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Bayesian semiparametric multivariate stochastic volatility with
application
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aDepartment of Econometrics, Erasmus University Rotterdam, Rotterdam, The Netherlands; bDepartment of
Economics (CQE), Westf€alische Wilhelms-Universit€at, M€unster, Germany

ABSTRACT
In this article, we establish a Cholesky-type multivariate stochastic volatility
estimation framework, in which we let the innovation vector follow a
Dirichlet process mixture (DPM), thus enabling us to model highly flexible
return distributions. The Cholesky decomposition allows parallel univariate
process modeling and creates potential for estimating high-dimensional
specifications. We use Markov chain Monte Carlo methods for posterior
simulation and predictive density computation. We apply our framework to
a five-dimensional stock-return data set and analyze international stock-
market co-movements among the largest stock markets. The empirical
results show that our DPM modeling of the innovation vector yields sub-
stantial gains in out-of-sample density forecast accuracy when compared
with the prevalent benchmark models.
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1. Introduction

Owing to increasingly integrated financial markets, both domestically and internationally, volatil-
ity modeling and the analysis of volatility co-movements and spillovers among multiple asset
returns have become central topics for the last few decades (inter alia Clements et al., 2015;
Ehrmann et al., 2011). The two by far most popular volatility model classes discussed in the lit-
erature are the generalized autoregressive conditional heteroscedasticity (GARCH-type) models
(Bollerslev 1986; Engle 1982) and the stochastic volatility (SV) models (Taylor, 1982, 1986), both
in univariate and multivariate variants. Several in-depth overview articles on multivariate
GARCH (Bauwens et al., 2006) and SV models (Chib et al., 2009) document the enormous pro-
fessional interest in the field. While both model classes have distinct advantages on their own, a
major characteristic of the SV framework is that it models the unobserved volatility directly as a
separate stochastic process. This converts many SV specifications into discrete-time versions of
continuous-time models that are well-established in finance theory, which constitutes the general
attraction of SV models (Asai et al., 2006; Harvey et al., 1994; Kim et al., 1998).

Irrespective of model selection issues, various stylized empirical properties of asset returns
have been discovered in real-world data, the most prominent being the fat-tail (kurtotic) nature
of the return distribution. Cont (2001) reports that “… the (unconditional) distribution of
returns seems to display a power-law or Pareto-like tail, with a tail index which is finite, higher
than two and less than five for most data sets studied. In particular, this excludes stable laws with
infinite variance and the normal distribution.” Interestingly, the fat-tail property even persists
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after correcting the financial returns for volatility clustering (e.g. via GARCH-type models),
although to a less pronounced degree.

Numerous attempts have been made to account for the fat-tail property by replacing the
Gaussianity assumption with alternative parametric distributions for the return innovation in dis-
tinct volatility models. Recently, several authors have proposed the nonparametric modeling of
return innovation as a Dirichlet process mixture (DPM) and emphasize the flexibility increase
associated with this approach, compared to using parametric distributions. In particular, to date,
the nonparametric DPM approach has been applied successfully (i) to univariate SV modeling by
Jensen and Maheu (2010, 2014) and Delatola and Griffin (2011, 2013), (ii) to univariate GARCH
modeling by Aus�ın et al. (2014), and (iii) to multivariate GARCH modeling by Jensen and
Maheu (2013) and Virbickait_e et al. (2016). All of these studies use infinite mixtures of normals,
some authors analyze scale, and others location-scale mixtures. In their empirical applications to
FOREX, stock-price and stock-index data, the articles unambiguously document the outperform-
ance of the DPM approach over conventional parametric benchmark models in terms of multi-
step ahead predictive power. Additionally, Delatola and Griffin (2013) and Jensen and Maheu
(2014) model the leverage effect by means of a nonparametric prior, thus providing new insight
into how the effect is linked to current market conditions.

In this article, we complete the above-described list by integrating the nonparametric DPM
approach into a specific class of multivariate SV models with time-varying covariance compo-
nents, based on the Cholesky decomposition of volatility matrices (see e.g. Nakajima, 2017). We
establish a Bayesian estimation procedure for this semiparametric framework and study its pre-
dictive abilities by means of predictive density evaluation. In the empirical part, we apply our
econometric setup to a five-country data set, in order to analyze co-movements among the most
important stock markets worldwide, in the wake of the European sovereign debt crisis and the
Chinese stock-market bubble. In an out-of-sample forecasting comparison with two conventional
models of the error-term distribution (multivariate normal and Student-t) and an asymmetric
extension of our model, we find that our symmetric DPM model yields more accurate forecasts.
While the accuracy gain is modest in comparison to the asymmetric case, there are substantial
gains over the multivariate normal and the Student-t specifications.

The article is organized as follows. Section 2 reviews (i) the multivariate SV model based on
Cholesky decomposition, and (ii) the Dirichlet process mixture. Section 3 presents essential prob-
abilistic features of our econometric framework and provides a simulation example. Section 4
contains the empirical application to daily returns from the five largest international stock mar-
kets. Section 5 concludes. The appendix gives a concise description of the Bayesian estima-
tion approach.

2. Model development

2.1. Cholesky (multivariate) SV

In order to introduce Cholesky SV modeling, we follow the approach of Primiceri (2005) and
Nakajima (2017) and consider the m� 1 vector yt ¼ ðy1t , :::, ymtÞ0 of time series observations at
date t, which we assume to follow an m-dimensional multivariate normal distribution with zero-
expectation vector, EðytÞ ¼ 0, and time-varying covariance matrix CovðytÞ ¼ Ht , i.e. yt �
Nð0,HtÞ: The Cholesky decomposition of Ht is given by the factorization

AtHtA
0
t ¼ RtRt , (1)

where At is the lower triangular matrix with 1s along the principal diagonal and Rt is a diagonal
matrix with time-varying elements:
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Via the Eqs. (1) and (2), the standard Cholesky SV model is then defined as

yt ¼ A�1
t Rt�t , (3)

Ht ¼ A�1
t RtRtðA�1

t Þ0, (4)

where the innovation vector �t is assumed to follow the m-dimensional multivariate standard
normal distribution Nð0, IÞ: Based on Eqs. (2) and (3), several alternative Cholesky SV models
have been proposed in the literature, by letting the innovation vector �t follow distributions other
than the multivariate standard normal, for example, the multivariate t (originally Harvey et al.,
1994, in a non-Cholesky SV framework), and the multivariate generalized hyperbolic skew t dis-
tribution (Nakajima, 2017). The latter specification retains the essential Cholesky structure, but
makes more realistic distributional assumptions, with the aim of more effectively capturing some
features of financial return data (like leverage effects and skewness). In the next section, we define
a new class of Cholesky SV models by letting �t follow a Dirichlet process mixture, in order to
account for excess kurtosis in the data.

When it comes to Bayesian estimation of Cholesky SV models with the time-varying parame-
ters from Eq. (2), we adopt the common methodology of reducing the multivariate dynamics to
univariate volatility processes that form a state-space representation (Lopes et al., 2012).
Specifically, we collect the parameters from the matrix At row-by-row in the ½mðm� 1Þ=2� � 1
vector at , and for the elements from Rt we define the m� 1 vector ht as follows:

at ¼ ða21, t , a31, t , a32, t , :::, am1, t , :::, amm�1, tÞ0, (5)

ht ¼ ð log ðr21, tÞ, :::, log ðr2m, tÞÞ0: (6)

We then specify the dynamics of the Cholesky parameters as the (stationary) AR(1) processes

at ¼ la þUaðat�1 � laÞ þ et , (7)

ht ¼ Uhht�1 þ gt , (8)

et
gt

� �
� N 0,

Re 0
0 Rg

� �� �
, (9)

where we assume (i) that the matrices Ua,Uh,Re,Rg are all diagonal, and (ii) that the p ¼
mðm� 1Þ=2 diagonal entries /a1, :::,/ap of Ua and the m diagonal entries /h1, :::,/hm of Uh are

all less than 1 in absolute value (stationarity conditions).1

By construction, our Cholesky-type covariance matrix imposes top-down dependency among
the elements of yt , implying that the variable ordering affects inference. Chan et al. (2018a,
2018b) refer to this type of modeling as noninvariant specifications, provide an in-depth literature
overview of the issue, and establish invariant inference in the context of static factor models and
volatility shock decomposition. By contrast, we do not consider invariant inferential techniques,
but discuss implications of the specifically chosen variable ordering in our empirical application
in Sections 3 and 4.

1We specify the ARð1Þ process for ht in Eq. (8) without an intercept term. This is due to an identification problem that would
arise in the case of a nonzero intercept; see Jensen and Maheu (2010).
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2.2. Bayesian semiparametric Cholesky SV

It remains to specify the distribution of the innovation vector �t from Eq. (3), which we model as
a nonparametric Dirichlet process mixture. The DPM represents an infinite mixture model and
constitutes an extremely flexible extension of finite mixture models in financial return modeling
(Jensen and Maheu, 2010, 2013; Kalli et al., 2013; Maheu and Yang, 2016; Virbickait_e et al.,
2016). In introducing the DPM, we need to consider the Dirichlet process DPðc,G0Þ, defined in
terms of the base distribution G0 and the concentration parameter c (Ferguson, 1973). In a
Bayesian context, the base distribution G0 represents the prior distribution of the component
parameters in the infinite mixture, while the parameter c, roughly speaking, controls for the num-
ber of clusters in the mixture. A small value of c can be thought of as a priori indicating a small
number of components with relatively large weights in the infinite mixture, whereas large values
of c a priori assume many mixture components, all with relatively small weights.

Overall, our semiparametric Cholesky SV specification, in which we model the m�m matrix
Ht from Eq. (4) parametrically, while we let the distribution of the innovation vector �t follow
the nonparametric DPM as given in Eq. (17) below, has the following hierarchical representation:

ytjKt ,At ,Rt � Nð0,A�1
t RtK

�1
t RtðA�1

t Þ0Þ, (10)

Ht ¼ A�1
t RtRtðA0

tÞ�1, (11)

Kt ¼ diagðk1, t , :::, km, tÞ, (12)

ki, t �i:i:d: Gi, ði ¼ 1, :::,mÞ (13)

GijG0, ci � DPðci,G0Þ, (14)

G0 ¼d Gammað�0=2, s0=2Þ, (15)

ci � Gammaða0, b0Þ, (16)

and where the elements of At and Rt collected in the vectors at and ht follow the ARð1Þ proc-
esses from Eqs. (7) and (8), respectively.2 In Eqs. (10) and (12), the m�m matrix Kt is the preci-
sion matrix, which we assume to be diagonal, in order to ensure identification of the model.3 We
model the diagonal entries k1, t , :::, km, t as i.i.d. (with respect to t) and place a nonparametric
Dirichlet process prior on the distribution of ki, t; see Eqs. (13) and (14). As in Aus�ın et al.
(2014), we specify the base distribution G0 for the diagonal elements of Kt as the gamma distribu-
tion in Eq. (15).

Following the line of argument in Jensen and Maheu (2013), we emphasize that our hierarch-
ical model (10) to (16) can be expressed in the Sethuraman’s (1994) stick-breaking representation
of the DPM mixture model. This allows us to write the density function of each component of
the innovation vector �t ¼ ð�1t , :::, �mtÞ0 as an infinite scale-mixture of Gaussian distributions.
That is, for i ¼ 1, :::,m we have

f ð�itjxi1,xi2, :::, li1, li2, :::Þ ¼
X1
j¼1

xijfN �itj0, l�1
ij

� �
, (17)

where fNð�j0, l�1
ij Þ denotes the density of the univariate normal distribution with expectation zero

and variance l�1
ij : The prior of these mixture parameters is given in Eq. (15). The weights xij are

2In the hierarchical representation, ¼d means “has the distribution.” The operator diagðk1, :::, kmÞ creates the diagonal m�m
matrix, say M, with Mii ¼ ki and Mij ¼ 0 for i 6¼ j ði, j ¼ 1, :::,mÞ:
3Prima facie, the diagonal structure of Kt might appear restrictive. However, as will become evident below, it does not impose
any severe restriction on model flexibility.
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distributed as xi1 ¼ vi1,xij ¼ ð1� vi1Þ � � � ð1� vij�1Þ � vij for j> 1, where vi1, vi2, ::: are i.i.d. beta
distributed with parameters 1 and ci [in symbols: Betað1, ciÞ]. In line with Escobar and West
(1995), we assume a gamma hyper-prior distribution ci � Gammaða0, b0Þ, see Eq. (16). Our nota-
tion distinguishes between the precision parameters li1, li2, ::: of the mixture components and the
actually drawn precision parameter kit of the innovation �it (see Step 6 of the slice sampling algo-
rithm described in Appendix A.3).

For notational convenience, we collect the parameters from the parametric part of our
Cholesky SV model in the vector U (i.e. U contains all parameters from la,Ua,Uh,Rg,Re), and
all parameters from the nonparametric specification in the infinite dimensional entity X ¼
fxij , lijgi¼1, :::,m;j¼1, 2, :::,1: In cases where we need to address all model parameters, we merge the

partial parameter entities U and X into the full-parameter entity H:
The Cholesky Dirichlet-Process-Mixture-Stochastic-Volatility (Cholesky DPM-SV) model

established in this section can be estimated by Bayesian methods. We describe each step of the
MCMC approach in detail in Appendix A.

3. Features of the Cholesky DPM-SV model

3.1. Predictive density

A key issue in Bayesian nonparametric inference is the predictive density (Escobar and West,
1995). Denoting the sequence of all observations obtained through date T by y1:T ¼ y1, :::, yTf g,
we write the one-step ahead predictive density as

f ðyTþ1jy1:TÞ ¼
ð
f ðyTþ1jH, y1:TÞpðHjy1:TÞdH, (18)

where (i) the density f ðyTþ1jH, y1:TÞ constitutes an infinite scale mixture, given the representation
of the innovation term in Eq. (17), and (ii) the posterior pðHjy1:TÞ is defined on the infinitely
dimensional parameter space H: Since the integral in Eq. (18) is analytically untractable, we
approximate the predictive density via the MCMC output,

f ðyTþ1jy1:TÞ �
1
R

XR
r¼1

f ðyTþ1jHðrÞ, y1:TÞ, (19)

where R is the length of the Markov chain and HðrÞ denotes the parameter set in iteration r. We
cope with the infinitely dimensional parameter space by introducing the latent variables according

to Appendix-Eq. (A.25) in each iteration r (which we denote by qðrÞit ) and thus for i ¼ 1, :::,m
obtain the following (finite number of) DPM parameters in iteration r:

xðrÞ
i1 ,x

ðrÞ
i2 , :::,x

ðrÞ
ij�ðrÞi

� 	
and lðrÞi1 , l

ðrÞ
i2 , :::, l

ðrÞ
ij�ðrÞi

� 	
:

Next, we implement the 3-step algorithm proposed by Jensen and Maheu (2013), in order to

sample a single precision (mixture) parameter lðrÞi in iteration r for i ¼ 1, :::,m:

1. We sample the random variable ai from the uniform distribution U(0, 1).

2. We compute the sum
Pj�ðrÞi

j¼1 x
ðrÞ
ij :

3. If
Pj�ðrÞi

j¼1 x
ðrÞ
ij > ai, we find the index di such that

Xdi�1

j¼1

xðrÞ
ij < ai <

Xdi
j¼1

xðrÞ
ij
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and set the precision parameter lðrÞi ¼ lðrÞidi
; else we draw lðrÞi from the prior distribution G0

given in Eq. (15).

After having run the three steps for each i ¼ 1, :::,m, we compose the predictive error term

covariance matrix at iteration r as ðKðrÞÞ�1 	 diagð1=lðrÞi Þ:
We now repeat the complete algorithm (i.e. the three steps for each i ¼ 1, :::,m) a number of

times (say Bmax times) and record at each iteration r, the Bmax covariance matrices

ðKðrÞ
1 Þ�1, :::, ðKðrÞ

BmaxÞ�1: Denoting the density function of the m dimensional multivariate normal
distribution by fNð�j � , �Þ and given sampled parameters, we approximate the one-step-ahead pre-
dictive density according to Eq. (19) as

f ðyTþ1jy1:TÞ �
1
R

XR
r¼1

f ðrÞðyTþ1jy1:TÞ (20)

with

f ðrÞðyTþ1jy1:TÞ ¼
1

Bmax

XBmax

k¼1

fN yTþ1j0, ðAðrÞ
Tþ1Þ�1RðrÞ

Tþ1ðKðrÞ
k Þ�1RðrÞ

Tþ1 ðAðrÞ
Tþ1Þ�1

h i0� �
, (21)

where, for the computation of AðrÞ
Tþ1 and RðrÞ

Tþ1, we draw each aðrÞiTþ1 from NðlðrÞai þ /ðrÞ
ai a

ðrÞ
iT ,r

2ðrÞ
e Þ

for i ¼ 1, :::, p, and each hðrÞiTþ1 from Nð/ðrÞ
hi h

ðrÞ
iT , r

2ðrÞ
g Þ for i ¼ 1, :::,m: In our empirical application

below, we choose Bmax ¼ 3:4

3.2. Conditional moments

According to the hierarchical representation of our Cholesky DPM-SV model from the Eqs.
(10)–(17), the conditional mean of yt is assumed to equal the zero vector, while the conditional
covariance matrix is given by

H�
t ¼ CovðytjH, y1:t�1Þ ¼ A�1

t RtCovð�tjXÞRtðA�1
t Þ0, (22)

where

Covð�tjXÞ ¼ diag
X1
j¼1

xijl
�1
ij

 !
:

Using our predictive density from the Eqs. (20) and (21), we may approximate conditional
second-moment forecasts of the Cholesky DPM-SV model by

EðH�
Tþ1Þ �

1
R

XR
r¼1

H�ðrÞ
Tþ1, (23)

where

H�ðrÞ
Tþ1 ¼ ðAðrÞ

Tþ1Þ�1RðrÞ
Tþ1

1
Bmax

XBmax

k¼1

ðKðrÞ
k Þ�1RðrÞ

Tþ1 ðAðrÞ
Tþ1Þ�1

h i0
: (24)

3.3. Ordering of variables

Owing to the lower triangular structure of the At matrix, the ordering of the variables in the vec-
tor yt of the Cholesky DPM-SV model is crucial (Primiceri, 2005). In the context of time-varying

4In an ideal setting, we would set Bmax equal to the true number of components in the data-generating process. Since this
number is unknown in our empirical setup, we experimented with several Bmax values and found that Bmax ¼ 3 produces
accurate results.
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VAR models, Nakajima and Watanabe (2011) address the problem by analyzing the structure of
the Japanese economy and monetary policy. When analyzing multiple financial time series data,
it might sometimes appear problematic or arbitrary to use a specific ordering of variables
prima facie.

In our empirical application below, an obvious criterion for variable ordering appears to be
the chronological sequence, in which the intercontinental stock markets start their trading days.
Nevertheless, owing to the circular structure among the worldwide trading zones, even the con-
cept of chronology does not tie down the-one-and-only reasonable variable ordering. We
readdress this issue in Section 4.1, where we justify our explicit variable ordering by taking a con-
crete financial-market stance. Ultimately, however, our chosen chronological ordering is just one
out of 5! ¼ 120 ordering permutations for our 5-dimensional stock-market data set.

3.4. Simulation

We illustrate the Cholesky DPM-SV estimation framework by means of a simulation example. To
this end, we simulated T¼ 1,000 observations from a 5-dimensional model (m¼ 5) according to
Eqs. (3)–(9) with parameter values /hi ¼ 0:95, r2gi ¼ 0:04 for i ¼ 1, :::, 5, and a (finite) location-

scale mixture distribution for the error term given by

�t �
�
N lð1Þ, diagð0:6, 0:7, 0:6, 0:7, 0:6Þ

 �

with probability 0:9

N lð2Þ, diagð2:02, 1:2746, 2:02, 1:2746, 2:02Þ

 �

with probability 0:1
,

lð1Þ ¼ 0:156 0:1 0:156 0:1 0:156

 �0

,

lð2Þ ¼ �1:4 �0:9 �1:4 �0:9 �1:4

 �0

,

with the values chosen so that (roughly) Eð�tÞ ¼ 0: We set the aij-processes (i 6¼ j) constantly
equal to –0.5, implying positive correlations roughly between 0.5 and 0.9. We parametrized the
prior distributions as /hi � Nð0:95, 25Þ1ðj/hij < 1Þ, r2gi � InverseGammað10=2, 0:5=2Þ, ci �
Gammað4, 4Þ,G0 	 Gammað10=2, 10=2Þ:5 We estimated the model with 10,000þ 40,000 iterations
using the method described in Appendix A.

The upper block of Table 1 displays the posterior means of the AR parameters (along with
90% highest posterior density intervals [HPDIs]), which appear close to the true values. The
lower block of Table 1 compares the constant aij-processes (all set constantly equal to –0.5) with
the theoretical expectations of the aij-processes that prevail upon replacing the theoretical param-
eters with our parameter estimates (the posterior means). Again, our estimation results appear to
be in close line with the true quantities. The average number of mixture components is between
4 and 5 (not reported). Figure 1 displays the posterior means of the five overall variance proc-
esses (red lines) in comparison with corresponding simulated paths (blue lines) plus the 90%
HPDIs. Evidently, the estimated trajectories capture the simulated volatility dynamics satisfactor-
ily. Figure 2 presents the analogous plots of the overall correlation processes (denoted by
q21, :::, q54), which we obtain from the time-varying covariance matrix H�

t from Eq. (22), and
where we have thinned the number of draws from the posterior distribution by factor 50. In each
panel of Fig. 2, the simulated correlation path lies within the 90% HPDI.

5Aus�ın et al. (2014) provide a detailed discussion on the appropriate choice of prior distributions. We use the same prior
distributions in our empirical application in Section 4.
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4. Empirical application

4.1. Data

In this section, we apply the Cholesky DPM-SV model to stock-index data for the five most import-
ant international stock markets, with the objective of analyzing stock-market co-movements. In par-
ticular, our data set includes daily stock index values between February 17, 2012 and February 19,
2016 (1,046 observations for each time series) for (i) the US Dow Jones Industrial, (ii) the German
DAX 30 Performance, (iii) the European EuroStoxx50 index, (iv) the Japanese Nikkei 225, and (v)
the Chinese Shanghai Shenzen CSI 300. All data were collected from Datastream (daily clos-
ing prices).

Figure 3 displays the five indices along with their daily returns (computed as the daily first differ-
ences in logs � 100). The sampling period does not cover the global financial crisis, but includes two
country-specific stock market turbulences, namely the European sovereign debt crisis in early 2012
and the Chinese stock market turmoil between June 2015 and February 2016. Both events are accom-
panied by phases of high return volatility, as is evident from the right panels in Fig. 3.

Table 2 contains summary statistics and the sample correlation coefficients among the five
return series. All return series exhibit negative skewness and excess kurtosis, indicating non-
Gaussian behavior. Although all five sample means are close to zero, we use demeaned data in
our estimation procedure. The sample correlation coefficients are all positive and lead us to
expect particularly pronounced co-movements among the European and US markets.

As argued in Section 3.3, the ordering of the five return series in the vector yt ¼ ðy1t , :::, y5tÞ0
of the Cholesky DPM-SV model could matter considerably. We decided to choose that chrono-
logical sequence, according to which the intercontinental stock market consecutively start their
trading on the same calendar day. This implies that y1t , :::, y5t represent the return series for (1)
the Nikkei, (2) the Shanghai Shenzen, (3) the EuroStoxx50, (4) the DAX, and (5) the Dow Jones.
A conceivable alternative ordering, which also meets the aspect of chronology, would be to start
with (1) the Dow Jones at date t, followed by (2) the Nikkei, (3) the Shanghai Shenzen, (4) the

Table 1. Parameter values, posterior means, 90% highest posterior density intervals.

True parameter Posterior mean 90% HPDI

/h1 0.95 0.8694 (0.6001 0.9676)
/h2 0.95 0.9668 (0.9455 0.9874)
/h3 0.95 0.9786 (0.9623 0.9939)
/h4 0.95 0.9701 (0.9489 0.9908)
/h5 0.95 0.9886 (0.9779 0.9984)
r2g1 0.04 0.0822 (0.0158 0.3117)
r2g2 0.04 0.0438 (0.0209 0.0651)
r2g3 0.04 0.0514 (0.0219 0.1072)
r2g4 0.04 0.0340 (0.0180 0.0540)
r2g5 0.04 0.0238 (0.0117 0.0384)

Eðaij, tÞ ¼ cai
ð1�/aiÞ

a12 –0.5 –0.4813 (–0.5411 –0.4220)
a13 –0.5 –0.4759 (–0.5568 –0.4032)
a23 –0.5 –0.4741 (–0.5388 –0.4134)
a14 –0.5 –0.5171 (–0.6016 –0.4416)
a24 –0.5 –0.4746 (–0.5430 –0.3975)
a34 –0.5 –0.4784 (–0.5476 –0.4076)
a15 –0.5 –0.4529 (–0.5411 –0.3538)
a25 –0.5 –0.5284 (–0.6095 –0.4415)
a35 –0.5 –0.4443 (–0.5199 –0.3646)
a45 –0.5 –0.5020 (–0.5636 –0.4302)

Notes: Simulated model according to Eqs. (3)–(9), with m ¼ 5, T ¼ 1000, and a location-scale mixture of two normal distribu-
tions for the error term, as specified in Section 3.4.
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EuroStoxx50, and (5) the DAX, each of the latter four indices on the next trading day. However,
in the subsequent analysis we take up a Eurasian financial-market perspective, by considering the
European sovereign debt crisis and a bubbly period in the Chinese stock market—both events
occurred during the sampling period—as important impulses to the chronologically consecutive
markets (on the same calendar day) worldwide.6

4.2. Estimation results

According to Eqs. (5)–(9), the estimation of our five-dimensional Cholesky DPM-SV model
involves the sampling of (i) five SV processes (ht-processes), (ii) ten at-processes, (iii) 40AR-
parameters (stemming from the ht- and at-processes), and (iv) five DPM sets xij , lij

� 
1
j¼1

: We ran

a total of 50,000þ 50,000 iterations and deleted the first 50,000 results as burn-in phase. As prior
distributions, we chose

Figure 1. Simulated variance processes (blue lines), posterior means (red lines), and 90% highest posterior density intervals
(green lines).

6We thank two reviewers for drawing our attention to this issue.
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cai � Nð0, 1Þ,
/ai � Nð0:95, 25Þ1ðj/aij < 1Þ,
r2ei � InverseGammað10=2, 0:5=2Þ,
/hi � Nð0:95, 25Þ1ðj/hij < 1Þ,
r2gi � InverseGammað10=2, 0:5=2Þ,
ci � Gammað4, 4Þ,

and the base distribution G0 as Gammað10=2, 10=2Þ:7 Table 3 displays the posterior means and
standard deviations of the 40AR parameters. Clearly, the parameters do not provide direct inter-
pretation with respect to the overall variance and covariance processes. We note, however, the
higher standard errors of the persistence /ai-parameter estimates as compared to the standard
errors of the /hi-parameter estimates. Since the /ai parameters predominantly affect the return
co-movements, we expect rather rough co-movement paths.

We assess the co-movements among the five markets via the pairwise in-sample time-varying
correlation coefficients (denoted by CorrINDEX1, INDEX2;t), which we obtain from the covariance
matrix H�

t in Eq. (22) computed in each MCMC iteration and at every date t. Figure 4 displays
the time-varying correlation coefficients for the ten market pairs. In each panel, the solid line rep-
resents the correlation coefficients computed as an average of 333 posterior thinned draws (out of
50,000), while the darkly and brightly shaded areas represent 50% and 90% HPDIs, respectively.

Figure 4 provides the following major findings: (i) The time-varying in-sample correlation
coefficients appear surprisingly volatile. (ii) Except for CorrDJ, EU;t (US/European markets),

Figure 2. Simulated correlation processes (blue lines), posterior means (red lines), and 90% highest posterior density intervals
(green lines).

7Since the data turn out not to be very informative about the hyperparameters ci, we also experimented with other priors for
ci. While the posterior distributions of the hyperparameters ci are affected, the posterior distributions of the other model
parameters do not change substantially.
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CorrDJ, DAX;t (US/German markets) and CorrDAX,EU;t (German/European markets), the time-vary-
ing correlation coefficients take on negative values strikingly often. (iii) The coefficients
CorrEU,SHA;t, CorrDAX,SHA;t, CorrDJ,NIK;t, CorrDJ,SHA;t appear to fluctuate around mean levels close
to zero, indicating rather weak correlation among the corresponding markets. (iv) During the
Chinese stock-market downturn between 2015 and 2016, the coefficients CorrSHA,NIK;t take on
substantially smaller values (close to zero) than during all other phases of the sampling period.
(v) The most stable, positive correlation coefficients are found between the German and the

Figure 3. Index values and daily returns (in %).
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European stock markets (CorrDAX, EU;t), the US and the European markets (CorrDJ, EU;t), and the
US and the German markets (CorrDJ, DAX;t). As a robustness check, Fig. 5 plots the sample corre-
lations obtained from a rolling window of size 50 centered around t. Evidently, Fig. 5 vastly con-
firms the findings from Fig. 4.

Finally, we investigate the predictive ability of our Cholesky DPM-SV model in terms of pre-
dictive density estimation. Figure 6 displays the nonparametric predictive densities of the ele-
ments of the covariance matrix H�

t , approximated according to Eqs. (23) and (24), while Fig. 7
shows pairwise density contour plots. The covariances from the one-step-ahead prediction closely
follow the patterns obtained from the in-sample estimation. For example, the contour plots for
the European and the Chinese markets (Panel SHA, EU), the German and the Chinese Markets
(Panel SHA, DAX), the US and the Japanese markets (Panel NIK, DJ), and the US and the
Chinese markets (Panel SHA, DJ) all reflect the lack of linear dependence, as mentioned in the
above discussion on Fig. 4. Table 4 summarizes the posterior information of the one-step-ahead
predictive density. Our model predicts the highest variance for the Japanese market (with the
broadest 90% HPDI), and the lowest variance for the US market.

4.3. DP precision

The precision parameter ci of the Dirichlet process controls the number of mixture components
for each i ¼ 1, :::, 5, where the two limiting cases ci ¼ 0 and ci ! 1—under the specific model
structure in Eqs. (10)–(16)—correspond to the Gaussian and the Student-t distributions, respect-
ively. Instead of ci, we consider the one-to-one transformation ~ci 	 ci

ciþ1 onto the interval ½0, 1Þ:
Along similar lines as in Jensen and Maheu (2013, 2014), we may use the Savage-Dickey density ratio
to test for (i) normality ð~ci ¼ 0Þ, and (ii) the Student-t distribution ð~ci ! 1Þ each versus our general
Cholesky DPM-SV model with ~ci 2 ð0, 1Þ: Figure 8 displays the posterior histograms of the ~ci after
burn-in. We note that all five histograms exhibit zero-mass for both, ~ci ¼ 0 and ~ci ! 1, thus yielding
no in-sample indication in favor of the Gaussian or the Student-t distribution. All histograms disclose
positive mass for ~ci-values ranging between 0.1 and 0.9 and with modes around 0.4 and 0.5, suggest-
ing distinct, stock-market specific numbers of mixture components.8

Table 2. Descriptive statistics of daily returns (in %).

NIK SHA EU DAX DJ

Mean 0.0509 0.0177 0.0125 0.0302 0.0226
Median 0.0086 0.0000 0.0111 0.0614 0.0066
Variance 1.9457 2.7957 1.5524 1.4216 0.6229
Skewness –0.2386 –0.8491 –0.1151 –0.2329 –0.1961
Kurtosis 6.3634 8.1768 4.4545 4.2553 4.7188
Sample correlation:
NIK 1.0000
SHA 0.2160 1.0000
EU 0.2158 0.1349 1.0000
DAX 0.2194 0.1390 0.9526 1.0000
DJ 0.1224 0.1418 0.5929 0.5743 1.0000

Note: The indices are abbreviated as NIK (Nikkei 225), SHA (Shanghai Shenzen CSI 300), EU (EuroStoxx), DAX (DAX 30
Performance), DJ (Dow Jones Industrial).

8A sensitivity analysis for the parameter ci (or ~ci) reveals that the shape of its posterior is strongly affected by the choice of
the prior. This finding is, however, inconsequential, as different specifications of the prior for ci have only minor impact on the
posterior distributions of all (but one) remaining model parameters. The only parameter, affected by the prior of ci, is the
average number of nonempty clusters. This illustrates one of the most prominent features of the Bayesian nonparametric
models, namely that the same density can be approximated using different numbers of clusters with different
mixing parameters.
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Table 3. Posterior means and standard deviations (in parentheses).

i cai /ai r2ei /hi r2gi �ni
1 –0.1455 0.0649 0.0474 0.9610 0.0510 9

(0.0582) (0.3532) (0.0144) (0.0158) (0.0176)
2 –0.1614 0.0601 0.0657 0.9799 0.0364 10

(0.0548) (0.2965) (0.0180) (0.0087) (0.0103)
3 –0.0662 –0.1444 0.0945 0.9323 0.0724 12

(0.0338) (0.1953) (0.0234) (0.0372) (0.0499)
4 –0.0159 –0.0370 0.0261 0.9980 0.0330 5

(0.0120) (0.1403) (0.0054) (0.0013) (0.0135)
5 0.0025 –0.0509 0.0310 0.9938 0.0674 10

(0.0124) (0.1679) (0.0091) (0.0039) (0.0245)
6 –0.4111 0.5478 0.0254

(0.1070) (0.1182) (0.0069)
7 0.0008 0.4161 0.0466

(0.0127) (0.1831) (0.0121)
8 –0.0018 –0.4898 0.0277

(0.0218) (0.1796) (0.0107)
9 –0.1832 0.2271 0.0498

(0.0986) (0.3241) (0.0159)
10 –0.1745 –0.1649 0.0488

(0.0922) (0.2732) (0.0136)

Note: �ni denotes the average number of nonempty mixture components rounded to the nearest integer.

Figure 4. In-sample correlations: posterior means plus 50% and 90% highest posterior density intervals.
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4.4. Out-of-sample forecasting model comparison

4.4.1. Benchmark models
In order to analyze out-of-sample predictive power, we compare our Cholesky DPM-SV model with
three benchmark specifications.9 The first benchmark is the Gaussian Cholesky SV specification

ytjHt � Nð0,HtÞ,
Ht ¼ A�1

t RtRtðA0
tÞ�1,

where the latent processes are defined as in Eqs. (7)–(9). We estimate the model setting the
matrix Kt ¼ I:

Our second benchmark model is the Student-t Cholesky SV specification

ytjHt � Stð0,Ht , ~mÞ,
Ht ¼ A�1

t RtRtðA0
tÞ�1,

in which the conditional distribution of the return vector follows a multivariate Student-t distri-
bution (denoted by St) with mean vector 0, covariance matrix Ht and m� 1 degrees-of-freedom
vector ~m: In order to estimate this specification (without the slice sampler), we use the gamma-
normal representation of the t-distribution (see, inter alia, Chib and Ramamurthy, 2014). To this

Figure 5. Sample correlations obtained from a rolling window of size 50 centered around the actual observation with the sam-
ple-correlation (horizontal line).

9To economize on space, our choice of benchmark models is limited to these three specifications. Another model, not
considered here, is the MGARCH-DPM model (Jensen and Maheu, 2013). Jensen and Maheu (2013) propose a nonstochastic
(GARCH-type) approach to multivariate volatility modeling, which (i) is order invariant, and (ii) allows for nondiagonal mixing
scale. A comparison of their GARCH-type model with our stochastic volatility approach will be subject to future research.
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end, we consider a gamma distributed latent variable qit and the (independently distributed)
standard normal variable uit to write

�it ¼ q�1=2
it uit ,

and specify the following hierarchical prior

qitj~� i � Gamma ~� i=2, ~� i=2ð Þ,
~� i � p,

with p representing some prior distribution.
Conditional on qit, the sampling steps can be performed in exactly the same way as described in

Appendix A.1. However, we rewrite the dynamic model from Appendix-Eqs. (A.18) and (A.19) as

~yit ¼ exp hit=2f gq�1=2
it uit , ði ¼ 1, :::,mÞ

hit ¼ /hihit�1 þ git ,

and the corresponding sampling steps as
1. pð#ijhi1, :::, hiTÞ,
2. pðhi1, :::, hiT j~yi1, :::,~yiT ,#i, qi1, :::, qiT , ~� iÞ,
3. pð~� ij~yi1, :::,~yiT , hi1, :::, hiT , qi1, :::, qiTÞ,
4. pðqi1, :::, qiT j~yi1, :::,~yiT , hi1, :::, hiT , ~� iÞ:

Figure 6. One-step-ahead density forecasts (of the elements of H�
Tþ1).
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Figure 7. Contour plots of pairwise one-step-ahead density forecasts.

Table 4. Posterior summary of the elements of the one-step-ahead covariance matrix.

H�
Tþ1 Mean Median 90% HPDI

H� NIK
Tþ1 7.2337 6.1811 (1.5248, 13.2226)

H� SHA
Tþ1 3.2385 2.6356 (0.3246, 6.2110)

H� EU
Tþ1 3.7878 3.1497 (0.6449, 6.9720)

H� DAX
Tþ1 3.6246 2.9022 (0.4688, 6.8787)

H� DJ
Tþ1 1.6232 1.1733 (0.0774, 3.3822)

H� SHA, NIK
Tþ1 0.9987 0.7307 (–1.8207, 4.0100)

H� EU, NIK
Tþ1 1.5025 1.1124 (–1.9305, 5.3189)

H� EU, SHA
Tþ1 0.4096 0.2605 (–1.6861, 2.7071)

H� DAX, NIK
Tþ1 1.5457 1.1560 (–1.9358, 5.4155)

H� DAX, SHA
Tþ1 0.4052 0.2579 (–1.7940, 2.9082)

H� DAX, EU
Tþ1 3.5458 2.9134 (0.5579, 6.7130)

H� DJ, NIK
Tþ1 0.1496 0.0923 (–2.9625, 3.1029)

H� DJ, SHA
Tþ1 0.0052 –0.0103 (–1.5690, 1.7853)

H� DJ, EU
Tþ1 1.2784 0.9443 (–0.9013, 3.6663)

H� DJ, DAX
Tþ1 1.2232 0.8752 (–0.9412, 3.5763)

Note: The indices are abbreviated as NIK (Nikkei 225), SHA (Shanghai Shenzen CSI 300), EU (EuroStoxx), DAX (DAX 30
Performance), DJ (Dow Jones Industrial).
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Obviously, by defining y�it 	 ~yit
ffiffiffiffiffi
qit

p
, Steps 1 and 2 remain unchanged. Step 3 is a single

Metropolis–Hastings (MH) step in order to sample from the posterior

pð~� ij~yi1, :::,~yiT , hi1, :::, hiT , qi1, :::, qiTÞ / pð~� iÞ �
YT
t¼1

ð~� i=2Þ~� i=2

Cð~� i=2Þ q~� i=2�1
it exp � ~� iqit

2

� 	
:

The posterior is defined for ~� i > 4 and the proposal is a normal distribution truncated on
ð4,1Þ: Step 4 samples the latent variables qit directly from the conditional

Figure 8. Transformed posterior DP precision.
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qitj~yit , hit , ~� i � Gamma ~� i þ 1½ �=2, ~� i þ ð~yit exp �hit=2f gÞ2
h i

=2
� �

:

As the third benchmark model, we consider an asymmetric extension of our Cholesky DPM-
SV specification, by extending the infinite scale mixture for the error term to a location scale
mixture:

ytjlt ,Kt ,At ,Rt � Nðlt ,A�1
t RtK

�1
t RtðA�1

t Þ0Þ, (25)

li, t
ki, t

� �
�i:i:d: Gi, ði ¼ 1, :::,mÞ (26)

GijG0, ci � DPðci,G0Þ, (27)

G0 ¼d Nðb, ðski, tÞ�1Þ � Gammað�0=2, s0=2Þ, (28)

where the right-hand side of Eq. (28) denotes the conjugate normal-gamma distribution. Besides
kurtosis, this model extension is also able to capture skewness, a frequently observed feature in
financial time series. The estimation algorithm remains the same as for our original Cholesky
DPM-SV framework, except for the latent volatility sampler, which is now conditional on li, t ,
and the sampling of the mixture parameters, which is now

�b ¼ sbþPT
t¼1�it � 1ðfðr�1Þ

it ¼ jÞ
sþ nij

, (29)

�s ¼ sþ nij, (30)

�� ij ¼ �0 þ nij, (31)

�sij ¼ s0 þ s2b� �s2�b þ
XT
t¼1

�2it � 1ðfðr�1Þ
it ¼ jÞ: (32)

4.4.2. Predictive likelihoods
We use the cumulative log-predictive likelihoods (CPLs) to compare the out-of-sample 1-day-
ahead predictive ability of our Cholesky DPM-SV model with the three benchmark specifications
(Gaussian and Student-t Cholesky SV, asymmetric Cholesky DPM-SV). For our in-sample estima-
tion, we use an estimation window from February 17, 2012 to February 19, 2016 (1046 trading
days). Our out-of-sample period ranges between February 22, 2016 and July 8, 2016, which
amounts to 100 out-of-sample 1-day-ahead predictions.

Table 5 reports the out-of-sample CPL values for the four competing models. We note that
the subtraction of two CPL values yields the predictive log Bayes factor, a concept used (i) for
measuring relative predictive accuracy, and (ii) for assessing a wide range of model comparison
issues (Koop, 2003, Chapter 2.5). In terms of the predictive log Bayes factor, our Cholesky DPM-
SV specification outperforms both symmetric benchmark models with the values 14.42 (Gaussian
Cholesky SV) and 5.09 (Student-t Cholesky SV). As an appropriate statistical guideline for model
comparison, Kass and Raftery (1995) suggest considering twice the (predictive) log Bayes factor.
Here, these values are 28.84 and 10.18, both exceeding the threshold level of 10. According to
Kass and Raftery’s classification, our Cholesky DPM-SV model is therefore “very strongly” pre-
ferred to the Gaussian as well the Student-t Cholesky SV specification. Finally, we note that our
symmetric Cholesky DPM-SV model also outperforms its asymmetric counterpart (third bench-
mark) with a (double) log Bayes factor of 2.68 (5.36), implying at least “positive” preference of
our base specification according to Kass and Raftery’s (1995) guidelines. Therefore, in this
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particular case, we find that the additional modeling flexibility, provided by an asymmetric distri-
bution, does not result in improved predictive power.

5. Conclusion

In this article, we establish a Cholesky SV model with a highly flexible nonparametric distribution for
the innovation vector—based on the Dirichlet process mixture—and implement a Bayesian semipara-
metric estimation procedure. A striking advantage of our modeling framework is that it allows us to
estimate DPM-based volatility models of higher dimensions (m> 3), without imposing unnecessarily
restrictive assumptions. More concretely, this is due to the Cholesky structure, under which the com-
mon assumption of uncorrelated DPM error terms does not entail a flexibility loss, insofar as our
overall covariance matrix A�1

t RtK
�1
t RtðA�1

t Þ0 contains DPM elements in its nondiagonal entries.
In the empirical section, we apply our estimation framework to five daily stock-index return

series, with the aim of analyzing co-movements among international stock markets. As two major
empirical results, we find (i) a reduction in the co-movement between the Chinese and the
Japanese markets during the recent Chinese stock-market downturn, and (ii) distinctively stable,
positive co-movements among the European (including the German) and the US stock markets.
Our Cholesky DPM-SV specification has appealing in-sample properties and, in an out-of-sample
forecasting analysis, yields substantially improved density forecasts (in terms of predictive Bayes
factors) when compared with two benchmark models from the literature. Our specification also
has a higher predictive power than an asymmetric variant. However, the improvement is not as
strong as in the case of the other benchmark models, indicating the potential importance of
skewed errors. This issue needs to be addressed in future research.

Three conceivable extensions of our modeling framework to be tackled in future research are
worth mentioning. (i) Frequently observed volatility asymmetries could be modeled by integrating
leverage effects into our Cholesky DPM-SV framework. (ii) Our estimation framework could be
applied to high-frequency data sets containing realized (co)variances along the lines of Shirota
et al. (2017), who suggest estimating Cholesky realized SV models. (iii) The superior out-of-sam-
ple predictive ability of our Cholesky DPM-SV framework calls for investigating potential impli-
cations for international investors. Highly relevant research questions include, inter alia, the
impact on (conditional) value at risk (VaR, CVaR) estimation.

Appendix A: Bayesian inference

This appendix presents the samplers for the Cholesky DPM-SV.

A.1. Sampling the At-elements
In order to apply Forward-Filtering-Backward-Sampling to the elements of the At-matrix, we need to set up an
appropriate state-space model (Carter and Kohn, 1994). To this end, we first rewrite Eq. (3) as

Atyt ¼ Rt�t , (A.1)

where yt is observable, and At has the lower triangular form given in Eq. (2). As in Primiceri (2005), we define
the m�mðm� 1Þ=2 matrix

Table 5. Cumulative log predictive likelihoods (CPL).

Model CPL Predictive log Bayes factor

Cholesky DPM-SV –685.5444
Gaussian Cholesky SV –699.9647 14.4203
Student-t Cholesky SV –690.6329 5.0885
Asymmetric Cholesky DPM-SV –688.2255 2.6811

Note: The three benchmark models (Gaussian and Student-t Cholesky SV, asymmetric Cholesky DPM-SV) are estimated as
described in Section 4.4.1. Out-of-sample period: February 22, 2016 – July 8, 2016 (100 observations).
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Zt ¼

0 � � � � � � 0
�y1t 0 � � � 0

0 �y 1:2½ �t
. .
.

0

..

. . .
. . .

.
0

0 � � � 0 �y 1:m�1½ �t

0
BBBBBBB@

1
CCCCCCCA
, (A.2)

in which y½1:i�t denotes the row vector ðy1t , y2t , :::, yitÞ, so that

yt ¼ Ztat þ Rt�t , (A.3)

where at , defined in Eq. (5), follows the AR(1) process specified in Eq. (7). Finally, we replace �t in Eq. (A.3) with
K�1=2

t ut , where ut is assumed to follow the m-dimensional Nð0, IÞ distribution, and obtain the observation and
transition equations

yt ¼ Ztat þ RtK
�1=2
t ut 	 Ztat þ nt , (A.4)

at ¼ la þUaðat�1 � laÞ þ et , (A.5)

with nt � Nð0,Rnt Þ, Rnt ¼ RtK
�1
t Rt and

nt
et

� �
�i:i:d: N 0,

Rnt 0
0 Re

� �� �
: (A.6)

We denote the entire history of the vector yt and the matrices Zt ,Rnt to date s by yðsÞ 	 fy0, :::, ys�1, ysg,ZðsÞ 	
fZ0, :::,Zs�1,Zsg and RðsÞ

n 	 fRn0 , :::,Rns�1
,Rnsg, respectively, and let

atjs ¼ EðatjyðsÞ,ZðsÞ,RðsÞ
n ,ReÞ (A.7)

Vtjs ¼ CovðatjyðsÞ,ZðsÞ,RðsÞ
n ,ReÞ: (A.8)

Furthermore, we define the p� 1 vector

ca 	 ðla1ð1� /a1Þ, :::, lapð1� /apÞÞ0, (A.9)

where la1, :::,lap are the elements of the vector la and /a1, :::,/ap the diagonal entries of the matrix Ua: Then,
given the starting values a0j0 and V0j0, the standard Kalman filter can be summarized as follows:

atjt�1 ¼ ca þUaat�1jt�1, (A.10)

Vtjt�1 ¼ UaVt�1jt�1U
0
a þ Re, (A.11)

Kt ¼ Vtjt�1Z
0
tðZtVtjt�1Z

0
t þ Rnt Þ�1, (A.12)

atjt ¼ atjt�1 þ Ktðyt � Ztatjt�1Þ, (A.13)

Vtjt ¼ Vtjt�1 � KtZtVtjt�1: (A.14)

The final entities aTjT and VTjT contain the mean and variances of the normal distribution, from which we
draw aT : We use this value in the first step of the backward recursion that yields aT�1jT and VT�1jT , which we
then use to draw aT�1: The backward recursion iterates from T – 1 to 0, and at date t, the update step is given by

atjtþ1 ¼ atjt þ VtjtU0
aV

�1
tþ1jtðatþ1 � ca �UaatjtÞ, (A.15)

Vtjtþ1 ¼ Vtjt � VtjtU0
aV

�1
tþ1jtUaVtjt: (A.16)

As the prior distribution of the initial state a0j0, we use a multivariate normal distribution (see Section 4) and
assume the covariance matrix Re to be diagonal with entries r2e1, :::,r

2
ep: Note that for each i ¼ 1, :::, p the uncondi-

tional expectation of the ait-process is EðaitÞ ¼ lai ¼ cai
1�/ai

, so that the 3p ¼ 3mðm� 1Þ=2 parameters to be

sampled are ca1, :::, cap,/a1, :::,/ap,r
2
e1, :::,r

2
ep: The sampling strategy for these parameters is readily obtained from

standard Bayesian estimation of the linear regression model. The prior distributions for the cai- (or lai-) and
/ai-parameters are normal (the priors for the /ai-parameters are restricted to ensure the p stationarity conditions
j/aij < 1), while the prior distribution for r2ei is chosen as inverse Gamma. We sample the cai- and /ai-parameters
by the MH algorithm, while the r2ei-parameters are sampled directly.
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A.2. Sampling the Rt-elements
The vector ~yt ¼ Atyt has a diagonal covariance matrix. This enables us to independently estimate the m univariate
SV models,

~yit ¼ ri, tk
�1=2
i, t uit , ði ¼ 1, :::,mÞ (A.17)

with uit � Nð0, 1Þ: At this stage, At is given and since yt is observed, the values of ~yit can be computed. The asso-
ciated dynamic model in state-space form is nonlinear:

~yit ¼ exp hit=2f gk�1=2
i, t uit , ði ¼ 1, :::,mÞ (A.18)

hit ¼ /hihit�1 þ git, (A.19)

with git � Nð0, r2giÞ and r2gi being the ith diagonal entry of the matrix Rg:
The m univariate SV models from Eqs. (A.18) and (A.19) can be estimated separately by consecutively sampling

from the following conditionals, in the representation of which we use the m row vectors #i ¼ ðr2gi,/hiÞ:
1. pð#ijhi1, :::, hiTÞ, yielding the AR parameters.
2. pðhi1, :::, hiTj~yi1, :::,~yiT ,#i, lij

� 
1
j¼1

, xijf g1j¼1
Þ, yielding the parametric volatility component.

3. pð lij
� 
1

j¼1
, xijf g1j¼1

j~yi1, :::,~yiT , hi1, :::, hiTÞ, yielding the nonparametric volatility component.

Sampling from the first conditional is straightforward and analogous to sampling the at-parameters in the previous sec-
tion. The third conditional from above involves sampling the infinite mixture parameters, for which we present the sam-
pling algorithm in Section A.3. As to the second conditional, we follow Jensen and Maheu (2010) and apply our log
volatility sampler to the transformation y�it 	 ~yit

ffiffiffiffiffiffiffi
ki, t

p
yielding the m simplified univariate models

y�it ¼ exp hit=2f guit , ði ¼ 1, :::,mÞ (A.20)

hit ¼ /hihit�1 þ git , (A.21)

so that our task reduces to sampling from pðhi1, :::, hiTjy�i1, :::, y�iT ,#iÞ: We accomplish this by using the procedure
of Jacquier et al. (2002) who construct a Markov chain for drawing directly from the joint posterior distribution of

the latent volatility components.10 Specifically, let hðiÞ�t 	 ðhi0, :::, hit�1, hitþ1, :::, hiTÞ0 and y�i 	 ðy�i1, :::, y�iTÞ0, which

are used to decompose pðhi1, :::, hiTjy�i ,#iÞ into a set of conditionals of the form pðhitjhðiÞ�t , y
�
i ,#iÞ: The authors sug-

gest a (hybrid) cyclic random walk Metropolis chain which uses a series of independent Metropolis acceptance/
rejection chains, which do not directly sample from the univariate conditionals, but still ensure stationarity.

Thus, in order to sample from the target distribution pðhi1, :::, hiTjy�i ,#iÞ, we follow Jacquier et al. (2002) and
sample from the auxiliary density pðhitjhit�1, hitþ1, y�it ,#iÞ, which can be factorized for t ¼ 2, :::,T � 1 as follows:

pðhitjhit�1, hitþ1, y
�
it ,#iÞ / pðy�itjhitÞpðhitjhit�1Þpðhitþ1jhitÞ

/ 1
exp fhit=2g exp � 1

2
ðy�itÞ2

exp fhit=2g

( )

� exp
�ðhit � /hihit�1Þ2 � ðhitþ1 � /hihitÞ2

2r2gi

( )
:

(A.22)

The density (A.22) does not have a standard form and we apply a MH algorithm for each of the latent volatility
components hi2, :::, hiT�1: We sample the first and last latent volatility components from

pðhi1jhi2, y�i1,#iÞ / 1
ehi1=2

exp � 1
2
ðy�i1Þ2
ehi1=2

� 	
exp

�ðhi2 � /hihi1Þ2
2r2gi

( )
, (A.23)

pðhiTjhiT�1, y
�
iT ,#iÞ / 1

ehiT=2
exp � 1

2
ðy�iTÞ2
ehiT=2

� 	
exp

�ðhiT � /hihiT�1Þ2
2r2gi

( )
: (A.24)

As a proposal for the MH algorithm, we use Nð0, r2giÞ:

10It is well-known that the sampler of Jacquier et al. (2002) has some inefficiencies that slow down mixing. Chib et al. (2002)
and Jensen and Maheu (2010) propose more efficient sampling algorithms. Chib et al. (2002) overcame the naturally built-up
dependency between the parameters and the latent volatilities. Jensen and Maheu (2010) suggested a random-blocking
approach so that the dependency on the beginning and ending volatilities are mixed over. However, due to the
nonparametric part of our model, these algorithms cannot easily be adopted. Since our trace plots do not indicate poor
mixing, we propose to use the sampler of Jacquier et al. (2002).
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A.3. Slice sampling the �t-DPM-elements
The slice sampler proposed by Walker (2007) and its more efficient version presented in Kalli et al. (2011) tackle
the issue of sampling the infinite number of DPM parameters. The first step consists of introducing a latent vari-
able qit (with positive support), such that for i ¼ 1, :::,m the joint density of the innovation �it and the latent vari-
able qit is given by

f ð�it ,qitjHÞ ¼
X1
j¼1

1ðqit < xijÞ � fNð�itj0, l�1
ij Þ (A.25)

¼
X

j2AðqitÞ
fNð�itj0, l�1

ij Þ,

where 1ð�Þ is the indicator function, and AðqitÞ 	 fj : xij > qitg, which becomes a finite set for any given qit > 0:
The conditional distribution of �it given qit is a finite normal mixture with equal weights. Based on this result, the
slice-sampling procedure then introduces a second latent variable fit indicating the mixture component from which
�it is observed to yield the joint density

f ð�it , fit ¼ j,qitjHÞ ¼ fNð�itj0, l�1
ij Þ 1ðj 2 AðqitÞÞ: (A.26)

Specifically, after initializing the starting values cð0Þi , fð0Þi1 , :::, fð0ÞiT , the slice sampler proposed by Kalli et al. (2011)
and Walker (2007) proceeds as follows in the rth (out of R) iteration(s) of the MCMC algoritm (r ¼ 1, :::,R):

1. Sampling ci: As in Escobar and West (1995) we start by sampling the auxiliary variable wi � Betaðcðr�1Þ
i þ

1,TÞ and then sample ci from the mixture

pwi
� fCðcija0 þ f�i , b0 � log ðwiÞÞ þ ð1� pwi

Þ � fCðcija0 þ f�i � 1, b0 � log ðwiÞÞ,
where fCð�ja, bÞ denotes the density function of the Gammaða,bÞ distribution, f�i ¼ max fðr�1Þ

i1 , :::, fðr�1Þ
iT

n o
and pwi

¼ ða0 þ f�i � 1Þ=ða0 þ f�i � 1þ Tðb0 � log ðwiÞÞÞ:
2. Sampling tij : For j ¼ 1, 2, :::, f�i , we sample the tij values from

tijjfðr�1Þ
i1 , :::, fðr�1Þ

iT � Beta nij þ 1,T � ni� þ ci

 �

,

where nij ¼
PT

t¼1 1ðfðr�1Þ
it ¼ jÞ is the number of observations belonging to the jth component of the ith vari-

able, and ni� ¼
Pj

k¼1 nik is the cumulative sum of components in the groups. We compute the associated mix-
ture weights according to the stick-breaking procedure, xi1 ¼ ti1, and xij ¼ ð1� tijÞ:::ð1� tij�1Þtj
for j ¼ 2, :::, f�i :

3. Sampling qit: We sample the latent variables qit from the uniform distribution Uð0,x
ifðr�1Þ

it
Þ and set q�i ¼

min qi1, :::,qiTf g, which we use to truncate the sequence of mixture weights in the next step.

4. Updating the weights xij: We determine the smallest integer j�i such that
Pj�i

j¼1 xij > ð1� q�i Þ: For those xij

with j > f�i , we draw tij from the prior Betaðci, 1Þ distribution and compute the associated weights xij accord-
ing to the stick-breaking procedure for j ¼ f�i þ 1, :::, j�i : Thus, the latent variable qit indicates how many
weights need to be sampled.

5. Sampling the mixture parameters lij: The mixture parameters are sampled from

lij � Gammað�� ij=2,�sij=2Þ, (A.27)

�� ij ¼ �0 þ nij, (A.28)

�sij ¼ s0 þ
XT
t¼1

�2it � 1ðfðr�1Þ
it ¼ jÞ: (A.29)

We note that, according to Eq. (A.18), �it ¼ ~yit exp �hit=2f g is treated as observable at this stage of the algo-
rithm. As in Step 4, if a new component has been formed, the mixture parameters are sampled from
their prior.

6. Updating the indicator variables fit: According to the weight truncation induced by the variable qit, we update
the indicator variables fit by sampling from

Prðfit ¼ jj �itf gTt¼1, lij
� 
j�i

j¼1
, xijf gj�ij¼1

, qitf gTt¼1
Þ / fNð�itj0, l�1

ij Þ � 1ðj 2 AðqitÞÞ:

The updated variables fit indicate the component to which each observation belongs. Given fit, we
set ki, t ¼ lifit :
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