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Abstract
In this work, we characterize the performance of a deep convolutional neural network designed to
detect and quantify chemical elements in experimental x-ray photoelectron spectroscopy data. Given
the lack of a reliable database in literature, in order to train the neural networkwe computed a large
(<100 k) dataset of synthetic spectra, based on randomly generatedmaterials coveredwith a layer of
adventitious carbon. The trained net performs aswell as standardmethods on a test set of≈500well
characterized experimental x-ray photoelectron spectra. Fine details about the net layout, the choice
of the loss function and the quality assessment strategies are presented and discussed. Given the
synthetic nature of the training set, this approach could be applied to the automatization of any
photoelectron spectroscopy system,without the need of experimental reference spectra andwith a low
computational effort.

1. Introduction

Deep neural networks (DNNs) are currently state-of-the-art in image recognition applications, and have already
been tested for several scientific spectroscopy applications [1–4]. In fact, fastmachine learning processingwill be
crucial for high-throughput data analysis, especially for large research experiment facilities such as synchrotron
or free-electron lasers [5], where the large data amount prevents the standard hand processing. In addition to the
way faster processing,machine learningmethods can, for specific tasks,match or even outperform the accuracy
of a human analysis. X-ray photoelectron spectroscopy (XPS) data represent an ideal application field forDNN
classificationmethods. In anXPS experiment [6] the sample surface is hit by x-rays with specific energy (hν)
from amonochromatic source (schematics are given infigure 1). If hν is larger that the binding energy (BE) of
the electrons in the solid, the electron is ejectedwith a kinetic energy n f= - -hKE BE , wheref is thework
function, ultimately related to the bulk/vacuumdiscontinuity at the sample surface. This simple relation allows
one to collect XPS spectra bymeasuring the number and the kinetic energy of the photoemitted electrons.

Each element displays characteristic core levels andAuger lines that are then used to identify the elements
present in a sample. Usually, a wide range photoelectron spectrum is acquired for a fast identification, while
high-resolution spectra are collected for selected core-levels, in order to better identify the chemical valence
states of each element. Elemental identification should be obtainedwith easewithDNNs even fromwide range
spectra, without the need of focused spectra. Given the potential relevance of XPS formaterial physics and
industrial research [7], thismachine learning approach looks appealing for automatic analysis; anXPS setup
could autonomously recognize the sample composition and collect the high-resolution spectra required for the
precise compound identification.

However,major drawbacks prevents the application ofDNNs toXPS data analysis. A neural network
training requires a large database of consistent spectra, which should cover all the possible XPS analysis
outcomes in awell distributed, random sampling of all chemical elements; up to now, such amount of data
cannot be found in literature. The lack of a proper spectra database is due to several characteristic of XPS
analysis: the technical complexity (due to the ultra high vacuum requirements), the variety of XPS set-up
(different photon sources, analyzers, experimental geometries), the often long spectra acquisition time, the
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details of sample preparation, and the different spectra range, resolution andnoise level. Apart from time and
sample constraints, the collection of a universal XPS database suitable forDNNs is unfeasible, since eachXPS
machinewould require a special dataset related to its specific technical details.

Moreover, the XPS quantification and identification process is strongly influenced by the large difference of
photoemission cross sections for each chemical element. In fact, the actual detection threshold is different for
each element, and is also dependent on the actual total electron count statistics; a larger acquisition time or a
higher photon flux allows [8] to detect elements in a sample with a sensitivity down to 0.1%.Moreover, the
peculiar superposition of core-levels of different elements significantly affect the XPS element detection
capability [9]. The stoichiometry evaluation (i.e. the elemental quantification) is also affected by the spectra
analysis routine and by the specific choice of sensitivity factors. The practical accuracy for relative elemental
quantification is generally considered [10] to be 10%, althoughmuch better results can be obtainedwith a very
accurate setup characterization and data treatment [11]. As a result,most of the quantificationwork is usually
carried out on a single, specific core-level for each element, for which a specific sensitivity factor is known [12];
these normalization factors are different for eachXPS setup andmust be supplied by themachine vendor or
obtained by accurate investigations on calibration samples. An extensive review of quantitative XPS resolution
can be found at this [13].

Finally, XPS spectra are often affected by the presence of a surface adventitious carbon contamination layer,
due to the high surface sensitivity of the technique.While in some cases this layer can be removed byUHV
cleaning techniques, such as Ar+ sputtering or plasma cleaning, inmany other cases the surface cannot be
cleanedwithout inducing a sample degradation. The carbon contamination leads to an overall lower XPS
intensity [14], which is different for each core level because of its dependency on the photoelectronKE.

In this workwe show the application of aDNN to the task of identification and quantification of XPS survey
spectra. To overcome the lack of a large experimental dataset, we generated a synthetic training set, based on
state of the art theory for XPS [15]. Each training spectrumhas been calculated on a randomly generated
material, with a random contamination layer on top; every element in the periodic table, fromLi to Bi, has been
taken into account with identical probability. Each detail of real XPS spectra, such as peak position, width and
intensity, inelastic loss backgrounds, chemical shifts, the analyzer transmission function, the signal-to-noise
ratio (SNR) etc, has been carefully simulated according to available XPS databases and theories, in order to
produce random synthetic, yet realistic spectra. As for an experimental data reference, we used a set of 535 survey
spectra, collected in similar experimental conditions. TheDNNhas been specifically designed to produce
consistent results without the use of any experimental spectra during the training; for this task, an optimized net
layout and a specific lossmeasurement have been introduced. TheDNNhas also been trained to ignore the
adventitious carbon contribution, in order to produce the pristinematerial stoichiometry quantification. Due to
its design, this approach could be applied to anyXPS system,with any photon source, andwithout the need of a
large experimental data set for theDNN training.

Figure 1. Schematics of XPS and of theDNNapplication to spectra analysis.
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2.Methods

2.1. The training set
Wenumerically generated a synthetic training setmade of 100 k survey spectra based onXPS parameter
databases and electron scattering theory in the transport approximation [15]. The spectra KE rangewas
400–1486 eV on a 2000 point grid, which thenwill correspond to the size of the input array of theDNN (i.e. the
number of features); we restricted the analysis to Al kα source, although thismethod could be extended to any
soft x-ray source, within the limits of database availability andmodel approximations.

Given that we only consider the task of overall identification and elemental quantification, we devised a
relatively simple two-layermodel for the spectra simulation, where a randombulkmaterial is covered by an
over-layer of the usual hydrocarbon contamination. In order tomake the training set as general as possible, each
material is composed by a randomnumber (from2 to 5) of elements, with variable stoichiometry ratios.We
consider randompossible combinations of elements in the [3,81] atomic number interval, without any bias
towards a specific element ormaterial; while thismethod is generating spectra for several unphysicalmaterials, it
allows for a completely unbiased network training.We assigned to each syntheticmaterial a density, evaluated
on the basis of elemental densities. Although this is a rather approximate approach, it allows for amore accurate
evaluation of peak intensity in very densematerials, such as low-Z elements diluted in high-Z compounds. The
contamination layer density has been set to 1.56 g cm3, as an average of several similar organic compounds; the
environmental contamination layer should thus be considered as an effective layer, whose thickness was
randomly chosen in the [0–40] Å interval.

For each elementwe considered databases entries for all the core-levels [16, 17] andAuger [18, 19]
structures, both for cross-sections and native peakwidths. Peak positions are also randomly shifted by
considering the largest chemical shifts found in available databases [20]; this shift can reach up to 10 eV, for
instance for sulfur core levels. In order to predict the actual peak intensity we performed fullMonte-Carlo
simulations, as described byWerner [15], including both the electron inelastic and transportmean free path
(IMFP andTMFP). IMFPhas been calculatedwith the usual TPP2M formula [21], while for TMFPwe used the
interpolationmethod of Jablonsky [22]. Thismethod allows for the prediction of peak intensity and of the peak
inelastic background, which has been simulated on the basis of Tougaard differential inverse inelasticmean free
path (DIIMFP) formula [23]. Each peak has been simulatedwith aVoigt peak, and the background has been
evaluated through subsequent convolutions with theDIIMFP function. The full details of the actual XPS setup
have been considered, including the analyzer acceptance angle. Such approach has been used previously to
accurately characterize the transmission function of electron analyzers from survey spectra quantification [11].

For the contamination layer, based on experimental results on adventitious carbon contamination [14], we
considered a carbon rich layer (5:1 carbon to oxygen ratio), with an additional 10%noise for the intensity and a
random shift ofmaximum0.5 eV for the peak position. Such shift shouldmimic the effect of small peak drifts
due to charging or to different analyzer-to-sample work functions.

In order tomake comparisonwith the raw experimental spectra, we performed severalfinal refinement
steps. Synthetic spectra are convolutedwith aGaussian peak in order to reproduce the experimental resolution;
we introduced theXPS satellites for the non-monochromatic Al kα source(for core-level photoelectron features
only); wemultiplied the spectra with the proper analyzer transmission function, which has been characterized
properly for ourXPS system [11]; finally, we added a small Gaussian relative noise (0.3%) and normalized the
data in the [0,1] intensity range. Some example of the training set spectra are given infigure 2(a).

The generation of each synthetic spectrum required an average of 2 min computational time on a single-core
desktopmachines. Consequently, the training set productionwas in fact themost computational intensive part
for this work, andwas carried out in parallel fashion on several computers. The relatively long time required for a
single spectrum calculation and the large number of parameters renders the application of this spectra
predictionmethod as a direct datafitting procedure impracticable. Instead, after theDNN training, any
subsequent spectra evaluation is then extremely fast and direct.

The [0,1] intensity normalization constraint, which is typical for the input features of trainableDNNs,
introduces some additional difficulties for the quantification task. TheXPS total intensity,measuredwith afixed
x-rayflux and accumulation time, can vary by up to two order ofmagnitude because of the element cross
sections. Accordingly, the amount of time required to decrease the noise level of XPS spectra is also variable. By
fixing the intensity range, we are then losing informationwhich could be in principle useful for the
quantification process. However, in standardXPS practice, the x-ray flux could be different in each experiment,
as well as the accumulation time; hence the choice to normalize the training and experimental spectra to the
same scale. For the same reasonwe also decided tofix the SNR to 0.5%of the [0,1] intensity range (i.e. each
spectra shows exactly the same SNR), which corresponds to the lab practice to tune the total accumulation time
in order to reach a reasonably clean spectrum.
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Twodifferent set of labels have been considered for theDNNoutput. Themost straightforward one is the
choice of an 81 numbers array qi i=1,K, 81, which directly represent the relative elemental quantification
fromZ=3 (lithium) toZ=83 (bismuth). However, this approach is suboptimal because the relative elemental
quantification does not directly correspond to the relative contribution of each chemical species to the
corresponding spectrum intensity, which confuses theDNN.More precisely, due to the different photoelectron
cross sections, each element displays different XPS intensities for the same relative quantification. For instance,
in a compoundmade by Li andCu in a 1:1 ratio, 99%of the XPS spectral weight is related toCu,making the
lithiumdetection nearly infeasible without a very large data statistics. Infigure 2(b), we show the calculated
spectramaxima (at afixed photon flux) of pure elements without contamination (labeledTi), as a reference for
the relative XPS intensity. TheTi values roughly scales with the photoelectron cross-section of the strongest
core-level in the consideredKE range (400–1486.6 eV, with hν=1486.6 eV), with smallmodification due to the
actual peakwidths, to the peak backgrounds and to the analyzer transmission function. Therefore, instead of the
relative elemental quantification, we used as labels for the classification the normalized quantification intensity
defined as

å=
-

y q T q T , 1i i i
i

i i

1⎛
⎝⎜

⎞
⎠⎟ ( )

where now yi is the contribution of the element i to the total intensity spectrum.Here and throughout this paper
variables with overline denote true labels and variables without overline denote the network outputs.

2.2. The experimental data
The experimental dataset is composed of 534 survey spectra collected in the Surface Science and Spectroscopy
laboratory of theUniversità Cattolica in Brescia with aVG-Scienta R3000 spectrometer and the non-
monochromatedKα line of a PsP dual-anode x-ray source. The dataset contains several classes ofmaterials:
many inorganic oxides, binary and elemental semiconductors, carbon based nanostructures and
heterostructures. Of the 81 element used in the generation of the synthetic training set, 36 are actually
composing thematerials in the experimental dataset. The only data correctionwhich has been applied to the
experimental spectra before testing themwith the trainedDNN is the alignment of the energy scale, carried out
with reference peaks energy (Ag, Au or adventitious carbon contamination). None of the experimental data has
been used as a part of the training set, and none of the synthetic training set data has beenmodified tofit the
experimental results.

Figure 2. (a)An excerpt of two simulated survey training spectra, (b)maximumXPS intensity (Ti) of simulated spectra for each pure
element, calculated for a fixed photon flux. Photon energy is 1486.6 eV, andKE spectra range is 400–1486 eV.
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In order to obtain the labels qi of the experimental spectrawe first performed a standard quantification
procedure: first, we removed the analyzer artefact (such as the transmission function and x-ray source satellites);
thenwe identified the actual chemical elements and found the corresponding strongest XPS lines; finally we
evaluated the peak area and normalize it with the corresponding photoelectron cross section.We then removed
the contribution of surface carbon contamination from the experimental labels, whenever allowed by the
additional info about each specimen. Such evaluation can be problematic even for a humanuser, especially for
heavily contaminated carbon-basedmaterials.With thismethod, the obtained labels qi have a relative error of
∼10%on the experimental dataset.

2.3.DNN layout
We tested several geometries for our neural network and, althoughwe tested some purely fully connected layer
and deep convoluted networks, the best results were obtained for the hybrid geometry shown infigure 3, which
also identifies the level of carbon contamination. The network takes as input the 2000 spectral points xj ( j=1,
K, 2000) and produces two outputs, the normalized contamination level cä [0,1] (equivalent to [0−40]Å) and
the normalized intensity yi (i= 1,K, 81) of the 81 element, see equation (1). In order to obtain the actual
quantification qi (i= 1,K 81) of the elements, we post-process the learned outputs of the network

å=
-

q y T y . 2i i i
i

i

1⎛
⎝⎜

⎞
⎠⎟ ( )/

Our best network is composed of three stages. Thefirst ismade of convolutions and essentially plays the role
of a noisefilter and feature extraction. The second is used to identify the level of carbon contamination, and the
third is used for normalized intensity quantification.

Concretely, the first stage ismade of an initialmultilevel convolution sub-netmodeled after the inception
module of incnet [24], with three parallel 1D convolutions with one kernel each, of size 11, 21, 41, respectively,
and stride length 1. The resulting data are then concatenated, pooled (with an average pooling kernel size 4,
stride length 4) andflattened to obtain again 2000 data points. This parallel convolutions design ismeant to gave
to theDNN the capability to train from small and long range spectra correlations, which can be equally
important in the identification and quantification tasks. The second stage is composed of two fully connected
layers with 100 and 1 neurons, bothwith (logistic) sigmoid activation, is used to identify the level of carbon
contamination c (loss: L2-norm). The third stage produces the normalized intensities yi. For this, the output c is
concatenatedwith the 2000 elements of the first convolution stage. The 2001 elements are then used as input for
the last fully connected classification layers of 2000 neuronswith a rectified linear unit (RELU) activation and 81
neuronswith sigmoid activation, respectively. Afinal layer is used to normalize the outputs so thatå =y 1i i .
For the full network, the total number of trainable parameters is about 4million.

The optimal net hyper-parameters, such as the convolution kernel sizes, the convolution number, the fully-
connected layer sizes and the optimization algorithmhave been tunedwith hyperparameter optimization
routines.Wefirst used a broad-survey statistical approach (implementedwith Talos [25]) to scan a large portion

Figure 3.Deep neural network layout for XPS data identification; for each convolution layer, f is thefilter number, k is the convolution
kernel size, s is the stride length. Total number of trainable parameters is 4366 410.
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of the parameter space, and then a targeted grid-search forfine-tuning. One of themajor difficulties in the
hyper-parameter optimizationwas the choice of the proper activation functions and the associated loss function
for the quantification stage (81 output neurons). From amachine learning perspective, we deal with amulti-
label supervised learning task, which points towards using a sigmoid output on each of the output neurons
togetherwith a binary-cross-entropy loss.However, contrarily to the standard definition ofmulti-label
classification tasks [26], the labels are not independent, butmust sumup to one aswe consider relative
concentrations of elements. Thus, one could use a soft-max activationwith categorical cross-entropy.However,
this produces unsatisfying results from a physics perspective, because it cannot deal well with samples with
several roughly equally present elements. For practical purposes, onewould desire a network that has a very high
accuracy for large relative concentrations, let’s say10%. In order to achieve this, we used the combination of
sigmoid activation functions, a non-trainable normalization layer (as shown infigure 3) and a custom loss
function

å= -
=

L y y y y y, , 3
i

i i i
1

81
2 2( ) ( ) ( )

where yi is the network output and yi the target values. This loss function, whichmultiplies the standard L2 norm
by the net results squared, is then larger for large output values; for this reasonwe termed it ‘high-pass filter’ loss.
Its adoption greatly improved the identification thresholds for elemental detection, by lowering theminimum
reliable quantification results which should be trusted in theDNNoutput; suchfindings are discussed in the
next section, in particular with regards tofigure 7(a). The combination of this net layout, ADAMoptimizer and
the tuned loss function allowed for a robust training.

3. Results and discussion

The evolution of the loss function for theDNN training is given infigure 4.Without the introduction of a
regularizationmethods, after few epochs the training algorithmbegins to overfit the synthetic data, leading to a
minimum in the experimental data loss (blue arrow infigure 4(a)). It should be pointed out that overfitting is
observed on the experimental data only, and not on subsets of synthetic spectra (not used during the training);

Figure 4. Loss function convergence during training for (a)no dropout and standard L2 norm and (b) for thefinalDNNconfiguration,
i.e. with a 15%dropout before the classification layer and high-pass norm.
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the dataset size is thus adequately large, and has been computedwith an sufficient amount of randomness in the
initial parameters.

In order to avoid overfitting and to achieve a better parameter convergencewe introduced a dropout before
thefinal classification layers (see figure 3): the training algorithmwas then forced to ignore a randomportion of
the net connections at a specific location, with a probability p.With thismethodwe routinely achieved a smooth
convergence of both the training set and the experimental data (see figure 4(b)). Please note that the adoption of
the high-pass loss function alone could not avoid the overfitting, although it still improves the identification
accuracy.While batch normalizationmethod, which couldworkwell in image recognition applications [27], has
also been considered in order to address the overfitting problem,we found dropoutmethod to performbetter
for our experimental data. As a side effect, the introduction of a dropout layer led to a slightly slower learning
process; we estimated that a training of nearly 200 epoch is enough to achieve good and consistent quantification
and identification performances. The optimal range for the dropout probability, estimated by the
hyperparameter study, is 0.1<p<0.2; within this interval the dropout is large enough to avoid overfitting,
and small enough to prevent excessive randomness in the quantification performances.

The quantification results qi obtained using the post-processing equation (2) from the predicted labels yi of a
well trainedDNNapplied to the experimental data are given infigure 5. TheDNNquantification results qi
(figure 5(a)) are contrasted to the experimental quantifications before the removal of oxygen and carbon from
the adventitious contamination layer (figure 5(b)); data are shown asmatrices where each column corresponds
to a spectrum and each row correspond to a specific element. The overall correspondence between theDNN
predictions and the actual quantifications is remarkable, with a complete absence of wrong element detection
with relative high stoichiometry. Factoring out the presence of adventitious contamination in the experimental
data, the RMS between qi and qi is equal to 3.8%.However, this value can only poorly asses theDDN
performances due to the inherent uncertainty in the experimental labels qi.

Two examples of actual data quantification are given infigure 6. For carbon nanotubes deposited on Si
(figure 6(a)), theDNNcorrectly assign the carbon peak to the actualmaterial and not to the adventitious
contamination (figure 6(b)), which is nearly negligible; in indium-tin oxide (figure 6(c) and (d)), theDNN
correctly identifies all themain elements and assigns all the carbon content to the actual adventitious
contamination. It is also possible to use theDNN stoichiometry and contamination predictions to actually
reproduce synthetic spectra (red traces,figures 6(a) and (c))which are in a nice agreement with the experimental
one, within the 10%accuracy limit of the hand-made quantificationmethods.

In order to further asses the detection accuracy of theDNNwe considered the identification ratiometric as
shown infigure 7(a).Wefirst divided the interval of values for the qi ([0,1]) into 50 bins of equal length 0.02.
Then, for each bin, we counted the ratio of elements predicted by theDNN that have a qiwithin the bin that also
have a label >q 0i . This was done for thewhole experimental data set (red dot line) and for a test data set of
20 000 synthetic spectra not used during the training (black line). Since theDNNuses a sigmoid function on the
output neurons (see figure 3), the predicted quantifications qi for all the elements is always a non-zero.

For awell-working network, we expectmost of thewrong predictions to be related to small output (either qi
or yi), while positive identification should be related to high output values.With a perfect identification, the
graph offigure 7(a) should then be aHeaviside-like step function, whose integral IR in the [0−1] output
interval would be exactly one.We found that a good elemental identification, regardless of the RMSon the

Figure 5.DNNquantification results (a) compared to actual XPS quantification (b).
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quantification accuracy discussed above, can be foundwhen the integral of this function is above 0.90; with our
DNNwe routinely achieve a Iexp≈0.93, such as for the red dotted curve shown infigure 7(a). For the synthetic
dataset (black line infigure 7(a)), the integral is Isynth=0.95, which is very close to Iexp.

The identification graph can nowbe used to estimate an accuracy threshold for theDNN results, pointed out
by black arrows in thefigure 7(a) inset; an average 50%probability of a correct element identification is found
forDNNquantification qi results above 0.06, while the 90% threshold is reached roughly at 0.15.When the
DNNoutput qi for a specific element is larger than 0.2, the identification is nearly always correct.We tracked the
value of Iexp over several different training runs and obtained and average of 0.92±0.01 level after 200 epochs.

Although these thresholds could be used as general rule-of-thumb, we expect to have different accuracies for
different elements as a result of the different photoelectron cross sections. However, the limited size of our
experimental dataset did not allow for a precise elemental-selective accuracy study. Instead, we computed the
positive identification curves over the synthetic test set each element individually. This was done for both the
final quantification (qi) and the network output intensity (yi). The corresponding 50% identification threshold
andRMSof the net outputwith respect to the exact labels are shown infigure 7(b). The net performances for
elemental intensities (black and gray graphs) is nearly constant for all the elements, with the exception of Li and
Be, due to their very low photoelectron cross sections; the average value for the 50% threshold is close to 0.03, i.e.
theDNN is able to detect an element contributing to 3%of the total spectra intensity, with an average error of
about 0.7%. The quantification on the contrary (blue and cyan traces) is strongly dependent of the atomic
number, with a detection threshold ranging from1% to nearly 20%; accordingly, the absolute accuracy of
quantification is also varying from a base value of 1.5%–9%.Note that for both identification and quantification,
the lower limits are probably dependent on the amount of randomnoise added to the synthetic training set.

Finally, we address the capability of theDNN to discriminate the carbon contamination from actual carbon-
based compounds. Since it was not possible to accurately compute the level of carbon contamination of the
experimental spectra, wewill use a qualitative proxymeasure. The red graph infigure 8 shows the overall carbon
content of the experimental dataset, evaluated from the total area of C 1s peakwith respect to other elements
peaks. The black trace shows the network output for the carbon quantificationwhich, as expected, is
significantly different from the experimental one. In general, theDNNperforms verywell reporting a high
carbon content only for pristine organicmaterials, such as carbon nanotubes and other organicmolecules,
represented by the underlying light gray shades beneath theDNN identification. Someweak carbon presence is
also detected by theDNN in thefirst 50 spectra of the experimental dataset, which aremostly composed byGa,
Se andGe; these elements show several Auger features which are superimposed toC 1s core-level, possibly
confusing even a trained humanXPS user.Moreover, a thick contamination layer can also be present on top of
organic compounds, further complicating the quantification process; that is, for instance, the case of the
experimental spectra around the 100 dataset index.

Figure 6.Application examples on two experimental sets; spectra (a) and quantification qi (b) for carbon nanotubes on Si; spectra (c)
and quantification qi (d) for indium-tin oxide (ITO) deposited on Si. For the ITO case, the adventitious carbon contaminationwas
factored out from the experimental quantification.
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Figure 7. (a)Positive identification ratio of theDNNversus the quantification output, calculated for the experimental data (red) and a
synthetic training set (black); (b) element specific identification thresholds for the intensity yi and the quantification qi, calculated for
the training test set.

Figure 8. Full carbon experimental quantification (red) and corresponding results for theDNN (black), which has been trained to
ignore carbon from adventitious contamination.
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The data that support the findings of this study are available from the corresponding author upon reasonable
request.

4. Conclusions

In conclusion, we have shown the application of a neural network to the identification and quantification task of
XPS data on the basis of a synthetic random training set. Results are encouraging, showing a detection and an
accuracy comparable with standardXPS users, supporting both the training set generation algorithm and the
DNN layout. This approach can easily be scaled to different photon energies, energy resolution and data range;
furthermore, theDNNcould be trained to providemore output values, such as the actual chemical shifts for
each element, expanding the net sensitivity towards the chemical bonds classification.
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