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Abstract: Human papillomavirus (HPV) is one of the most common sexually transmitted viruses, 

and is a causal agent of cervical cancer. We aimed to develop a mathematical model of HPV natural 

history and qualitatively analyzed the stability of disease-free equilibrium, non-existence of limit 

cycle and existence of forward bifurcation. We performed sensitivity analysis to identify key 

epidemiological parameters. The Partial Rank Correlation Coefficient (PRCC) values for basic 

reproduction number shows that controlling contact rate plays an important role in disturbing 

equilibrium of HPV infection. Moreover, the increase of medical level is the most effective measure 

to prevent new HPV infections. Optimal treatment problem is solved and theoretical analysis is 

verified by numerical simulation. 
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1. Introduction 

Although the majority of human papillomavirus (HPV) infections are transient and thus are 
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relatively harmless, persistent infection with certain high-risk HPV genotypes can cause cervical 

precursor lesions and cervical carcinoma [1,2]. Cervical cancer is the most common malignancy 

reported among women in developing countries and is a leading cause of cancer deaths worldwide, 

with an estimated 233,000 deaths in 2000 [3]. By 2002, the number of women dying from cervical 

cancer had risen to 274,000 [4–6]. Nearly, all cervical cancers are attributable to genital infection 

with HPV [7,8]. Up to 70% of women in the general population will acquire genital HPV infection 

during their lifetime [9]. Most HPV related infections are cleared by treatment or natural healing of 

the host, while some are persistent and may develop into cervical cancer [10,11]. The progression 

from persistent infection to cervical cancer typically needs a period of 20 years or longer [12,13]. 

Fortunately, therapeutic HPV vaccines have made progress in clinical trials after long-term 

exploration and development. These vaccines include DNA vaccines, RNA replicon vaccines, 

peptide vaccines, vector vaccines, cell vaccines, and protein vaccines [14,15]. 

Mathematical models have been established to understand the dynamics of HPV related disease. 

In the modeling, some important variables specific for infectious disease are developed. For example, 

a variable representing how often an infectious individual contacts with a susceptible individual in a 

unit time is defined as the contact rate. The probability of each contact is set as  , indicating the 

ability of an infectious person to infect others (susceptible persons) in unit time. Considering that 

there are other members (e.g., immune persons  R t ), and that the number of members infected by 

one infected person in a unit time is limited, let        N t S t I t R t   , where the total 

population  N t  is divided into three epidemiological states:  S t  is size of the susceptible 

population at time t  and  I t  is size of the infected population at time t . This generates a 

formula for the incidence rate: the standard incidence rate    

 

S t I t

N t

  represents the newly infected 

individuals infected by infectious individuals in unit time at time t . Based on these studies, A 

Omame et al [16] formulated a mathematical model to investigate the impact of treatment and 

vaccination on HPV transmission dynamics. Elamin H and Elbasha et al [17] developed a nonlinear, 

deterministic and age-structured mathematical model. In the same year, Elamin H and Elbasha [18] 

studied the dynamic behaviors of a two-sex, deterministic model for assessing the potential impact of 

a prophylactic HPV vaccine with several properties. Mo’tassem and S Robert [19] developed an 

age-dependent two-sex mathematical model to describe the HPV vaccination program for a vaccine 

targeting HPV types 16 and 18 in both childhood and adult stages.  

With the development of the mathematical model used to explain the spread of infectious 

diseases, optimization strategies are introduced into the model. Eihab B M et al [20] studied an 

optimal control model governed by a system of delay differential equations. The optimal vaccination 

strategy for a constrained time-varying SEIR (Susceptible, Exposed, Infected and Recovered) 

epidemic model was solved [21]. T K Kar and AshimBatabyal [22] formulated a nonlinear 

mathematical SIR epidemic model with a vaccination program. Yang and Tang et al [23] studied a 

mathematical model to explore the impact of vaccination and treatment on the transmission 

dynamics of tuberculosis (TB).  

The purpose of this study was to incorporate both therapeutic HPV vaccines and partial 

immunity compartments based on the present models to investigate how they influence dynamic 

behavior and to further examine the optimal treatment control measures to minimize the number of 

asymptomatic patients and treatment costs. We formulate a mathematical model for HPV 

transmission, and the existence and stability of the equilibria are discussed. In the next section, we 

present a sensitivity analysis of the model through Partial Rank Correlation Coefficients to identify 
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the key factors in the model. After that, we use optimal control and theory to minimize the number of 

asymptomatic patients and treatment costs; we also carry out some numerical simulations to 

highlight the effect of optimal treatment control on the model. Finally, we give concluding remarks. 

2. A HPV model with treatment 

2.1. Model formulation 

Since persistent infection with high-risk HPV genotypes is the main cause of precursor cervical 

lesions and cervical carcinoma [24], we divided a cohort into three groups, namely, asymptomatic 

infectious individuals  E , symptomatic infectious females or males  1
I , and individuals with 

persistent HPV infection  2
I . The persistently infected individuals who have not been treated will 

develop cervical cancer  A  after a period of time. Moreover, we consider that E , 
1

I , 
2

I  can be 

cured and become recovered  R , thus gaining permanent or temporary immunity, which is less 

reported in previous studies (Table 1). Our assumptions for the dynamic transmission of HPV are 

demonstrated in Figure 1. 

 

Figure 1. Flow chart of the HPV transmission. 

The total human population at time t , denoted by  N t , is subdivided into 6 mutually 

exclusive compartments of S , E , 
1

I , 
2

I , A , R . Thus 

             1 2N t S t E t I t I t A t R t      .          (2.1) 

Combining all the aforementioned definitions and assumptions, it follows that the model for the 

transmission dynamics of HPV in a population is given by the following system of nonlinear 

differential equations: 

       

         

       

     

     

       

4 1 1

1

3 2 1 4 2 1

2

1 1 3 2 2

2 2 1

1 2 1

,

,

,

,

,

,

dS
R t t S t dS t

dt

dE
t S t I t d E t

dt

dI
E t I t d I t

dt

dI
I t d I t

dt

dA
I t d A t

dt

dR
E t I t d R t

dt

 

   

    

  

 

  


    


     


      


    


   



   


        (2.2) 
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where  

 
     

 
1 2 1 3 2E t I t I t

t
N t

  


 
 .               (2.3) 

Table 1. Description of variables and parameters in the model. 

Variable Description 

 S t
 Susceptible individuals 

 E t
 Infectious individuals with no symptoms 

 1I t
 Individuals with HPV symptoms 

 2I t
 Individuals with persistent infection 

 A t
 Cancer-infected individuals 

 R t
 Recovered individuals 

Parameter Description 

  Rate of recruitment 

d  Natural mortality rate 

1  Disease-induced mortality for individuals 

  Rate at which recovered individuals become susceptible 

1  Probability of infection in contact with no symptom persons 

2  Probability of infection in contact with infectious individuals 

3  Probability of infection in contact with persistent infections individuals 

  Rate of progression to symptomatic stage for individuals 

1  Rate at which symptomatic individuals become persistent infections 

2  Rate at persistent HPV infection develops cervical cancer 

3  Rate from persistent infections to symptomatic stage 

4  Rate from symptomatic stage to no symptom stage 

1  Rate of recovery from persistent infections 

2  Rate of recovery from no symptom stage 

2.2. Positivity and boundedness of solutions 

Here, we shall show the positivity and boundedness of the population. 

Lemma 1. [25] Assume that  x t  satisfies  0 0x   and 0a  , 0b  , 
dx

b ax
dt

  , then 

 limsup
t

b
x t

a

 . 

Theorem 1. Let  0 0S  ,  0 0E  ,  1 0 0I  ,  2 0 0I  ,  0 0A  ,  0 0R  , then the 

solutions  S t ,  E t ,  1I t ,  2I t ,  A t ,  R t  are positive for all 0t  . 

Proof It follows from the first equation of the system (2.2) that 

       
dS

R t t S t dS t
dt

      , 
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which can be re-written as 

        
0 0

exp exp
t td

S t d dt R d dt
dt

             
        , 

hence 

         
0 0 0

exp 0 exp
t t

S t d dt S R d d d


                
         , 

so that 

     

   

0

0 0

0 exp

        exp

         >0.

t

t

S t S d dt

R d d d


  

     

   
  

    
  



   

Similarly, it can be shown that   0E t  ,  1 0I t  ,  2 0I t  ,   0A t  ,   0R t  . 

Theorem 2. The region   is positively invariant for model (2.2) with initial conditions in 6R


. 

Proof Adding all the equations in the differential equation system (2.2) gives 

dN
dN

dt
   ,                           (2.4) 

by using Lemma 1, one could easily obtain that 

     0 expN t N dt
d


   , 

when t  , we have 

 N t
d


 . 

Let  

  6

1 2 1 2 1 2, , , , , , , , , , 0,S E I I A R R S E I I A R S E I I A R
d



 
          

 
, 

the region   is positively invariant. 

In this region, the model can be considered as been epidemiologically and mathematically 

well-posed [26]. Thus, each solution of the basic model (2.2) with initial conditions in   remains 

in   for all 0t  . 

2.3. Stability analysis 

The model (2.2) has a disease-free equilibrium (DFE), given by  

 0 0 0 01 02 0 0, , , , , ,0,0,0,0,0x S E I I A R
d

 
   

 
. 

Let  2 1, , , , ,X E A I I S R , using the notation [27], the model consists of nonnegative initial 

conditions together with the following system of equations: 

   
dX

X X
dt

   , 
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where  

 

1 2 1 3 2

0

0

0

0

0

SE SI SI

N

X

    
 
 
 
 

 
 
 
 
 
 
 

, 
 

 

4 1 1

2 2 4

1 1 3 2

3 2 2 1

1 2 1 3 2

1 2 1

I a E

I a A

I a I

X E I a I

SE SI SI
R dS

N

E I d R







 

  


  

  
 

  
  
 

     
  
    
 
     

, 

and 1 1a d    , 2 1 4 2a d      , 3 3 2a d    , 4 1a d  , 5a d   . It is 

obvious that  

 0

0

0 0

F
D x

 
   

 
,  0

3 4

0V
D x

J J

 
   

 
, 

the matrices F  and V , for the new infection terms and the remaining transfer terms, are, 

respectively, given by  

1 0 3 0 2 00

0 0 0 0

0 0 0 0

0 0 0 0

S S S

N N N

F

   
 
 

  
 
 
 
 

, 

1 4

4 2

3 1

3 2

0 0

0 0

0 0

0

a

a
V

a

a







 

 
 

 
 
 
  

,     (2.5) 

and 

1 0 3 0 2 0

3

1 2

0

0 0

S S S

J N N N

  

 

 
 
    

, 4
0

d
J

d





 
  

 
,        (2.6) 

we can get  

 
 1 2 3 1 3 3 1 2 31

0

1 2 3 3 4 1 1 3

a a a
R FV

a a a a a

      


  


  

 
 

.        (2.7) 

Consequently, we have the following conclusions 

Theorem 3. The DFE of the model (2.2) is globally asymptotically stable if 0 1R  . 

Proof Model (2.2) can be rewritten as 

 
2 22

1 11

1

E EE

A AA d
F V S F

I II

I II

     
     

                
      

    

,               (2.8) 

where F  and V  is given by (2.6), and from [28], we have  

 
22

11

EE

AA
F V

II

II

   
   
    
   
    

  

,                        (2.9) 
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when t  , S
d


 ,    2 1, , , 0,0,0,0E A I I  , that is,  2 1 0, , , , ,S R E A I I x  if t  . 

Further, F  is nonnegative, V  is a nonsingular matrix and all eigenvalues of 4J  have positive 

real part. According to [27], all eigenvalues of F V  have negative real part. Therefore, the DFE of 

the model (2.2) is globally asymptotically stable if 0 1R  . 

2.4. Non-existence of limit cycles 

Theorem 4. In the first quadrant, there is no limit cycle in system (2.2). 

Proof We consider the Dulac function as  
1

,B S E
SE

 , now we have 

           

 

1 2

1 2

2

2 1 3 2 1 2 1 3 2 4 1

2 2 2 2

3 21 4 2 1

   

       

   0,

BS BE BI BI BA BR

S E I I A R

I N I N E I E I E IR

ES ES ESEN

dd d d

SE SE SE SE

     

     

     
      

     

      
           

     
   



 

therefore, by the Dulac–Bendixson theorem [29], there is no periodic orbit for the system (2.2). 

2.5. Existence of forward bifurcation 

The epidemiological implications of backward bifurcation are that the effective disease control 

is only feasible if the basic reproduction number is reduced to values below another subthreshold less 

than unity [28]. Compared with backward bifurcation, the epidemiological significance of forward 

bifurcation means that the disease will disappear as long as the basic reproduction number is less 

than unity. Clearly, this phenomenon has important public health implications. Next, we analyze the 

existence and properties of bifurcation of the model. 

Let 

2 3 1 3

1

1

0
a a

D
 




  , 3

2

1

a
D


 , 2

3

4

=D
a


, 

 1 2 3 1 3 2 3

4

1 5

a a a
D

a

    



 
 ,  

5 1 1 2 2 3
D D D D    , 

6 1 2 3 4
1D D D D D     ,  

 1 1 4 2 6 6

7

5 4 2 1 0

0
1

a D D D D
D

D D a D R






  

  
. 

Setting the right-hand sides of model (2.2) to zero (at steady state) give by 

 * * * 1* 2* * *, , , , ,E S E I I A R , where  

 
   

0 7 0

5 0 6 0 0 0 4

1

1 1

R D R
S

D R dD R R R D

 


   
*

, 
 

   
0 1 0

5 0 6 0 0 0 4

1

1 1

R D R
E

D R dD R R R D

 


   
*

,  
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 
   

0 2 0

1

5 0 6 0 0 0 4

1

1 1

R D R
I

D R dD R R R D

 


   
*

, 
 

   
0 0

2

5 0 6 0 0 0 4

1

1 1

R R
I

D R dD R R R D

 


   
*

,  

 
   

0 3 0

5 0 6 0 0 0 4

1

1 1

R D R
A

D R dD R R R D

 


   
*

, 
 

   
0 4 0

5 0 6 0 0 0 4

1

1 1

R D R
R

D R dD R R R D

 


   
*

. 

It is instructive to characterize the type of bifurcation the model (2.2) may undergo, and we 

demonstrate the results in Appendix A. This phenomenon is illustrated by simulating model (2.2) 

with the set of parameter values listed in Table 2. The associated forward bifurcation diagram, 

depicted in Figure 2, shows that the model has a disease-free equilibrium (corresponding to 0 1R  ) 

(Figure 3) and an endemic equilibria (corresponding to 0 1R  ) (Figure 4). 

 

Figure 2. Forward bifurcation diagram of model (2.2). 

 

 

Figure 3. Changes of the every variable size over time, where 
1

0 1.  , and 
0
= 0.973R . 
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Figure 4. Changes of the every variable size over time, where 
1

0 16  .  and 
0
= 1.0868R . 

Table 2. Values of the parameters. 

Parameter Value  Reference Parameter Value  Reference 

  28802 [30] 1  0.09 [16] 

d  0.0162 [30] 2  0.57 [16] 

1  0.001 [31] 3  0.5 [33] 

  0.5 [16] 4  0.000019 [33] 

1  variable Assumed 1  0.0099 [16] 

2  0.72 [31] 2  0.891 [16] 

3  0.81 [31]   0.5 [32] 

3. Efficacy of interventions and sensitivity analysis 

3.1. Efficacy of interventions 

We used the parameter values given in Table 2 (unless otherwise stated) for our numerical 

simulations and changed the key parameter values to observe the corresponding effects on the 

disease outbreak. 

 

Figure 5. Variation in  E t ,  A t  population with different parameters 1 . 
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Figure 6. Variation in  E t ,  A t  population with different parameters 1 , 2 . 

To investigate the effect of contact rate on disease infection, we varied 1 , as shown in Figure 5. 

The figure shows that as the contact rate of  E t  with  S t  increases, the number of infected 

individuals increases, and consequently, the increased contact rate will result in an increase in the 

disease outbreak. 

To examine the effect of treatment rate on disease infection, we plotted Figure 6. It 

demonstrates that increasing the parameter 1  and 2  decreases the endemic levels of 

asymptomatic patients and cancer-infected individuals. In particular, if we increased treatment rate 

1  by 400% , the population of the asymptomatic patients and cancer-infected individuals would be 

decreased by 23% , and treatment rate 2  would be increased by 68% . Finally, the endemic levels 

of the cancer-infected individuals population would be decreased by 58% . Moreover, increasing 

treatment rate 2  by 81%would decrease the population of asymptomatic patients by 25% . 

3.2. Sensitivity analysis of parameters in R0 

Latin hypercube sampling (LHS) is one of the Monte Carlo (MC) sampling methods that was 

first proposed by Mckay [34] in 1979. The advantage of LHS sampling is that the number of 

iterations is less than in other methods of random sampling, and the clustering phenomenon of 

sampling is avoided [35].  

Model (2.2) has 14 parameters. In order to identify the factors associated with a given 

intervention that most strongly affect the spread of a new infection, following [36] we performed 

Latin Hypercube Sampling on the parameters that appear in 0R . For the parameters in Eq. (2.7), 

Partial Rank Correlation Coefficients (PRCC) were calculated, and a total of 1000 simulations per 

LHS run were carried out. We chose a uniform distribution as the prior distribution when performing 

parameter sampling; the parameters of the model were set as input variables, and 0R  as the output 

variable. If the absolute value of the PRCC is larger, the influence of the parameter in 0R  is greater. 

It is assumed that if the p  value is greater than 0.05, the parameter is not significant for 0R . 
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Figure 7. The sensitivity analysis of 0R . 

Table 3. The range and PRCC values of the estimated parameters with respect to 0R . 

Input parameter Range PRCC values p-value 

1   0.01,0.5  0.526755 3.36E-143 

2   0.3,0.9  -0.55735 1.29E-163 

d   0.005,0.05  -0.02163 0.333642 

2   0.1,0.9  -0.09826 1.07E-05 

1   0.01,0.1  0.034657 0.121282 

3   0.1,0.9  0.039391 0.078208 

3   0.7,0.99  0.035278 0.114748 

   0.2,0.8  0.301851 2.09E-43 

2   0.5,0.99  0.33039 3.82E-52 

1   0.4,0.9  -0.33434 1.98E-53 

4   0.001,0.01  -0.02826 0.206432 

 

Table 3 lists the PRCC values of the estimated parameters associated with 0R . The values 

reflect the correlation between the parameters 1 , 2 , d , 2 , 1 , 3 , 3 ,  , 2 , 1 , 4  

and 0R . From Table 3 and Figure 7, 1 , 1 , 3 , 3 ,  , 2  are positively correlated with 0R , 

while 2 , d , 2 , 1 , 4  are negatively correlated with 0R . Among the parameters, the positive 

influence of 1  and 2  on 0R  is most obvious, that is, as 1  and 2  increase, the values of 

0R  increase rapidly, and more individuals will become infected. When symptomatic infectious 

individuals are continue to be infected and suffer from cancer, not only will the treatment be more 

difficult, the value of 0R  will also increase. This indicates that the rate of progression to the 

symptomatic stage for individuals has a greater positive impact on 0R . In addition, 2  and 1  

have the greatest negative impact on 0R , indicating that the value of 0R  will decrease if the 

individuals with HPV symptoms or infectious individuals with no symptoms can be treated. 

Moreover, we can obtain that      2 1 1 2( ) ( )PRCC PRCC PRCC PRCC PRCC        , 

namely, 2 , 1 , 1 , 2 ,  , play the most important roles in determining 0R .  
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3.3. Sensitivity analysis of parameters in infectious variables 

Time-varying sensitivity explains the influence of parameters on state variables when they 

change with time [35], thereby evaluating the influence and dependence of parameters on state 

variables in dynamic models. Given the different outbreak time periods of various diseases, one 

should pay attention to the effect of time period. For example, after being infected with HPV, the 

clinical manifestations are diverse, and individuals can even be asymptomatic. Therefore, the entire 

time period of disease prevention, outbreak, infection, and treatment should be considered. 

Based on the pathogenesis of HPV, this section considers the sensitivity analysis of parameters 

in state variables from two aspects, namely, a continuous period of time and a single point in time. 

The sensitivity analysis of parameters in  E t  and  A t  in continuous time period is shown 

in Figure 8, we set parameters are input variables,  E t  and  A t  are output variables, the 

number of samples 2000N  . 

 

Figure 8. Sensitivity analysis of parameters in  E t  and  A t . 

In Figure 8, we show that the sensitivity of parameters in the early stages of disease outbreak 

changes significantly, especially before 500t  . As can be seen from Figure 8(a), the influence of 

2 , 1 , 1 , 2 , d  and   has obvious changes, where the PRCC values of 2  and 1  decrease 

significantly with time, indicating that with the outbreak of disease, people have a certain 

understanding on the way of disease infection and have made great progress in the treatment. As the 

time increases, the treatment method quickly forms a treatment system, and it is difficult to progress 

within a short period of time, meaning that when 500t  , the influence of 2  and 1  is lessened. 

The PRCC values of   have positive and negative fluctuations over time, indicating that in 

addition to the factors for abandoning treatment due to economic or social discrimination, it is also 

affected by the use of condoms and other protective measures. There are obvious changes illustrated 

in Figure 8(c), when 500t  , the influence of the transmission coefficients and the disease-induced 
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mortality 1  gradually increase, while due to the improvement of medical intervention, the PRCC 

values of 3 , 1  and 2  decrease. 

The influence of different parameters on state variables is also different at a certain time [37], so 

the influence of parameters on state variables at 4000t   is studied, and the numerical simulation 

results can be seen in Table 4, Table 5, Figure 9, Figure 10, and Figure 11. 

Table 4. The PRCC values of the estimated parameters with respect to  E t  at 4000t  . 

Parameter PRCC values p-value Parameter PRCC values p-value 

  0.3064 9.93E-45   -0.0123 0.5810 

  0.1807 3.81E-16 1  -0.6967 1.48E-290 

1  0.5745 5.13E-176 3  0.0782 0.0005 

2  0.4073 8.57E-81 1  -0.0745 0.0009 

3  0.0240 0.2831 2  -0.2450 9.96E-29 

d  -0.2801 2.19E-37 2  -0.0567 0.0112 

4  0.0080 0.7208 1  0.0240 0.2836 

Table 5. The PRCC values of the estimated parameters with respect to  A t  at 4000t  . 

Parameter PRCC values p-value Parameter PRCC values p-value 

  0.23116 1.14E-25   0.31927 1.26E-48 

  0.16689 5.84E-14 1  -0.63554 9.74E-227 

1  0.53907 3.65E-151 3  -0.14916 2.03E-11 

2  0.42215 2.95E-87 1  0.24989 7.50E-30 

3  0.087454 9.00E-05 2  -0.44721 6.17E-99 

d  -0.40263 8.11E-79 2  0.14316 1.26E-10 

4  -0.08243 0.000224 1  -0.14249 1.55E-10 

 

 

Figure 9. Sensitivity analysis of parameters in  E t  and  A t  at 4000t  . 
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Figure 10. Scatter diagram of variable  E t  with respect to parameter PRCC values at 4000t  . 
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Figure 11. Scatter diagram of variable  A t  with respect to parameter PRCC values at 4000t  . 

Figure 9 (a) and Table 4 shows that 1 , 2  and  E t  are positively correlated, namely, the 

increase of 1 , 2  will lead to the increase of  E t ; while 1 , 2  and  E t  have a significant 

negative correlation. Moreover, from Figure 10, we can get that the monotonicity of parameters 2 , 
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1 , 2 ,   and d  is most significant, in other words,  E t  is mainly affected by these 

parameters at this time. 

From Figure 11 and Table 5, the monotonicity of parameter 1 , 2 , 1 , 2 , d , 1  and   

is obvious, from Figure 9 (b), 1 , 2 ,  , 1  has a positive correlation with  A t , while 1 , 2 , 

d  has a negative correlation with  A t , which means that at this time, with the increase of 1 , 2 , 

 , 1 , the number of  A t  will increase, but when 1 , 2 , d  increases, the number of  A t  

will decrease. 

4. Optimal control of the extended model 

The spread of infectious diseases can be controlled through reasonable treatment [16]. In this 

section, the optimal treatment problem will be addressed within the framework of the optimal control 

problem for constraints [21]. 

4.1. Formulation of the optimal treatment problem 

We recorded 1  as u , and indicated the rate of people receiving treatment in  E t . Then an 

additional variable  V t  was introduced: 

V uE ,                              (4.1) 

where the value of  V t  at the initial time was set to 0 . According to the actual situation, the 

treatment capacity of a city or a country is limited, and the number of people who can be treated is 

limited as well [38], so the following formula can be established as  

     1u t E t t  ,                         (4.2) 

where  1 t  is the time-dependent upper limit of the number of people that can be treated at each 

time instant. In addition, state restrictions can be introduced to keep the asymptomatic patients 

population at a low level, according to [39] we proposed the following constraints 

  maxE t E ,                           (4.3) 

where maxE  is the upper limit of  E t . 

Let  1 2, , , , ,
T

x S E I I A R , and the treatment rate  u t , was taken as the control variable. As 

to the cost function, the state variables and control variables are quadratic functions, which consider 

both the treatment rate and the number of asymptomatic patients. Based on the above description, the 

optimal treatment strategy can be formulated as the following problems with inequality constraints 

and free terminal state: 
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Problem (P) 
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        (4.4) 

where 
ft R  is the terminal time; 1A R  is the weight coefficient of  E t . 

4.2. Analysis of optimal controls 

The optimal control of the problem (P) is expressed as *u . Next, we use the maximum principle 

of Pontryagin [21] to derive the optimal system for problem (P). Prior to this, we converted the 

inequality constraints in the problem (P) into equality constraints with some non-negative parameter 

parameters  1,2,3,4i i  : 

1

max 2

max 3

1 4

0,

0,

0,

0,

u

u u

E E

uE









  


  


  
   

                       (4.5) 

and we denoted  1 2 3 4, , ,
T

     . Therefore, the Hamilton function of the problem (P) was 

obtained as follows  

    

   

     

       

1 2

2 2

1 4 1

3 2 1 4 2 1 1 1 3 2 2

2 2 1 2 1

1 1 2 max 2 3 max 3 4 1 4

       

        +

        + ,
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I I

A R

H A E u R S dS S I u t d E

E I d I I d I

I d A u t E I d R

u u u E E uE

      

         

     

       
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               

           
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 (4.6) 

where 
2

, , , , ,
T

S E I I A R           are costate variables,  1 2 3 4, , ,
T

      are non-negative 

penalty multipliers. 

By using Pontryagin’s maximum principle, the first-order necessary conditions can be obtained. 

The optimality conditions with respect to state, costate and parametric variables generate a two-point 

boundary value problem coupled with a nonlinear complementarity problem [21] as follow:  
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                              (4.7) 
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
                              (4.8) 

and 0  , 0  , 0T   . 

Consider the optimality conditions with respect to the control variable 

0
H

u





,                               (4.9) 

and from Eq. (4.8), the adjoint system can be derived as follow:  
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(4.10) 

with the transversality conditions  

           
1 2

0S f E f I f I f A f R ft t t t t t           . 

From (4.4) we had max0 u u   and 1u
E


 , in other words, 1

max0 ,u u
E

 
   

 
 is required 

to be satisfied. Let max 1u   and 1 maxE  . Hence, 1

maxu
E


  always establishes.  

By solving (4.9), we got 

1 2 4

*
2

E RE E E
u

       
 .               (4.11) 

We considered the case of 1

maxu
E


 , under this assumption, 1

*

*

u
E


  always establishes, 

therefore, 4 0  . Next, to determine the explicit expression of optimal control without 1  and 

2 , we considered the following three assumptions: 

(1) On the set  * max0t u u  , we had 1 2 0   , hence, 
 

*
2

E R E
u

 
 . 

(2) On the set  * 0t u  , we had 2 0  , therefore, 
  1

*0
2

E R E
u

   
  , and 1 0  , it is 

determined that   0E R E   . 
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(3) On the set  * maxt u u , we had 1 0  , hence, 
  2

* max
2

E R E
u u

   
  , and 2 0  , it 

is determined that 
 
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2

E R E
u

 
 . 

Combining the above three cases, the optimal control *u  is characterized as 

 
* maxmax 0,min ,
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u u

    
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   

. 

Using the similar arguments, we can characterize the optimal control *u  under the condition 

where 1

maxu
E


  as 
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, 

from the above discussions, an analytical expression of the optimal treatment rate is derived 

 
1

* maxmax 0,min , ,
2

E R E
u u

E

    
   

   

.              (4.12) 

4.3. Numerical simulations 

In this section, the symplectic pseudospectral method (SPM) developed in [40,41] is used to 

conduct numerical simulation. It owns structure-preserving property since the inherent Hamiltonian 

structure of optimal control problems is utilized. The local pseudospectral discretization scheme and 

the successive convexification technique are incorporated to make the algorithm fast and accurate. 

On one hand, the SPM can precisely quantify the energy variation for mechanical systems in optimal 

control and is thus widely used in vehicle trajectory planning [42–44]. On the other hand, it has 

sound stability for optimal control problems with long time span, which makes it an attractive 

method to solve policy-making problems for biological system [21]. 

When using the SPM in this section, the whole time span is divided into 10 regular sub-intervals 

and a 10-order approximation polynomial is used in each sub-interval. The parameters for the 

optimal control problem is set as Table 2 (unless otherwise stated in Table 6). 

Table 6. Parameters and their values used in the simulation. 

Parameter Parameter description Value 

1  - 0.025 

2  - 0.072 

3  - 0.081 

1  Maximum treatment supply at each time instant 2000 

maxE  Maximum exposed population 2800 

maxu  Maximum treatment rate 1 

ft  Number of years 40 

1A  Weight on the asymptomatic patients population 0.002 
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Figure 12. Optimal state trajectories, including (1) the susceptible population, (2) the 

asymptomatic patient population, (3) the infectious population, (4) the persistent 

infectious population, (5) the cancer population, (6) the recovered population, (7) 

Optimal treatment rate and (8) the treated population. 

The controlled solution is shown in Figure 12 along with the uncontrolled solution. It can be 

seen that the treatment strategy is effective, 1I  and A  decreases rapidly and almost reaches zero at 

40t  , and the values of E  and 2I  are also significantly reduced compared to before the addition 

of the treatment strategy. In addition, the values of S  and R  increased at the initial stage, and the 

effect before adding the treatment strategy is very obvious compared with the effect after the 

addition. 

In the controlled case, the control variable  u t  is continuously reduced and reaches zero at 

the terminal. It can be seen from Figure 12(7) that the numerical solution of the control variable is in 

good agreement with the analytical solution given in (4.12), which verifies the characteristics of the 

optimal control. 

5. Conclusion 

For humans and some social animals, the standard incidence rate is more realistic than the 

bilinear incidence rate, so we used the standard incidence rate to indicate the ability of an infected 

person to infect others. Moreover, we assumed that the patients with persistent infection of HPV 

could be controlled and that mild infection could be cured, thus, those who are cured or have 

self-healed will gain immunity. Next, we established the model and analyzed its properties. It can be 
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seen from the analysis results that controlling the value of the parameter in 0R , making 0R  less 

than 1, the disease will be die out, and when 0R  greater than 1, the infection will experience an 

outbreak and form an endemic disease. The sensitivity analysis of the parameters in 0R  and state 

variables illustrates that the value of 0R  can be reduced or increased more efficiently, and the 

results can be used to control the spread of HPV. In the last section, the treatment rate is selected as 

the control variable, and the optimal treatment strategy is analyzed theoretically and simulated 

numerically. The results show that the appropriate treatment strategy can efficiently reduce the 

spread of the disease. 
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Appendix A 

Proof The existence of forward bifurcation will be explored using the Centre Manifold Theory 

[27,45,46]. To apply this theory, it is necessary to carry out the following change of variables. 

Let 1S x , 2E x , 1 3I x , 2 4I x , 5A x , 6R x , so that 

6

1
i

i

N x


 , 

further, using the vector notation 

 1 2 3 4 5 6

T

X x x x x x x ， ， ， ， ， , 

the model (2.2) can be re-written in the form 

 1 2 3 4 5 6

TdX
f f f f f f

dt
 ， ， ， ， ， , 

as follows: 
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       

         

       

     

     

   

1
6 1 1

2
1 4 3 1 2

3
2 3 4 1 4 2 3

4
1 3 3 2 4

5
2 4 1 5

6
1 2 2 3 6 .

dx
x t t x t dx t

dt

dx
t x t x t d x t

dt

dx
x t x t d x t

dt

dx
x t d x t

dt

dx
x t d x t

dt

dx
x x d x t

dt

 

   
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  

 

  


    


     


      


    


   



   


，

，

，

，

，

     (A.1) 

Consider the case when 
0
=1R . Suppose, further, that 

1
  is chosen as a bifurcation parameter. 

Solving for 
1 1

*   from 
0
=1R  gives 

* 1 2 3 2 3 3 4 1 1 3 3 1

1

2 3 1 3

a a a a a a

a a

      


 

   



.         (A.2) 

The Jacobian of the system (A.2) evaluated at the DFE is given as 

0

*

1 2 3

*

1 1 2 4 3

2 3

1 3

2 4

1 2 5

0

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0

E

d

a

a
J

a

a

a

   

   

 





 

    
 

  
 

  
 

 
 
  

. 

It is easy to verify that the transformed system (A.2), with 
1 1

*  , has a hyperbolic 

equilibrium point (i.e., the linearized system has a simple eigenvalue with zero real part, and all other 

eigenvalues have negative real parts). Hence, the centre manifold theory can be used to analyse the 

dynamics of (A.2) near 
1 1

*  ∗. 

It can be shown that the Jacobian of (A.2) at 
1 1

*   has a right eigenvector (associated with 

the zero eigenvalue) given by  1 2 3 4 5 6, , , , ,
T

w       , where 

   

 

* * 2

1 1 3 1 3 2 4 2 3 1 1 3 5 1 4 1 3 5 2 1 5 3

1 *

5 1 1

a a a a a a a a a a a

a a
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


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 
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a a
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 
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5

4

a

a


  ,  

   
 

* *

1 1 1 1 3 2 4 2 3 1 1

6 *

5 1 1

0
a a a a

a a

      




   
 


. 



2670 
 

AIMS Mathematics  Volume 5, Issue 3, 2646–2670. 

The components of the left eigenvector of 
0

1 1
*E

J
 

,  1 2 3 4 5 6, , , , ,v v v v v v v , satisfying 

1v w   are 

1 5 6 0v v v   , 
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It follows from [22,28,29], we have 
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are computed to be 
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 ，

 

(A.3) 

2 2 0b v   . 

Since the bifurcation coefficient b  is positive, it follows from theorem that the model (A.2) 

will undergo a forward bifurcation. 
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