 3 years 1.61 3.83 | 1.92 4.77
Historical - 5 years 1.53 3.19 | 2.08 4.56

2016 —
Predictive - 50 sets 0.96 296 | 1.31 3.96
Predictive - 200 sets | 0.92 2.63 | 1.28 3.93
Ideal 2.19 6.18 | 2.40 6.39
Historical - 1 year 2.31 6.33 | 2.49 6.49
Historical - 3 years 1.85 4.06 | 1.90 4.58
Historical - 5 years 1.50 3.25 | 1.77 4.28

2017

Predictive - 50 sets 0.97 2.70 | 1.25 3.96
Predictive - 200 sets | 0.95 2.66 | 1.24 3.94
Ideal 1.76 6.24 | 2.21 6.78

5.2.2 Policies for Programs with Consistent Inequalities

We observe in Table [7] that some design strategies have averages above 0 and that
the [SDp are large compared to the means. At times the design strategies there-
fore increase the difference in admission rates compared to no policy implementa-
tion. This is largely due to the unpredictability of admission rates that Section

demonstrated.

In practice, affirmative action policies would not be deployed for all programs, but
only sparingly for programs whose admission rates are consistently unequal. There-
fore, in the following, we focus on programs that fulfill three conditions: (i) their
admission rates were unequal for all of the three most recent years, (ii) the differ-
ences always negatively affected the same subgroup, and (iii) the admission rates
were strongly unequal for two out of the three years. This filtering results in 9 and
12 programs to which a gender policy is applicable in 2016 and 2017, respectively.
Income policies are applied to 34 programs in 2016 and 29 programs in 2017.

Tables [9] [I0] [11] and [I2] report the same measure as seen in the previous section, but
only for the selected programs. The findings are similar to what we had previously
observed for all programs. The predictive policy suggestions again exhibit lower
variance — with the exception of the income policies suggested for 2017. In this case,
the predictive policies lead to a notably larger error in the difference in admission
rates (see Table . Compared to no intervention, the predictive policies on average
still reduce the difference in admission rates (see Table [12)).

Figure [5.1] illustrates the findings from Table [I2] As we can see the filter left only

a few cases where the absolute [SPD] is increased through the intervention. For
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Table 9: Error in objective function relative to ideal policies. Smaller values are

better.

Gender Income
Strategy Mean | SD Mean | SD
Historical - 1 year 0.80 1.16 2.36 2.06
Historical - 3 years 1.01 1.10 1.88 1.91
2016 | Historical - 5 years 1.68 2.21 1.50 1.69
Predictive - 50 sets 0.35 0.45 | 1.91 1.79
Predictive - 200 sets | 0.39 0.48 1.87 1.68
Historical - 1 year 1.31 1.88 1.79 1.63
Historical - 3 years 1.02 1.81 1.36 1.62
2017 | Historical - 5 years 1.22 1.20 1.63 1.57
Predictive - 50 sets 0.84 1.16 | 2.28 2.12
Predictive - 200 sets | 0.91 1.15 | 2.14 1.97

Table 10: Difference in utility loss relative to ideal policies. Lower values are better.

Gender Income
Strategy Mean SD Mean SD
Historical - 1 year -0.0467 0.1491 | 0.2732 1.0825
Historical - 3 years -0.019 0.2618 0.3094 1.1122
2016 | Historical - 5 years 0.0421 0.3599 0.1482 0.8849
Predictive - 50 sets -0.1034 | 0.1541 -0.1447 0.8949
Predictive - 200 sets | -0.0723 0.1931 -0.1815 | 0.8404
Historical - 1 year -0.0913 0.3613 -0.6402 | 1.2614
Historical - 3 years 0.0378 0.2993 -0.4874 1.3413
2017 | Historical - 5 years -0.0322 0.3798 -0.5864 1.3225
Predictive - 50 sets -0.138 0.281 -0.5646 1.4039
Predictive - 200 sets | -0.1197 0.2985 -0.5826 1.3181

these remaining cases, it is important to consider whether the policy has a positive

or negative effect on the students from the underrepresented group. In order to
evaluate this, Figure [5.2] shows whether an increase in the absolute [SPD| occurs in

favor of the underrepresented group. Negative values indicate that the intervention

had a positive effect on the underrepresented group. We can thus see that an increase

in the [SPD] to the disadvantage of the underrepresented group can almost entirely

be avoided, in particular with the predictive strategies. Where this is not the case,

a “flip” in the overrepresented group occurs between years: The group that has been

in the majority for at least three years is in the minority in the next year.
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in absolute relative to ideal policies. Lower values are

Gender Income
Strategy Mean SD Mean SD
Historical - 1 year 0.0368 0.0539 0.0744 0.0635
Historical - 3 years 0.0447 0.0504 0.0562 0.0524
2016 | Historical - 5 years 0.0711 0.0945 0.0484 | 0.0519
Predictive - 50 sets 0.0196 | 0.0255 | 0.0735 0.0637
Predictive - 200 sets | 0.0202 0.0258 0.0734 0.0643
Historical - 1 year 0.0608 0.0788 0.0867 0.0558
Historical - 3 years 0.0428 0.0702 0.0658 | 0.0511
2017 | Historical - 5 years 0.0544 0.0480 | 0.0792 0.0618
Predictive - 50 sets 0.0424 | 0.0561 0.1016 0.0869
Predictive - 200 sets | 0.0446 0.0555 0.0972 0.0851

Table 12: Difference in absolute @ relative to no intervention. Lower values are
better.
Gender Income
Strategy Mean SD Mean SD
Historical - 1 year -0.0096 0.0777 -0.0332 0.0877
Historical - 3 years -0.0017 0.068 -0.0514 0.0918
2016 | Historical - 5 years 0.0247 0.1116 -0.0592 | 0.0937
Predictive - 50 sets -0.0268 | 0.0438 -0.0341 0.0612
Predictive - 200 sets | -0.0263 0.0435 | -0.0342 0.0586
Historical - 1 year 0.0028 0.0922 -0.0774 0.1000
Historical - 3 years -0.0153 0.1069 0.0983 0.0704
2017 | Historical - 5 years -0.0037 0.0858 -0.0849 | 0.0827
Predictive - 50 sets -0.0156 | 0.0586 -0.0625 0.0822
Predictive - 200 sets | -0.0135 0.0575 | -0.0670 0.0817
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Figure 5.1: Difference in absolute

SPD

relative to no intervention. Lower is better.
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Figure 5.2: Difference in relative to no intervention from the perspective of
the subgroup that would be disadvantaged if no policy was implemented. Lower is

better.
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6 Policy Design Strategies for Multiple Sensitive
Attributes

Section [5| introduced policy design strategies for a single sensitive attribute. This
section discusses how these design strategies can be expanded to cover cases of
affirmative action policies for multiple sensitive attributes. We will refer to policies

for multiple sensitive attributes as intersectional policies.

A program might, for example, find that both low-income and female students are
consistently disadvantaged and thus want to create a bonus point policy for each
group. Such an extension might seem trivial at first: The program could simply first
design a bonus policy for gender and then independently design a bonus policy for
income with the previously introduced methods. In the case that a student belongs
to the disadvantaged gender and disadvantaged income group, both bonuses could

be added up. We refer to this strategy as independent optimization.

Upon further examination of this strategy, however, it becomes clear that this does
not lead to the ideal combination of bonus point policies. The independent opti-
mization of bonus policies minimizes Eq. 2] for a single sensitive attribute and does
not take other attributes into account. It is thus unlikely that a policy designed to
equalize the admission rates of women and men also equalizes the admission rates
of low- and high-income students. This section hence demonstrates how policies can

be optimized jointly.

6.1 Policy Design

We first expand the single-attribute objective function (see Eq. [2)) to multiple sen-
sitive attributes (§6.1.1). The design strategies that were described in Section |5| are
then adapted, so that they optimize this function in an efficient manner (§6.1.2

613).

6.1.1 Problem Definition

As proposed in [64], Eq. [3| extends Eq. [2| to multiple sensitive attributes in the
following way: For every sensitive attribute A;, Ao, ..., A,,, a bonus policy is to be
implemented. Let b mark the combined application of all these bonuses b1, bo, ..., b,.

For the matching of students and programs produced by b, SPDy;, ; represents the
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difference in admission rates between the subgroups of sensitive attribute A;.
denotes the utility of the matching. o marks the utility when no bonus points are
given. We assume that if a student is part of more than one disadvantaged group,

the bonuses for these groups are added up.

o= (10— ) + Y A [SPDal, A >0, (3)

i=1
6.1.2 Extension of Design Strategies

Optimizing the changed objective function for a single application set is straightfor-
ward: Eq. [3]is simply evaluated for different combinations of bonus policies. The
combination that minimizes the objective function is the optimal one. However,
recall that most design strategies proposed in Section [5| base their suggestions for a
policy on multiple application sets. We therefore have to decide which combination
of bonus policies should be considered ideal based on the objective function values of
multiple application sets. This is achieved by first evaluating Eq. |3| on each applica-
tion set for a given combination of bonus policies. The average of these evaluations
is the resulting objective function value for this combination of bonus policies and

what is to be minimized.

6.1.3 Improved Efficiency through Bayesian Optimization

Eq.[3lets us evaluate given combinations of bonus policies by, by, ..., b,,. However, it is
unclear which combinations of policies should be tested and how those combinations
are chosen. The optimization task is thus finding the combination of bonus policies
that minimizes Eq.

The search for the ideal combination of bonus policies can, similar to Section [3], be
automated. Grid search — the evaluation of all combinations of possible policies in
a predefined search space — is one of the simplest approaches to finding the ideal
bonus policies. However, if £ bonus policies are to be tested for each sensitive
attribute, jointly optimizing the policies for m sensitive attributes would require
the evaluation of £™ policy combinations. The number of policy combinations that
have to be tested is thus exponential in the number of sensitive attributes. While
such a grid search approach is easy to implement, it quickly becomes infeasible since

testing a given combination of bonus policies requires (1) applying these bonuses to
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the student pool, (2) matching students with programs based on these new scores,

and (3) evaluating Eq. |3| for the resulting matching.

A more efficient approach is the evaluation of only a predefined number of policy
combinations. The simplest way of choosing these policy combinations is random
sampling from the search space [12]. While this random approach is more efficient
than the grid search approach, it has the drawback of not learning from the tested
policy combinations. Consequently, if the number of tested policy combinations is
limited, random search tends to be outperformed by more advanced hyperparameter

optimization algorithms [14], 51].

Bayesian optimization [70] is such an advanced hyperparameter optimization algo-
rithm. It was created to automatically and efficiently search for the hyperparameters
that minimize a machine learning model’s loss function [14]. Besides the loss func-
tion of a machine learning model, Bayesian optimization can be used to optimize any
objective function for which no analytical solution is known [35]. It is particularly
useful if the evaluation of this function is time-consuming [35]. In our case, we can
thus use it to minimize Eq. [3] Similar to the random search, Bayesian optimization
is carried out over a predefined number of iterations. However, different from the
random search that does not remember the previous evaluations of parameter set-
tings, Bayesian optimization is an automatic sequential optimization algorithm that
learns from the sequence of previous evaluations: The evaluation history influences
which parameter setting is suggested to be evaluated in the next iteration [14]. This
is done by learning a function that approximates the objective function and is faster
to evaluate than the true objective function [14]. In each iteration of the Bayesian
optimization algorithm, a second function, which is referred to as the acquisition
function, determines which parameter setting should be evaluated next [52]. This
acquisition function balances the exploration of new parameter settings with the
exploitation of variations of already tested parameter settings that produced good

results.

Recall from Section [p|that we encode bonuses for male and high-income students as
negative bonuses for female and low-income students, respectively. This simplifies
the application of Bayesian optimization as the search space simply consists of one
parameter for each sensitive attribute. In our case, the search space consists of a
gender bonus and an income bonus, both of which can be negative. Depending on
the library employed for the optimization, the search for each parameter can then,

for example, be restricted to a certain range or be guided by a prior distribution.
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Given a combination of bonus policies, we evaluate Eq. [3 for the resulting matching.
After a predefined number of iterations, the combination of bonus policies that
produced the lowest objective function value would be seen as the optimal one.
However, it might happen that no combination of bonus policies performs better
than no policy intervention. A simple example of this is a program that does not
receive any applications. In such a case, all policy interventions result in the same
matching and thus in the same objective function value. Under these circumstances,
no bonus points should be awarded. The Bayesian optimization might, however,
pick any combination of bonus points as they all lead to the same minimal objective
function value. Therefore, comparing the lowest found objective function value to
the value resulting from no intervention is essential. As the Bayesian optimization
process may not even have tested the case of no intervention, we thus additionally
evaluate this case once the Bayesian optimization is completed. In the case that the
lowest found objective function is equal to the value resulting from no intervention,

the suggested policy is not to intervene.

6.2 Experimental Evaluation

We begin by experimentally testing our assumption that the search for policies for
multiple attributes requires a joint optimization (§6.2.1). To this end, we employ
Bayesian optimization as previously described and select the combination of bonus
policies that leads to the lowest value for Eq. |3l We compare these outcomes to the
gender and income policies that have been optimized independently on Eq. 2 We
then apply the design strategies introduced in Section [5| to the design of intersec-
tional policies ( for a selection of programs that we expect to profit from such

policies.

For each of these strategies, the suggested policies are found by running a Bayesian
optimization with 1000 steps. Note that while Bayesian optimization attempts to
approximate the objective function, i.e., Eq. [3] in our case, the output is typically
only the parameter setting which optimizes this function. With the library that
we use in the implementation, hyperopt [I3|, the learned approximate objective
function is therefore not accessible. The library was, however, chosen as it allows
for the placement of a prior over each search space parameter. In this experimental
evaluation, the prior for the bonus of each sensitive attribute is set to a normal
distribution with mean 0 and [SD| 20. While we could reproduce the interval of
{0,1,...,120} — which we evaluated in Section [5| — through a uniform distribution,
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a normal distribution allows us to place a higher weight on bonus policies which
we expect to lead to better objective function values. The mean of 0 ensures that
bonuses for both subgroups have an equal chance of being tested. The [SD] of 20,
on the other hand, guides the search to fairly small bonus points, which Section
has shown to have beneficial effects. As in Section [5 we set A = 23 for the sensitive
attribute gender and A = 28 for income in 2016 and 2017.

6.2.1 Necessity of Joint Optimization

This section empirically compares the objective function values resulting from an
independent optimization and a joint optimization of bonus policies in the years
2016 and 2017. We show that with 1000 iterations of Bayesian optimization the
joint optimization is almost guaranteed to do at least as well as the independent

optimization.

In both years, the ideal combination of policies was found within 250 iterations for
most programs. In 2016, after 1000 iterations, 19% of the programs had a better
objective function value with the joint optimization than with the independent op-
timization. The joint optimization only produced a worse result for one program,
indicating that more iterations would have been necessary in this case. In 2017, the
joint optimization suggested policy combinations with a better objective function
value in 15% of the cases and never a worse one. We therefore conclude that 1000
steps are sufficient for the optimization of the objective function in the scope of this

work.

In a majority of cases, the joint optimization reaches a better objective function value
because the resulting difference in admission rates is lower. The utility loss, on the
other hand, is oftentimes higher for the joint optimization: In 2016 and 2017, 11-14%
of the programs had a smaller utility loss with the independent optimization. This
phenomenon can be understood by considering the effect of a random divergence
from the optimal combination of bonus policies. Recall that the utility loss is 0 when
no bonus points are given. Low utility losses can thus be achieved by policies that
give few bonus points. Therefore, a divergence from the optimal policies is likely to
reduce the utility loss if it decreases the number of bonus points given. Reducing
the differences in admission rates is, however, more difficult as giving more bonus
points does not guarantee smaller gaps in admission rates — it might favor the

disadvantaged subgroup too strongly. The independent optimization thus tends to
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trade improved utility for an increased disparity in admission rates compared to the

joint optimization.

In order to make this finding more tangible, we look at a concrete example: the
prestigious engineering program with unequal admission rates that we already know
from Section [ Without an intervention, the difference in the admission rates of
men and women is 14 percentage points in 2017. Moreover, low-income students’
probability of being accepted is 21 percentage points lower than that of high-income
students. When the gender and income policies are independently optimized, but
applied at the same time, this results in a difference in admission rates of 2.6 per-
centage points for gender and 2.5 for income. While the differences are already
notably lower, a joint optimization leads to a difference of 0.2 percentage points
for gender and 0.1 for income. It thus almost perfectly equalizes admission rates.
While the differences might already appear sufficiently reduced by the independent
optimization, this is only the case because we have full access to the students’ and
programs’ data. The reduction would likely be far lower if the policies were sug-
gested based on historical data or generated application sets. As our policy design
strategies can only aim at getting close to the ideal policies, setting the results of
the independent optimization as the best achievable policies risks suggesting policies

that are far from the true ideal combination of policies.

As an independent optimization of bonus policies is thus not sufficient, we will not
just combine the independently optimized bonus policies, but optimize them jointly

through Bayesian optimization.

6.2.2 Policies for Programs with Consistent Inequalities

Having demonstrated the need for joint optimization, we now apply Bayesian opti-
mization as previously described to the design strategies introduced in Section[s] For
practical reasons regarding the availability of computing resources, we only evaluate
the predictive policy on 50 application sets as opposed to the 200 application sets
used in Section 5 Due to the time-consuming nature of these extended strategies,
we also only apply them to programs that show consistently unequal admission rates
for both sensitive attributes, i.e., gender and income. Programs are filtered in the
same way as in Section [5.2.2] As there are fewer programs that consistently exhibit
(strongly) unequal admission rates with respect to both gender and income, this

filtering only leaves 3 and 4 data points for the years 2016 and 2017, respectively.
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Table [13] shows the mean error and its [SD| for the objective function as well as
the objective function’s two components, utility and disparity. In 2017, we find
smaller errors and lower variance for strategies using more application sets, which
corroborates the findings from Section However, this is not the case for 2016

where the mean error and its [SD] tend to be higher for the predictive strategy.

Table 13: Error in objective function and difference in its two components, utility

loss and disparity, relative to ideal policies. Lower values are better.

Objective Utility loss Disparity
Strategy Mean | SD Mean | SD Mean | SD
Historical - 1 year 1.08 0.46 0.45 0.44 | 0.63 0.10
Historical - 3 years | 1.22 0.28 | 0.03 0.64 | 1.19 0.76

2016 Historical - 5 years | 1.38 0.12 | -0.10 | 0.56 1.48 0.54
Predictive - 50 sets | 2.97 1.77 | 0.87 0.71 2.11 1.71
Historical - 1 year 3.14 1.56 -0.89 1.18 4.03 1.07

2017 Historical - 3 years | 2.46 1.11 -0.97 0.69 3.42 0.96

Historical - 5 years | 2.42 1.09 -1.14 | 0.52 | 3.56 1.31
Predictive - 50 sets | 1.47 0.91 | -0.20 0.52 | 1.67 0.83

Table [14] compares the differences in gender and income admission rates between the
policies suggested by the different design strategies and the case of no intervention.
The results show that in spite of the higher errors observed in Table [13|for 2016 the

disparities in admissions are on average still reduced.

Table 14: Difference in absolute @ relative to no intervention. Lower values are
better.

Gender Income

Strategy Mean SD Mean SD
Historical - 1 year -0.0847 | 0.0496 -0.0849 0.0070
Historical - 3 years | -0.0499 0.0211 | -0.0933 | 0.0212

2016 Historical - 5 years | -0.0445 0.0249 -0.0875 0.0134
Predictive - 50 sets | -0.0648 0.0306 -0.0485 0.0452
Historical - 1 year 0.0189 0.1235 -0.1070 0.0275

2017 Historical - 3 years | -0.0027 0.1077 -0.1110 0.0324

Historical - 5 years | -0.0157 0.0628 | -0.0953 0.0447
Predictive - 50 sets | -0.0251 | 0.0859 -0.1553 | 0.0443

This is reflected in Figure[6.1] which shows the difference in absolute admission rates
for both sensitive attributes relative to the case of no intervention. As already seen in
Section ], Figure[6.2)illustrates whether a change in admission rates occurred in favor
of the underrepresented group. Negative values indicate that the underrepresented
group is favored while positive values should be avoided as they indicate a favoring

of the overrepresented group. We observe that positive cases were mostly prevented.
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Figure 6.1: Difference in absolute [SPD|relative to no intervention. Lower is better.
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Figure 6.2: Difference in relative to no intervention from the perspective of
the subgroup that would be disadvantaged if no policy was implemented. Lower is
better.

Overall, the design strategies are beneficial to the reduction of gaps in the admission
rates. While we find some evidence of more application sets leading to better results,
we also see the opposite effect. This might be attributable to the fact that we were
only able to test these strategies on a small number of programs. Moreover, we
had to restrict the predictive approach to 50 application sets. While the differences
between 50 and 200 application sets were small in the evaluations in Section [5] it is
imaginable that more application sets are required to suggest robust intersectional
policies due to their more complex nature. Further evaluations are therefore needed

with respect to policies for intersectional groups.
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7 Conclusions

In this study, we proposed a methodology for designing affirmative action policies
in a central admission system. This methodology is based on a predictive approach
that generates a large number of application sets over which a range of bonus policies
are evaluated. We compared this predictive approach to simpler design strategies
based on averaging retrospectively optimal bonuses over 1-5 years of historical data.
These strategies were then extended to enable the joint optimization of intersectional
policies. When testing each design strategy on real university admissions data, we
were able to show that policies that are based on a few years of historical data are
more likely to over-correct the differences in admission rates. Instead of equaliz-
ing admission rates, they at times increase the difference in admission rates. Our
proposed predictive approach mostly avoids this pitfall through more conservative

suggestions.

7.1 Limitations

There are two core assumptions that we made in this study: First, we assumed
that the (unknown) applicant pool for which we want to implement a bonus policy
is reasonably close to an average applicant pool; and second, we assumed that the
goal of the affirmative action policy is the increase of the representation of the

disadvantaged group through the equalization of the subgroups’ admission rates.

If the first assumption does not hold and the next year’s applicant pool is an outlier in
the data, our predictive approach is unlikely to suggest effective policies. However,
if the year is an outlier compared to the last year, too, it is unlikely that any of
the simpler strategies based on historical data will suggest better policies, so the

predictive strategy would likely still be preferable.

The second assumption means that our choice of fairness metric aims to avoid the
case where the underrepresented subgroup is accepted at a higher rate than the over-
represented subgroup. A higher admission rate of the underrepresented subgroup
might, however, be desirable if the representation of the subgroups is to be increased
without regard to admission rates. In this case, the metric used to measure disparity
in Eq. 2l would have to be adapted.

Additional limitations stem from the data used for this case study. Its main lim-

itation is the small number of programs for which the application of affirmative
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action policies is beneficial. This restricted the number of programs on which the

introduced design strategies were tested and thus the reliability of the findings.

Another limitation with respect to data is the categorization of students as low- and
high-income. As only household income categories and the number of household
members were available, incomes were not easily comparable between students. Our
chosen approach for splitting students into two socio-economic groups is limited in
that it only compares the income per person within the application set, but not to
the general population. As low-income students are less likely to attend university
(see, e.g., [69]), it is improbable that they are sufficiently represented in the dataset.
Labeling someone with an income below the median income of the dataset as "low-
income" thus constitutes a fairly broad assignment of this label. Students that would
actually be categorized as low-income compared to the general Chilean population
are a subgroup of the low-income students in this study. We assume that this
subgroup would have even lower admission rates which would increase the overall
need for affirmative action policies. Having access to a more precise socio-economic
classification would thus — at least to some extent — address the previously mentioned
limitation by increasing the number of programs on which the design strategies can
be tested.

7.2 Practical Implications

At first, it might seem questionable if predictive methods can help in designing
robust bonus policies. One might assume that university administrators can easily
determine policies that will work well for the next round of applications. However,
we have shown that it is difficult to foresee how admission rates will change in
the next year. Additionally, we have demonstrated that bonus policies interact in
potentially unforeseeable ways and have to be optimized jointly. Given the number
of possible policies, decision-makers by themselves cannot possibly assess the effect

that each policy or combination of policies might have.

Our analysis shows that historical data — if used — has to be aggregated over several
years in order to avoid the implementation of policies that have unexpected effects.
Moreover, our experiments generally support our hypothesis that predictive methods
can further reduce the risk of creating adverse effects as policies can be tested on
more data. In practice, however, we have to consider that the predictive approach is
more costly as its implementation is more complex than the strategies that are based

on historical data. In light of this, we conclude that while the predictive strategy
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tends to be more robust than the simpler approaches, a simpler approach based on
sufficient historical data (e.g., the last five years) might in practice be preferable.
Predictive methods are, however, advantageous if historical data is only available

for a few years or if only aggregate statistics are accessible.

We recommend applying either one of these design strategies under the supervision
of human decision-makers. In this case, the decision-makers should be university
administrators that know the programs for which bonus policies are to be imple-

mented.

7.3 Future Work

Section [0] extended Section [f] to the case of intersectional bonus policies. A similar
extension is possible to cover cases where multiple programs plan on implementing
bonus policies in the same year and wish to coordinate their efforts. Coordination is
important as potential interactions between policies have to be considered in their
design. Adapting the objective function would again allow for a joint optimization

(see [64] for a possible extension of Eq. 2| for this case).

Practitioners might also profit from the comparison of different types of affirmative
action policies. While this study only explored different parameters for bonus poli-
cies, in practice, it could be interesting to compare the effects of the parameters
of other types of policies. One could, for example, examine how giving different
weights to standardized test scores compares to different bonus policies. Optimiza-
tion techniques could be applied to optimize the objective function over the search

space of the parameters of various types of affirmative action policies.

Another interesting aspect that is left for future research is the effect of the an-
nouncement of affirmative action policies on the application behavior. Existing re-
search (see, e.g., [7, 33 [62]) suggests that the existence of affirmative action policies
might encourage students from disadvantaged groups to apply in higher numbers. It
is therefore imaginable that lower numbers of bonus points are sufficient to achieve
the effects we observed in our experiments, which is another reason for preferring

the more conservative predictive design strategies.
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7.4 Final Thoughts

Talent is equally distributed,

opportunity is not.

Leila Janah

Finally, let us consider this work in the broader context of social justice in education.
With the emergence of the field of algorithmic fairness, the role of computing itself
in the strive for social change has become a topic of discussion. In particular,
computer science’s role in reinforcing societal inequalities is seen as a danger to
structural change. This reinforcement can in particular be seen in predictive models
that learn from data from an unequal society. If such an issue is uncovered, its
computational solution is oftentimes incremental. Instead of addressing the root
cause of the issue, i.e., societal inequalities, the algorithm itself is incrementally
improved [3] 140} [47]. |Green| thus instead argues for "holistic responses that promote
egalitarian structures and outcomes in both the short and long term" [41l p. 595].
We see the application of computational methods to the design of affirmative action
policies as at least part of such a holistic response. However, this alone is still only an
incremental effort and does not address the root cause of the problem: the differences
in opportunity that Leila Janah’s quote at the beginning of this section pointed out.
Affirmative action policies do not address this issue, they are only a remedy for the
status quo. Abebe et al. [3] specifically discuss the issue of university admissions
and note that equalizing admissions should not be an excuse not to address deeper
issues, such as the need for more resources at schools that are primarily attended by
low-income students. The prestigious engineering program with unequal admission
rates mentioned in Section [I] is an example of this. Optimizing the parameters of
a bonus policy can reduce this inequality in the next years, but cannot substitute

other measures on the way to our main goal: increased social inclusion.
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