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Abstract Nearly three decades ago paleomagnetists suggested that there existed a clear link between
latitude dependence of geomagnetic paleosecular variation (PSV) and reversal frequency. Here we
compare the latitude behavior of PSV for the Cretaceous Normal Superchron (CNS, 84–126 Ma, stable
normal polarity) and the preceding Early Cretaceous‐Jurassic interval (pre‐CNS, 126–198 Ma, average
reversal rate of ~4.6 Myr−1). We find that the CNS was characterized by a strong increase in the angular
dispersion of virtual geomagnetic poles (VGPs) with latitude, which is consistent with the results of earlier
studies, whereas the VGP dispersion for the pre‐CNS period was nearly invariant with latitude. However, the
PSV behavior for the last 5 or 10 million years (average reversal frequency of ~4.4–4.8 Myr−1) shows that
the latitude invariance of VGP scatter cannot be considered as a characteristic feature of a frequently
reversing field and that a strong increase in VGP dispersion with latitude was not restricted to the long periods
of stable polarity. We discuss models describing the latitude dependence of PSV and show that their
parameters are not reliable proxies for reversal frequency and should not be used tomake inferences about the
geomagnetic field stability. During the pre‐CNS interval, the geodynamo may have operated in a regime
characterized by a high degree of equatorial symmetry. In contrast, more asymmetric geodynamos suggested
for 0–10 Ma and the CNS were evidently capable of producing a very wide range of reversal frequencies.

Plain Language Summary In the geologic past, the changes in the Earth's magnetic field have
led to numerous polarity reversals, causing the field directions over the entire Earth to be opposite to
those observed today. More subtle changes during periods of stable field polarity are referred to as “secular
variation.” It is widely thought that the manner in which secular variation changes with geographic latitude
provides an indirect way of assessing the field stability with regard to its propensity to reverse. Here we
derived estimates of paleosecular variation (PSV) for a long interval of stable polarity in the Cretaceous
(84–126 Ma) and the preceding Early Cretaceous‐Jurassic interval (126–198 Ma), during which geomagnetic
reversals were frequent. We found that the latitude behavior of PSV during these two intervals was
significantly different, but the comparison with PSV estimates for the last 5 and 10 million years showed that
a strong latitude dependence of PSV, or its invariance with latitude, cannot be considered as a characteristic
feature of a stable or frequently reversing field. Our analysis suggests that models describing the latitude
dependence of PSV do not provide reliable proxies for reversal frequency and should not be used to make
inferences about the geomagnetic field stability.

1. Introduction

Paleosecular variation (PSV) of the geomagnetic field is a term broadly used to describe the temporal and
spatial changes of the field taking place over time scales ranging from hundreds to millions of years. The
main planetary magnetic field of the Earth is generated internally by convective motions in the outer liquid
core, which are capable of acting as a self‐exciting magnetic dynamo (e.g., Merrill et al., 1998)—a process
commonly referred to as the geodynamo. It is well established from paleomagnetism, records of magnetic
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stratigraphy, and analyses of marine magnetic anomalies that the dominantly dipolar magnetic field of the
Earth has undergone numerous polarity reversals over the geologic past (e.g., Gradstein et al., 2012; Opdyke
& Channell, 1996). While the dynamo theory has no difficulty in accommodating both the normal (similar to
that observed today) and reverse (opposite) polarity states, and numerical simulations of Earth‐like dynamos
have been capable to reproduce field reversals and significant departures from axial dipolarity known as geo-
magnetic excursions (e.g., Glatzmaier et al., 1999; Glatzmaier & Roberts, 1995), the underlying dynamics is
not yet clearly understood. Conceptually, geomagnetic reversals can be viewed as natural outgrowths of
“runaway” secular variation (e.g., Biggin, van Hinsbergen, et al., 2008; Gubbins, 1994), although it cannot
be ruled out that theymay be related to some exceptional events triggered by internal instabilities in the fluid
motion of the core. Nevertheless, there is a general consensus that the long‐term trends in the occurrence of
geomagnetic reversals, PSV behavior, and morphology and intensity of the field should be intrinsically
linked as they originate from the same geodynamo process (e.g., Aubert et al., 2010; Tarduno et al., 2002).

One of the most interesting features of the reversal record is the observation that the frequency of polarity
switches varied substantially on time scales of tens to hundreds of millions of years, with long periods of fre-
quently reversing field sporadically punctuated by compatibly long intervals of stable polarity, where geo-
magnetic reversals were extremely rare or absent. Two periods of long‐term stability of the geodynamo
with regard to its propensity to reverse have been documented in the Phanerozoic: a long interval of normal
polarity that spanned most of Cretaceous time named the Cretaceous Normal Superchron (CNS, 84–126Ma;
Ogg, 2012) and a similarly long period of dominantly reverse polarity in Late Carboniferous and Permian
time (~262–318 Ma) known as the Permo‐Carboniferous Reverse Superchron (PCRS), or the Kiaman
Reverse Superchron (Opdyke & Channell, 1996). At the other extreme, field reversals were unusually fre-
quent during the Jurassic interval of “magnetic hyperactivity” (~155–171 Ma) where the average reversal
rate peaked at ~11 reversals per Myr (Myr−1; Ogg, 2012). The remaining Cenozoic‐Mesozoic times were
characterized by less frequent reversals (generally, ~2–3 Myr−1), which is still in a stark contrast with the
“magnetically quiet” periods of the two superchrons.

Many attempts have been made to establish characteristic long‐term signatures of the reversal frequency
that could be observed in the paleomagnetic record, including variations in the field intensity and the beha-
vior of PSV (e.g., Biggin, van Hinsbergen, et al., 2008; McFadden et al., 1991; Tarduno et al., 2001, 2002). The
motivation behind these efforts has both pragmatic reasons and a fundamental value. On the one hand, if we
would be able to define such signatures for the Cenozoic and Mesozoic, where the reversal chronology can
be constrained with greater confidence from studies of magnetostratigraphy and patterns of marine mag-
netic anomalies (e.g., Ogg, 2012), these findings could be used to assess the stability of geodynamo during
the earlier Paleozoic and Precambrian times where the reversal record is patchy, ambiguous, or lacking alto-
gether (e.g., Biggin, Strik, et al., 2008; de Oliveira et al., 2018; Smirnov & Tarduno, 2004; Smirnov et al., 2011;
Veikkolainen & Pesonen, 2014). On the other hand, the information about the field stability and its relations
to paleomagnetic observables may provide us with deeper insights into the questions surrounding the long‐
term evolution of the geodynamo, changes in the thermal state of the mantle and the core, and the control of
the lower mantle heterogeneities on the core‐mantle heat flux (Aubert et al., 2010; Biggin et al., 2012, 2015;
Smirnov et al., 2017). This has further implications for the future development of numerical models that
would be capable to better reproduce the geodynamo process (e.g., Aubert et al., 2010).

Numerous studies have suggested a negative correlation between the average intensity of the geomagnetic
field and the reversal frequency (e.g., Aubert et al., 2010; Biggin et al., 2012; Sprain et al., 2016; Tarduno
et al., 2001, 2002; Tarduno & Cottrell, 2005; Tauxe & Staudigel, 2004). Yet, the implied relationship is subtle,
allowing only very general conclusions about the tendency of the geodynamo to reverse during the periods of
higher or lower field intensity (Kulakov et al., 2018).

Substantial efforts have also been put into investigating the potential link between PSV and the reversal fre-
quency. Among those, the study of McFadden et al. (1991), who analyzed statistical properties of PSV
derived from rapidly cooled igneous rocks (lavas) for the last 195 Ma, was the most influential and showed
great promise in that it suggested a strong relationship between the reversal frequency and the dispersion of
virtual geomagnetic poles (VGPs) derived from paleomagnetic directions and considered as a function of
latitude. Later work by Tarduno et al. (2002), and most recently by Biggin, van Hinsbergen, et al. (2008),
partly confirmed the findings of McFadden et al. (1991), and yet showed that a clear‐cut relationship
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suggested by the earlier study may not be as clear after all. Biggin, van Hinsbergen, et al. (2008) found that
the low VGP dispersion at low latitudes and its strong increase with latitude during the CNS, which had been
suggested to be a signature of long periods of stable polarity (Merrill & McFadden, 1988), were not as promi-
nent as those observed in the PSV estimates of McFadden et al. (1991). Highly scattered PSV estimates for the
Jurassic (145–200 Ma), a period during which the average frequency of geomagnetic reversals was high
(~5 Myr−1), did not allow Biggin, van Hinsbergen, et al. (2008) to establish whether the latitude dependence
of VGP dispersion was distinctly different from that observed for the CNS as it was not clear what the latitude
pattern of VGP dispersion in the Jurassic actually was. These results warrant obtaining better constraints on
the PSV behavior in the Jurassic to test whether a consistent latitude pattern can be defined for this
time interval.

In this study, we will present an updated database of paleomagnetic directions and VGPs for the
Cretaceous and Jurassic that has been compiled from the literature (section 2) and use these data to
define the patterns of latitude dependence of PSV for the two periods of dramatically different reversal
frequency, namely, the CNS (84–126 Ma, average reversal frequency is ~0.05 Myr−1 according to the geo-
magnetic polarity time scale of Ogg, 2012, that includes one short reverse polarity interval [chron M‐1r]
within the CNS) and the preceding Early Cretaceous‐Jurassic time interval (pre‐CNS, 127–198 Ma, aver-
age reversal frequency of ~4.6 Myr−1). In section 3, we will describe the methodology used in our analysis
for estimating PSV and modeling its latitude dependence. In section 4, we will present the results and
compare the latitude patterns of PSV for the CNS and pre‐CNS periods. In section 5, we will compare
our findings with the results of the earlier studies (Biggin, van Hinsbergen, et al., 2008; Cromwell
et al., 2018; de Oliveira et al., 2018; Johnson et al., 2008; McFadden et al., 1991; Opdyke et al., 2015)
and discuss how the latitude patterns of PSV relate to the average reversal frequency, what they can tell
us about the morphology of the geomagnetic field in the past, and whether they can be considered as reli-
able indicators of the geodynamo stability. In section 6, we will provide a brief summary of our results
and conclusions.

2. Sources of Data

Unlike nearly continuous records of secular variation provided by geomagnetic observatories for the last few
hundred years, estimates of PSV for the geologic past rely on paleomagnetic analyses that most commonly
yield temporally disjointed observations of the magnetic field. Rapidly cooled igneous rocks are typically
considered to be the most reliable magnetic recorders (e.g., McFadden et al., 1988), but each individual cool-
ing unit can only provide us with an instantaneous “spot reading” of the field. In contrast, sediments and
slowly cooled plutonic rocks will tend to average out secular variation to some extent, and the PSV signal will
be at least muted or at worst completely lost in the paleomagnetic data. This limits PSV analysis to the data
obtained from extrusives and shallow intrusions, while those from sediments and deep intrusives are gener-
ally considered not suitable for it. The former, however, never provide uniform sampling of time, which
further limits the analysis to the use of statistical measures of PSV that will be described in section 3.

In this study, we compiled an updated database of paleomagnetic directions from the literature published up
to and including year 2017, covering the time interval from 198 to 74 Ma. Although the main focus of our
analysis was a comparison between the CNS (84–126Ma) and the preceding Early Cretaceous‐Jurassic inter-
val (127–198 Ma), we chose to complement our compilation with data from a younger time interval
(74–84 Ma) to test whether there is a discernable change in the behavior of PSV that could signal the end
of the CNS. This interval corresponds to the second and third longest polarity intervals in the Cenozoic
and Mesozoic (chrons C33n and C33r, Ogg, 2012), which led Lowrie and Kent (2004) to suggest that they
may have closer affinity to the CNS than to the rest of the polarity sequence.

Only data from igneous, rapidly cooled rocks (extrusive rocks and shallow intrusions, including lava flows,
dykes, sills, and tuffs) were included in the database. Data from plutonic and sedimentary rocks were not
considered because, as noted above, they are known to be prone to partial averaging of secular variation,
and the data from sedimentary rocks can also be affected by inclination shallowing (e.g., Tauxe & Kent,
2004). Following the approach of Biggin, van Hinsbergen, et al. (2008), paleomagnetic data from rocks of
similar age sampled at nearby geographic locations, which often belonged to the same rock formation, were
combined into data sets (Figure 1). Each data set is a collection of site‐mean directions of the characteristic
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remanent magnetization (ChRM) and corresponding VGPs. The site‐mean directions are Fisher averages (R.
Fisher, 1953) of ChRM directions obtained from individual samples. From here on we will use the term
“site” to refer to a single cooling unit rather than a distinct sampling location, so that each site‐level
datum can be treated as an instantaneous record of the geomagnetic field. In our nomenclature, the site
stands either for a single igneous unit (e.g., a single lava flow), or several units formed over a short burst
of magmatic activity and showing no discernable differences in paleomagnetic direction (e.g., several
consecutive lava flows extruded so rapidly that they recorded essentially the same direction of the
magnetic field). The collection of site‐level data was necessary to ensure the internal consistency of the
analysis, that is, it was our intention to derive PSV estimates using the same analytical procedures
(section 3) for all individual data sets.

To ensure that low‐quality data would not be included in our compilation, the papers that could be poten-
tially used as data sources were carefully examined and all data sets were ranked according to the Van der
Voo (1990) quality criteria. For a data set to be included in the compilation, we required the total Q score,
based on the first six Van der Voo criteria (Q1–6), to be equal to or greater than three. The seventh criterion
(dissimilarity of the mean pole with poles of younger age) was not used for the reasons discussed by
Veikkolainen et al. (2014) and Pivarunas et al. (2018). We further applied the following selection criteria:

Figure 1. (a) Geographic locations of igneous formations from which the paleomagnetic data were collected; symbols are
color‐coded according to the nominal age (Table 1). (b) Number of individual site‐mean data (N) for all data sets. The
long‐dashed line shows the median value of N. (c) Average values of within‐site dispersion of paleomagnetic directions
(sw=

ffiffiffi
n

p
). The short‐dashed line corresponds to the upper limit (5°) for sw=

ffiffiffi
n

p
below which the correction of robust

paleosecular variation estimates (S′) for within‐site dispersion does not introduce a significant bias into the latitude
dependence of S′ (see section 3.1.5).
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1. The age of the rock formation must be reasonably well constrained, preferably by radiometric dates, so
that the data set can be unambiguously allocated as representing the magnetic field during the CNS or
the intervals with higher reversal rates preceding or following the superchron.

2. There must be no evidence that the ChRM directions record secondary magnetic overprints. No data
from rocks suspected to be remagnetized were included.

3. Data from igneous formations that were tectonically folded or tilted after their emplacement must be
structurally corrected (restored to paleohorizontal). Data from areas that may have been affected by
uncertain post‐emplacement tilting and those showing evidence for local block rotations between the
sampling sites were not used.

4. Following the earlier studies of PSV for the Mesozoic, Paleozoic, and Precambrian (Biggin, van
Hinsbergen, et al., 2008; Biggin, Strik, et al., 2008; de Oliveira et al., 2018; Smirnov et al., 2011;
Veikkolainen & Pesonen, 2014), we required each data set to comprise paleomagnetic directions from
at least nine sites (N ≥ 9 independent spot readings of the magnetic field), and each site‐mean direction
to be based on ChRM directions from at least three independent samples (n ≥ 3). We will discuss the
influence of imposing stricter criteria (higher minimum values of N and n) on the estimates of latitude
dependence of PSV in section 4.

5. The ChRM components must have been isolated using stepwise demagnetization techniques. Unlike
Smirnov et al. (2011), we did not enforce a strict rule that all sample‐level data must have been processed
using the principal component analysis (Kirschvink, 1980), but we required that the stepwise demagne-
tization and isolation of ChRM directions using orthogonal vector plots must have been done for at least a
pilot specimen collection. This corresponds to selecting data with a “demagnetization code” (DC) of three
or higher (McElhinny & McFadden, 2000).

6. The uncertainties of the site‐mean directions of ChRM must be estimated and presented in the original
study/studies, as either the Fisher concentration parameter (k) or the angle of 95% confidence about the
mean direction (α95) (R. Fisher, 1953), to allow the estimation of within‐site scatter (section 3).

The data sets that satisfied our selection criteria are listed in Table 1. The table also provides background
information on the geographic location and age of the rock formation, the number of individual site‐mean
directions/VGPs in the data set, the Van der Voo (1990) quality ranking, and references. Each data set was
assigned a unique identification number (DSID) for cross‐referencing these metadata with the site‐level
data, which are presented in the supporting information Table S1. In addition to the site‐mean directions,
VGPs, and their relevant statistical summaries, this table lists the geographic coordinates for the sites (where
these were not available the average study location was used), nominal ages assigned to the data, DCs, rock
types and lithologies, and digital object identifiers for the papers from which the data were collected. For the
site‐level data from the formations that were demonstrably affected by short bursts of eruptive activity (e.g.,
sequences of lava flows recording indistinguishable directions of the magnetic field), we used the “direction
groups” as they were defined in the original studies for the site‐level entries (e.g., Butler et al., 1991; Kosterov
& Perrin, 1996; Tarduno et al., 2001); otherwise, each site‐level entry in Table S1 represents a single igneous
unit. The statistical properties of the site‐level database are illustrated in Figure S1, which shows the distri-
butions of the number of samples per site, DC, α95, and the Fisher precision parameter k for the site‐mean
ChRM directions.

Overall, our compilation contains data from 47 igneous formations (Figure 1), comprising ca. 1,770 site‐
mean directions and corresponding VGPs. For each individual data set, we assigned a nominal age based
on available radiometric dates and/or upper and lower age constraints from biostratigraphy, geologic corre-
lation, and considerations of geomagnetic polarity (using the geomagnetic polarity time scale of Ogg, 2012).
In cases when the age is not constrained by high‐quality U/Pb or Ar/Ar isotopic dates, or when the available
radiometric dates show a broad range of possible ages, these assignments can be somewhat subjective and
should be viewed with caution. Nevertheless, since our main objective was to relate the data sets either to
the nonreversing field in the Cretaceous (the CNS), or to the reversing field during Jurassic‐Early
Cretaceous time, we consider these assignments adequate for the purpose of our analysis.

We did not apply site selection criteria based on the value of α95 for the mean direction. This approach is

similar to that used by Smirnov et al. (2011), and we note that for most sites (84%) the α95 values do not
exceed 10° and are greater than or equal to 20° for only 1.7% of sites. Biggin, van Hinsbergen, et al. (2008)
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Table 1
Sources of Data and Background Information for Paleomagnetic Data Sets

DSID Rock formation Country Lat (°N) Lon (°E) Age (Ma) N ntot Q References

NPW17‐44 Patagonian Plateau basalts Chile, Argentina −45.3 288.7 74 18 248 5 Butler et al. (1991)
NPW17‐41 Adel Mountains volcanics USA 47.2 248.1 75 31 232 5 Gunderson and Sheriff (1991)

Harlan et al. (2005)
NPW17‐43 Minusa Trough intrusions Russia 54.9 90.3 75 16 249 6 Metelkin, Kazansky, et al. (2007)
NPW17‐39 Gongju Basin volcanics South Korea 36.5 127.1 78 9 102 5 Doh et al. (2002)
NPW17‐37 Elkhorn Mountains

volcanics
USA 46.0 248.1 80 15 112 5 Diehl (1991)

NPW17‐38 Shexing Formation lavas China 29.9 91.3 80 22 132 3 Tan et al. (2010)
NPW17‐63 Yare Basin volcanics China 31.6 82.2 80 15 136 5 Yi et al. (2015)
NPW17‐40 Maudlow Formation USA 46.1 248.9 82 11 55 5 Swenson and McWilliams (1989)
NPW17‐35 Yongtai volcanics China 25.7 119.0 88 19 343 4 Huang et al. (2013)
NPW17‐36 Madagascar flood basalts Madagascar −19.5 45.9 90 44 273 4 Riisager et al. (2001)

Cucciniello et al. (2010)
NPW17‐57 Mount Carmel volcanics Israel 32.7 35.0 90 11 67 3 Ron et al. (1990) Segev et al. (2002)
NPW17‐58 Wadi Natash volcanics Egypt 24.4 33.4 93 15 248 3 Schult et al. (1981)
NPW17‐29 Arctic Canada lavas Canada 79.4 267.8 95 37 286 5 Tarduno et al. (2002)
NPW17‐31 Shovon and Khurmen‐

Uul volcanics (non‐SEAB)
Mongolia 44.3 103.6 95 22 139 4 Hankard et al. (2007)

NPW17‐27 South Vietnam volcanics Vietnam 11.9 108.6 100 14 85 3 Chi and Dorobek (2004)
NPW17‐53 Cabo Magmatic Province Brazil −8.4 325.1 102 24 220 4 Font et al. (2009), Schult and

Guerreiro (1980)
NPW17‐26 Qiangtang Terrane lavas China 32.5 84.3 104 14 91 5 Chen et al. (2017)
NPW17‐25 Artz‐Bogd volcanics

(non‐SEAB)
Mongolia 44.3 102.2 104.5 38 211 4 Hankard et al. (2007), van Hinsbergen

et al. (2008)
NPW17‐61 Suhongtu volcanics China 41.2 104.1 112 31 424 5 Zhu et al. (2008)
NPW17‐24 Tuoyun lavas China 40.2 75.3 114 52 356 4 Lhuillier et al. (2016)
NPW17‐22 Rajmahal traps India 24.6 87.6 117.5 68 315 5 Klootwijk (1971), Poornachandra Rao

and Mallikharjuna Rao (1996),
Tarduno et al. (2001)
Coffin et al. (2002)

NPW17‐67 Israeli alkali basalts Israel 30.5 34.8 117.5 16 96 4 Sherwood et al. (1993)
NPW17‐71 South East Artz

Bogd lavas (SEAB)
Mongolia 44.4 102.5 117.5 26 167 5 van Hinsbergen et al. (2008)

NPW17‐20 Dianzhong Formation
volcanics

China 31.1 84.4 119 13 126 4 Yang et al. (2015)

NPW17‐21 San Marcos dyke swarm Mexico 32.1 243.6 120 13 84 4 Böhnel et al. (2002)
NPW17‐69 South East Ih Bogd and

Baga Bogd lavas
(non‐SEAB)

Mongolia 44.8 101.5 121 56 340 6 van Hinsbergen et al. (2008)

NPW17‐16 Qushenla formation lavas China 32.4 82.7 126 51 444 5 Ma et al. (2014)
NPW17‐15 El Salto‐Almafuerte lavas Argentina −32.2 295.7 127 10 53 3 Mendía (1978)
NPW17‐42 Transbaikal basalts

(Chikoy‐Khilok)
Russia 50.5 107.5 128.5 12 87 5 Metelkin et al. (2010)

NPW17‐14 Sangxui Formation lavas China 28.8 91.2 130 28 230 6 Ma et al. (2016)
NPW17‐12 Parana Magmatic

Province
Brazil, Argentina
Uruguay

−26.4 309.0 132 594 3587 6 Solano et al. (2010), Raposo and
Ernesto (1995), Raposo et al. (1998),
Ernesto et al. (1990, 1999),
Mena et al. (2011)
Moreira Florisbal et al. (2014)

NPW17‐10 Etendeka traps Namibia −20.5 14.2 134 70 529 6 Dodd et al. (2015)
NPW17‐51 Lebanon volcanics Lebanon 34.0 35.5 153 13 76 3 Gregor et al. (1974),

van Dongen et al. (1967)
NPW17‐59 Inner Mongolia

igneous units
China 48.5 119.6 154.5 23 172 4 Zhao et al. (1990)

NPW17‐07 Tiaojishan Formation China 41.1 118.6 155.0 35 255 5 Ren et al. (2016)
NPW17‐17 Transbaikal basalts

(Tugnui, Margintui)
Russia 50.9 106.5 155.5 14 112 6 Metelkin, Gordienko, et al. (2007)

NPW17‐49 El Quemado complex Argentina −47.5 288.2 156.5 15 137 5 Iglesia Llanos et al. (2003)
NPW17‐06 Camaraca Formation Chile −18.6 289.7 157 23 115 3 Palmer et al. (1980)
NPW17‐05 Rio Grande do Norte dykes Brazil −5.7 323.4 160 10 77 3 Bucker et al. (1986)
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used additional site selection criteria (n ≥ 5 and k ≥ 50) to isolate subsets of higher technical data quality
(which they referred to as Group 1 data sets) from their compilation of the CNS and Jurassic data. We
will examine how this restriction affects the estimates of latitude dependence of PSV in section 4.
Compared to the study of Biggin, van Hinsbergen, et al. (2008), our database contains more individual
data sets because we sampled a slightly broader age interval and included the data published after 2008.
Furthermore, since we used stricter selection criteria, 11 out of 28 data sets used by Biggin, van
Hinsbergen, et al. (2008) were excluded from our compilation because of the lack of uncertainty estimates
for the site‐mean directions (criterion 6), a small (n ≤ 2) number of samples per site (criterion 4), and/or
evidence for local block rotation or remagnetization (criterion 2). Examples of the accepted data sets are
shown in Figure 2.

3. Methodology
3.1. Measures of PSV

In PSV studies, the geomagnetic field variability is typically described by the scatter of VGPs or, alternatively,
by the scatter of paleomagnetic directions. In our analysis, we used two alternative approaches for quantify-
ing this scatter.
3.1.1. The Traditional Approach: Angular Dispersion
The first approach uses a familiar measure of VGP scatter, which is often referred to as the “angular disper-
sion” or “angular standard deviation” in the paleomagnetic literature (e.g., Cox, 1970; McFadden et al.,
1991). The angular dispersion of VGPs (S) was calculated using the equation (Cox, 1970)

S2 ¼ 1
N−1

∑N
i¼1Δ

2
i ; (1)

where N is the number of VGPs comprising a paleomagnetic data set and Δi is the angular deviation of the
ith VGP from the mean paleomagnetic pole. The mean pole was computed as a Fisher average of the VGPs
included in the data set (R. Fisher, 1953). Before calculating the mean pole and the angular dispersion, the
VGPs corresponding to the site‐mean directions of reverse polarity (if they were present in the data set) were
replaced by the antipodal VGPs, and the angular distances between each VGP and the mean pole were
checked to ensure that no VGP in the data set deviated by more than 90° from the mean. Note that all
VGPs given in Table S1 conform to this convention, that is, each VGP data set is confined to the hemisphere
centered on the mean pole (e.g., Figure 2).

Under the assumption that the geomagnetic field averaged over a sufficiently long time interval equates the
field of a geocentric axial dipole (GAD), the mean of a VGP distribution is expected to coincide with the

Table 1 (continued)

DSID Rock formation Country Lat (°N) Lon (°E) Age (Ma) N ntot Q References

NPW17‐66 Southern Greenland dykes Denmark 61.2 311.5 165.5 14 74 4 Piper (1975)
NPW17‐08 Canelo Hills volcanics USA 31.5 249.5 175 15 117 5 Kluth et al. (1982) Gilbert and

Lawton (2012)
NPW17‐48 Marifil Formation Argentina −44.8 294.4 177 12 87 5 Iglesia Llanos et al. (2003)
NPW17‐03 Kirkpatrick basalts Antarctica −73.3 162.9 180 21 156 5 Lemna et al. (2016)
NPW17‐68 Ferrar dolerites Antarctica −74.5 162.0 180 15 242 4 Lanza and Zanella (1993)

Riley and Knight (2001)
NPW17‐02 Vestfjella dykes Antarctica −73.5 345.0 182 24 109 4 Løvlie (1979) Luttinen et al. (2015)
NPW17‐47 Karoo Magmatic Province Africa −28.4 28.8 183 103 549 6 Kosterov and Perrin (1996),

Henthorn (1981), Hargraves et al.
(1997) Duncan et al. (1997),
Riley et al. (2004)

NPW17‐01 Piedmont mafic dykes USA 35.9 280.3 198 15 100 3 Smith (1987) Beutel et al. (2005)

Note. DSID is the data set identification number. Lat and Lon are the geographic latitude and longitude for the average site location. Age is the nominal age
assigned to the data set. N is the number of site‐level data. ntot is the total number of samples per data set. Q is the quality score based on the first six Van
der Voo (1990) criteria. The “References” column lists studies from which paleomagnetic data were compiled. Extra references for radiometric ages are given
in the square brackets.
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geographic pole (Merrill et al., 1998). Hence, the mean pole can be viewed as an estimate of the position of
the paleogeographic north pole with respect to the location of the source rocks in present geographic
coordinates. Note that this approach differs from that used to produce values of S for recent time periods
(e.g., Cromwell et al., 2018; Johnson et al., 2008; Opdyke et al., 2015) where the scatter is measured about

Figure 2. Equal‐area plots showing examples of site‐mean characteristic remanent magnetization directions (a, c, e) and
virtual geomagnetic poles (b, d, f). The data are from (a, b) the Shexing Formation lavas (~80 Ma, DSID = NPW17–38),
(c, d) Arctic Canada lavas (95 Ma, DSID = NPW17–29), and (e, f) the Parana Magmatic Province (132 Ma,
DSID = NPW17–12); see Table 1 for references. The white and color‐filled circles in (a), (c), and (e) show the directions
with negative and positive inclinations, respectively. The red and blue colors indicate the normal and reverse
polarities. Virtual geomagnetic poles are plotted in the northern hemisphere. The yellow star symbols in (b), (d), and
(f) show the mean poles calculated after removing the outliers according to the Vandamme (1994) criterion. The purple
circles show the Vandamme (1994) cutoff angles; the green circles show the 45° cutoff angle.
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the actual geographic pole. Notwithstanding critical failure to average secular variation by individual data
sets or significant departures from GAD morphology, the two approaches should give similar values.

The angular dispersion of paleomagnetic directions (s) was calculated using the equation (Cox, 1970)

s2 ¼ 1
N−1

∑N
i¼1δ

2
i ; (2)

where δi denotes the angle between the ith site‐mean ChRM direction and the Fisher mean direction of N
site‐means. The site‐mean directions corresponding to the reverse polarity were inverted to the antipodal
directions before calculating the mean direction and the angular dispersion. In the remainder of this chap-
ter, we will focus on the analysis of VGP data; the analysis of directional data is completely analogous, except
for several instances that will be explicitly discussed. As a convention, we will use capital letters (e.g., S, Δi)
for VGP data and lowercase letters (e.g., s, δi) for directional data.

The angular dispersion of VGPs given by equation (1) includes two sources of scatter—a typically dominant
contribution caused by the secular variation of the field (“between‐site dispersion”, Sb) and a minor contri-
bution arising from random errors related to the uncertainties of ChRM directions due to measurement
errors (“within‐site dispersion”, Sw). To estimate the scatter caused by PSV, Sb was calculated using the
approximation given by McFadden et al. (1991):

S2b ¼ S2−
S2w
n

¼ S2−
1
N
∑N

i¼1
S2wi
ni

; (3)

where S2w=n denotes the contribution from within‐site dispersion, Swi is the within‐site dispersion associated
with the ith site, and ni is the number of individual paleomagnetic sample directions used to obtain the ith
site‐mean direction and the corresponding VGP.

Assuming that at each site the sample ChRM directions are Fisher‐distributed, which is reasonable given the
random nature of measurement errors, we estimated the concentration parameters of within‐site ChRM
directions (kwi) using Fisher statistics and then transferred these estimates to VGP space using the equation
(Cox, 1970)

Kwi ¼ kwi
1
8

5þ 18 sin2λþ 9 sin4λ
� �� �−1

; (4)

where λ is the paleolatitude of the sampling site computed as 90° minus the angular distance between the
site and the mean pole. The values of within‐site dispersion contributing to the VGP scatter were approxi-
mated by

Swi ¼ 180°

π

� � ffiffiffiffiffiffiffi
2
Kwi

r
≅

81°ffiffiffiffiffiffiffi
Kwi

p ; (5)

and used in equation (3) to calculate Sb. For the analysis in direction space, kwi values were substituted for
Kwi in equation (5) to estimate the within‐site dispersion swi.
3.1.2. Treatment of Outliers
The angular dispersion S is a direct analogy of standard deviation as estimated from a sample of random
observations in univariate analysis. When paleomagnetic directions and VGPs derived from them are treated
as random observations, and it is assumed that random sampling of the field produces a population of VGPs
that is described by a Fisher distribution with a precision parameter K, the choice of this metric comes natu-
rally because the Fisherian mean of the VGP positions provides the maximum likelihood estimate of the
population mean, whereas the value of S2 is the unbiased estimate of 2/K for a concentrated distribution
(i.e., when K ≫ 1; Cox, 1969; R. Fisher, 1953; McFadden, 1980).

In paleomagnetic studies, however, a situation commonly arises when the majority of VGPs cluster around
the mean pole and can be fit by a Fisher distribution reasonably well (although this is not always the case),
whereas some VGPs lie far from the mean, resulting in a longer tail of the observed distribution compared to
that expected from the Fisher model (e.g., Harrison, 2009; Shibuya et al., 1995; Suttie et al., 2015). These
“outlier” VGPs are usually interpreted as representing the field undergoing geomagnetic excursions or
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polarity reversals, and the common practice is to remove them from the calculation of the VGP mean and
dispersion, because it is considered desirable to focus on the field behavior away from times of excursions
and polarity transitions. Technically, this is done by applying some maximum threshold value for Δi, which
we will refer to as the “cutoff angle,” to select VGPs and directions corresponding to these VGPs that should
be excluded from a data set. Similarly to Biggin, van Hinsbergen, et al. (2008), we used two approaches for
defining the cutoff angle (Δmax): one that uses a fixed value of 45° (which is intermediate between the values
used by previous studies of PSV, 35°–55°) and the second that assigns the “optimum” Δmax value based on
the procedure of Vandamme (1994) for estimating the angular dispersion of the population that can be rea-
sonably assumed to represent nontransitional data:

Δmax ¼ 1:8·Sþ 5°: (6)

In this equation Δmax is calculated iteratively whereby S is first estimated for the whole data set using equa-
tion (1), and if there are VGPs that deviate from the mean pole by more thanΔmax degrees, the VGP with the
largest deviation is removed and the calculation is repeated until all VGPs retained in the data set satisfy the
condition Δi ≤ Δmax. To test how these two trimming options affected the estimated values of VGP scatter,
we also calculated the values of S and Sb retaining all VGPs in the data sets, that is, without imposing any
cutoff angle.
3.1.3. A less Orthodox Approach: Mean Angular Deviation
Although it has become routine in studies of PSV to discard the outliers from VGP data sets, this is not uni-
versally accepted in the community (e.g., Tauxe et al., 2003) because it is generally not possible to separate
VGPs corresponding to the “normal secular variation” (i.e., periods of stable geomagnetic polarity) from
those representing polarity transitions and excursions if the data do not provide a temporally dense and stra-
tigraphically ordered record of changes in the field direction. The trimming procedures whereby a data set is
truncated by Δmax have been designed to remove most of the transitional and excursional data without cut-
ting off a statistically significant fraction of the main VGP distribution (Vandamme, 1994). McElhinny and
McFadden (1997) showed that for Fisher distributions, less than 4% of probability mass in the distribution
tail is truncated by the Vandamme (1994) cutoff angle (equation (6)), introducing a negligible bias to the esti-
mated VGP scatter. However, when applying the Vandamme (1994) or fixed cutoff, there are no guarantees
that all transitional and excursional data have been removed from the truncated data set or that the removed
VGPs uniquely represent polarity transitions and excursions. There also exists a further argument that, since
the distinction between “transitional” data and normal secular variation is not grounded in any understand-
ing of the physical processes responsible for the variability, the entire distribution should be considered.

Instead of relying on trimming techniques, it is preferable to treat the transitional and excursional data as an
integral part of secular variation, without any arbitrary separation of the field behavior into the “normal”
and “exotic” states. That said, the presence or absence of occasional VGP outliers due to polarity transitions

or excursions strongly influences S and Sb (as they are sensitive to Δ2
i ), especially for small data sets, which

may result in unrecognized biases in the latitudinal dependence of VGP scatter. Consequently, if all avail-
able data are retained, it is desirable to use a metric of VGP scatter that would be more robust to (less influ-
enced by) outliers than the angular dispersion.

Suttie et al. (2015) developed a new statistical technique for quantifying the scatter of paleomagnetic direc-
tions and VGPs and introduced a new measure (denoted S′), which is arguably robust to outliers. We used
this technique as an alternative way of measuring PSV in our analysis. The method of Suttie et al. (2015)
is based on the use of the spherical exponential (SE) distribution as a sampling distribution (in the sense
of assessing the likelihood of observations given a probability model) for obtaining the estimates of central
location and scatter of a VGP population. Here we will briefly recount their methodology; the details can be
found in the original publication (Suttie et al., 2015).

The SE distribution is defined as

dP θ;φð Þ ¼ p θ;φð ÞdΩ ¼ K2
E þ 1

2π 1þ exp −KEπð Þð Þ exp −KEθð ÞdΩ; (7)

where θ and φ are, respectively, the colatitude and azimuthal angle relative to the central location (taken as
the geographic pole in the case of VGP distribution), dP(θ,φ) is the probability of the observation within the
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elementary area on the unit sphere dΩ= sin θdθdφ bound by the limits [θ, θ+ dθ] and [φ,φ+ dφ], p(θ,φ) is
the probability density function, and KE (>0) is the concentration parameter that characterizes the spread of
the distribution about the central location.

The choice of the SE distribution as a sampling distribution is sensible in the context of PSV analysis because
it is the maximum entropy distribution (i.e., the least informative) among those having a specified expecta-
tion for the VGP colatitude (E(θ) ≡ 〈θ〉):

θh i ¼ 2KE

K2
E þ 1

þ π exp −KEπð Þ
1þ exp −KEπð Þ≅

2KE

K2
E þ 1

≅
2
KE

when KE≫1: (8)

Hence, by assigning the SE distribution to VGPs, we essentially state that we do not want to assume any prior
knowledge about secular variation other than it produces a distribution of VGPs about the geographic pole
with some expected value of colatitude, which we would like to estimate and use as a measure of
secular variation.

Compared to the Fisher distribution, the SE distribution has a longer tail and may thus provide a more accu-
rate statistical description for data sets containing VGPs far away from the central location. Indeed, Suttie
et al. (2015) showed that several data sets from Cenozoic large igneous provinces, unmutilated by truncation
of outliers, can be fit by the SE distribution better than by the Fisher model. A drawback in using the SE dis-
tribution is that there is no explicit formulation for the estimate of central location and its confidence region.
From equation (7), it is evident that the likelihood of a point with coordinates (θ,φ) to be the central location,
given the observations ofN VGPs with coordinates (θi,φi), is maximized when the sum of angular deviations

Δ θ;φð Þ
i from that point is the minimum. Thus, the maximum likelihood estimate for the central locationbθ; bφ	 


is given by the equation

∑N
i¼1Δ

bθ;bφ� �
i ¼ min

θ;φð Þ
∑N

i¼1Δ
θ;φð Þ
i : (9)

This estimate has a character of a median‐type estimator on the sphere (N. I. Fisher, 1985), which is less sen-
sitive to outliers than the mean estimated using the Fisher statistics, since the latter minimizes the sum of

squared deviations. The spherical median bθ; bφ	 

can be found by straightforward numerical minimization,

and its distribution (and hence confidence limits) can be evaluated using the Bayesian approach described
by Suttie et al. (2015).

The SE distribution naturally leads to the choice of the mean angular deviation from the central location as a
measure of VGP scatter:

S′ ¼ 1
N
∑N

i¼1Δi: (10)

Being the arithmetic mean rather than a “root‐mean‐square” (RMS) deviation (equation (1)), S′ is less
affected by occasional outliers than S and hence can be considered a more robust measure of PSV. If the cen-
tral location is known (e.g., the geographic pole for paleomagnetic data from recent times), equation (10)
gives us the unbiased estimate of the expected VGP colatitude 〈θ〉, that is, 〈S′〉 = 〈θ〉. However, when we

do not know where the “true” center of the distribution is and use the spherical median bθ; bφ	 

estimated

from the data to calculate deviationsΔi, this introduces a negative bias into S
′ as ameasure of 〈θ〉. The reason

is that bθ; bφ	 

minimizes the total angular deviation for a finite number of observations (equation (9)), and

any other point on the sphere, including the true distribution center, will produce a larger mean deviation
than S′. Hence, generally 〈S′〉 < 〈θ〉, with the difference diminishing to zero as the number of observations
becomes infinitely large.
3.1.4. Correcting Bias in S′ Due to Finite Sample Size
To investigate the bias we performed numerical simulations in which 1,000 samples of size N were drawn
from the SE distribution with a specified 〈θ〉 (given by equation (8)). For each sample, the spherical
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median location and S′ were calculated from equations (9) and (10), and then the mean value S′ was
calculated for all resamplings. The procedure was repeated for different N and 〈θ〉, with the sample size
ranging from 3 to 100, and the expected colatitude from 5° to 40°. The results of this experiment are
shown in Figure 3.

As expected, the bias is small for large values of N (<1° for N > 30), but becomes substantial for small sam-
ples (Figures 3a and 3b), reaching about 9° in the “worst case” encountered (N = 3, 〈θ〉 = 40°). Another
observation is that the bias expressed as a percentage of the expected value 〈θ〉 is not sensitive to 〈θ〉 and fol-
lows a rather simple functional relationship with respect to N (Figures 3c and 3d):

S′− θh i
θh i ¼ 1−

Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N N−1ð Þp : (11)

This suggests that the unbiased estimate of 〈θ〉 can be obtained by simply “upscaling” S′ with a factor that
depends on N only, so it becomes

Figure 3. (a) An example of negative bias in S′ introduced by the finite sample size (N). The black line shows the mean value of S′ calculated using equation (10) for
1,000 random draws of N virtual geomagnetic poles from the SE distribution with the expected angular distance from the central location 〈θ〉 = 15°. The gray
envelope shows the range of the S′ values corresponding to 95% of resamplings. The red line shows the mean of S′ values corrected for the sample‐size bias using
equation (12). (b) Bias of the mean of uncorrected S′ values as a function of sample size and expected angular distance. (c) Fractional bias S′−θ

	 

=θ of the

uncorrected and corrected S′ values for the values of expected angular distance ranging from 5° to 40° (black and red lines as in Figure 2a, respectively). Orange line
shows the functional relationship given by equation (11). (d) Bias of the uncorrected mean S′ expressed as a percentage of the expected angular distance.
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S′ ¼ 1
2− Nffiffiffiffiffiffiffiffiffiffiffiffi

N N−1ð Þ
p ·

1
N
∑N

i¼1Δi: (12)

It is not trivial why the unbiased estimate should have this form, but from the practical point of view, the use
of equation (12) instead of (10) evidently makes the bias negligible (Figure 3c), even for small samples.
Hence, we adopted this formulation in our analysis.
3.1.5. Correcting S′ for Within‐Site Dispersion
Another point that was not addressed in the original work of Suttie et al. (2015) is how the within‐site dis-
persion affects S′. Similarly to the traditional approach described above, it is desirable to separate its contri-
bution from that caused by PSV and derive an estimate analogous to the between‐site dispersion Sb. A simple
approximation can be obtained as follows.

If there is a distribution of colatitudes with the expected value 〈θ〉, the variance of θ can be expressed as

var θð Þ≡ θ− θh ið Þ2� � ¼ θ2
� �

− θh i2≅V ′· θh i2; (13)

where V′ is the distribution shape parameter defined by Suttie et al. (2015). For an SE distribution with a
large concentration parameter (KE≫ 1), V′ is a constant equal to 1/2. For a concentrated Fisher distribution,
V′ is also largely independent of the precision parameter K and is approximately two times smaller than that
for the SE distribution.

For an observed sample of VGPs, we can define the shape parameter by replacing the expected values in
equation (13) with their estimates (S2 and S′):

V ′ ¼ S2−S′2

S′2
¼ S2

S′2
−1; (14)

and similarly for the sample that would be observed in the absence of within‐site errors:

V ′

b ¼
S2b−S

′2
b

S′2b
¼ S2b

S′2b
−1: (15)

If we assume that the contribution from the within‐site errors to the total VGP scatter is small compared to
that caused by secular variation, which is typical for paleomagnetic data sets, we would not expect the shape
of the distribution to be significantly changed by the within‐site errors, so that it is reasonable to approxi-

mate V ′

b by V
′. Thus, assuming that V ′

b≅V
′ and combining equations (14) and (15), we obtain

S′b≅
S′Sb
S

¼ S′

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2−

S2w
n

s
¼ S′

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

1

NS2
∑N

i¼1
S2wi
ni

s
; (16)

where we used the approximation for S2b given by equation (3), which is valid for any concentrated distribu-
tion and large N (McElhinny & McFadden, 1997; McFadden et al., 1991). We stress that when applying the
Sw correction to S′ (equation (16)), both the S′ and S2 values should be calculated with respect to the same
central location, estimated by the spherical median, although using the Fisher mean instead would typically
make very little difference.

Given the approximate nature of the solution forS′b (equation (16)), we should also consider the possible bias

in S′b estimates. The approximation based on the assumption that the shape of the distribution is not influ-

enced by the measurement errors (V ′

b≅V
′) will not be valid when the within‐site dispersion is comparable to

that caused by PSV. Another complication arises from the need to transfer the within‐site dispersion into
pole space, which may lead to extra bias because the transfer function given by equation (4) is also an
approximation valid only asymptotically in the limit of large kw (Cox, 1970).

To investigate the magnitude of these biases, we performed two sets of numerical simulations. In the first
experiment, we simulated s′ for paleomagnetic directions without transferring them into VGPs. One thou-
sand random samples of 50 directions were generated from the SE distribution with a specified mean
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angular deviation (the expected value of s′b), which was varied from 5° to 30°. In each sample, the directions

were perturbed by random errors drawn from the Fisher distribution with a specified value of kw
¼ 180°=πð Þ2·2n=s2w (cf. equation (5)), with sw=

ffiffiffi
n

p
ranging from 0° to 10°. From the perturbed sample

directions, we calculated s′ and s′b using equations (12) and (16), respectively, and their respective mean

values based on 1,000 resamplings for all combinations of the true s′b and sw=
ffiffiffi
n

p
. The results of this

experiment (Figure 4) show that the correction given by equation (16) works well in removing the
contribution from the within‐site dispersion, even when it is comparable with or larger than the between‐
site scatter. It is apparent that the correction introduces a small positive bias that becomes progressively

larger at higher levels of within‐site noise. Yet, the bias does not exceed 0.5°, and for sw=
ffiffiffi
n

p
≤ 5° it is less

than ~0.2°, which we consider negligible.

The second experiment was similar in design, except this time we simulated samples of VGPs from the SE

distribution with a predefined expected colatitude (true S′b ) and calculated field directions corresponding
to these VGPs at different latitudes (from 0° to 90°). The directions were then perturbed with Fisherian errors
and converted back to VGPs. The within‐site dispersion was transferred to pole space using equation (4), and

the mean values of estimated S′ and S′b were calculated for each combination of the true S′b, sw=
ffiffiffi
n

p
and lati-

tude. The results are illustrated in Figure 5.

First, we note that the contribution from the within‐site errors not only increases S′ in comparison with
the true value, but also introduces a positive latitude dependence of S′ (Figure 5a). This is analogous to
the bias in angular dispersion (S) caused by uncorrected contribution from within‐site scatter and stems
from the fact that a latitude‐independent dispersion of directions translates into a latitude‐dependent dis-
persion of VGPs (Biggin, van Hinsbergen, et al., 2008; Cox, 1970; Linder & Gilder, 2012). The correction
for the within‐site dispersion removes the latitude dependence and correctly restores S′ to the expected

value of S′b value when sw=
ffiffiffi
n

p
is smaller than ~5°, but tends to underestimate S′b at high latitudes for

higher within‐site dispersions. This introduces negative latitude dependence at high latitudes, which is

especially prominent for low values of S′b (Figure 5b). The reason for that is the use of the Cox (1970)
approximation when transferring the directional dispersion into pole space (equation (5)), which overes-

timates S2w=n at high latitudes (and to a lesser degree underestimates it at low latitudes) when the disper-

sion of directions is high. For sw=
ffiffiffi
n

p
not exceeding 5°, the bias in estimated S′b is positive and smaller than

0.3° for all latitudes (Figures 5c–5f), and we conclude that in this case the correction can be used safely.
However, for higher values of within‐site dispersion and latitudes above ~60°, it can lead to significant

underestimation of S′b and should not be used blindly.

Figure 4. (a) Examples of bias in s′ (direction space) introduced by the uncorrected within‐site dispersion (sw=
ffiffiffi
n

p Þ. Black circles show the average values of s′

obtained from numerical simulations with the expected between‐site angular deviation of directions 〈θ〉= 5°, 15°, and 25° that were not corrected for the
within‐site dispersion (see text). Red circles show the corresponding values with the within‐site correction applied (s′b, equation (16)). (b) Bias of the mean values of
s′b as a function of the true s′b (〈θ〉) and within‐site dispersion (sw=

ffiffiffi
n

p Þ.

10.1029/2018GC007863Geochemistry, Geophysics, Geosystems

DOUBROVINE ET AL. 1253



Figure 5. (a) Examples of bias in S′ (virtual geomagnetic pole space) due to the uncorrected within‐site dispersion, which introduces artificial latitude dependence
of S′. Circles, which are color‐coded according to the level of within‐site dispersion (note that sw=

ffiffiffi
n

p
is the dispersion in direction space), show the average

values of uncorrected S′ obtained in numerical simulations with the expected between‐site virtual geomagnetic pole colatitudes 〈θ〉= 5° and 20° (see text). (b) Mean
values of corrected S′ (S′b, equation (16)) obtained in the same numerical experiment for the values of 〈θ〉= 5°, 10°, 15°, 20°, and 25°. (c–f) Bias of the mean values of
S′b as a function of the true S′b (〈θ〉) and within‐site dispersion (sw=

ffiffiffi
n

p Þ at different latitudes. Note that the negative bias below the −1° level is shown by the
uniform blue color in (e) and (f).
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We note that for almost all data sets included in our compilation (43 of 47), the average value of sw=
ffiffiffi
n

p
was below 5°, and only slightly higher for the remaining four data sets (Figure 1c). Thus, we considered
that the correction for within‐site scatter derived above is not likely to impart any substantial bias and
applied it to S′ estimates derived from our Cretaceous and Jurassic data.

3.2. Modeling the Latitude Dependence of PSV

In this study, we analyzed the latitude dependence of secular variation in both pole (VGP) space and direc-
tion space. The analysis of field variability in direction space is rarely included in PSV studies but was per-
formed here in order to test the hypothesis of Linder and Gilder (2012), who suggested that the latitude
dependence of VGP angular dispersion is a mathematical artifact originating from the conversion of paleo-
magnetic directions to VGPs (see section 5 for relevant discussion).

To describe the dispersion of VGPs as a function of paleolatitude (λ), we used Model G of McFadden
et al. (1988):

Sb λð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2s þ S2p

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ bλð Þ2

q
: (17)

This model assumes that the angular dispersion of VGPs can be represented by the quadrature sum of the
contributions from two independent dynamo families (Ss and Sp). Ss, which was argued to be latitude‐
invariant (Ss = a; McFadden et al., 1988, 1991), corresponds to the variation in equatorially symmetric
terms of the spherical harmonic expansion of the field, that is, the variation of the Gauss coefficients

gml and hml with l − m even (e.g., g11, h
1
1, g

0
2) with respect to the axial dipole term (g01). Sp represents the

variation in antisymmetric terms (l − m odd: g12, h
1
2, g

0
3, …), argued to vary as a linear function of latitude

(Sp = bλ). Although the complete separation of the symmetric and antisymmetric families is unlikely, we
consider Model G to be a useful framework for comparisons with the results of the earlier studies (Biggin,
van Hinsbergen, et al., 2008; de Oliveira et al., 2018; McFadden et al., 1991). For each data set, the paleo-
latitude (λ) was estimated using angular distance between the mean VGP and the average site location.
The shape parameters of Model G (a and b) were calculated by minimizing the sum of squared deviations
between Sb data and the model.

The same procedure was applied to S′b data, despite the fact that it is a different measure of PSV and there is

no theoretical justification for Model G‐type behavior for the latitudinal variation of S′b . From a practical

point of view, however, the use of the same functional form for the relationship between S′b and λ provided
us a straightforward way of comparing the results based on the two alternative approaches for quantifying
PSV.

The confidence intervals for a and b were estimated through simple, nonparametric bootstrap with replace-

ment of the Sb and S
′

b data that were used as input for defining the models (cf. Biggin, van Hinsbergen, et al.,
2008). We stress that at this point we consider a and b only as shape parameters of a descriptive model (for

both Sb andS
′

b data) without attaching any physical meaning to them. Amore detailed discussion of Model G
will be provided in section 5.

For the analysis in direction space, we chose to fit the data with Model A of Irving and Ward (1964):

sb λð Þ ¼ s0 1þ 3 sin2λ
� �−1=2

; (18)

where s0 is the model parameter corresponding to the angular dispersion at the equator. This simple phe-
nomenological model assumes that the total magnetic field can be represented by the field of a GAD
(varying with latitude) and a perturbing field of constant magnitude (independent of latitude) and ran-
domly distributed direction, statistically describing secular variation. Similarly to the analysis in VGP
space, we use this model in a purely descriptive sense. Model A was also fitted to s′b data for the purpose
of comparison. The paleolatitude was calculated from the inclination (I) of the mean direction for each
data set using the dipole equation, that is, tan(λ) = ½ tan(I) (McElhinny & McFadden, 2000). The confi-
dence interval for s0 was estimated using the bootstrap technique.
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4. Results
4.1. Latitude Dependence of PSV

The values of angular dispersion andmean angular deviation for all data sets included in our compilation are
presented in Tables S2.1–S2.4. Table S2.1 lists the angular dispersions (Sb and sb) calculated after excluding
the outlier VGPs (and directions corresponding to these VGPs) according to the Vandamme (1994)
criterion (section 3.1.2). The estimates of Sb and sb obtained using the fixed 45° cutoff angle and without
exclusion of outliers are given in Tables S2.2 and S2.3, respectively. These tables also provide relevant
statistical summaries, including Fisher mean directions and VGP locations, their uncertainties, paleolati-
tudes derived from these estimates, and the 95% confidence regions for the values of angular dispersion.

The corresponding estimates based on the use of SE distribution (S′b and s′b, section 3.1.3) are given in
Table S2.4.

Figure 6 illustrates the distribution of PSV estimates as a function of paleolatitude for the entire database.

Overall, the data show general tendencies for the estimates in pole space (Sb and S′b, Figures 6a and 6c) to

increase with the increasing absolute values of latitude and for the estimates in direction space (sb and s′b,
Figures 6b and 6d) to decrease. This behavior is consistent with the results of the earlier studies (e.g.,
Biggin, van Hinsbergen, et al., 2008; Irving & Ward, 1964; McFadden et al., 1991; McElhinny &
McFadden, 1997; Smirnov & Tarduno, 2004; Smirnov et al., 2011; Veikkolainen & Pesonen, 2014). The
trends are similar for both the northern‐ and southern‐hemisphere locations, showing no obvious equatorial
asymmetry.

For the analysis of latitude dependence of secular variation, we split our Cretaceous‐Jurassic database into
three age groups corresponding to the intervals (1) preceding the CNS (“pre‐CNS”, 127–198 Ma, 20 data
sets), (2) the CNS (84–126 Ma, 19 data sets), and (3) postdating the CNS (“post‐CNS”, 74–83 Ma, 8 data sets).
Because of the scarcity of data for the times preceding the CNS, we did not attempt to further subdivide the
pre‐CNS interval into shorter segments according to variation in the reversal rate and will examine only the
long‐term signal for the entire interval to make a first‐order comparison between the PSV behavior of
the reversing and nonreversing field.

The values of symmetric (a) and antisymmetric (b) terms of Model G and the equatorial dispersion of Model
A (s0) for the three intervals are presented in Tables 2 and 3. The fits of Model G (McFadden et al., 1988,
1991) and Model A (Irving & Ward, 1964) to the CNS and pre‐CNS subsets are shown in Figures 7–12.
Because of the limited number of data sets, substantial scatter of PSV estimates, and no clear indication
for distinct latitude patterns in the northern and southern hemisphere for both periods, we did not attempt
to test for possible equatorial asymmetry of PSV. Because both Model G and A are symmetric with respect to
the equator (equations (17) and (18)), we plotted the PSV estimates versus the absolute values of paleolati-
tude in Figures 7b–7d (and similarly for Figures 8–12), but indicated the estimates corresponding to the
northern and southern paleolatitudes by solid and open symbols, respectively.

Figures 7 and 8 show that applying the variable cutoff for VGP outliers (Vandamme, 1994) to the CNS data
had little influence on the estimated model parameters. For the fit of Model G (Figure 7), the exclusion of
outliers reduces the values of the symmetric term of the model (a) from 12.3° to 10.7°, and the antisymmetric
term (b) from 0.24 to 0.21, but the differences are smaller than the 95% uncertainties of these parameters, and
hence are not significant at the 95% confidence level. However, the scatter of Sb estimates relative to the
model curve gets noticeably smaller when the outliers are excluded, with the RMS deviation decreasing from
5.1° to 2.8°. Similarly, for the fit of Model A in direction space (Figure 8), the exclusion of outlier data reduces
the s0 parameter from 17.9° to 15.0°, which is not significant given the estimated uncertainties, and lowers
the RMS deviation from 6.3° to 3.2°. The case when the outlier data were excluded using the fixed 45° cutoff
for VGPs (Figures 7c and 8c) produced Models G and A (a = 11.1° ± 2.6°, b = 0.21 + 0.06/−0.19,
s0 = 15.4° ± 2.1°) that were not distinguishable from those obtained with the variable cutoff or no cutoff.

Themodel fits for the Early Cretaceous‐Jurassic (pre‐CNS, 127–198Ma) were more sensitive to the exclusion
of outliers (Figures 9 and 10). When the Vandamme (1994) cutoff was applied, we observed a weak depen-
dence of Sb values on latitude (Figure 9b), which is best fit by Model G with the parameters a = 12.7° + 1.9°/
−2.7° and b= 0.13 ± 0.13. Although these values are not statistically distinguishable from the corresponding
parameters for the CNS (a = 10.7° + 2.2°/−2.4°, b = 0.21 + 0.05/−0.17, Figure 6b), the difference suggests a
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larger contribution of equatorially symmetric terms and a lower contribution of antisymmetric terms into
the secular variation during the time interval preceding the CNS, which is qualitatively consistent with
the results of earlier studies (Biggin, van Hinsbergen, et al., 2008; McFadden et al., 1991; Tarduno et al.,
2002). In contrast, when the 45° cutoff was used (Figure 9c), or no outliers were excluded (Figure 9d), the
Sb values did not show any noticeable increase with latitude, resulting in flat Model G curves (b = 0). The
values of parameter a (14.9° for the 45° cutoff, and 15.7° for no cutoff applied) were significantly higher
than the corresponding value obtained using the Vandamme (1994) cutoff. Furthermore, unlike the CNS
case, the RMS misfit of the estimated Sb relative to the model did not show a systematic reduction after
exclusion of outliers, being 2.9° for variable cutoff, 2.7° for the 45° cutoff, and 3.0° for no cutoff (Table 2).
These observations suggest that the application of the Vandamme (1994) variable cutoff to pre‐CNS data
sets may have removed some scatter arising from secular variation rather than transitional or excursional
fields (cf. Smirnov et al., 2011), and the most reliable estimates of the Model G parameters were obtained
with the fixed cutoff (45°) applied to the data sets. The weak latitude dependence of Sb or the lack of
thereof is reflected by a stronger tendency of the directional angular dispersion (sb) to decrease with
latitude, signified by higher values of the s0 parameter compared to the corresponding values for the CNS
(Figures 8 and 10). The significance of this result will be discussed in section 5.

Given the observation of a weaker latitude dependence of angular dispersion of VGPs during the Early
Cretaceous‐Jurassic (pre‐CNS) interval compared to the superchron (Figures 7 and 9), and a correspondingly
stronger latitude variation for the dispersion of field directions (Figures 8 and 10), it is interesting to see
whether this result is supported by the analysis of robust estimates of PSV based on the SE distribution

Figure 6. Paleosecular variation estimates versus paleolatitude for the entire Cretaceous‐Jurassic database, which were obtained through calculations of the angu-
lar dispersion (a, b) andmean angular deviation (c, d) of virtual geomagnetic poles (a, c) and paleomagnetic directions (b, d). All estimates were corrected for within‐
site dispersion. The effects of applying three different cutoffs are shown in (a) and (b) (see text).
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(S′b and s′b), where data sets are not truncated by arbitrary cutoff angles and outlier data are treated as an
integral part of secular variation (section 3.1.3). Because both angular dispersion and mean angular
deviation quantify the same scatter of VGPs or field directions, we should expect them to produce
similar patterns of variation with latitude, and the consistency of observed patterns based on the two
alternative measures of PSV would give us higher confidence in the robustness of the obtained result.

The values ofS′b and s
′

b for the CNS and pre‐CNS time intervals are plotted in Figures 11 and 12, and the para-

meters for Models G and A fit to these data are presented in Tables 2 and 3. The S′b estimates for the CNS
show a clear increase with latitude, which is fit by Model G with the parameters a = 9.8° + 2.3°/−2.6°

and b= 0.22 + 0.07/−0.13 (Figure 11). In contrast, theS′b values for the pre‐CNS time interval do not indicate
a systematic variation with latitude, resulting in a nearly flat model curve (a = 13.3° + 1.0°/−1.9°,

b = 0.01 + 0.19/−0.01). The estimates of s′b in direction space for the pre‐CNS interval show a more pro-

nounced decrease with latitude than those for the CNS (Figure 12). Overall, the model curves fit to the S′b
and s′b data have very similar shapes compared to the curves for the angular dispersion for the two respective
age intervals (CNS and pre‐CNS, Figures 7–10). This consistency indicates that the difference in the patterns
of latitude behavior of secular variation during the CNS (84–126 Ma) and the Early Cretaceous‐Jurassic
interval preceding the superchron (127–198Ma) is a robust result and supports our suggestion that the appli-
cation of the Vandamme (1994) variable cutoff has partly removed some of the signal related to normal

Table 2
Parameters of Model G for the Latitude Dependence of PSV in Pole Space

PSV estimates Nds a (°) b RMS (°) χ2 χ295 P χ2sim≥χ
2

� �
Pre‐CNS (127–198 Ma)
Sb, variable cutoff 20 12.7 + 1.9/−2.7 0.13 + 0.13/−0.13 2.86 76.9 37.6 3.2E‐04
Sb, fixed cutoff 20 14.9 + 1.0/−2.0 0.00 + 0.22/−0.00 2.68 53.4 35.5 3.2E‐03
Sb, no cutoff 20 15.7 + 1.1/−1.9 0.00 + 0.23/−0.00 2.97 40.0 32.5 9.7E‐03
S′b no cutoff 20 13.3 + 1.0/−1.9 0.01 + 0.19/−0.01 2.37 40.4 36.6 2.8E‐02
Sb, variable cutoff 9a 12.4 + 2.4/−4.3 0.15 + 0.17/−0.15 2.04 43.3 22.6 2.5E‐03
Sb, fixed cutoff 9a 15.6 + 1.1/−4.2 0.00 + 0.29/−0.00 2.17 50.4 24.9 2.8E‐03
Sb, no cutoff 9a 16.5 + 1.2/−3.4 0.00 + 0.30/−0.00 2.56 19.1 17.9 3.8E‐02
S′b, no cutoff 9a 13.7 + 1.1/−3.6 0.00 + 0.27/−0.00 2.03 31.4 21.9 1.1E‐02

CNS (84–126 Ma)
Sb, variable cutoff 19 10.7 + 2.2/−2.4 0.21 + 0.05/−0.16 2.79 168.0 30.2 0.0
Sb, fixed cutoff 19 11.1 + 2.6/−2.6 0.21 + 0.06/−0.19 3.16 192.1 32.3 0.0
Sb, no cutoff 19 12.3 + 3.4/−4.0 0.24 + 0.12/−0.24 5.08 295.9 45.1 0.0
S′b, no cutoff 19 9.8 + 2.3/−2.6 0.22 + 0.07/−0.13 3.30 155.8 35.7 0.0
Sb, variable cutoff 11a 8.1 + 5.4/−4.7 0.26 + 0.04/−0.16 2.58 95.3 19.5 0.0
Sb, fixed cutoff 11a 8.2 + 5.6/−4.6 0.27 + 0.05/−0.14 2.68 98.9 19.7 0.0
Sb, no cutoff 11a 8.1 + 6.3/−8.1 0.32 + 0.12/−0.12 4.66 131.0 22.6 0.0
S′b, no cutoff 11a 6.8 + 5.4/−6.8 0.27 + 0.08/−0.09 3.17 79.5 19.9 0.0

Post‐CNS (74–83 Ma)
Sb, variable cutoff 8 7.4 + 7.4/−4.2 0.27 + 0.09/−0.25 2.90 24.4 14.9 2.8E‐03
Sb, fixed cutoff 8 7.4 + 7.4/−4.2 0.27 + 0.09/−0.24 2.90 24.4 14.9 3.1E‐03
Sb, no cutoff 8 9.0 + 7.3/−6.9 0.28 + 0.14/−0.28 4.39 43.2 18.8 2.9E‐04
S′b, no cutoff 8 6.5 + 6.7/−5.9 0.26 + 0.10/−0.26 3.26 24.3 15.7 4.5E‐03
Sb, variable cutoff 7b 11.2 + 5.2/−4.0 0.21 + 0.12/−0.21 2.60 12.1 12.8 6.3E‐02
Sb, fixed cutoff 7b 11.2 + 5.2/−4.0 0.21 + 0.12/−0.21 2.60 12.1 12.8 6.3E‐02
Sb, no cutoff 7b 13.9 + 4.0/−4.3 0.18 + 0.19/−0.18 3.99 19.6 14.5 1.2E‐02
S′b, no cutoff 7b 10.7 + 4.3/−3.9 0.19 + 0.13/−0.19 3.00 11.4 12.5 7.2E‐02

Note. Nds is the number of data sets used to fit the model. a and b are the Model G parameters and their uncertainties (95% confidence intervals). RMS is the
root‐mean‐square misfit between the Sb or S

′

b data and the model curve. χ2 is the statistic for the goodness of model fit. χ295 is the upper 5% critical value for
χ2. P χ2sim≥χ

2
� �

is the probability for χ2 to be as large or larger than the actually observed value. The values of χ295 and P χ2sim≥χ
2

� �
were estimated using Monte

Carlo simulations with 105 synthetic data sets, zero probability values indicate that all simulations yielded χ2sim<χ
2 (see text). PSV = paleosecular variation.

aOnly data sets withN≥ 20 site‐mean data were used to fit the model. bThe data set from the Yare basalts (Yi et al., 2015) suspect for undersampling of PSVwas
excluded.
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secular variation from low‐latitude to midlatitude data sets for the pre‐CNS interval, producing an artificial
increase of Sb values with latitude.

A small number of data sets for the Late Cretaceous interval postdating the CNS (74–84 Ma, eight data sets)
and a limited distribution of paleolatitudes for these data sets resulted in large uncertainties for the model
parameters that characterize the latitude variation of PSV (Figures S2–S4). These limitations make the com-
parison between the CNS and post‐CNS intervals ambiguous. Nevertheless, we note that the apparent

increase of Sb and S
′

b with latitude is similar to that observed for the CNS (Figures 7 and 11). We further note
that the fit of Model G is strongly influenced by a single low‐latitude data set from the ~80‐Ma‐old basalts
sampled in the Yare basin of the southern Tibet (Yi et al., 2015). This data set comprising 15 VGPs produced

very low values of the angular dispersion and mean angular deviation (Sb = 5.2°, S′b = 4.3°), which are the
lowest values in the entire database, suggesting that PSV may not be fully represented in the data. The pos-
sibility that the Yare basalts have undersampled secular variation was also noted by Yi et al. (2015). If this
data set is excluded, the Model G curve becomes noticeably flatter, and the parameters a and b become

nearly identical to those characterizing the latitude dependence of Sb and S′b for the CNS (red curves in
Figures S2 and S4 and Table 2). Overall, our limited subset of PSV estimates does not provide evidence for
any substantial difference in the behavior of secular variation during the CNS and the time interval imme-
diately following the CNS. However, we stress that the latitude dependence suggested by our models for the
post‐CNS interval is not a robust result.

Table 3
Parameters of Model A for the Latitude Dependence of PSV in Direction Space

PSV estimates Nds s0 (°) RMS (°) χ2 χ295 P χ2sim≥χ
2

� �
r

Pre‐CNS (127–198 Ma)
sb, variable cutoff 20 16.6 + 1.9/−1.7 2.76 67.3 33.9 2.0E‐05 −0.655 + 0.303/−0.187
sb, fixed cutoff 20 18.3 + 1.8/−1.7 2.87 76.4 34.3 5.0E‐05 −0.694 + 0.307/−0.164
sb, no cutoff 20 19.4 + 1.9/−1.8 3.10 90.2 33.8 0.0 −0.698 + 0.322/−0.178
S′b, no cutoff 20 16.4 + 1.6/−1.6 2.46 57.1 35.4 1.3E‐03 −0.731 + 0.281/−0.156
sb, variable cutoff 9a 16.5 + 1.9/−1.6 1.95 28.1 17.5 2.3E‐03 −0.620 + 0.617/−0.314
sb, fixed cutoff 9a 19.0 + 2.0/−2.1 2.32 36.1 21.4 3.8E‐03 −0.673 + 0.724/−0.279
sb, no cutoff 9a 20.6 + 2.5/−2.7 2.96 41.9 19.9 5.4E‐04 −0.644 + 0.749/−0.301
S′b, no cutoff 9a 16.8 + 1.7/−1.8 2.02 31.3 18.7 2.2E‐03 −0.688 + 0.654/−0.268

CNS (84–126 Ma)
sb, variable cutoff 19 15.0 + 2.0/−1.9 3.18 237.8 32.4 0.0 −0.445 + 0.431/−0.318
sb, fixed cutoff 19 15.4 + 2.1/−2.1 3.37 264.4 33.2 0.0 −0.430 + 0.415/−0.312
sb, no cutoff 19 17.9 + 3.8/−3.4 6.30 479.7 58.7 0.0 −0.221 + 0.440/−0.426
S′b, no cutoff 19 14.4 + 2.2/−2.1 3.76 231.0 40.1 0.0 −0.280 + 0.455/−0.402
sb, variable cutoff 11a 14.4 + 3.4/−2.8 3.43 190.9 19.3 0.0 0.110 + 0.624/−0.623
sb, fixed cutoff 11a 14.7 + 3.5/−2.9 3.53 207.3 19.4 0.0 0.125 + 0.584/−0.637
sb, no cutoff 11a 17.4 + 7.0/−4.7 6.94 384.2 35.7 0.0 0.192 + 0.433/−0.443
S′b, no cutoff 11a 14.2 + 4.3/−3.3 4.33 196.6 23.1 0.0 0.253 + 0.433/−0.523

Post‐CNS (74–83 Ma)
sb, variable cutoff 8 14.6 + 3.9/−3.5 3.41 47.2 14.7 0.0 0.210 + 0.602/−0.95
sb, fixed cutoff 8 14.6 + 3.9/−3.4 3.41 47.2 14.7 0.0 0.210 + 0.604/−0.949
sb, no cutoff 8 16.4 + 5.4/−4.5 4.73 57.1 17.3 0.0 0.101 + 0.618/−0.977
S′b, no cutoff 8 13.7 + 4.2/−3.7 3.71 42.3 15.4 1.0E‐05 0.208 + 0.574/−1.062
sb, variable cutoff 7b 16.6 + 2.8/−2.2 2.19 17.0 13.5 1.5E‐02 −0.319 + 0.790/−0.552
sb, fixed cutoff 7b 16.6 + 2.8/−2.2 2.19 17.0 13.5 1.5E‐02 −0.319 + 0.796/−0.542
sb, no cutoff 7b 18.9 + 4.5/−2.9 3.52 22.6 16.7 1.2E‐02 −0.338 + 0.641/−0.632
S′b, no cutoff 7b 15.9 + 3.2/−2.2 2.50 12.3 14.1 9.0E‐02 −0.301 + 0.694/−0.663

Note. s0 is the Model A parameter and its uncertainty (95% confidence limits). RMS is the root‐mean‐squaremisfit between the sb or s′b data and themodel curve. r
is the Pearson correlation coefficient and its 95% uncertainties. The values of r indicating significant negative correlation between sb or s′b and latitude are high-
lighted by bold typesetting. Other parameters are as in Table 1. PSV = paleosecular variation.
aOnly data sets withN≥ 20 site‐mean data were used to fit the model. bThe data set from the Yare basalts (Yi et al., 2015) suspect for undersampling of PSVwas
excluded.
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4.2. Sensitivity Tests

PSV estimates derived from small data sets, and those relying on data of low technical quality, are often con-
sidered to be prone to unrecognized biases that can potentially affect the inferred patterns of latitude depen-
dence (e.g., Biggin, van Hinsbergen, et al., 2008; Cromwell et al., 2018; Johnson et al., 2008; Tauxe et al.,
2003). Here we examine whether such biases have possibly influenced the results presented in section 4.1.

An important source of bias may be related to undersampling of secular variation by data sets comprising
small numbers of individual site‐mean directions. The effect of the number of individual site‐mean data
(N) on the accuracy of Sb estimates was studied by Biggin, van Hinsbergen, et al. (2008), who showed that
the errors associated with undersampling of PSV can be on the order of ±5° for data sets containing less than
N= 18 site‐means and that the confidence intervals produced for these estimates using the bootstrapmethod
tend to be underestimated. In our compilation, approximately half of data sets contain less than 20 indivi-
dual site‐mean directions (the median value of N is 18 for the entire database, Figure 1b), and the Sb values
derived from these data sets can be prone to the effect of undersampling. To test how these estimates influ-

ence our results, we fitted Model G curves using only Sb andS
′

b estimates obtained from data sets withN≥ 20
(11 data sets for the CNS and 9 data sets for the pre‐CNS interval; Figure 13 and Table 2). The exclusion of
data sets with N < 20 for the CNS resulted in model curves that were steeper than the curves obtained with

Figure 7. Latitude dependence of virtual geomagnetic pole dispersion in the CNS (84–126 Ma). The effects of three different cutoffs are shown in (a). In (b)–(d), the
Sb values for the northern and southern paleolatitudes are shown by black and white symbols, respectively; the error bars show their 95% confidence intervals. Red
curves are the fits of Model G (McFadden et al., 1988) to Sb data. Thin dashed red lines correspond to 95% uncertainties of the model parameters (a and b)
estimated using the bootstrap method. These do not take into account the covariance of a and b and hence overestimate the 95% confidence region for the model,
which is shown by the gray‐shaded fields in (b)–(d) and was estimated numerically form bootstrap realizations of the model at each specific latitude. The blue
dashed curve in (b) shows the Model G fit of Biggin, van Hinsbergen, et al. (2008) for their Group 1 data; the emerald green dashed curve in (c) is the Model G fit of
McFadden et al. (1991) for 80–110 Ma (see text). CNS = Cretaceous Normal Superchron; RMS = root‐mean‐square.
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all data sets retained, but the latter (shown by black curves in Figure 13) lie entirely within the 95%
confidence limits of the models (gray‐shaded envelopes in Figure 13), indicating that the exclusion of
low‐N data sets did not introduce a statistically significant change in model parameters. The model curves
for the pre‐CNS interval showed negligible changes after the exclusion of low‐N data sets (Figures 13b,

13d, and 13f and Table 2). This suggests that the observed weak dependence or invariance of Sb and S′b
with paleolatitude is not an artifact of the inclusion of data sets that are more likely to have
undersampled secular variation.

A further consideration is the influence of technical data quality. Studies of PSV behavior for the last 5–
10 Ma (Cromwell et al., 2018; Johnson et al., 2008; Tauxe et al., 2003) applied more stringent data quality
requirements than those adopted in our study (section 2). Specifically, they excluded data derived from blan-
ket demagnetization of specimen collections (DC = 3, see Table 6.2 of McElhinny & McFadden, 2000, for
definitions of DC values), site‐mean directions based on measurements of less than four or five independent
samples per site (n), and site‐mean directions with associated values of within‐site precision kw < 50 or 100.
To investigate how these additional site selection criteria influence our results, we performed the
following tests.

First, we isolated the data sets based on stepwise demagnetization and the use of principal component ana-

lysis for defining ChRM directions (DC = 4 or 5) and fitted Model G curves to Sb and S′b estimates derived
from these data sets. Restricting the data to DC ≥ 4 reduced the number of data sets for the CNS and pre‐

Figure 8. Latitude dependence of angular dispersion of paleomagnetic directions in the CNS (84–126 Ma). The effects of three different cutoffs are shown in (a). In
(b)–(d), the sb values for the northern and southern paleolatitudes are shown by black and white symbols, respectively; the error bars show their 95% confidence
intervals. Blue curves are the fits of Model A (Irving & Ward, 1964) to sb data. Thin dashed blue lines show the 95% confidence region for the model.
CNS = Cretaceous Normal Superchron; RMS = root‐mean‐square.
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CNS intervals from 19 to 18 and from 20 to 11, respectively. For the CNS, the changes introduced into the
Model G curves by the exclusion of data with DC = 3 were negligible (Figure S5). Minor differences were
observed for the pre‐CNS interval, but these were not significant given the 95% confidence regions of the
models. These comparisons indicate that the results of our analysis were not sensitive to the inclusion of
data based on blanket demagnetization methods.

In the second experiment, we filtered the database, retaining only the site‐mean data based on n ≥ 5 indivi-
dual samples, or by selecting data with n ≥ 5 and kw ≥ 50 (these criteria were used by Biggin, van
Hinsbergen, et al., 2008, for defining their high quality, Group 1 data sets, see section 5.1). Filtering by the
value of n eliminated one data set for the pre‐CNS interval and resulted in Model G curves that were
similar to those obtained using all available data (Figure S6). Applying the additional requirement for
within‐site precision (kw ≥ 50) further eliminated three data sets for the CNS and five data sets for the
pre‐CNS interval, which resulted in slightly steeper Model G curves for the CNS and consistently flat
curves for the pre‐CNS period (Figure S7). However, in all cases (Figures S6 and S7), the Model G curves
obtained using all available data were within the 95% confidence limits of the models constrained using
more stringent site selection criteria (n ≥ 5, or n ≥ 5 and kw ≥ 50), and hence the differences between
them are not statistically significant.

On the basis of these results, we conclude that the use of data sets comprising small numbers of site‐level
data and the inclusion of data of low technical quality have not introduced significant biases in the estimates

of latitude dependence of PSV for the CNS pre‐CNS intervals. Comparing the latitude patterns of Sb and S′b
for the CNS and pre‐CNS intervals shown in Figures 13 and S5–S7, the difference between the two periods

Figure 9. Latitude dependence of virtual geomagnetic pole dispersion and Model G curves for the pre‐CNS interval (127–198 Ma). See the caption of Figure 7 for
description. The emerald green dashed curve in (c) is theModel G fit of McFadden et al. (1991) for 110–195Ma. CNS=Cretaceous Normal Superchron; RMS= root‐
mean‐square.
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comes out even more clearly than in the similar comparisons between the PSV models constrained by all
available data (Figures 7 and 9). This further strengthens our conclusion that the different behavior of
PSV as a function of latitude during the CNS and the preceding interval of high reversal frequency in
Early Cretaceous‐Jurassic time is a real geomagnetic phenomenon rather than an artifact of data selection.

5. Discussion
5.1. Comparison With Earlier PSV Studies for the Cretaceous and Jurassic

Biggin, van Hinsbergen, et al. (2008) studied PSV using data from 11 rock units formed during the CNS (84–
126 Ma) and from 17 units of Jurassic age (145–200 Ma). Based on reliability, their data were divided into
high (Group 1) and low (Group 2) quality data sets. Group 1 data indicated a strong latitudinal dependence
of VGP dispersion for the CNS, but were inconclusive for the Jurassic, hinting at a weak, nearly latitude‐
invariant behavior. For the Group 2 data, both CNS and Jurassic subsets featured an increase of VGP disper-
sion with latitude in a nearly similar manner, which increased the authors' confidence in the results for CNS
but decreased it for the Jurassic results. The highly scattered values of Sb for the Jurassic, limited to low and
intermediate latitudes (λ ≤ 50°), essentially preclude any meaningful definition of the latitude pattern of
VGP dispersion from the Biggin, van Hinsbergen, et al. (2008) data.

When compared to the results of Biggin, van Hinsbergen, et al. (2008), our estimates for the CNS produced a
somewhat weaker latitude variation of Sb (Figure 7b). Specifically, the value of parameter b = 0.21 + 0.05/
−0.17 for Model G obtained in this study (with the variable cutoff applied, Table 2) is lower than the corre-
sponding values of Biggin, van Hinsbergen, et al. (2008; b = 0.27 + 0.04/−0.05 and b = 0.26 + 0.03/−0.04 for

Figure 10. Latitude dependence of angular dispersion of paleomagnetic directions and fits of Model A for pre‐CNS interval (127–198 Ma). See the caption of
Figure 8 for description. CNS = Cretaceous Normal Superchron; RMS = root‐mean‐square.
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the Groups 1 and 2 data sets, respectively), whereas a= 10.7° + 2.2°/−2.4° is slightly higher (a= 8.7° + 2.0°/
−2.4° for Group1 and a= 9.9° + 1.4°/−2.1° for Group 2), but the differences are not statistically significant at
the 95% confidence level. Because both studies used similar analytical techniques, the difference reflects the
data selection criteria used (section 2) and the addition of new data that were not available to Biggin, van
Hinsbergen, et al. (2008). Our database included several CNS data sets that suggest higher values of VGP
dispersion at low latitudes compared to the estimates of Biggin, van Hinsbergen, et al. (2008), pulling the
fit of Model G toward higher a and lower b values. Most of these low‐latitude estimates come from data
sets comprising N < 20 individual site‐mean data and hence are less reliable than the estimates based on
larger data sets. When these low‐N data sets are excluded from the analysis, the fit of Model G
(a = 8.1° + 5.4°/−4.7°, b = 0.26 + 0.04/−0.17, variable cutoff) becomes nearly identical to that obtained
by Biggin, van Hinsbergen, et al. (2008) from the Group 1 CNS data sets (Figure 13a). Similarly, when the
site selection criteria for the Group 1 data sets (n ≥ 5, kw ≥ 50, section 4.2) are applied to our data, two
low‐latitude data sets are eliminated and the model fit (a = 9.0° ± 2.5°, b = 0.26 + 0.03/−0.09, Figure S7a)
becomes indistinguishable from that obtained by Biggin, van Hinsbergen, et al. (2008). The agreement
between the results of our study and Biggin, van Hinsbergen, et al. (2008) suggests that the overall pattern
of latitude behavior of PSV have been reliably established for the CNS.

Because Biggin, van Hinsbergen, et al. (2008) were not able to establish a clear pattern of PSV variation with
latitude in the Jurassic, we cannot provide a meaningful comparison with our results for the pre‐CNS inter-
val. Yet, we point out that the scatter of our PSV estimates about the model curves for the pre‐CNS interval is
not higher than that for the CNS data (in fact, the RMSmisfits for the pre‐CNSmodels are slightly lower than
those for the CNS, Table 2). This contrasts with the observations of Biggin, van Hinsbergen, et al. (2008) who
suggested that PSV in the Jurassic could have been inherently more variable than during the CNS. Our pre‐

Figure 11. Latitude dependences of the mean angular deviation of virtual geomagnetic poles (S′b) for the CNS (a, b) and pre‐CNS (c, d) time intervals. See the cap-
tion of Figure 7 for description. CNS = Cretaceous Normal Superchron; RMS = root‐mean‐square.
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CNS data do not support this suggestion. We suspect that the stricter data selection criteria used in our study
were effective in eliminating much of the noise. For information, 11 of 28 data sets used by Biggin, van
Hinsbergen, et al. (2008) did not satisfy these criteria and were excluded from the analysis (section 2).

The findings of our study are in good qualitative agreement with the results of McFadden et al. (1991), which
suggest a prominent increase of Sb as a function of latitude for the 80–110 Ma period and a nearly latitude‐
invariant behavior for the 110–195 Ma interval. However, the Model G parameters estimated by McFadden
et al. (1991) for these two time intervals (a = 6.5° + 2.9°/−4.2°, b = 0.33 ± 0.05 for 80–110 Ma, and
a = 18.2° ± 1.7°, b = 0.14 + 0.10/−0.14 for 110–195 Ma) differ significantly from our estimates for the
CNS and pre‐CNS intervals (Figures 7c and 9c). Although McFadden et al. (1991) used different age bins,
we can roughly relate their 80–110 Ma fit to the CNS, and the 110–195 Ma fit to the pre‐CNS interval, and
the most appropriate comparison would be with the results obtained using the data set trimmed by the
45° cutoff angle since McFadden et al. (1991) applied a 40° cutoff to their VGP data. For the 80–100 Ma,
themodel of McFadden et al. (1991) suggests a much sharper increase of Sb from the equator to the pole than
observed in our CNS data (Figure 7c), and also in the data of Biggin, van Hinsbergen, et al. (2008).

A probable source for this discrepancy was discussed by Biggin, van Hinsbergen, et al. (2008), who suggested
that a stronger latitude variation of the McFadden et al. (1991) Sb estimates for 80–110 Mamay be an artifact
of using a constant value for the Sw correction in pole space (see section 3) that has resulted in underesti-
mated Sb values at low latitudes and overestimated values at high latitudes. However, this bias cannot
explain the discrepancy for the pre‐CNS interval, where our Sb values consistently fall below the Model G
curve of McFadden et al. (1991), being lower by ~4° on average (Figure 9c). This result suggests that either
our estimates of Sbwere systematically biased to lower values or that the values of McFadden et al. (1991) are

Figure 12. Latitude dependences of the mean angular deviation of paleomagnetic directions (s′b) for the CNS (a, b) and pre‐CNS (c, d) time intervals. See the caption
of Figure 8 for description. CNS = Cretaceous Normal Superchron; RMS = root‐mean‐square.
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overestimates. We consider the former possibility unlikely since both the high‐N and low‐N pre‐CNS data
sets show similar values of Sb and the persistent negative bias due to undersampling of PSV can be ruled
out. Other potential biases, which will be discussed in section 5.3, will tend to increase estimated Sb
values, so they are not likely to impart a systematic negative bias. Thus, we argue that secular variation
during the pre‐CNS interval was lower than that suggested by the estimates of McFadden et al. (1991),
and the overall level of PSV was compatible with the field variability in the CNS.

Figure 13. Model G curves for the CNS (a, c, e) and pre‐CNS (b, d, f) time intervals based on virtual geomagnetic pole dispersions estimated from data sets with
N ≥ 20 individual site‐mean data are shown by the red lines. Black solid curves show the fits of Model G based on all available data (i.e., including the
estimates obtained from data sets with N ≥ 20 and with N < 20, as in Figures 7b, 7c, 9b, 9c, 11b, and 11d). The blue dashed curve in (a) shows the Model G fit of
Biggin, van Hinsbergen, et al. (2008) for their Group 1 data (see text). CNS = Cretaceous Normal Superchron; RMS = root‐mean‐square.
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5.2. Is the Latitude Dependence of PSV a Mathematical Artifact?

Linder and Gilder (2012) suggested that the latitude dependence of angular dispersion of VGPs originates
from a geometrical aberration of the conversion of paleomagnetic directions to poles. This suggestion was
based on the analysis of secular variation recorded by geomagnetic observatories over 26 years (from 1981
to 2006), which showed that the Fisher precision parameter for directions (k), and hence the angular disper-
sion (s) for these historical data, do not show a clear dependence on geomagnetic latitude. However, a 26‐
year record is substantially shorter than typical time scales for the analysis of PSV, and it remains unclear
whether the implied invariance of angular dispersion in direction space is a viable hypothesis for describing
the long‐term signal of secular variation. If it were the case, we would always expect the dispersion of VGPs
to increase with latitude in the manner approximated by equation (4) (Cox, 1970), that is, for any time inter-
val we would expect a ~2.5‐fold increase of Sb from the equator to the pole. This is not supported by the com-
parison of Sb estimates for the CNS and pre‐CNS time intervals (Figures 7 and 9).

The patterns of angular dispersion in direction space (Figures 8 and 10) suggest a decrease of sb with the
increasing latitude, which is qualitatively consistent with Model A of Irving and Ward (1964). The decrease
is prominent in the data for the pre‐CNS interval (127–198 Ma), but less clear for the CNS (84–126 Ma). To
test whether this decrease is significant, we calculated values of Pearson correlation coefficient, defined as

r ¼ ∑Nds
i¼1 λi−λ

� �
sbi−sbð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑Nds
i¼1 λi−λ

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑Nds

i¼1 sbi−sbð Þ2
q ; (19)

where Nds denotes the number of sbi estimates for the selected time interval (number of data sets), λi is the
paleolatitude, and sb andλare the mean values of sbi and λi, respectively. The distribution for rwas estimated
by resampling the (λi, sbi) data using nonparametric bootstrap with replacement, and its 95% confidence lim-
its were calculated as the 2.5th and 97.5th percentiles of the resampled r values. When the value of r = 0 was
within the 95% confidence interval, we concluded that the correlation between sb and latitude was not sig-
nificant. Otherwise, we deemed the correlation significant, indicating that the hypothesis of latitude invar-
iance of sb should be rejected at the 5% probability level. Similar tests were made for s′b estimates. The values
of correlation coefficient are given in Table 3.

As we expected, the r values for the pre‐CNS time interval indicated a strong (r ≈ − 0.7) and statistically sig-

nificant negative correlation between sb and s′b and latitude. Similar values were obtained in tests where we
excluded the estimates based on data sets with N < 20 site‐mean directions. In this case, the significance of
correlation could be established only for sb estimates obtained from data sets trimmed with the variable cut-

off angle (Vandamme, 1994) and s′b values due to a smaller number of data sets resulting in wider confidence
intervals for r (Table 2). Nevertheless, we consider that the consistency of results and preponderance of sta-
tistically significant tests provide strong evidence against the latitude invariance of PSV in direction space. In
contrast, the r values for the CNS (84–126 Ma), ranging from approximately −0.2 to −0.4, suggested only a
weak negative correlation and were more sensitive to the treatment of outliers. A significant negative corre-
lation was observed for the sb estimates from data sets in which the site‐mean directions corresponding to

VGPs outside the Vandamme (1994) or fixed cutoff angles were excluded (Table 2), whereas the sb and s′b data
based on untrimmed data sets showed weaker correlation that was not significant at the 5% level. When the
small‐sample data sets (N< 20) were removed from computation, the r values suggested a very weak positive

correlation, but the implied increase of sb and s′bwith latitude was clearly not significant and is likely to be an
artifact of the small number of data sets used in calculation. Similarly, the tests for the post‐CNS interval
were not conclusive, suggesting insignificant correlation, with the nominal r values being low in absolute

value and either positive or negative, depending on whether the sb and s′b estimate from the Yare basalts sus-
pect to be biased by undersampling of secular variation (see discussion in section 4.1) was included or not.

Given a weak latitude dependence of secular variation in direction space during the CNS, the increase of Sb
and S′b in pole space (Figures 7 and 11b) could be considered to result from the conversion of paleomagnetic
directions to VGPs, as was suggested by Linder and Gilder (2012). But this is not the case for the pre‐CNS

interval where the strong decrease of sb and s′b with latitude is counterbalanced by the modulation arising

from the direction‐to‐pole conversion, resulting in Sb and S′b values that are nearly invariant with latitude
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(Figures 9 and 11d). Thus, we conclude that while it may be reasonable to describe secular variation as
latitude‐invariant scatter of field directions for some intervals in the geologic past, this invariance is not a
universal property of the geomagnetic field, and treating the latitude dependency of VGP dispersion as a
pure mathematical artifact is an oversimplification. A similar conclusion was reached by Veikkolainen
and Pesonen (2014), who showed that the latitude invariance of angular dispersion in direction space is
not supported by PSV data for the Precambrian.

On a more general note, the analysis of PSV in direction space has a clear advantage in that it does not intro-
duce any artificial latitude dependence resulting from the conversion of directions to VGPs. Yet, if the mod-
ulation of angular dispersion by this geometric transformation is clearly understood and taken into
consideration, it would be unreasonable to argue that the analysis of PSV in direction space could offer us
better insights into the underlying geodynamo processes. Historically, the choice of using the dispersion
of VGPs rather than directions was motivated by the property of the VGP scatter arising from variations
in degree‐1 terms of geomagnetic potential (dipole wobble) to be latitude invariant. Early PSV models that
sought to separate the contributions from dipole and nondipole fields made use of this property (a brief dis-
cussion of these models is provided by McFadden & McElhinny, 1984). Later models (e.g., Model G of
McFadden et al., 1988) followed the approach and were designed to parameterize the latitude dependency
of PSV measured by the angular dispersion of VGPs, linking the latitude patterns to the properties of geody-
namo. To make use of these developments, we will now turn to the discussion of the latitude patterns of PSV
in pole space.

5.3. Applicability of Model G for Describing the Latitude Behavior of PSV

The results presented in section 4 suggest that secular variation of the geomagnetic field during the CNS
(84–126 Ma) and the preceding pre‐CNS interval (127–198 Ma) produced different patterns of VGP disper-
sion as a function of latitude. For the CNS, we observed a distinctly stronger tendency for Sb to increase with
increasing latitude (Figure 7), as compared to the pre‐CNS estimates, which showed amuch weaker or insig-
nificant increase depending on the applied cutoff (Figure 9). This result was further supported by the analy-

sis of robust estimates of PSV (S′b ) that showed a similar difference (Figure 11). In terms of the shape
parameters of Model G of McFadden et al. (1988), the disparity between the CNS and pre‐CNS intervals sug-
gests higher variability of equatorially symmetric spherical harmonics of the geomagnetic potential (a) and
lower variability of antisymmetric terms (b) during the pre‐CNS interval, which is qualitatively consistent
with the results of McFadden et al. (1991). However, very low values of b for the pre‐CNS subset (nominally,
b = 0 when the 45° cutoff or no cutoff was applied to the data, Figures 8c and 8d) are conceptually inconcei-
vable as this would imply the lack of variation in antisymmetric terms. This may point to the inadequacy of
Model G for explaining the latitude dependence of VGP dispersion.

In that regard we recall that the simple functional form of Model G (equation (17)) was suggested by
McFadden et al. (1988) from the analysis of the “equivalent” VGP dispersion of the present geomagnetic
field, which reflects the departures of the instantaneous field from that of the GAD along a line of geographic
latitude. After computing equivalent VGP dispersions from the IGRF65 model (the International Reference
Geomagnetic Field model for the epoch of 1965) for different latitude bands and splitting them into the con-
tributions associated with the equatorially symmetric and antisymmetric terms (Ss and Sp, respectively),
they observed that the Ss term was nearly constant (Ss ≈ a), whereas Sp could be well approximated by a lin-
ear function (Sp = bλ). A close similarity between the latitude dependence of VGP dispersion for the past
5 Ma and that observed for the equivalent VGP scatter led McFadden et al. (1988) to suggest that the latitude
variation deduced from the present field may be typical for the behavior of PSV in the geologic past. This is
howModel G was born, and the validity of its underlying assumptions (the invariance of Ss and the linearity
of Sp with latitude) received little attention in the following work (e.g., McElhinny & McFadden, 1997;
McFadden et al., 1991). However, neither the latitude invariance of Ss nor the linearity of Sp is a general
property related to the symmetry of the spherical harmonics forming the two families; the only symmetry
constraint is that Sp = 0 at the equator. Hulot and Gallet (1996) showed that the equivalent VGP scatter
curves for earlier historical epochs (1800 and 1900) were significantly different from the curve for the
1965 or 1980 field models. They also showed that interactions between different spherical harmonics may
lead to VGP dispersion curves with shapes that do not conform to that implied by Model G, including the
curves that do not show an appreciable latitude increase of VGP dispersion, or even decreasing dispersion
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at high and intermediate latitudes. We also note that some numerical geodynamo models operating in a
regime of high reversal frequency (e.g., Glatzmaier et al., 1999) produced VGP dispersion curves that were
nearly invariant with latitude (see Figure 1 of Biggin, van Hinsbergen, et al., 2008, and discussion therein),
which is in qualitative agreement with our results for the pre‐CNS interval.

It should be clear from the preceding discussion that one should be cautious when interpreting the para-
meters of Model G in terms of contributions arising from variations in equatorially symmetric and antisym-
metric spherical harmonics, and even greater care should be taken when expressing findings in terms of
partitioning between the corresponding dynamo families. Although theoretically plausible, the separation
or independence of the symmetric and antisymmetric dynamo families requires specific symmetry condi-
tions (see Merrill & McFadden, 1988, for discussion) and is not likely in strong‐field Earth‐like dynamos
because the coupling between the convective motions in the liquid core and magnetic field would necessa-
rily result inmembers of one family affectingmembers of the other family (McFadden et al., 1991). That said,
from the modeling perspective, there is nothing wrong with using Model G in a descriptive sense unless the
data clearly suggest a pattern of latitude variation precluded by themodel (e.g. a decrease of Sbwith latitude),
which is not the case for our estimates of VGP dispersion in the Cretaceous and Jurassic.

This brings us to the question of how well Model G fits the data. The PSV estimates for the CNS and pre‐CNS
intervals show a considerable scatter about the model curves, with many estimates significantly departing
from model predictions (Figures 7 and 9). If the model provides an accurate description of the latitude
dependency of PSV, we would expect the mismatches between the model curve and the individual estimates
of VGP dispersion to have the character of random noise that could be explained by uncertainties in the data.
To test this, we evaluated the goodness of fit by calculating values of χ2 statistic, defined as

χ2 ¼ ∑Nds
i¼1

Sbi−Sb λið Þð Þ2
σ2i

; (20)

where Nds denotes the number of individual Sbi estimates used to fit the model, Sb(λi) is the model predic-
tion, and σ2

i is the variance for Sbi estimated using the bootstrap method (given in Tables S2.1–S2.3). The dis-
tribution of χ2 under the hypothesis that the model is correct and the observed misfits originate solely from
random data errors was estimated using Monte Carlo simulations (Press et al., 1992), in which we generated
105 synthetic samples of (λi, Sbi) data by randomly drawing Sbi values at each latitude λi from a normal dis-
tribution with the mean prescribed by the model (Sb(λi)) and the variance equal to σ2i . For each simulation,
we fitted a Model G curve to the synthetic data and calculated the χ2 statistic relative to that curve, which we
will denote as χ2sim to avoid confusion with χ2 for the model fitted to the original data. The upper critical
value for χ2 (χ295, 5% significance level) was calculated as the 95th percentile of the χ2sim distribution, and
the probability of obtaining χ2 equal to or greater than the observed value was estimated as the number
of simulations with χ2sim≥χ

2 divided by the total number of simulations. In cases when χ2 exceeded the
critical value, or, equivalently, the probability was less than 0.05, we concluded that the model did not
provide a statistically acceptable fit to the data.

In all tests for the CNS and pre‐CNS intervals, the χ2 values were substantially larger than the corresponding
critical values (χ295) and the estimated probabilities were below the 5% threshold (Table 2), indicating signif-
icant misfits that cannot be explained by the uncertainties of PSV estimates. These results, however, do not
necessarily invalidate Model G because we should take into account the possibility that the latitude patterns
of PSV can vary over time when analyzing data that cover periods of several tens of millions of years, such as
the CNS and pre‐CNS intervals. If temporal variations are substantial, the model should no longer be
expected to provide an adequate description of the observations. In addition, we should also allow for pos-
sible systematic biases in PSV estimates that are not reflected in their confidence intervals.

The possible bias related to undersampling of secular variation by data sets comprising small numbers of
individual site‐mean data has already been discussed in section 4.2. The goodness of fit tests for the models
constrained by data sets with N ≥ 20 (Figure 13), which are not likely to suffer from undersampling of PSV,
showed the χ2 values exceeding the critical values (Table 2), suggesting that the use of PSV estimates derived
from small data sets is not a likely cause for the unacceptable misfits of Model G for the CNS and pre‐CNS
intervals. Other possibilities for abnormally high variability of the PSV estimates with respect to the model
may include systematic errors in measurements of the paleohorizontal at sampling sites (these are generally
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considered to be small and not likely to bias Sb values by more than 1–2°,
see discussion in Biggin, van Hinsbergen, et al., 2008), and the original
dips of volcanic rocks (e.g., lava flows) deposited on geographic slopes that
were mistakenly treated as post‐emplacement tectonic tilts. Although we
made a considerable effort to exclude the data sets that could have been
affected by these biases, we cannot guarantee that our PSV estimates for
the Cretaceous and Jurassic are completely free of these errors. Given this
uncertainty, it is instructive to consider whether Model G provides an
accurate description for the high‐quality PSV estimates derived from geo-
logically recent lavas (e.g., 0–5 Ma), which are not likely to be affected by
these biases.

In Figure 14, we plot the Model G curves fitted to the Sb estimates from
three recent compilations of paleomagnetic data for 0–5 Ma lavas
(Johnson et al., 2008; Opdyke et al., 2015) and 0–10 Ma lavas (Cromwell
et al., 2018). These Sb values are unlikely to be affected by undersampling
of PSV because they were derived from large data sets (the median values
ofN are 43 for the compilation of Johnson et al., 2008, 53 for Opdyke et al.,
2015, and 121 for Cromwell et al., 2018). Johnson et al. (2008) and Opdyke
et al. (2015) obtained their estimates from VGP data sets corresponding to
separate localities, using the fixed (45°) and variable (Vandamme, 1994)
VGP cutoffs, respectively. Cromwell et al. (2018) calculated VGP disper-
sions from data sets that combined VGPs from sites located in 10° latitude
bands, which was similar to the approach of McElhinny and McFadden
(1997). For the purpose of comparison, we chose to use the Sb values

derived from the PSV10vcut subset of the Cromwell et al. (2018) database
(Figure 14c), in which the outlier VGPs were removed using the
variable cutoff.

The parameters of Model G and the χ2 statistics for the goodness of model
fit are presented in Table 4. Although the scatter of the Sb estimates about
the model curves (RMS values in Table 4) was notably smaller than for the

CNS and pre‐CNS data sets, the values of χ2 were greater than χ295 for all
models, indicating that Model G does not provide a statistically acceptable
fit to the Sb data for 0–5 Ma (Johnson et al., 2008; Opdyke et al., 2015) and
for 0–10 Ma (Cromwell et al., 2018). Furthermore, because 93% of data in
the PSV10 database of Cromwell et al. (2018) come from rocks that are not
older than 5 Ma, we should expect similar patterns of latitude dependence
for the three Sb data sets. However, while the models based on the esti-
mates of Opdyke et al. (2015) and Cromwell et al. (2018) are in agreement,
the model based on the Johnson et al. (2008) data suggests a weaker lati-
tude dependence, and the difference is significant, at least with regard to
the parameter a (Figure 14 and Table 4). The difference can be partly
explained by the different cutoffs applied to the VGP data sets, and is
likely related to the paucity of low‐latitude data sets in the compilation
of Johnson et al. (2008). The equatorial intercept (a) of the model curve
for the Johnson et al. (2008) data (Figure 14a) is essentially controlled
by the two low‐latitude PSV estimates from Costa Rica (Sb = 14°,
Cromwell et al., 2013; Johnson et al., 2008) and Ecuador (Sb = 17.2°,
Opdyke et al., 2006). Data subsequently collected from other localities

within 10° of the equator (Gromme et al., 2010; Kent et al., 2010; Opdyke et al., 2010, 2015) showed some-
what lower values of VGP dispersion (Sb < 13°, Figure 14b), which led Opdyke et al. (2015) to suggest that
the results from Costa Rica and Ecuador may have been affected by unrecognized tectonic disturbances (tilt-
ing) in these actively deforming regions, resulting in artificially higher dispersion than expected on the basis

Figure 14. Latitude dependence of virtual geomagnetic pole dispersion and
Model G curves for 0–5 Ma and 0–10 Ma. The Sb estimates are from the
compilations of (a) Johnson et al. (2008), (b) Opdyke et al. (2015), and
(c) Cromwell et al. (2018). RMS = root‐mean‐square.
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of the results from tectonically quiescent low‐latitude sites. Because Opdyke et al. (2015) and Cromwell et al.
(2018) included the Johnson et al. (2008) data in their compilations, and because their results suggest very
similar patterns for the latitude behavior of PSV, we consider that the work of Opdyke et al. (2015) and
Cromwell et al. (2018) supersedes the results of Johnson et al. (2008).

The statistically unacceptable misfits suggest that the VGP dispersion during the last 5–10Mawas inherently
more variable compared to the smooth latitude trend implied by Model G. Nevertheless, we can treat Model
G as a useful approximation for the overall trend of latitude dependence in VGP scatter over the considered
time interval, even though the model does not provide an accurate description for the data in the statistical
sense. From this perspective, the scatter about the model curve unexplained by the data uncertainties can be
considered to reflect the variability in the latitude pattern of PSV within the time interval for which the
model was defined and its possible variations with longitude that Model G is not capable to capture. The
same philosophy can be equally applied to the interpretation of Model G curves derived from the analysis
of our Cretaceous and Jurassic PSV estimates.

With this caveat in mind, and clearly recognizing the limitations of Model G, we will now discuss how the
long‐term temporal changes in latitude signatures of PSV could relate to the stability of the geomagnetic field
manifested by changes in frequency of magnetic reversals.

5.4. Latitude Behavior of PSV and the Stability of Geodynamo

In Figure 15, we compare the estimates of Model G parameters (a, b, and their ratio b/a) available from the
literature for different intervals from Carboniferous to recent time (Biggin, van Hinsbergen, et al., 2008;
Cromwell et al., 2018; de Oliveira et al., 2018; Johnson et al., 2008; McFadden et al., 1991; Opdyke et al.,
2015) with the results obtained here. Among these studies, only the recent work of de Oliveira et al.
(2018) has not been already discussed. This study provided estimates of VGP dispersion for the long interval
of dominantly reverse geomagnetic polarity spanning Late Carboniferous through Late Permian time, the
PCRS (~262–318 Ma). The results suggested that secular variation during the PCRS was characterized by
a strong increase of VGP scatter with latitude, which can be described by a Model G curve with the para-
meters a = 9.4° + 1.5°/−1.9° and b = 0.27 + 0.02/−0.05 (based on nine data sets from igneous rocks that
de Oliveira et al., 2018, considered the most reliable). These values are similar to those obtained by
Biggin, van Hinsbergen, et al. (2008) and are compatible with our estimates for the CNS. We note that de
Oliveira et al. (2018) did not correct the S values for the within‐site scatter. After correcting their values
for Sw (available for eight of nine data sets), we obtained a = 9.3° and b = 0.21, which are close to our esti-
mates for the CNS.

The consistent behavior of PSV during the CNS and PCRS suggests that a strong increase of VGP dispersion
with latitude may be a characteristic feature of a geodynamo operating in a regime when geomagnetic rever-
sals are suppressed. By the same rationale, it may be tempting to assume that a weak or absent latitude
dependence observed for the pre‐CNS interval is a fingerprint of a frequently reversing field, but this is
not supported by the PSV estimates for 0–5 and 0–10 Ma (Figure 14). The average reversal rate over the last
5–10 Ma (4.4–4.8 Myr−1 according to the polarity time scale of Ogg, 2012) was similar to that during the pre‐
CNS interval (~4.6 Myr−1), and yet the PSV data from most recent compilations of Opdyke et al. (2015) and
Cromwell et al. (2018) show a clear increase of VGP dispersion with latitude (Figures 14b–14c).
Furthermore, given the uncertainties of model parameters and the scatter of Sb values, we cannot say that
the latitude patterns for the last 5–10 Ma and for the CNS differ significantly (Figures 7 and 14b–14c).
Thus, we conclude that a latitude‐invariant VGP dispersion curve is not a reliable indicator of a

Table 4
Parameters of Model G for 0–5 and 0–10 Ma

PSV estimates Nds a (°) b RMS (°) χ2 χ295 P χ2sim≥χ2
� �

Sb, fixed cutoff, 0–5 Ma (Johnson et al., 2008) 25 14.5 + 1.5/−1.7 0.20 + 0.06/−0.08 2.10 69.4 38.1 6.0E‐05
Sb, variable cutoff, 0–5 Ma (Opdyke et al., 2015) 29 11.6 + 1.4/−1.3 0.26 + 0.03/−0.04 1.88 103.5 41.3 0.0
Sb, variable cutoff, 0–10 Ma (Cromwell et al., 2018) 16 11.3 + 1.3/−1.1 0.27 + 0.04/−0.08 2.16 107.6 27.6 0.0

Note. PSV = paleosecular variation; RMS = root‐mean‐square.
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frequently reversing field, and similarly, a prominent increase of VGP dispersion with latitude is not
restricted to the time intervals when geomagnetic reversals are rare or absent.

Merrill and McFadden (1988) developed a conceptual model for the origin of geomagnetic reversals (model
M2) that implied a causal relationship between the reversal frequency and the relative contributions from
the primary dynamo family (antisymmetric, dominated by the axial dipole, g01 ) and the secondary family

(symmetric, mostly dominated by the equatorial dipole, g11, h
1
1, and the axial quadrupole, g02). The model sti-

pulates that during the periods of stable polarity the axial dipole term of the primary family dominates the
field and the two families are largely independent, whereas the polarity transitions are initiated at times

Figure 15. Variations inModel G parameters estimated in this study and previously published studies of paleosecular var-
iation for Carboniferous through 0–5 Ma (Biggin, van Hinsbergen, et al., 2008; Cromwell et al., 2018; de Oliveira et al.,
2018; Johnson et al., 2008; McFadden et al., 1991; Opdyke et al., 2015). Triangles show the parameters obtained by fitting
paleosecular variation estimates derived from virtual geomagnetic pole data sets truncated by the variable cutoff angle
(Vandamme, 1994); circles show the corresponding estimates based on data sets trimmed by a fixed (40° or 45°) cutoff
angle. The “barcode” diagram below (c) shows the geomagnetic polarity time scale (Gradstein et al., 2012), black bars
corresponding to the normal polarity, and white bars corresponding to the reverse polarity. The blue curve in (c) shows the
average reversal frequency calculated with a 5 Ma sliding window. CNS = Cretaceous Normal Superchron;
PCRS = Permo‐Carboniferous Reverse Superchron.
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when the contribution from the secondary family becomes comparable to that of the primary family and the
two families become critically coupled, possibly due to instabilities in the convective motions of the liquid
core producing high degrees of equatorial asymmetry of the velocity field. Assuming that the magnitude
of field variation associated with each family is proportional to their overall contributions to the field, this
leads to the following predictions for the latitudinal behavior of PSV in terms of Model G parameters.
During the intervals of dominantly stable polarity (such as the CNS and PCRS), the values of a should be
lower than those for the periods of frequently reversing field (e.g., the Early Cretaceous‐Jurassic), and the
relative contribution of the primary family (b/a) should be higher. Additional support for the expected
negative correlation between b/a and the reversal frequency comes from magnetohydrodynamic dynamo
simulations. Coe and Glatzmaier (2006) showed that the magnetic energy in a model of Glatzmaier et al.
(1999; their model E) that did not produce reversals was preferentially partitioned into the equatorially
antisymmetric spherical harmonics. The variation of these terms would result in a strong latitude
dependence of VGP scatter corresponding to a high b/a ratio. In contrast, the models that generated
magnetic reversals showed a more even distribution between the symmetric and antisymmetric
harmonics across the energy spectrum, for which we would expect flatter VGP dispersion curves and
lower b/a values.

The variations of a, b, and b/a as a function of time (Figure 15) and reversal frequency (Figure 16) seem to
exhibit the relationships predicted by model M2 for Late Carboniferous through Cretaceous time.
Notwithstanding considerable uncertainties of estimated parameters, we observe that the value of parameter
a peaked during the Early Cretaceous and Jurassic (average reversal rate of ~5 Myr−1), while b and b/awere

Figure 16. Relationships between the Model G parameters (a, b, and a/b) and the average reversal frequency. Triangles show the parameters obtained by fitting
paleosecular variation estimates derived from virtual geomagnetic pole data sets truncated by the variable cutoff angle (Vandamme, 1994); circles show the cor-
responding estimates based on data sets trimmed by a fixed cutoff angle.

10.1029/2018GC007863Geochemistry, Geophysics, Geosystems

DOUBROVINE ET AL. 1273



consistently lower than those for the CNS and PCRS (average reversal rates of 0.05 and 0.14 Myr−1, respec-
tively). During the time interval that followed the CNS (0–84 Ma), the frequency of reversals has been gra-
dually ramping up (Figure 15c), and an increase observed in the a values estimated by McFadden et al.
(1991), and a corresponding decrease in b and b/a, fit well with the predictions of model M2. However,
PSV analyses for the last 5–10 Ma (Figure 14) when the reversal rate (4.4–4.8 Myr−1) was comparable to
the average reversal frequency for the pre‐CNS interval (4.6 Myr−1) show that the values of a for 0–5 and
0–10 Ma are similar to that characterizing the latitudinal dependence of PSV during the pre‐CNS interval
(Figure 16a), but the values of b and b/a are actually closer to the values obtained for the CNS and PCRS
(Figures 16b–16c). Furthermore, the values of a for the models based on the data of Opdyke et al. (2015)
and Cromwell et al. (2018; Figures 14b–14c) do not significantly differ from that for the CNS (Figure 7b).
Thus, it appears that neither a nor b/a is a reliable proxy for the reversal frequency. The relationship between
theModel G parameters and the reversal frequency may exist, but a straightforward correlation of a or antic-
orrelation of b/a with the reversal rate suggested by the analysis of McFadden et al. (1991) is not supported
by these comparisons.

A latitude‐invariant behavior of VGP dispersion cannot be explained within the framework of Model G
separating the geodynamo into the symmetric and antisymmetric families as it would imply invariability
of all antisymmetric terms. A better insight into how the latitude‐invariant behavior of VGP scatter relates
to the harmonic content of the field can be offered by statistical models of PSV describing it as a “giant
Gaussian process” (Constable & Parker, 1988). In this approach, the statistical properties of the field (such
as the dispersion of VGPs or paleomagnetic directions) are modeled by random variations in the coefficients
of the spherical harmonic expansion of the geomagnetic potential (gml and hml ). In the statistical PSV models
(e.g., Constable & Johnson, 1999; Constable & Parker, 1988; Johnson & Constable, 1996; Tauxe & Kent,
2004), gml and hml are assumed to have Gaussian distributions, whereas the time‐averaged field is assumed
to have the GAD structure, often with a small axial quadrupole component superimposed. These models
suggest that higher variability in antisymmetric harmonics, and hence the magnetic energy preferentially
partitioned into antisymmetric terms in the time‐average sense, results in stronger latitude dependences
of VGP dispersion (corresponding to higher b/a ratios for Model G).

In the end‐member isotropic model of Constable and Parker (1988), equal variances were assigned to all
coefficients for the same spherical harmonic degree (l) regardless of the symmetry of each particular
degree‐and‐order term (l andm), and the variances for the nondipole terms (l≥ 2) were set to the values that
produce a flat power spectrum at the core‐mantle boundary similar to that of the present nondipole field.
The model produced VGP scatter that was nearly invariant with latitude and the average level of Sb was
remarkably similar to that observed in our data for pre‐CNS time interval (~15°). This similarity suggests
that during the Early Cretaceous‐Jurassic interval of frequent geomagnetic reversals the geodynamo may
have operated in a regime where the magnetic energy was more evenly partitioned between the equatorially
symmetric and antisymmetric spherical harmonics than during the superchrons (CNS, PCRS) and recent
time (0–10 Ma). Conversely, geodynamos with lower degrees of equatorial symmetry (i.e., more energy par-
titioned into the antisymmetric harmonics), as suggested by strong latitudinal increases of VGP dispersion
for the last 5–10 Ma, the CNS and PCRS intervals, are evidently capable of producing both frequent geomag-
netic reversals and long periods of stable polarity, which is not consistent with the findings of Coe and
Glatzmaier (2006). Future work on numerical simulations of the geodynamo will help to elucidate this issue.

6. Summary and Conclusions

We have compiled an updated paleomagnetic database from rapidly cooled igneous rocks that were specifi-
cally selected to obtain reliable estimates of PSV of geomagnetic field in the Late Cretaceous through
Jurassic, allowing us to compare the latitude dependence of PSV during time intervals characterized by dras-
tically different frequencies of geomagnetic reversals. The main result of our analysis is the observation of
distinctly different latitude variations of PSV for the Early Cretaceous‐Jurassic time interval when the field
reversed frequently (127–198 Ma) and the period of stable geomagnetic polarity in the Cretaceous (the CNS,
84–126 Ma). For the CNS, the VGP dispersion was found to show a strong increase from the equator to the
pole, which is consistent with the earlier results of Biggin, van Hinsbergen, et al. (2008). The observed lati-
tude behavior of PSV is also consistent with that during the PCRS (~262–318 Ma; de Oliveira et al., 2018). In
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contrast, the intervening Early Cretaceous‐Jurassic period of frequent geomagnetic reversals (pre‐CNS,
127–198 Ma) was characterized by a nearly latitude‐invariant dispersion of VGPs, with the average level
of VGP scatter similar to that observed for the CNS. This result was further validated by the analysis of robust
PSV estimates based on the methodology originally developed by Suttie et al. (2015) and supplemented by
the corrections for biases due to finite sample size and within‐site dispersion of paleomagnetic directions
developed in this study (section 3).

Our PSV estimates for the Early Cretaceous‐Jurassic do not support the hypothesis of Linder and Gilder
(2012) that the latitudinal variation of VGP dispersion is amathematical artifact arising from the transforma-
tion of paleomagnetic directions to poles and that PSV is best described by latitude‐invariant dispersion of
directions. We also showed that the commonly used Model G of McFadden et al. (1988) does not provide
a statistically acceptable fit even for the most reliable PSV data for the last 5–10 Ma, and hence, can be used
only in a strictly descriptive sense as an approximation for the latitude dependency of VGP dispersion.
Furthermore, the comparison between the Model G fits for the CNS, pre‐CNS, and recent (0–10 Ma) PSV
data cast doubt on the validity of links between the model parameters and the reversal frequency suggested
byMcFadden et al. (1991). In particular, the equatorial intercept of themodel curve (a) and themagnitude of
increase in VGP dispersion with latitude (b/a ratio) do not appear to be reliable indicators for a superchron
or a dynamo producing frequent geomagnetic reversals. More generally, a strong increase in VGP dispersion
with latitude was not restricted to the superchrons, and a dynamo operating in a regime of high reversal
frequency was evidently equally capable of producing both a strong latitude increase and a nearly
latitude‐invariant behavior of VGP scatter. If a relationship between the shape of VGP dispersion curve
and the reversal frequency does exist, it must be much more subtle than that implied by McFadden et al.
(1991). Unfortunately, the currently available PSV estimates for the Phanerozoic do not allow us to make
any robust inference about that. Further efforts in assembling databases of high‐quality PSV estimates for
Cenozoic andMesozoic time can potentially provide us with a clearer view on the relationship between secu-
lar variation and the reversal frequency. Presently, great care should be taken when interpreting latitude
dependencies of PSV in terms of the geodynamo's tendency to reverse.

We consider a nearly latitude‐invariant behavior of VGP dispersion during the Early Cretaceous‐Jurassic
interval of frequent polarity changes to be a robust result, which suggests that during this interval, the
geodynamo could have operated in a regime characterized by a high degree of symmetry, with the magnetic
energy evenly distributed between the equatorially symmetric and antisymmetric harmonics of the geomag-
netic potential. Conversely, more asymmetric geodynamos implied by PSV estimates for the last 5–10 Ma,
the CNS (84–126 Ma), and the PCRS (262–318 Ma) were equally capable of producing both a frequently
reversing field and long intervals of stable polarity (CNS, PCRS). This implies that the propensity of the
geodynamo to reverse is not controlled by the symmetry state alone and that a delicate balance in the parti-
tioning of magnetic energy is required to force the geodynamo into the superchron regime. An integrated
approach in which the statistical PSV models are paired with magnetohydrodynamic simulations may bring
better understanding of the specific conditions needed for a superchron geodynamo.
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