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ABSTRACT 

Background: Breast cancer (BC) is the leading cause of cancer related death in women worldwide 

and metastasis account for the majority of mortality. Particularly, triple negative breast cancer 

(TNBC) has remarkably poor prognosis when metastasis develop. Dyslipidemia and mitochondrial 

adaptations have been implicated in metastatic progression. In this study, we explore the role of LDL 

and mitochondria in TNBC invasion-metastasis cascade, aiming at identifying new targets and 

prognostic markers that impact clinical management. 

Methods: MDA-MB-231 human TNBC cell line was cultured in normal growth medium or 

supplemented with LDL. DiI-labelled-MDA-MB-231 (control) or Cy5-labelled-MBA-231 (LDL) 

cells transfected with Mito-YFP were xenotransplanted into the perivitelline sac of 2 days-

postfertilization (pdf) zebrafish larvae. After injection, larvae at 1, 4, 5 days pos-injection (dpi) were 

fixed, stained for GFP and mounted. Tropism was studied using widefield and spinning disk confocal 

acquisitions. Mitochondrial network quantification was analysed with point scanning confocal 

images. Fisher Test, and chi-square, chi-square only and student T-test were applied for statistical 

analysis and p-values<0.05 were considered statistically significant. 

Results: MDA-MB-231LDL cells showed differential invasion potential (widefield analysis, Chi-

square, p=0.0347, n=25 larvae; spinning disk analysis, Chi-square p=0.06, n=11 larvae), with cells 

disseminating to all organs in both analyses, contrary to MDA-MB-231control cells. MDA-MB-231LDL 

cells diverged from control and migrated more to less vascularised organs as well as exclusively 

infiltrated organs where no vessels are found at 6dpf. Mitochondrial network of disseminated MDA-

MB-231LDL cells had increased filamentous distribution across the cells, displaying more but smaller 

Mito-YFP particles, which according to literature is associated with migration and invasion. 

 Conclusions: Our results show that LDL exposure promotes invasion and survival of TNBC cells at 

distant sites and induce mitochondrial adaptations, i.e., increased mass, along with widespread of 

network across the cell, a metabolic feature with potential therapeutic application for metastatic 

TNBC. 

Key-words: triple negative breast cancer, metastasis, LDL, mitochondria, zebrafish 

xenotransplantation 
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RESUMO 

O cancro da mama é o mais frequente entre mulheres em todo o mundo e é responsável pela maioria 

da mortalidade associada a cancro, no sexo feminino. As metástases são a principal causa de 

mortalidade, representando até 90% das mortes por cancro da mama. 

O cancro da mama metastático tem mau prognóstico, embora haja diferenças significativas consoante 

o subtipo considerado. O cancro da mama triplo negativo metastático tem um tempo médio de 

sobrevida extraordinariamente inferior aos restantes, devido à ausência de receptores moleculares e 

terapêuticas dirigidas, à heterogeneidade molecular e à tendência para metastizar ou recidivar. A 

metastização ocorre segundo a cascata de invasão-metástase, que tem várias etapas: invasão local, 

intravasão, sobrevivência em circulação, extravasão, sobrevivência no microambiente secundário e 

proliferação para formar metástases. É imperativo compreender os mecanismos alterados na base da 

metastização do cancro de mama triplo negativo, isolar potenciais alvos terapêuticos e marcadores de 

prognóstico.  

O LDL é uma lipoproteína de baixa densidade que transporta triglicéridos e colesterol esterificado do 

fígado para os tecidos periféricos. Níveis plasmáticos elevados de LDL estão associados a menor 

tempo livre de doença e maior progressão tumoral, em cancro de mama. A molécula de LDL tem 

impacto em várias etapas da cascata invasão-metástase. Destaca-se a promoção da perda de adesão à 

matriz, o aumento da invasão e migração, a estimulação de mecanismos que facilitam a intravasão e 

extravasão, bem como o aumento do número e tamanho de metástases pulmonares, em ratos 

hipercolesterolémicos, e nódulos linfáticos metastáticos, em pacientes com níveis plasmáticos de 

LDL aumentados. Nos carcinomas, a transição epitélio-mesenquimatosa está associada a facilidade 

em progredir na cascata metastática e o LDL induz a expressão de factores de transcrição que 

promovem este processo.  

O metabolismo lipídico, em particular, altera-se substancialmente em tumores em progressão, como 

o triplo negativo. As células de cancro de mama triplo negativo têm alterações a vários níveis de 

regulação lipídica, aumentando o uptake de lípidos, facilitando o transporte intracelular de ácidos 

gordos e a activação necessária para armazenar lípidos em lipid droplets ou encaminhá-los para 

membranas lipídicas e para a oxidação de ácidos gordos. Além disso, apesar de serem globalmente 

mais glicolíticas, subsets de células triplo negativo têm demonstrado ser capazes de recorrer à 

utilização de oxidação de ácidos gordos e têm vários genes associados a esta via alterados. A elevada 

quantidade de energia providenciada por esta oxidação é vantajosa para a sobrevivência em 
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ambientes com nutrientes mais limitados, como em perda de adesão. De facto, a desregulação de 

alguns destes genes está associada a progressão metastática e a pior prognóstico em cancro triplo 

negativo. O microambiente tumoral no cancro da mama promove a progressão tumoral, contribuindo 

para a inflamação tumoral crónica (particularmente no caso da obesidade e dislipidemia), participa 

em permuta de metabolitos e fornece lípidos, que são transferidos para as células cancerígenas. 

São conhecidas várias alterações mitocondriais, em células invasivas e metastáticas de cancro da 

mama, como a expressão e activação de proteínas associadas a fissão e biogénese mitocondrial. 

Como consequência, estas células têm uma rede mitocondrial com maior massa, mais fragmentada, e 

as mitocôndrias são transportadas para regiões distantes do núcleo, incluindo protusões 

citoplasmáticas, onde promovem a migração. Em circulação, estas células têm menor acesso a 

nutrientes, menor necessidade de captar substratos para metabolismo anabólico e maior necessidade 

energética, portanto o metabolismo energético é mais dependente da respiração mitocondrial e os 

genes associados à glicólise são sub-expressos.  

Apesar de evidência recente sugerir que a exposição a LDL induz a agressividade de células TNBC 

ao modular a morfologia mitocondrial e o metabolismo, o mecanismo exacto destas alterações e as 

implicações para a progressão do cancro da mama, permanecem desconhecidos. Nesta dissertação, 

propusemo-nos estudar 1) se células de cancro da mama triplo-negativo após exposição a LDL têm 

um comportamento mais agressivo num organismo vivo, 2) se há invasão diferencial em órgãos 

secundários e 3) se as adaptações mitocondriais estariam correlacionadas com comportamento 

invasivo e tropismo diferencial. Para abordar estas questões, a linha celular humana de cancro da 

mama triplo negativo MDA-MB-231 foi cultivada em meio suplementado com LDL ou meio de 

crescimento normal. As células foram transfectadas com o marcador de mitocôndrias Mito-YFP, 

marcadas com DiI (MDA-MB-231controlo) ou com Cy5 (MDA-MB-231LDL), e xenotransplantadas 

em zebrafish com 2 dias pós-fertilização.  

Aos 4 dias pós-injecção (6 dias pós-fertilização) a capacidade de células MDA-MB-231LDL e MDA-

MB-231control migrarem para locais distantes em zebrafish foi analisada usando um microscópio 

widefield. De acordo com nossos resultados, células MDA-MB-231LDL têm migração diferencial 

estatisticamente significativa em geral (Qui-quadrado p=0.0347) e particularmente para locais 

distantes, como barbata dorsal (teste de Fisher, p=0.042), músculo dorsal (p=0.05), notocorda 

(p=0.023) e barbatana anal (p=0.008). Contudo, como o sistema widefield apresenta algumas 

limitações, quantificámos a capacidade de invasão e colonização de células TNBC em zebrafish com 
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um sistema confocal spinning disk. Analogamente à análise anterior, os resultados revelaram uma 

tendência para migração diferencial em geral das células MDA-MB-231LDL (Qui-quadrado, p=0.06, 

n=11). Estes resultados mostram ainda que células 1) MDA-MB-231LDL são capazes de migrar para 

todos os órgãos analisados, ao contrário das MDA-MB-231control; 2) órgãos mais vascularizados 

foram invadidos por células de ambas as condições, com as células MDA-MB-231control a infiltrarem 

mais frequentemente zonas muito vascularizadas, especialmente CHT (teste de Fisher, p=0,02); 3) 

órgãos menos vascularizados foram invadidos preferencialmente pelas células MDA-MB-231LDL. 

Entre estes, determinados órgãos são vascularizados apenas por uma artéria (olho, teste de Fisher, 

p=0,0075) ou eram justamente ventrais relativamente a CHT (barbatana anal) e foram invadidos pelo 

controle MDA-MB-231; mas outros (notocorda, barbatana ventral, barbatana dorsal, barbatana 

caudal) não têm vasos nos estudos angiográficos e nas nossas larvas Tg (fli1: eGFP) a 6dpf e foram 

exclusivamente infiltrados por células MDA-MB-231LDL. Estes resultados sugerem que as células de 

ambas as condições são capazes de realizar os três primeiros passos da cascata invasão-metástase 

(invasão, intravasão, sobrevivência em circulação) mas a exposição a LDL acelera uma ou mais 

etapas da cascata metastática, facilitando a migração para áreas periféricas e não vascularizadas.  

Interrogámo-nos porque é que as células MDA-MB-231LDL têm propriedades migratórias aceleradas, 

mais invasivas ou menos dependentes da vascularização. Para compreender o panorama geral de 

migrações contámos as massas tumorais (clusters > 20 células) e as células disseminadas dentro do 

zebrafish, excluindo células em massas tumorais. Encontrámos uma maior proporção de células 

MDA-MB-231LDL que células controlo no intestino (qui-quadrado, p<0,0001) e órgãos menos 

vascularizados: olho (Qui-quadrado, p<0,0001), músculo dorsal (Qui-quadrado, p=0,0336), 

notocorda (Qui-quadrado, p=0,0058), barbatana ventral (Qui-quadrado, p=0,0002) e barbata anal 

(Qui-quadrado, p=0,0236). As células MDA-MB-231control acumulam-se de forma abundante em 

órgãos extremamente vascularizados - como vesícula óptica (Qui-quadrado, p=0,0073), coração 

(Qui-quadrado, p=0,0126), guelras (Qui-quadrado, p=0,0003) e CHT (Qui-quadrado, p<0,0001) e 

outras regiões que não atingiram significância estatística (PVS, fígado). Contudo, não foram 

detectadas células MDA-MB-231control em regiões adjacentes não vascularizadas. Este fenótipo 

diverge do comportamento das células MDA-MB-231LDL que apesar de serem encontradas em menor 

número e proporção nas regiões vascularizadas, conseguem migrar para as regiões sem vasos, como 

barbatana ventral, anal, dorsal, caudal e notocorda. A extravasão ou sobrevivência no microambiente 

distante parecem ser processos limitantes. Duas hipóteses podem explicar estes resultados: 1) 

quimioatracção das células MDA-MB-231control especificamente para áreas vascularizadas; 2) 

aumento da agressividade das células MDA-MB-231LDL dotadas de maior capacidade de 
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extravasamento ou sobrevivência fora do trânsito hematogénico ou ambos. Como as células 

partilham o mesmo microambiente, este quadro sugere que a extravasão e a sobrevivência à distância 

terão sido promovidas por transformações nas próprias células cancerígenas, induzidas pela 

exposição prévia a LDL. Colocamos como hipótese dois mecanismos adaptativos nas próprias 

células para explicar a alteração de comportamento após exposição a LDL: o desenvolvimento de 

invadopodia (protusões citoplasmáticas que promovem a extravasão) e utilização de oxidação de 

ácidos gordos (que aumenta a sobrevivência à distância). De facto, no início da experiência 

verificámos que a exposição a LDL nas células expostas aumentou o conteúdo de lipid droplets e 

pode ter sido utilizado para estes fins. Estudos futuros serão necessários para confirmar o aumento da 

FAO e de invapodia à distância nas células MDA-MB-231LDL. 

Massas de células tumorais (> 20 células) foram detectadas dentro dos órgãos previamente 

analisados e quantificadas. Os resultados mostram que MDA-MB-231LDL foram capazes de crescer 

oito massas celulares tumorais e MDA-MB-231control foram capazes de crescer sete. De entre estes, 

contabilizaram-se cinco massas de células tumorais distantes para ambas as condições. Não houve 

diferença no número de massas distantes ou diferença relevante no número de massas globais.  

Como a massa mitocondrial, a biogénese e a dinâmica foram previamente implicadas na aquisição de 

maior capacidade migratória, decidimos estudar o impacto do LDL na distribuição da rede 

mitocondrial, usando o sinal de Mito-YFP como marcação mitocondrial e recorrendo a microscopia 

confocal point scanning. A análise qualitativa de distribuição de rede mitocondrial mostrou que 

54.7% das células MDA-MB-231LDL adquirem uma distribuição filamentosa diferindo das células 

MDA-MB-231control que maioritariamente têm uma distribuição perinuclear (Fisher Test, p=0.0429) 

Esta diferença advém das células MDA-MB-231LDL que migraram (intestine, cérebro, swim bladder), 

é estatisticamente significativa no cérebro (p=0.0152), que revelou aumentou de tropismo e maior 

número de células MDA-MB-231LDL. De acordo com a literatura, o transporte de mitocôndrias para a 

periferia do citoplasma é uma das alterações das células transformadas que confere propriedades 

invasivas e migratórias. Os resultados mostram que o LDL promove a aquisição de uma rede 

filamentosa, que é compatível com maior distribuição de mitocôndrias às periferias incluindo 

protusões citoplasmáticas. 

Para estudar quantitativamente a rede mitocondrial, as imagens obtidas com o sistema confocal point 

scanning foram convertidas em projecções de máxima intensidade e os canais de Mito-YFP e DiI ou 

Cy5 foram processados como imagens binárias. Quantificámos o número de partículas Mito-YFP, 
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que representa a massa mitocondrial. Os resultados mostram um aumento generalizado do número de 

partículas Mito-YFP nas células MDA-MB-231 expostas a LDL em relação às controlo (Student T-

test, p<0.0001), que foi estatisticamente significativo no PVS (p=0.0304), intestino (p=0.0022) e 

cérebro (p=0.0456), podendo assim concluir que a exposição a LDL induz um aumento de massa 

mitocondrial. Também quantificámos a área média de Mito-YFP por célula, uma medida de área de 

distribuição de rede mitocondrial na célula, que mostra um tendência para estar aumentada em 

células MDA-MB-231LDL (Student T-test, p=0.0723), atingindo significância estatística no cérebro 

(p=0.0237) e na swim bladder (p=0.0283), o que sugere que a exposição a LDL promove o aumento 

da área de distribuição da rede mitocondrial. Por fim, quantificámos a área de Mito-YFP por 

partícula, que é uma medida indirecta do tamanho de cada mitocôndria. Os nossos resultados 

mostraram uma tendência para redução de área de Mito-YFP por partícula que apenas alcançou 

significância estatística no intestino (Student T-test, p=0.0237). Estes resultados sugerem que 

globalmente, o LDL parece induzir um aumento do número de mitocôndrias, embora com menor 

tamanho e uma maior área de distribuição da rede mitocondrial na célula. A literatura sugere que 

células tumorais em migração apresentam aumento de biogénese mitocondrial e fissão da rede e a 

exposição a LDL parece aumentar este fenótipo. O transporte de mitocôndrias para as protusões 

citoplasmáticas também aumenta as capacidades invasivas e migratórias. Curiosamente, a exposição 

a LDL aumentou da área de distribuição mitocondrial, o que se pode reflectir uma maior distribuição 

de mitocôndrias à periferia contribuindo para as características migratórias e invasivas das células 

MDA-MB-231.  

Em suma, as células de cancro de mama triplo negativo estimuladas com LDL têm aumento de 

propriedades invasivas e migratórias em zebrafish xenotransplantados, que parecem estar associadas 

a transformações nas próprias células cancerígenas, que as terão dotado de maior capacidade de 

extravasão e sobrevivência à distância. O LDL induziu adaptações mitocondriais, nomeadamente 

disposição de rede filamentosa, aumento da massa mitocondrial, mas menor massa por mitocôndria. 

Estas transformações mitocondriais parecem ser um dos mecanismos pelos quais o LDL induz 

aumento de invasão, migração ou sobrevivência à distância nas células MDA-MB-231. Estudos 

futuros são necessários para confirmar estas hipóteses, nomeadamente o uso de larvas Tg 

(fli1:eGFP) xenotransplantadas separadamente com células MDA-MB-231LDL ou MDA-MB-

231control com término da experiência a time-points posteriores (como 6 dpf) para avaliar o 

desenvolvimento de massas tumorais mais consideráveis, o tropismo, sobrevivência celular, rede 

mitocondrial e interacção das células com o endotélio. Ensaios que quantifiquem a utilização de 

oxidação de ácidos gordos pelas células TNBC e que clarifiquem a relação das mitocôndrias com as 
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protusões citoplasmáticas irão também ajudar a esclarecer o papel do metabolismo lipídico na 

agressividade das células TNBC. Elucidar estas questões será determinante para identificar alvos 

terapêuticos eficazes em cancro TNBC metastático, a fim de melhorar o outcome destas doentes. 

 

Palavras-chave: cancro de mama triplo negativo, metástase, LDL, mitocôndria, xenotransplantação 

de zebrafish 
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1 INTRODUCTION 

1.1 The impact of metastatic breast cancer 

Metastatic breast cancer (MBC) is the leading cause of death amongst women with breast cancer 

(BC), being responsible for up to 90% of breast cancer related deaths,1,2 As amongst women, BC is 

the most diagnosed cancer worldwide (2 088 849 cases in 2018) and the one which bears more 

deaths (626 679 in 2018), amongst women3 metastasis are a major burden.  

BC is considered metastatic if the disease has spread further than the breast and ipsilateral lymph 

nodes (axillary, internal mammary, infra and supraclavicular),4 whether it is a de novo presentation 

(5% of patients) or a relapse after treatment (30% of patients).5 At present, MBC is highly lethal and 

only 5% of patients achieve long-term disease control; median overall survival is set on 37.22 

months and few therapeutic options with demonstrated survival benefit are available.6 

Literature describes an improvement on MBC overall survival in the last 30 years related to new 

chemotherapy drugs, immunohistochemical intrinsic subtypes detection and directed therapies.6,7 

Since the studies of Perou and Sørlie,8,9 clinical approach takes into account three different molecular 

BC subtypes based on multigene assay or immunohistochemical determination of estrogen receptor 

(ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) status and ki-

67: Luminal BC, including Luminal A (ER+ and/or PR+, HER2-, low Ki67) and Luminal B (ER+ 

and/or PR+, HER2-, high Ki67); HER2 BC, non-luminal (HER2+, ER- and PR-) or luminal 

(HER2+, ER+ and/or PR+) and Triple Negative (TN) BC (ER-/PR-/HER2-).10 Median overall 

survival of Luminal MBC, HER2 MBC and TN MBC is respectively 42.12, 44.91 and 14.52 months, 

i.e., appears to be very subtype dependent.6 In the last decades, improvements in MBC overall 

survival were ought to the advent of hormonal therapies, for Luminal BC (Aromatase Inhibitors and 

high-dose Fulvestrant); to anti-HER2 therapies (Trastuzumab, Pertuzumab, T-DM1, Lapatinib) and 

also to chemotherapy (Paclitaxel, Vinorelbine, Docetaxel, Capecitabine, Ixabepilone, Eribulin).6,7 

Other drugs were developed but no overall survival benefit was demonstrated.6 

TNBC is the subtype with worse prognosis, accountable to an extremely aggressive clinical 

behaviour (high tendency to metastize and risk to relapse), molecular heterogeneity and lack of 

recognized molecular targets for therapy.11,12,13  
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Taking this into account, there is an urgent demand on shedding light on the mechanisms underlying 

the BC metastatic process, particularly on TN MBC. Tumours are now seen as clusters of neoplastic 

and stromal cells (recruited to create the microenvironment) that undergo phenotypic changes, the 

hallmarks of cancer. Metastasis is one of the hallmarks, consisting in the growth of new colonies in 

distant tissues.14 The process that enables successful metastasis is called the invasion-metastasis 

cascade (Figure 1) and comprises 1) local invasion of primary tumour cells into surrounding tissues 

(loss of cellular adhesion, degradation of extracellular matrix (ECM) and migration through stroma), 

2) intravasation to the circulatory system, 3) survival during hematogenous transit, 4) arrest and 5) 

extravasation, 6) survival in foreign microenvironments and 7) proliferation into the development of 

detectable metastatic lesions.15,16,17,18 Identifying new prognostic and therapeutic targets throughout 

this process is necessary to effectively prevent and treat MBC.19 

 

Figure 1: Invasion-Metastasis Cascade. Metastasis is a product of a serious of cell-events, to exit the primary 

site (1. detachment of primary site and invasion of surrounding tissues, 2. intravasate vessels), 

migrate systemically (3. survival on circulation, 4. arrest at a distant organ, 5. extravasate) and 

adapt to survive and thrive in that organ (6. survive in foreign microenvironments and 7. metastatic 

colonization). Carcinoma cells are depicted in blue. Adapted from 15,17. 
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1.2 LDL role on promoting metastatic TNBC  

Diabetes, obesity and overweight have increased their prevalence over the last decades, 

worldwide.20,21 Alarmingly, risk for BC raises in diabetic, obese and overweight postmenopausal 

women (and obese or overweight premenopausal women for TNBC). Outcomes in these BC patients 

were also poorer than normoglycemic or normal BMI patients.22,23,24,25 Moreover, metabolic 

syndrome (MS) seems to aggravate even more BC prognostic since combined obesity and diabetes (2 

out of 3 necessary criteria for MS) were independently associated with reduced disease-free survival 

and three-fold higher risk of BC recurrence.26,27 Several mechanisms were proposed to explain the 

aggressive phenotypes, including chronic proinflammatory state; insulin-resistance, hyperinsulinemia 

and increased bioavailability of IGF-1; aromatase-driven estrogen production and increased estrogen 

levels due to decreased sex hormone binding protein; and altered cholesterol metabolism.26,27,28,29  

Indeed, one of the targets under investigation concerning BC is low-density lipropotein (LDL). LDL 

is a lipoprotein with a core of triglycerides and cholesteryl esters and a surface monolayer with 

phospholipids and apoB-100 molecule30 that generally carries cholesterol and triglycerides from liver 

to peripheral tissues.31 LDL components seem to play important roles in BC: cholesterol is a 

component of cell membranes, where it wields structural functions and acts as a platform for 

signalling molecules in lipid rafts;32 triglycerides may also be implied in metastatic BC metabolism. 

Higher LDL plasma levels have been linked to worse outcomes in BC patients (disease-free survival 

lowers)33,34 and a role for cholesterol promoting BC progression seems to be setting up, with clinical 

data (higher LDL patients had larger, higher proliferative tumours and are more prone to LVI and 

lymph node metastasis)33 and animal models evidence (hypercholesterolemic mice showed 

accelerated tumour formation and higher frequency of metastasis).31,35 

LDL role over metastasis as a whole and in specific steps is quite documented. Revisiting the 

invasion-metastasis cascade, this lipoprotein may be involved in several steps of BC metastatic 

cascade.  

Local invasion is promoted through loss of adhesion, degradation of extracellular matrix (ECM) and 

increased migration. Adhesion genes were down regulated and adhesion to matrix reduced in TNBC 

cell lines upon exposure to LDL.31 BC cells invasion is fostered by the development of several 

cytoplasmatic protrusions: invadopodia36 and lamellipodia37. ECM degradation is performed by 

invadopodium, ventral protrusions with lipid rafts where metalloproteinases (MT1-MMP) 

accumulate and focally degrade ECM, making a path for cells to migrate.38,39 These protrusions are 

enriched in cholesterol and may not form in its absence.40 Also, TNBC have high capability to 
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uptake LDL, store cholesterol and fatty acids in lipid droplets (LD), which are trafficked to 

cytoplasmatic protrusions, attached to microtubules.41 Migration is also enhanced in TNBC cells 

exposed to LDL.31,41 Chemoattracted-induced migration through the ECM in these cells relies on 

lamellipodium extensions protruding from the leading edge of the cell.39,42 LDL exposure31,41 and LD 

accumulation in these cytoplasmatic protrusions seem to also play a role increasing migration.41  

Intravasion and extravasion of cancer cells require disruption of endothelial barrier so cells can cross 

the endothelium, a process named transendothelial migration.43,44 Intravasation may be increased by 

high levels of LDL in 2 ways: it stimulates angiogenesis, creating new vessels with weaker cell-to-

cell adhesions that allow easier intravasion;35,45 and increases microenvironment inflammation, 

recruiting and stimulating macrophages activation, which facilitate intravasation.29,44 In fact, 

intravasation in mice mammary tumour model occurs mostly in leaky vessels where perivascular 

macrophages are seen.46 

Cell survival is increased upon LDL stimuli by the activation of Akt, in BC cell lines and murine 

models.31,47,48 This survival pathway activates mechanisms that favour stress-induced apoptosis 

resistance.49  

Differential arrest and extravasation of BC cells upon LDL exposure is mediated by one common 

mechanism: the increased microenvironment inflammation. Immune cells are recruited interacting 

with cancer cells, and most of these interactions increase cancer cells adhesion and extravasation.29,44 

In hypercholesterolemic mice, monocytes and macrophages are shown to adhere more to 

endothelium45 and  coincidently these myeloid cells were shown to promote extravasation in breast 

cancer, either secreting VEGF (thereby opening endothelial-cell junctions) or by increasing cancer 

cell survival.44 Extravasation may also be promoted by providing cholesterol to invadopodia 

formation, which breach the endothelial junctions into the extravascular stroma;50 as said before, 

invadopodia biogenesis may be halted in the absence of cholesterol plasma levels.40,51  

Secondary growth at distance is endorsed by LDL since hyperlipidaemic ApoE-/- mice models have 

increased number and size of mammary metastasis in lungs48 and patients with plasmatic LDL>144 

mg/dL have increased number of lymph node metastasis.33  

Some claim that dissemination of carcinoma cells are inducted into a process called epithelial-to-

mesenchymal transition (EMT), which confers different adhesion molecules, motility, invasiveness 

and ability to degrade ECM - critical to invasion and metastasis.18,52 Recently, a Systematic Review 

and Metanalysis of 3 218 MBC patients concluded EMT is critical for the acceleration of non-

invasive to invasive BC and resistance to chemotherapy, and defined SLUG, TWIST1, SNAIL1, 
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ZEB1 as the key inducing transcription factors.53 LDL may play a role in activating EMT31 either 

directly, activating Akt,54,49 or through cholesterol metabolite 27-OH.29,55 Interestingly, MDA-MB-

231 cells (TNBC line) exposed to LDL increased SLUG expression and EMT features; and 

inhibition of Akt decreased SLUG and EMT features.54 

 

1.3 Mitochondrial metabolism in metastatic-TNBC  

Mitochondria undergo changes that support cancer cells progression to metastasis.56 To be exact, 

transformed mitochondrial function takes part in altered metabolism and energy production, 

regulation of calcium homeostasis, resistance to cell death programs, increased biosynthetic 

anabolism, increased ROS generation and acts as a hub for signalling pathways.56 

Since mitochondrial morphology impact function, shape is tightly controlled by mitochondrial 

dynamics and is continuously changing.57 Elongated filamentous networks result from fusion, i.e., 

merge of the outer and inner membranes of two or more mitochondria, regulated by Mfns1/2 and 

Opa1, respectively, and tend to occur either in quiescent cells, cells with large energy demands or 

cells in stress allowing increased ATP synthesis. Fragmented morphology is promoted by dynamin 

related protein 1 (Drp1), which regulates fragmentation so the energy-producing mitochondria can be 

redistributed to areas of greatest need of energy and damaged mitochondria can be degraded by 

mitophagy or autophagy.57,58 Mitochondria may be distributed around the nucleus (perinuclear) or all 

around the cell (filamentous), depending on mitochondrial carriage by cytoskeleton to distant cellular 

destinations.57  

In cancer cells, mitochondrial dynamics (Figure 2) enable local invasion and migration. Metastatic 

BC cells frequently overexpress Drp1 and downregulate MFN2, and as a result have fragmented 

mitochondria.37 New evidence reinforces the hypothesis that hypoxia drives metabolic rewiring in 

BC cells, decreasing inhibitory phosphorylation of Drp1.58 As a consequence, mitochondria undergo 

fission.58 In fact, an analysis of human breast tissues demonstrated that mitochondria of invasive BC 

and metastasis on lymph nodes expressed significantly more Drp1 than carcinoma in situ; 

mitochondria of ductal carcinoma in situ expressed more Drp1 than normal breast tissue.58 Also, 

active (phosphorylated) Drp1 was higher and mitochondria were more fragmented in metastatic cell 

lines (MDA-MB-231 and MDA-MB-436) than non-metastatic lines (MCF7).58 In invasive and 

migrating cells, the formation of lamellipodia depends on fragmented mitochondrial network; after 

undergoing fission, mitochondria are shifted to lamellipodia37 where ATP is highly needed to the 
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assembly of the cytoskeleton (F-actin).37,58 Also, mitochondria control Ca2+ signals that regulate 

lamellipodia retraction and adhesion cycling, through the activation of actin filament contraction. 

Thus mitochondria effectively contribute to lamellipodia function: attaching to the substratum, 

contracting the trail rear edge and moving the cell toward lamellipodia.59 Interestingly, assembly of 

actin, migration and invasion are impaired by mitochondrial fusion and high oligomycin A levels, an 

inhibitor of electron transport chain (ETC), suggesting that even though invasive and migrating cells 

depended on a fragmented mitochondrial morphology, they also rely on oxidative phosphorylation to 

migrate.37  

 

  

Figure 2: Mitochondrial dynamics. On top elongated mitochondria are represented with the processes related 

to it on the left. On the bottom fragmented mitochondria are represented with the processes related 

to it on the right. Arrows represent continuous mitochondrial dynamics, in which fusion promotes 

conversion of fragmented into elongated mitochondria through merge of inner and outter 

membranes regulated by Mitofusin1/2 (Mfn1/2) and Opa, respectively; fission promotes 

fragmentation of mitochondria through activation of Drp-1. Adapted from58. 



LDL favours metastatic spread of triple negative breast cancer 

7 

 

LeBleu et al. verified that circulating BC cells overexpress genes related with the typical EMT 

phenotype (Snail1 and Twist1) along with oxidative phosphorylation, mitochondrial biogenesis and 

actin cytoskeleton signalling, compared to primary and secondary proliferating cells.60 PGC-1α is an 

integrator of cellular signals regulating mitochondrial biogenesis, oxidative phosphorylation, fatty 

acid biosynthesis/oxidation and thermogenesis; the transcription of this protein regulator is increased 

in human circulating BC cells, particularly at the invasive tumour front and distant metastasis.60 

PGC-1α knockdown reduced mitochondrial biogenesis, oxidative phosphorylation, ATP-coupled 

oxygen consumption rate, migration and invasion in BC cell lines, in in vitro assays.60  The same 

knockdown in BC cell lines xenotransplanted into mice reduced colonization and metastases 

formation, but had no effect on the growth of primary tumour.60  

So, the pathways and substrates used throughout the invasion-metastasis cascade are different 

according to the bioavailability in the microenvironment and the metabolic needs of cancer cells. 

Proliferating cancer cells in primary or secondary site generally have more access to glucose and 

higher needs of metabolic intermediaries, and so engage on glycolysis even in aerobiosis (the 

Warburg effect) using glycolytic intermediaries to biosynthesize de novo nucleic acids, lipids and 

amino acids that support the unrestricted growth.56,60,61 Migrating, invading and circulating tumour 

cells are quiescent and majorly engage on OXPHOS, which enables maximum energetic yield under 

poor access to nutrients and is important for the invasive properties of disseminating cells.60  

1.4 FAO and mitochondrial metabolism driving metastatic TNBC 

Dysregulation of lipid metabolism is a typical feature of progression in many types of cancers, 

including BC. Lipid metabolism comprises exogenous lipid uptake, de novo synthesis, activation, 

incorporation into glycerides, storage as triglycerides as well as cholesterol esters in lipid droplets, 

mobilization from phospholipids or triglycerides, and FAO.62  

FAO is a metabolic pathway that generates large quantities of ATP through catabolism of fatty acids. 

Firstly, CPT1 conjugates fatty acids with carnitine to acylcarnitines and translocates them into the 

mitochondria. Then, in the mitochondrial matrix, a series of cyclical reactions cleave acylcarnitines 

to acetyl-CoA, generating NADH and FADH2. Finally, acetyl CoA enters the tricarboxylic acid cycle 

(TCA), NADH and FADH2 are shuttled to electron transport chain (ETC) to generate ATP.63 

In TNBC several processes of lipid metabolism are dysregulated (Figure 3), including increased 

exogenous fatty acid and oxidized-LDL uptake due to upregulation of CD3664,65 (among others)62; 
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facilitated intracellular fatty acid transport by overexpression of transport proteins;62  augmented 

activation of fatty acids,62 i.e. esterification prior to FAO or synthesis of more complex lipids and 

subsequent elevated accumulation of cholesterol esters and triglycerides in LD.62  Lipid droplets 

interact with a series of organelles and transfer lipids to membranes, to posttranslational 

modifications or fatty acid oxidation (FAO).62  

Despite having a specifically high glycolytic profile manifested by increased glucose uptake, high 

lactate production, and decreased mitochondrial respiration,66,67 TNBC can opt to use FAO under 

favourable microenvironment conditions.62,68,69 FAO in TNBC provides survival advantage in 

nutrient deprived conditions,62,68,69 such as loss of attachment to extracellular matrix.63,68,70 This 

ability is advantageous as this alternative pathway is extremely energetic (renders more ATP per 

molecule metabolized), meeting migrating cells high energy demands to scape anoikis-cell death in 

circulation and face survival challenges in secondary site.63,69 TNBC subset have FAO enzymes 

upregulated,71,72 increased ETC activity by Src;72 some cells overexpress Myc,68 AKR1B1069 or 

PML,70 regulators of FAO-related enzymes. 

Some of these alterations are associated with metastatic progression69,73 and worst prognosis69,70,71, in 

human cancers including TNBC,  including upregulation of fatty acid uptake (CD36 expression65 and 

others62), fatty acid oxidation related genes (including CPT1C),73 or decreased expression of 

ACACB (CPT1A and CPT1B indirect downregulator),68 AKR1B1069 or PML70, supporting a role for 

lipid uptake and metabolism in metastatic progression, 

Also, as mentioned before, tumours are clusters of neoplastic and tumour activated stromal cells.14 

The crosstalk between these plays an important role in initiating and maintaining TNBC invasion-

metastatic cascade. Breast stromal cells include adipocytes, adaptative immune cells and 

mesenchymal stromal cells; collectively they are implicated in cancer progression.74,75 Breast 

adipocytes, particularly, dedifferentiate into pre-adipocytes76 or reprogram into cancer-associated 

adipocytes76 and beyond playing a role in secreting cytokines (specially in obesity and 

dyslipidaemia), which increase chronic tumour-associated inflammation, engage in exchange of 

metabolites and provide a supply of lipids, which are transferred to cancer cells and fuel FAO or are 

used as structural lipids.14,74,76 

In sum, metastatic potential and survival in circulation and at distance are favoured by a systemic set 

of adaptations that maximize TNBC cells ability to undertake FAO when necessary. 
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Figure 3: Lipid Metabolism. Red depicts proteins overexpressed in TNBC; orange represents proteins 

upregulated by increased phosphorylation; green depicts proteins with increased activity in TNBC. 

Low density lipoproteins and fatty acids are imported into the cell by CD36, or through other 

receptors including VLDLR. Fatty acids are activated, being directed to lipid droplets, 

mitochondria, phospholipids or exported. In the outter mitochondrial membrane CPT1 conjugates 

fatty acids with carnitines and transfers them to the mitochondria. CAT translocates acylcarnitines 

to mitochondrial matrix and CPT2 uncouples acylcarnitines to acyl CoA. Acyl CoA undergoes 

fatty acid oxidation, generating FADH2, NADH and Acetyl-CoA. NADH and FAH2 are 

transported to ETC, producing ATP. Acetyl-CoA may enter the Tricarboxylic Acid Chain (TCA), 

generating further NADH and FADH2, that may be directed to the electron transport chain. 

ASCL4- Long-chain-fatty-acid-CoA ligase 4; CAT-carnitine acyl transferase gene; CPT1: 

Carnitine palmitoyltransferase I; CPT2- Carnitine palmitoyltransferase II; FABP – Fatty acid 

binding protein; LPIN1 –lipin-1; TCA - Citric acid cycle; PLA2G4 - Cytosolic phospholipase A2; 

VLDLR – very low density lipoprotein receptor. Adapted from62,72,77  

1.5 Xenotransplanted zebrafish: an in vivo model to study BC metastasis 

Cancer xenotransplantation is the implantation of cancer tumour cells or human cancer cell lines into 

an organism of other species.78 Traditionally, murine models were used, but lately zebrafish (Danio 

rerio) has been used in the study of over 15 types of cancer.79,80,81,82  

Zebrafish brings out new translational possibilities.78 To start with, it allows studies to overcome 

ethical concerns related to cancer development and drug discovery.78 As an animal model, Danio 

rerio is the only vertebrate system that allows whole organism detection of micrometastasis at a 

single cell level. Moreover, experiments can be carried out in transgenic fish, including whole-life 
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transparent Danio rerio casper, semi-transparent nacre or Tg (fli1:eGFP), which expresses GFP 

endothelial protein and can be used to track the invasion-metastasis cascade more accurately; or in 

wildtype zebrafish (transparent in the beginning of its life cycle).78,83 Other advantages include 

shorter time frame experiments enable faster conclusions;82 requiring less cancer cells (50-300) 

increases reproducibility and statistical significance of results;78,84 lack adaptive immune system until 

21 days post fertilization (dpf) makes immunosuppression unnecessary.84,85  

To study metastasis generally Tg (fli1:eGFP) is recommended78,85,86 at 48 hour post fertilization 

(hpf).78,85,87 At this timepoint, passive diffusion effect is less probable to occur (since gastrulation is 

completed, body plan is mainly formed, organ systems are developed and vasculature is mapped), 

possible rejections are prevented, nutrition is granted by the large yolk, as well as safe injection of 

cells.78 For cell analysis, live or fixed imaging at a laser scanning confocal microscope is 

recomended.78,87 Interpretation of results must take into account the concept of migration, 

micrometastasis and tumour-like masses, where migration is defined as more than 5 cells outside the 

yolk sac and within the zebrafish78,87, micrometastasis as the presence of daughter cells at 3 dpi and 

tumour cell masses are all clusters of more than 20 cells.82 

Vascular system plays a role in human cancer dissemination.18 Conviniently, zebrafish circulatory 

system is exhaustively studied, including at 2-6 dpf.88 At 2 dpf (Figure 4A), the vascular system is 

already closed. Blood enters into the heart by the duct of Couvier, which directly drains the 

perivitelline sac and receives other tributaries; after, it is sent to the organism through aortic arches. 

 

Figure 4: Circulatory system development of zebrafish larvae. A) Angiography of 2 dpf, larvae compiled by 

merging three separated reconstructions. B) Angiography of 5.5 dpf and C) 6.5 dpf larvae 

compiled by merging five separated reconstructions. Adapted from 88 
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At 6 dpf (Figure 4B-C), zebrafish vascular system complixifies. Two (bilateral) arteries leave the 

heart and give colaterals to highly vascularised organs including gills, head kidney, liver, swim 

bladder, located in ventral head and trunk. Ventral trunk also includes intestine with considerable 

vascular supply. In the head, PICA takes blood to brain, forming a network. Eye is vascularised by a 

single peripheral artery, optic artery. Dorsal trunk and tail are vascularised by an axial system: blood 

is taken by dorsal aorta, in the trunk, and caudal artery, in the tail; caudal vein, in the tail, and 

posterior cardinal veins, in the trunk, bring blood. CHT, the plexus between caudal artery and caudal 

vein, is the more vascularised area of the tail. Intersegmented vessels cross transversally along 

muscles. Notochord is not pierced by vessels. Fins are vascularised in adulthood but no vessels are 

detected in angiographic studies at 6 dpf.88 

1.6 Aim of the work 

Recent in vitro work from our lab, suggests LDL might play its role in BC invasive properties 

through mitochondrial adaptations, with increase migration and mitochondrial mass in LDL-exposed 

BC cells (unpublished data). Despite this knowledge, the exact mechanisms that mediate LDL-

induced aggressiveness in breast cancer progression remain unclear.  

In this context, we decided to investigate whether 1) a more aggressive behaviour would also occur 

in LDL-exposed TNBC (MDA-MB-231) cells upon inoculation in a living organism, 2) if 

differential invasion to secondary organs would be observed (tropism) and 3) whether undergoing 

mitochondrial adaptations would be correlated to invasive behaviour and differential tropism. 
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2 MATERIALS AND METHODS 

Cell culture  

MDA-MB-231 human breast cancer cell line was cultured in DMEM (Thermo Fisher Scientific) 

supplemented with 10% (v/v) heat-inactivated FBS (Gibco Invitrogen) and 1% Antibiotic-

Antimycotic (Gibco Invitrogen), named complete DMEM and incubated at 37ºC and 5% CO2 

atmosphere. 

At day 1, MDA-MB-231 cells were seeded at a density of 6x106 (control) or 4,5x106 (LDL) cells in a 

petri dish in complete DMEM and later (6h after), the medium was replaced by DMEM 

supplemented with 1% (v/v) FBS-LPF (fetal bovine serum-lipoprotein free) (Bio West). At day 2, 

the medium was replaced by fresh DMEM with 1% FBS-LPF alone or supplemented with LDL 100 

μg/mL (Merck) for a total of 48h (until day 4). At day 3, cells were transfected with 6μg Mito-YFP 

using FuGENE (ThermoFisher Scientific) and according to the manufacturer instructions. At day4, 

MDA-MB-231 cells were detached with non-enzymatic methods (Cell Dissociation Buffer, enzyme-

free, PBS; ThermoFisher Scientific) and stained separately with DiI (control) or Cy5 (LDL) 

(ThermoFisher Scientific) and subsequentially mixed before injected into zebrafish larvae (1:1 

proportion at 0.5x106 cells/ μl). 

Flow cytometry 

For lipid droplets quantification, cells were stained with BODIPY 493/503 (Molecular Probes; 

0,2μg/mL) for 10 minutes at RT in the dark followed by analysis in a LSR Fortessa (BD 

Biosciences) flow cytometer and FlowJo software (LLC).  

Zebrafish Xenograft injection  

This experiment was performed in collaboration with Rita Fior and performed at Champalimaud 

Center for the Unknown. Zebrafish (Danio rerio) casper, nacre, and Tg (fli1:eGFP) fish were 

handled according to European animal welfare regulations and standard protocols. Mixed Cy5 (LDL) 

and DiI (control)-stained MDA-MB-231 cells were injected (mixed 50:50 at a concentration of 

0.5x106cel/μl) into the PVS of anesthetized 48-hpf larvae. After injection, xenografts were 

transferred to 34°C until the end of experiments. Larvae with cells in the yolk or cellular debris were 

discarded.  
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Zebrafish larvae whole mount immunofluorescence 

Zebrafish larvae at 1, 4 and 5 days pos-injection (dpi) were fixed with 4%PFA (tebu-bio) and 0.1% 

Triton X-100 (Sigma) for 2h at RT and stored in MetOH 100% at -20ºC. In the first day, MetOH 

series were used to re-hydrate larvae. Larvae were washed twice for 5 min at RT in PBS1x and 

Triton X-100 0.1% and washed once with H2O. Larvae were incubated 7 min at -20ºC in Acetone 

and were washed with Glycine buffer (50ml PBS, 50 μl/mL Tween 20 (Sigma), 50 μl/mL Triton X-

100 (Sigma), 7.5x10-3g/mL glycine (NZYtech) in PBS for 1h at 4C followed by washing with PBS 

1x Triton X-100 0.1%. Larvae were blocked using PBDX_GS (50ml PBS, 0.01g/mL BSA (Sigma), 

0.01ml/mL DMSO (Sigma), 5 μl/mL Triton X-100, 3 μl/mL goat serum (DAKO)) for 1h at RT. 

Primary mouse anti-human HSP60 antibody (BD Biosciences,1:50) was diluted in PBDX_GS buffer 

and incubated for 1h at RT followed by over-night at 4ºC. On the next day, larvae were rinsed twice 

with PBS1x Triton X-100 0.1% for 10 min at RT followed by four washes for 30 minutes at RT. 

Secondary donkey anti-mouse Alexa 488 (Invitrogen, 1:400) and rabbit anti-GFP made Alexa 488 

(Invitrogen, 1:100) plus DAPI (1:200 from 20mg/ml stock; Millipore) were diluted in PBDX_GS 

buffer for 1h RT followed by over-night at 4ºC. On the following day, larvae were washed four times 

with PBS 1x Tween 20 0.05% for 15 minutes and fixed with 4%PFA for 20 minutes at RT, followed 

by five washed with PBS1x Tween 20 0.05% for 5 minutes at RT. Zebrafish larvae were mounted 

with mowiol mounting media. 

Microscopy acquisition 

Initial migration screening images of zebrafish larvae were acquired using inverted fluorescence 

widefield microscope Zeiss Axiovert 200M, with 10x amplification. Settings were defined with 

MetaMorph 7.8.0.0 software. For a more detailed tropism evaluation, tiles of zebrafish larvae were 

acquired using the spinning disk confocal microscope Zeiss Cell Observer SD, with 10x 

magnification. Settings were defined using ZEN 2.6 (blue edition). For mitochondrial network 

quantification it was used the inverted fluorescence microscope Zeiss LSM 880, with 63x Oil 

magnification, 1.6x zoom. Settings were defined with ZEN 2.1 (black edition). 

Analysis of microscopic images and Statistics  

Images were edited with (Fiji is Just) ImajeJ 2.0.0.89 and the same settings were applied to images 

acquired with the same microscope. For the initial tropism study, the presence or absence of control 

cells (MDA-MB-231 cultured in a normal medium) and LDL-cells (MDA-MB-231 grown in 
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supplemented medium) in each organ was evaluated. Fisher Test was applied using GrafPadPrism 

8.0.2, p-values <0.05 were considered statistically significant.  

For the detailed tropism analysis regions of 6 dpf zebrafish were defined according to literature.68-73 

and Fisher Test was applied using GrafPadPrism 8.0.2, p-values <0.05 were considered statistically 

significant. 

For the quantification of the MDA-MB-231control or MDA-MB-231LDL cells per or organ, Imaris 9.0.1 

was used. Tiles were converted into three-dimensional reconstructions, and cancer cells in each 

organ were quantified. Chi-square was applied to the data, p-values <0.05 were considered 

statistically significant. 

For the qualitative analysis of mitochondrial distribution, the correspondent sub z-stack of each cell 

was produced. For the quantitative analysis, the channels correspondent to membrane dye and Mito-

YFP of each sub z-stack were merged, converted to binary and the “Analyse particles” tool was used. 

Student T test was applied, p-values <0.05 were considered statistically significant. 
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3 RESULTS 

3.1 Role of LDL in the invasion potential of TNBC cells in xenotransplanted zebrafish larvae 

using wide field fluorescence microscopy 

We first analysed the ability of MDA-MB-231LDL and MDA-MB-231control cells to migrate to 

distant sites in zebrafish using widefield Zeiss Axiovert 200M microscope where the number of 

zebrafish larvae displaying MDA-MB-231 cells in several organs was evaluated (Figure 5).  

 

Figure 5:. TNBC MDA-MB-231 cells exposed to LDL show differential invasion potential to distant sites in 

xenotransplanted 4dpi zebrafish larvae. 

A. Schematic representation of MDA-MB-231 cells invasion potential at 4dpi (6dpf) throughout the 

zebrafish body with DiI-labelled MDA-MB-231 control (red) and Cy5-labelled LDL-exposed 

(grey) cells detected in the indicated organs (bold depicts regions with increase tropism for LDL-

exposed MDA-MB-231 cells), each dot represents one xenograft.90,91,92 
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B. Quantification of the invasive potential depicted as the number of zebrafish larvae xenografts 

(n=25 from 1 independent experiment) with DiI-labelled MDA-MB-231 control (red) and Cy5-

labelled LDL-exposed (grey) cells in the indicated organs. Statistic significance was determined 

with the Fisher test.* p<0.05 and ** p<0.01. 

C. Representative images of screened organs in zebrafish body (4dpi and 6dpf), including the eye, 

brain, perivitelline space (PVS), swim bladder, ventral fin and intestinal tract, dorsal muscle and 

fin, notochord, ventral muscle and caudal hematopoietic tissue (CHT) and anal fin, invaded by DiI-

labelled MDA-MB-231 control (red) and Cy5-labelled LDL-exposed (grey) cells and captured 

with an inverted fluorescence widefield Zeiss Axiovert 200M. Nuclei staining with DAPI is in 

blue.  

According to our results (Figure 5A and Supplementary Table1), MDA-MB-231LDL have statistically 

significant differential migration in general (Chi-square p=0.0347) and particularly towards distant 

sites, such as dorsal fin (Fisher Test p=0.042), dorsal muscle (p=0.05), notochord (p=0.023) and anal 

fin (p=0.008). Moreover, dorsal muscle and tail fin were preferentially invaded only by MDA-MB-

231LDL.  

Widefield acquisitions restrained us to evaluate whether cells were inside peripheral vessels or had 

already extravasated. Therefore, with these data we can only infer that LDL exposure favoured 

MDA-MB-231 cells with metastatic/more invasive abilities by accelerating or facilitating one or 

more steps of the metastatic cascade.  

3.2 Role of LDL in the invasion potential of TNBC cells in xenotransplanted zebrafish larvae 

using inverted spinning disk confocal microscopy. 

Widefield Zeiss Axiovert 200M is not the gold-standard bioimaging system to study zebrafish, 

according to literature.78,79,80 On the one hand, it does not allow us to capture all the slices of 

zebrafish larvae thickness, preventing us to take full advantage of our in vivo model. On the other 

hand, the system is not able to capture a unique layer with accurate resolution, thus, some organs of 

the zebrafish (liver, head kidney, heart, gills and optic vesicle) had to be ruled out from the previous 

analysis. 

In order to confirm the validity of our previous results, we quantified the invasion and colonization 

capability of TNBC cells in xenotransplanted zebrafish larvae using an inverted spinning disk Zeiss 

Cell Observer SD confocal (Figure 6). This technology allowed us to understand the full frame of 

migration in the whole organism and differential cell distribution by counting the number of cells in 

each organ. Moreover, we could access the colonization capability by inferring whether MDA-MB-

231LDL would be more successful in growing tumour cell masses (>20 cells) after migration.82  
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Figure 6: TNBC MDA-MB-231 cells exposed to LDL show differential metastatic tropism to distant sites in 

xenotransplanted 4dpi zebrafish larvae. 

A. Schematic representation of MDA-MB-231 cells invasion potential at 4dpi (6dpf) throughout the 

zebrafish body with DiI-labelled MDA-MB-231 control (red) and Cy5-labelled LDL-exposed 

(grey) cells detected in the indicated organs (bold depicts regions with increase tropism, each dot 
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represents one xenograft. Bold depicts regions with statistical significance for MDA-MB-

231LDL(black); MDA-MB-231control (red). 

B. Quantification of the invasive potential depicted as the number of zebrafish larvae xenografts 

(n=11 from 1 independent experiment) with DiI-labelled MDA-MB-231 control (red) and Cy5-

labelled LDL-exposed (grey) cells in the indicated organs. Statistic significance was determined by 

the Fisher test.* p<0.05 and ** p<0.01. 

C. Representative images of whole zebrafish tile (4dpi and 6dpf), with invaded organs, as detailed in 

each image: brain, gills, optic vesicle, heart, perivitelline space (PVS), intestine, head kidney, 

ventral muscle, head kidney, swim bladder, dorsal muscle, caudal hematopoietic tissue (CHT), 

liver, anal fin. Invasion by DiI-labelled MDA-MB-231 control (red) and Cy5-labelled LDL-

exposed (grey) cells was captured with spinning disk inverted confocal microscope Zeiss Cell 

Observer SD. Nuclei staining with DAPI is in blue. 

Similarly to the previous analysis obtained with widefield microscopy (Figure 5), confocal imaging 

(Figure 6 and Supplementary Table 2) also revealed a trend towards differential migration in general 

(Chi-square p=0.06, n=11) which could potentially reach statistical significance by increasing the 

number of larvae analysed. Moreover, this analysis also allowed us to detect vessels and previously 

undetected cells, to identify artefact particles, to better discriminate organ borderlines in all layers 

and thus to accurately define cell position in relation to the considered organ borderlines. According 

to our sample, Zeiss Axiovert 200M efficiency to identify invaded organs in zebrafish was 72,03% 

(206 out of 286 organs were correctly evaluated).  

Results obtained show: 1) MDA-MB-231LDL are able to migrate to all organs analysed, contrary to 

MDA-MB-231control; 2) MDA-MB-231control disseminate according to a gradient, accumulating more in 

central and vascularised areas and failing to disseminate to distant and less  vascularised regions, 3) 

MDA-MB-231LDL diverged from this pattern, invading also more peripheral, less vascularised organs. 

Highly vascularised organs were invaded by cells of both conditions: MDA-MB-231LDL (more in 

brain and intestinal tract) and MDA-MB-231control (more in gills, heart, head kidney, liver, swim 

bladder, optic vesicle, and specially CHT (Fisher test, p=0.02), where lies a dense plexus unifying 

caudal artery and caudal vein88, (see Supplementary Figure 2) but no other organs reached statistical 

significance. 

Less vascularised organs were invaded preferentially by MDA-MB-231LDL. Amongst these, some 

were pierced by collateral vessels (dorsal muscle and ventral muscle), by a single vessel (eye, Fisher 

test, p=0.0075) or lied just beneath CHT (anal fin) and still were invaded by MDA-MB-231control; but 

others (notochord, ventral fin, dorsal fin, tail fin) have no vessels or at least angiographic studies and 

our larvae Tg (fli1:eGFP) did not show vessels at 6dpf (see Supplementary Figure 2) and were 

exclusively infiltrated by MDA-MB-231LDL.This suggests exposure to LDL accelerated migration 

through vascular system to peripheral areas.  
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Figure 7: TNBC MDA-MB-231 cells exposed to LDL show differential metastatic tropism to distant sites in 

xenotransplanted 4dpi zebrafish larvae. 
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A. Schematic representation of the total distribution of labelled MDA-MB-231 control (red, n=1567 

cells) and Cy5-labelled LDL-exposed (grey, n=931 cells) counted throughout the body of 11 

zebrafish larvae, each circle represents the proportion of cells of each condition in that organ. Bold 

depicts regions with statistical significance for MDA-MB-231LDL(grey);  MDA-MB-231control 

(red). 

B. Quantification of the distribution depicted as the percentage of DiI-labelled MDA-MB-231 control 

(red) and Cy5-labelled LDL-exposed (grey) cells thorough the indicated organs. Statistic 

significance was determined by the Chi-square.* p<0.05, ** p<0.01, *** p<0.0001 

C. Quantification of tumour masses (>20 cells) depicted as the number of zebrafish larvae xenografts 

(n=11 from 1 independent experiment) with DiI-labelled MDA-MB-231 control (red) and Cy5-

labelled LDL-exposed (grey) masses in the indicated organs. Statistic significance was determined 

by the Fisher test.* p<0.05 and ** p<0.01. 

D. Representative 3D reconstruction of the zebrafish tile represented in C (4dpi and 6dpf), invaded by 

DiI-labelled MDA-MB-231 control (red) and Cy5-labelled LDL-exposed (grey) cells, captured 

with spinning disk inverted confocal microscope Zeiss Cell Observer SD and processed with 

Imaris 9.0.1. Nuclei staining with DAPI is in blue. 

 

In order to evaluate the distribution of MDA-MB-231LDL and MDA-MB-231control cells across the 

zebrafish body, we additionally counted the number of cells in the zebrafish organs ( 

Figure 7A-C and Supplementary Table 3, n=931 MDA-MB-231LDL and n=1567 MDA-MB-231control 

cells). Although the total number of cells injected per larvae is roughly known (see Materials and 

Methods), still we cannot infer if there was a differential survival or proliferation between control 

and LDL-exposed cells as the exact number of injected cells from each condition could have differ 

between larvae. Also, tumour masses are highly dense and it is infeasible to count the cells within. 

However, amongst cells of the same condition, and having in account the number of cells and tumour 

masses we can infer which organs are preferentially invaded.  

MDA-MB-231LDL cells were found in all organs, as previously observed. The difference to MDA-

MB-231control was statistically significant in the intestine (Chi-square, p<0.0001) and less 

vascularised organs: eye (Chi-square, p<0.0001), dorsal muscle (Chi-square, p=0.0336), notochord 

(Chi-square, p=0.0058), ventral fin (Chi-square, p=0.0002) and anal fin (Chi-square, p=0.0236) and 

MDA-MB-231LDL cells were observed in areas without vessels.  

MDA-MB-231control cells were found in higher proportion in extremely vascularised organs, such as 

optic vesicle (Chi-square, p=0.0073), heart (Chi-square, p=0.0126), gills (Chi-square, p=0.0003) and 

CHT (Chi-square, p<0.0001) and other regions without reaching statistical significance (PVS, liver). 

Of these, CHT was the most significant outstanding difference (MDA-MB-231control, n=180 cells; 

MDA-MB-231LDL, n =5 cells).  
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Tumour cell masses (>20 cells) were spotted within the organs previously analysed. Results show 

MDA-MB-231LDL were able to grow 8 tumour cell masses and MDA-MB-231control were able to grow 

7 (Figure 6A and B). Of these, distant tumour cell masses accounted 5 for both MDA-MB-231LDL 

and MDA-MB-231control. There was no difference in the number of distant masses or relevant 

difference in number of overall masses. However, MDA-MB-231LDL masses were predominantly 

grown in intestine and PVS, and one in head kidney, while MDA-MB-231control cells grew less 

masses in intestine and PVS but were able to grow two masses in the highly vascularised swim 

bladder and one in the heart.  

Also, it must be pointed out that, although swim bladder has more MDA-MB-231LDL cells, MDA-

MB-231control cells were able to grow two tumour masses within it. As tumour masses are extremely 

dense it was not possible to include these structures in the quantification of cells count cells, but 

having in account these masses, swim bladder was more invaded by MDA-MB-231control cells. All 

other masses were present in the condition (control or LDL) that also present increase number of 

(countable) cells in that organ, such as the PVS, intestine, heart, head kidney. 

 

3.3 Impact of LDL exposure in the mitochondrial network distribution of TNBC cells 

xenotransplanted into zebrafish larvae: qualitative assessment  

Since alterations in mitochondrial mass, biogenesis and dynamics have been implicated in the 

acquisition of more aggressive and migratory behaviour of cancer cells,58,60 next, we went on to 

determine the impact of LDL exposure in the mitochondrial network distribution of TNBC cells in 

the larvae using the Mito-YFP signal as a marker for mitochondria.  
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Figure 8: TNBC MDA-MB-231 cells control or exposed to LDL previously transfected with the mitochondrial 

reporter Mito-YFP were xenotransplanted into 2dpf zebrafish. Cells show a differential 

mitochondrial network distribution at 4dpi (6dpf). 

A. Chart representing the mitochondrial network distribution of MDA-MB-231control (n=39) and 

MDA-MB-231LDL (n=64) cells in the overall quantified organs from xenotransplated zebrafish 

larvae at at 4dpi. 

B. Chart representing the mitochondrial network distribution of MDA-MB-231control (n=16 PVS, 

n=10 intestine, n=7 swim bladder, n=6 brain) and MDA-MB-231LDL (n=29 PVS, n=17 intestine, 

n=8 swim bladder, n=5 brain, n=2 eye, n=3 liver) cells in each organ from xenotransplated 

zebrafish larvae at at 4dpi.  Statistic significance was determined by the Fisher test.* p<0.05 

C – F. Representative images of maximum intensity projection of a DiI-labelled MDA-MB-

231control (red) cell with perinuclear mitochondrial network distribution labelled with Mito-YFP 

(green). Nuclei are labelled with DAPI (blue) acquired from the PVS zebrafish xenotransplanted 

larvae at 4dpi with point scanning fluorescence microscope Zeiss LSM 880 (C, D). Representative 

images of maximum intensity projection of a Cy5-labelled MDA-MB-231LDL (grey) cell with 

perinuclear mitochondrial network labelled with Mito-YFP (green) and DAPI (nuclei, blue) 
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acquired from the eye of zebrafish xenotransplanted larvae at 4dpi with point scanning 

fluorescence microscope Zeiss LSM 880 (E, F). 

 

Our results ( 

Figure 8) show that, in general, 54.7% of MDA-MB-231LDL cells have a filamentous distribution of 

mitochondrial network compared to 33.3% of MDA-MB-231control (Fisher Test, p=0.0429). 

Filamentous distribution represents the following share of MDA-MB-231LDL and MDA-MB-

231control cells analysed: in PVS (34.5% and 37.5%, respectively), in intestine (64.7% and 40%, 

respectively), in swim bladder (62.5% and 28.6%, respectively), in brain (100% and 16.7%, 

respectively), eye (50% and no Mito-YFP positive cells were found for MDA-MB-231control ) and 

liver (100% and no Mito-YFP positive cells were found for MDA-MB-231control). LDL seems to have 

favoured a more filamentous mitochondrial distribution, associated with increased invasion of 

intestine and brain (p=0.0152). Eye and liver did not have comparison since we did not found MDA-

MB-231control cells with marked expression of Mito-YFP to be compared.  

 

3.4 Impact of LDL exposure in the mitochondrial network distribution of TNBC cells 

xenotransplanted into zebrafish larvae: quantitative assessment  

Our aim was to determine whether exposure to LDL would lead to the changes in the mitochondrial 

network of migrating cells and if those would be correlated to higher aggressiveness. We performed 

a quantitative analysis of the confocal acquisitions of mitochondrial network, using FIJI software.89 

The sub z-stack of each cell was acquired and converted into maximum intensity projections; Mito-

YFP channel and membrane channel (DiI or Cy5) were processed into binary images 

(Supplementary Figure 3) and the area and number of Mito-YFP and DiI/Cy5 particles was 

determined. 
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Figure 9: Quantification of mitochondria network distribution in Mito-YFP transfected MDA-MB-231 control 

and LDL-exposed cells xenotransplanted into zebrafish larvae at 2dpf and analysed at 4dpi (6dpf)). 

A - B. Charts representing the number of Mito-YFP-labelled mitochondria particles per MDA-MB-

231control (n=13 PVS, n=10 intestine, n=7 swim bladder, n=5 brain) and MDA-MB-231LDL 

(n=26 PVS, n=16 intestine, n=8 swim bladder, n=5 brain) cell (A) and the average number of 

Mito-YFP-labelled mitochondria particles in total (n=35 MDA-MB-231control and n=55 MDA-

MB-231 LDL cells) (B).  

C-D. Charts representing the area of Mito-YFP-labelled mitochondria per MDA-MB-231control 

(n=13 PVS, n=10 intestine, n=7 swim bladder, n=5 brain) and MDA-MB-231LDL (n=26 PVS, 

n=16 intestine, n=8 swim bladder, n=5 brain) cell (C) and the average number of Mito-YFP-

labelled mitochondria particles in the total  (n=35 MDA-MB-231control and n=55 MDA-MB-231 

LDL cells) (D). 

E-F. Charts representing the area of Mito-YFP-labelled mitochondria per particle in MDA-MB-

231control (n=13 PVS, n=10 intestine, n=7 swim bladder, n= 5 brain) and MDA-MB-231LDL 

(n=26 PVS, n=16 intestine, n=8 swim bladder, n=5 brain) cells (E) the average area of YFP-

labelled mitochondria per particle in total (n=35 MDA-MB-231control and n=55 MDA-MB-231 

LDL cells) (F). 

Statistic significance was determined by the Student T-test (unpaired, two-tailed). * p<0.05, ** p<0.01, *** p<0.0001. 
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Results (Figure 9) show an overall increased number of Mito-YFP particles in MDA-MB-231 cells 

previously exposed to LDL: MDA-MB-231LDL average 212.6 Mito-YFP particles per cell (n=55), 

while MDA-MB-231control average 108.2 Mito-YFP particles per cell (n=35; Student T-student, 

p<0.0001). Also, this difference was statistically significant in most of the organs analysed, including 

PVS (p=0.0304), intestine (p=0.0022) and brain (T-student, p=0.0456). This suggests LDL increases 

the number of mitochondria in MDA-MB-231 cells. 

Also, we quantified the average area of Mito-YFP particles in MDA-MB-231 cells and in total, 

MDA-MB-231LDL cells averaged 27.2 μm2 (n=55) whereas MDA-MB-231control cells averaged 19.2 

μm2 (n=35), which was not statistically significant (Student T-test, p=0.0723). Though, this 

difference was statistically significant in the Swim bladder (Student T-test, p=0.0283) and the brain 

(T-student, p=0.0237). Increased Mito-YFP area in MDA-MB-231 cells seems to be promoted by 

LDL.  

Finally, we determined the average area of Mito-YFP particles in MDA-MB-231 cells as this reflects 

the size of mitochondria. In total, MDA-MB-231LDL cells had inferior average area (0.191 

μm2/particle, n=55) than MDA-MB-231control cells (0.239 μm2/particle, n=34)) although this was not 

statistically significant (Student T-student, p=0.383). The difference was statistically significant in 

the intestine (Student T-student, p=0.0084). This suggests LDL may reduce Mito-YFP area per 

particle in MDA-MB-231 cells, despite failing to induce this phenotype in the swim bladder. 
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4 DISCUSSION 

Our tropism results suggest that MDA-MB-231LDL cells have greater ability to invade since all 

organs were invaded by these cells, on both studies. This divergence stands out in less vascularised 

and distant to inoculation sites (dorsal fin, dorsal muscle, notochord, anal fin - as seen in Figure 5; 

dorsal fin, dorsal muscle, ventral fin, notochord, anal fin, eye - as seen in Figure 6). The metastatic 

cascade involves local invasion into surrounding tissues; intravasion to circulatory system; survival 

during hematogenous transit; arrest; extravasion; formation of micrometastatic colonies and further 

colonization.18 In this experiment, cells of both conditions were able to undertake the first 3 steps, 

invading, intravasating vessels and surviving hematogenous dissemination, as observed in highly 

vascularised CHT. However, peripheral organs where no vessels where seen88 (Supplementary 

Figure 2), were significantly more infiltrated by MDA-MB-231LDL cells. Since LDL apparently 

increased MDA-MB-231 cells dissemination we wondered why this phenomenon occurred, ie., why 

did MDA-MB-231LDL display faster/or more invasive/independent from vascularization migratory 

properties when compared to MDA-MB-231control cells. 

Counting the number of cells in each organ gave us an overview at the full frame of migration in the 

whole organism and differential cell distribution. It stood out the significant accumulation of MDA-

MB-231control cells (n=180) in CHT and the absence in close areas such as tail fin, notochord or any 

area without detectable vessels at 6 dpf (except anal fin, in which MDA-MB-231control n=1). In other 

organs this phenotype was also observed including highly vascularised organs of the trunk (intestine 

and swim bladder) and no MDA-MB-231control cells were found close to these organs, nor in ventral 

fin neither in notochord. Two hypotheses might explain this result: 1) chemoattraction of MDA-MB-

231control cells specifically to vascularised areas; 2) increased aggressiveness of MDA-MB-231LDL 

cells endowed with increased ability to extravasate or survive outside hematogenous transit or both, 

compared to MDA-MB-231control which accumulated inside vessels, particularly in CHT (n=180, 

median=16, Figure 3, Supplementary Table 3) in which extravasation and/or survival in nearby 

organs seemed to be limiting. Thus, as cells share the same microenvironment this frame suggests the 

extravasation and survival at distance might be promoted upon LDL exposure through 

transformations in the cancer cells. Literature describes invadopodium as cytoplasmic protrusions of 

transformed cells that play a role on extravasating, breaching the endothelial junctions.50 These seem 

to require cholesterol to form;38,93 hence LDL might endow MDA-MB-231 cells with increase ability 

to form invadopodia and extravasate. In general, anchoring and surviving at distance is sustained by 

the ability of TNBC cells to switch to FAO65 In our experiments, exposition of TNBC cells to LDL-

containing medium might have provided a supply of lipids, as demonstrated by increased Bodypy 



LDL favours metastatic spread of triple negative breast cancer 

27 

 

detection of lipid droplets inside in MDA-MB-231LDL cells (Supplementary Figure 1). It is possible 

that FAO may also be enhanced as expression of CD36 is upregulated upon exposure to dietary 

lipids,65 and increase FAO and ETC-related-ATP synthesis in general are upregulated by genes and 

proteins in MDA-MB-23171 but further studies would be necessary to confirm increased FAO at 

distance in MDA-MB-231LDL cells. 

Tumour masses evaluation did not reveal significant differences. Future studies with evaluation of 

xenotransplanted larvae at later time points and with MDA-MB-231LDL and MDA-MB-231control cells 

injected in separate larvae will be needed to correctly evaluate the ability of TNBC cells to colonize 

and grow masses at distance since this is a latter phenomenon in the metastatic cascade and thus 

hardly happened in this 4 dpi model. Moreover,  co-injection of cells might not be the best model 

since secretion of exosomes and/or metabolites by MDA-MB-231LDL cells might modulate local or 

distant microenvironment, paving the way for its counterpart MDA-MB-231control cells to metastize 

or vice-versa.75 

Our evaluation of mitochondrial network distribution revealed that MDA-MB-231LDL cells assumed 

a more filamentous distribution, i.e. mitochondria were across the entirety of the cell, diverging from 

MDA-MB-231control cells that majorly present perinuclear mitochondrial network distribution. As we 

considered that MDA-MB-231LDL cells had increase metastatic potential (explained before), the 

adoption of a more distributed mitochondrial network could be favouring metastatic progression. 

Particularly at distance (intestine, swim bladder, brain, eye, liver), MDA-MB-231LDL cells seem to 

acquire a more filamentous mitochondrial network (only consistent for the brain for all the 

quantifications performed). It is possible that acquisition of a more widespread and filamentous 

mitochondria distribution across the cell has implications in the migratory and invasive behaviour of 

TNBC cells since most of the MDA-MB-231LDL cells that achieved migration to distant sites 

displayed an increased proportion of filamentous mitochondrial distribution compared to MDA-MB-

231LDL cells located in the PVS (although also presenting increase number of particles) or its 

counterparts MDA-MB-231control cells. Results are in conformity with Senf and Ronai, et al. and 

others which proposed that in migrating cancer cells, mitochondria are transported to the leading 

edges of the cell58 and were carried to cytoplasmatic protrusions where they played a role on its 

assembly and function, increasing migration and invasion.37,94 

Also, literature described that mitochondria of migrating cells undergo fission, so that it can be 

transported along the cytoskleton.94,95  
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We quantified mitochondrial network total number of Mito-YFP particles, area of Mito-YFP per cell 

and area of Mito-YFP per particle in MDA-MB-231control and MDA-MB-231LDL cells. Mitochondria 

were transfected with Mito-YFP (see Materials and Methods), therefore in maximum intensity 

projections Mito-YFP number of particles is an indirect measure of mitochondrial mass; whereas 

Mito-YFP area is an indirect measure of mitochondrial area distribution across the cell and Mito-

YFP area per particle is an indirect measure of mass/size of each mitochondrion. Our results suggest 

that LDL increased average mitochondrial mass but lowered mass per mitochondrion and favoured 

increased area of distribution of mitochondria. In other words, MDA-MB-231LDL cells seem to have 

upregulated mitochondrial biogenesis, which LeBleu60 suggested was a feature of BC initiating its 

path to invade and migrate, to have undergone increased fission and widespread distribution, which 

Senft and Ronai, et.al58 proposed to be essential for cancer cell invasion and migration. In the one 

organ (swim bladder) LDL exposure may not have been enough to induce fission (MDA-MB-231LDL 

had increased Mito-YFP area per particle), other stimuli might have played a role. Interestingly, in 

this organ, the number of MDA-MB-231LDL and MDA-MB-231control cells was very similar but 

MDA-MB-231control have grown 2 tumour masses, indicating that in this organ, LDL failed to 

promote increased invasion, survival and proliferation. 

Altogether, LDL seems to have induced a general increase in migratory and invasive properties in 

MDA-MB-231LDL cells in in xenotransplanted zebrafish larvae. Potentially several mechanisms 

could explain this phenotype, but transformations in cancer cells seem to underlie these phenotypes 

since local and distant microenvironment was common. Such transformations may have endowed 

MDA-MB-231LDL cells with increased extravasation and survival at distance potential, but further 

research should confirm these results.  

Also, mitochondrial adaptations detected in LDL-exposed cells seem to correlate to the increased 

ability of TNBC cells to migrate/invade diastal organs in xenotransplanted zebrafish larvae. Such 

adaptations include increase proportion of cells displaying mitochondrial filamentous network 

distribution; increased number and area occupied by the Mito-YFP particles but decreased 

mitochondria size (Mito-YFP area per particle). These mitochondrial transformations may be one of 

the mechanisms whereby LDL increases invasion, migration and/or survival at distance. 

There were some limitations in our experiment. Firstly, MDA-MB-231LDL and MDA-MB-231control 

were coinjected into each zebrafish larvae, raising the question of whether MDA-MB-231control 

invasive behaviour could be moulded by MDA-MB-231LDL cells interference through release of 



LDL favours metastatic spread of triple negative breast cancer 

29 

 

exossomes to the microenvironment or matrix remodelling, for instance. Also, concern with 

zebrafish tumour microenvironment must be raised. Although 2-6dpf zebrafish replicates interactions 

with innate system,96 vascular cells83 and different organs,83 the influence of the microenvironment 

goes beyond that, and zebrafish may not simulate the human local and distant microenvironment as 

cancer cells take up fatty acids, glucose, amino acids that mould its metabolism and many factors 

may influence cancer cells epigenetics.83  

Our results raise further concerns that should be tested with improved experimental design. The 

injection of MDA-MB-231LDL and MDA-MB-231control cells in separate larvae labelled with the same 

lipophilic dye (preferentially Cy5) must confirm these results and exclude interferences of co-

injection procedure. Live-imaging at two distinct time-points (1 e 4 dpf) and termination of the 

experiments at 6dpf will allow following the path of cells since injection until the development of 

more considerable masses as well as studying LDL role on cell survival. Using Tg (fli1:eGFP) only 

and an alternative mitochondrial marker emitting outside the green spectrum would facilitate 

detection of MDA-MB-231 cells in which Mito-YFP marker was effective while enabling further 

analysis of cancer cell-endothelial interaction. Determining whether cells at distance undergo fatty 

acid oxidation and the relation between mitochondria and cell protrusions would clarify part of the 

lipid metabolism role on TNBC cells. Regarding the bioimaging acquisition, confocal microscopy 

(63x oil) to address the mitochondrial network, confocal microscopy tiles with 20x amplification for 

tropism study and measuring mitochondrial volume (instead of mitochondrial indirect measures in 

maximum intensity projections) using Imaris 9.0.1. 

Future hope to treat metastatic TNBC through new therapeutic targets may point at inhibiting FAO 

but further studies are needed to clarify FAO role on metastasis and to identify safe targets. 

Particularly in MYC68 and AKR1B1069 overexpressing TNBC, therapeutic efficiency might be 

elevated since these subsets of TNBC are highly dependent upon FAO.68,69 MYC68 and AKR1B1069 

are defining factors that upregulate FAO and downregulate fatty acid synthesis and thus might be 

predictor markers for successful FAO inhibitory therapeutic68,69 that might be directed at CD36,65 

CDCP1,71 or at inhibiting other components of altered lipid metabolism.71 Acting at complementary 

points of metastatic cascade may be useful, aiming at eradicating established metastasis, preventing 

growth and colonization at distance and avoiding dissemination of tumour.19 
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SUPPLEMENTARY DATA 

SUPPLEMENTARY FIGURES 

Supplementary Figure 1 – Representation of flow cytometry histograms of MDA-MB-231LDL 

and MDA-MB-231control cells prior to xenotransplantation in zebrafish larvae. Univariate 

histograms of A. Bodipy; B. Cy5; C. DiI intensity in Cy5-labelled-MDA-MB-231LDL (red) and DiI-

labelled-MDA-MB-231control (black). 
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Supplementary Figure 2 – Xenotransplanted Tg (fli1:eGFP) zebrafish tile. Representative 

images of whole Tg (fli1:eGFP) zebrafish tile (4dpi and 6dpf), with organs invaded by DiI-labelled 

MDA-MB-231 control (red) and Cy5-labelled LDL-exposed (grey) cells and fli1 endothelial protein 

(green), captured with spinning disk inverted confocal microscope Zeiss Cell Observer SD. Nuclei 

staining with DAPI is in blue. 
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Supplementary Figure 3 – Mitochondrial Network and Cell Membrane. Binary image of 

maximum intensity projections of TNBC DiI-labelled MDA-MB-231 cells control (white, F); or 

Cy5-labelled MDA-Mb-231 (white, J) exposed to LDL, previously transfected with the 

mitochondrial reporter Mito-YFP (white, E and I, respectively) xenotransplanted into 2dpf zebrafish, 

performed with FIJI software for quantification purposes.  
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SUPPLEMENTARY TABLES  

Supplementary table 1 – Tropism analysis with widefield microscopy. Binary analysis of 

invasion (1) or lack of invasion (0) by MDA-MB-231LDL (LDL) or MDA-MB-231control (control) 

cells in xenotransplanted zebrafish (4dpi and 6dpf) (n=25), with in the widefield microscopy.  
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Supplementary table 2 – Tropism analysis with spinning disk microscopy. Binary analysis of 

invasion (1) or lack of invasion (0) by MDA-MB-231LDL (LDL) or MDA-MB-231control (control) 

cells in xenotransplanted zebrafish (4dpi and 6dpf) (n=11), with widefield microscopy. Growth of 

masses, >20 cells, (1) was represented on the right of the respective cell. 
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Supplementary table 3 – Invasion quantification analysis with spinning disk microscopy. 

Quantification of invasion by MDA-MB-231LDL (LDL) or MDA-MB-231control (control) cells 

xenotransplanted into zebrafish (4dpi and 6dpf) (n=11), with in the widefield microscopy. Growth of 

masses, >20 cells, (1) was represented on the right of the respective cell. 
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