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V accination is a very effective measure to fight an outbreak of an infectious disease, but it often suffers from delayed
deliveries and limited stockpiles. To use these limited doses of vaccine effectively, health agencies can decide to

cooperate and share their doses. In this study, we analyze this type of cooperation. Typically cooperation leads to an
increased total return, but cooperation is only plausible when this total return can be distributed in a stable way. This
makes cooperation a delicate matter. Using cooperative game theory, we derive theoretical sufficient conditions under
which cooperation is plausible (i.e., the core is non-empty) and we show that the doses of vaccine can be traded for a
market price in those cases. We perform numerical analyses to generalize these findings and we derive analytical expres-
sions for market prices that can be used in general for distributing the total return. Our results demonstrate that coopera-
tion is most likely to be plausible in case of severe shortages and in case of sufficient supply, with possible mismatches
between supply and demand. In those cases, trading doses of vaccine for a market price often results in a core allocation
of the total return. We confirm these findings with a case study on the redistribution of influenza vaccines.

Key words: cooperative game theory, market allocations, S-shaped return functions, vaccination
History: Received: February 2019; Accepted: March 2020 by Sergei Savin, after 3 revisions.

1. Introduction

Vaccination is a powerful preventive measure to
avoid a large outbreak of an infectious disease. How-
ever, often there are insufficient doses of vaccine
available to vaccinate the entire population. Various
parties, such as health agencies, may have their own
stockpiles of doses. To use these limited doses effec-
tively, these parties can decide to cooperate and share
their doses of vaccine. There are multiple examples of
situations in which vaccine sharing proved its bene-
fits. For instance, during the 2004–2005 influenza sea-
son in the United States an unexpected supply

disruption lead to severe shortages. To alleviate these
shortages, influenza vaccines were shared and redis-
tributed among health agencies (Hinman et al. 2006,
McQuillan et al. 2009). Also, during the 2009 influ-
enza pandemic, various countries shared their pan-
demic vaccine supplies to reach the most vulnerable
populations (World Health Organization 2012). In
addition, governmental organizations also recom-
mend to share vaccines in certain situations. For
instance, the Centers for Disease Control and Preven-
tion (CDC) in the United States allows parties to redis-
tribute or sell their vaccines to others in case of
delayed delivery or another emergency (Centers for
Disease Control and Prevention 2009b). Also in Tai-
wan the government recommends health agencies to
share and redistribute influenza vaccines in case of
shortages (Chen 2017). Despite governmental initia-
tives for vaccine sharing, in general, cooperation is a
delicate matter: although total health benefits increase
under vaccine sharing, it may also lower the health
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benefits of some parties. How can we ensure that
these parties are also willing to collaborate? One way
to do so is by compensating them. In this study, we
investigate how parties sharing doses of (the same
type of) vaccine1 should be compensated in such a
collaboration. In particular, we are interested in a
stable allocation of the total health benefits among all
parties. For that, we will make use of cooperative
game theory.
In literature, there are several papers that study

cooperation in the context of vaccination. Most of
these papers consider a central planner that coordi-
nates the cooperation and assume that parties are
willing to cooperate if there is individual rationality
(i.e., if the benefits of cooperation are such that every
individual party receives at least as much as it could
obtain on its own). Sun et al. (2009) and Wang et al.
(2009) model the behavior of countries that can decide
to keep their doses of vaccine for themselves or to
donate some doses to others. Both studies compare
the decentralized solution (i.e., the situation without
cooperation) to the solution of a central planner, such
as the World Health Organization (WHO). Mamani
et al. (2013) also consider a central planner, but they
do not enforce cooperation by imposing a solution.
Instead, they propose a contract that coordinates the
behavior of countries via subsidies. Such a contract
indirectly stimulates countries to cooperate. In con-
trast to a central planner who directly or indirectly
enforces cooperation, parties can also decide to coop-
erate themselves. The fact that cooperation typically
leads to increased health benefits provides a motiva-
tion for parties to cooperate.
In our analysis, we study under which conditions

parties are willing to cooperate without central coor-
dination. As said, we make use of cooperative game
theory. This field deals with the modeling and analy-
sis of situations in which parties, also called “play-
ers,” can benefit from coordinating their actions. In
this study, we introduce and analyze a specific type
of cooperative game, a so-called “resource pooling
game,” in which players redistribute their resources
in an optimal way in order to achieve together a
higher total return. A natural question arises about
the allocation among the players of this additional
return compared to the situation without cooperation.
For this, we use the concept of the core, which is
defined as the set of allocations that divide the total
return in such a way that no individual player nor
any group of players is worse off. We consider coop-
eration to be plausible when such a core allocation
exists. Core allocations are an extension to allocations
that only consider individual rationality (Mamani
et al. 2013, Sun et al. 2009, Wang et al. 2009).
We model the health benefits that players can

obtain from a certain number of doses of vaccine with

a return function. The non-linearities in vaccination
give rise to a typical pattern in the return function,
which is characterized by increasing returns to scale
in case of limited doses and decreasing returns to
scale in case of many doses (Duijzer et al. 2018b,
Mamani et al. 2013, Wu et al. 2007). Such type of
return functions is also known as S-shaped return
functions. For these type of return functions, we show
that cooperation is not always plausible. This means
that even though cooperation typically leads to an
increased total return, there does not always exists a
core allocation of this total return. However, we pre-
sent a number of interesting cases for which coopera-
tion is plausible. For those cases we present an
intuitive allocation with a uniform market price for
trading doses of vaccine. We numerically study situa-
tions in which it is difficult to determine the total
return that players can achieve through cooperation,
because of the complexity of the underlying decision
problem (i.e., the problem of redistributing doses of
vaccine in an optimal way). We analyze whether com-
parable market prices can be used in those situations.
We conclude that when cooperation is plausible, trad-
ing doses of vaccine for a market price often results in
a core allocation of the total return and we provide
analytical expressions for potential market prices. In
our numerical experiments, we consider altruistic
players and selfish players. Altruistic players are will-
ing to share all their doses of vaccine, but selfish play-
ers will only share doses if they have more than
enough for the own population. We find that coopera-
tion is more likely when players are selfish, although
the benefits of cooperation are smaller in that case.
With our analysis we contribute to the literature

in two ways. Firstly, we contribute to the literature
on cooperation in vaccination. This literature
mainly considers cooperation that is organized via
a central planner. Our results show that under cer-
tain conditions, a central planner is not needed to
enforce cooperation but that players can organize
the cooperation themselves. Secondly, we con-
tribute to the cooperative game theory literature by
being the first to analyze resource pooling games
with S-shaped return functions. Next to applica-
tions in vaccination, these type of functions have
also been used for returns from investing into a
market (Zschocke et al. 2013), for sales response in
marketing (Abedi 2017) and for fill rates in
exchangeable-item repair systems (Dreyfuss and
Giat 2017), among others.
The remainder of this study is structured as fol-

lows. We start with a literature review in section 2.
In section 3, we formulate the game and introduce
the core. We introduce our “market allocations”
and discuss their relation to the core in section 4.
In section 5, we derive sufficient conditions under
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which cooperation is always plausible and thus a
core allocation of the total return exists. In section
6, we apply our results to a case study on vaccine
distribution. We close with a discussion and con-
clusion in section 7. Our numerical analyses, as
well as all proofs of lemmas and theorems, are rel-
egated to the appendix.

2. Literature

This study considers a cooperation problem in which
multiple parties together decide how a limited num-
ber of doses of vaccine have to be distributed among
multiple groups of individuals. Many studies on vac-
cine allocation consider one central decision maker
who decides how the available doses have to be allo-
cated among various regions, age groups, or risk
groups (Duijzer et al. 2018a, Keeling and Rohani
2011, and references therein). In this study, however,
we consider multiple decision makers who each have
a number of doses of vaccine available. We use coop-
erative game theory to analyze the cooperation
between these decision makers.
With our cooperative perspective we contribute to

the literature on cooperation and coordination in vac-
cination. We discuss this literature in section 2.1. The
context of vaccination asks for a cooperative game for-
mulation that has not been studied before. In section
2.2, we briefly discuss the related literature on cooper-
ative game theory. We close with a discussion of the
literature on S-shaped return functions in section 2.3.

2.1. Cooperation and Coordination in Vaccination
In literature, many studies of coordination in vac-
cination focus on the production of vaccines. The
various parties involved in vaccine production
often have conflicting objectives. Governments and
public health agencies strive for high vaccine
stockpiles. But vaccine producers might not be
willing to produce large amounts, because of the
various supply uncertainties that play a role in
the production of vaccines. Several studies use
game theory to analyze coordination on the vac-
cine market via contracts or subsidies (e.g., Adida
et al. 2013, Arifo�glu et al. 2012, Chick et al. 2008,
Chick et al. 2017, Dai et al. 2016).
There are also some studies that apply game theo-

retical approaches to vaccine allocation problems.
These studies analyze independent agents that decide
themselves on the number of doses of vaccine allo-
cated to their population. Sun et al. (2009) study an
epidemic that starts in a source country and spreads
both within and across countries. Each country has its
own stockpile of vaccines and the authors analyze
when countries are willing to give up part of their
stockpile or whether they act selfishly. The authors

show that when the transmission from one country to
another is small enough, countries either give all their
vaccines to the source country or do not give away
anything. Under certain conditions this decentralized
solution can be improved by a central planner who
decides how to allocate all resources. Wang et al.
(2009) perform a comparable analysis. They restrict
themselves to two countries, but analyze the outbreak
with a more extensive epidemiological model and for
a longer time horizon. They show that the decentral-
ized solution is equal to the centralized solution when
countries are either altruistic and all vaccines are
given to one of the two countries or when every coun-
try acts selfishly and keeps his own stockpile. Any
other solution results in more infections for at least
one of the countries. Mamani et al. (2013) do not focus
on the allocation of a given number of doses of vac-
cine, but on the decision how many vaccines to order.
Ordering more vaccines brings higher purchasing
costs, but reduces the costs related to infections. Their
model incorporates characteristics of the models of
both Sun et al. (2009) and Wang et al. (2009). Mamani
et al. (2013) propose a coordinating contract in which
every country pays a subsidy to the source country
where the epidemic started. This coordinating con-
tract aligns the objectives of the countries and reduces
the overall costs for infections. These studies use non-
cooperative game theory and enforce cooperation via
contracts. In contrast, we analyze whether players are
willing to cooperate without enforcement and we
therefore use cooperative game theory for our analy-
sis. Although enforced cooperation might be easier to
arrange than self-organized cooperation, other studies
have shown that digital tools can help to facilitate
self-organized cooperation (Ergun et al. 2014). More-
over, in a setting of self-organized cooperation it is
not necessary that the players share all their informa-
tion with a central planner. This might be a big advan-
tage of self-organized cooperation over enforced
cooperation via a central planner, especially nowa-
days when parties are more hesitant to share data
(Guha and Kumar 2018, Mills et al. 2018, Nambiar
et al. 2013).

2.2. Cooperative Game Theory
Cooperative game theory primarily deals with the
modeling and analysis of situations in which groups
of players can benefit from coordinating their actions.
In particular, we focus only on a specific class of
cooperative games, namely those in which binding
agreements are made between players and side pay-
ments are allowed, that is, transferable utility (TU)
games. For such a cooperative game, one lists for
every possible group of players a single number, rep-
resenting, for instance, the health benefits for this
group of players when they coordinate their actions.
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In the theory of cooperative games, an important
question is how to allocate this associated amount
when all players decide to cooperate. A well-known
solution concept for answering this question is the
core (Gillies 1959). This is the set of all allocations of
the total amount that is both efficient (i.e., the total
amount is allocated completely) and coalitional stable
(i.e., every group of players gets at least what they
would get while acting together).
The game that we study here belongs to the class of

operations research (OR) games, a stream of literature
that studies TU games, arising from underlying situa-
tions in which a group of collaborating players faces a
joint optimization problem (see, e.g., Borm et al. 2001,
for a review on OR games). In particular, within this
class of OR games, our game can be recognized as a
resource pooling game. In such a game, resources are
reallocated, or shared among players to realize addi-
tional profit (or reduce costs). There is a great interest
in these games, especially with a focus on logistics. In
particular, there is a focus on reallocation of inventory
in a retail setting (Anupindi et al. 2001, Granot and
So�si�c 2003, So�si�c 2006, Yan and Zhao 2015). In such a
setting, retailers determine their order quantities in a
non-cooperative way but share their inventory in a
cooperative way. Other studies focus on applications
such as pooling of emergency vehicles in health care
(Karsten et al. 2015), pooling of technicians in the ser-
vice industry (Anily and Haviv 2010), pooling of
capacity in a production environment (Anily and
Haviv 2017, €Ozen et al. 2011), pooling of spare parts
in the capital intensive goods industry (Guajardo and
R€onnqvist 2015, Karsten and Basten 2014, Karsten
et al. 2012), and reallocation of repair vans, tamping
machines, and spare parts in a railway setting (Sch-
licher et al. 2017a,b, 2018). To the best of our knowl-
edge, we are the first to focus on a resource pooling
game with an application in vaccination.
In a broader perspective, our game can be recog-

nized as a slightly modified version of market games
(Shapley and Shubik 1969). In these games, which are
studied intensively in literature (see e.g., Osborne and
Rubinstein 1994), each player is associated with a set
of resources and a concave utility function, identifying
the amount of profit realized for the given set of
resources. Players can cooperate by reallocating
resources to maximize the sum of the concave utility
functions. Shapley and Shubik (1969) show that the
core of these market games is always non-empty, by
providing an intuitive market allocation. Debreu and
Scarf (1963) show that core non-emptiness of market
games is no longer guaranteed when utility functions
are non-concave. We study a modified version of mar-
ket games, since we consider the utility function (per
player) to be S-shaped (i.e., convex–concave). To the
best of our knowledge, there are no market games nor

resource pooling games in literature that consider the
specific individual utility function with a convex–con-
cave form.

2.3. S-Shaped Return Functions
The decision problem underlying our cooperative
game is a resource allocation problem with S-shaped
return functions to measure the return obtained from a
certain number of resources. The S-shape establishes
convex returns for a limited number of resources and
concave returns in case of many resources. S-shaped
return functions are used to express the relation
between the number of distributed doses of vaccine
and the health benefits/costs in a population (Chick
et al. 2017, Duijzer et al. 2018b, Mamani et al. 2013),
but also in marketing (e.g., Abedi 2017, A�grali and
Geunes 2009). Although S-shaped return functions
have various applications, decision problems involving
these functions are in general difficult. A�grali and
Geunes (2009) even show that a resource allocation
problem involving such return functions is NP-hard.
Several methods have been proposed to find solutions
for this problem. Ginsberg (1974) was the first to con-
sider this problem and he derived conditions under
which the optimal solution can be described analyti-
cally. Based on these analytical solutions, Duijzer et al.
(2018b) developed a heuristic which works well for
vaccine allocation problems. A�grali and Geunes (2009)
and Srivastava and Bullo (2014) approach the problem
theoretically and develop approximation algorithms
with theoretical performance guarantees and polyno-
mial time complexity. Although the computation time
of these approaches is polynomial, the computation
time can be quite long for large instances or when a
high precision is required. Abedi (2017) analyze a more
general version of the problem in which the return
functions are correlated. They study an application in
marketing and develop a branch and cut algorithm.
In this study, we need to solve a resource allocation

problem with S-shaped return functions for every
possible group of players in order to determine
whether cooperation is plausible. This implies that
the number of NP-hard problems we need to solve is
exponential in the number of players. We therefore
prefer a solution approach that is very fast. We use
the heuristic of Duijzer et al. (2018b), which is shown
to work well in the context of vaccination. If possible
(i.e., for small instances), we will use complete enu-
meration to determine the optimal solution of the NP-
hard resource allocation problem.

3. Problem

The cooperation problem in vaccination that we study
here is an application of a general cooperation
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problem in resource allocation. We formulate our
problem in terms of vaccines, but it could equiva-
lently be applied to general settings in which multiple
parties can cooperate to redistribute their resources
and in which an S-shaped return function is reason-
able. We refer to sections 2.2 and 2.3 for a discussion
of alternative applications.
We formulate our problem and the corresponding

cooperative game in section 3.1. In section 3.2, we dis-
cuss the type of allocations that we are interested in.
In section 3.3, we show that these desirable allocations
do not always exist. Finally, we discuss the viability
of cooperation in section 3.4 by analyzing an exten-
sion of our model which includes cooperation costs.

3.1. Cooperative Game Formulation
We consider a finite set of players N, where each
player is responsible for a certain geographic region
with Mi inhabitants. Every player i 2 N initially has
some doses of vaccine ri � 0. The monetary health
benefits that player i 2 N obtains from a certain
number of doses of vaccine is determined by the S-
shaped return function Fið�Þ. We assume that Fið�Þ
only depends on the number of doses of player i, and
not on the doses of the other players. This assumption
implies that there is no interaction between the play-
ers, which is reasonable when the players correspond
to geographically distant regions and when the inter-
action within a region is much larger than between
regions (Mamani et al. 2013, Sun et al. 2009, Wu et al.
2007). For a discussion of this assumption we refer to
section 7.
The S-shaped function captures the structure of

increasing returns to scale when a player has few
doses of vaccine, but decreasing returns to scale when
he has many doses. This shape of the function cap-
tures the primary and secondary effect of vaccination.
Vaccination is beneficial to the individuals who get
vaccinated themselves (primary effect), but also
unvaccinated individuals can benefit from the vacci-
nation of others (secondary effect). When there are
few doses of vaccine, both effects play a role. But
when there are already many individuals vaccinated
in a population, distributing even more doses would
probably lead to vaccinating people who would not
have become infected in the first place. Hence, the
added value of an additional dose reduces and even
goes to zero. We can model the characteristics of the
return function as follows for any player i.

ASSUMPTION 1. Consider a return function Fið�Þ, then:
1. Fið�Þ is continuously differentiable, non-negative

and non-decreasing,
2. Fið�Þ is strictly convex on ½0; ciÞ and strictly

concave on ðci; þ1Þ for some ci � 0,

3. Fið�Þ is convergent, that is, limf!þ1 d
df FiðfÞ ¼ 0.

In literature, functions that satisfy the conditions in
Assumption 1 are referred to as nicely convex–concave
(see, e.g., Ginsberg 1974).
We discuss in more detail how we measure the

return of a player. The return function measures the
monetary health benefits per inhabitant, that is, the
total health benefits for player i are equal to MiFið�Þ.
Furthermore, the return depends on the fraction of
the population who can be vaccinated. For example,
player i obtains a total return of MiFiðr=MiÞ from r
doses of vaccine. If the same number of doses of vac-
cine were given to player j, then he would obtain a
return of MjFjðr=MjÞ. This type of return function is
common in vaccination (Duijzer et al. 2016, 2018b,
Mamani et al. 2013). We note that this modeling
choice is not restrictive, because any return function
that satisfies Assumption 1 can be rewritten to model
the fractional return. To illustrate, for any return func-
tion H(�) that satisfies Assumption 1 and measures the
total return that a player of size M obtains from a
number of resources, we can construct a function F(�)
that also satisfies Assumption 1 but measures the frac-
tional return, by setting F(r/M) = H(r)/M for all
r � 0.
The following lemma shows that Assumption 1 is

suitable for return functions related to vaccination. A
well-accepted approach in literature to model the
time course of an epidemic is by means of a compart-
mental model. One of the most fundamental compart-
mental models is the SIR model (Diekmann et al.
2012).

LEMMA 1. If the epidemic is modeled with the SIR
model, then the health benefits of people escaping infec-
tion as a function of the doses of vaccine distributed in
the population satisfies Assumption 1.

In Appendix S1, we provide the characterization of
the return function that follows from the SIR model.
Also the proof for Lemma 1 can be found there. By
Ma and Earn (2006) and Duijzer et al. (2018b), Lemma
1 can be generalized to extensions of the SIR model,
such as the SEIRmodel and the SInRmodel.
We introduce our game as a pair (N,v), where

N � N represents the set of players and v : 2N ! R

denotes the value function which is introduced in this
section. We use the term “coalition” to refer to a subset
of players S ⊆ N. The total set of playersN is referred to
as the grand coalition. The value function v(S) measures
the maximum return that a coalition of players S ⊆ N
can achieve by redistributing their doses of vaccine
without the help of the players in N∖S. This maximum
return for coalition S ⊆ N is equal to the value of the fol-
lowing optimization problem:

Westerink-Duijzer, Schlicher, and Musegaas: Cooperation Problems in Vaccination
Production and Operations Management 0(0), pp. 1–18, © 2020 The Authors. Production and Operations Management published by

Wiley Periodicals LLC on behalf of Production and Operations Management Society 5

Please Cite this article in press as: Westerink-Duijzer, L. E., et al. Core Allocations for Cooperation Problems in Vaccination. Production
and Operations Management (2020), https://doi.org/10.1111/poms.13184

https://doi.org/10.1111/poms.13184


vðSÞ ¼max
X
i2S

MiFiðfiÞ

s.t.
X
i2S

fiMi �
X
i2S

ri

fi � 0 8i 2 S:

ð1Þ

In Problem (1), the decision variable fi represents
for all i 2 S the fraction of doses of vaccine player
i receives relative to its size Mi, when player i is
cooperating with all other players in S. In literature,
the above problem per coalition is referred to as a
knapsack problem with S-shaped return functions
(e.g., A�grali and Geunes 2009, Ginsberg 1974, Srivas-
tava and Bullo 2014). A�grali and Geunes (2009)
show that this problem is NP-hard.
To show that cooperation can lead to increased health

benefits, we illustrate our game with the following
example. Analyzing such a game is difficult for two rea-
sons. Firstly, realistic return functions can be difficult to
evaluate, because they might be implicitly defined. Sec-
ondly, the optimization problem underlying the value
function is NP-hard. Therefore, we use simple return
functions that have all the characteristics of Assumption
1, such that the reader can easily verify the example. In
addition, we approximate the value function using dis-
cretized enumeration with step size 10�4 and we round
the numerical values to four decimal places. This
implies that the actual value function can deviate from
the reported numbers. However, because the return
function is continuous and non-decreasing (Assump-
tion 1), this deviation is small and it does not affect the
message of the example.

EXAMPLE 1. Consider a situation with three identical
players. Let FiðfÞ ¼ 1

1þ expf� 45f þ 25g for i = 1,2,3. Fur-
thermore, M = [1,1,1] and r = [0.2,0.2,0.2]. It can be
verified that

vðfigÞ ¼ 1

1þ expf�45ðri=MiÞ þ 25g ¼ 1

1þ expf16g
¼ 0 for i ¼ 1; 2; 3:

When the three players cooperate, they can achieve
a higher return by giving all doses to one player.
This results in

vðNÞ ¼ 1

1þ expf�45 � 3
5

� �þ 25g
þ 1

1þ expf�45 � 0þ 25g
þ 1

1þ expf�45 � 0þ 25g¼ 0:8808:

The initial distribution of doses of vaccine in
Example 1 is proportional to the population size.

This is the policy that is advised by the CDC (Cen-
ters for Disease Control and Prevention 2009a).
Example 1 demonstrates that, when doses of vac-
cine are scarce, this initial distribution can be sub
optimal and cooperation can increase the total
health benefits. When all players keep their doses to
themselves, the total return is approximately equal
to zero. But by combining the doses and leveraging
the convex part of the return function, a total return
of almost 0.9 can be obtained. In this case, the high
return could be achieved because one player bene-
fited from the willingness of the other players to
give away their doses of vaccine. However, a player
is only willing to give away (part of) his vaccine
stockpile if he can also benefit from the increased
return of the other player. In the next section, we
therefore discuss how the total return, achieved
through cooperation can be allocated among the
players.

3.2. The Core
The core (Gillies 1959) of a game is formally defined
as the set of all allocations x 2 RN that satisfy the fol-
lowing conditions:

Efficiency
X
i2N

xi ¼ vðNÞ

Stability
X
i2S

xi � vðSÞ 8S � N
ð2Þ

The efficiency condition guarantees that the total
return is divided among all players. By the (coali-
tional) stability conditions, this division is done in
such a way that no coalition of players can improve
their return by leaving the grand coalition. Stability is
thus stronger than individual rationality, which
would only require that no individual player is will-
ing to leave the grand coalition (xi � vðfigÞ for all
i 2 N).
We illustrate the concept of the core in the follow-

ing example. Recall that all numerical values are
rounded to four decimal places.

EXAMPLE 1. (CONTINUED). The return function of the
three identical players is illustrated in Figure 1.

From Figure 1 it follows that every coalition of
players maximizes its return by giving all doses of
vaccine to one player. This results in the following
value function:

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

v(S) 0 0 0 0.0009 0.0009 0.0009 0.8808

One can verify that x ¼ 0:8808
3 ; 0:88083 ; 0:88083

� �
is a core

allocation.
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In Example 1, vaccines are scarce with respect to
Fið�Þ and Mi for all i 2 N. The return that a single
player obtains from his doses of vaccine is negligi-
ble and the same holds when two players cooper-
ate. Only when three players cooperate, they can
obtain a high return. Then there are enough doses
to benefit from the secondary effect of vaccination.
In this example, the allocation which divides the
total return equally among all players is in the core.
Moreover, practically any allocation in which each
player receives a strictly positive share is in the
core, because a player can almost never obtain a
higher return in any subcoalition. We note that, in
order to satisfy the stability conditions, every sub-
coalition consisting of two players should receive at
least 0.0009. Therefore, the allocation in which all
return is given to a single player is not in the core,
even though this allocation is efficient and individ-
ually rational.
The simple setting of Example 1 illustrates the exis-

tence of core allocations. In section 5, we will identify
classes of problems for which such allocations exists.
However, it is also possible that the core is empty,
meaning that no allocation exists that satisfies the effi-
ciency and stability conditions in (2).

3.3. An Empty Core
With the following example we illustrate that the core
can be empty. We again determine the value function
via discretized enumeration with step size 10�4 and
round the numerical values to four decimal places.

EXAMPLE 2. Consider a situation with three identical
players: M = [1,1,1] and r ¼ 1

3 ;
1
3 ;

1
3

� �
. Let

FiðfÞ ¼ 1
1þ expf� 45f þ 25g, for i = 1,2,3. Every coalition

of players maximizes its return by giving all doses
of vaccine to one player (see Figure 1). We will
show that the core of this game is empty. For this,
suppose for the sake of contradiction that x 2 R3 is
a core allocation. Then, for i = 1,2,3, we have

xi ¼#
efficiency

vðNÞ �
X

j2Nnfig
xj �

#
stability

vðNÞ � vðNnfigÞ

¼ 1:0000� 0:9933 ¼ 0:0067;

and so x1 þ x2 þ x3 � 3 � 0:0067\ vðNÞ, which is a
contradiction. Hence, the core is empty.

The intuition behind an empty core is related to the
convex–concave shape of the return function. This
shape establishes the existence of a sweet spot that
strikes the right balance between the increasing and
decreasing returns to scale. In Figure 1, this sweet
spot is somewhere around f = 0.65. Having more
doses of vaccine does hardly increase the return, but
having less vaccines will result in a big loss. Hence,
doses are deployed in the most effective way around
this sweet spot. If the total number of doses of vaccine
is such that this sweet spot is not reached in the grand
coalition, then v(N) suffers from loss in effectiveness.
This is what we see in Example 2 where some doses
are not used in the most effective way in the grand
coalition. In those cases, it is likely that a smaller coali-
tion of players can use their own doses of vaccine
more effectively. In Example 2, this applies to any
coalition of two players. These coalitions of players
will only join the grand coalition, if they are compen-
sated for their loss in effectiveness. However, there
might be no players willing to pay for this compensa-
tion, such as in the above example. This leads to an
empty core.

3.4. Cooperation Costs
In this study, we use the existence of a core allocation
as a measure to determine whether cooperation is
plausible. However, in reality there are other aspects
that also affect players’ willingness to cooperate.
These aspects, which we refer to as the “cooperation
costs,” might even outweigh the benefits of coopera-
tion. We distinguish between indirect and direct
costs.
The indirect cooperation costs are related to the

organizational, political, and ethical aspects of vaccine
redistribution. It requires effort and willingness to
organize and arrange the redistribution of doses of
vaccine. Because of these aspects, public health insti-
tutes such as the CDC only allow vaccine sharing to
alleviate a shortage (Centers for Disease Control and
Prevention 2016). For example, during the 2004–2005

Figure 1 Graphical Representation of the Return Function:
Fi ðf Þ ¼ 1

1þ expf� 45f þ 25g [Color figure can be viewed at wile
yonlinelibrary.com]
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influenza season in the United States, vaccine sharing
and redistribution were used to deal with unexpected
disruptions in the supply of influenza vaccines (Hin-
man et al. 2006, McQuillan et al. 2009).
Redistribution of doses of vaccine has also an

important ethical dimension, because sharing
doses reduces the available stockpile for the own
population. Countries might therefore be hesitant
to share their doses of vaccine, even if they
would receive a monetary compensation for it. In
this study, we assume that the money received
can also be used effectively to increase the health
benefits, for example, via treatment for infected
patients or via campaigns to reduce transmission.
In our numerical experiments in Appendix S3 we
also consider the case of selfish countries that
will only give away doses of vaccine if they have
sufficient doses left for their own population.
There can also be direct costs involved in coopera-

tion, for example, related to the transportation costs
of redistributing vaccines. In some applications these
costs are negligible compared to the gains of coopera-
tion. This is, for example, the case in spare part pool-
ing (cf., Karsten et al. 2012). However, if the
transportation costs are substantial, they might affect
the possibilities of cooperation. Since vaccines need to
be stored and transported in a temperature-controlled
environment, transportation costs for redistributing
vaccines can be high (Duijzer et al. 2018a).
We analyze whether introducing cooperation costs

affects the non-emptiness of the core. We thereto
introduce a new value function, where the value of a
coalition S is equal to v(S) minus the cooperation costs
of this coalition, for all S ⊆ N. Clearly, without coop-
eration there are no cooperation costs. We model
cooperation costs that are independent of the players
in the coalition (case (a)) and cooperation costs that
are player specific (case (b)).

(a) Let vKðSÞ ¼ vðSÞ � K for all S ⊆ N with
|S| � 2 and vKðfigÞ ¼ vðfigÞ for all i 2 N.

(b) Let vKðSÞ ¼ vðSÞ �P
i2S Ki for all S ⊆ N with

|S| � 2 and vKðfigÞ ¼ vðfigÞ for all i 2 N.

Case (a) can include cooperation costs that are
related to political willingness and the organizational
aspects needed to set up a cooperation among parties.
Case (b) can include transportation costs that might
be different for every player. Cooperation costs that
depend on how many doses of vaccine are trans-
ported from one player to another are not captured by
one of the two case and might have an effect on the
non-emptiness of the core. For a further discussion on
this, we refer to section 7.
The following theorem shows that, under certain

conditions, the non-emptiness of the core is preserved
after the introduction of cooperation costs.

THEOREM 1. Suppose that the core of the original game
(N,v) is non-empty.

1. The core of the game ðN; vKÞ is also non-empty if
0 � K � vðNÞ � P

i2N vðfigÞ.
2. The core of the game ðN; vKÞ is also non-empty if

there exists a core allocation ðxiÞi2N in the core of
the original game (N,v) for which
0 � Ki � xi � vðfigÞ for all i 2 N.

Theorem 1 shows that including cooperation costs
does not affect our conclusions regarding a non-
empty core as long as the cooperation costs are out-
weighed by the benefits of cooperation.
To conclude, a non-empty core is robust against the

introduction of certain cooperation costs. This justifies
our choice for the existence of a core allocation as a
measure to determine whether cooperation is plausi-
ble. In the remainder of the study, we therefore say
that cooperation is plausible when the core is non-
empty.

4. Market Allocations

Core allocations satisfy a set of clear conditions, but
their actual interpretation can be difficult. We there-
fore propose another type of allocations, so-called
market allocations, that have a clear and intuitive struc-
ture. In section 4.1, we introduce our market alloca-
tions. We discuss the relation between
market allocations and the core in section 4.2. In sec-
tion 4.3, we present a theoretical result on games with
two players by showing that for two player games the
core is always non-empty and that all core allocations
are also market allocations.

4.1. Definition of Market Allocations
We introduce a particular type of allocation,
namely those with a market price. Let f� ¼ ½f�i 	i2N
denote an optimal solution to Problem (1) for the
grand coalition. Then, any allocation y 2 RN can
be written as

yi ¼ MiFiðf�i Þ þ piðri � f�i MiÞ 8i 2 N: ð3Þ
Above allocation can be interpreted as follows.
All players cooperate and determine the best pos-
sible division of all doses of vaccine, that is, f�.
Each of them obtains a certain return from the
doses that he gets in this division. This return
corresponds to MiFðf�i Þ for every player i 2 N.
Some players end up with less doses than they
initially had and others with more. To compen-
sate for the loss of doses of vaccine, players
receive some money. At the same time, players
who have received more doses have to pay for
the extra doses. From the allocation y we can
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determine a price pi per dose bought/sold for
every player i. We call an allocation y a market al-
location if pi ¼ pj for all i,j 2 N. That implies
that there exists a single price p, called the market
price. All players either sell or buy doses of vac-
cine for this market price. Even if players would
mainly negotiate bilaterally, such a market price
is likely to enhance cooperation in practice,
because it prevents having dissatisfied players
who found out that other players have bought
(sold) vaccines for a lower (higher) price.

4.2. Market Allocations and the Core
Although market allocations have a nice and
clear interpretation, their relation to the core is
not always clear. For special types of games, so-
called “market games” the core is always non-
empty and there is always a market allocation in
the core (see our discussion in section 2), but
this does not hold for the game that we consider
in this study. For our game, the core can be
empty. Nevertheless, market allocations can be
constructed for any situation and thus market al-
locations always exist, even if the core is empty.
Conversely, it is also possible to have a non-
empty core that does not contain a market alloca-
tion. This is illustrated with the following exam-
ple. Again, we determine the value function via
discretized enumeration and present the numeri-
cal values rounded to four decimal places.

EXAMPLE 3. Consider a situation with three players:
M = [1,1,1] and r = [0.1,1,0.65]. Let
FiðfÞ ¼ 1

1þ expf� 45f þ 25g, for i = 1,2,3. The correspond-
ing value function is as follows:

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

v(S) 0 1.0000 0.9859 1.0000 0.9998 2.0000 2.3319

One can easily verify that x = [0.1319,1.1,1.1] is a core
allocation. Although the core is non-empty, we will
show that there is no market allocation that belongs
to the core. To see this, suppose for the sake of con-
tradiction that there exists a market allocation y with
market price p that belongs to the core. Via enumera-
tion we can determine that the optimal distribution of
doses of vaccine for the grand coalition is propor-
tional: f�i ¼ 1:75

3 ¼ 0:5833, with Fiðf�i Þ ¼ 0:7773 for
i = 1,2,3. To move toward the optimal distribution f�,
player 1 has to buy some doses and players 2 and 3
have to sell some of their doses. By the stability of
allocation y, the following can be derived for the
market price that players 1 and 3 are willing to pay/
receive:

y1 ¼ M1F1ðf�1 Þ þ pðr1 � f�1M1Þ� vðf1gÞ
, p� 0:7773� 0

0:5833� 0:1
¼ 1:6083

y3 ¼ M3F3ðf�3 Þ þ pðr3 � f�3M1Þ� vðf3gÞ
, p� 0:9859� 0:7773

0:65� 0:5833
¼ 3:1274

Hence, player 1 is willing to pay a price per dose at
most equal to 1.6083. However, player 3 wants to
receive at least 3.1274 per dose. This implies that
there is no market price that satisfies the individual
rationality condition of both players 1 and 3. Hence,
there is no market allocation y that is in the core,
even though the core is non-empty.

The fact that there is no market price in Example 3
is again caused by the convex–concave shape of the
return function. Player 3 is initially at the sweet spot
and by selling some doses he loses a lot in effective-
ness. Since player 1 is the only player who buys doses,
he needs to pay a high price to compensate player 3.
However, in case of a market price, player 1 must also
pay the same high price for the doses he buys from
player 2. Player 1 is not willing to do so and therefore
there is no market allocation in the core.
The fact that the core is non-empty can be explained

as follows. We can use Equation (3) to determine the
prices p1; p2; p3 that follow from the core allocation
x = [0.1319,1.1,1.1]. We find that p1 ¼ 1:3354,
p2 ¼ 0:7744, and p3 ¼ 4:8381. Note that players 2
and 3 are sellers, so they sell their doses of vaccine at
different prices. Player 1 is the only buyer: he buys 1-
0.5833 = 0.4167 doses of vaccine from player 2 for a
price p2 per dose and he buys 0.65-0.5833 = 0.0667
doses of vaccine from player 3 for a price p3 per dose.
On average he pays the price p1 per dose. We see that
player 1 buys a few doses for a very high price and
most of the doses for a low price, resulting in an
acceptable average price for this player. In this way,
all players are willing to cooperate with each other.
In general, Example 3 shows that the requirement

of a single market price can be quite restrictive. There
can be many allocations belonging to the core that cor-
respond to individual prices for the players.

4.3. Two players
In the previous sections, we have seen that the core
can be empty and that a market allocation that
belongs to the core does not necessarily exist. In this
section, we provide an interesting result for games
with two players. These games have the elegant struc-
ture that one player gives (part of) his doses of vac-
cine to the other player. Thus, there is one “buyer”
(denoted with the letter b) and one “seller” (denoted
with the letter s). The following theorem shows that in
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case of two players the core is non-empty. Moreover,
all core allocations are also market allocations. The
proof of this theorem can be found in Appendix S2.

THEOREM 2. In case of two players (i.e., |N| = 2) the
core is equal to the set of all market allocations
corresponding to an optimal solution f� for coalition N
and a price p, with

p 2
Ms Fs

rs
Ms

� �
� Fsðf�s Þ

h i
rs �Msf�s

;
Mb Fbðf�b Þ � Fb

rb
Mb

� �h i
Mbf�b � rb

2
4

3
5:

Theorem 2 can intuitively be explained as follows.
The market price compensates the seller for selling
his doses of vaccine. Therefore, this price must be
high enough for the seller and at the same time not
too high for the buyer. Such a price exists, because by
redistributing the doses the players can achieve at
least the same total return as on their own. For two
players, all core allocations are market price alloca-
tions, because one player buys doses from the other.
There are no other players involved, and hence the
compensation that the seller receives for giving away
doses is completely paid by the buyer.

5. Analytical Results

In the previous section, we have seen that the core
is always non-empty for games with two players,
but that for more than two players the core can be
empty. In this section, we study the conditions for
games with |N| � 2 players under which the core
is non-empty and a market allocation is in the core.
We start in section 5.1 with analyzing the character-
istics of the value function. Based on these charac-
teristics, we derive sufficient conditions for the core
to be non-empty in section 5.2. We do so by pro-
viding a market allocation that is in the core. More-
over, in section 5.3 we derive additional results for
a class of games where all players have the same
return function, that is, Fið�Þ ¼ Fjð�Þ for all i,j 2 N.
The numerical analyses generalizing the finding of
this section could be found in Appendix S2. The
proofs of the analytical results in this section can be
found in Appendix S3.

5.1. Analysis of the Value Function
To analyze our game, we first analyze the value func-
tion. The following lemma shows that any coalition of
players can always use all doses of vaccine they have.
This lemma follows directly from the fact that the
return functions are non-negative and non-decreasing
(see Assumption 1).

LEMMA 2. For every coalition S ⊆ N, there always
exists an optimal solution f� 2 RS to Problem (1) for
which

P
i2S f

�
i Mi ¼

P
i2S ri.

To investigate in what way the players will divide
their doses of vaccine when they cooperate, we intro-
duce the following concept. Let the function DFið�Þ
measure the additional return per dose for player
i 2 N with return function Fið�Þ (cf., Duijzer et al.
2018b). The additional return is the return that is
obtained from the doses of vaccine compared to hav-
ing no doses at all. The function DFið�Þ for all i 2 N
is defined as follows:

DFiðfÞ ¼
1
f ½FiðfÞ � Fið0Þ	 for f [ 0;

lim
f#0

1
f ½FiðfÞ � Fið0Þ	 for f ¼ 0:

8<
: ð4Þ

Note that DFiðfÞ can also be interpreted as the aver-
age slope of the return function Fið�Þ on the interval
[0,f]. We derive the following result, which follows
from the characteristics of the function Fið�Þ in
Assumption 1.

COROLLARY 1. The function DFið�Þ is maximized by a
unique vaccination fraction ~fi for which F0ið~fiÞ ¼ DFið~fiÞ,
for all i 2 N. Moreover, DFið�Þ is increasing on the
interval ½0;~fiÞ and decreasing on the interval ð~fi;1Þ.

Corollary 1 is illustrated in Figure 2. This figure
shows that there is a unique vaccination fraction ~fi for
players 1 and 2, for which the additional return per
dose is the highest. This fraction is unique because of
the nicely convex–concave shape of the function Fið�Þ.
The vaccination fraction ~fi can be interpreted as the
sweet spot that strikes the right balance between the
convex and concave part of the return function.
Duijzer et al. (2018b) therefore introduce the term
“dose-optimal vaccination fraction” for ~fi.
From the analysis of Duijzer et al. (2018b), we

can derive that the dose-optimal vaccination frac-
tion is increasing in the reproduction ratio of the
epidemic, a measure for the severity of the out-
break. That means that there are more doses of
vaccine needed to reach optimal coverage in case
of a highly infectious disease than for a mild
disease. Moreover, the dose-optimal vaccination
fraction is decreasing in the moment of vaccina-
tion. The later the doses of vaccine are adminis-
tered, the fewer doses are needed to reach
optimal coverage. The intuition behind this is
that already many people will be infected when
doses of vaccine are administered later during
the outbreak, such that fewer people can still
benefit from vaccination.
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Next to ~fi as defined in Corollary 1, we also intro-
duce another set of vaccination fractions that we will
use in the analysis of the game.

DEFINITION 1. Define ~f
ðkÞ
i for all i,k 2 N with F0ið~fiÞ �

F0kð~fkÞ such that ~f
ðkÞ
i � ~fi and F0ið~f ðkÞi Þ ¼ F0kð~fkÞ.

COROLLARY 2. For any i,k 2 N with F0ið~fiÞ � F0kð~fkÞ,
there exists a unique ~f

ðkÞ
i � 0 as defined in Definition 1.

The proof of Corollary 2 can be found in
Appendix S2. This corollary is illustrated in Figure 2.
The left panel of the figure shows that ~f

ð2Þ
1 is such that

the derivative of F1ð�Þ at this point is equal to the
derivative of F2ð�Þ at the point ~f2.
The vaccination fractions ~fi and ~f

ðkÞ
i play an impor-

tant role in the optimal solution to Problem (1). This is
illustrated in the following theorem. In this theorem
and in the remainder of the study, we denote the total
number of resources for a coalition of players S ⊆ N
by R(S), that is, RðSÞ ¼ P

i2S ri.

THEOREM 3. Consider a coalition of players S ⊆ N.
Then any optimal solution f� 2 RS to Problem (1) for
particular cases has the following characteristics:

(a) If 0\RðSÞ � mini2Sf~fiMig, then there exists a
player k 2 arg maxi2SfDFiðRðSÞMi

Þg such that all
doses of vaccine are given to this player, that is,
the optimal solution is as follows: f�k ¼ RðSÞ

Mk
and

f�i ¼ 0 for all i 2 S∖{k}.
(b) If RðSÞ � P

i2S~f
ðkÞ
i Mi, with k 2 arg

mini2SfDFið~fiÞg, then the doses of vaccine are

divided among all players in S in such a way that
f�i � ~fi for all i 2 S and F0iðf�i Þ ¼ F0jðf�j Þ for all
i,j 2 S.

Above theorem shows that if the vaccination frac-
tion ~fi cannot be attained for any of the players,
then it is best to give all doses to the player for
which they are most beneficial (case (a)). When
there are enough doses to reach optimal coverage
for every player (case (b)), the doses are indeed
divided among the players in such a way that every
player i 2 S receives at least his vaccination frac-
tion ~fi. Because the vaccination fractions ~fi depend
on the timing of vaccination and the infectiousness
of the disease that causes the outbreak, case (b) does
not only apply to situations in which there are
many doses of vaccine, but can also cover cases in
which vaccination takes place rather late during the
outbreak or cases with a mild disease.
We refer to case (a) of Theorem 3 as the case of sev-

ere shortage. Case (b) will be described as the case of
sufficient supply. Note that we do not make any
assumptions on the initial distribution of the doses of
vaccine. Hence, the case of sufficient supply does not
imply that there is no need for cooperation. There can
be a mismatch between supply and demand which
could be solved by cooperation.

5.2. Core Allocations
In this section, we derive sufficient conditions under
which the core is non-empty. We show that in those
cases there is a market allocation in the core. That
means that in those cases, cooperation with all players
is plausible and the total return is divided in such a
way that all players buy and sell doses of vaccine for

Figure 2 This Figure Illustrates the Existence and Uniqueness of ~f1, ~f2, and ~f ð2Þ1 in the Following S-Shaped Return Functions:
F1ðf Þ ¼ expf0:75 � 0:25=fg and F2ðf Þ ¼ 0:6 expf1:25� 0:6=fg [Color figure can be viewed at wileyonlinelibrary.com]
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the same price. We provide analytical expressions for
these market prices and compare these prices to a
simple price that could be used as a rule of thumb.
This simple price is based on the intuition that the
price per dose is equal to the total additional return
divided by the total number of available doses. To for-
malize this intuition, we introduce A(N) as the aver-
age additional return per dose when all players in N
cooperate.

AðNÞ ¼ vðNÞ �P
i2N MiFið0Þ

RðNÞ
¼ 1

RðNÞ
X
i2N

Mif
�
i DFiðf�i Þ

" #
ð5Þ

Observe that the numerator of above fraction repre-
sents the total additional return that is gained com-
pared to having no doses of vaccine at all. This total
additional return is divided by the total number of
available doses. Alternatively, A(N) can also be writ-
ten as the weighted average of the functions DFi

evaluated at the optimal solution ðf�i Þi2N .
Let us now analyze the cases for which we can

show that a market allocation is in the core. To do so,
we use the two cases of Theorem 3 for which the
value function can be characterized. The following
theorem considers the case of severe shortage, that is,
when there are very few doses of vaccine in total (case
(a) of Theorem 3).

THEOREM 4. Assume RðNÞ � mini2Nf~fiMig and let f�

be an optimal solution for coalition N. Then, the mar-
ket allocation corresponding to solution f� and price
maxi2NfDFiðRðNÞ

Mi
Þg is in the core. This implies that the

core is non-empty.

Theorem 4 can intuitively be explained as follows:
when doses of vaccine are scarce, the highest possible
return is achieved when all doses are given to a player
for which they are the most beneficial. Hence, all
doses are given to a player k with

k 2 arg maxi2NfDFiðRðNÞ
Mi

Þg. This results in an addi-

tional return of DFkðRðNÞ
Mk

Þ per dose. Every coalition of

players can obtain no more than this, because of the
limited number of available doses, the convex part of
the return function and the choice of player k. There-
fore, every coalition of players is happy if they can

receive an additional return of DFkðRðNÞ
Mk

Þ per dose. This
corresponds to the market price of the proposed allo-
cation. Moreover, one can verify that

DFkðRðNÞ
Mk

Þ ¼ AðNÞ for the situation described in

Theorem 4.
We can also show non-emptiness of the core when

there is sufficient supply of vaccine (case (b) of

Theorem 3). The following theorem presents a core
allocation.

THEOREM 5. Assume RðNÞ � P
i2N ~f

ðjÞ
i Mi, with

j 2 arg mini2NfDFið~fiÞg, and let f� be an optimal solu-
tion for coalition N, where all doses of vaccine are used.
Then, the market allocation corresponding to solution f�

and price F0kðf�k Þ, where k 2 N, is in the core. This
implies that the core is non-empty.

To prove this theorem, we make use of duality for
convex non-linear optimization problems. Deriving
core allocations using duality theory is often done for
linear optimization problems (Deng et al. 1999, Owen
1975), we extend this approach to non-linear prob-
lems.
We can intuitively explain Theorem 5 as follows.

Note that by Theorem 3 any optimal solution f� is
such that F0iðf�i Þ ¼ F0jðf�j Þ for all i,j 2 N. Since the
market price of Theorem 5 is equal to F0iðf�i Þ for all
i 2 N, no player is willing to deviate from the
optimal resource distribution f� by buying or sell-
ing resources. A price higher than the derivative
would encourage players to sell some doses of vac-
cine, whereas players would rather buy some more
doses if the price would be lower than the deriva-
tive.
When there are many doses of vaccine, the value

per dose will go down. Players with many vaccines
are therefore willing to sell some of their doses for a
relatively low price. Rewriting the market price of
Theorem 5 gives the following:

F0iðf�i Þ� min
j2N

fDFjðf�j Þg�AðNÞ 8i 2 N

The first inequality follows from Theorem 3(a) and
the fact that DFiðfÞ � F0iðfÞ for f � ~fi (Corollary 1).
The second inequality follows from (5). Above anal-
ysis shows that in this case the market price is
smaller than the average additional return per
resource A(N), unlike the market price of Theo-
rem 4.
In Theorem 4 the total number of available doses of

vaccine is such that in the optimal division of doses,
all players will receive a number of doses in the
region of increasing additional returns. This implies
that any player who buys doses of vaccine will obtain
a higher return per dose from the dose he bought than
from the doses of vaccine he initially had. Since both
the initial doses and the bought doses contribute to
A(N), this player is willing to pay the price A(N) for
the doses he buys.
In contrast, in Theorem 5 there are so many doses of

vaccine that in the optimal division of doses all players
receive a number of doses of vaccine in the region of
decreasing additional returns. This implies that a
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player who buys doses of vaccine will potentially have
a higher return per dose for his initial doses, than for
the doses he buys. The return per dose for the bought
doses might be even lower than the average return
A(N). Therefore, this player might only be willing to
pay a price less than A(N) for the doses he buys.

5.3. Identical Return Functions
In this section, we derive more detailed sufficient
conditions for a non-empty core for a class of
games where all players have the same return func-
tion, that is, Fið�Þ ¼ Fjð�Þ for all i,j 2 N. This
assumption represents situations in which all
regions face an outbreak of the same infectious dis-
ease that spreads through the population in a simi-
lar way. We can then assume that these regions
respond similar to vaccination and that their return
functions are identical (Duijzer et al. 2018b, Keeling
and Shattock 2012).
If all players have the same return function, then

~fi ¼ ~fj and DFið�Þ ¼ DFjð�Þ for all i,j 2 N. By Defini-
tion 1 this implies that ~f

ðjÞ
i ¼ ~fi for all i,j 2 N with

F0ið~fiÞ � F0jð~fjÞ. This allow us to further specify the con-
ditions under which the core is non-empty. The case of
severe shortage (Theorem 4) remains the same, but the
case of sufficient supply (Theorem 5) changes as fol-
lows.

COROLLARY 3. Consider identical return functions
(Fið�Þ ¼ Fjð�Þ for all i,j 2 N). Assume RðNÞ �P

i2N ~fiMi and let f� be an optimal solution for coalition
N, where all doses of vaccine are used. Then, the
market allocation corresponding to solution f� and price
F0kðf�k Þ, where k 2 N, is in the core. This implies that
the core is non-empty.

In addition, we can derive an additional result
which shows that the core is also non-empty when
the total number of available doses of vaccine is such
that we can exactly provide a subset of players with
their dose-optimal vaccination fraction. These results
are presented in the theorem below.

THEOREM 6. Consider identical return functions
(Fið�Þ ¼ Fjð�Þ for all i,j 2 N). Assume
RðNÞ ¼ P

i2T ~fiMi for some T ⊆ N and let f� be an
optimal solution for coalition N. Then, the
market allocation corresponding to solution f� and price
DFkð~fkÞ, where k 2 N, is in the core. This implies that
the core is non-empty.

To interpret Theorem 6, recall that the additional
gain per dose, DFið�Þ, is maximized for ~fi. Because of
the identical return functions, this maximum addi-
tional gain is the same for every player. Hence, any

subset of players can never obtain an additional gain
per dose higher than DFið~fiÞ. The proposed allocation
gives every player i 2 N exactly DFið~fiÞ per dose for
his initial number of doses of vaccine ri. This implies
that no player can be better off on his own or in a
coalition. Therefore, the market allocation of Theo-
rem 6 is in the core. In addition, we can show that for
any situation satisfying the conditions of Theorem 6 it
holds that DFið~fiÞ ¼ AðNÞ.
Theorem 6 shows the importance of the vaccination

fraction ~fi. If possible, doses of vaccine are redis-
tributed in such a way that every player receives
exactly this vaccination fraction.

6. Case Study

In this section, we apply our results to a case study on
influenza vaccination. We describe the case in section
6.1 and present our results in section 6.2.

6.1. Case Description
In the United States, the CDC is responsible for allocat-
ing influenza vaccines during an influenza epidemic.
The policy is to allocate vaccines to geographical
regions in proportion to their population size (Centers
for Disease Control and Prevention 2009a). In this sec-
tion, we will investigate if, under such an initial distri-
bution of the doses of vaccine, there is potential for
collaboration during an influenza epidemic (e.g., by
redistribution some of the doses). For that, we use the
cooperative game as introduced in section 3.
To model the influenza epidemic, we use the SIR

model, which is a seminal model in epidemiology
(Kermack and McKendrick 1927). The US population
is divided into the 10 regions defined by Teytelman
and Larson (2013), who studied vaccine allocation
during the 2009 H1N1 epidemic in the United States.
We use the disease parameters of this epidemic as
provided by Teytelman and Larson (2013). The
regions and the corresponding number of inhabitants
are presented in Table 1. The total population size
equals 298,106,893 individuals. For a complete

Table 1 Number of Inhabitants of the 10 Regions in the United States
(Teytelman and Larson 2013)

Region Size (Mi )

1. New England 14,429,720
2. New York area 19,949,192
3. Mid-Atlantic 28,891,734
4. Southeast 60,580,377
5. Great lakes 51,766,882
6. Southwest 37,860,549
7. The plains 13,610,802
8. Rocky mountains 10,787,806
9. West 47,495,705
10. Pacific Northwest 12,734,126
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overview of which states belong to which region, we
refer to Teytelman and Larson (2013). In contrast to
Teytelman and Larson (2013), we assume a single vac-
cination moment.
To obtain good estimates of the value function, we

use a realistic return function Fið�Þ for every region i
based on epidemiological models and disease param-
eters from the literature. The return function Fið�Þ
measures the fraction of people who escapes infection
in region i. In line with Teytelman and Larson (2013),
we assume that the epidemic in every region is inde-
pendent of the epidemic in other regions. This is a rea-
sonable assumption, because the interaction of
individuals within a region is much higher than
between regions. This implies that Fið�Þ only depends
on input variables related to region i. By Lemma 1,
the function Fið�Þ satisfies Assumption 1. We refer to
Appendix S5 for a full characterization of this func-
tion and for an overview of the input parameters. This
return function is more complex than the return func-
tions studied in our numerical results in the appendix
and has characteristics of both type (i) and type (ii)
functions, which can be seen in Figure 3. The moder-
ate increase resembles type (i) return functions,
whereas the horizontal part matches the shape of type
(ii) functions.
The fraction of people who escapes infection can be

translated to health benefits by multiplying with a fac-
tor that accounts for the average health benefits per
individual spared from infection. Here, we assume
that this factor is the same for every region, which is
reasonable because all regions correspond to the same
country. This implies that we can maximize the total

number of people who escapes infection instead of
the monetary health benefits.

6.2. Case Results
In this section, we analyze cooperation between the
regions. We vary the total number of available
doses of vaccine and the moment of vaccination to
analyze in which cases the core is non-empty. We
also study whether there is a market allocation in
the core.
Let R(N) denote the total number of available doses

of vaccine of all regions together and let s denote the
moment of vaccination in days after the epidemic has
started at time 0. In line with the policy of the CDC,
we assume that the R(N) available doses of vaccine
are initially distributed pro rata over the regions. We
assume that the moment of vaccination is the same
for every region. We let s 2 {0,5,10,15,20,. . .,50} and
RðNÞ 2 f0; 0:5 � 107; 1 � 106; . . .; 3 � 108g. Figure 4
shows for every combination of s and R(N) whether
the core is empty or not.
We see in Figure 4 that the core is non-empty when

there are sufficient doses of vaccine available. Addi-
tional results, not reported here, show that the core is
also non-empty for V � 2:5 � 106 for almost all s � 0.
We therefore find that the core is non-empty when
there are sufficient doses of vaccine available or
almost no doses of vaccine. This is in line with the
findings of Figure S3.2 in Appendix S3.2. Moreover, if
we analyze Figure 4 in more detail, we can derive that
the dark area with sufficient resources and a non-
empty core has interesting characteristics. We note
that for the return function considered here, ~fi
depends on s for all i 2 N. Particularly,

P
i2N ~fiMi

decreases from 3:6 
 107 when s = 0 to 0 for s � 40.
Based on this, we can approximately say that the core
is non-empty when RðNÞ [ P

i2N ~fiMi. This is in line
with our theoretical results in section 5.2 and 5.3. The
return functions on which Figure 4 is based are differ-
ent for every region. In Appendix S5, we report simi-
lar results for the case of identical return functions.
The intuition behind the fact that ~fi is decreasing in

s is that the later you vaccinate, the more people are
already infected and you are almost only vaccinating
people who would not have become infected in the
first place. If s is very large, vaccination is too late to
be very effective and the return functions do no
longer have a convex part, which implies that ~fi ¼ 0.
In that case, our cooperative game has concave return
functions and it is equivalent to a market game for
which the core is always non-empty.
Figure 4 also shows that outside of the connected

area with non-empty core and sufficient doses of vac-
cine, there are only a few points for which the core is
non-empty. There is no clear pattern for which combi-
nations of R(N) and s this is the case. Sometimes these

Figure 3 The Return Function F1ð�Þ for Region 1 when Vaccination
Takes Place Directly at the Start of the Epidemic. The Full
Characterization of the Function and the Input Parameters
can be Found in Appendix S5 [Color figure can be viewed at
wileyonlinelibrary.com]
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points are related to combinations of R(N) and s for
which there are approximately enough doses of vac-
cine a subset of the regions with their fraction ~fi, but
not always. This implies that for moderate number of
resources it is very difficult to say beforehand
whether the core is non-empty.
In addition to analyzing the non-emptiness of the

core, we also study whether there are market alloca-
tions in the core. These numerical results, not
reported here, show that when the core is non-empty,
there almost always exists a market allocation in the
core. For large vaccine stockpiles (RðNÞ [ 5 
 107),
the market allocation with market price p4 is often in
the core. This is in line with our findings in
Figure S3.4 in Appendix S3.4. For moderate number
of resources and a non-empty core, most of the time
none of the market allocations that we proposed in
Appendix S3.3 is in the core. Thus, even if cooperation
can be achieved through trading all resources for a
market price, there does not need to be an analytical
expression for the market price that results in a core
allocation.

To conclude, the results for this case study confirm
that cooperation is a delicate matter. Only when the
number of available doses of vaccine is very small or
above a certain threshold, approximately character-
ized by

P
i2N ~fiMi, all players are willing to cooperate

with each other and a market price is possible. In case
of moderate shortages, cooperation is likely not plau-
sible. We find that the benefits of cooperation are
smaller when there are many doses of vaccine and
often the initial pro rata allocation is already close to
optimal in those cases.

7. Discussion and Conclusion

This study analyzes the redistribution of doses of vac-
cine and cooperation between players. The return that
players obtain from the doses of vaccine is modeled
via an S-shaped return function. Such a function cap-
tures convex returns for a limited number of doses of
vaccine and concave returns in case of many doses.
We use the concept of the core from cooperative game
theory to analyze whether cooperation between the

Figure 4 This Figure Illustrates the Non-emptiness of the Core for Various Combinations of the Total Vaccine Stockpile (R(N)) and the Moment of
Vaccination (s) using the Disease Parameters of Teytelman and Larson (2013) [Color figure can be viewed at wileyonlinelibrary.com]
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players is plausible. We derive theoretical conditions
under which cooperation is plausible and we show
that the doses of vaccine can be traded for a market
price in those cases. We perform numerical analyses
to generalize these findings. Our results show that
parties are most likely willing to cooperate in case of
severe shortages and in case of sufficient supply, with
possible mismatches between supply and demand.
This main result is robust under several alternative
modeling choices. We show analytically that the pos-
sibilities for cooperation are preserved after the intro-
duction of certain types of cooperation costs. Our
numerical experiments show that the main result is
independent of the number of players and of whether
they are altruistic or selfish. Finally, a case study on
the redistribution of influenza vaccines confirms these
findings for realistic return functions.
With our analysis, we also provide insights into gen-

eral resource (re)allocation problems with S-shaped
return functions. For example, this is the case in con-
texts where sufficient coverage is important, such as the
allocation of ambulances over regions or the division of
medical specialists over hospitals. For these contexts,
cooperation under S-shaped functions can potentially
lead to a high increase in the total return. But this shape
makes it also less likely that a core allocation of the total
return exists. Hence, one must be careful when investi-
gating potential cooperation between players. However,
we find that, when cooperation is plausible, there is
often just a single price for which resources are traded.
Such a market price is likely to enhance cooperation in
practice, because it prevents having dissatisfied players
who found out that other players have bought
resources for a lower price.
The results in this study are established under

some assumptions. First of all, we assume that the
doses of vaccine can be exchanged among players
and that a player can assign a monetary value to the
return he obtains from a certain number of doses.
This implies that a health agency might sell some
doses of vaccine and receive money as compensation
for an increased number of infections. This money
can also be used effectively to increase the health
benefits, for example, via treatment of infected
patients or via campaigns to reduce transmission. In
addition, we assume that players are independent of
each other. The return of one player does not depend
on the number of doses of vaccine given to other
players. It heavily depends on the context whether
this assumption is reasonable. The assumption of no
interaction is legitimate when the players correspond
to geographically distant regions and when the inter-
action within a region is much larger than between
regions (Mamani et al. 2013, Sun et al. 2009, Wu et al.
2007). It would be interesting to include interaction
between the players, although this would complicate

the analysis of the cooperative game in two dimen-
sions. Firstly, the return functions are more complex
if they dependent on each other. Secondly, determin-
ing the value function is more difficult, because it
requires additional assumptions on the actions taken
by players outside of the coalition.
We use the concept of the core to determine whether

the total return can be divided in a stable way among
the players. The advantage of core allocations is that
they guarantee that a player will never be worse off by
cooperating with all other players, neither by working
on his own nor by cooperating with a subset of the
players. A drawback is that core allocations do not
always exist. As an alternative, one could exclude the
coalitional stability conditions for some coalitions for
which it is unlikely (e.g., due to geographical or politi-
cal reasons) that they would cooperate. This results in
a so-called restricted game (see, e.g., Faigle 1989). In a
restricted game the collection of coalitions that need to
satisfy the stability conditions need not contain all sub-
sets of players. As a consequence, the core of a
restricted game is “larger” than the original core and
thus might be non-empty (while the core of the origi-
nal game is empty). Another possibility is to keep all
coalitions, but to relax some of the coalitional stability
conditions with a fixed constant or factor. These gener-
alization of the core, that do include some overhead
for deviation of coalitions, are better known as the least
core (Maschler et al. 1979) and the multiplicative e-core
(Faigle and Kern 1993). Moreover, one could also focus
on other well-known game theoretical solution con-
cepts, like the Shapley value (Shapley 1953), the nucle-
olus (Schmeidler 1969), or the s-value (Driessen and
Tijs 1985). These solutions concept have proven to be
applicable in various settings.
Our results demonstrate that cooperation is a deli-

cate matter, because it is not always possible to divide
the total benefits in such a way that all parties are
willing to cooperate. However, if cooperation is an
option, we provide an intuitive and stable way to
divide the total benefits by trading all doses of vaccine
for a market price.
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