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Abstract: Mitochondrial dysfunction and failing mitochondrial quality control (MQC) are major 
determinants of aging. Far from being standalone organelles, mitochondria are intricately related 
with cellular other compartments, including lysosomes. The intimate relationship between 
mitochondria and lysosomes is reflected by the fact that lysosomal degradation of dysfunctional 
mitochondria is the final step of mitophagy. Inter-organelle membrane contact sites also allow 
bidirectional communication between mitochondria and lysosomes as part of nondegradative 
pathways. This interaction establishes a functional unit that regulates metabolic signaling, 
mitochondrial dynamics, and, hence, MQC. Contacts of mitochondria with the endoplasmic 
reticulum (ER) have also been described. ER-mitochondrial interactions are relevant to Ca2+ 
homeostasis, transfer of phospholipid precursors to mitochondria, and integration of apoptotic 
signaling. Many proteins involved in mitochondrial contact sites with other organelles also 
participate to degradative MQC pathways. Hence, a comprehensive assessment of mitochondrial 
dysfunction during aging requires a thorough evaluation of degradative and nondegradative 
inter-organelle pathways. Here, we present a geroscience overview on (1) degradative MQC 
pathways, (2) nondegradative processes involving inter-organelle tethering, (3) age-related 
changes in inter-organelle degradative and nondegradative pathways, and (4) relevance of MQC 
failure to inflammaging and age-related conditions, with a focus on Parkinson’s disease as a 
prototypical geroscience condition. 

Keywords: biomarkers; exosomes; extracellular vesicles; geroprotective interventions; mitophagy; 
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1. Introduction 

The comprehension of biological pathways involved in organismal aging and age-related 
conditions has been a chimera for biogerontologists [1]. The several hypes and falls that have 
characterized this field of research deep their roots into the complex nature of aging itself. Indeed, 
during aging, multiple inter-related processes co-occur, producing a multitude of different and 
stochastically determined phenotypes [2]. Though, some conserved phenomena have been 
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identified as major biological drivers of aging, the so-called “hallmarks of aging” [3]. These include 
mitochondrial dysfunction, loss of proteostasis, cellular senescence, altered intercellular 
communication, genomic instability, telomere attrition, epigenetic alterations, deregulated nutrient 
sensing, and stem cell exhaustion [3]. According to the geroscience hypothesis, perturbations in 
these mechanisms increase the susceptibility to most chronic diseases, functional loss, and 
eventually, death [4]. Hence, these biologic pillars represent ideal targets for interventions to foster 
healthy aging [5,6]. 

Mitochondrial dysfunction has attracted considerable interest as a target for geroprotective 
interventions. Indeed, mitochondria play sensor-transducer-effector roles in a multitude of 
biological processes, including integration of cell death signaling and preservation of cell stemness 
[7,8]. Albeit long considered to be standalone organelles, a great deal of evidence indicates that 
mitochondria interact physically and functionally with other cellular compartments via membrane 
contact sites and tethering molecules [9,10]. In particular, mitochondria establish connections with 
the endosomal compartment [11,12] and lysosomes [13,14]. These interactions support cytosolic 
shuttle systems of ions and metabolites across organelles [10,15], and participate to the regulation of 
cellular housekeeping processes [13,14]. 

The mitochondrial-lysosomal axis is a major actor in mitochondrial quality control (MQC), a 
hierarchical network of pathways that ensure organellar homeostasis through the coordination of 
mitochondrial proteostasis, dynamics, biogenesis, and autophagy [16]. While continuous cycles of 
fusion and fission preserve mitochondrial shape and dilute damage along the network [17] 
mitochondrial hyper-fission segregates damaged or unnecessary organelles from the network [17]. 
Severely damaged mitochondria are subsequently disposed via a selective form of autophagy 
referred to as mitophagy [18]. Cleared mitochondria are eventually replenished via biogenesis to 
maintain an adequate mitochondrial pool within the cell [19]. Damaged mitochondrial components 
may follow an alternative degradative route that operates through the release of specialized 
extracellular vesicles (EVs), namely mitochondrial derived vesicles (MDVs), before whole-sale 
organelle degradation is triggered. This pathway involving mitochondrial-lysosomal crosstalk has 
been proposed as an additional layer of MQC [20]. 

Dysregulation of mitophagy and disruption of the mitochondrial-lysosomal axis coupled with 
abnormal EV secretion have been implicated as mechanisms in the aging process and related disease 
conditions [16,21]. More specifically, the garbage theory of aging poses that damaged mitochondria, 
protein aggregates, and lipofuscin accumulate as a result of inefficient cellular quality control [22]. 
The progressive accrual of intracellular “waste” further depresses cell recycling processes, thereby 
impinging on cell homeostasis and tissue integrity [22]. 

A role for inter-organelle membrane contact sites of mitochondria with lysosomes and 
lysosome-related organelles distinct not pertaining to MQC has recently been described [23]. These 
interactions occur as part of nondegradative pathways to support transfer of lipids, Ca2+, and iron 
between organelles, and to regulate mitochondrial fission [24]. 

Here, we discuss (1) degradative pathways involved in MQC with a special focus on mitophagy 
and pathways entailing EV generation, (2) nondegradative processes involving inter-organelle 
contact sites, (3) age-related changes in inter-organelle degradative and nondegradative pathways 
and their possible exploitation for therapeutic purposes, and (4) the relevance of MQC failure to 
inflammaging and neurodegeneration, with a focus on Parkinson’s disease (PD) as a prototypical 
geroscience condition. 

2. Mitochondrial-Lysosomal Membrane Contact Sites 

2.1. Degradative Pathways 

Fine-tuning of MQC processes is key to preserving a functional mitochondrial network within 
the cell [16]. Mitochondrial fission regulates the rate of mitochondrial biogenesis and mitochondrial 
DNA (mtDNA) synthesis [25,26] under the control of GTPase dynamin-related protein 1 (DRP1), 
fission protein 1 (FIS1), dynamin 2, and actin [24,27–29]. Mitochondrial membrane tethering and 
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fusion, which are mediated by the outer membrane GTPases mitofusin (MFN) 1 and MFN2 and by 
the inner membrane GTPase optic atrophy 1 (OPA1), enable mixing of mitochondrial proteins, 
mtDNA, and metabolites and allows diluting mitochondrial damage along the network [25]. 

Functional connections between lysosomes and mitochondria have also been described [15]. 
Indeed, defects in either of the two organelles induce impairments in the other, indicating the 
existence of a mitochondrial-lysosomal axis [30]. The genetic ablation of mitochondrial transcription 
factor A (TFAM), responsible for mtDNA replication, transcription and maintenance [19], increases 
the number of lysosomes in T cells [30]. However, lysosomal activity is impaired when deficient 
mitochondrial respiration and disruption of endolysosomal trafficking occur, suggesting a link 
between primary mitochondrial dysfunction and lysosomal storage disorders [30]. On a similar note, 
ablation or pharmacological inhibition of apoptosis inducing factor (AIF), OPA1, or phosphatase 
and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) in neurons impairs lysosome 
activity, thereby causing accrual of autophagic substrates [31]. Moreover, the restoration of 
lysosomal pH by lysosome-targeted nanoparticles reinstates mitophagy in pancreatic cells exposed 
to high concentrations of free fatty acids [32]. These findings indicate that, at least under lipotoxic 
conditions, mitochondrial dysfunction develops downstream of lysosomal alkalization and that 
recovery of lysosomal acidity restores MQC [32]. 

2.1.1. Mitophagy 

The selective removal of whole mitochondria through mitophagy involves a multistep process 
that begins with the engulfment of damaged mitochondria by an autophagosome. The latter fuses 
with lysosomes to form an autolysosome where the content is degraded [18]. This sequence of events 
is orchestrated by a sophisticated molecular machinery [33]. While the removal of dysfunctional 
mitochondria via mitophagy has been described in different mammalian cells, the output of the 
process differs depending on the cell. Complete mitophagy is, indeed, observed during erythrocyte 
maturation, while selective degradation of sperm-derived mitochondria occurs after oocyte 
fertilization [34–36]. Regardless of cell specificity, the tagging of damaged mitochondria to 
mitophagy via ubiquination is required for their subsequent interaction with mitophagy receptors 
such as nuclear dot protein 52 (NDP52) and optineurin (OPTN) [37,38]. The preparation of 
dysfunctional organelles for disposal is coordinated by the mitochondrial protein kinase PINK1 and 
the ubiquitin E3 ligase, Parkin [39,40]. Following mitochondrial depolarization, the activation of 
PINK1 guides the recruitment of Parkin, a cytosolic protein, on depolarized mitochondria [41–44]. 
This process is enabled by PINK1-mediated phosphorylation and ubiquitination of Parkin at serine 
65 [45,46]. These modifications ensure maximal recruitment and activation of Parkin at the sites of 
damaged mitochondria [47–49]. Once recruited, Parkin itself ubiquitinates several proteins located 
at the mitochondrial outer membrane interface in order to mediate the subsequent sequestration of 
mitochondria into the isolation membrane via interaction with specific adaptor proteins [50]. The 
accrual of the ubiquitin-binding adaptor protein p62/sequestosome-1 on depolarized mitochondria 
and the subsequent binding to the microtubule-associated protein 1A/1B-light chain 3 (LC3) 
facilitate the delivery of damaged mitochondria to autophagosomes to complete the degradative 
process [50]. 

In addition to PINK and Parkin, the Ras-associated binding protein 7 (RAB7), a protein 
belonging to the Ras-like GTPase superfamily, is a relevant player in mitophagy [51]. The main 
functions of this small GTPase are to (1) control maturation of early endosomes, (2) regulate 
transport of intracellular material from late endosomes to lysosomes, (3) supervise lysosomal 
biogenesis, and (4) enable clustering and fusion of late endosomes and lysosomes in the perinuclear 
region of the cell [52]. RAB7 swings between an active, lysosomal-localized GTP-binding state and 
an inactive, cytosolic GDP-binding state. Via its alternate active and inactive state, RAB7 modulates 
the tethering and untethering of mitochondrial-lysosomal contact sites. In particular, a contact site 
between the two organelles can be established via lysosomal GTP-bound RAB7 that may be tethered 
to mitochondria via its binding to a RAB7 effector protein. Notably, the expression of a constitutively 
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active GTP-bound form of RAB7 that is unable to undergo GTP hydrolysis (RAB7 Q67L) increases 
the number of mitochondrial-lysosomal contacts and prolongs the time of membrane tethering [14]. 

Together with the Tre-2/Bub2/Cdc16 (TBC) domain family, member 15 and 17 
(TBC1D15/TBC1D17) and FIS1, RAB7 is an effector of mitophagy downstream of Parkin and is 
involved in autophagosome biogenesis during mitophagy [51]. TBC1D15 and 17 belong to the 
family of TBC proteins containing RAB-specific GTPase-activating protein (RABGAP) functions 
[53,54]. FIS1, instead, is a protein anchored to the mitochondrial outer membrane by its C-terminal 
domain deputed to assist in mitochondrial fission [55]. When TBC1D15 is depleted or its RABGAP 
activity is lacking, accumulation of LC3-tagged phagosomes without cargo orientation occurs. As a 
consequence, an elongated structure departs from mitochondria along microtubule tracks [51]. 
Therefore, the interaction of TBC1D15/17 with LC3 and FIS1 is crucial for coordinating RAB7 activity 
and guiding the preautophagosomal isolation membrane that selectively engulfs damaged 
mitochondria [51]. Moreover, silencing of RAB7 suppresses the abnormal LC3 accumulation and 
tubulation in TBC1D15 cells [51]. 

Taken as a whole, these findings indicate that, while constitutive RAB7 activity favors the 
expansion of the LC3-positive isolation membrane, RAB7 inactivation may be required for the 
release of LC3-bound membranes from microtubules [51,56]. This attributes RAB7 an additional role 
besides its function of controlling the final step of maturation of autophagosomes by their fusion 
with lysosomes [57,58]. The interaction between the mitochondrial fusion-related protein MFN2 and 
RAB7 increases in response to starvation, which may suggest the involvement of RAB7 as an 
adaptor protein used by MNF2 during maturation of the autophagosomal membrane [59]. Thus, 
RAB7 seems to support both autophagosome formation and maturation during mitophagy. 

The insufficient clearance of damaged mitochondria through mitophagy is acknowledged as a 
major mechanism driving cell senescence and organismal aging [60]. The persistence of 
dysfunctional mitochondria is especially detrimental to long-lived cells (e.g., neurons, cardiac and 
skeletal myocytes, and T lymphocytes) that cannot efficiently dilute organellar damage through cell 
division. This phenomenon is invoked as a possible explanation to the fact that brain, heart, skeletal 
muscle, and immune system are particularly vulnerable to dysfunction during aging [60]. Indeed, 
giant, irregularly shaped mitochondria are frequently encountered in aged post-mitotic cells, where 
they can displace normal mitochondria, ultimately leading to extensive oxidative stress and energy 
failure [61,62]. A primary defect in fission has been proposed as a mechanism underlying the 
formation of giant mitochondria that would be less likely to be autophagocytosed because of their 
bulk dimensions [61]. Alternatively, hyperfused mitochondria with reduced respiration rate might 
suffer milder oxidative damage on their own membranes and, consequently, be less targeted to 
mitophagy that well-functioning mitochondria [63]. This latter view has recently been refined 
following the discovery of an alternative route for disposing mildly damaged mitochondria through 
MDV generation and release [64,65]. As discussed in the following section, MDVs may serve as a 
first line of defense through which mitochondria extrude damaged components to avoid organellar 
failure. 

2.1.2. Generation and Release of Mitochondrial Derived Vesicles 

The generation and release of MDVs, small vesicles of ~100 nm in diameter [66], have been 
proposed as an additional pathway to allow degradation of organellar components via delivery to 
lysosomes [67]. MDVs are generated through the selective incorporation of protein cargoes, 
including outer and inner membrane proteins and matrix content [65,67,68]. The molecular 
determinants of MDV generation are still unclear. However, MDV biogenesis seems to proceed 
independent of DRP1 and to require priming by PINK1 and Parkin [66]. A working hypothesis on 
MDV formation implies that, under oxidative stress conditions, the accumulation of protein 
aggregates in proximity to mitochondrial membranes concomitant with cardiolipin oxidation 
generates unusual membrane curvatures [66]. This would interfere with the function of 
mitochondrial import channels, followed by accumulation of PINK1 that ubiquinates and recruits 
Parkin. Eventually, a vesicle is formed and released through a process relying on yet unidentified 
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proteins [66]. MDVs can face two distinct fates depending on whether they are targeted to the late 
endosome/multivesicular body for degradation [67] or to a subpopulation of peroxisomes possibly 
for cargo detoxification [68]. Accordingly, MDV generation may pertain to degradative pathways. 
Down this road, large double-membrane vesicles enriched in mitochondrial components are 
released. Hence, PINK1 and Parkin represent a point of convergence for MDV generation and 
mitophagy. Different from mitophagy, this shuttle system does not require mitochondrial 
depolarization, autophagy signaling, or mitochondrial fission [67]. Indeed, MDVs are generated also 
in cells lacking autophagy-related serine/threonine kinase gene (Atg) 5, Beclin-1, or RAB9, as well as 
after DRP1-silencing [67]. Thus, MDV generation and delivery are thought to complement 
mitophagy for MQC when mitochondrial damage is mild or when mitophagy is overwhelmed or 
compromised [69]. The presence of mitochondrial constituents within exosomes is itself an indirect 
evidence of crosstalk between mitochondria and the endolysosomal system [70,71]. 

Altogether, the available evidence suggests that inter-organelle mitochondrial-lysosomal 
membrane contact sites enable a fine coordination between mitophagy and MDV-mediated 
degradative pathways. In this context, mitophagy disposes dysfunctional mitochondria as an 
extreme attempt to maintain cell homeostasis [18,72]. MDV generation may serve as an alternative 
route to clear nonirreversibly damaged organelles and dispose mitochondrial components before 
whole-sale organelle degradation is triggered (Figure 1) [64,65]. 

 
Figure 1. Degradative and nondegradative pathways in mitochondrial quality control. 
Mitochondrial dynamics are ensured by several factors that regulate fusion (mitofusin (MFN) 1, 
MFN2, and optic atrophy 1 (OPA1)) and fission (dynamin-related protein 1 (DRP1) and 
mitochondrial fission 1 protein (FIS1)). While fusion dilutes organellar damage along the network, 
fission targets dysfunctional mitochondria and triggers their clearance through mitophagy in a 
phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)/Parkin–dependent 
manner. Mildly damaged mitochondria and organellar components may be recycled via the 
generation of mitochondrial derived vesicles (MDVs). Once formed, MDVs reach out the 
endolysosomal system, form multivesicular bodies (MVBs), and are released into the extracellular 
space as exosomes. Abbreviations: LC3, microtubule-associated proteins 1A/1B light chain 3 and 
ROS, reactive oxygen species. 

At the systemic level, the release of damaged mitochondrial components within MDVs may 
contribute to sterile inflammation, an inflammatory response mounted in the absence of infections 
[73]. This process is organized within the framework of innate immune response and has been 
included as part of the ‘‘danger theory’’ of inflammation [74]. According to this view, misplaced 
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noxious material from injured cells (i.e., damage-associated molecular patterns (DAMPs)) triggers 
caspase-1 activation and the secretion of pro-inflammatory cytokines [75]. The release of MDV 
content (e.g., mitochondrial proteins, mtDNA) can elicit several inflammatory pathways by 
interacting with (1) Toll-like receptors (TLRs), (2) Nod-like receptor (NLR) family pyrin domain 
containing 3 (NLRP3) inflammasome, and (3) cytosolic cyclic GMP-AMP synthase 
(cGAS)-stimulator of interferon genes (STING) DNA sensing system [76]. 

During aging, the persistence of sterile, low-grade inflammation—a condition called 
“inflammaging”—is believed to contribute to the progression of the aging process and to the 
pathogenesis of age-related diseases [77,78]. Relevant pathways elicited upon MDV release during 
aging are discussed in Section 4. 

2.2. Nondegradative Pathways 

The identification of structures allowing membrane tethering of two organelles into close 
proximity has instigated considerable research interest into the (patho)physiologic role of 
inter-organelle contact sites (reviewed in [79]). Indeed, the juxtaposition (<30nm) of membranes of 
identical (homotypic contacts) or distinct organelles/membrane types (heterotypic contacts) acts as a 
domain for inter-organelle communication [79]. 

Membrane adhesion at contact sites is enacted by different protein classes (e.g., tethering, 
functional, regulatory proteins) [80]. These inter-organelle contacts enable metabolite shuttling, 
regulation of mitochondrial dynamics, and several cellular housekeeping processes [81,82]. The 
tethering of contact sites between mitochondria and lysosomes is regulated by multiple proteins 
under the control of RAB7 [14]. As discussed earlier, RAB7 modulates the tethering and untethering 
of mitochondrial-lysosomal contact sites through its ability of shifting between an active, 
lysosomal-localized GTP-binding state and an inactive, cytosolic GDP-binding state. 

Lysosomes establish contacts with mitochondria and remain stably tethered for an average of 
60 s [14]. Mitochondrial-lysosomal contacts allow the bidirectional regulation of mitochondrial and 
lysosomal dynamics [14]. These structures do not involve metabolite transfer between tethering 
organelles nor are they required for autophagosome biogenesis or mitophagy as shown by the fact 
that they are void of autophagosomal markers (e.g., unc-51 like autophagy activating kinase (ULK1), 
Atg5, Atg12, and LC3) [14]. The independence of mitochondrial-lysosomal contact sites from 
mitophagy has been further confirmed in cells knocked out for autophagy receptors (i.e., NDP52, 
OPTN, neighbor of BRCA1 gene 1 protein (NBR1), tax1-binding protein 1 (TAX1BP1), and p62) in 
which the genetic ablation does not interfere with mitochondrial-lysosomal contact formation [83]. 

Recently, mitochondrial-lysosomal contact sites have shown to regulate the rate of 
mitochondrial fission [84]. Indeed, most fission events are marked by lysosomal-associated 
membrane protein 1 (LAMP-1)-positive vesicles, but not early endosomes or peroxisomes [14]. A 
novel murine isoform of DRP1 containing four alternative exons, Drp1ABCD, has been identified [84]. 
DRP1ABCD is located in late endosomes, the plasma membrane, and in association with 
LAMP-1-positive vesicles at the interface between mitochondria and lysosomes [84]. DRP1ABCD 
localization relies upon acidification of late endosomes and lysosomes, which suggests additional 
roles for DRP1 isoforms at mitochondrial-lysosomal contact sites [84]. In yeast, the equivalent of the 
mammalian mitochondrial-lysosomal contact site, termed vacuole and mitochondria patch 
(vCLAMP), contains several tethering proteins, including translocase of outer mitochondrial 
membrane 40 (TOM40), mitochondrial distribution and morphology 10 (MDM10) complementing 
protein 1 (MCP1), and vacuole sorting protein (VPS) 13 and 39 [85]. Whether the mammalian 
orthologs of such proteins are involved in establishing mitochondrial-lysosomal contacts is yet to be 
determined. 

The best studied heterotypic contacts are those involving the ER, including ER-mitochondrial, 
ER-Golgi, ER-peroxisomes, and ER-lipid droplets (LDs) contacts. However, several other contacts 
not involving ER have been reported, such as LDs-peroxisomes, 
mitochondria-vacuoles/endosomes/lysosomes, mitochondria-LDs, mitochondria-peroxisomes, and 
mitochondrial inner and outer membranes (reviewed in [80]). 
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High-electron microscopy and super-resolution optical microscopy identified 
ER-mitochondrial contact sites as parallel juxtaposition between mitochondria and smooth or rough 
ER tubules at a distance ranging from 10 to 80 nm [86–91]. Length, thickness, and protein 
composition of contact zones vary according to the signaling pathway for which contact sites are 
established (e.g., apoptosis, ER stress response, metabolic dysfunction) [92]. Protein constituents of 
ER-mitochondrial contact sites include MFN2, phosphoacidic cluster sorting protein 2 (PACS2), 
vesicle-associated membrane protein-associated protein B (VAPB), protein tyrosine phosphatase 
interacting protein 51 (PTPIP51), 1,4,5-triphosphate receptor subtype 3 (IP3R3), and 
voltage-dependent anion channel (VDAC) [93–99]. 

The number of ER-mitochondrial contacts depends on the expression of the IP3R Ca2+ channel 
[100]. This channel forms a tether with VDAC via the mitochondrial chaperone glucose-regulated 
protein 75 (GRP75). The resulting channel modulates Ca2+ flux between the ER and the 
mitochondrial intermembrane space [99]. The ER B-cell-receptor-associated protein 31 (BAP31) is 
another contact point that interacts with FIS1. The BAP31-FIS1 complex bridges the 
ER-mitochondrial interface and regulates the induction of apoptosis [101]. Through tethering with 
the ER, mitochondria also acquire lipid precursors, such as phosphatidylserine and phosphatidic 
acid, that are subsequently harnessed to synthesize membrane phospholipids, including 
phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin [102]. 

The number of ER-mitochondrial contact sites was found to be lower in senescent cells [103]. 
This observation led to hypothesize that disruption of these contacts may have important 
implications for cell function and longevity [104]. In asymmetrically dividing cells, noxious protein 
aggregates are unevenly segregated, such that they are preferentially retained within the mother cell 
[105]. Here, protein aggregates localize at the ER surface and at ER-mitochondrial contact sites for 
subsequent disposal within mitochondria [105,106]. In the setting of mitochondrial dysfunction, the 
clearance of protein aggregates and misfolded proteins becomes impaired, thus favoring their 
accumulation at the ER-mitochondrial interface [104]. Interestingly, toxic proteins associated with 
age-related neurological and metabolic disorders, such as α-synuclein, Parkin and protein 
deglycase, have been located at ER-mitochondrial contact sites [105,107,108]. This abnormal protein 
distribution interferes with mitochondrial Ca2+ uptake from the ER and the execution of autophagy 
[109]. If protracted, this process may impair cellular bioenergetics and increase reactive oxygen 
species (ROS) generation by mitochondria and the ER, which further depresses quality control 
systems [109]. The relevance of oxidative stress as a mechanism in aging and age-related conditions 
is illustrated in section 3. 

Homotypic contact sites have been described in living cells under real-time imaging 
experiments showing formation of a peroxisomal reticulum [110]. However, such structures 
represent organelle fusion intermediates with features different from those found in the heterotypic 
contacts described above and will not be discussed here. 

3. Endoplasmic Reticulum-Mitochondrial Contact Sites, Oxidative Stress, and Mitochondrial 
Quality Control 

Dysfunction of the mitochondrial electron transport chain (ETC) and excessive ROS generation 
have been indicated as primary contributors to aging [3]. ROS are mainly generated as a bioproduct 
of mitochondrial respiration. Under physiologic conditions, mitochondrial-derived ROS function as 
intracellular signaling molecules that stimulate defense mechanisms by inducing an adaptive 
response, a process called mitohormesis [111]. Mitohormesis operates via leakage of hydrogen 
peroxide as a warning system which sends retrograde signal to nuclear-targeted cytosolic pathways 
[25]. Under oxidative stress conditions, instead, loss of ROS signal localization and disruption of cell 
homeostasis occur [112]. 

The installment of oxidative stress is deleterious for the cell as it induces damage to its 
constituents, especially mitochondria. Indeed, as a major source of ROS, mitochondria are an 
immediate target of oxidative damage. In particular, oxidative stress can induce mtDNA base 
modifications, abasic sites, single- and double-strand breaks, point mutations, large-sized deletions, 
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and changes in mtDNA content [113,114]. While it is well-known that mitochondria produce ROS at 
the level of complexes I and III [115], ER is also a relevant oxidant source mainly produced by 
members of cytochrome P450 and nicotinamide adenine dinucleotide phosphate reduced form 
(NADPH) oxidase 4 (NOX4) [116,117]. 

Similar to the mitochondrial-lysosomal axis, contacts between mitochondria and the ER can 
mediate bidirectional signaling to determine the cell’s fate during aging. The transmembrane protein 
kinase RNA-like ER kinase (PERK), a member of the ER stress/unfolded protein response (UPR) 
machinery [117], enables ER-mitochondrial tethering during ER stress to facilitate Ca2+ influx and 
ROS-dependent mitochondrial-mediated apoptosis [118]. Moreover, a strongly oxidizing 
environment around ER-mitochondrial contacts modulates organelle apposition through the 
mitogen–activated protein kinase (MAPK)-dependent control of mitochondrial mobility [119]. 
Additional proteins can localize at the level of mitochondria following oxidative stress insults [120]. 
One of such proteins is the 66 kDa Src homologous-collagen homolog (SHC) isoform, a negative 
regulator of the epidermal growth factor (EGF)-stimulated MAPK pathway that controls oxidative 
stress and lifespan in mammals [121]. 

Mitigation of oxidative stress is achieved via MQC processes. Notably, members of the MQC 
machinery, in particular those involved in mitochondrial dynamics and autophagy, have been 
localized at ER-mitochondrial contact sites [24,122]. Here, DRP1 and ER-localized inverted formin 2 
(INF2) allow execution of mitochondrial fission by generating a constriction ring around the 
organelle [123]. On the other hand, the localization of MFN1 and MFN2 fusion proteins at 
ER-mitochondrial contact sites stabilizes the contact structure [119]. Hence, ER-mitochondrial 
contact sites may support MQC processes for the removal of dysfunctional mitochondria [123]. 

Fusion processes mediated by MFN2 are also crucial for the initiation of mitophagy by favoring 
PINK/Parkin interaction [124,125]. The genetic ablation of MFN2 in fibroblasts, cardiomyocytes, and 
neurons induces impairment of mitophagy, accumulation of dysfunctional mitochondria, and cell 
death [126]. Notably, molecular mechanisms involving MFN2-related mitophagy dysfunction have 
shown to be in place in the setting of several age-related diseases (i.e., Alzheimer’s disease, PD, 
diabetes, and cardiovascular disease) [126]. Declines in MFN2 protein expression, engulfment of the 
mitophagic pathway, and accumulation of dysfunctional mitochondria have also been reported in 
skeletal muscles of older adults with physical frailty and sarcopenia [127]. In further support to the 
relevance of fusion to the preservation of mitochondrial function during aging, a shift of 
mitochondrial dynamics signaling toward fusion in muscles of very old hip-fractured patients has 
been described [128]. In keeping with this view are also findings obtained in mtDNA-mutator mice, 
a rodent model of premature aging obtained by expressing a proofreading-deficient version of the 
mtDNA polymerase gamma (PolG mice) [129]. The sarcopenic phenotype of prematurely aged PolG 
mice is characterized by higher FIS1 expression and increased mitophagy [129]. 

4. Mitochondrial Quality Control Failure as a Mechanism in Inflammaging 

Competent MQC pathways, including those involving nondegradative 
mitochondrial-lysosomal tethering, are instrumental to cell and organismal homeostasis. This is 
reflected by the tight relationship among mitochondrial dysfunction, redox imbalance, and 
inflammation during aging [130]. Indeed, under specific circumstances, redox-sensitive 
inflammatory pathways involving mitochondrial Ca2+ metabolism, iron handling, and ROS 
production may be triggered [131,132]. This impairs the function of the ETC, thereby enhancing 
oxidant generation. The resulting ROS burst acts as a major pro-inflammatory stimulus through 
activation of nuclear factor κB (NF-κB) and downstream inflammatory response [133]. 

Different outcomes ensue depending on the severity of inflammation and the efficiency of 
cellular quality control systems. In response to moderate inflammatory stimuli and overwhelmed 
cellular repair systems, an apoptotic cascade may be triggered [134]. On the other hand, the 
installment of severe inflammation, mitochondrial dysfunction, and ROS-induced damage may 
culminate in necrosis. As a result, cellular constituents, including whole and fragmented 
mitochondria as either cell-free components or within MDVs, are released into the circulation. Here, 
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DAMPs, in particular mtDNA and damaged mitochondrial components, trigger inflammation by 
interacting with TLR, NLRP, and cGAS-STING systems [135,136]. 

The TLR pathway is elicited by the binding of DAMPs to neutrophils, followed by their 
activation and organization of an inflammatory response via NF-κB signaling [137]. An alternative 
mtDNA-induced inflammatory pathway operates through inflammasomes, in particular via the 
NLRP3 inflammasome [138,139]. NLRP3 has been implicated in a wide range of diseases, including 
Alzheimer’s disease, cardiovascular disease, asthma, inflammatory bowel disease, nonalcoholic fatty 
liver disease and nonalcoholic steatohepatitis, graft-versus-host disease, type 1 diabetes, rheumatoid 
arthritis, myelodysplastic syndrome, gout, etc. (reviewed in [140]). NLRP3 consists of a group of 
cytosolic protein complexes, the activation of which results in the engagement of caspase-1 [141]. 
The latter subsequently cleaves and activates interleukin (IL) 1 and 18. It is noteworthy that 
redox-sensitive inflammatory and inflammasome-mediated pathways may act synergistically to 
reinforce inflammation [142]. 

Albeit the exact mechanisms linking inflammasome activation to inflammaging remain elusive, 
bacterial-like motifs within the mtDNA that are sensed by NLRs are major suspects [143]. What is 
more, NLRP3 activators can trigger a self-maintaining circle by inducing mitochondrial dysfunction, 
ROS bursts, and consequent mtDNA damage [139]. Upon release, oxidized mtDNA may function as 
the ultimate NLRP3 ligand [139]. Hence, inflammasomes, including NLRP3, may represent key 
up-stream checkpoints of the innate immune system during the development of inflammaging. 

The cGAS-STING DNA-sensing pathway is an additional component of the innate immune 
system [136]. Upon binding to mtDNA, cGAS proceeds through STING protein recruitment which 
triggers the phosphorylation of the transcription factor interferon (IFN) regulatory factor 3 (IRF-3) 
via TANK-binding kinase (TBK). Activated IRF-3 induces the production of type I and III IFN and 
IFN-stimulated nuclear gene products. A persistent activation of the cGAS-STING pathway has been 
invoked as a mechanism in inflammaging by promoting cellular senescence through IFN-mediated 
induction of p53 [144–146]. Upon activation of the senescence program, cell cycle arrest ensues. 
Though, the cell remains metabolically active and undergoes functional changes characterized by a 
peculiar protein expression and secretion phenotype, known as senescence-associated secretory 
phenotype (SASP) [147]. The SASP fingerprint includes ILs, chemokines, growth factors, secreted 
proteases, and secreted extracellular matrix components [147]. SASP factors modify the local 
microenvironment through autocrine and paracrine actions to ensure prevention of growth of 
damaged cells, recruitment of immune cells, and promotion of tissue repair [148,149]. On the other 
hand, the insufficient clearance of senescent cells during aging may feed systemic inflammation 
through sustained production of SASP-related pro-inflammatory cytokines, including IL1β, IL6, and 
IL8 [150]. 

5. Circulating Mitochondrial-Derived Vesicles, Systemic Inflammation, and Neurodegeneration: 
The Case of Parkinson’s Disease 

PD has a multifaceted pathophysiology that recapitulates all major hallmarks of aging and has 
therefore been proposed as a prototypical geroscience condition [4,129,151]. In this complex 
scenario, mitochondrial dysfunction in neurons and systemic inflammation are invoked as major 
pathogenic mechanisms in PD [152,153]. Although the molecular events linking these two processes 
are yet to be disentangled, failing MQC and the release of mitochondrial DAMPs within small EVs 
(sEVs) have recently been associated with a specific inflammatory profile in older adults with PD 
[71]. In particular, older people with PD showed greater serum concentrations of mixed sEVs 
compared with non-PD peers [71]. The characterization of sEVs revealed their identity as exosomes 
of endosomal origin deriving from the fusion of multivesicular bodies (MVBs) with the plasma 
membrane [71]. Notably, mitochondrial signatures, including adenosine triphosphate 5A (ATP5A), 
nicotinamide adenine dinucleotide reduced form (NADH):ubiquinone oxidoreductase subunit S3 
(NDUFS3), and succinate dehydrogenase complex iron sulfur subunit B (SDHB), were identified in 
purified sEVs from older adults with PD. This finding indicates the presence of MDVs among sEVs 
in PD [71]. More relevant was the observation that levels of MDVs were lower in older people with 
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PD relative to non-PD controls [71]. The generation and release of MDVs are orchestrated by 
mitochondrial-lysosomal crosstalk and may be triggered as a mechanism to dispose dysfunctional 
organelles, the persistence of which would be detrimental for cell homeostasis [16]. According to this 
view, the increased sEV secretion detected in PD might reflect the cell’s attempt to clear out 
dysfunctional mitochondria. The lower secretion of MDVs may therefore be indicative of MQC 
stalling in this condition. 

EV cargoes enriched in damaged mitochondria may also be delivered to lysosomes for 
degradation [66]. In support to this hypothesis, alterations of lysosomal function were described in 
association with impaired mitochondrial biogenesis in fibroblasts from a young PD patient with 
Parkin gene (PARK2) mutation [154]. 

Relevant insights into the association of mitochondrial dysfunction with systemic inflammation 
in PD were provided by the integrated analysis of mitochondrial and inflammatory markers. This 
approach revealed a molecular fingerprint of PD, encompassing MDV markers and inflammatory 
biomolecules [71]. The presence of fibroblast growth factor 21 (FGF21) within the biomarker profile 
of PD is especially noticeable. Indeed, FGF21 has recently been related to dysfunctional MQC in 
neurons and has shown to be induced in brains of murine models of tauopathy and prion disease 
[155]. Thus, it is proposed that FGF21 may function as a “mitokine” and serve as a biomarker of 
mitochondrial dysfunction in the brain [155]. 

The liaison among failing mitochondrial fidelity pathways, MDV secretion, and systemic 
inflammation may not be exclusively involved in neurodegeneration. Indeed, other conditions such 
as HIV infection are characterized by pyroptotic bystander cell death and release of DAMPs that 
may trigger the same pathways as those identified in PD and inflammaging [156]. In addition, a 
massive release of DAMPs is acknowledged as a factor in the development of multiorgan failure in 
patients with severe injuries or during hemorrhagic shock [157]. Mitochondrial DNA scavenging 
through the injection of hexadimethrine bromide has shown to prevent the mtDNA surge in the 
circulation and to rescue multiorgan failure in a preclinical model of tissue injury and hemorrhagic 
shock [157]. Although the pathophysiology of the multiple organ failure syndrome is different from 
that of inflammaging and neurodegeneration, the release of mitochondrial DAMPs may be a 
converging mechanism underpinning all these conditions. The scavenging of circulating 
mitochondrial DAMPs, including mtDNA, might therefore represent a yet unexplored therapeutic 
option for the management of age-related conditions. 

6. Conclusions 

Mitochondrial dysfunction, arising from failure of mitochondrial fidelity pathways, is a major 
mechanism driving aging and the development of age-related diseases. In this context, MQC 
processes may represent ideal targets for geroprotective interventions. Notably, many of the 
proteins involved in MQC pathways have been localized at inter-organelle interface. Such contact 
sites may therefore participate to some of the processes responsible for cell dyshomeostasis triggered 
by mitochondrial dysfunction. Hence, a deeper characterization of the structures ensuring 
inter-organelle crosstalk is crucial for a comprehensive assessment of mitochondrial dysfunction 
during aging [158]. This knowledge, in turn, is necessary to unveil strategic pathways that may be 
targeted for geroprotective interventions. 
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