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MRS = mean reef submergence; SLR = sea level rise; PM = potential mobility; Vmean = mean wave-
induced velocities; Vmax = maximum wave-induced velocities 
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Highlights: 13 

 Hydrodynamics and sediment mobility were modelled under reef submergence scenarios.  14 

 The largest increases in sediment mobility were projected on the inner reef flat.  15 

 Lagoonal zones were projected to remain as sinks for sediment deposition. 16 

 Results imply lagoonward island migration is likely to occur under sea level rise. 17 

 18 

Abstract: Low-lying coral reef islands will be significantly impacted by future sea level rise (SLR). It is 19 

generally expected that SLR will destabilise reef islands because increasing reef submergence allows 20 

larger waves, and therefore greater energy transmission, across reef flats. However, the impact of 21 

SLR on altering both reef flat sediment transport and sediment delivery to island shorelines is poorly 22 

understood. Here, we use the currents of removal approach (coupling two-dimensional wave 23 

modelling with settling velocity data from 186 benthic sediment samples) to model shifts in both 24 

reef hydrodynamics and benthic sediment transport under scenarios of mean reef submergence 25 

(MRS = +0 m, +0.5 m, +1 m) at two atoll rim reef sites in the Maldives. Under contemporary 26 

conditions (MRS = +0 m), we found that benthic sediment transport is likely occurring, consistent 27 

with active reef-to-island sediment connectivity. Under conditions of increased MRS, shifts in wave 28 

velocities, and in turn sediment potential mobility, were both non-linear and non-uniform. 29 

Significant between-site differences were found in the magnitude of projected shifts in sediment 30 
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mobility under scenarios of increased MRS, which implies that morphological responses to increases 31 

in MRS are likely to be diverse, even over local scales. Under increased MRS, the largest increases in 32 

sediment mobility were projected on the inner reef flat, whereas lagoonal zones remained as sinks 33 

for sediment deposition. We thus hypothesize that while reef islands will persist as sedimentary 34 

landforms under projected rates of MRS, lagoonward reef island migration is likely to occur. Findings 35 

have implications for predicting the future adaptive capacity of atoll nations. The challenge is to 36 

incorporate such potential increases in island mobility and intra-regional diversity in reef system 37 

geomorphic responses to sea level rise into national-scale vulnerability assessments. 38 

 39 

Key words: reef islands, sea level rise, waves, hydrodynamics, sediment transport, Maldives  40 

 41 

1. Introduction 42 

Low-lying coral reef islands are frequently considered to be among the most vulnerable landforms to 43 

climate change and associated sea level rise (SLR; IPCC, 2019). Increases in flooding and wave 44 

inundation events have been projected to render atoll nations uninhabitable by the end of the 45 

century (Quataert et al., 2015; Storlazzi et al., 2015, 2018). Given their vulnerability, reef islands 46 

have received increasing attention from geomorphic (Webb and Kench, 2010; Kench et al., 2015; 47 

Duvat et al., 2017; Kench et al., 2018) and hydrodynamic (Quataert et al., 2015; Storlazzi et al., 2015, 48 

2018; Beetham et al., 2017) research in recent years. However, existing research efforts have largely 49 

focus on individual elements of the reef system without accounting for the important 50 

morphodynamic interactions that operate within reef systems. One significant limitation of prior 51 

work is that sediment transport processes remain poorly constrained. This knowledge gap is 52 

particularly pertinent given that reef islands are formed entirely of sediments produced by 53 

organisms in their adjacent marine environments. Sediment transport processes are thus key 54 

controls on reef island maintenance and morphological stability, but there is very limited  55 
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understanding of both contemporary process regimes and how these processes may change under 56 

future SLR scenarios.  57 

One reason for the paucity of prior research on reefal  sediment transport processes is that the 58 

classic empirical expressions of clastic sediment entrainment, transport and deposition (Hjulstrom, 59 

1935; Shields, 1936; Rouse, 1937) are of limited value in reef environments (Cuttler et al., 2017; 60 

Scoffin, 1992). The biogenic nature of reefal sediment, which is derived from a variety of source 61 

organisms (e.g. coral, molluscs, foraminifera), results in grains of variable density, size and shape 62 

(Sorby, 1879; Chave et al., 1972; Ford and Kench, 2012). Reefal sediments thus violate the 63 

assumptions of traditional sediment transport expressions that employ grain size as the primary 64 

control on clastic sediment entrainment (Maiklem, 1968; Braithwaite, 1973; Kench and McLean, 65 

1996). To address these challenges, the ‘currents of removal’ approach was developed to provide a 66 

more robust means of quantifying reefal sediment transport by analysing sediment hydrodynamic 67 

properties (as opposed to grain size) in combination with hydrodynamic data (Kench, 1998; Scoffin, 68 

1987). Despite the development of the ‘currents of removal’ approach, there has been limited 69 

application of such approaches to better understand sediment hydrodynamics and transport 70 

processes in reef systems. Whilst there is a growing body of literature examining sediment transport 71 

processes under modal conditions (e.g. Morgan and Kench, 2016; Pomeroy et al., 2018; Cuttler et al., 72 

2019), there remains a paucity of research into sediment transport dynamics under SLR. A notable 73 

exception is work on transport dynamics under SLR scenarios on fringing type reef systems in 74 

Hawaii, using numerical modelling in one-dimension (Ogston and Field, 2010) and of profiles in two-75 

dimensions (Storlazzi et al., 2011; Grady et al., 2013). To the best of our knowledge, the only work to 76 

investigate sediment transport under SLR in atoll reef island environments has been Shope et al.’s 77 

(2017, 2019) analyses of shifts in alongshore sediment transport. We thus present the first analysis 78 

of reef island sediment transport under SLR across atoll reef island platforms. Understanding of 79 

these processes is especially limited in low-lying atoll reef island systems, yet this knowledge is 80 
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critical to better constrain future reef island landform trajectories and, in turn, to inform national-81 

scale vulnerability assessments of reef island nations.   82 

Here, we use the ‘currents of removal’ approach to present the first study of both hydrodynamics 83 

and benthic sediment transport under different mean reef submergence (MRS) scenarios in an atoll 84 

reef island environment. We refer to MRS, as opposed to SLR, as to solely consider SLR invokes the 85 

assumption that reef morphology remains static (i.e. no reef growth will occur over the associated 86 

timeframe). Rather, we suggest it is more appropriate to employ MRS as it is the difference between 87 

vertical reef accretion and SLR that is the key control on across-reef wave energy regimes (Quataert 88 

et al., 2015). Data are presented from two contrasting settings (in terms of exposure to open ocean 89 

swell) on Huvadhoo atoll rim, southern Maldives. We use two-dimensional modelling to simulate 90 

wave processes under three scenarios: MRS = +0 m (contemporary conditions), +0.5 m (SLR and reef 91 

accretion data from the southern Maldives suggest this would occur by 2100 under RCP8.5;  Perry et 92 

al., 2018), and +1 m (projected as the upper extreme in the southern Maldives by 2100 under 93 

RCP8.5, 95% confidence interval; Perry et al., 2018). Wave model outputs are then coupled with 94 

settling velocity data from 186 benthic sediment samples to estimate sediment potential mobility 95 

(PM) under each of these MRS scenarios. Results are discussed in the context of the geomorphic 96 

implications for reef island futures. We suggest that while reef islands may persist under SLR, there 97 

will likely be increased island mobility and local -scale variability in the magnitude of such 98 

morphological shifts. 99 

2. Regional Setting 100 

The Maldives is a reef island nation comprised of ~1,200 islands inhabited by a population of 101 

~436,000 (Fig. 1). There is an emerging understanding of reef hydrodynamics (Kench et al., 2006; 102 

Mandlier, 2008) and sediment transport (Morgan and Kench, 2014, 2016) under the contemporary 103 

process regime on faro type reef platforms (i.e. small annular atoll interior reef platforms) in the 104 

Maldives. However, our understanding of reef hydrodynamics and sediment transport on Maldivian 105 
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linear atoll rim platforms (i.e. elongate reef platforms which form atoll perimeters) is limited. This is 106 

a key knowledge gap as sediment transport processes are likely to differ significantly between faro 107 

and linear rim platforms as they have distinctly different process regimes. Linear rim platforms are 108 

characterised by strong cross-platform wave energy gradients, whereas waves converge at a focal 109 

point on faro surfaces as wave energy is incident around 360° of their platform margins  (Kench, 110 

2013).  111 

Straddling the equator, the Maldives archipelago is located in a predominantly storm-free 112 

environment (Woodroffe, 1993; Fig. 1). Satellite altimetry data indicate that oceanic swell 113 

approaches from south-easterly directions between November and March, and south to south-114 

westerly directions between April and November (Young, 1999). Our study focused on Huvadhoo 115 

Atoll, which is approximately 60 km in width, 80 km in length and has an area of 3,279 km2 (Naseer 116 

and Hatcher, 2004). Two sections of Huvadhoo Atoll rim were selected as study sites, which 117 

represent end-members with respect to their relative exposure to open oceanic swell: a north-118 

eastern leeward site (which contains Galamadhoo island), and a south-western windward site (which 119 

contains Mainadhoo, Boduhini and Kudahini islands). The areal extents of the marine environments 120 

in the windward and leeward sites are 0.84 km2 and 1.06 km2, respectively (Table A1). To 121 

characterise the oceanic process regime, wave parameters were extracted from WaveWatch III 122 

model hindcasts (Tolman, 2009; Durrant et al., 2013) for the period 1979 to 2010 at locations 20 km 123 

off the oceanward platform margin at each site. The significant wave height and significant wave 124 

period were found to be significantly higher and longer at the windward than the leeward site 125 

respectively (paired t-tests; P = <0.001; East et al., 2018). 126 
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 127 

Figure 1 – Location of the Maldives (a), Huvadhoo Atoll (b), and leeward and windward study sites 128 

(c). Satellite imagery and classifications of eco-geomorphic zones at the leeward (d, f) and windward 129 

(e, g) sites. At the leeward site, LRC = lagoonward reef crest, LP = lagoonward patch (reef), OS = 130 

oceanward sand, DSG = dense seagrass, OSS = oceanward sparser seagrass, and ORC = oceanward 131 

reef crest. At the windward site, LP = lagoonward patch (reef), LS = lagoonward sand, OP = 132 

oceanward patch (reef), R = rubble, and ORC = oceanward reef crest. (width = 2 columns) 133 

3. Materials and methods 134 

3.1 Eco-geomorphic zonations 135 

As a means of structuring sampling design, eco-geomorphic zones were identified at each site (Table 136 

A1). Zones were selected based on preliminary field surveys and examination of satellite imagery in 137 

order to characterise the range of substrate types, hydrodynamic settings and ecological 138 

communities (Perry et al., 2015). High resolution satellite imagery was used to generate digital 139 

habitat maps of the eco-geomorphic zones at each site (Fig. 1). A WorldView-2 image of the leeward 140 
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site was acquired on 13th April 2015, and a Quickbird image of the windward site was acquired on 141 

27th May 2010 (spatial resolution of visible optical bands = 1.86 m and 2.40 m, respectively). Both 142 

images were cloud- and sun glint-free. A Maximum Likelihood Classification was performed on the 143 

atmospherically corrected bands. Ground truth data were obtained from each zone ( 04-06/2013; n = 144 

190 and n = 210 for the leeward and windward sites, respectively), which were divided to train (20%) 145 

and validate (80%) the classifications. Overall classification accuracies (the number of correctly 146 

identified pixels divided by the total number of pixels in the validation; Congalton, 1991) were 147 

88.0% and 91.1% at the windward and leeward sites, respectively. 148 

3.2 Hydrodynamic processes 149 

To simulate wave processes, two-dimensional depth-averaged wave modelling was undertaken 150 

using a Green-Naghdi (GN) free-surface solver from the open source model Basilisk (Popinet, 2015). 151 

This approach has been demonstrated to be effective in simulating wave dispersion, wave breaking, 152 

and wet-dry interaction in shallow coastal environments (Bonneton et al., 2011; Tissier et al., 2012; 153 

Lannes and Marche, 2015). Basilisk GN is particularly effective in reef environments as it can 154 

simulate the behaviour of relatively large amplitude waves across a sudden change in bathymetry 155 

(i.e. across a reef crest), which is a challenge for traditional Boussinesq-type models (Roeber and 156 

Cheung, 2012). The Basilisk GN solver has been comprehensively evaluated for accurately simulating 157 

surf-zone processes in complex reef settings. Benchmark model testing for 1D and 2D scenarios of 158 

wave iteration with reefs produced high skill for resolving free surface and velocity across the 159 

domain (Beetham et al., 2018). The model has also been proven to successfully replicate field 160 

measurements of wave transformation, infragravity wave propagation and wave setup when 161 

compared to measurements from an atoll reef in Tuvalu (Beetham et al., 2016). A significant 162 

capability of the phase-resolving model is that both currents driven by the orbital motions of 163 

individual waves and the mean currents driven by wave setup gradients are represented.  The grid 164 

size was uniform across the domain with a 5 x 5 m cell size. A consistent implicit quadratic bottom 165 

friction coefficient of 0.04 was applied across the model domain. This value was obtained from 166 
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previous tests of different friction scenarios for implicit quadratic bottom friction across a similar 167 

atoll rim reef in Tuvalu, which was comprised of coral, coralline algae, rubble and pavement 168 

(Beetham et al., 2016).  169 

Bathymetric data were required as inputs to the wave model. Bathymetric digital elevation models 170 

of the windward and leeward sites were derived from Quickbird and WorldView-2 imagery 171 

respectively. Water depths were obtained in the field using a single beam echosounder to obtain 172 

400 individual soundings (n = 210 and n = 190 at the windward and leeward sites, respectively), 173 

which were corrected relative to MSL using the tide tables for Gan (00°41S, 73°9E) from the 174 

University of Hawaii Sea Level Centre (depth range = 0 to 17 m below MSL). UK Hydrographic Office 175 

(1992) charts were used to supplement field data with depths from beyond the oceanward platform 176 

margin (these areas were inaccessible due to large oceanic waves; depth range = 15 to 55 m below 177 

MSL). Field datasets were then divided to calibrate (50%) and validate (50%) the bathymetric 178 

models. Models were generated following the methodology of Stumpf et al. (2003), which applies a 179 

band ratio transformation whereby the green and blue bands were extracted from atmospherically 180 

corrected images. A ratio layer was produced by dividing the natural log of the green band by the 181 

natural log of the blue band. Ratio values were plotted against the calibration data and a second-182 

order polynomial relationship was fitted. The regression equations were applied to the ratio layers 183 

to estimate bathymetry across the entirety of each site (spatial resolution = 2.4 m and 1.86 m at the 184 

windward and leeward sites, respectively). To validate the models, the field-derived depths of the 185 

validation dataset were compared to the model-derived depths (Hamylton et al., 2015). The 186 

correlation between field- and model-derived depths was strongly positive in both cases (R2 = 0.86 187 

and 0.83 at the windward and leeward sites, respectively; Table A1). 188 

Wave height and period data at the lagoonward and oceanward margins of the reef platforms were 189 

also required as inputs to the wave model (Table 1). Wave climate data were acquired from three 190 

sources. Firstly, oceanward wave data were extracted from WaveWatch III model hindcasts (Tolman, 191 

2009; Durrant et al., 2013) for the period 1979 to 2010 at locations 20 km off the oceanward 192 
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platform margin at each site. Significant wave height and period were extracted and the average 193 

taken in order to investigate fair-weather conditions. Secondly, lagoonward wave data for the 194 

windward site were obtained from an 8-day field experiment between 8th and 16th November 2007 195 

over 16 successive high tidal stages (Mandlier, 2008). Also with the aim of examining a windward rim 196 

setting, Mandlier placed instruments at Fares-Maathodaa. Fares-Maathodaa is located ~8 km to the 197 

east of the windward site and the platform has a similar aspect relative to incident swell , providing 198 

confidence that lagoonward wave conditions are comparable. Mandlier (2008) also collected wave 199 

data in the centre of the windward reef platform in a location that approximately corresponds with 200 

the lagoonward sand zone in this study. Notably, Hrms (average Hrms = ~0.05 m) was found to be 201 

comparable to that suggested by the model outputs in the present study (average Hrms = 0.03 ± 0.05 202 

m; Table A2). Thirdly, lagoonward data for the leeward site were calculated using linear wave theory 203 

through application of the JONSWAP approach (Hasselmann et al., 1973) with the revisions 204 

suggested by the Shore Protection Manual (1984). Calculations were undertaken using the Swellbeat 205 

(2020) Wave Calculator with (1) windspeeds of 10 knots, the average prevailing westerly windspeed 206 

calculated using 2014 wind data (n = 2,643) from Kaadedhdhoo Airport (0.49°N, 73.00°E; 207 

Wunderground, 2015); (2) a duration of 24 hours; and (3) a fetch length of 55 km (westerly distance 208 

across the atoll lagoon). In each case, an irregular wave field was imported into both the lagoonward 209 

and oceanward fields. The model ran for 2048 s with a spatial resolution of 5.8 m.  210 

The model was run three times for each site to represent different scenarios of mean reef 211 

submergence (MRS): +0 m (i.e. contemporary conditions), +0.5 m and +1 m. Mean (Vmean) and 212 

maximum (Vmax) wave-induced velocities were extracted from the model outputs. The mean velocity 213 

(Vmean) was calculated for each cell as the average velocity value between t = 400 s and 2048 s (i.e. 214 

the period during which the wave field was fully developed)  and is representative of average 215 

currents due to spatial variability in wave setup. Vmax is the maximum value within each cell between 216 

t = 400 s and 2048 s and represents wave-driven (short-period) velocities. Hence, both Vmean and Vmax 217 

occur under fair-weather conditions with a fully developed wave field. Use of Vmean and Vmax is 218 
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consistent with the development and prior applications of the currents of removal approach (Kench, 219 

1998). A comparative analysis of Vmax and V2% was undertaken and the results were found to be 220 

similar (Fig. A1). Root mean square wave height (Hrms) and setup (mean displacement of the free 221 

surface; i.e. the difference between absolute depth and time -averaged water level) were also 222 

calculated for each cell in the model domain to assess differences in wave transformation between 223 

scenarios (Table A2; Fig. A2–A5).  224 

Model inputs Windward site Leeward site Data source 

Oceanward 

margin 

Hs (m) 1.55 1.35 WaveWatch III  

Ts (s) 10.1 8.8 WaveWatch III  

Lagoonward 

margin 

Hs (m) 0.12a 0.6b aField data 

Ts (s) 8.5a 4b bLinear wave theory 

Table 1 – Wave data employed as model inputs from the oceanward and lagoonward margins for 225 

both the windward and leeward study sites. Hs = significant wave height (m), Ts = significant wave 226 

period (s). 227 

3.3 Sediment transport  228 

A total of 186 benthic surficial sediment samples were collected: 90 from the windward site and 96 229 

from the leeward site (Fig. A6). Equal numbers of samples were collected from each eco-geomorphic 230 

zone (n = 15 and n = 16 from each zone at the windward and leeward sites respectiv ely). Each 231 

sediment sample was hand scooped using a 500 ml sample pot, rinsed in freshwater twice for 12 232 

hours, soaked in a 5% bleach solution for 24 hours (to neutralise organic matter), and oven dried 233 

(40°C). Sediment was relatively homogeneous in character, comprised of predominantly coral (72.1 ± 234 

0.5%), with lesser proportions of CCA (11.5 ± 0.4%) and molluscs (9.1 ± 0.4%; East, 2017).  The 235 

hydraulic characteristics of sand-sized (0.063 mm – 2 mm; -1 – 4 ϕ) sediment were measured by 236 

settling a 15 g sub-sample (obtained using a riffle splitter) through a McArthur Rapid Sediment 237 

Analyser (RSA) with a vertical fall of 1.75 m. A time-series of weight accumulation on the balance 238 

plate was recorded to calculate the settling velocity distribution (chi) and the mean settling velocity 239 

(cm s-1; Table A3). Sediment grain size distributions were calculated using the equations of Gibbs et 240 

al. (1971) with a grain density of 1.85 g cm3. 241 
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The ‘currents of removal’ approach was used to calculate the Potential Mobility (PM) of each 242 

sediment sample following the methodology proposed and validated by Kench (1998). PM is defined 243 

as the proportion (%) of a sample that can be mobilised under normal (i.e. ‘fair-weather’) conditions 244 

and is calculated using wave velocity data in combination with the sediment settling velocity 245 

distributions (chi). Firstly, wave velocities at each sediment sample location were extracted from 246 

wave process model outputs and were used to calculate the mean threshold settling velocity (chi) 247 

for each sediment sample using the experimentally-derived entrainment threshold relationship for 248 

bioclastic sediments reported by Kench and McLean (1996, R2 = 0.93). Secondly, the settling velocity 249 

threshold (chi) at each sample location was calculated on each settling velocity curve of the 250 

concerned sediment sample. PM is the proportion of the sample with equal or slower settling 251 

velocity than the threshold value. This approach was applied six times at each study site: for mean 252 

(Vmean) and maximum (Vmax) velocities associated with MRS = +0 m, +0.5 m and +1 m. In order to 253 

visualise spatial variability, results were interpolated using a block kriging algorithm, whereby kriging 254 

was undertaken within, but not across the boundaries of, each eco-geomorphic zone (spatial 255 

resolution = 6 m). 256 

4. Results 257 

4.1 Contemporary process regime 258 

At both sites, Vmean was at a maximum off the oceanward rim , before waves reached the oceanward 259 

reef crest zone (~1.18 m s-1 and ~0.70 m s-1 at the windward and leeward sites respectively; Fig. 2, 260 

A7-A10; Table 2), and rapidly decreased within the oceanward reef crest zones (0.39 ± 0.02 m s-1 and 261 

0.08 ± 0.01 m s-1 at the windward and leeward sites, respectively; Table 2). There was an oceanward-262 

lagoonward decay in Vmean with minimum values found off lagoonward island shorelines (0.01 m s -1). 263 

Converse to the oceanward-lagoonward gradient, increases in Vmean were found within inter-island 264 

passages, particularly at the windward site (up to 0.75 m s-1). At the leeward site, there was a slight 265 

increase in Vmean toward the lagoonward platform margin (Vmean = 0.07 ± 0.03 m s-1 in the 266 
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lagoonward reef crest zone). Under Vmax, trends were comparable though velocities were higher 267 

with proximity to the oceanward platform margin whereby Vmax = 1.36 ± 0.28 m s-1 and 0.94 ± 0.26 m 268 

s-1 within the oceanward reef crest zones at the windward and leeward sites respectively  (Fig. 2, A7-269 

A10; Table 2).  270 

As a function of spatial trends in wave velocities, PM data indicated that the predominant direction 271 

of sediment transport was along gradients from high PM at the oceanward reef crest to low PM at 272 

the lagoonward platform margin (Fig. 3, 4, A11-A16; Table 3). At the windward site, under Vmean 273 

benthic sediment transport occurred from the oceanward reef crest (20.4 ± 13.7%) into the 274 

remainder of the oceanward environment (PM = ~10%), through inter-island passages (up to 100%), 275 

and into the lagoonward environment where sediment transport occurred in the lee of the inter-276 

island passages (up to 24%). Under Vmax, there was greater potential for sediment mobility. Sediment 277 

was transported from the oceanward environment (PM = ~100%), through inter-island passages (PM 278 

= ~100%), and into the lagoonward sand zone (PM = 8.3 ± 24.7%). The lagoonward sand zone 279 

remained predominantly immobile, except in the lee of the inter-island passages (PM = up to 99%).  280 

At the leeward site, PM was lower than that at the windward site. Under Vmean, the only potentially 281 

mobilised sediment was found within the reef crest zones (average PM = up to 2%). Under Vmax, PM 282 

remained low within the lagoonward zones (average PM = up to 3%), but there was a marked 283 

increase in PM of oceanward sediments. Oceanward-lagoonward sediment transport thus likely 284 

occurred with progressively decreasing proportions of mobile material from the oceanward reef 285 

crest zone (PM = 100%), through the oceanward sparser seagrass (PM = 97.3 ± 8.2%) and dense 286 

seagrass (PM = 38.3 ± 26.3%) zones, and towards the oceanward sand zone (PM = 7.7 ± 7.8%). 287 

Differences were found in the grain size of potentially mobilised sediment be tween eco-geomorphic 288 

zones (Fig. A15, A16). At the windward site under Vmean, mobilisable material was of up to medium-289 

coarse grained sand (>~1 ϕ) in the oceanward reef crest zone and up to medium-grained sand (>~1-2 290 

ϕ) across the remainder of the oceanward environment. Within the lagoonward zones, only silt -291 
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sized sediment could be mobilised (>4 ϕ). Under Vmax, very coarse sand could be mobilised across 292 

the oceanward zones (>-1 ϕ). In the lagoonward environment, fine to very fine sand (>~3 ϕ) and fine 293 

grade sand (>~2.5 ϕ) could be potentially mobilised in the lagoonward sand and patch zones 294 

respectively. At the leeward site under Vmean, only fine sand (>~2.5 ϕ) was potentially mobile. Under 295 

Vmax, very coarse sand (>~-0.7 ϕ) could be mobilised on the oceanward reef crest. There was an 296 

oceanward-lagoonward decrease in the grain size of potentially mobilised material to medium-fine 297 

sand (>~2 ϕ) in the oceanward sand zone. Within the lagoonward environment, only fine -grained 298 

material (>~1.8 ϕ) could be mobilised. 299 

4.2 Future process regimes 300 

Under scenarios of increased MRS, shifts in wave velocities were both non-linear and non-uniform 301 

(Table 2; Fig. 2, A7-A10). Relatively marginal increases in Vmean were projected at both sites (Fig. 2) 302 

with average increases of up to 0.03 m s-1. However, shifts in Vmax under increased MRS scenarios 303 

were projected to be more pronounced than those associated with Vmean, though also non-linear and 304 

non-uniform (Fig. 2). In the oceanward reef crest zone at the windward site, Vmax decreased by 0.03 305 

m s-1 between +0 and +0.5 m MRS, and by a further 0.09 m s -1 between +0.5 and +1 m MRS. In the 306 

leeward site oceanward reef crest zone, shifts in Vmax were only marginal (~0.02 m s-1). In contrast, 307 

marked increases in Vmax were found across the remainder of the oceanward environment, for 308 

example, Vmax was projected to increase by ~0.18 m s-1 in the windward site rubble zone. Similarly, at 309 

the leeward site, Vmax increased by ~0.14 m s-1 between +0 and +1 m MRS scenarios in the 310 

oceanward sand and dense seagrass zones. In the lagoonward environments, increases  in Vmax were 311 

projected to be smaller in magnitude (average increases of up to ~0.08 m s-1 between +0 and +1 m 312 

MRS).  313 

Sediment PM was projected to increase under scenarios of increased MRS (Table 3; Fig. 3, 4, A11, 314 

A12). At the windward site under Vmean, PM was projected to increase across the oceanward zones, 315 

though in a non-linear manner. For example, increases in PM were of greater magnitude between +0 316 
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and +0.5 m MRS (by ~9% and ~5% within the rubble and oceanward patch zones) than between +0.5 317 

and +1 m MRS (by ~1% and ~0.5%). Projected increases in PM at the windward site under Vmean were 318 

significant between both MRS increments (+0 to +0.5 m and +0.5 to +1 m, P = <0.0005, Wilcoxon 319 

signed ranks tests). Under Vmax, sediment across the entirety of the windward site oceanward 320 

environment attained 100% PM under both scenarios of increased MRS. Converse to PM under 321 

Vmean, PM in the lagoonward patch zone (22.4 ± 26.4% and 30.6 ± 33.8%) was projected to exceed 322 

that in the lagoonward sand zone (15.0 ± 29.5% and 22.7 ± 38.6%). However, variability remained 323 

high due to high PM values within the lee of the inter-island passages (up to 100%). Under Vmax at 324 

the windward site, the projected increase in PM was significant between MRS = +0.5 and +1 m (P = 325 

0.012), but not between MRS = +0 and +0.5 m (P = 0.232; Wilcoxon signed ranks tests). 326 

At the leeward site under Vmean, shifts in PM were projected to be marginal. Indeed, the magnitude 327 

of change in sediment PM under Vmean was significantly larger at the windward site than the leeward 328 

site (P = <0.0005; Mann-Whitney U test). The only projected increase in sediment PM under 329 

increased MRS was in the oceanward reef crest zone (to 1.8 ± 1.7% and 4.3 ± 4.5% where MRS = +0.5 330 

and +1 m respectively). No significant increase in PM was thus found between +0 and +0.5 m MRS at 331 

the leeward site under Vmean (P = 0.133, Wilcoxon signed ranks test). However, increases in PM were 332 

significant between +0.5 and +1 m MRS (P = 0.001, Wilcoxon signed ranks test). Under Vmax, PM was 333 

modelled as 100% under +0.5 m and +1 m MRS in both the oceanward reef crest and sparser 334 

seagrass zones. While projected shifts in PM were marginal towards the oceanward platform 335 

margins, the largest increases in sediment PM were found in the remainder of the oceanward zones. 336 

For example, increases in PM in the oceanward sand zone were projected to be sufficiently high that 337 

they would shift the zone from one of preferential deposition (under Vmax MRS = +0 m, PM = 7.7 ± 338 

7.8%) to preferential sediment transport (under Vmax MRS = +1 m, PM = 86.2 ± 12.2%). In contrast, 339 

modelled increases in average PM within the lagoonward zones under Vmax were only marginal (up 340 

to 5.3%). Under Vmax, highly significant increases were projected in PM between both increased MRS 341 

increments (+0 to +0.5 m and +0.5 to +1 m; P = <0.0005 in both cases, Wilcoxon signed ranks tests). 342 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



The magnitude of change in sediment PM was significantly greater under Vmax than Vmean (P = 0.046; 343 

Wilcoxon signed ranks tests). In contrast to under Vmean, the magnitude of change in sediment PM 344 

under Vmax was significantly larger at the leeward site than the windward site (P = <0.0005; Mann-345 

Whitney U test).  346 

 347 

 348 

Table 2 – Mean (Vmean) and maximum (Vmax) wave velocities (m s-1, mean ± 1 S.D., ranges in italics) 349 

within each eco-geomorphic zone where SLR = 0, 0.5 and 1 m. At the windward site, LP = 350 

lagoonward patch, LS = lagoonward sand, OP = oceanward patch, R = rubble, and ORC = oceanward 351 

reef crest. At the leeward site, LRC = lagoonward reef crest, LP = lagoonward patch, OS = oceanward 352 

sand, DSG = dense seagrass, OSS = oceanward sparser seagrass, and ORC = oceanward reef crest.  353 

Site Zone Mean ± 1 S.D. Range Mean ± 1 S.D. Range Mean ± 1 S.D. Range

ORC 0.28 ± 0.05 0.17 - 0.52 0.29 ± 0.05 0.21 - 0.53 0.31 ± 0.05 0.22 - 0.56

R 0.22 ± 0.08 0 - 0.78 0.25 ± 0.08 0 - 0.77 0.24 ± 0.07 0 - 0.71

OP 0.19 ± 0.09 0 - 0.61 0.21 ± 0.1 0 - 0.72 0.22 ± 0.09 0 - 0.67

LS 0.1 ± 0.07 0 - 0.54 0.11 ± 0.08 0 - 0.45 0.11 ± 0.08 0 - 0.49

LP 0.08 ± 0.03 0.03 - 0.2 0.08 ± 0.03 0.04 - 0.19 0.08 ± 0.02 0.04 - 0.18

ORC 1.36 ± 0.28 0.7 - 2.55 1.33 ± 0.25 0.85 - 2.29 1.24 ± 0.22 0.81 - 2.17

R 0.52 ± 0.22 0 - 1.37 0.64 ± 0.23 0 - 1.57 0.7 ± 0.22 0 - 1.51

OP 0.51 ± 0.25 0 - 1.22 0.63 ± 0.28 0 - 1.26 0.67 ± 0.27 0 - 1.25

LS 0.14 ± 0.11 0 - 0.71 0.18 ± 0.12 0 - 0.68 0.22 ± 0.13 0 - 0.77

LP 0.14 ± 0.05 0.04 - 0.36 0.15 ± 0.04 0.08 - 0.32 0.17 ± 0.04 0.1 - 0.35

ORC 0.22 ± 0.07 0.11 - 0.47 0.23 ± 0.07 0.12 - 0.46 0.25 ± 0.07 0.13 - 0.44

OSS 0.12 ± 0.01 0.06 - 0.21 0.12 ± 0.01 0.1 - 0.23 0.13 ± 0.02 0.11 - 0.26

DSG 0.1 ± 0.02 0 - 0.45 0.11 ± 0.01 0.04 - 0.34 0.11 ± 0.01 0.05 - 0.19

OS 0.11 ± 0.03 0 - 0.31 0.12 ± 0.03 0 - 0.29 0.12 ± 0.03 0 - 0.25

LP 0.06 ± 0.04 0 - 0.33 0.08 ± 0.04 0 - 0.43 0.07 ± 0.03 0 - 0.29

LRC 0.07 ± 0.03 0.02 - 0.16 0.07 ± 0.03 0.04 - 0.16 0.08 ± 0.03 0.04 - 0.15

ORC 0.94 ± 0.26 0.45 - 1.66 0.96 ± 0.21 0.54 - 1.6 0.94 ± 0.17 0.57 - 1.49

OSS 0.46 ± 0.09 0.22 - 0.97 0.55 ± 0.08 0.38 - 1 0.58 ± 0.08 0.42 - 0.96

DSG 0.24 ± 0.06 0 - 0.54 0.34 ± 0.07 0.13 - 0.58 0.38 ± 0.06 0.18 - 0.61

OS 0.2 ± 0.04 0 - 0.4 0.29 ± 0.05 0 - 0.59 0.34 ± 0.05 0 - 0.62

LP 0.1 ± 0.06 0 - 0.4 0.15 ± 0.07 0 - 0.62 0.18 ± 0.08 0 - 0.66

LRC 0.13 ± 0.07 0.05 - 0.33 0.15 ± 0.08 0.06 - 0.39 0.16 ± 0.09 0.07 - 0.42
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 354 

Table 3 – Potential Mobility (PM, %, mean ± 1 S.D., ranges in italics) of sediment within each eco-355 

geomorphic zone where SLR = 0, 0.5 and 1 m. Note that marked spatial variability exists within each 356 

zone. At the windward site, LP = lagoonward patch, LS = lagoonward sand, OP = oceanward patch, R 357 

= rubble, and ORC = oceanward reef crest. At the leeward site, LRC = lagoonward reef crest, LP = 358 

lagoonward patch, OS = oceanward sand, DSG = dense seagrass, OSS = oceanward sparser seagrass, 359 

and ORC = oceanward reef crest.  360 

 361 

Site Zone Mean ± 1 S.D. Range Mean ± 1 S.D. Range Mean ± 1 S.D. Range

V mean ORC 20 ± 13.7 2 - 51 27.4 ± 14.6 7 - 54 37.9 ± 20.8 8 - 80

(PM, %) R 10.3 ± 20.7 0.5 - 84 19.2 ± 20.8 3 - 89 20.4 ± 21.3 5 - 93

OP 11 ± 23.7 0 - 100 16.2 ± 22.9 0 - 100 16.8 ± 23.2 0 - 100

LS 1.5 ± 6 0 - 24 1.2 ± 4.5 0 - 18 0.8 ± 2.1 0 - 7

LP 0.3 ± 0.7 0 - 2 0 ± 0 0 - 0 0 ± 0 0 - 0

V max ORC 100 ± 0 100 - 100 100 ± 0 100 - 100 100 ± 0 100 - 100

(PM, %) R 99.9 ± 0.2 99.5 - 100 100 ± 0 100 - 100 100 ± 0 100 - 100

OP 96.9 ± 12.6 48 - 100 100 ± 0 100 - 100 100 ± 0 100 - 100

LS 8.3 ± 24.7 0 - 99 15 ± 29.5 0 - 99.5 22.7 ± 38.6 0 - 100

LP 23.5 ± 30.2 0 - 83 22.4 ± 26.4 0 - 60 30.6 ± 33.8 0 - 85

V mean ORC 1.5 ± 1.3 0 - 4 1.8 ± 1.7 0.5 - 5.5 4.3 ± 4.5 0.5 - 18

(PM, %) OSS 0 ± 0 0 - 0 0 ± 0 0 - 0 0 ± 0 0 - 0

DSG 0 ± 0 0 - 0 0 ± 0 0 - 0 0 ± 0 0 - 0

OS 0 ± 0 0 - 0 0 ± 0 0 - 0 0 ± 0 0 - 0

LP 0 ± 0 0 - 0 0 ± 0 0 - 0 0 ± 0 0 - 0

LRC 1.7 ± 4.2 0 - 15 1.7 ± 4.2 0 - 15 1.7 ± 4.2 0 - 15

V max ORC 100 ± 0 100 - 100 100 ± 0 100 - 100 100 ± 0 100 - 100

(PM, %) OSS 97.3 ± 8.2 68 - 100 100 ± 0 100 - 100 100 ± 0 100 - 100

DSG 38.3 ± 26.3 4 - 95 81.7 ± 20.0 40 - 100 95.3 ± 7.5 76 - 100

OS 7.7 ± 7.8 1.5 - 30 44.9 ± 23.1 0 - 83 86.2 ± 12.2 54 - 100

LP 0 ± 0 0 - 0 0.6 ± 1.5 0 - 5 5.3 ± 15.4 0 - 60

LRC 2.8 ± 5.3 0 - 15 3.1 ± 6.2 0 - 20 3.8 ± 8.3 0 - 30

MRS = +0 m MRS = +0.5 m MRS = +1 m
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 362 

Figure 2 – Mean (Vmean) and maximum (Vmax) velocities (m s-1) across the windward (a) and leeward 363 

(b) sites where MRS = +0 m, +0.5 m, and +1 m. Vectors represent the direction and magnitude of the 364 

velocity plotted in each panel. (Width = 2 columns) 365 
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 366 

Figure 3 – Windward site block kriging results of sediment potential mobility (PM, %) with both 367 

mean (Vmean) and maximum (Vmax) velocities under scenarios of +0 m, +0.5 m, and +1 m MRS. (Width 368 

= 2 columns) 369 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 370 

Figure 4 – Leeward site block kriging results of sediment potential mobility (PM, %) with both mean 371 

(Vmean) and maximum (Vmax) velocities under scenarios of +0 m, +0.5 m, and +1 m MRS. (Width = 2 372 

columns) 373 
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5. Discussion 374 

5.1 Wave processes 375 

Wave processes under the contemporary process regime were characterised by a general cross -rim 376 

oceanward-lagoonward attenuation of wave velocities. Under scenarios of increased reef 377 

submergence, changes in wave processes were non-linear and non-uniform, with the magnitude of 378 

change varying between zones and between increased MRS projections. These findings contrast 379 

widely-held assumptions that wave energy will increase linearly with sea level rise (Ferrario et al., 380 

2014; Quataert et al., 2015). Rather, our results highlight the complex nature of atoll rim process 381 

regimes.  382 

Results suggest that wave velocities will decrease or remain constant within the oceanward reef 383 

crest zones under increasing reef submergence. This is likely driven by a decrease in dissipation 384 

during wave breaking, with higher submergence allowing a wider surf zone to develop across the 385 

outer reef flat. In contrast, under increased MRS, pronounced increases in velocities were projected 386 

across reef flats, driven by an increase in wave height and velocities able to propagate across the 387 

outer reef crest. This is primarily attributed to a decrease in dissipation from breaking at the reef 388 

crest whereby greater water depths enable a larger proportion of incident wave energy to propagate 389 

onto the reef flats. In some instances, this may allow larger waves to cross the reef crest without 390 

breaking and greater energies to ‘leak’ onto the reef platform surface (Brander et al., 2004; Kench et 391 

al., 2009a). Indeed, between MRS = +0m and +1m, there was 63% and 253% increase in average 392 

wave energy on the reef flat at the windward and leeward sites respectively. In addition, higher 393 

submergence decreases hydrodynamic roughness relative to water depth which limits frictional 394 

dissipation across the reef flat (Storlazzi et al., 2011). Decreases in live coral cover can also cause 395 

reductions in surface rugosity, which may cause further reductions in the fricti onal dissipation of 396 

waves (Harris et al., 2018). Mean velocities, driven by spatial differences in wave setup, are 397 

predicted to decrease across the reef flat as wave dissipation at the reef crest is reduced. The net 398 
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effect of increasing reef submergence is that sediment transport processes will increase across the 399 

reef flat because of higher wave orbital velocities, with mean flow a less important control on 400 

sediment transport during modal wave conditions.  401 

While depth-averaged currents are presented, they are not necessarily representative of the 402 

currents that interact with the bed in reef systems (i.e. the reef canopy causes a reduction in 403 

velocity; Pomeroy et al., 2017). Cuttler et al. (2018) and Pomeroy et al. (2018) have discussed the 404 

contributions of different forcing (wave-driven or mean current) to sediment transport in reef 405 

systems and highlight the importance of wave-driven processes for inducing reef sediment 406 

transport. 407 

5.2 Sediment Potential Mobility  408 

Under the contemporary process regime (MRS = +0 m), there was minimal potential for sediment 409 

mobility where mean velocities were considered. However, extracting maximum velocities shows 410 

that active oceanward-lagoonward sediment transport occurs at both sites, even under fair-weather 411 

conditions. This potentially mobilised material comprised sand-sized sediments (Fig. A15, A16), 412 

which are of the same grade as sediments within the upper horizons of the adjacent reef islands 413 

(East et al., 2016; 2018). Hence, our findings suggest that active sedimentary linkages exist between 414 

reef islands and their adjacent marine environments under fair-weather conditions. 415 

While data suggest there is active reef-to-island connectivity, it is pertinent to note that the 416 

windward islands are underpinned by conglomerate platforms (~0.4 m above MSL on their 417 

oceanward shorelines (East et al., 2018)). While sediment PM was high across the windward site 418 

oceanward zones, the transfer of sediments to oceanward island shorelines may be ineffective 419 

under present conditions as sediments would need to bypass the conglomerate platform. However, 420 

this may change as sea levels rise because (1) the beach will become more connected to the process 421 

regime; and (2) shoreline materials may be mobilised more readily. 422 
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At the windward site sediment PM was 100% across almost the entirety of the oceanward 423 

environment under Vmax. Hence, under present conditions, this site represents a sediment-limited 424 

setting (Kench and McLean, 2004) whereby there is a highly efficient and continuous oceanward-425 

lagoonward transfer of all available sediments. As such, the windward site oceanward reef flat zones 426 

are generally swept bare of island building (sand-grade; East et al., 2016) sediments. In contrast, 427 

under present conditions, the leeward site represents a transport-limited setting where wave 428 

energies are insufficient to enable the transfer of sediments from oceanward to lagoonward zones. 429 

Hence, the oceanward reef flat zones at the leeward site were characterised by the widespread 430 

accumulation of sand-sized sediments. 431 

At the windward site, the one exception to the near-unanimously high PM values (~100%) across the 432 

oceanward environment was in the embayment area off the central transect where PM = 48%, 433 

suggesting that the embayment may represent a depositional sink for medium-to-fine grained sand. 434 

This is consistent with shoreline geomorphology as this was the only portion of the oceanward island 435 

shoreline to be composed of sand-sized sediments, while the remainder of the oceanward island 436 

margins were comprised of reef rubble and coral boulders. Sediment PM analysis thus provides 437 

support for the process of embayment infilling which has been identified as a key mechanism of 438 

shoreline accretion in other regions with similar island morphologies (Kench et al., 2015) and has 439 

been hypothesized to have occurred within the windward study site (East et al., 2018) .  440 

The modelled spatial variability in sediment potential mobility contrasts with that found on faro type 441 

reef platforms in the Maldives (Vabbinfaru, North Malé Atoll). Morgan and Kench (2016) found the 442 

highest PM values were associated with lagoonal deposits, whereas coarser outer reef rim 443 

sediments had lower PM values. This contrasts to the trends found in the present study, in which PM 444 

was highest toward the oceanward platform rim and lowest within the lagoonward zones. Such 445 

differences are a function of the higher wave velocities (as opposed to  differences in sediment 446 

texture) found on the atoll rim (maximum wave velocities on Vabbinfaru = 0.29 m s -1; Morgan and 447 
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Kench, 2016). Indeed, the oceanward margins of atoll rim platforms are exposed to open ocean 448 

swell, whereas locally-generated wind-driven waves are incident around faro type platform margins. 449 

Hence, we highlight the diversity of atoll reef platform process regimes, even at intra-regional scales. 450 

Under scenarios of increased MRS, the non-linearity and non-uniformity of the shifts in wave 451 

processes with increased MRS, were mirrored by changes in sediment PM whereby marked inter- 452 

and intra-site variability was found in the magnitude of change. Nonetheless, the predominant 453 

oceanward-lagoonward sediment transport pathways remained consistent between MRS scenarios. 454 

Notably, under Vmax, the increase in sediment PM at the leeward site was significantly larger than at 455 

the windward site. This is due to the highly exposed nature of the windward setting whereby PM 456 

was almost uniformly at 100% under contemporary conditions across the oceanward environment 457 

and, hence, there is minimal potential for further increases. That is, the windward site is already a 458 

sediment-limited setting. In contrast, under increased MRS, the leeward site was characterised by 459 

the transition from a transport-limited to a more sediment-limited setting. This between-site 460 

variability in shifts in sediment PM under MRS scenarios highlights that reef island responses to 461 

future environmental change are likely to be diverse, even over local scales. Notably, while PM 462 

remained relatively consistent under increased MRS at the oceanward platform margins, the largest 463 

increases in PM were found across the remainder of the oceanward zones. Such inner reef flat zones 464 

are those immediately adjacent to oceanward island shorelines, which has important implications 465 

for future island stability. 466 

5.3 Geomorphic implications  467 

A crucial consequence of the projected shifts in wave process regime under SLR, is the potential 468 

increase in energy delivered to reef island shorelines (Ogston and Field, 2010; Storlazzi et al., 2011; 469 

Beetham et al., 2016). Higher wave energies may increase rates of shoreline erosion with reworked 470 

sediment transferred back into the marine environment (Storlazzi et al., 2011). In addition, with 471 

projected increases in the PM of marine sediments, islands may be recipients of increased volumes 472 
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of sediment, resulting in shoreline accretion. Indeed, the increases in mobility were of sand-sized 473 

sediments (Fig. A15, A16) and thus of an appropriate grade to contribute to island building. Notably, 474 

under all scenarios of reef submergence, the lagoonward areas remained as depositional sinks  475 

characterised by the limited capacity of hydrodynamics to entrain sediment. This continued capacity 476 

for the storage and accumulation of sand-sized sediment highlights the potential for rim reef islands 477 

to persist under increased reef submergence. 478 

While the mobility of reef island sediments was not investigated directly, our results have clear 479 

implications for predicting reef island landform change. Reef islands will continually adjust with 480 

shifts in the process regime of the type our model outputs suggest (Beetham and Kench, 2014). 481 

Under both scenarios of increased MRS, benthic areas immediately adjacent to the oceanward 482 

shorelines of both islands shifted from areas of preferential sediment deposition (i.e. storage) to 483 

preferential transport. Hence, erosion will likely occur along these shorelines. Conversely, benthic 484 

areas immediately lagoonward of island shorelines remained areas of preferential deposition  in both 485 

settings. This implies that sediment may thus be removed from oceanward areas and subsequently 486 

deposited in the lagoonward environment. This deposited material may either remain below MSL as 487 

a benthic deposit or it may attain elevations above MSL, contributing to island accretion. Island 488 

accretion may occur via two key mechanisms: (1) ‘roll-around’ whereby alongshore sediment fluxes 489 

facilitate oceanward-lagoonward sediment transport and subsequent alongshore deposition; and/or 490 

(2) ‘roll-over’ as material from the oceanward coast is eroded and deposited towards the lagoon 491 

(Woodroffe et al., 1999). Both processes of roll-around and roll-over could thus result in both 492 

horizontal and vertical lagoonward island accretion and thus net island migration. Hence, we 493 

hypothesize that increases in MSL may result in lagoonward island migration. 494 

This hypothesis that increased MRS may drive lagoonward island migration is consistent with several 495 

lines of evidence: (1) Analyses of island shoreline evolution over decadal timescales have found 496 

island lagoonward migration to occur under SLR. For example, following analyses of all 101 islands of 497 
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Tuvalu, Kench et al. (2018) suggested there was compelling evidence that SLR was causing the 498 

lagoonward migration of atoll rim islands. Similarly, at Funafuti Atoll, which has experienced some of 499 

the highest rates of SLR (~5.1 ± 0.7 mm yr-1), the predominant direction of island migration was 500 

lagoonwards (Kench et al., 2015). Furthermore, Aslam and Kench (2017) analysed shoreline island 501 

change on 184 islands in Huvadhoo atoll and found lagoonward migration of rim islands to be the 502 

second most common mode of island change. Hence, whilst Aslam and Kench have quantified island 503 

evolution, here we are able to examine the process mechanism that drives this mode of reef island 504 

change. (2) Analytical modelling of reef island futures under SLR and shifts in sediment supply found 505 

that island lagoonward migration occurred under all SLR scenarios (Cowell and Kench, 2001; Kench 506 

and Cowell, 2001). (3) Palaeo-reconstructions of island evolution within the present study sites 507 

(based on 28 core records and 40 AMS radiocarbon dates) reveal notable parallels between the 508 

suggestions of future and former island roll -over and roll-around (East et al., 2018). Specifically, roll-509 

over and roll-around were identified as key modes of reef island formation at these sites, likely 510 

controlled by higher than present sea levels associated with the mid-Holocene sea-level highstand 511 

(Kench et al., 2009b). Hence, results of sediment PM analysis under increased MRS provide support 512 

for the suggestion that SLR could lead to a reactivation of the process regime responsible for reef 513 

island formation. In turn, future SLR could potentially induce further island building and 514 

remobilisation. 515 

Processes of island roll-around and roll-over would likely be most prevalent at the leeward site. This 516 

is because the increase in sediment PM under increased MRS was significantly larger at the leeward 517 

site than at the windward site. Hence, leeward rim islands will likely become more mobile under 518 

both scenarios of increased MRS than their windward counterparts. This suggestion is supported by 519 

prior work within the present study sites which has shown the leeward site islands have been more 520 

mobile than their windward counterparts over both millennial (East et al., 2018) and decadal (Aslam 521 

and Kench, 2017) timescales. In addition, numerical modelling of atoll reef island shorelines under 522 

SLR in the Pacific has suggested that lagoonward migration of leeward atoll islands may occur under 523 
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scenarios of increased wave energy (Shope et al., 2017). We thus suggest that reef island future 524 

landform trajectories may be diverse and site-specific, even over local scales. The approach we 525 

present in this study provides a useful tool for investigating such trajectories of reef island systems.  526 

Whilst the findings of this study imply that reef islands may persist into the future, it is pertinent to 527 

note several caveats to this prognosis. Firstly, the continued transport of sediment to reef island 528 

shorelines is largely contingent upon continued sediment production. Carbonate-producing 529 

organisms living in the adjacent reef environments represent the sole sediment source in atoll reef 530 

platform settings and thus any shift in reef ecology, and in the eco-geomorphic zones described in 531 

this study, will induce shifts in the rates and types of sediment production. This poses a particular 532 

challenge as coral reefs face a range of threats under climate change, including increases in ocean 533 

acidity and sea surface temperatures (IPCC, 2019). In the absence of continued sediment production, 534 

island persistence would be contingent upon the continued storage and adjustment of a finite 535 

volume of sediment. Secondly, whilst increased rates of island migration may enable the physical 536 

persistence of reef islands, such shifts in island planform will likely pose a challenge to the 537 

infrastructure and communities living in reef island nations. Thirdly, the present study investigates 538 

hydrodynamic processes and sediment transport under conditions associated with the upper 539 

confidence limits at the end of this century (Perry et al., 2018), however the upper limit of SLR 540 

projections by 2,300 are substantially higher (up to 5.4 m under RCP8.5; IPCC, 2019). 541 

6. Conclusion 542 

We present projections of reef hydrodynamics and benthic sediment transport under MRS scenarios 543 

in an atoll reef island setting. Under the fair-weather contemporary process regime, this work 544 

indicates that benthic sediment transport is occurring on atoll rim platforms with likely active reef-545 

to-island sediment connectivity. Under conditions of increased MRS, shifts in wave processes and 546 

sediment potential mobility were non-linear and non-uniform, counter to general assumptions that 547 

reef systems will respond linearly to environmental change. Significant between-site differences 548 
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were found in shifts in sediment PM under increased MRS, which implies that reef system, and in 549 

turn reef island, morphological responses to future increases in MRS are likely to be diverse and site-550 

specific, even over local scales. As shifts in sediment PM were significantly larger in magnitude on 551 

the leeward rim than on the windward rim, we suggest that geomorphic shifts will be most 552 

pronounced on the leeward rim. Under increased MRS, both wave velocities and sediment PM 553 

decreased or remained constant at the oceanward platform margins, whereas the largest increases 554 

were found on the inner reef flat. The lagoonal zones were projected to remain as sinks for sediment 555 

deposition under increased MRS.  Due to the coupling of increased sediment PM adjacent to 556 

oceanward island shorelines and low sediment PM adjacent to lagoonward island shorelines, we 557 

hypothesize that lagoonward reef island migration will occur under increased MRS. These findings 558 

have implications for predicting the future adaptive capacity of atoll nations globally. Specifically, the 559 

challenge is to incorporate such potential increases in island mobility and intra-regional diversity in 560 

reef system geomorphic responses to sea level rise into national-scale vulnerability assessments. 561 
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